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Abstract. This paper reports on research exploring a threshold for engaging 
scientists in semantic ontology development. The domain application, nano-
crystalline metals, was pursued using a multi-method approach involving algo-
rithm comparison, semantic concept/term evaluation, and term sorting. Algo-
rithms from four open source term extraction applications (RAKE, Tagger, Kea, 
and Maui) were applied to a test corpus of preprint abstracts from the arXiv re-
pository. Materials scientists identified 92 terms for ontology inclusion from a 
combined set of 228 unique terms, and the term sorting activity resulted in 9 top 
nodes. The combined methods were successful in engaging domain scientists in 
ontology design, and give a threshold capacity measure (threshold acceptabili-
ty) to aid future work. This paper presents the research background and motiva-
tion, reviews the methods and procedures, and summarizes the initial results. A 
discussion explores term sorting approaches and mechanisms for determining 
thresholds for engaging scientist in semantically-driven ontology design and the 
concept of ontological empowerment. 
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1 Introduction  

Vocabularies, taxonomies, and semantic ontological systems have been a mainstay of 
scientific endeavors from earliest times. Aristotle’s History of Animals (Historia Anima-
lium) [1] is among the most recognized examples. In this seminal work, animals are 
classified by observable properties, such as having blood or being bloodless, their living 
habitat, and movement processes (walking, flying, or swimming). Aristotle further in-
troduced binomial naming; that is, the classing and naming of organisms by their genus 
and what we today identify as species. During the nineteenth century, Carl Linnaeus, the 
‘father of modern taxonomy,’ advanced binomial nomenclature for plant specimens by 
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introducing facets, hierarchies (genus/species, supra- and sub- categories), associations, 
and other types of relationships that are integral components of many contemporary 
semantic ontologies [2]. 

Fast forward to today, where semantic ontologies are being integrated into our 
digital data infrastructure. Ontologies have a crucial role to play in aiding data dis-
covery, reuse, and interoperability; and, most significantly, they can facilitate new 
science [3]. Development of ontology encoding standards, such as the Web Ontology 
Language (OWL)[4] and the Simple Knowledge Organizing System (SKOS)[5], are 
interconnected with the growth of Big Data and the desire to advance data science 
activity. Additionally, the ‘open data movement’ has motivated various communities 
to generate and share ontologies; there have been numerous collaborations to this end 
in biology, medicine and health sciences, ecology, and geology.   

Materials science, as an interdisciplinary field of study, has been able to benefit 
from ontology work in these other disciplines; however, documented efforts targeting 
materials science are limited to a few examples [6].  Researchers associated with the 
Materials Metadata Infrastructure Initiative (M2I2) [7] at the Metadata Research Cen-
ter, Drexel University, are addressing this shortcoming by exploring means for ad-
vancing ontological practices in the field of materials science. As part of this effort, 
an interdisciplinary research team of information and materials scientists are studying 
ways to engage domain scientists in ontology development while extending the Help-
ing Interdisciplinary Vocabulary Engineering (HIVE) technology [8, 9, 10].   

This paper reports on the M2I2 effort, and specifically the development of an  on-
tology for nanocrystalline metals. The chief goal was to explore a threshold for en-
gaging scientists in semantic ontology development.   To further explain, we seek 
baseline data on the engagement capacities of scientists (domain experts) for aiding 
ontology development. More precisely, how much time and effort can we anticipate 
of scientists, without them feeling like ontology work is an intellectual drain.  

 A secondary goal was to identify means by which information scientists/non-
domain experts can easily facilitate ontology design processes.,  To this end, we iden-
tified fairly generic, domain agnostic technologies that can be applied across various 
materials science sectors as well as other disciplines. We explain these technologies in 
our methods and reporting. The unified goal is to establish an ontology design frame-
work that can be used across a range of disciplines and sub-disciplines. 

The remainder of this paper reports on this research and is organized as follows. 
Section 2 presents background information on materials science and nanocrystalline 
metals; Section 3 provides the case for shared semantics in materials science; Sections 
4-6 cover the research objectives, methods, and procedures; Section 7 presents the 
results; Section 8 includes a contextual discussion of the results and examines chal-
lenges and opportunities for determining thresholds for engaging materials scientists 
in ontology design. Section 9, the last section of this paper, presents several conclu-
sions, notes research limitations, and identifies next steps for future research.  
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2 Materials Science and Engineering:  Nanocrystalline 
Materials  

Materials Science and Engineering (MSE) is the study of the intersection of materials’ 
processing, structure, properties, and performance [11].  The goal is to improve exist-
ing materials and develop new materials for a myriad of scientific and technological 
applications.  The origins of MSE lie within the overlapping interests of chemistry, 
physics, and engineering.  MSE research is relevant to other engineering and scientif-
ic disciplines, as the impact of advanced materials has shown to be universally bene-
ficial. Over the past few decades, one significant driving force behind materials re-
search has been the emergence of nanotechnology and nanoscience [12], where both 
science and engineering at the atomic/molecular level are investigated. Advancements 
in structural, electronic, magnetic, optical, and other functional properties of materials 
have correlated well with advancements in nanotechnology research. 

Engineering or manipulating the nanostructure of a material enables enhancement 
for a wide array of physical properties (e.g., mechanical, electrical, optical, etc. [13].  
Nanostructured materials are characterized by the fundamental structure or building 
block of the material being on the order of nanometers.  Nanocrystalline (NC) metals, 
a type of nanostructured material, has received noticeable interest due to improve-
ments in its mechanical properties.  In NC metals, the length-scale of the fundamental 
unit (i.e., grain or crystal) is on the order of 1-100 nanometers [14].  

NC metals have been the subject of numerous studies, as their mechanical strength 
has been recorded in early efforts to exceed that of traditional metals with larger 
grains or crystals.  A growing body of research confirms that additional property en-
hancements in NC metals show promise in more common products and applications. 
Specific examples demonstrate how NC metals incorporated into artificial limbs may 
improve human health [15].  Innovative NC driven capacities, the open data move-
ment, and calls to accelerate materials science R&D provoke the development of 
shared semantics.  

3 The Materials Genome Initiative and the Case for Shared 
Semantics  

Materials are integral to our daily lives; and global efforts along with indus-
try/academic partnerships seek to advance MSE R&D.  In the United States, the Ob-
ama Administration has launched the Materials Genome Initiative (MGI) [16] to acce-
lerate the development of new materials in areas impacting human health, energy and 
the environment, and social welfare. The MGI 2014 Strategic Plan [17] recognizes the 
significance of data in ‘Objective 3, Facilitate Access to Materials Data;’ and Section 
3.2 specifically calls for semantics to aid discovery across data repositories.   

Semantic ontologies are important for this objective; they aid scientists and data 
managers in discovering, using, and repurposing research data together with addition-
al components of the research enterprise (e.g., data, models, simulations, instrumenta-
tion, software, code, etc.).   
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Biology, geology, medicine, and environmental science have extensive disciplinary 
networks of shared semantics ontologies.  Two examples include the Biosharing por-
tal [18] in the United Kingdom, which provides links to a vast collection standards 
including scientific ontologies; and the National Center for Biological Ontologies 
(NCBO) bioportal [19], which houses 441 ontologies covering scientific and medical 
topics.  Federal agencies are also responsible for maintaining terminologies that 
equate with semantic ontologies.  A case in point is the United States Geological Sur-
vey (USGS), which maintains the Integrated Taxonomic Information System [20] and 
other terminologies in the geological and biological sciences. All of these facilities 
allow scientists to access and use semantics on a global scale. More significantly, 
sharing semantics supports data discovery, use, integration, and other functionalities 
that can promote new science.   

Shared semantic ontologies have flourished in various scientific domains, although 
efforts in materials science and engineering (MSE) are limited.  One reason for the 
slow uptake in this area may be that materials science and engineering research en-
deavors are able to leverage ontologies developed in other noted areas.  Another rea-
son is that scientist may not see the value of ontologies or a direct impact or value, 
making their engagement difficult. Ontology creation is a time-consuming, intellec-
tually demanding undertaking; and scientists have limited time to devote to such ef-
forts. To this end, ontology R&D needs to educate scientists/domain specialists as to 
the value of ontologies and provide mechanisms so that involvement in the ontology 
creation process is not too labor intensive. 

Ontology work for Chronic Obstruction Pulmonary Disease (COPD) provides one 
example addressing these goals, driven by the practice of ontological empowerment 
[21].  User-friendly open source thesaurus software (TemaTres) was used to engage 
domain experts (medical researchers) in ontology design and maintenance work.  In 
this case the domain experts had a sense empowerment by contributing to and main-
taining the ontology.  Moreover, the COPD ontology was seen as a valuable tool.  The 
MSE predicament might be addressed in a similar way by facilitating domain expert 
engagement and leveraging the information scientist’s expertise to provide a user-
friendly development environment.  Specific research objectives guiding the research 
presented in this paper are outlined in the next section.    

4 Research Objectives  

The objectives of this research were to:   
 Explore an approach for engaging materials scientists in ontology develop-

ment, including means by which information scientists may aid the process. 
 Gather a threshold capacity measure, consisting of engagement time and 

number of terms, for domain scientists’ engagement in the development of 
semantic ontologies. 

 Develop a base-level ontology for nanocrystalline metals. 
 Consider implications of this research for other areas in materials science 

and engineering (MSE) and other disciplines.    
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5 Methods  

The posited research objectives were addressed using a multi-method approach in-
volving algorithm comparison, semantic concept/term evaluation, and term sorting.   

• The algorithm comparison combined term extraction results of four natural 
language processing open source applications. (The phrase ‘algorithm com-
parison’ is used hereafter to reference this method.)  RAKE and Tagger sup-
port unsupervised algorithms, and Kea and Maui support supervised me-
thods.  Supervised methods involve training the models with documents that 
have been indexed by a person, indicating a gold standard.   

• The semantic concept/term evaluation method followed general relevance 
evaluation processes, with a three tier scale of ‘valuable’, ‘not sure’, or ‘not 
valuable’. (Concepts are intellectual ideas represented by single and bound 
terms as well as phrases. This paper generally uses “term/s,” although the 
discussion of algorithms uses the phrase ‘keyphrases’, consistent with 
broader Kea and Maui reporting in the scientific literature.) 

• The term-sorting activity was a basic clustering process, asking participants 
to separate and group concepts in preparation for establishing hierarchies and 
associations.  

More details on method execution are presented in Section 6, Sample and Procedures. 

6 Sample and Procedures  

The research was conducted using a test corpus of 10 abstracts drawn from the arXiv 
repository. We generated our test corpus by searching the repository for the phrase 
“nanocystalline”, selecting the 10 most recent preprints (as of May 2015), and collect-
ing their abstracts for analysis. The following steps document the research design for 
the three methods. 

6.1 Algorithm Implementation 

To obtain our sample of terms, we needed to understand how to implement each of 
the algorithms and their operations.  

• RAKE parses text into phrases (terms, bound terms, or term strings) 
based on given stop lists and desired keyphrase length and frequency. A 
candidate score is calculated for each phrase based on co-occurrence [22]. 
Finally, RAKE returns a list of keyphrases ranked by their scores. In this 
research, we generated word groups with the following constraints: each 
word had at least 4 characters, each phrase had at most 3 words, and each 
keyword appeared in the text at least once.  We then selected phrases with 
scores higher than 5.0 as our keyphrases.   

• Tagger is also an open source tool used for unsupervised automatic in-
dexing [23].  Like RAKE, Tagger cleans the input text, splits it into 
words, rates the word according to relevance, and returns the top five can-
didates as keyphrases.  
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• Kea creates a model for keyphrase extraction using training files with 
manual indexing tags [24], and differs from RAKE and Tagger.  The algo-
rithm first splits text into sequences and calculates feature scores for all 
candidate phrases.  A secondary step involves generating a model from 
keyphrases that are manually indexed and identified in the files. When ex-
tracting keyphrases from a new document, Kea parses text for candidate 
phrases, calculates feature values, and applies the training model to gener-
ate the keyphrases.  In this research, we applied the default model in Kea 
package to use free indexing on our documents.  

• Maui is similar to Kea.  This algorithm first trains selected documents 
and keyphrases to build a model, and then uses the model to test on new 
data [25]. Maui selects candidate phrases by parsing sentences into textual 
sequences as tokens and extracting tokens based on given stop lists. For 
each candidate term, Maui calculates a score based on several features and 
put the scores into a machine learning model to learn the probability of 
real candidates. Compared to the Kea system, Maui only includes three 
basic Kea features and adds six new features. In our research, we used the 
Maui model created with the SemEval-2010 keyphrase set [26] for free 
indexing.  

6.2 Term Evaluation 

The terms extracted from each of the algorithms were combined into a single alpha-
betical list, and duplicate terms were removed.  The list was distributed to three par-
ticipants: one professor and two doctoral students working in the area of nanocrystal-
line metals.  These domain experts were asked evaluate ‘if the term was valuable as a 
vocabulary word for disciplinary study of nanocrystalline metals.’  The following 
three indicators were used in the evaluation:  valuable (v), not sure (ns), and not valu-
able (nv) for disciplinary study.  These results were combined into a single set.  Cases 
where all three ratings for a term were “v” or “nv” were easily determined as “v” and 
“nv.”  There were no cases where all three ratings were “ns”.  Table 1 shows our me-
thodology for combining mixed ratings. 

Table 1. Rating Synthesis. 

Mixed ratings Overall rating 
v, v, nv v 
v, ns, nv v 
v, nv, nv nv 

6.3 Term Sorting 

The sorting activity involved further clustering of terms under higher-level concepts 
for the development of hierarchies. This activity was supported by ConceptCodify 
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[27], which allows users to create groups with group names (functioning a top nodes 
or facets), and put cards into each groups (instances). 

7 Results  

The results of this study are helpful in understanding how selected technologies can 
help information scientists work with domain experts, and for obtaining a measure of 
domain scientists’ capacities for ontology design engagement.  The results of this 
study are presented below under the designated methodological sub-headings.  

7.1 Algorithm Comparison 

In this research, different algorithms extracted different numbers of key phrases. 
RAKE generated terms ranked by their scores for each document, and we chose terms 
with a score higher or equal to 5.0. Therefore, we had 7 key phrases for each docu-
ment, and in total we had 70 key phrases. Tagger extracted the top 5 terms with high-
est relevance for each document, and we have 50 key phrases from all the files. Kea 
indexed each document by 10 key phrases with each phrases less or equal to 5 words. 
Similarly, Maui indexed each file by 10 key phrases with each phrases less or equal to 
3 words. Thus, Kea and Maui each generated 100 key phrases from all the files. Table 
1 summarizes the outputs form each algorithm and Table 2 gives an example of key 
phrase extraction for each application.   

Table 2. Algorithm comparison. 

Application/algorithm RAKE Tagger Kea Maui 
Algorithm Unsupervised Unsupervised Supervised Supervised 
Training files N/A N/A Default SemEval-

2010 
Maximum word 
length of phrases 

3 3 5 3 

Number of terms  70 50 100 100 
 
The outputs from this activity were combined into a single dataset for the term eval-
uation activity. 

7.2 Term Extraction and Evaluation 

The term evaluation process allowed domain experts to identify terms, representing 
concepts, for ontology inclusion. Table 3 presents the total number of phrases ex-
tracted by different algorithms and the total number of unique phrases. Keyphrases 
extracted by different algorithms were saved as four independent files; we then tallied 
the number of keyphrases in each file, and removed duplicated keyphrases.  
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Table 3. Example of keyphrase extraction from one document. 

Application/ 
algorithm 

Example of keyphrase extraction for one document 

RAKE local temperature rise, grain structure stabilized, average 
grain sizes, nanoscale grain structure, 8.8, significant 
plastic deformation, stable nanocrystalline alloy, driven 
grain growth,  intense strain localization, grain growth 

Tagger nanocrystalline, shear bands, evolution, strain localiza-
tion, formation 

Kea shear bands, Grain Structures, Nanocrystalline, shear, 
Strain Localization, Thermally-Stable, Nanoscale, Na-
noscale Grain, Nanoscale Grain Structures, Grain 
growth 

Maui thermally stable, grain structure, strain localization, 
nanoscale grain, shear bands, nanoscale grain structure, 
Thermally, Stable, nanocrystalline, localization 

Table 4. Total number of terms extracted and total number unique terms. 

Algorithm Total number 
of 
terms/phrases 
extracted 

Total 
number of 
unique 
terms  

RAKE 70 69 
Tagger 50 50 
Kea 100 96 
Maui 100 96 
Combination 
of all data 

320 311 

 
Table 4, column two presents the number of terms generated by each algorithm, 

and column 3 presents the number of unique terms per individual algorithm.  The 
unique terms per individual algorithm execution were combined into a single set (311 
terms); and close to 27% (83) of these terms were duplicative.  That is, the term 
(which can include a keyphrase as abound term/s) was extracted via more than one of 
the algorithms.  The 83 terms were removed, resulting a set of 228 unique terms for 
evaluation as candidate ontology terms.  

The evaluation activity targeted the 228 terms and resulted in a corpus of 92 terms 
deemed valuable for ontology inclusion.  The rating, noted above in the methods sec-
tion, required at least rating of ‘v/ (valuable) with a second rating of  ‘v’ or ‘ns; (valu-
able and not-sure). As reported above, there were no cases that had all three cases as 
‘ns’ (not sure).  The 92 terms deemed valuable were the corpus for the terms sorting 
activity, and serves as the nanocrystalline ontology source.  
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selected methods and unifying framework, merging outputs and eliminating duplicate 
terms, was an easy way to produce a corpus.  

The term selection results were straight forward, taking each scientist roughly 10 
minutes to evaluate the collection of 228 unique terms, resulting in a unified list 92 
terms for ontology inclusion.  An unexpected aspect of the term evaluation activity 
was that the two doctoral students were more direct using either ‘v’ (valuable) or ‘nv’ 
(not valuable), but neither used the ‘ns’ (not sure) criteria. It is difficult to gauge why 
they did not use this third indicator; it could be that the evaluation instructions were 
not clear, although all three indicators were evident on the scoring sheet.  It is also 
possible that the doctoral students had great comfort with this activity or have been 
engaged in database work, and their evaluation patterns are reflective of Gruber’s 
classic notion of concepts (represented by terms) being either in a world or outside, 
with no ambiguity [28]. Follow-up is needed here to learn more about this result.   

The second domain scientist task involved working with the ConceptCodify appli-
cation and establishing group names (top nodes) and instances, drawing from the set 
of 92 terms.  The scientist championing this work reported that it was relatively sim-
ple and took roughly 20 minutes.  While some aspect of pause was noted, the scientist 
showed no frustration or sign cognitive overload, indicating that the method, number 
of terms, and time demand were suitable.  These results point to an initial measure of 
threshold acceptability, and more data is needed to indicate where a time increase or 
more terms to evaluate or sort would indicate a threshold capacity.  

This study is not without limitations.  The nanocrystalline metals ontology, while 
robust with examples, is limited is scope.  The sample was generated from a set of 10 
of the most recent articles on nanocrystalline metals deposited in arXiv.  A more ex-
tensive sample will very likely result in more terms requiring evaluation, and a larger 
corpus for the sorting activity. The time and intellectual demand from domain scien-
tists will increase with a larger sample.  To this end, the ontology research team is 
rethinking the sorting exercise and how to efficiently gather valid terms for complet-
ing the ontology.  In closing, it’s likely that social networking technology, as demon-
strated by YAMZ (formerly SeaIce) [29], with the thumbs up/down to garner team 
agreement, may offer an approach.  

9 Conclusion 

This study investigated a means for determining a threshold for engaging scientists in 
semantic ontology development. The research was conducted in the area of nanocrys-
talline metals, where there is limited evidence of a shared ontology. Materials scien-
tists identified 105 terms for ontology inclusion; and an exploratory sorting activity 
resulted in 9 top nodes.   

In reviewing the study’s objectives, the results present confirm an approach for en-
gaging materials scientists in ontology development.  The method pursued also de-
monstrates a way that information scientists may aid the process by generating a cor-
pus of term. The resulting base-level ontology indicates a measure of threshold capac-
ity for domain scientist engagement of approximately 10 minutes for evaluation, and 
20 minutes for terms sorting and grouping. 
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Development and maintenance of semantic ontologies is crucial for advancing and 
accelerating MSE research. Semantic ontologies help provide insight into the full 
scope of a domain and enable discovery, sharing, and interoperability. In closing, 
ontologies, as intellectual maps, provide valued intelligence where they are applied. 
The M2I2 will translate lessons learned here into our next stage of research, and will 
continue to advance ontology R&D in MSE.   
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