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Abstract. Over the past few years, an attractive design paradigm has
emerged, that aims to produce new stream cipher designs, by combining
one or more independently produced RC4 states. The ciphers so pro-
duced turn out to be faster than RC4 on any software platform, mainly
because the average number of internal operations used in the cipher per
byte of keystream produced is usually lesser than RC4. One of the main
efforts of the designers is to ensure that the existing weaknesses of RC4
are not carried over to the new ciphers so designed. In this work we will
look at two such ciphers RC4B (proposed by Zhang et. al.) and Quad-
RC4/m-RC4 (proposed by Maitra et. al.). We will propose distinguishing
attacks against all these ciphers, and look at certain design flaws that
made these ciphers vulnerable.

Keywords: RC4, RC4B, Quad-RC4, m-RC4, Distinguishing Attacks,
Stream Cipher.

1 Introduction

From over the past two decades, RC4 has been one of the most extensively used
stream ciphers in many popular protocols like WEP, TLS, TCP etc. The reason
behind the popularity of this byte oriented stream cipher was the simplicity of
its design. Using a very few number of operations, RC4 is able to provide fast
enough encryption in software. It is not very surprising that such an elegant
cipher wrapped in just 4 lines of code was going to gain the attention of the re-
searchers from all over the world. As a result, several attempts have been made
to cryptanalyze this stream cipher (see [7, 8]). Apart from the analysis point of
view, there has also been several proposals of new RC4-like stream ciphers by
introducing some number of modifications on the original RC4 design paradigm.
The major motivations behind these new proposals were to protect the cipher
against some well known cryptanalytic results shown on the RC4 stream cipher
keeping also in mind that the average number of operational steps taken by
those new introduced designs in order to encrypt the data is not much more
than the number of steps taken by RC4 itself. For example, the RC4+ stream
cipher [6] proposed by Maitra et. al. introduced a modified version of RC4 with
a complex 3-phase key schedule and a more complex output function in order
to protect the new design against the above mentioned well known attacks with
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the speed being marginally slower in software compared to RC4. Similarly there
were interesting stream cipher proposals (such as VMPC [16], GGHN [3] etc.)
with the introduction of various modifications to achieve faster encryption in
software and to protect the design of the cipher against the potential vulnera-
bilities reported in literature. Nevertheless, some distinguishing attacks on all of
the above mentioned ciphers have already been reported [2, 9, 15].

An interesting advancement proposed by some researchers towards the modi-
fications in the RC4 design has been to increase the number of RC4 states, i.e.,
to increase the number of permutations in order to make the output generation
dependent on more random variables which minimizes the correlation between
the bytes produced. This approach has the added advantage that the number of
steps performed per keystream byte produced may be made smaller than RC4
itself. This makes the ciphers designed under this paradigm faster than RC4
in software. Ciphers like RC4A [12], RC4B [4], Quad-RC4 [11] etc. have been
introduced to fulfill such needs. In this paper we will concentrate on the analysis
of two stream ciphers namely RC4B and Quad-RC4. The RC4B stream cipher
is similar to RC4’s exchange shuffle model i.e. RC4A. It also uses two differ-
ent arrays of permutations. The Key-Scheduling Algorithm (KSA) of RC4B is
same as that of RC4A. The Pseudo-Random Keystream Generation Algorithm
(PRGA) of RC4B differs slightly from that of RC4A. In order to prevent the
strong distinguisher biases [4, 14], the authors of RC4B choose to mix the two
array’s states. A detailed description of the RC4B stream cipher will be given in
Section 2.

Quad-RC4 was first presented at a session in Indocrypt 2012 [5]. Its design
focuses on building a 32-bit RC4 for a 32-word machine, however the basic 8-
bit RC4 is used as a building block at every round of keystream generation.
The KSA of Quad-RC4 is similar to the 3-layer KSA+ of RC4+. Since Quad-
RC4 uses four different 8-bit identity permutations, the authors run the KSA+
routine on four identity permutations independently to generate four scrambled
permutations over Z256 . In the PRGA, the four scrambled pseudo random per-
mutations are merged into a single array of size 256 where each element is a
32 bit number. The output byte is then produced following a certain number
of operations. See Section 3 for a detailed description of the Quad-RC4 stream
cipher. A description of the m-RC4 stream cipher will also be given in section
3.3 in which the authors propose a model of combining m number of different
8-bit pseudo random permutations.

1.1 Contribution and Organization of the Paper

In this paper, we analyze the security of RC4B and Quad-RC4 stream ciphers
by mounting distinguishing attacks on them. The RC4B stream cipher uses two
independent RC4 states in its encryption scheme. In Section 2, we will show that
the probability that the first two output bytes produced by RC4B are both 0
is approximately 2

N2 (N = 256) which is twice the expected probability in the
ideal case. In Section 3, we will show that any r-th 4-byte output word Zr (for
r ≥ 1) produced by the Quad-RC4 stream cipher is biased and the probability
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that it is equal to 0 is around 3
N2 . Since in the ideal case, this probability should

have been 1
N4 , this represents a huge bias in the distribution. The authors of

Quad-RC4 also proposed a scheme of combining m number of independent RC4
states (m-RC4) which would produce output bytes of size m bytes. We will also
analyze the m-RC4 stream cipher by mounting distinguishing attacks and show
that this design is still vulnerable for any m. In fact we will show that for the
case of m being even (Section 3.4), the r-th output word Zr produced by the
stream cipher is biased towards 0. Furthermore in Section 3.5, we will show for
the case of any m in general (m > 2), the probability of the first two output
bytes Z1 and Z2 being equal is also biased. Lastly, in Section 3.6, we will discuss
some flaws in the design of these stream ciphers which made them vulnerable to
distinguishing attacks. We tabulate some experimental results in Section 4. We
will conclude the paper in Section 5.

2 Description and Analysis of the RC4B Stream Cipher

In this section we give a detailed description of RC4B stream cipher. In addition
we also analyze the stream cipher by mounting distinguishing attack on its first
two output bytes Z1 and Z2.

2.1 Description of RC4B

The RC4B stream cipher is similar to the RC4A [12], and uses two RC4 states
namely S1 and S2. RC4B uses the same Key Scheduling Algorithm (KSA) as
RC4 and RC4A. The KSA routine is used to construct two permutations S1

and S2 using two keys K1 and K2 respectively (K2 is usually derived as some
pseudorandom function of K1). The PRGA of RC4B is different from RC4A.
Unlike RC4A, RC4B mixes the two arrays of the state. The arrays in RC4A
evolve independent of the other, i.e. the index pointers used to update the array
S1 are generated by S1 itself, and similarly the index pointers used to update S2

are generated by S2. This makes the cipher design vulnerable to distinguishing
attacks. Therefore in RC4B this trend is reversed, the elements to be swapped
in a particular array is determined by the other array. Algorithm 1 describes the
PRGA of RC4B.

The key scheduling algorithm or KSA takes an array S to derive a permutation
of {0, 1, 2, . . . , N − 1} using a variable size key K. The byte-length of the Secret
Key K is denoted by l. Please note that all the addition operations are done in
the integer ring Z256. Three byte indices i, j1 and j2 are used. After performing
the KSA on S1 and S2, the PRGA begins which produces two pseudo-random
bytes Z1 and Z2 using the two permutations derived from KSA. The authors
claim that RC4B generates keystreams faster than RC4 itself, since the number
of operations performed per byte of keystream produced is lesser than that of
RC4. The state space of RC4B is N ! ·N ! ·N3 which is approximately 22388 since
N = 256. Hence it is hard to perform state recovery attack on RC4B.
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Input: Pseudorandom Permutations S1,S2

Output: Keystream bytes Z1, Z2

i ← 0, j1 ← 0, j2 ← 0;
while Keystream is required do

i ← i+ 1;
j1 ← j1 + S2[i];
Swap(S1[i],S1[j1]);
Z1 = S2[S1[i] + S1[j1]];
j2 ← j2 + S1[i];
Swap(S2[i],S2[j2]);
Z2 = S1[S2[i] + S2[j2]];

end

Algorithm 1. PRGA

2.2 Analysis of RC4B

In this Subsection, we analyze the RC4B stream cipher. We refer to the PRGA
Algorithm 1 of RC4B. Let the initial states of RC4B PRGA be denoted by S1

and S2.

Lemma 1. Let S1 and S2 be random permutations on {0, 1, 2, . . . , 255}. If S1[1]
= 0, S2[1] = X, S1[X ] = Y and S2[Y ] = 0, (where X �= 1, Y �= 0 are any two
byte values) then the first two output bytes Z1 and Z2 are always 0.

Proof. According to the PRGA algorithm described in Algorithm 1, initially
i = j1 = j2 = 0. In the next step, the index i is incremented as i = i + 1. The
secret index j1 is incremented as

j1 = j1 + S2[i] = 0 + S2[1] = X. (1)

After following the swap operation, S1[1] = Y and S1[X ] = 0. In the next step,
the first output byte Z1 is produced as

Z1 = S2[(S1[1] + S1[X ])] = S2[Y + 0] = 0. (2)

The second secret index j2 is incremented as

j2 = j2 + S1[i] = 0 + S1[1] = Y. (3)

After following the next swap operation, S2[1] = 0 and S2[Y ] = X . Thereafter,
the next output byte Z2 is given as

Z2 = S1[(S2[1] + S2[Y ])] = S1[X + 0] = 0. (4)

Hence the first 2 output bytes Z1 and Z2 are always 0.
��
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Theorem 1. Let S1 and S2 be random permutations on {0, 1, 2, . . . , 255}. The
probability that Z1 = Z2 = 0 is given by the equation Pr[Z1 = Z2 = 0] = 2

N2 − 1
N4

where N = 256.

Proof. Let E denote the event “S1[1] = 0, S2[1] = X , S1[X ] = Y and S2[Y ] = 0”.
Then we have,

Pr[E] =
1

(N − 1)
· 1

(N − 1)
≈ 1

N2
.

From Lemma 1, we know Pr[Z1 = Z2 = 0|E] = 1. By standard randomness
assumptions and by performing extensive computer experiments using up to 225

keys, we have verified Pr[Z1 = Z2 = 0|Ec] = 1
N2 (Ec denotes the complement of

the Event E). Hence the final probability is given as

Pr[Z1 = Z2 = 0] = Pr[Z1 = Z2 = 0|E] · Pr[E] +
Pr[Z1 = Z2 = 0|Ec] · Pr[Ec]

= 1 · 1

N2
+

1

N2
· (1− 1

N2
)

=
2

N2
− 1

N4
.

(5)

��
For an ideal cipher, the probability Pr[Z1 = Z2 = 0] should be only 1

N2 , so
we can see that in RC4B, this probability is twice that of an ideal cipher. We
now state the following theorem from [7], which outlines the number of output
samples required to distinguish two distributions X and Y .

Theorem 2. (Mantin-Shamir [7]) Let X, Y be distributions, and suppose that
the event e happens in X with probability p and in Y with probability p(1 + q).

Then for small p and q, O
(

1
pq2

)
samples suffice to distinguish X from Y with

a constant probability of success.

Distinguishing RC4B from Random Sources. Let X be the probability
distribution of Z1, Z2 in an ideal random stream, and let Y be the probability
distribution of Z1, Z2 in streams produced by RC4B for randomly chosen keys.
Let the event e denote Z1 = Z2 = 0, which occurs with probability of 1

N2 in X
and 2

N2 − 1
N4 ≈ 2

N2 in Y . By using the Theorem 2 with p = 1
N2 and q = 1, we

can conclude that we need about 1
pq2 = N2 = 216 output samples to reliably

distinguish the two distributions.

3 Description and Analysis of Quad-RC4 and m-RC4
Stream Ciphers

In this section we describe Quad-RC4 and m-RC4 stream ciphers. We also
demonstrate distinguishing attacks on Quad-RC4 and m-RC4 by proving biases
in their output bytes.
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3.1 Description of Quad-RC4

The rationale behind the design of Quad-RC4 was the optimal utilization of
the resources on the modern processors which are mostly 32 bits. The authors
take a single l-byte key (16 ≤ l ≤ 30) which is used to drive 4 different key
scheduling in parallel to obtain 4 different permutations over Z256. Two byte
indices i and j are used where j is kept secret. The authors of Quad-RC4 argue
that their scheme is more secure than the basic RC4 encryption scheme. The key
scheduling for Quad-RC4 is same as the KSA+ of the stream cipher RC4+ [6].
The KSA+ consists of 3 layers: the basic scrambling of the first layer of KSA+
is similar to the RC4 KSA. Algorithms 2 and 3 describes the other two layers
namely IV Scrambling and Zig-Zag Scrambling of the KSA+ respectively. All
the addition operations are performed in Z256 and ⊕ denotes the bitwise XOR.
The array V used in the Algorithm 2 is of length N = 256 and is defined as

V [i] =

⎧
⎨
⎩

IV [N2 − 1− i] if N
2 − l ≤ i ≤ N

2 − 1
IV [i− N

2 ] if N
2 ≤ i ≤ N

2 + l − 1
0 otherwise

Input: S,K, V
Output: Scrambled S

for i = N/2− 1 to 0 do
j = (j + S[i])⊕ (K[i] + V [i]);
Swap(S[i],S[j]);

end

for i = N/2toN − 1 do
j = (j + S[i])⊕ (K[i] + V [i]);
Swap(S[i],S[j]);

end

Algorithm 2. Mix-IV

Input: S,K
Output: Scrambled S

for y = 0 to N − 1 do
if y ≡ 0 mod 2 then

i = y
2
;

end
else

y = N − y+1
2

;
end
j = (j + S[i] +K[i]);
Swap(S[i],S[j]);

end

Algorithm 3. Zig-Zag

Let S1, S2, S3 and S4 denote the 4 pseudo random permutations over Z256

produced after running the key scheduling algorithm. They are merged into
a single array S of size 256, where the i-th entry of S is an 32-bit number
formed by concatenating the 4 bytes S1[i], . . . , S4[i]. Algorithm 4 describes the
PRGA of Quad-RC4. Please note that 	 and 
 denotes left and right bitwise
shifts respectively. The | and & signs represent bitwise OR and AND whereas
⊕ represents the bitwise XOR.
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Input: 4 pseudo random permutations over Z256

Output: 32-bit output words

i = j = 0;
for i = 0 to 255 do

S[i] = (S1[i] � 24)|(S2[i] � 16)|(S3[i] � 8)|S4[i];
end
while Keystream is required do

i = (i+ 1) mod 256;
j = (j + S4[i]) mod 256;
Swap(S[i] , S[j]);
t = (S[i] + S[j]) mod 232;
t1 = t&0xFF;
t2 = (t � 8)&0xFF;
t3 = (t � 16)&0xFF;
t4 = (t � 24)&0xFF;
Output Z = S[t1]⊕ S[t2]⊕ S[t3]⊕ S[t4];
{a, b} =Next pair of permutations in turn;
Swap(Sa[i],Sa[ta]);
Swap(Sb[i],Sb[tb]);

end

Algorithm 4. Quad-RC4 PRGA Routine

The authors introduce some additional swaps to break the symmetry in the
swaps of the individual permutations. Two permutations Sa and Sb are selected
at every round. Thereafter the i-th and the ta-th bytes of Sa and the i-th and
the tb-th bytes of Sb are swapped. Note that ta and tb are the a-th and the b-th
bytes of t = t1‖ . . . ‖t4. Note that 2 permutations out of 4 can be selected in 6
ways.

3.2 Analysis of Quad-RC4

In this subsection we present the analysis of the Quad-RC4 stream cipher by
demonstrating a distinguishing attack. We refer to the PRGA of Quad-RC4 pre-
sented in Algorithm 4.

Some Notations: Let the initial states of four 8-bit RC4 state permutations
be represented as S1, S2, S3 and S4. Let S denote the 256-element array whose
i-th entry is formed by concatenating the i-th bits of these four RC4 states. Let
t1, . . . , t4 denotes variables of size 1 byte each and t = t1‖ . . . ‖t4 be a 32-bit
variable. Before proceeding, let us define the event Eτ described as follows.

The Event: Consider the four elements t1, t2, t3, t4. Partition these elements

into 2 groups G1, G2 (there are
(42)
2 = 3 ways to do so). The event Eτ will be

said to have occurred if one of the two conditions are satisfied:
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1. All the t′is are equal i.e. t1 = t2 = t3 = t4.
2. All the t′is are not equal but the two elements in G1 are equal and the two

elements in G2 are also equal.

Lemma 2. If the event Eτ described above occurs, the 4-byte output word Zr

in any PRGA round r is always equal to 0.

Proof. In any PRGA round r of Quad-RC4, the variable t is assigned a value as
follows

t = (S[i] + S[j]) mod 232

In the subsequent operations, t1, . . . , t4 are assigned the values

t1 = t&0xFF, t2 = (t 
 8)&0xFF, t3 = (t 
 16)&0xFF, t4 = (t 
 24)&0xFF.

Now the event Eτ can occur in 2 ways:

1. If t1 = t2 = t3 = t4 = a (say). In that case Z1 = S[a]⊕S[a]⊕S[a]⊕S[a] = 0.
2. If two elements of G1 are equal and the two elements of G2 are also equal.

Without loss of generality assume that G1 consists of t1, t2 and G2 of t3, t4
and t1 = t2 = a and t3 = t4 = b. In this case

Zr = S[a]⊕ S[a]⊕ S[b]⊕ S[b] = 0⊕ 0 = 0

So it is evident that the value of Zr is always going to be 0 under the occurrence
of Eτ . ��
In general, the number of ways one can divide 4 things in 2 groups where each

group has 2 things is
(42)
2 . For each such group, say (t1, t2) and (t3, t4) as shown

earlier, let’s have t1 = t2 = a and t3 = t4 = b. Here a can take N values and b

can take N − 1 values (N = 256) giving N · (N − 1) · (
4
2)
2 = 3N2− 3N total ways

the elements can be partitioned. Also t1 = t2 = t3 = t4 can occur in exactly N
ways, and so the event Eτ can occur in total 3N2 − 3N +N = 3N2 − 2N ways.
The probability that Eτ occurs if we choose the indices t1, t2, t3, t4 randomly is

therefore given as Pr[Eτ ] =
3N2−2N

N4 .

Theorem 3. The probability that the 4-byte output word Zr, produced by Quad-
RC4 in any PRGA round r, is equal to 0 is given by the equation Pr[Zr = 0] ≈ 3

N2 .

Proof. We have established that Pr[Eτ ] =
3N2−2N

N4 . Since Zr is always 0 under
the event Eτ , therefore we have Pr[Zr = 0|Eτ ] = 1. By the results of the extensive
computer experiments performed using 230 keys, we have verified that Pr[Zr =
0|Ec

τ ] =
1
N4 . Therefore the final probability can be given as

Pr[Zr = 0] = Pr[Zr = 0|Eτ ] · Pr[Eτ ] + Pr[Zr = 0|Ec
τ ] · Pr[Ec

τ ]

= 1 · 3N
2 − 2N

N4
+

1

N4
· (1 − 3N2 − 2N

N4
)

=
3N2 − 2N + 1

N4
≈ 3

N2
.

(6)

��
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Thus we see a huge bias present in the output words produced Quad-RC4. In
an ideal cipher, the probability of Zr being equal to 0 was required to be 1

N4 .
Thus in Quad-RC4, the value of Pr[Zr = 0] is 3N2 ≈ 217.5 times that of an ideal
cipher. It is clear that the design paradigm of the stream cipher is vulnerable.
This has long term implications in the broadcast scenario, in which a single
plaintext is encrypted by several randomly generated secret keys, and broadcast
over a network. The attacker can perform a ciphertext only plaintext recovery
attack if Quad-RC4 is used for encryption. For example if an attacker can collect
around 220 broadcast ciphertexts, then following our analysis we can say that
any r-th 4-byte word of the plaintext would have been encrypted with around
3·220
N2 ≈ 48 zeroes. Thus the attacker can do a simple statistical test: the most
frequent r-th ciphertext word is also likely to be the r-th plaintext word. Since
the attack works for any r, it makes the entire plaintext easily recoverable. In
the upcoming subsection we will generalize our results for m-RC4 and present
our analysis for odd and even m.

3.3 Description of m-RC4

The m-RC4 stream cipher is similar to the Quad-RC4 stream cipher explained
in the previous section with the difference being the number of different 8-bit
RC4 states to be combined here is m and the output bytes produced through
a suitable function h which takes the quantities S[t], S[i], S[j] and S[tp] where
p = 1, . . . ,m. However the authors argue that if h simply returns the bitwise XOR

Input: m pseudo random permutations over Z256

Output: 8m-bit output words

i = j = 0;
for i = 0 to 255 do

S[i] = (S1[i] � 8(m− 1))| . . . |(Sm−1[i] � 8)|Sm[i];
end
while Keystream is required do

i = (i+ 1) mod 256;
j = (j + Sm[i]) mod 256;
t = (S[i] + S[j]) mod 28m;
t1 = t&0xFF; t2 = (t � 8)&0xFF; . . . tm = (t � 8(m− 1))&0xFF;
Swap(S[i] , S[j]);
Output Z = h(S[t], S[i], S[j], S[t1], S[t2], . . . , S[tm]);
{a, b} =Next pair of permutations in turn;
Swap(Sa[i],Sa[ta]);
Swap(Sb[i],Sb[tb]);

end

Algorithm 5. m-RC4 PRGA Routine
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of its quantities, then the keystreams produce is not perfectly random. Thus the
design of h with good randomness properties is left by the authors as an open
problem. The PRGA of m-RC4 takes m different pseudo random permutations
over Z256 produced by applying m number of key scheduling namely KSA+. Let
S1, . . . , Sm be the pseudo random permutations produced. They are merged into
a single array S of size 256, where the i-th entry of S is an 8m-bit number formed
by concatenating the m many bytes S1[i], . . . , Sm[i]. Algorithm 5 describes the
PRGA of the m-RC4 stream cipher.

3.4 Analysis for Even m

In this subsection we present an analysis for even m. The analysis is similar
to that for Quad-RC4. Before presenting the analysis, we will go through some
general notations which will be used by us during the proofs.

Some Notations and Assumptions: Let the initial states of m 8-bit RC4
state permutations be represented as S1, S2, S3, . . . , Sm. Let S denote the 256-
element array whose i-th entry is formed by concatenating the i-th bits of thesem
RC4 states. Let t1, . . . , tm denotes variables of size 1 byte each and t = tm‖ . . . ‖t1
be an 8m-bit variable. Since the design of an output function (namely h in Al-
gorithm 5) with good randomness properties is left by the authors as an open
problem, in our analysis we will assume that as in Quad-RC4, the function sim-
ply returns the bitwise XOR of S[t1], S[t2], . . . , S[tm].

The Event: We will start with the definition of the event Eτ for m-RC4, along
similar lines as in Quad-RC4. Consider the m elements t1, t2, . . . , tm. Partition
these elements into k groups G1, G2, . . . , Gk (1 ≤ k ≤ m

2 ), such that the cardi-
nality of each group Gi is even. The event Eτ will be said to have occurred if the
following occurs:

1. The elements in each of the G′
is are equal.

Note that when k = 1, it denotes the degenerate case when all the t′is are equal.
So this definition is consistent with the definition of Eτ given for Quad-RC4.

So, there are exactly f(m2 ) ways in which the groups Gi can be formed, where f
denotes the well-known partition function (i.e. the number of ways of writing an
integer as sum of positive integers) [1]. For example, when m = 6, the number
of partitions are f(3) = 3, i.e., 6, 4 + 2 and 2 + 2 + 2. In the first case we have
t1 = t2 = . . . = t6 and it can happen in N ways where N = 256. In the second
case, we need to divide the 6 elements into 2 groups of 4 and 2. Without loss of
generality let us have t1 = t2 = t3 = t4 = a and t5 = t6 = b. The number of ways
we can divide 6 elements in groups of 4 and 2 is

(
6
2

)
= 15 and the number of ways

we can select a, b is N · (N − 1). So the total number of ways is 15 ·N · (N − 1).
Lastly we have 2 elements in each of the 3 groups and the number of ways it

can happen is given as
(62)·(42)

3! = 15 and the number of ways the elements of
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each group can be selected is N · (N − 1) · (N − 2) and so the total number of
combinations is 15 ·N · (N − 1) · (N − 2). Therefore the total number of ways for
all the partitions can be given as 15 ·N · (N − 1) · (N − 2)+15 ·N · (N − 1)+N ,
and so the for m = 6, we have

Pr[Eτ ] =
15 ·N · (N − 1) · (N − 2) + 15 ·N · (N − 1) +N

N6

Similarly, when m = 8, the number of partitions are f(4) = 5 which are 8, 6+2,
4 + 2 + 2, 4 + 4 and 2 + 2 + 2 + 2. For an arbitrary even value of m = 2p, it
is difficult to analytically determine the value of Pr[Eτ ]. However, we can find
a lower bound for this probability. In the case of m = 2p, we know that total
partition is denoted by f(p). However, the dominant partition, that is the one
that will contribute the maximum number of combinations will be

2 + 2 + . . .+ 2︸ ︷︷ ︸
p times

.

We call this event as Em which denotes the situation when t1, . . . , tm are divided
into p groups having 2 elements each and elements of any given group are equal
to each other. The number of ways of dividing m = 2p items in p groups of 2
each is (

2p
2

) · (2p−2
2

) · . . . · (22
)

p!
=

2p!

p!2p
=

p∏
i=1

(2i− 1) = Bm (say). (7)

Bm is therefore the product of the first m
2 = p odd integers. So the number of

ways in which the event Em can occur is given by

Bm ·N · (N − 1) · (N − 2) . . . (N − p+ 1) ≈ Bm ·Np. (8)

Therefore we have

Pr[Eτ ] ≈ Pr[Em] =
Bm ·Np

Nm
=

Bm

Np

Lemma 3. If the event Eτ described above occurs, the any m-byte output word
Zr, produced in PRGA round r, is always equal to 0.

Proof. The proof is similar to Lemma 2, and follows from the definition of Eτ .
If Eτ occurs then the t′is are divided into k groups each having an even number
of elements which are equal. In that case the output byte Zr is given as

Zr = (S[a1]⊕ · · ·S[a1])⊕ (S[a2]⊕ · · ·S[a2])⊕ · · · ⊕ (S[ak]⊕ · · ·S[ak]) = 0. (9)

��
Theorem 4. The probability that Zr = 0 in m-RC4, is given by the equation
Pr[Zr = 0] = Bm

Np where m
2 = p.
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Proof. We know that Pr[Eτ ] =
Bm

Np . Since Zr is always 0 under the event Eτ ,
therefore we have Pr[Zr = 0|Em] = 1. By the results of the extensive computer
experiments performed using 230 keys, we have verified Pr[Zr = 0|Ec

m] = 1
Nm .

Therefore the final probability can be given as

Pr[Zr = 0] = Pr[Zr = 0|Em] · Pr[Em] + Pr[Zr = 0|Ec
m] · Pr[Ec

m]

= 1 · Bm

Np
+

1

Nm
· (1− Bm

Np
)

=
Bm

Np
.

(10)

Note that in an ideal cipher the probability Pr[Zr = 0] was required to be
1

Nm = 1
N2p . So in m-RC4 this probability is Bm · Np times that of an ideal

cipher. For example in 10-RC4, this figure is 945 · 240 ≈ 250. So as m increases
the design becomes increasingly weaker. ��

3.5 Analysis for General m

Previously we demonstrated our analysis for m-RC4 in case when m was an even
number. In this subsection we will present our analysis in case when m is any
integer greater than equal to 4. We will show that the probability of the first
and the second output bytes being equal is biased.

Some Other Notations: We we will denote the m 8-bit RC4 state permu-
tations at the beginning of PRGA round r as Sr

1 , S
r
2 , S

r
3 , . . . , S

r
m. Similarly Sr

denotes the the state of 256-element array S (whose i-th entry is formed by
concatenating the i-th bits of these m RC4 states) at the beginning of round
r. Similarly tr1, . . . , t

r
m and tr denote the values of the variables t1, . . . , tm and t

respectively in round r.

Lemma 4. If S1
m[1] = 2 and S1

m[2] = N − 1, then

a) The value of the of the variables t1 and t2 are both equal,
b) The values of t11 and t21 are both equal to 1.

Proof. We refer to the PRGA (5) of m-RC4. The index pointers i and j are
incremented as i = 0+1 = 1 and j = 0+S1

m[1] = 2. Let us denote S1[1] = x and
S1[2] = y (where x, y are distinct m-byte integers). The variable t1 is updated
in the next step as follows

t1 = S1[1] + S1[2] mod 28m = x+ y mod 28m
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We also have

t11 = t1 & 0xFF = (S1[1] + S1[2]) & 0xFF

= (S1[1] & 0xFF) + (S1[2] & 0xFF) mod 256

= S1
m[1] + S1

m[2] mod 256 = 1.

In the next operation, S1[1] and S1[2] are swapped. After the swap we have
S2[1] = y and S2[2] = x. Then in the next round, the index pointers i and j are
incremented as i = 1+1 = 2 and j = 2+S2

m[1] = 2+S1
m[1] = 2+N−1 mod 256 =

1. The above follows, because as per the specifications of m-RC4, the array Sm

is not shuffled in the first round, and so S1
m = S2

m. The variable t2 is updated in
the next step as:

t2 = S2[2] + S2[1] mod 28m = x+ y mod 28m = t1.

Again we have,

t21 = t2 & 0xFF = t1 & 0xFF = t11 = 1. (11)

��

Since it was established in Lemma 4, that t1 = t2, we automatically have
t11 = t21, t

1
2 = t22,. . . , t

1
m = t2m. Furthermore it has already been shown that

t11 = t21 = 1. For convenience let us denote t1k = t2k = bk for all 2 ≤ k ≤ m. Hence
we can write

Z1 = S1[1]⊕ S1[b2]⊕ S1[b3]⊕ · · · ⊕ S1[bm]

Z2 = S2[1]⊕ S2[b2]⊕ S2[b3]⊕ · · · ⊕ S2[bm]

From the proof of Lemma 4, it is also clear that the array S1 and S2 differ in
only two locations which are 1 and 2. We have S1[1] = S2[2] = x and S1[2] =
S2[1] = y. For all other k not equal to 1 or 2 we have S1[k] = S2[k]. So consider
the following non-intersecting cases:

Case 1. If the number of 1′s among b2, b3, . . . , bm, is odd and the number of 2′s
among b2, b3, . . . , bm is even. In this case

Z1 =
⊕
even

S1[1] ⊕
⊕
even

S1[2] ⊕
⊕

bk �=1,2

S1[bk] =
⊕

bk �=1,2

S1[bk]

Z2 =
⊕
even

S2[1] ⊕
⊕
even

S2[2] ⊕
⊕

bk �=1,2

S2[bk] =
⊕

bk �=1,2

S2[bk]

where
⊕

even u denotes the bitwise XOR of u even number of times which is ob-
viously 0. Since S1[bk] = S2[bk] if bk is different from 1 or 2 we have Z1 = Z2.
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Case 2. If the number of 1′s among b2, b3, . . . , bm, is even and the number of
2′s among b2, b3, . . . , bm is odd. Let the number of 1′s be c and the number
of 2′s be d, where c is even and d is odd. Without loss of generality, let
c+ 1 ≥ d. In this case

Z1 =
⊕
d

(
S1[1]⊕ S1[2]

) ⊕
⊕

c+1−d

S1[1] ⊕
⊕

bk �=1,2

S1[bk]

= (x ⊕ y) ⊕
⊕

bk �=1,2

S1[bk]

Z2 =
⊕
d

(
S2[1]⊕ S2[2]

) ⊕
⊕

c+1−d

S2[1] ⊕
⊕

bk �=1,2

S2[bk]

= (x ⊕ y) ⊕
⊕

bk �=1,2

S2[bk]

Here
⊕

n u denotes the bitwise XOR of u, a total of n times which is 0 if n
is even and u if n is odd. Since d is odd and c + 1 − d is even, the above
result follows. Again since S1[bk] = S2[bk] if bk is different from 1 or 2 we
have Z1 = Z2.

Lemma 5. The event Eμ will said to have occurred if both the events occur
simultaneously.

a) S1
m[1] = 2 and S1

m[2] = N − 1,
b) Either Case 1 or Case 2, described above holds true.

The probability that Pr[Eμ] ≈ 2(m−1)
N3 .

Proof. First of all, from all the previous discussion we have established that
Pr[Z1 = Z2|Eμ] = 1. Turning our attention to Case 1/Case 2, we can make
the following observation:

– Both Case 1 and Case 2, involve fixing an odd number of values among
b2, b3, . . . , bm to either 1 or 2.

Starting with Case 1, if the number of fixed values is 1, this implies only one of
the b′ks equal 1. Hence, the number of combinations is C1 =

(
m−1
1

) · (N − 2)m−2.

The above holds since, the index to be set to 1 can be chosen in
(
m−1
1

)
ways and

the remaining m− 2 indices can be set to any value other than 1 or 2. Similarly,
if the number of fixed values is 3, this implies either three 1′s or one 1 and two
2′s. The total number of combinations is therefore

C3 =

(
m− 1

3

)
· (N − 2)m−4 +

(
m− 1

3

)
· 3!
2!

· (N − 2)m−4

It is clear that if m is much smaller that N then, C1 is much larger than C3.
Similarly, C3 would be much larger than C5, i.e. the number of combinations
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when 5 indices are fixed, and so on. Hence C1 contributes the maximum number
of combinations to Case 1 and we have C1 ≈ (C1 +C3 +C5 + · · · ). So we have

Pr[Case 1] ≈ C1

Nm−1
=

(
m−1
1

) · (N − 2)m−2

Nm−1
≈ m− 1

N

Analogously, similar arguments can be made about Case 2, and since these
cases are non-intersecting we have

Pr[Case 1 ∨Case 2] ≈ 2(m− 1)

N
.

And so that the events S1
m[1] = 2 and S1

m[2] = N − 1 and Case 1∨Case 2 are
independently distributed, we have

Pr[Eμ] = Pr[(S1
m[1] = 2) ∧ (S1

m[2] = N − 1) ∧ (Case 1 ∨Case 2)]

=
1

N
· 1

N − 1
· 2(m− 1)

N
≈ 2(m− 1)

N3
.

��
Theorem 5. The probability that Z1 = Z2 in m-RC4 (for m > 2), is given by

the equation Pr[Z1 = Z2] =
2(m−1)

N3 .

Proof. We have already established that Pr[Z1 = Z2|Eμ] = 1. By the results of
the extensive computer experiments performed using 230 keys, we have verified
Pr[Z1 = Z2|Ec

μ] =
1

Nm . Therefore the final probability can be given as

Pr[Z1 = Z2] = Pr[Z1 = Z2|Eμ] · Pr[Eμ] + Pr[Z1 = Z2|Ec
μ] · Pr[Ec

μ]

= 1 · 2(m− 1)

N3
+

1

Nm
·
(
1− 2(m− 1)

N3

)

≈ 2(m− 1)

N3
.

(12)

In an ideal cipher Pr[Z1 = Z2] was required to be 1
Nm . So, in m-RC4 this

probability is 2(m − 1) · Nm−3 times that of an ideal cipher. For example in
3-RC4 this figure is 4, for 7-RC4 this figure is 12 · 232 ≈ 236. This underscores
the point that the design is vulnerable for any m.

��

3.6 The Flaws in the Design

In this subsection we will discuss the flaws in the design of Quad-RC4/m-RC4
which results in highly biased output bytes.

Simple XOR operation in Output Function. The output function based on
simple bitwise XOR of S[t1], S[t2], . . . , S[tm] when m is even is clearly not a
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good idea. From our analysis presented in the Section 3.4 for evenm, one can
clearly understand that the reason for the high bias in Zr is the simplicity of
the output function is a simple XOR. The output function also contributes to
bias in Z1 = Z2 for any general value of m. Thus the output function needs
to be changed to some operation which would involve modular addition, ro-
tation and XOR (ARX functions). This may result in some degradation of
performance in software with respect to speed, but this is one correction
that the design must make to be secure.

The “not so random” S. Referring to the PRGA of m-RC4 given in Algo-
rithm 5, it is clear that the main array S used in the algorithm is only up-
dated by swaps. In original RC4, swap update works because RC4 state is a
permutation on Z256. Each swap makes the original RC4 state a new permu-
tation on Z256, and therefore the total entropy in the state is log2 256! ≈ 1684
bits. However, the array S used in m-RC4 is not a permutation on Z28m .
Once the cipher array enters the PRGA phase, the array S is updated by
only swap operations, this means that during the entire PRGA phase S con-
tains the same elements. So for a fixed Key/IV, thee entropy of the state
space comes only from the permutation of the 256 elements of S, which is
again 1684 bits. Once m-RC4 states are used, thee designers would have
wanted the entropy of the State Space to be as close to 1684m bits as pos-
sible. However due to the simplistic state update function which consists of
only swaps, the entropy never increases. This implies that the for the design
to be secure, a more complicated state update was necessary.

The effect on t. This effect of the reduced state entropy is directly felt on
the 8m-bit variable t. The designers had probably intended t to be a pseu-
dorandom index with entropy close to 8m bits. However t is calculated as
S[i] + S[j] mod 28m. Because of the simplistic nature of the state-update,
the array S, contains the same N elements during the entire evolution of the
PRGA. As a result S[i], S[j] can take at most N values each, and hence t can
take at most N2 values. Due to this the entropy of t is only log2 N

2 = 16 bits
for any value of m. Thus the probability that the values of t in two succes-
sive PRGA rounds are equal is only about 1

N2 , and it can be seen that this
directly contributes to the bias in the distribution of Z1 = Z2, as described
in Section 3.5. This further emphasizes the point that in a design like Quad-
RC4/m-RC4, which combines several RC4 states by simple concatenation,
the state update can not be a simple swap operation. A more complicated
update using modular addition/XOR is necessary. This would again involve
decrease of software speed, but this is again a necessary correction that the
design must make to be secure.

4 Experimental Results

We will now tabulate some experimental results to validate our theoretical find-
ings. The results can be found in Table 1. All the experiments were performed
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Table 1. Experimental Results

# Cipher Event Theoretical Experimental N
Value Result

1 RC4B Pr[Z1 = Z2 = 0] 2/N2 1.99/N2 256

2 Quad-RC4 Pr[Z1 = 0] 3/N2 2.94/N2 256
6-RC4 15/N3 15.53/N3 64

3 Quad-RC4 Pr[Z1 = Z2] 6/N3 6.13/N3 128
5-RC4 8/N3 7.84/N3 128

with 230 randomly chosen Keys, and in certain cases we have reported the prob-
ability values for reduced variants of the actual cipher i.e. for N = 64, 128 in
place of 256. This was done only because the computational resources required to
perform the experiments on the full ciphers were unavailable. As can be seen in
Table 1 the experimental results are in accordance with our theoretical findings.

5 Conclusion

In this paper we discuss the stream ciphers which are designed by combining
one or more independently produced RC4 states. We study three such stream
ciphers namely RC4B, Quad-RC4 and m-RC4 (where m can be odd or even),
and demonstrate distinguishing attacks on them by showing biases in the output
bytes produced by each of these stream ciphers. In addition we also discuss
the scenarios which leads to such vulnerabilities present in the output bytes of
these stream ciphers. Combining multiple stream cipher states to produce new
stream ciphers which perform better than the original stream cipher seems to
be an attractive research discipline as evidenced by numerous papers in this
area [4, 10, 11]. As far as combining RC4 states are concerned, much can be
achieved if the problem is addressed judiciously. This does seem to be an area
worth looking into.
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