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Abstract. Semantic technologies have proved to be a suitable foundation for in-
tegrating Big Data applications. Wireless Sensor Networks (WSNs) represent a 
common domain which knowledge bases are naturally modeled through ontolo-
gies. In our previous works we have built domain ontology of WSN for water 
quality monitoring. The SSN ontology was extended to meet the requirements 
for classifying water bodies into appropriate statuses based on different regula-
tion authorities. In this paper we extend this ontology with a module for identi-
fying the possible sources of pollution. To infer new implicit knowledge from 
the knowledge bases different rule systems have been layered over ontologies 
by state-of-the-art WSN systems. A production rules system was developed to 
demonstrate how our ontology can be used to enable water quality monitoring. 
The paper presents an example of system validation with simulated data, but it 
is developed for use within the InWaterSense project with real data. It demon-
strates how Biochemical Oxygen Demand observations are classified based on 
Water Framework Directive regulation standard and provide its eventual 
sources of pollution. The system features and challenges are discussed by also 
suggesting the potential directions of Semantic Web rule layer developments 
for reasoning with stream data. 
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1 Introduction 

Social networks, logging systems, sensor networks etc. are delivering huge amount of 
continuous flow of data also known as stream data. More data are produced more ma-
chine intelligence is required to deal with them. Streaming technologies like Complex 
Event Processing (CEP), Data Stream Management Systems, and Stream Reasoning 
(SR) are supporting Big Data applications development. According to a survey  
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conducted by Gartner Inc. 22% of the 218 respondents with active or planned big data 
initiatives said they were using stream or CEP technologies or had plans to do so [7]. In 
particular, SR provides a high impact area for developing powerful applications for 
analyzing stream data. State-of-the-art stream data knowledge bases are merely modeled 
through ontologies. Ontologies, in particular OWL ontologies, are mainly modeled in 
Description Logic (DL). Reasoning in ontological terms is not enough to express real-
world application scenarios. For example, deriving new and implicit knowledge from 
ontologies is efficiently done through rule-based reasoning. However, layering Seman-
tic Web rule-based DL systems, such as SWRL, over DL ontologies lacks the expressiv-
ity to handle some reasoning tasks, especially for the domain of SR e.g. finding average 
values [1]. A lot of research has been taken by the SR community to address data man-
agement and query processing on streaming data [4], while little efforts have been taken 
to address the stream reasoning inference problems [14]. In absence of a proper Seman-
tic Web rule system different ones have been layered over stream data ontology bases. 
In our previous works in [1, 2], we have discussed about pros and cons for approaching 
hybrid and homogeny solutions. Mainly, the reasons for passing to hybrid solutions 
include non-monotonicity issues and solving complex reasoning tasks.  

InWaterSense1 is a R&D project for developing intelligent WSNs for WQM which 
objectives include: 

• Build a Wireless Sensor Networks (WSN) infrastructure in the river Sitnica for 
monitoring water quality with the aim of providing a best practice scenario for ex-
panding it to other surface water resources as well in the Republic of Kosovo. 

• Monitor water quality in the river Sitnica supported by the WSN in order to make 
the quality data available to the community and the decision makers for determin-
ing the current health of the river. 

• Transform the existing WSN for WQM into an intelligent platform to operate  
almost autonomously, and support more functionality as envisioned by the future 
Internet and intelligent systems.  
In line with our project objectives, especially the later one, we have built 

INWATERSENSE (INWS) ontology framework [2], a SSN 2 -based ontology for  
modeling WQM domain. An extension of this ontology is developed for enabling 
identification of the potential polluter. Moreover, an expert system, using the Java 
Expert System Shell (Jess) [11], was developed to reason over INWS ontology. Jess is 
a rule engine and scripting environment written in Java. The contribution illustrates 
the main characteristics of an expert system for WQM. Namely, it classifies water 
bodies based on observed water quality values and investigates eventual sources of 
water quality degradation. We discuss the features and challenges of this system while 
also addressing its potential improvements. Since we plan in the future to build a pure 
Semantic Web framework for WQM, we also discuss the main challenges expected 
for building such system. The Jess expert system described in this paper will then be 
compared with this system. 

                                                           
1 http://inwatersense.uni-pr.edu/ 
2 Semantic Sensor Network Ontology, http://purl.oclc.org/NET/ssnx/ssn 
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The paper is organized as follows. We begin in the following section with descrip-
tion of INWS ontology model and the requirements for rule-based stream data reason-
ing. Section 3 describes the conceptual architecture of our SR framework for WQM. 
The expert system implementation is described in Section 4, while its challenges and 
discussions together with the pure Semantic Web approach are presented in Section 5. 
The paper ends with the concluding notes and future plans. 

2 Background 

The INWS ontology framework [2] models the WSN for WQM into three modules: 
core3, regulations4 and pollutants5. The core ontology extends the SSN ontology to 
meet the requirements for a WSN for WQM. It models WSN infrastructure entities, 
observations, observation time and location and water quality parameters. The regula-
tions ontology models classification of water bodies based on different regulation 
authorities such as Water Framework Directive (WFD) [17]. And finally, the pollu-
tants ontology models the entities for investigating sources of pollution.  

A typical scenario for WQM in a WSN platform is as below:  

Scenario 1. Water quality sensor probes are deployed in different measurement sites 
of a river. A sensor probe emits water quality values. We want to (1) classify the wa-
ter body into the appropriate status according to WFD regulations and (2) identify 
the possible polluter if the values are below the allowed standard.  

In order to handle the requirements of this scenario, a SR system should support rea-
soning over both streaming information and background data [19]. In particular, to enable 
efficient rule-based reasoning over stream data we address some specific requirements 
about this property which are already mentioned in state-of-the-art systems e. g.  
StreamRule [25]. Namely, a SR rule systems need to support a combination of reasoning 
features like: closed-world, non-monotonic, incremental and time-aware reasoning.  

Since the Web is open and accessible by everyone, Semantic Web recommended 
standards (OWL and SWRL) manage knowledge bases in terms of open world as-
sumption (OWA). In OWA, if some knowledge is missing it is classified as undefined 
as opposed to the closed-world assumption (CWA) which classifies the missing in-
formation as false. In the Web, addition of new information does not change any pre-
viously asserted information which is known as monotonic reasoning. This is not the 
case with non-monotonic reasoning during which addition of new information implies 
eventual modifications in the knowledge base. In SR application domains, OWL and 
SWRL’s OWA and monotonic reasoning do not offer the desired expressivity level. 
For example, modifying the river pollution status is not allowed through SWRL rules. 
Following the SWRL’s monotonic nature a river instance firstly asserted as “clean” 
cannot be later modified as “polluted”. 

                                                           
3 http://inwatersense.uni-pr.edu/ontologies/inws-core.owl 
4 http://inwatersense.uni-pr.edu/ontologies/inws-regulations.owl 
5 http://inwatersense.uni-pr.edu/ontologies/inws-pollutants.owl 
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Inferring new implicit data from stream data will result in multiple CRUD opera-
tions, which in SR is known as incremental reasoning. In our case study, new coming 
sensor observation data need to be consumed quickly and together with previously 
inferred data will serve as for inferring new implicit data. 

SR systems should also include time-annotated data i.e. the time model, and like 
CEP should offer explicit operators for capturing temporal patterns over streaming 
information [19]. The INWS ontology layer implements the time model through 
OWL Time ontology6. Supporting temporal operators (serial, sequence, etc.) means 
the system can express the following example rule: Enhanced phosphorus levels in 
surface waters (that contain adequate nitrogen) can stimulate excessive algal growth 
[18]. If before excessive algal growth, enhanced phosphorus level has been observed 
then more probably the change of phosphorus levels has caused the algal growth. 
Thus, a sequence of these events needs to be tracked to detect the occurrence of this 
complex event. 

Moreover, in order to enable reasoning in terms of time and quantity intervals of 
continuous and possibly infinite streams the SR notion of windows need to be adopted 
for rules [13]. For example, a rule to assert which sensors provided measurements that 
are above allowed average threshold the last 30 minutes sliding the window every 5 
minutes, will be easily expressible with the help of the window concept. This has 
raised the need for a specific kind of rules in SR, namely continuous rules. Rather 
than evaluating rules against almost static ABox knowledge base as in traditional 
Semantic Web rule systems, continuous rule-based reasoning must run over dynamic 
stream data instead. With the set of new-coming data streams new logical decisions 
will arise: new information need to be published on the knowledge base or a fact 
modification/retraction need to be performed. 

3 System Architecture 

As depicted in Fig. 1, our system’s architecture consists of three layers: data, INWS 
ontology and rules layer. The RDF data (up left) and RDF streams (up right) consti-
tute the data layer (grey track). Arrows describe data flow direction. Domain specific 
ABox knowledge which does not change or changes “slowly” is formulated in the 
form of RDF data e.g. river names. RDF streams are defined as a sequence of RDF 
triples that are continuously produced and annotated with a timestamp [9]. Water 
quality measured values, annotated as RDF streams, will continuously populate the 
core ontology. In particular, a single RDF stream will hold information of observed 
water quality value, timestamp and location. The middle part of Fig. 1 represents the 
INWS ontology (green track) described in the previous section. The rule layer (yellow 
track) consists of common rules (bottom left) and continuous rules (bottom right). In 
the previous section we mentioned the concept of continuous rules which should infer 
new implicit knowledge from RDF streams.  

                                                           
6 http://www.w3.org/TR/owl-time/ 
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Fig. 1. InWaterSense conceptual framework: data layer (grey track), ontology layer (green 
track) and rules layer (yellow track) 

4 Implementation 

We decided to use Jess as a platform for implementing our system of reasoning over 
the INWS ontology framework. As a production rule system, Jess supports closed-
world and non-monotonic reasoning. Moreover, it has a tight integration with Java 
through Jess’s Java API and Protégé through JessTab7 plugin. JessTab is a plug-in for 
the Protégé8 ontology editor and knowledge-engineering framework that allows one 
to use Jess and Protégé together. The system is validated with simulated data, but it is 
developed for use within the InWaterSense project with real data. 

The Jess implemented architecture of our system and its related components for 
reasoning over the INWS ontology are presented in Fig. 2. Namely, input data in their 
available format, say SQL, are transformed into RDF streams using D2RQ9 tool. 
SWOOP [12] is used to load the D2RQ generated RDF data and produce the abbre-
viated RDF/XML syntax for object property instances to be readable by Protégé [2]. 
RDF data streams are next imported into the core ontology. The set of rules for water 
quality classification based on WFD regulations are defined and may run against the 
knowledge base. Moreover, a set of rules for investigating sources of pollution by 
observing if eventual critical events appear are defined and may be activated. A sim-
ple user interface was developed using Java Swing10, which offers a user to monitor 
water quality based on the WFD regulations and to eventually find the possible 
sources of pollution. 

                                                           
7 http://www.jessrules.com/jesswiki/view?JessTab 
8 Protégé ontology editor, http://protege.stanford.edu/ 
9 D2RQ Accessing Relational Databases as Virtual RDF Graphs, http://d2rq.org/ 
10 http://openjdk.java.net/groups/swing/ 
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condition, if the average is below 1.3 then river belongs to “High” status, else the 
river belongs to “Moderate” status. Expressing this rationale with Jess rules was 
done through a number of rules. Namely, a rule of primer priority creates auxiliary 
Jess facts holding BOD5 measurement values coming from the RDF streams. We 
should have used observation values directly from the ontology mappings but the Jess 
rule which calculates the average value constrains the usage of Jess facts. 

   

Fig. 3. The Jess system interface: initial view (left) and after WFD classification view (right) 

After finding the average value it is asserted as a fact into the WM. Finally, another 
rule WFDclassifyWaterBOD does the WFD classification based on the previously 
asserted average value. This rule is illustrates below: 

1 (defrule WFDclassifyWaterBOD 

2 (BODaverage (v ?x)) (CurrentInterval (v ?i)) => 

3 (if (and (< ?x 1.5) (> ?x 1.3)) then (and 

4 (printout t "Status for BOD is: GOOD" crlf) 

5 (make-instance (str-cat "GoodBODStatus" ?*r*) of http://.../inws-

regulations.owl#GoodBODMeasurement map) 

6 (make-instance (str-cat "ObservationInstantBOD" ?*r*) of    

http://.../inws-regulations.owl#ObservationInstant map) 

7 (slot-insert$ (str-cat "ObservationInstantBOD" ?*r*)  

8 http://www.w3.org/2006/time#inXSDDateTime 1 ((new Date) toString)) 

9 (slot-insert$ (str-cat "ObservationInstantBOD" ?*r*) 

10  http://.../inws-regulations.owl#hasStatus 1  

11   (str-cat "http://.../inws-core.owl#GoodBODStatus" ?*r*)) 

12 (slot-insert$ (str-cat "http://.../inws-core.owl#" ?i)  

13   http://.../inws-regulations.owl#hasStatus 1  

14   (str-cat "http://.../inws-core.owl#GoodBODStatus" ?*r*)))) 

15 (if (< ?x 1.3) then <HIGH status classification code here>) 

16 (if (> ?x 1.5) then <MODERATE status classification code here>)) 

Code in Line 1 serves for declaring a rule definition and its name. Line 2 represent 
the left hand side of the rule while lines 3-16 the right hand side of the rule. The pre-
viously calculated average value is assigned to variable ?x while the current interval 
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of observations present in the WM is assigned to ?i (Line 2). If ?x is between 1.5 
and 1.3 begin assertions for good status (Line 4-14). Namely, a message is printed out 
(Line 4); a new instance of regulations ontology class GoodBODMeasurement is 
created (Line 5) (?*r* is a global variable holding random integer numbers); a new 
instance of ObservationInstant class is created (Line 6) associated with cur-
rent date and time through inXSDateTime property (Line 7-8). This instance is also 
related with the instance created in Line 5 through hasStatus property (Line 9-11). 
Current interval instance (Line 12) is associated with the newly asserted status in-
stance (Line 13-14). The same steps presented in line 4-14 are performed for the high 
and moderate status, which are omitted for brevity (Line 15-16).  

The second part of Scenario 1 is encoded through a couple of rules. The first one 
detects newly asserted instances of moderate status i.e. instances of ModerateBOD-
Measurement class. If there is at least one instance the second rule will fire and 
find BOD5 sources of pollution discharging in the river body. An example of BOD5 
observations status is illustrated in Fig. 4. BOD5 sources of pollution are also listed 
after the user has clicked the “Find possible pollutants” button. 

 

Fig. 4. Scenario 1 example output for BOD5 observations WFD classification and sources of 
pollution 

5 Challenges and Discussion 

In this section will be discussed the features of the Jess system and the challenges to 
be addressed for its further improvements. Meanwhile, potential future directions for 
building a pure Semantic Web rule system, such as SWRL, for WQM also take place 
in the discussion. This system is planned to support time-aware, closed-world, non-
monotonic and incremental reasoning to enable stream data reasoning. 

5.1 Continuous Rules 

The Jess system effectively identifies water quality status for the set of input RDF 
streams. Upcoming RDF streams are collected into another set of streams which in turn 
are imported into INWS ontology for rule-based reasoning. As per future works we plan 
to automate this process. Namely, RDF streams coming from SQL through D2RQ trans-
lation will continually populate the ontology and be automatically mapped into Jess’s 
WM. Meanwhile, with the time passing old facts will be discarded from the WM and be 
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deployed into the knowledge base for future reasoning. If a class is mapped through 
JessTab command mapclass then it will place all its instances into the WM. This is 
not practical with stream data as data flow is massive and rules will consider a specific 
set (time or quantity constrained window) of RDF streams. A workaround solution 
would be to create Jess facts out of window’s selected Protégé instances. But this way 
the WM will hold Protégé instances and their one or many Jess facts copies. Moreover, 
instead of producing a query output results like in C-SPARQL, the continuous firing of 
rules will continually modify the knowledge base i. e. do incremental reasoning. This is 
efficiently done through JessTab functions for manipulation of ontology classes and 
instances. However, using inferred knowledge between observation RDF streams sets is 
planned for future system improvements. 

5.2 Logic Foundation 

The core issue for building a pure Semantic Web system for stream data from which 
follow the respective expressivity constrains is the system’s underlying logic founda-
tion. Production rules and LP implementations has shown great success in the domain 
of SR. Different Semantic Web applications fall into different logic domains and pos-
sibly in a mixture of them [6]. The authors of [6] conclude that the Description Logic 
Programs (DLP) fragment should offer extension for both LP and DL. In the area of 
SR, DL reasoning fulfills the requirements for modeling the knowledge bases. When 
it comes to rule-based reasoning DL’s OWA limits the expressivity power for even 
simple reasoning tasks (e.g. counting class instances). Since LP adopts CWA ap-
proach together with non-monotonicity an LP extension of DLP, would be ideal for 
the WQM case study and stream data in general. 

5.3 Forward/Backward-Chaining and Rete Algorithm 

Inferring new knowledge in rule systems can be done in two methods: deriving con-
clusions from facts, known as forward-chaining or starting from conclusion (goal) by 
matching facts also known as backward-chaining.  

In production rule systems, matching rules with relevant facts is efficiently done 
with the Rete algorithm [9]. Executing rules through Rete algorithm means all rele-
vant facts must be loaded into the WM [3]. Considering the massive flow of stream 
data the WM will become overwhelmed. Adding here the amount of the inferred 
facts, the memory will become exhausted. With the introduction of the continuous 
rules this issue will be resolved by capturing only snapshots (time-based or count-
based windows) of streams and thus facts will enter and leave WM as needed.  

In SR applications facts are changing very often, while rules change “slowly”. 
Newly inserted facts in WM will cause rule firing. This intuitively indicates the for-
ward-chaining nature of stream data applications. Rete algorithm natively adopts for-
ward-chaining approach. However, the traditional Rete algorithm does not support 
aggregation of values in time-based windows [20]. Authors in [20] present a CEP 
system which extends Rete algorithm for supporting time-aware reasoning by  
leveraging the time-based windows and enabling calculation of complex events e.g. 
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finding average value. They have added a time enabled beta-node to restrict event 
detection to a certain time-frame. On the other side, Semantic Streams [21], prove that 
backward-chaining can also be enabled on stream data even though its slight modifi-
cation has been needed to produce the legal flow of data. 

5.4 Hybrid and Homogeny Stream Data Approaches 

State-of-the-art rule-based systems for reasoning over stream data mainly fall into two 
broad categories: hybrid and pure Semantic Web approaches [1]. 

Hybrid approaches layer different rule systems over ontologies like: production 
rules, CEP, LP, Answer Set Programming etc. In our previous work [1] we described 
in more detail about each approach and their pros and cons. In general, hybrid ones 
have achieved the desired system behavior by translating the ontology into the corres-
ponding formalisms of the overlaying rule system. A drawback of this translation is 
that a possible loss of information may occur. For example, translating complex sub-
class statements consisting of disjunction of classes or expressed with existential 
quantification are not possible into Plausible Logic [5]. Moreover, when adding a rule 
a possible side-effect may occur. For example, in production rule systems adding a 
rule may require extra work because of the algorithm used for executing the rules as 
depicted in [3]. This makes it harder for domain experts to write rules without IT 
support. In some cases (as shown in [3]) development layers are conflate to each other 
making rules maintenance more laborious. SWRL on the other side is declarative rule 
language not bound to any particular execution algorithm [3]. However, equipping 
SWRL with non-monotonic reasoning means the order of rules should be taken into 
account [24]. StreamRule demonstrates how non-monotonic, incremental and time-
aware reasoning can be integrated into a unique platform for stream data reasoning. 
However, the continuous rule feature is implemented through separate steps. Namely, 
stream filtering and aggregation is done through a stream query processor such as 
CQELS [26] while OClingo [27] is used to enable non-monotonic reasoning. 

Pure Semantic Web approaches like [22] and [23] do not make any distinction be-
tween stream and random data and lack implementation. These approaches prove that 
SWRL can be used to infer new and approximate knowledge in stream data domains. 
The work presented in [16] describes a Rete-based approach of RIF rules for produc-
ing data in a continuous manner. Although supporting time-aware and incremental 
reasoning, the approach does not deal with non-monotonic and closed-world reason-
ing. Rscale [8] is another industrially-approved reasoning system which leverages 
OWL 2 RL language profile to infer new knowledge. It enables incremental reason-
ing, non-monotonic and closed-world reasoning through translation of facts and rules 
into SQL tables and queries respectively. However, it does not support time-aware 
reasoning, and as a non-Semantic Web approach follows the hybrid approach disad-
vantages. JNOMO [24] shows how SWRL can be extended to embrace non-
monotonicity and CWA. However, inclusion of temporal reasoning is envisioned as 
per future works.  
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6 Conclusion and Future Work 

The main contributions of this paper include an extension of INWS ontology with 
metadata descriptions for water quality pollution sources and an expert system that 
uses INWS ontology to enable WQM.  The system efficiently classifies water bodies 
based on WFD standards encoded into Jess rules running over the set of observations 
RDF streams. Moreover, a set of Jess rules are used to detect the eventual sources of 
pollution. However, the notion of windows needs to be adopted for Jess rules to  
enable continuous rules feature. The system’s features and challenges were also  
discussed as lessons learned for future plans of building Semantic Web homogeny 
solution for reasoning over stream data. Forward-chaining reasoning method is a nat-
ural approach for stream data while an LP extension to DLP was also identified as a 
suitable underlying logic for the rule system reasoning over stream data. Our future 
works also include the evaluation of the expert system described in this paper and 
comparing it with the pure Semantic Web system. 
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