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Abstract. A (t, n, δ) secret sharing scheme with cheating detection prop-
erty (SSCD) is a t-out-of-n threshold secret sharing scheme that has the
following additional property; the probability that any t malicious players
can successfully cheat (without being caught) an honest player by opening
forged shares and causing the honest player to reconstruct the wrong se-
cret is at most δ. There are two flavors of security for such schemes known
as OKS and CDV. The lower bound on share sizes for an OKS-secure SSCD
scheme is known, and concrete schemes in which share sizes are equal
to (or almost the same as) the lower bound have been proposed, albeit
with some limitations. We first present a OKS-secure scheme with share
sizes only one bit longer than its existing lower bound. Our construc-
tion is free from any special requirements. We next present a CDV-secure
SSCD scheme, where a stronger form of cheating is allowed. The share
size of our CDV-secure scheme is also one bit longer than the existing
lower bound.

1 Introduction

Secret sharing is one of the most important primitives in cryptography and in
particular distributed systems. Let t, n be positive integers such that 1 ≤ t < n.
In a perfect t-out-of-n secret sharing scheme [20,2], a dealer D distributes a secret
s to n players, say P1, . . . , Pn in such a way that the combined shares of any
t + 1 or more players can recover the secret s, but no subset of t or less shares
can leak any information about the secret s, where the leakage is in information
theoretic sense, and without assuming any limit on the computational resources
of the adversary. An important efficiency parameter in secret sharing scheme
is the size of shares. Let Σi be the set of possible shares for Pi, and Σ be
the set of possible secrets. It is well known that, for t-out-of-n perfect secret
sharing schemes, |Σi| ≥ |Σ| [12]. Schemes with |Σi| = |Σ| are called ideal.
Shamir [20] constructed an ideal (t, n)-threshold secret sharing scheme in which
secrets and shares lie in a finite field Fq, where q > n, and share generation uses
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evaluation of polynomials over Fq. Let α1, . . . , αn ∈ Fq be n distinct non-zero
field elements known to all players (e.g., if q > n is a prime, we can have αj = j).
To share a secret s ∈ Fq, a trusted dealer chooses t random elements a1, . . . , at,
independently and randomly with uniform distribution, from Fq. These random

elements together with the secret s define a polynomial f(x) = s+
∑t

i=1 aix
i that

is used to generate a share f(αj) for Pj . The correctness and privacy of Shamir
secret scheme follow from properties of Lagrange interpolation (see § 2.2).

In its basic form, secret sharing assumes that the corrupted participants are
passive (or semi-honest) and follow the protocol during the reconstruction phase.
In practice however, one needs to consider stronger adversaries who deviate
from the protocol, collude and submit wrong shares. Secret sharing schemes in
presence of active adversaries have been considered in different settings and with
different requirements. In this paper, we consider secret sharing with cheater
detection (SSCD) introduced by Tompa and Woll [21], and focus on threshold
schemes. In the following we shall first provide a brief introduction of SSCD
schemes, the relevant questions there in, and finally present our contributions.

Informally, an SSCD scheme allows to detect if a set of submitted shares
contain incorrect entries. To achieve cheating detection functionality, the recon-
struction algorithm is enhanced by a checking mechanism, failing which, the
reconstruction outputs a special symbol “⊥”, indicating that some of the shares
presented are incorrect. The two well known security models for SSCD schemes
are given by OKS [17] and CDV [5], where the later guarantees stronger se-
curity. In the OKS model, t players, say P1, . . . , Pt, want to cheat a (t + 1)th
player, Pt+1, by opening incorrect shares Sh′1, . . . , Sh

′
t. The cheaters succeed if

reconstruction does not output ⊥ and the secret s′ that is reconstructed from
Sh′1, . . . , Sh

′
t and Sht+1 is different from the shared secret s. The CDV model

has a stronger security requirements. It assumes that the t cheating players also
know the shared secret s before cheating the (t+1)th player. Let δoks (resp., δcdv)
denote the best probability of successful cheating under OKS (resp., CDV) model
and for real numbers δoks, δcdv > 0, refer to the schemes as (t, n, δoks) OKS-secure
and (t, n, δcdv) CDV-secure schemes. An SSCD scheme has direct applications to
unconditionally secure robust secret sharing [7,6,11,10], secure message trans-
mission [9,13], and cheater identifiable secret sharing [14].

Like basic secret sharing, the most important complexity measure of SSCD
schemes is their share size, i.e., the maximum share size of each player. Tompa
and Woll [21] have showed that an SSCD scheme cannot be ideal. Motivated by
the true lower bounds on share sizes, Ogata, Kurosawa, and Stinson [17] showed
the following lower bounds on |Σi| for (t, n, δoks) OKS-secure and (t, n, δcdv)
CDV-secure schemes, respectively:

|Σi| ≥ |Σ| − 1

δoks
+ 1; |Σi| ≥ |Σ| − 1

δ2cdv
+ 1. (1)

One of the most important problems in this area is construction of SSCD schemes
in which the share size is equal to (or almost the same as) the lower bounds.
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1.1 Our Contributions

We first present an efficient (t, n, δoks) OKS-secure scheme with share size almost
the same as the lower bound. The bit size log2 |Σi| of shares in our scheme is

only one bit longer than log2(
|Σ|−1
δoks

+1), the bit size of lower bound. The scheme
is a simple modification of t-out-of-n Shamir secret sharing, and it is obtained
by choosing a polynomial whose degree is at most 2t (instead of t). We then
apply the same technique to obtain an efficient (t, n, δcdv) CDV-secure scheme.
The share size of CDV secure scheme is also one bit longer than the known lower
bound. The schemes presented in this paper are proven secure without assuming
any limit on the computational resources of the adversary.

1.2 Related Work

An OKS-secure scheme was proposed in [17] (a brief description is given in §
3.3). This is the only known scheme whose share size is exactly equal to the
lower bound. However, the scheme imposes the restriction that the secret be
drawn with uniform distribution from secret space. Later, a few other OKS-secure
schemes were presented with share size almost the same as the lower bound
[3,18,4,10]. However, they also impose restrictions. The OKS-secure scheme of
[4] (based on [3,18]) requires only non-binary fields for secret space, which is a
major restriction (see § 3.3 for a brief description of the scheme). The scheme
in [10] (see also § 3.3) requires to publish a checking vector on an authenticated
public bulleting board. There is no CDV-secure scheme with share size equal to
the lower bound. An almost optimum scheme was also proposed in [4].

The cheating probability for all of the above schemes is dictated by the cardi-
nality of the secret space S: δ = 1/|Σ|. There are also schemes [15,8] where δ can
be chosen such that δ � 1/|Σ|. This is desirable as it allows flexibility in choosing
the security level of the system. The problem of constructing OKS-secure (resp.,
CDV-secure) SSCD schemes that have share size equal to (or nearly the same) as
the lower bound, and allow flexible security level is an interesting open question.
In [1,16], secure SSCD schemes are proposed under a stronger cheating model,
called CDV′, where up to n − 1 players are allowed to cheat. A closely related
cheating model was proposed by Pieprzyk and Zhang in [19] by introducing the
concept of cheating-immune secret sharing scheme.

2 Preliminaries

2.1 Notations

For any positive integer n, we let [n] denote the set {1, . . . , n}. We write |S|
to denote the number of elements in the set S. We write x ∈R S to indicate
that x is chosen with respect to the uniform distribution on S. By x ← S, we
assume x is chosen with arbitrary distribution. We let Fq denote a finite field
with q elements, and Fq[X ] denote the polynomial ring. For a finite field Fq,
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we let F
≤t
q [X ] denote the set {f ∈ Fq[X ] | deg f ≤ t}, where t ∈ N ∪ {0} and

deg f denotes the degree of f . For a positive integer n, let Zn denote the ring of
integers modulo n.

2.2 Lagrange Interpolation

Let t be a positive integer and F be a field. Given any t+1 pairs of field elements
(x1, y1), . . . , (xt+1, yt+1) with distinct xi’s, there exists a unique polynomial
f(x) ∈ F[x] of degree at most t such that f(xi) = yi for 1 ≤ i ≤ t + 1. The
polynomial can be obtained using the Lagrange interpolation formula as follows,

f(x) = y1λ
A
x1
(x) + · · ·+ yt+1λ

A
xt+1

(x), (2)

where A = {x1, . . . , xt+1} and λA
xi
(x)’s (1 ≤ i ≤ t + 1) are Lagrange basis

polynomials, given by

λA
xi
(x) =

∏
1≤j≤t+1,j �=i(x − xj)

∏
1≤j≤t+1,j �=i(xi − xj)

.

When the base point set A = {x1, . . . , xt+1} is clear from the context, we denote
the interpolation of f by f ← LagInt(y1, . . . , yt+1), and λA

xi
(x) by simply λxi(x).

2.3 Secret Sharing with Cheating Detection

Let t, n be positive integers such that 1 ≤ t < n. Informally, a t-out-of-n thresh-
old secret sharing scheme enables a dealer, holding a secret piece of information,
to distribute this secret among a set of n players such that, later, a subset of
players can reconstruct the secret only if there cardinality is at least t + 1. We
let Σ denote the domain of secrets, and Σi denote the domain of shares of Pi,
1 ≤ i ≤ n. Secutity of SSCD has been studied in different models. We consider
the two main models, refered to as OKS [17] and CDV [5] . For fix real num-
bers δoks, δcdv > 0, the schemes secure under OKS model (resp. CDV model ) are
referred to as (t, n, δoks) OKS-secure (resp. (t, n, δcdv) CDV-secure) schemes.

Definition 1 (Secret Sharing with Cheating Detection). A t-out-of-n se-
cret sharing with cheating detection (SSCD) property is consist of two interac-
tive protocols, Share and Rec. The share distribution protocol Share involves a
dealer D and n players P1, . . . , Pn, and the reconstruction protocol Rec involves
P1, . . . , Pn and a reconstructor R (a third party). The protocols work as follows:

– Share: The dealer D runs the share distribution algorithm Share. It is a proba-

bilistic algorithm that, on input s ∈ Σ returns a share vector (Sh1, . . . , Shn)
$←

Share(s), where each Shi is privately given to Pi.
– Rec: The secret reconstruction algorithm Rec is run by R. It is a determin-

istic algorithm that on input the shares Shi1 , . . . , Shit+1 of any t+ 1 players
Pi1 , . . . , Pit+1 returns a value s ← Rec(Shi1 , . . . , Shit+1), where s ∈ Σ ∪ {⊥}.
The symbol ⊥ indicates that a cheating has occurred and the algorithm is
unable to recover the shared secret.
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Definition 2 (SSCD Security under OKS Model). Let δoks > 0. An SSCD
scheme is said to be (t, n, δoks) OKS-secure if Share and Rec protocols satisfy the
following properties:

– Correctness: For every authorized set of players B ⊂ {P1, . . . , Pn}, i.e.,
|B| ≥ t+ 1, and for every s ∈ Σ, we have

Pr[Rec(Share(s)B) = s] = 1, (3)

where Share(s)B denotes the restriction of the n length vector Share(s) =
(Sh1, . . . , Shn) to its B-entries, i.e., Share(s)B = {Shi}Pi∈B, and the proba-
bility is computed over the random coins of Share.

– Perfect Privacy: For an unauthorized set A ⊂ {P1, . . . , Pn}, i.e., |A| ≤ t,
for every pair of values s1, s2 ∈ S, and for every possible vector of shares
(Shi)Pi∈A, it holds that

Pr[Share(s1)A = (Shi)Pi∈A] = Pr[Share(s2)A = (Shi)Pi∈A], (4)

where the probabilities are computed over the random coins of Share.
– Cheating Detection: The cheating detection property of an OKS-secure

SSCD is measured by the maximum probability with which any unbounded
adversary Aoks, who actively controls the outputs of up to t Pi, can win the
following game - OKSGameAoks

SSCD.

s ← S; (Sh1, . . . ,Shn)
$← Share(s);

(i1, . . . , it) ← Aoks;
(Sh′i1 , . . . , Sh

′
it , it+1) ← Aoks(Shi1 , . . . ,Shit);

s′ ← Rec(Sh′i1 , . . . ,Sh
′
it , Shit+1);

s′ ← Game-Output .

Fig. 1. OKSGameAoks
SSCD: The Cheating Detection Game

The game is played between the dealer D and the adversary Aoks. In the

game, D first picks a secret s ∈ S, and computes (Sh1, . . . , Shn)
$← Share(s).

Next, Aoks corrupts up to t players, say Pi1 , . . . , Pit , learns their shares, and
sends possibly modified shares (Sh′i1 , . . . , Sh

′
it) ← Aoks(Shi1 , . . . , Shit) along

with the identity of a (t+1)th player, say Pit+1 , to R. The adversary is said
to win if, Rec(Sh′i1 , . . . , Sh

′
it , Shit+1 ) = s′ and s′ /∈ {s,⊥}. We measure Aoks’s

success by the real number

AdvAoks

SSCD = Pr[s′ /∈ {s,⊥} | s′ ← Rec(Sh′i1 , . . . , Sh
′
it , Shit+1)]. (5)

The (t, n, δoks) security requires that AdvAoks

SSCD ≤ δoks.
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Definition 3 (SSCD Security under CDV Model). The security is strength-
ened under the CDV model for SSCD schemes. In the cheating detection game, it
is assumed that t corrupted players also know the shared secret s before they at-
tempt to cheat the (t+1)th player. Formally, an SSCD scheme is called (t, n, δcdv)
CDV-secure if Share and Rec protocols satisfy following properties:

– The Correctness and Privacy hold true as defined in Definition 2.
– Cheating Detection: Let Acdv denote the adversary in the CDV model.

The cheating detection game, denoted by CDVGameAcdv

SSCD, is the same as the
OKS cheating detection game, except the extra information s available to the
adversary, as shown below.

s ← S; (Sh1, . . . ,Shn)
$← Share(s);

(i1, . . . , it) ← Acdv;
(Sh′i1 , . . . ,Sh

′
it , it+1) ← Acdv(Shi1 , . . . ,Shit , s);

s′ ← Rec(Sh′i1 , . . . , Sh
′
it ,Shit+1);

s′ ← Game-Output .

Fig. 2. CDVGame
Acdv
SSCD: The Cheating Detection Game

The adversary is said to win if, Rec(Sh′i1 , . . . , Sh
′
it , Shit+1) = s′ and s′ /∈

{s,⊥}. The advantage of Acdv is measured by AdvAcdv

SSCD = Pr[s′ /∈ {s,⊥} | s′ ←
Rec(Sh′i1 , . . . , Sh

′
it , Shit+1)]. The (t, n, δcdv) security requires that AdvAcdv

SSCD ≤
δcdv.

Known Lower Bounds. The lower bounds on the share sizes of both OKS-secure
and CDV-secure schemes were presented by Ogata, Kurosawa and Stinson in [17].
In the following, we recall the bounds.

Theorem 1. ([17]) For any (t, n, δoks) OKS-secure SSCD scheme with the do-
main of secrets is denoted by Σ, the size of the total shares of Pi for every i ∈ [n]
is lower bounded by

|Σi| ≥ |Σ| − 1

δoks
+ 1. (6)

The lower bound under the CDV model was derived assuming that the secret
is uniformly distributed.

Theorem 2. ([17]) For any (t, n, δcdv) CDV-secure SSCD scheme where the do-
main of secret is Σ with uniform distribution, the size of total shares of Pi for
every i ∈ [n] is lower bounded by

|Σi| ≥ |Σ| − 1

δ2cdv
+ 1 (7)

Although, the schemes proposed in this paper are not flexible, we include the
following section for completeness.
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2.4 Relationship between δ and |Σ|
The maximum cheating probability δ for existing schemes is largely dictated by
the cardinality of secret space Σ and is given by δ ≈ 1/|Σ|. But from a practical
perspective, it is important to choose δ independently. The schemes in [15,8] can
choose δ that is arbitrarily larger than 1/|Σ|. On the other hand, when the secret
space is small, it is important for the scheme to have δ � 1/|Σ|. For example,
for 20 bit secret size, one may require δ = 1/260 � 1/220.

The construction of a flexible scheme with share size equal to, or nearly the
same as, the known lower bound (under OKS/CDV or both models) is an inter-
esting open problem.

3 A (t, n, δoks) OKS-secure SSCD Scheme

In this section, we present an (t, n, δoks) OKS-secure SSCD scheme with share size
nearly the same as the lower bound of Theorem 1. In our scheme, the secrets
are drawn from a finite field Fq and cheating probability is at most 1

q . The

information rate of our scheme is 1/2.

3.1 The Proposed Scheme Πaopt

Let t and n be positive integers such that 1 ≤ t < n. Choose a finite field Fq

with q > 2n. Choose 2n distinct points, α1, . . . , α2n ∈ Fq, known to all players.
We now present our scheme.

– Share: On input a secret s ∈ Fq, the share generation algorithm Share outputs
a list of shares as follows. The dealer D randomly picks a polynomial f ∈R

F
≤2t
q [x] such that f(0) = s. For every j in 1 ≤ j ≤ 2n, it computes sj =

f(αj). Finally, for every i in 1 ≤ i ≤ n, player Pi gets Shi = (si, sn+i) as
their share:

Share Distribution Algorithm
Secret s ∈ Fq

↓ f ∈ F
≤2t
q [x]

f(α1), . . . , f(α2n)
Pi ← (f(αi), f(αn+i)), 1 ≤ i ≤ n

– Rec: The secret reconstruction algorithm Rec proceeds as follows. Suppose
the following t + 1 players Pi1 , . . . , Pit+1 provided shares (correct or cor-
rupted) Sh′i1 , . . . , Sh

′
it+1

respectively. The share of Pi is corrupted if Sh′i =
(s′i, s

′
n+i) �= (si, sn+i). This means R has 2t+ 2 points {s′i1 , s′n+i1

, . . . , s′it+1
,

s′n+it+1
} such that at most 2t of them are possibly modified. To detect a

possible cheating R proceeds as follows.

• First, it interpolates a unique polynomial f ′ ← LagInt(s′i1 , s
′
n+i1 , . . . ,

s′it+1
, s′n+it+1

) (see § 2.2 for Lagrange Interpolation LagInt).
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• It then checks if the degree of f ′ ?
= 2t + 1. If yes, it outputs ⊥ which

indicates that cheating has occurred.
• Otherwise (i.e., when degree of f ′ ≤ 2t), R outputs f ′(0) as the recon-
structed secret.

3.2 Security

In order to prove the security of Πaopt, we first prove two simple lemmas.

Lemma 1. Let F be any finite field and let α1, . . . , αk ∈ F be any k distinct
points. Let f =

∑k
i=0 aix

i be chosen at random from F
≤k[x]. Then given f(α1),

. . . , f(αk), it holds that one of the coefficients {ai}ki=0 of f is uniformly dis-
tributed over F.

Proof: Given f(α1), . . . , f(αk) for a random f ∈ F
≤k[x], we have the following

system of linear equations, where a0, a1, . . . , ak form the unknowns of the system:

⎡

⎢
⎢
⎢
⎣

1 α1 . . . αk
1

1 α2 . . . αk
2

...
...

. . .
...

1 αk . . . αk
k

⎤

⎥
⎥
⎥
⎦
·

⎡

⎢
⎢
⎢
⎣

a0
a1
...
ak

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

f(α1)
f(α2)

...
f(αk)

⎤

⎥
⎥
⎥
⎦

(8)

Fixing any of the unknowns, e.g. a1, will transform system (8) in to:
⎡

⎢
⎢
⎢
⎣

1 α2
1 . . . αk

1

1 α2
2 . . . αk

2
...

...
. . .

...
1 α2

k . . . αk
k

⎤

⎥
⎥
⎥
⎦
·

⎡

⎢
⎢
⎢
⎣

a0
a2
...
ak

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

f(α1)− a1α1

f(α2)− a1α2

...
f(αk)− a1αk

⎤

⎥
⎥
⎥
⎦

(9)

Clearly, the resulting system admits a unique solution (for (a0, a2, . . . , ak)
T )

as its coefficient matrix is non-singular. Therefore a1 is uniformly distributed.

Lemma 2. Let F be any finite field and let a0, . . . , aj−1, aj+1, . . . , ak be any k

points in F. Let aj be chosen at random from F. Define faj =
∑k

i=0 aix
i ∈

F
≤k[x]. Then for every α, β ∈ F with α �= 0, it holds that Pr[faj (α) = β] = 1

|F| .

Proof: Let faj (x) = a0 + · · · + ajx
j + · · · + akx

k. Then Pr[faj (α) = β] =
Pr[a0+ · · ·+ ajα

j + · · ·+ akα
k] = β, where the probability is computed over the

random choice of aj ∈ F. Hence, for a randomly chosen aj ∈ F we have

Pr

[
k∑

i=0

aiα
i = β

]

= Pr

⎡

⎣ajα
j = β −

∑

0≤i≤k;i�=j

aiα
i

⎤

⎦

= Pr

⎡

⎣aj = (αj)−1

⎛

⎝β −
∑

0≤i≤k;i�=j

aiα
i

⎞

⎠

⎤

⎦

=
1

|F| ,
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where the second equality holds since α ∈ F and α �= 0 implying that αj is
invertible, and the last equality is due to the fact that aj is randomly chosen
from F. This concludes the proof.

Theorem 3. The SSCD scheme Πaopt of § 3.1 is (t, n, δoks) OKS-secure with
secret space Σ = Fq, share space Σi = Fq × Fq for every Pi, and δoks =

1
q .

Proof: The correctness and privacy of Πaopt follows immediately from Shamir
secret sharing scheme: any set of t+1 players can reconstruct the secret as they
hold 2t+2 shares of f , while a set of t players have only 2t shares which do not
leak any information about the secret as f ∈ F

≤2t
q [X ].

We now derive the maximum probability of cheating. For notational clarity,
suppose t+ 1 players P1, . . . , Pt+1 participate in the reconstruction. We further
assume that P1, . . . , Pt are corrupted and provide shares Sh′1, . . . , Sh

′
t such that

Sh′i = (s′i, s
′
n+i) �= (si, sn+i) for at least one i ∈ [t]. The player Pt+1 who is

honest provides the correct share Sht+1 = (st+1, sn+t+1). The cheating will not
be detected if s′1, s

′
n+1, . . . , s

′
t, s

′
n+t and st+1, sn+t+1 lie on a polynomial of degree

at most 2t. The later is true iff sn+t+1 lies on the polynomial passing through
s′1, s

′
n+1, . . . , s

′
t, s

′
n+t and st+1. Let f ′ =

∑2t
i=0 bix

i be the unique polynomial
passing through 2t + 1 points s′1, s

′
n+1, . . . , s

′
t, s

′
n+t and st+1. As f ′ is of degree

at most 2t, and the shares of the corrupted players constitute 2t points on f ′,
the Lemma 1 implies that at least one coefficient of f ′ will remain uniform to
the corrupted players. Therefore by Lemma 2 it holds that Pr[f ′(αn+t+1) =
sn+t+1] =

1
q . This concludes the proof.

3.3 Efficiency Comparison

Previous Works. In [17] Ogata, Kurosawa and Stinson proposed a (t, n, δoks)
OKS-secure SSCD scheme achieving the lower bound of Theorem 1. The scheme
uses a combinatorial object called difference set. In the following we provide a
brief description of their scheme. The scheme is denoted by Πoks.

Definition 4. ([17] (N, �, λ) Difference Set ) Let (Γ,+) be an Abelian (commu-
tative) group of order N . A subset B ⊂ Γ is called an (N, �, λ) difference set if
|B| = � and the set of non-zero differences {d− d′ | d, d′(d �= d′) ∈ B} contains
each non-zero element of Γ precisely λ times.

For an (N, �, λ) difference set B ⊂ Γ , it is clear that |Γ | = N = �(�−1)
λ + 1.

The Πoks scheme was constructed in [17] using a special (N, �, λ) difference set
B ⊂ Γ such that (Γ,+, ·) is a field. It is known that there exists an (N, �, 1)
difference set B ⊂ ZN if � is a prime power, and therefore the scheme of [17]
can be instantiated using B ⊂ ZN if N is also a prime, i.e., (ZN ,+, ·) is a field.
It is also known that if N ≡ 3 (mod 4) is a prime power, then there exists an
(N, �, λ) difference set B in the field FN such that N = 4k − 1, � = 2k − 1, and
λ = k− 1, where k is a positive integer. We now state the main theorem of [17].
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Theorem 4. ([17]) Let N be a prime power, and t, n be positive integers such
that 1 ≤ t < n < N . If there exists an (N, �, λ) difference set B in (FN ,+),
then there exists a (t, n, δoks) OKS-secure secret sharing scheme for a uniformly

distributed secret over Σ = B, such that |Σ| = |B| = �, |Σi| = |FN | = �(�−1)
λ +1

for every i ∈ [n] and δoks =
λ
� , i.e., |Σi| = |Σ|−1

δoks
+ 1 for every i ∈ [n] (meets the

lower bound of Theorem 1).

The Πoks scheme does not work for an arbitrary prime power N ; in particular,
it also requires that there exists an (N, �, λ) difference set for some �, λ ∈ N. The
scheme is proven secure only if secret is chosen with uniform distribution. The
scheme was also compared in [18] to be less computationally efficient.

In [4] Cabello, Padró and Sáez proposed a method (based on [3,18]) that
provides cheating detection functionality for any linear secret sharing scheme
realizing general access structures. When their method is applied to Shamir se-
cret sharing (for threshold access structure), it yields a (t, n, δoks) OKS-secure
SSCD with almost optimum share sizes. A brief description of their scheme,
denoted by Πcps, is given below. Let Fq be a finite field with characteristic dif-
ferent from 2, and q > n. Let α1, . . . , αn ∈ Fq be known to all players. For
a given secret s ∈ Fq, the dealer picks at random two polynomials f1, f2 ∈
F
≤t
q [X ] such that f1(0) = s and f2(0) = s2 respectively. Every player Pi re-

ceives the share Shi = (si1, si2) = (f1(αi), f2(αi)). During reconstruction, for
any t + 1 players Pi1 , . . . , Pit+1 , R computes (s1, s2) from their shares, where
s1 ← LagInt(si11, . . . , sit+11) and s2 ← LagInt(si12, . . . , sit+12). If s2 = s21, R out-
puts s = s1 as the correct value of the shared secret; Otherwise when s2 �= s21,
it outputs ⊥. Πcps is summarized in the following theorem.

Theorem 5. ([4]) Let Fq be a finite field with characteristic different from 2,
and q > n. The SSCD scheme Πcps is (t, n, δoks) OKS-secure with secret space
Σ = Fq, share space Σi = Fq × Fq for every Pi, and δoks =

1
q . Clearly the share

size |Σi| = q2 is nearly the same as |Σ|−1
δoks

+ 1 = q2 − q + 1.

The main drawback of Πcps is that it works for finite fields with characteristic
different from 2. This is a serious constraint as binary fields make for a suit-
able choice in implementation of cryptographic protocols and in particular for
resource constrained devices.

Recently, In [10] Jhanwar and Safavi-Naini proposed a (t, n, δoks) OKS-secure
SSCD scheme with almost optimum share sizes. Let Πjs denote this scheme.
The scheme works as follows. Consider a finite field Fq such that q > n. Let
α1, . . . , αn ∈ Fq be known to all players. For a given secret s ∈ Fq, the dealer
first picks at random X(�= 0), r ∈ Fq and computes Y = s +Xr. It then picks
at random two polynomials f1, f2 ∈ F

≤t
q [X ] such that f1(0) = s and f2(0) = r

respectively. Every player Pi receives the share Shi = (si, ri) = (f1(αi), f2(αi)).
The tuple (X,Y ) is kept as part of system’s public parameters. During reconstruc-
tion, for any t + 1 players Pi1 , . . . , Pit+1 , R computes (s′, r′) from their shares,
where s′ ← LagInt(si1 , . . . , sit+1) and r′ ← LagInt(ri1 , . . . , rit+1). If Y = s′+Xr′,



Almost Optimum Secret Sharing with Cheating Detection 369

the Rec outputs s = s′ as the correct value of the shared secret and it outputs
⊥ if Y �= s′ +Xr′. We now state the security theorem of Πjs.

Theorem 6. ([10]) Let Fq be a finite field with q > n. The SSCD scheme Πjs

is (t, n, δoks) OKS-secure with secret space Σ = Fq, share space Σi = Fq × Fq for
every Pi, and δoks =

1
q . Clearly the share size |Σi| = q2 is nearly the same as

|Σ|−1
δoks

+ 1 = q2 − q + 1.

The Πjs construction puts X,Y ∈ Fq as part of public parameters that are
stored on a publicly accessible authenticated bulletin board. In the case when
such public bulleting board is not available, the usual way out is to issue pub-
lic parameters as part of shares to the players. Because X and Y are used in
cheating detection, it is necessary to receive them in correct. But this may not
be guaranteed, if they are issued as part of shares.

Efficiency of Our Scheme. We first note that our scheme Πopt does not have
any special requirements. Unlike the previous schemes [17,4], the secret in our
scheme can be from any field. The only requirement is that the field size be
≥ 2n. The security against cheating detection holds for arbitrary distribution of
secret. Suppose k = �log2 q�. The shares in our scheme consist of log2(q

2) = 2k

bits, which is only one bit longer than log2(
|Σ|−1

δ + 1) = log2(q(q − 1) + 1) ≥
log2 q + log2(q − 1) ≥ 2k − 1, the size of lower bound.

4 A (t, n, δcdv) CDV-secure SSCD Scheme

We present a (t, n, δcdv) CDV-secure SSCD scheme that is constructed using the
technique in § 3.1. In CDV model, the reconstruction is against a stronger adver-
sary who, in addition to the t shares, also knows the shared secret. In the share
distribution phase of the new scheme, the dealer picks a polynomial f of degree
at most 3t + 1, and gives out 3 distinct points on f to every Pi. The shares of
any t players and the additional knowledge of the shared secret give 3t+1 points
on f , which means f can not be fully reconstructed. But, any t + 1 shares give
3t+3 points on f , which is one point more than the required 3t+2 points. This
extra point is used for cheating detection. We now formally describe the scheme.

4.1 The Proposed Scheme Π̃aopt

Let t and n are positive integers such that 1 ≤ t < n. Choose a finite field Fq

with q > 3n. Choose 3n distinct points, α1, . . . , α3n ∈ Fq, known to all players.
We now present our scheme.

– Share: On input a secret s ∈ Fq, the share generation algorithm Share out-
puts a list of shares as follows. The dealer D randomly picks a polyno-
mial f ∈R F

≤3t+1
q [x] such that f(0) = s. For every j in 1 ≤ j ≤ 3n, the



370 M.P. Jhanwar and R. Safavi-Naini

dealer computes sj = f(αj). Finally, for every i in 1 ≤ i ≤ n, Pi receives
Shi = (si, sn+i, s2n+i) as her share:

Share Distribution Algorithm
Secret s ∈ Fq

↓ f ∈ F
≤3t+1
q [x]

f(α1), . . . , f(α3n)
Pi ← (f(αi), f(αn+i), f(α2n+i)), 1 ≤ i ≤ n

– Rec: The secret reconstruction algorithm Rec proceeds as follows. Suppose
the following t + 1 players Pi1 , . . . , Pit+1 provided shares (correct or cor-
rupted) Sh′i1 , . . . , Sh

′
it+1

respectively. The share of Pi is corrupted if Sh′i =
(s′i, s

′
n+i, s

′
2n+i) �= (si, sn+i, s2n+i). This means, R has 3t + 3 points such

that at most 3t of them are possibly modified. To detect a possible cheating,
R now proceeds as follows.

• First, it interpolates a unique polynomial f ′ ← LagInt(Sh′i1 , . . . , Sh
′
it+1

)
(see § 2.2 for Lagrange Interpolation LagInt).

• It then checks if the degree of f ′ ?
= 3t + 2. If yes, it outputs ⊥ which

indicates that cheating has occurred.
• Otherwise (i.e., when degree of f ′ ≤ 3t + 1), R outputs f ′(0) as the
reconstructed secret.

4.2 Security

Theorem 7. The SSCD scheme Π̃aopt of § 4.1 is (t, n, δcdv) CDV-secure with
secret space Σ = Fq, share space Σi = (Fq)

3 for every Pi, and δcdv =
1
q .

Proof: The correctness and privacy of Πaopt follow immediately from Shamir
secret sharing scheme: any t players hold 3t shares which do not leak any infor-
mation about the secret as f ∈ F

≤3t+1
q [X ], and any t+1 players can reconstruct

the secret as they hold 3t+3 shares of f . We now derive the maximum probability
of cheating. Suppose players P1, . . . , Pt+1 provide shares during reconstruction.
We further assume that P1, . . . , Pt are corrupted, and they know the shared se-
cret s. The shares {(s′i, s′n+i, s

′
2n+i)}i∈[t] of corrupted players, together with s,

give 3t+1 points on f . As degree of f is at most 3t+1, Lemma 1 and 2 together
imply that 3t+ 3 points of Sh′1, . . . , Sh

′
t and Sht+1 lie on a polynomial of degree

at most 3t+ 1 with probability at most 1/q.

4.3 Efficiency Comparison

In [4], Cabello, Padró and Sáez proposed a method (based on [3,18]) that pro-
vides cheating detection functionality (under CDV model) for any linear secret
sharing scheme realizing general access structures. When their method is applied
to Shamir secret sharing (for threshold access structure), it yields a (t, n, δcdv)
CDV-secure SSCD with almost optimum share sizes. A brief description of their
scheme, denoted as Π̃cps, is given below. Let us fix a finite field Fq with q > n. Let
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α1, . . . , αn ∈ Fq be known to all players. For a given secret s ∈ Fq it first picks a
random r ∈ Fq. The dealer then picks at random polynomials f1, f2, f3 ∈ F

≤t
q [X ]

such that f1(0) = s, f2(0) = r and f3(0) = rs respectively. Every player Pi

receives the share Shi = (si1, si2, si3) = (f1(αi), f2(αi), f3(αi)). During recon-
struction, for any t+ 1 players Pi1 , . . . , Pit+1 , R computes (s1, s2, s3) from their
shares, where sj ← LagInt(si1j , . . . , sit+1j), j ∈ {1, 2, 3}. If s3 = s1s2, the Rec
outputs s = s1 as the correct value of the shared secret; otherwise, i.e., when
s3 �= s1s2, it outputs ⊥. The scheme Π̃cps is almost optimum with respect to the

lower bound of Theorem 1. Π̃cps is summarized in the following theorem.

Theorem 8. ([4]) Let Fq be a finite field with q > n. The SSCD scheme Π̃cps

is (t, n, δcdv) CDV-secure with secret space Σ = Fq, share space Σi = (Fq)
3 for

every Pi, and δcdv = 1
q . Clearly the share size |Σi| = q3 is nearly the same as

|Σ|−1
δ2cdv

+ 1 = q2(q − 1) + 1 = q3 − q2 + 1.

Efficiency of Our Scheme. To the best of our knowledge the schemes Π̃cps

([4]) and the proposed scheme Π̃aopt are the only known schemes that are almost
optimum with respect to the share size. Suppose k = �log2 q�. The shares in
our scheme consist of log2(q

3) = 3k bits, which is only one bit longer than

log2(
|Σ|−1
δ2cdv

+ 1) = log2(q
2(q − 1) + 1) ≥ 2 log2 q + log2(q − 1) ≥ 3k − 1, the size

of the lower bound.

5 Concluding Remarks

We presented a simple method for adding cheating detection to Shamir secret
sharing scheme. We used the same approach for both security models of cheat-
ing detection. The resulting schemes have almost optimum share sizes. Unlike
existing schemes, our constructions do not impose any special requirement on
parameters. It is interesting to see if our technique can be generalized to work for
any linear secret sharing scheme. It is also interesting to find its applicability for
robust secret sharing and secure message transmission that are based on Shamir
secret sharing.

Acknowledgments. The authors would like to thank a reviewer of SPACE
2015 for detailed comments.
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