
  
© Springer International Publishing Switzerland 201  
A.P.F.D. Barbosa Póvoa and J.L. de Miranda (eds.), Operations Research and Big Data, 

195

Studies in Big Data 15, DOI: 10.1007/978-3-319-24154-8_23 

 

GPU-Based Computing for Nesting Problems: 
The Importance of Sequences  
in Static Selection Approaches 

Pedro Rocha1, Rui Rodrigues2, A. Miguel Gomes2, and Cláudio Alves3 

1 INESC TEC, Porto, Portugal 
2 INESC TEC and Faculdade de Engenharia, Universidade do Porto, , Porto, Portugal 
3 Escola de Engenharia, Universidade do Minho, Braga, Portugal 

Abstract. In this paper, we address the irregular strip packing problem (or nesting 
problem) where irregular shapes have to be placed on strips representing a piece 
of material whose width is constant and length is virtually unlimited. We explore a 
constructive heuristic that relies on the use of graphical processing units to accel-
erate the computation of different geometrical operations. The heuristic relies on 
static selection processes, which assume that a sequence of pieces to be placed is 
defined a priori. Here, the emphasis is put on the analysis of the impact of these 
sequences on the global performance of the solution algorithm. Computational 
results on benchmark datasets are provided to support this analysis, and guide the 
selection of the most promising methods to generate these sequences. 

1 Introduction 

Given their practical and theoretical relevance, cutting and packing problems have 
deserved the attention of both operations research and computer science practition-
ers [8]. The general problem consists in finding the best way to place a set of items 
(pieces) on a larger object (board). The feasibility of a solution may be subject to 
different constraints. In the simplest form of the cutting and packing problem, both 
the pieces and the board are 1-dimensional objects and the only constraint that ap-
plies is related to the size of the board, which should not be exceeded. On higher 
dimensional problems, other constraints become more critical such as the non-
overlapping of the pieces and the fact that pieces must be placed inside the board 
(although these constraints also arise in 1-dimensional settings, they are treated very 
easily in these cases). Furthermore, in real settings, many different specific opera-
tional constraints may be considered, such as the existence of conflicts between the 
pieces or the limitation of the rotations applied to the pieces. One interesting aspect  
 

5



196 P. Rocha et al. 

is that they may also arise as subproblems of other integrated optimization prob-
lems, as for example in transportation problems where the capacity of the vehicles 
are strong constraints. 

In this paper, we address the so-called nesting problem or irregular strip pack-
ing. The problem is a 2-dimensional packing problem involving pieces whose 
contour may be irregular. Here, irregularity contrasts with many other cases stud-
ied in the literature where only specific convex shapes are considered (squares, 
rectangles, circles). In our case, the shapes may have concavities, and they are not  
restricted to any particular family of polygons. The board is a rectangular strip 
representing a piece of material whose interior is homogeneous, has fixed width, 
and virtually unlimited length. Given these definitions, the optimization problem 
consists in finding the positions where the pieces should be placed such that they 
are completely inside the board, do not overlap, and the total length of the used 
strip is minimized. The problem is clearly NP-hard [4], and, in practice, it remains 
challenging even for small datasets due to its combinatorial and geometric nature. 
Different types of approaches have been described in the literature [2, 3, 5]. Here, 
we explore the potential of graphical processing units (GPU) to accelerate the 
computation of some geometrical operations, and we study the importance of good 
sequences of pieces in approaches based on greedy constructive heuristics. To the 
best of our knowledge, this is the first time that GPU are used to evaluate the qual-
ity of layouts from a representation of the solutions based on sequences of pieces. 
The objective of our study is mainly experimental. It aims to provide insights 
towards the development of efficient approaches from similar platforms.  

The paper is organized as follows. The second section presents the basic defini-
tions and concepts related to the nesting problem. Third section describes the  
solution framework adopted in our study, and discusses the most promising se-
quencing rules that should be used in pure greedy constructive heuristics. Further 
experiments and results are reported and discussed in the fourth section. In the last 
section, we draw some final conclusions. 

2 The Nesting Problem and Underlying Concepts 

The nesting problem addressed in this paper consists in finding the best layout for 
a set of 2-dimensional pieces on a board so that no pieces overlap and all of them 
are placed inside the board. The pieces have irregular contours that may potential-
ly include concavities. The board is a strip with a fixed width and a length virtual-
ly unlimited. The quality of a layout is measured as the length of the used strip, or 
equivalently, as the usage of the area occupied up to the length it reaches on the 
strip. Due to technological constraints and physical properties of the raw materi-
als, pieces are only allowed to be placed under a discrete set of orientations. Fur-
thermore, the pieces may be placed in any unused position of the strip given that 
the internal part of both the pieces and the strip are homogeneous. 

The geometrical representation of the pieces has a significant impact on the ef-
ficiency of the solution approaches. Pieces can be represented by defining their 
vertices as sequences of points. Although this is a simple representation, it  



GPU-Based Computing for Nesting Problems 197 

requires complex trigonometric operations to compute the relative position of the 
shapes. An alternative is based on a raster representation (grid) where shapes are 
represented through a matrix of values (pixels). This representation can be used to 
check easily for overlaps, in particular when it is combined with the use of no-fit 
polygons (NFP). However, the accuracy of the representation depends on the unit 
size of the grid, and it increases, as the unit size gets smaller. Similarly, the com-
putational burden increases significantly with smaller unit sizes, due to the large 
number of total grid units used. The raster representation is also more adequate for 
pieces with orthogonal edges, since non-orthogonal edges are only approximated. 

The placement of the pieces is usually tackled with the assistance of NFP and 
inner-fit polygons (IFP) [1]. The NFP between two pieces can be described as a 
set of points that define the relative position between two polygons (whether they 
are overlapping or touching). Its main advantage is the simplification of the over-
lap verification process, but it is only efficient for discrete orientations since they 
can be computed offline in a pre-processing stage. The IFP is similar to the NFP, 
but it is used to ensure that a polygon is placed inside another. 

Given the computational burden involved in the geometric operations inherent 
to the nesting problem, a promising approach has been to consider the use of dedi-
cated hardware to support this computation, and in particular, the GPU [6]. The 
GPU is able to execute operations on multiple pixels simultaneously, which can be 
explored to improve the efficiency of the approaches when compared to the use of 
a normal CPU. The rasterization capabilities of the GPU enable producing feasible 
layouts considering the raster representation of both the pieces and the board. 
Using a higher representation quality also requires an increase in the total number 
of pixels, leading to a higher computational cost. 

3 Solution Framework 

In this paper, we explore and analyze a GPU-based greedy heuristic for the nesting 
problem. To take full advantage of the GPU, we used a raster representation to 
define the pieces and layout. The heuristic relies on a left-bottom placement rule 
that places the pieces iteratively in the layout according to a predefined sequence. 
Given the importance of these sequences on the quality of the layouts, we study 
the influence of these sequences on the performance of the heuristic. 

Sofia et al. [7] present details about the GPU-based placement heuristic used in 
this work (GPU-Nest). Only a brief description of this heuristic is presented here. 
Given a predefined sequence of pieces, the heuristic places the pieces iteratively 
using a left-bottom placement rule. At each iteration, the placement rule is used to 
determine the most left-bottom feasible placement point of the next piece for all 
admissible orientations. Among all the alternatives, the heuristic selects the one 
that corresponds to the leftmost and bottommost position. In our implementation, 
this is achieved by keeping buffers with the admissible placement positions (pix-
els), one buffer for each piece type and orientation. Each time one piece is placed 
in the layout, the buffers are updated by drawing one NFP in each one (the NFP 
between the placed piece and the buffer piece type and orientation). This process 



198 P. Rocha et al. 

has a drawback since it is not able to detect perfect fit situations due to the 
rasterization. To overcome this issue, the pieces are placed with a gap of 1 pixel 
between them. The heuristic was completely implemented in the GPU, which 
makes it computationally efficient. The NFPs and IFPs of all the pieces are gener-
ated in a pre-processing phase, and copied to the GPU memory. 

The main control parameters are the grid resolution (which impacts on the ap-
proximation quality of the pieces), and the empty space left between pieces (in 
order to allow placement of pieces in small holes). An increase in the grid resolu-
tion leads to better approximations, which may reduce the layout length and the 
empty spaces between the pieces, while it also increases the computational cost. 

Sofia et al [7] explored several greedy criteria to create static sequences of 
pieces. The static criteria implemented were the following: random (pieces are 
sorted randomly), height (pieces are ordered by height, taller first), width (pieces 
are ordered by width, wider first), irregularity (pieces are ordered by irregularity, 
most irregular first), rectangularity (pieces are ordered by rectangularity, less rec-
tangular first), and size (pieces are ordered by area, larger first). The results clearly 
showed a significant influence of the criteria on the layout quality, with the best 
results being obtained by the size criteria. Several other authors obtained similar 
results. One of the main reasons for this conclusion is due to the fact that the lay-
out length is mainly determined by the placement of the large pieces, since the 
smallest ones can frequently be accommodated among the largest ones. 

The evaluation and assessment of the effectiveness of a piece sequence sorting 
criterion is done by comparing it to the solutions obtained by random sequences. 
For a given sorting criterion to be clearly effective, it should produce better lay-
outs than the ones produced with random sequences. Additionally, the best results 
produced by random pieces sequences may allow identifying specific patterns that 
can enable the creation of new rules that consistently produce high quality layouts. 

4 Computational Experiments 

The computational experiments were executed on a platform with an Intel Xeon 
E5-5690@3.46Ghz processor, 48Gb RAM@1.33Ghz, Windows 7 x86-64, and a 
GPU Tesla C2070. The datasets used in the computational experiments were ob-
tained from the ESICUP (EURO Special Interest Group on Cutting and Packing, 
www.fe.up.pt/esicup) website. These datasets, ordered by increasing geometric 
complexity, have been selected due to their diverse geometry (convex/irregular), 
total pieces, piece type, variation in size, and other factors (Table 1). This allows 
the evaluation of the approach under different circumstances. All pieces can be 
placed in 0 and 180 degrees rotations. Table 1 also presents the average computa-
tional times of the pre-processing phase (NFP) and the GPU-Nest heuristic (GPU-
Nest). These computational times are independent of the pieces sequence, since 
they mainly depend on the pieces geometric characteristics. Namely, the pre-
processing time depends on the number of vertices, while the nesting time  



GPU-Based Computing for Nesting Problems 199 

depends on the total number of pieces, piece types and the number of pixels (given 
by the ratio between the board width and the grid resolution). 

Table 1 Datasets characteristics and average computing times 

 Characteristics  Average time 

Datasets total 
pieces 

piece 
types 

average 
vertices

board 
width 

unit grid 
size 

total pixels 
(103) 

 NFP 
(s) 

GPU-
nest (s) 

shapes 43 4 8.75 40 0.20 140.0  0,4 0.3 

shirts 99 8 6.63 40 0.20 200.0  0.9 1.3 

trousers 64 16 5.06 79 0.25 632.0  2.5 7.8 

swim 48 10 21.90 5752 20.00 200.9  22.5 1.9 

4.1 Randomly Generated Sequences 

In order to assess the impact that a sequence may have on the final layout quality, 
a set of 200 randomly generated sequences were created and evaluated for the four 
datasets. Figure 1 shows the layout density histogram for dataset shapes. It can be 
seen that there is a large concentration of results within a certain range of solution 
quality, and that as the quality of the solutions increases or decreases, the total 
number of solutions produced diminishes significantly. This shows that there is 
room for improvement in the quality of the solutions by using better piece se-
quencing rules. Histograms for the other datasets (shapes, swim and trousers) have 
similar profiles. These results will serve as a baseline comparison against the re-
sults obtained with other pieces sequence sorting criteria.  

0"

10"

20"

30"

40"

50"

60"

44%" 46%" 48%" 50%" 52%" 54%" 56%" 58%"

Fr
eq

ue
nc
y)

Layout)density)  

Fig. 1 Layout density histogram for dataset shapes 

4.2 Divide Pieces by Size in Two Groups 

An alternative to the random sequence approach was explored, based on the divi-
sion of the pieces in two groups according to their area. A random sequence is 
generated within each group. A full sequence is created by adding the sequence 
from the group with the smaller pieces to the end of the sequence from the group 
with the bigger pieces. This strategy is based on the idea that the larger pieces 
define the main structure of a layout, and the smaller pieces may be placed in 
holes between the largest ones. 



200 P. Rocha et al. 

In order to test this approach based on subgroups organized by piece size, 200 
sequences were produced for each subgroup in each dataset. The relative sizes of 
the pieces from each dataset were compared and a good allocation of pieces to 
each group selected. Figure 2 shows the layout density frequency polygons for 
datasets shapes and shirts when considering one and two groups. The two datasets 
clearly exhibit distinct behaviours when considering pieces divided in two groups: 
dataset shapes shows a small density improvement, while dataset shirts shows a 
bigger improvement. Dataset swim shows a similar behaviour to dataset shapes, 
while dataset trousers shows a similar behaviour to dataset shirts.  

0"

10"

20"

30"

40"

50"

60"

44%" 46%" 48%" 50%" 52%" 54%" 56%" 58%"

Fr
eq

ue
nc
y)

Layout)density) 

0"

20"

40"

60"

80"

100"

63%" 65%" 67%" 69%" 71%" 73%" 75%" 77%" 79%"
Fr
eq

ue
nc
y)

Layout)density)  

Fig. 2 Layout density frequency polygons for 1 group (solid line) and 2 groups (dashed 
line) for datasets shapes (left) and shirts (right) 

The main reason for these different behaviours is due to the pieces' relative size 
in each dataset, as seen in figure 3. For dataset shapes, none of the smaller pieces 
could be placed among the bigger ones and only some of them for dataset swim. 
On the other hand, for datasets trousers and shirts the smaller pieces were all 
placed in holes between the larger ones, without increasing the layout length. 

  

     

Fig. 3 Layouts with 2 groups of pieces (largest pieces in grey, smallest in white) for da-
tasets shapes (top-left), trousers (top-right), swim (bottom-left) and shirts (bottom-right). 

4.3 Best of 20 Random Sequences Divided in Two Groups 

The solution quality obtained when using only one random sequence divided by 
groups has a large variability (figure 2). To overcome this issue and achieve a 



GPU-Based Computing for Nesting Problems 201 

trade-off between the solution quality and the computational time, we tested an 
alternative approach where 20 random sequences, divided in two groups, are cre-
ated and the best solution is selected. Table 2 compares the results between order-
ing the pieces by size (static criteria, i.e., fixed sequence), and random sequences 
(one and two groups). In the last column, we provide the results when considering 
the best layout among 20 random sequences generated with two groups. Selecting 
the best of 20 layouts allows obtaining a good solution, which has a very high 
probability of being better than the average solution of 200 random sequences. 
The downside of this approach is the increased computational cost. 

Table 2 Impact of sequence generation procedure in the solution quality 

 (1 seq,)  (200 random seq.) (200 random seq.)  (20 random seq.) 

Dataset static  1 group 2 groups  2 groups 

 —  avg. (st.dev.)  avg. (st.dev.)  best 

shapes 51.7%  51.0% (1.6%)  53.3% (1.3%)  53.8% 

shirts 74.8%  71.2% (1.8%)  74.3% (0.9%)  76.3% 

trousers 76.5%  71.1% (2.4%)  76.6% (2.1%)  78.5% 

swim 58.4%  56.2% (1.8%)  59.3% (1.6%)  58.9% 

 
These algorithms have been implemented in the GPU, which improves the 

computation efficiency of this approach. It is specially true for datasets with com-
plex geometries, as shown by the GPU-Nest heuristic average times on table 1. 
For instance, the best of 20 layouts for dataset swim, where pieces have in average 
more than 20 vertices, can be obtained in about 1 minute. 

5 Conclusion 

The results reported in this paper show that the solution quality of the layout is 
strongly dependent on the combination of the pieces sequence and placement rule. 
These results enabled the setting of a baseline for comparison for other experi-
ments. The definition of the sequence based on the division into ordered sets of 
pieces allowed to determine the influence that such sequences may have on the 
quality of the layouts with a certain degree of variability. Noticeable improve-
ments over the base random sequences were achieved with a simple division into 
two sets. The datasets with the largest variation in piece size showed to benefit 
significantly from this sequencing method, while more uniform datasets did not. 
Further research may lead to sequencing rules that enable generating consistently 
high quality solutions. Due to the implementation of these algorithms in a GPU, 
significant improvements in computational efficiency were achieved. 

Acknowledgments. This work is financed by the FCT -- Fundação para a Ciência e a 
Tecnologia (Portuguese Foundation for Science and Technology) within project 
UID/EEA/50014/2013. 



202 P. Rocha et al. 

References 

[1] Bennell, J., Oliveira, J.: The geometry of nesting problems: A tutorial. European Jour-
nal of Operational Research 184, 397–415 (2008) 

[2] Bennell, J., Oliveira, J.: A tutorial in irregular shape packing problems. Journal of the 
Operational Research Society 60, 93–105 (2009) 

[3] Burke, E., Hellier, R., Kendall, G., Whitwell, G.: A new bottom-left-fill heuristic algo-
rithm for the two-dimensional irregular packing problem. Operations Research 54, 
587–601 (2006) 

[4] Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the 
plane are np-complete. Information Processing Letters 12, 133–137 (1981) 

[5] Gomes, A.M., Oliveira, J.: A 2-exchange heuristic for nesting problems. European 
Journal of Operational Research 141, 359–370 (2002) 

[6] Owens, J.D., Luebke, L., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Pur-
cell, T.J.: A survey of general-purpose computation on graphics hardware. Computer 
Graphics Forum 26, 1467–8659 (2007) 

[7] Sampaio, S., Gomes, A.M., Rodrigues, R.: Exploring graphical processing in irregular 
strip packing problems. To be published in CIM Series in Mathematical Sciences, by 
Springer Verlag, for IO2013 - XVI Congresso da APDIO (June 2013) 

[8] Wäscher, G., Hauβner, H., Schumann, H.: An improved typology of cutting and pack-
ing problems. European Journal of Operational Research 183, 1109–1130 (2007) 


	GPU-Based Computing for Nesting Problems: The Importance of Sequences in Static Selection Approaches
	1 Introduction
	2 The Nesting Problem and Underlying Concepts
	3 Solution Framework
	4 Computational Experiments
	4.1 Randomly Generated Sequences
	4.2 Divide Pieces by Size in Two Groups
	4.3 Best of 20 Random Sequences Divided in Two Groups

	5 Conclusion
	References




