
Efficient and Secure Elliptic Curve

Cryptography for 8-bit AVR Microcontrollers

Erick Nascimento, Julio López, and Ricardo Dahab

Institute of Computing, University of Campinas, Campinas, Brazil
ra032483@students.ic.unicamp.br,

{jlopez,rdahab}@ic.unicamp.br

Abstract. The AVR family of 8-bit microcontrollers is widely used in
several applications demanding secure communications and protection
against physical attacks, such as side-channel analysis. In this context,
processing, storage and energy demands of cryptographic software must
be low, requirements which are met by ECC. At the 128-bit security level,
two recently proposed curves are an attractive option for 8-bit microcon-
trollers: Curve25519 for Diffie-Hellman key exchange, and Ed25519 for
signature. Simple power analysis is a significant threat to AVR appli-
cations, but efficient and side-channel tested implementations of SPA
countermeasures for ECC protocols have not yet been dealt with in
this platform, in the literature. This paper describes an efficient imple-
mentation of ECDH-Curve25519 and EdDSA-Ed25519-SHA512 for the
ATmega328P platform. Our implementation provides protection against
timing attacks, SPA and template SPA. The resistance against SPA is
evaluated through the test vector leakage assessment (TVLA) method-
ology based on Welch’s t-test, using the Chipwhisperer platform.

Keywords: Public-key cryptography, elliptic curves, ECDH, EdDSA,
embedded system, AVR, side-channel attack, timing analysis, simple
power analysis, SPA, template SPA, countermeasure.

1 Introduction

Elliptic Curve Cryptography (ECC) is a class of public-key cryptosystems pro-
posed by Koblitz [32] and Miller [40], which provides significant efficiency ad-
vantages for microcontrollers, due to small key sizes which may improve speed,
memory and power. For example, some industry standards require 2048-bit keys
for RSA, whereas the equivalent security for ECC demands 224-bit keys. In fact,
ECC-based protocols are used in many embedded applications, such as payment,
pay-TV, wireless sensors, medical and identification systems.

Passive side-channel attacks (SCA) are a class of implementation attacks ex-
ploiting physical leakages of a device during the execution of a cryptographic
operation, such as: timing [33], power consumption [34] and electromagnetic ra-
diation [47,21]. They present a realistic threat to cryptographic applications,
and have demonstrated to be very effective against smart cards without proper

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 289–309, 2015.
DOI: 10.1007/978-3-319-24126-5_17

290 E. Nascimento, J. López, and R. Dahab

countermeasures [37]. Evaluation of SCA resistance is mandatory in some current
and upcoming standards: Common Criteria [17], FIPS 140-3 [43] and others [31].
SCA attacks can be classified in two categories: Simple Side-Channel Analysis
(SSCA) [33], in which measurements (traces) obtained for a single or few runs
of a private key operation (e.g., signing or decryption) are acquired, and the dif-
ferences in the measured physical quantity depending on the value of the secret
key are analyzed; and Differential Side-channel Analysis (DSCA) [34], which is
based on statistical analysis to retrieve information about the private key based
on a large number of traces. SSCA is considered the main side-channel threat
against implementations of public key cryptographic algorithms.

Current cryptographic standards require a work factor around 128 bits [2,11]
[44,45]. Curve25519 [5] and Ed25519 [6] are two curves at the 128 bit security
level that have achieved promising industry adoption. Curve25519 is a curve in
the Montgomery model over the 255-bit prime field Fp, for p = 2255−19, suitable
for ECDH. Ed25519 is a curve in the twisted Edwards model also defined over
Fp, but designed for the EdDSA (Edwards DSA) signature scheme [6].

Related Work. The closest related works that can be directly compared to
ours are the port of the NaCl library to AVR by Hutter and Schwabe [27], which
includes constant time implementations of both EdDSA-Ed25519 (23 216 241
cycles for signing and 32 634 713 cycles for verification) and ECDH-Curve25519
(22 791 579 cycles for computing a shared secret key using Montgomery ladder)
protocols, and the faster version [19] of ECDH-Curve25519 (13 900 397 cycles
using Montgomery ladder). Other implementations of ECC for twisted Edwards
or Montgomery curves for 8-bit AVRs in the literature cannot be directly com-
pared to ours, because they target different curves. Chu et al [14] implemented
ECC for twisted Edwards curves over 160 and 192 bits Optimal Prime Fields
(OPFs), but do not implement any countermeasures against SCA. Liu et al [35]
described an implementation of ECC for Montgomery curves over OPFs with
field sizes ranging from 160 to 256 bits1. Liu et al [36] described constant time,
variable and fixed-base scalar multiplications for twisted Edwards and Mont-
gomery curves over OPFs, the latter uses a highly regular comb algorithm.

Our Contributions.We describe implementations of fixed and variable-base el-
liptic curve scalarmultiplication algorithms for Ed25519, and of EdDSA-Ed25519-
SHA512 signature generation and verification for AVR microcontrollers, which
are efficient, timing analysis resistant through constant time implementation, and
SPA-protected by the randomized coordinates countermeasure. Our EdDSA-
Ed25519-SHA512 implementation improves the current state of the art [27] per-
formance for signing in 17.2%, with 19 221 517 cycles (constant time, randomized
coordinates, and with a lookup-protected precomputed table of 8 points), and for
verification in 5.7%, with 30 776 942 cycles. We also test the SPA leakage of our
constant time implementation of the Montgomery Ladder scalar multiplication
algorithm for Curve25519 with the randomized coordinates countermeasure by

1 They used a version of the binary Extended Euclidean Algorithm for field inversion
which is not constant time, and no SPA-specific countermeasure was applied.

Efficient and Secure Elliptic Curve Cryptography 291

running CRI’s test vector leakage assessment methodology (TVLA) [22,50]. To
the best of our knowledge, this is the first work to provide a SPA leakage assess-
ment of an implementation of ECC on AVR. Finally, we also show that addresses
of loads from Flash memory leak through power, and that such leakage can be
exploited by template SPA.

2 Side-Channel Analysis on the AVR

2.1 Timing Analysis

Timing attacks against implementations of cryptographic algorithms exploit the
fact that the elapsed time typically varies and depends on the specific value of
the input data being processed on the particular run, for fixed (e.g., key) or vari-
able (e.g., plaintext or ciphertext) data. Vulnerability to timing analysis implies
vulnerability to power analysis, as time differences can be visually detected in
power traces. The following are recommendations to prevent timing analysis [7].

Avoiding Secret-Dependent Load Addresses. This is necessary when the
architecture has a memory hierarchy. It is not the case of AVR architecture,
which has just one memory level, the SRAM, and in which all accesses take the
same time. Thus, we do not implement this recommendation.

Avoiding Secret-Dependent Branch Conditions. In other words, to avoid
data flow from secret data to branch conditions. In the case of AVR, there is no
branch prediction mechanism, so this problem could be solved by balancing the
number of instructions executed in the two conditions of the branch, but it has
to be done at the assembly level, is tedious and error prone. Instead, we solve it
by using conditional move operations implemented with logical operations.

2.2 Simple Power Analysis

Generally speaking, power analysis exploits the fact that the instantaneous power
consumption of a device depends on both the data processed and the operation
performed [37,34]. Power analysis attacks are classified as SPA even if the at-
tacker needs to obtain more than one trace to succeed, maybe from different
input data values, provided statistical analysis of the traces are not required [37].

Power analysis countermeasures for both SPA and DPA are based on the
reduction or elimination of the dependency between the power consumption
of a cryptographic device and the intermediate values used by the algorithm,
and are classified in two main groups: hiding and masking [37]. In this work
we apply both kinds of countermeasures. Hiding is employed through highly
regular2 [30] scalar multiplication algorithms, which also do not assume that

2 An algorithm is said to be highly regular when: (i) it always executes the same
instructions, in the same order, for all possible input values; and (ii) there is no
dummy instructions, i.e., all instructions are effective.

292 E. Nascimento, J. López, and R. Dahab

distinct operations have the same leakage characteristics3. Masking is applied
by randomizing the point coordinate representation, to protect against SPA and
template SPA [39].

3 Prime Field Arithmetic

Curve25519 and Ed25519. Curve25519 [5] is the Montgomery curve E(Fp) :
y2 = x3 + 48662x2 + x over the prime field Fp, p = 2255 − 19. Ed25519 [6]
is a twisted Edwards curve birationally equivalent to Curve25519, defined by
E′(Fp) : −x2 + y2 = 1− 121665

121666x
2y2 over the same prime field Fp.

Prime field F2255−19. Following the representation proposed in [9], we also
represent an element of Fp as an integer modulo 2256−38 during field operations,
as do previous implementations of Curve25519 and Ed25519 in AVR [27,19]. This
redundant representation allows for a more efficient reduction than reducing
directly modulo p. Only in the end of the scalar multiplication calculation, if the
integer is not already in Fp, we subtract p in constant time.

Field Multiplication and Squaring. Multi-precision multiplication (256-bit)
is implemented as a 3-level subtractive Karatsuba [10,28]. This variant of Karat-
suba avoids the carry bits when computing the middle partial product, but it
requires the computation of two absolute differences of the low and high halves
of the operands, |AL −AH | and |BL −BH |, and one conditional negation of the
product of these differences. The bottom 32-bit multiplier is fully unrolled. Field
squaring is implemented as a 3-level subtractive Karatsuba, in which case there
is no conditional negation of M. The 32-bit multiplier from the multiplication
is reused here, through a function call, at the bottom level. Both operations are
implemented in assembly, are branch-free and partially unrolled.

Multiplication by Constant 121666. This multiplication is required for the
group arithmetic in Curve25519. Since the constant representation requires 3
bytes (1 ‖ DB ‖ 42), multiplying it by a single word takes only 2 multiplications
and a few addition instructions.

Field Inversion. We use Fermat’s theorem, x−1 ≡ xp−2 (mod p), to compute
inversion in Fp in constant time. We use the same addition chain as [5,27],
consisting of 254 squares and 11 multiplications, but we reduce the number of
temporary field variables required from 10 to only 5.

4 Arithmetic Modulo Ed25519 Group Order

EdDSA-Ed25519 signature scheme requires addition and multiplication modulo
the Ed25519 group order (N). We implemented reduction modulo N in C using
a constant time version of the Barret algorithm obtained by unrolling the final

3 For example, it is not supposed that field squaring and multiplication exhibits the
same leakage patterns.

Efficient and Secure Elliptic Curve Cryptography 293

subtraction loop into two copies of its body (the maximum number of iterations)
and using conditional moves implemented in constant time.We precomputed the
reciprocal of the modulus, R =

⌊
b2n/N

⌋
=

⌊
25664/N

⌋
, a parameter of the

Barret algorithm, and stored it in program memory. The multiplication calls the
256-bit multiplier and then reduces fully. The addition also reduces fully and is
implemented in assembly.

5 Scalar Multiplication

The most computationally expensive operation in ECC is the scalar multiplica-
tion (ECSM), also known as point multiplication (by a scalar). Protocols usually
involve three cases: fixed base point (kG), where G is a fixed point (usually the
subgroup generator) and k is a scalar; variable base point (kP), where P is a
point not known in advance; and the double scalar multiplication (kP + sG),
where P is variable and G is fixed.

Several algorithms are available for variable, fixed and double-base scalar mul-
tiplication on Curve25519 and Ed25519. The major criteria we used for the se-
lection of ECSM algorithms were high regularity [30], followed by performance.
In the case of fixed-base and double-base ECSM, the size of the table of precom-
puted points was also an important criteria, in view of the small Flash memory
space on ATmega328P. We also wanted to explore the performance of SPA-safe
ECSM algorithms that, to the best of our knowledge, were not yet implemented
in AVR microcontrollers, such as the FLS fixed-base ECSM algorithm [20,8].

5.1 Extended Twisted Edwards Coordinates

The most efficient formulas for point arithmetic on twisted Edwards curves were
proposed by Hisil et al [25], representing points in the extended twisted Edwards
coordinates: a point P = (x, y) is represented by the quadruple (X : Y : T : Z),
such that x = X/Z, y = Y/Z, xy = T/Z and Z �= 0. The auxiliary coordinate
T augments homogeneous projective coordinates (X : Y : Z) with the product
of x and y, and has the property T = XY/Z. The group identity element is
represented by (0 : 1 : 0 : 1), the negative of an element (X : Y : T : Z) is
(−X : Y : −T : Z). A point in affine coordinates (x, y) can be converted to
extended twisted Edwards coordinates by X = x, Y = y, T = xy and Z = 1.
To convert back to affine, T is ignored and an inversion and two multiplications
are required: x = X/Z and y = Y/Z. Similarly, a point can be converted to
homogeneous projective coordinates (X : Y : Z) simply by discarding T .

5.2 Variable-Base Scalar Multiplication

Montgomery Ladder Algorithm. Our implementation uses the formulas in-
troduced by Montgomery [41] for efficient x-coordinate differential point addi-
tion and doubling on elliptic curves in the Montgomery form, as do previous

294 E. Nascimento, J. López, and R. Dahab

implementations of Curve25519-ECDH [7,27]. The so-called Montgomery lad-
der algorithm comprises a sequence of 255 steps, known as ladder steps, each
performing one point addition and one point doubling, where a point is repre-
sented by projective coordinates (X : Z), where x = X/Z is the respective affine
x-coordinate. For a high level description of the algorithm, we refer the reader
to [19, §2]. Our implementation conditionally swaps the two point variables,
P1 = (X1 : Y1) and P2 = (X2 : Y2), in constant time, before the point opera-
tions in each ladder step. Point addition requires 3M + 2S and point doubling
requires 2M + 2S + 1Mc

4.

Joye’s Double-Add Algorithm. Joye’s double-add [29] (Algorithm 1) is a
variable-base right-to-left scalar multiplication algorithm, with no known SSCA
attack, which always repeats the same pattern of effective operations: a point
doubling is always followed by a point addition. The first operand (R1−b) in
the point addition is the result from the last point doubling, while the second
operand is the result from a previous addition, not necessarily the last one. For
this reason, we use the following coordinate systems in the point operations:

ExtTwistEd := 2 · HomoProj

ExtTwistEd := ExtTwistEd + ExtTwistEd

The point doubling algorithm (Algorithm 2 in Appendix B) is based on the
dedicated doubling formula from [25, §3.3], is optimized for a = −1 (the case
for Ed25519) and costs 4M + 4S. In its implementation, the input point is
actually represented in twisted Edwards coordinates, but is then converted to
homogeneous coordinates simply by ignoring the T coordinate (see Sect. 5.1).
The point addition algorithm (Algorithm 3 in Appendix B) is based in the unified
and complete point addition formula from Hisil et al [25, §3.1] and is optimized
for the case a = −1. It costs 8M +1Mc, but as the constant is large in this case,
a full multiplication is needed, therefore the effective cost is 9M . The scalar
multiplication cost is thus 255 · (13M + 4S).

Goundar et al ’s Signed Digit Algorithm. In order to prevent SPA-type
attacks, Goundar et al [24] proposed the use of the zeroless signed-digit expansion
(ZSD) in the binary left-to-right or right-to-left algorithms. The odd scalar k is
recoded on-the-fly with digits in the set {−1, 1} (Algorithm 4 in Appendix B).
We use extended twisted Edwards coordinates for point addition and doubling.
The point addition is actually a readdition, because the second operand, R1 =
(X2 : Y2 : T2 : Z2), can only be P or −P , so we can cache the result of kT2,
(Y2 − X2), (Y2 + X2) and 2Z2, saving a multiplication. Therefore, the scalar
multiplication costs 254 · (12M + 4S).

5.3 Flash Memory Address Leakage Through Power

When the base point P is fixed, scalar multiplication algorithms can employ
(offline) precomputation involving P to speedup the (online) evaluation phase

4 Mc means multiplication by a constant, 121666 in this instance.

Efficient and Secure Elliptic Curve Cryptography 295

of the scalar multiplication. For that end, a table of multiples of the base point
is typically precomputed and stored in a non-volatile memory. In the evaluation
phase, the points in the table are looked up based on some indexing method,
whose index values are dependent on bits of the (secret) scalar.

In the case of AVR, Flash memory is used to store the precomputed point ta-
ble. The time required to load a word from the Flash to the SRAM is constant,
independent of the address referenced. However, different index values corre-
spond to different Flash addresses, with possibly distinct Hamming weights, and
therefore potentially distinct power consumption characteristics. We designed an
experiment to evaluate whether this kind of leakage occurs and whether the leak-
age level is sufficient to distinguish between all the possible Hamming weights of
the addresses referenced in Flash reads. On AVR, Flash has a different address
space than SRAM, and are 16-bit on the ATmega328p.

The experiment consisted of selecting a set of addresses whose Hamming
weights are in the set SHW = {2, ..., 8}. We selected 7 addresses in the range
from 0x00A7 to 0x00FF, which have the upper 8 bits zeroed, one for each Ham-
ming weight in SHW . Let Saddr be this set5. We wrote a fixed byte value (0xDE)
to all addresses in this set. We then executed reads from this addresses (LPM
instruction) to a (fixed) register (the byte 0x00 is written to this register in
advance). For each address Hamming weight in SHW , 100 traces were captured.
Each power trace captured consists of the power consumption of a sequence of
instructions including the target LPM. The samples corresponding to the LPM in-
struction were visually identified, and then, for each address Hamming weight,
the average of the corresponding traces were computed.

Figure 1a shows the “average traces” for each address Hamming weight, for
the sample points corresponding to the LPM instruction. We can see that the
voltage values for the sample index 98 are the best single-point distinguishers for
the address Hamming weights in the set SHW . Therefore, we select the average
and sample standard deviation of voltages at this point to analyze whether this
leakage can be exploited to recover the Hamming weights.

Figure 1b shows the average voltage and the 95% confidence interval for each
Hamming weight in the set SHW . We cannot classify with strong statistical
significance the Hamming weight of a Flash address based only in one voltage
sample, because every confidence interval overlaps with at least one other confi-
dence interval6. However, the following groups can be distinguished: {2}, {3, 6},
{4, 7}, {8, 5}. This enables an adversary to detect sets of possible addresses of
the points being loaded from Flash to SRAM. In practice, in the context of
fixed-base scalar multiplication, during the lookup of a point stored in the pre-
computed point table an adversary could measure the address leakage from the

5 We selected this range of Flash addresses, because it is available for user programs,
but other ranges could be used. The following were the addresses selected: 0x00c0
(hw=2), 0x00e0 (hw=3), 0x00f0 (hw=4), 0x00f8 (hw=5), 0x00fc (hw=6), 0x00fe
(hw=7) and 0x00ff (hw=8).

6 In the case of Hamming weights 4 and 5, the confidence interval for 4 contains the
one for 7.

296 E. Nascimento, J. López, and R. Dahab

load of each word of each coordinate of the point, and thus could combine the
leakage values during the single point lookup to uniquely determine its index.

To counteract this kind of leakage, we implemented a constant time table
lookup. For each point table lookup, we read all words in the point table and
use bitwise arithmetic such that in the end the words of the coordinates val-
ues of the point requested are in the target buffer in SRAM (see Algorithm 6
in Appendix B).

(a) Voltage versus Sample index.
(b) Voltage versus Hamming
weight.

Fig. 1. Figure 1a shows the Voltage versus Sample index, for each Flash address Ham-
ming weight from 2 to 8, in the interval of samples/points in the average trace corre-
sponding to the LPM instruction. LPM takes 3 CPU cycles, and the sampling rate is 4
samples per cycle. Figure 1b shows the Voltage versus Hamming weight for the second
sample (sample index 98), with 95% confidence interval bars, for LPM instructions
referencing Flash addresses with different Hamming weights.

5.4 Fixed-Base ECSM for Ed25519 Key Generation and Signing

Modified LSB-set Algorithm (FLS). We implemented Faz-Hernandez et
al’s modified LSB-set comb algorithm [20], henceforward named FLS, according
to the specification in [8, Alg. 7]. Beyond the curve-related parameters, which
have already been fixed by the curve selection, different pairs of values for the
number of tables of precomputed points v and the window width w have been
selected and experimentally evaluated, to determine their actual performance
when protection against Flash memory address leakage is applied, and also to
compare the required storage costs. Points are represented in extended twisted
Edwards coordinates, both in the working variables and in the precomputed
table, and point addition and doubling formulas are the same used for Joye’s
(Algorithms 3 and 2 in Appendix B). We evaluated the performance with 4
precomputed points (1KB), (v = 1, w = 3) (1 table) and (v = 2, w = 2) (2
tables), and with 8 points (2KB), (v = 1, w = 4) (1 table) and (v = 2, w = 3) (2
tables). We also evaluated the performance impact of the table lookup protection.
In the case of two tables, we use a similar technique as that for a single table
(Algorithm 6 in Appendix B), to guarantee that all words are read from both
tables, but only the desired point is left in the destination variable.

Efficient and Secure Elliptic Curve Cryptography 297

5.5 Projective Coordinate Randomization

In a template SPA [39] attack the adversary first characterizes the power con-
sumption of a sequence of instructions executed on a device similar to the target
device, when a fixed pair (key, data) is processed, and repeats the process for sev-
eral such pairs, resulting in a set of power consumption templates, one for each
pair (template building phase). After that, the templates are matched against a
single trace captured from the target (template matching phase).

Highly regular scalar multiplication algorithms implemented in constant time
are not enough to protect against template SPA attacks, as it was shown in [39,4].
According to Medwed and Oswald [39], the only way to make an implementation
resistant to template SPA attacks is to make it resistant against DPA attacks,
and they also assert that among Coron’s proposed countermeasures for DPA in
ECC [16], only randomized projective coordinates can prevent template SPA.

We applied the randomized projective coordinates countermeasure to the pro-
jective coordinates (X : Z) in Montgomery Ladder and the extended twisted Ed-
wards coordinates (X : Y : T : Z) in Joye’s Double-Add, Goundar’s Signed-digit
and FLS algorithms. In the case of Montgomery Ladder, we generate random
λ ∈ Fp\{0} in the beginning of the algorithm and do Z2 ← λ and X2 ← u · λ,
where u is the x-coordinate of the input point P and P2 = (X2 : Z2) is the
second point variable. In the case of Joye’s Double-add and Goundar’s Signed-
digit algorithms, we randomly generate λ ∈ Fp\{0} and do X ′ ← λx, Y ′ ← λy,
T ′ ← xY ′ and Z ′ ← λ, where P = (x, y) is the input point in affine coordi-
nates and the resultant point P ′ = (X ′ : Y ′, T ′, Z ′) is used in place of P in the
remainder of the algorithms.

In FLS algorithm, we randomize the coordinates of the first point loaded from
the table of precomputed points, P0 = (X : Y : T : Z), as follows: generate ran-
dom λ ∈ Fp\{0} and do X ′ ← λX , Y ′ ← λY , T ′ ← λT and Z ′ ← λZ. The
resultant point P ′

0 = (X ′ : Y ′ : T ′ : Z ′) is used in place of P0. When this coun-
termeasure is applied, the values of the coordinates of the accumulator point Q
are randomized, changing from one execution of the scalar multiplication to the
other, because the value of P ′

0 is assigned to Q in the beginning of evaluation
stage [8, Alg. 7]. Furthermore, as an additional measure to protect against tem-
plate SPA attacks targeting the loading of words stored Flash (i.e., the value
of the words itself, rather than their addresses), the extended twisted Edwards
coordinates of each point Pi,j are randomized before being stored in the table,
with a random λ generated for each point, in the same way P0 was randomized.

6 Hashing and PRNG

SHA-512. The original EdDSA-Ed25519 [6] and the AVRNaCl [27] implementa-
tions of EdDSA-Ed25519 have chosen SHA-512 [42] as the hash function, there-
fore we have also selected it to be able to compare our results to theirs. Our goal
is to achieve a small and simple implementation, so we decided to implement in
assembly only the low-level functions (add64, and64, or64, xor64, rotr64 and

298 E. Nascimento, J. López, and R. Dahab

shr64), while the higher level ones are implemented in C and optimized for size.
The constant H0 and round constants were kept in program memory.

Hash DRBG. Random numbers are required for the projective coordinates ran-
domization and for key pair generation on the device, in particular if ephemeral
ECDH (ECDHE) is used. For this purpose, we implemented theHash DRBGpseu-
dorandom number generator [3] at the 128-bit security level, with SHA-512 as
the underlying hash function.7 The PRNG is seeded during instantiation, and its
seed is the output of a derivation function whose inputs are the entropy input and
nonce. The nonce is stored in the EEPROMwhen the device is programmed. The
entropy input is also assumed to be stored in the EEPROM, as we do not imple-
ment entropy gathering from physical sources.8

7 Elliptic Curve Protocols

Elliptic Curve Diffie-Hellman with Curve25519 (ECDH-Curve25519).
ECDH-Curve25519 protocol consists of two operations: generate key pair and
compute shared secret. The latter consists mainly of a variable-base scalar mul-
tiplication, which is implemented using the Montgomery Ladder, and an inver-
sion in Fp. The first requires a scalar multiplication by a fixed base point, also
implemented with the Montgomery Ladder.

Edwards Digital Signature Algorithmwith Ed25519 (EdDSA-Ed25519-
SHA512). Key generation consists of a scalar multiplication by the subgroup
generator and a SHA512 hash. The signature generation applies SHA512, a fixed-
base scalar multiplication, addition and multiplication modulo the subgroup or-
der, and simple point and scalar encoding operations. The signature verification
consists of simple point and scalar decoding operations followed by SHA512 and
a double scalar multiplication, where one of the points is fixed (subgroup gener-
ator) and the other is variable (the signer public key). The latter is implemented
with “Shamir’s trick”, a special case of Straus’s algorithm [49].

8 Benchmarking Results

The source code was compiled with AVR-GCC v4.8.2, the size optimization
-Os and -fomit-frame-pointer options were applied to the C sources, and the
program was linked with global linker optimization -flto. Table 1 shows the
benchmarking results. The signature generation uses the FLS algorithm with

7 Faster approved hash functions, such as SHA-256 or even SHA-1, could be used at
this security level, but we decided to just call the SHA-512 function already available
to not increase the code size.

8 One such scheme proposed in the literature is Hlavac et al’s [26] method of generating
true random numbers on the AVR based on the jitter of the built-in RC oscillator,
requiring only an external oscillator. However, the resulting TRNG is slow, being ca-
pable of generating only 8 bits of entropy per second.

Efficient and Secure Elliptic Curve Cryptography 299

(v = 1, w = 4) (8 points, 1 table), with and without the table lookup protection
and randomized coordinates countermeasures. In the results for the functions
protected with the coordinate randomization, the PRNG overhead is not taken
into account, i.e., the required number of random bytes are readily available.

The results of our implementation of EdDSA-Ed25519-SHA512 improve the
state of the art performance [27], requiring 19 047 706 cycles for signing, an im-
provement of 17.9%, and 30 776 942 cycles for verification, an improvement of
5.7%. The overhead of the countermeasures table lookup protection and ran-
domized projective coordinates to the FLS algorithm is only 1.0%. Similarly,
when these countermeasures are applied on the signature generation function,
the overhead is also very small (0.9%). In the case of the compute shared secret
function, the overhead of the coordinate randomization is only 0.04%.

Despite having a slower field multiplication than Hutter and Schwabe im-
plementation (6208 cycles) [27], we implemented a dedicated field squaring
algorithm in assembly while the authors simply reused the multiplication func-
tion for squaring, resulting in faster scalar multiplications for both Curve25519
and Ed25519. Dull et al [19] described an efficient implementation of field mul-
tiplication and squaring for AVR using more efficient algorithms, significantly
improving the state-of-the-art performance with 13 900 397 cycles for computing
a ECDH-Curve25519 shared secret key.

9 Timing and Simple Power Analysis Leakage Evaluation

Side-channel security evaluations of cryptography devices comprise two phases:
measurement and analysis. The output of such an evaluation should be an as-
sertion, indicating whether the device is vulnerable (Fail) or not (Pass), given
the constraints of the evaluation process9. The proper measurement of the side-
channel traces and its limitations must be properly accounted for, or else the
analysis process could be undermined, probably resulting in false positives, or
worse, false negatives.

Current evaluation methodologies (e.g. Common Criteria [17]) consist of per-
forming a battery of known side-channel attacks against the device under test
(DUT) in an attempt to recover the key. Nonetheless, the rapid evolving set
of side-channel attacks proposed in the literature incur both a more demand-
ing level of expertise of test operators and an increase on the evaluation time.
Even when all attack attempts have failed, residual side-channel leakages may
be available, which may reveal new attack paths for an adversary.

CRI proposed the Test Vector Leakage Assessment (TVLA) testing method-
ology, to solve the aforementioned issues, which is claimed to be effective, in the
sense that it is reproducible and is a reliable indicator of the resistance achieved,
and cost effective, meaning that “validating a moderate level of resistance (e.g.,
FIPS 140 level 3 or 4) should not require an excessive amount of testing time per
algorithm or test operator skills” [22]. Their approach differs fundamentally from

9 E.g., accuracy of the testing equipment, technical expertise and available time.

300 E. Nascimento, J. López, and R. Dahab

Table 1. Benchmarking results on ATmega328P.

Operation Class Operation/Algorithm Msg.(B) Cycles Stack(B)

Field Arith.

Field Multiplication - 7555 -

Field Squaring - 5666 -

Field Inversion - 2 000 762 -

Group Order Arith.

Barret Reduction - 43 045 -

Group Order Addition - 54 303 -

Group Order Negation - 46 773 -

Group Order Multiplication - 72 438 -

Variable-base ECSM
Curve25519

Montgomery Ladder - 20 153 658 -

Montgomery Ladder, rand. coord. - 20 161 213 -

Variable-base ECSM
Ed25519

Joye’s Double-Add - 42 436 422 -

Joye’s Double-Add, rand. coord. - 42 459 087 -

Goundar’s Signed-digit - 35 757 016 -

Goundar’s Signed-digit, rand. coord. - 35 779 681 -

Fixed-base ECSM
Ed25519

FLS (v = 1, w = 3) - 21 553 188 -

FLS (v = 2, w = 2) - 26 661 293 -

FLS (v = 1, w = 3), lookup prot. - 21 658 857 -

FLS (v = 1, w = 4) - 18 119 234 -

FLS (v = 2, w = 3) - 19 170 150 -

FLS (v = 1, w = 4), lookup prot. - 18 264 710 -

FLS (v = 1, w = 4), lookup + rand. coord. - 18 298 387 -

Double ECSM Ed25519 Shamir’s trick - 28 105 811 -

Hash
SHA-512 64 554 280 -

SHA-512 1024 4 974 380 -

ECDH-Curve25519

Compute shared secret [27] - 22 791 579 677

Compute shared secret [19] - 13 900 397 494

Compute shared secret - 20 254 426 686

Compute shared secret, rand. coord. - 20 261 981 743

EdDSA-Ed25519

Signature generation [27] 64 23 216 241 1642

Signature generation 64 19 047 706 1473

Signature generation, lookup + rand. coord. 64 19 221 517 1511

Signature verification [27] 64 32 634 713 1315

Signature verification 64 30 776 942 1226

the attack-focused evaluation strategies currently employed, taking a black-box
and detection-focused strategy [38].

The measurement phase of TVLA is based on the collection of side-channel
traces when standardized test vectors are provided as input to the algorithm
being tested, and establishes requirements for power measurement equipment
and setup, data collection, signal alignment and preprocessing. The analysis
phase is based on Welch’s t-test, can detect different types of leakages and allows
the analyst to identify points in time that deserve further investigation. The
testing methodology has so far been applied to AES and RSA implementations10.

Other methodologies, based on continuous [13] and discrete [12] mutual infor-
mation have also been proposed.Oswald et al [38] analyzedmethodologies [22], [12]

10 For AES, by the methodology authors [22,15] and independently [38]; and for RSA
software implementations [50].

Efficient and Secure Elliptic Curve Cryptography 301

and [13], and concluded they have similar statistical power. The recent work of
Schneider and Moradi [48] address how to perform the t-test in [22] at higher or-
ders, and how to extend it to multivariate settings.

9.1 Application of CRI’s Methodology to ECC

We apply CRI’s methodology to our implementation of ECDH-Curve25519, us-
ing Chipwhisperer as the power measurement equipment. Specifically, we select
a set of test vectors (Table 2) to be used for the power measurement phase,
which cover normal and special cases of the field and group arithmetic when
implemented using the chosen algorithms. Table 3 shows categories of special
values used in Sets 4 and 5 for the compute shared secret function.

Table 2. Sets of test vectors for SPA leakage analysis (k is the secret scalar and P is
the point).

Set # Properties Rationale

1 constant k, constant P
This is the baseline. The tests compare power consumption
from the other sets against it.

2 constant k, varying P
Goal is to detect systematic relationships between power
consumption and the P value.

3 varying k, constant P
Goal is to detect systematic relationships between power
consumption and the k value.

4 constant k, special P Edge cases of the algorithms used.

5 special k, constant P Edge cases of the algorithms used.

Table 3. Categories of special values for n and q in ECDH-Curve25519 compute shared
secret function (q is the encoded point, n is the encoded scalar and l is the subgroup
order).

Cat. # Properties

1 q ∈ {0, 1, ..., 1023}
2 q ∈ {p25519 − 1, ..., p25519 − 1024}
3 n ∈ {0, ..., 1023}
4 n ∈ {l − 1, ..., l − 1024}
5 q has a low Hamming Weight (≤ 230)

6 q has a high Hamming Weight (≥ 25)

9.2 Measurement Setup and Capture of Power Traces

Time Measurement Setup. In an AVR CPU, as the clock frequency is con-
stant, the elapsed time of an algorithm can be measured by simply counting the
number of cycles it takes to execute. We use timer interrupts which increment a
16-bit and a 8-bit counter, resulting in 24-bit resolution.

302 E. Nascimento, J. López, and R. Dahab

Power Measurement Setup. In Chipwhisperer, power consumption traces
are captured by the OpenADC board, which features an ADC with a sample
rate of 105 MS/s, 10-bit sample resolution, 120 MHz analog bandwidth and 0
to 55 dB gain (software adjustable). The sample buffer capacity is 24k samples.
We used the following parameters values in our setup, adhering to the minimum
requirements from [22]. ADC frequency is set to 29.5 MHz, which is exactly four
times the clock rate provided to the ATMega328P (4 x 7.37 MHz), the analog
gain is set to 40 dB. The trigger mode is configured to rising clock edge.

Capture of Power Traces. The first issue we faced to capture power traces
using Chipwhisperer was the small size of the samples buffer. In the latest version
available of its FPGA bitstream and capture software, the samples buffer is
implemented as a FIFO using cells of the small Spartan 6 LX25 FPGA, limiting
its size to just 24573 samples, 10 bits each11. In our settings, this corresponds
to a limit of 6143 cycles (4 samples per cycle) per acquisition operation.

Assuming a Curve25519 variable-base scalar multiplication takes 20M cycles,
then 3256 acquisitions would be required to cover the whole operation. If such
acquisitions are made sequentially, however, samples are lost in the time interval
between an acquisition and the next, creating a gap in the trace, because when
the buffer is full, its content must be sent to the host computer through serial
connection before it could be emptied. To work around this limitation, we cap-
tured 6 traces (numbered from 0 to 5) of the full scalar multiplication, each one
with gaps. Even and odd-numbered traces have time offsets such that the gaps
in even traces don’t overlap the gaps in odd traces. We compute the average of
the 6 traces, not including the gaps in the average computation, obtaining an
average trace to be used as a single trace in the analysis phase.

We obtained 200 average traces for each test vector set, for a total of 1000
traces. The complete trace capture process, including averaging, compression
and disk storage took around 6 hours. Each uncompressed trace has 80, 614, 632
samples, and occupies 100, 768, 290 bytes. The sample acquisition process begin
with a trigger produced by the code running in the AVR, through the assertion of
bit 0 of PORTC register, just before the call to the scalar multiplication function.
Similarly, the end of the acquisition was triggered by deasserting the same bit
after the function returns. As this method provides a very precise synchronization
of the start and end times of capture across traces, no trace alignment was
needed.

9.3 SPA Leakage Analysis

The leakage analysis phase of our implementation of ECDH-Curve25519 with
randomized coordinates countermeasure is identical to CRI’s TVLA [50], and is
conducted in the following way. Let {DS1, . . . , DS5} be the sets of power traces
corresponding to the selected test vectors sets. The full test consists of running
the (pairwise) tests described in [50] for each of the following pairs of datasets:

11 The board provides a 1GB DDR memory, but it is not supported yet.

Efficient and Secure Elliptic Curve Cryptography 303

{(DS1, DS2), . . . , (DS1, DS5)}. If any of the previous tests fails, then the top-
level test fails and the implementation is deemed to have FAILED. Otherwise,
it PASSED. We chose the confidence threshold C = 4.5, the same value used in
CRI’s methodology for RSA [50].

10 Side-Channel Analysis Results

Timing Analysis. Timing measurements were obtained for ECDH-Curve25519
compute shared secret function using a superset of the test vectors used in the
SPA analysis, which includes additional randomly generated test vectors. For the
timing measurements of EdDSA-Ed25519-SHA512 signature generation, we used
randomly generated test vectors and those covering corner cases. The results
obtained show that the implementations of both functions are constant time,
with respect to the private key value.

Fig. 2. t-statistic versus sample index for the experiment comparing DS1 and DS3,
for two independent groups of traces; group A (blue) and group B (red).

SPA Analysis. The leakage analysis methodology was applied to our imple-
mentation of ECDH-Curve25519 with randomized coordinates. Figure 2 shows
the t-statistic for a small range of sample indices12 (time instants), for one run of
Welch’s t-test for group A (SA,1, SA,2) of vectors selected fromDS1 andDS3, and
the same test run over the independent group B (SB,1, SB,2).

13 The t-statistic
for group A is above C = 4.5 at one time instant, meaning a possible strong
dependence between power consumption and key value at that instant. But, as

12 This time interval was selected because it illustrates a range where the t-statistic
values are relatively high, compared to other time instants.

13 Groups A and B are a partition of test vector sets DS1 and DS3: (SA,1 ⊂
DS1, SA,2 ⊂ DS3) and (SB,1 = DS1 \ SA,1, SB,2 = DS3 \ SA,2).

304 E. Nascimento, J. López, and R. Dahab

it did not occur at the same time and in the same direction for group B, it
is therefore considered a false positive by the methodology and thus discarded.
The test results for each pair of test vector sets {(DS1, DS2), . . . , (DS1, DS5)}
showed that at a few time instants the t-statistic value for one of the groups is
above 4.5 or below −4.5, but not for both groups at the same time. Therefore,
we can conclude that our SPA protected implementation of ECDH-Curve25519
passed the SPA leakage evaluation.

11 Conclusion

We describe an efficient implementation of protocols ECDH-Curve25519 and
EdDSA-Ed25519-SHA512 for an AVR 8-bit microcontroller. The implementa-
tions prevent timing attacks by using regular algorithms and constant time field
arithmetic. SPA and template SPA protection is provided by the use of coordi-
nate randomization and by avoiding secret-address dependent loads from Flash
memory. The effectiveness of the SPA countermeasures for ECDH-Curve25519
is evaluated through the application of CRI’s TVLA methodology with selected
test vectors, using Chipwhisperer.

We identify the following open problems. Consider the operations in this ex-
cerpt, which are typically used in constant time code (e.g., CSWAP and CMOV)
to avoid branches dependent on secret data: mask ← −b; t ← mask ∧ x. In this
example, b ∈ {0, 1} is a secret dependent bit and, therefore mask ∈ {0, 255}, in
8-bit unsigned integer representation. We notice that the difference in Hamming
weight between the possible mask values are maximal (7), meaning that if the
device leaks the Hamming weight of the (sum) of the and instruction operands
or their Hamming distance, and the adversary knows the value of x, than she
may be able to exploit it for a template SPA attack. Also, according to a survey
of SCA in ECC [18], some known SCA attacks are not addressed by the counter-
measures we used, such as RPA [23] and ZPA [1], and thus deserve an analysis
regarding their applicability to Curve25519 and Ed25519. Another further work
is to analyze how strong is the leakage of the data read from the Flash and find
a simple leakage model that best characterizes it.

References

1. Akishita, T., Takagi, T.: Zero-value point attacks on elliptic curve cryptosystem.
In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 218–233. Springer,
Heidelberg (2003)

2. ANSSI. Mécanismes cryptographiques - Règles et recommandations. Technical re-
port, Agence nationale de la sécurité des systèmes d’information (2014)

3. Barke, E., Kelsey, J.: SP 800-90A: Recommendation for Random Number Gener-
ation Using Deterministic Random Bit Generators. Technical report, NIST (2012)

4. Batina, L., Chmielewski, L., Papachristodoulou, L., Schwabe, P., Tunstall, M.:
Online Template Attacks. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT
2014. LNCS, vol. 8885, pp. 21–36. Springer, Heidelberg (2014)

Efficient and Secure Elliptic Curve Cryptography 305

5. Bernstein, D.J.: Curve25519: new diffie-hellman speed records. Technical report,
University of Illinois at Chicago (2006)

6. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. Journal of Cryptographic Engineering 2(2), 77–89 (2012)

7. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic
library. In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 159–
176. Springer, Heidelberg (2012)

8. Bos, J., Costello, C., Longa, P., Naehrig, M.: Selecting elliptic curves for cryptog-
raphy: an efficiency and security analysis. Journal of Cryptographic Engineering,
1–28 (2015)

9. Bos, J.W.: High-performance modular multiplication on the cell processor. In:
Hasan, M.A., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 7–24. Springer,
Heidelberg (2010)

10. Brent, R.P., Zimmermann, P.: Modern Computer Arithmetic. Cambridge Univer-
sity Press (2010)

11. BSI. Algorithms for Qualified Electronic Signatures. Technical report, Bundesamt
für Sicherheit in der Informationstechnik (2014)

12. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical Measurement
of Information Leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 390–404. Springer, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-12002-2_33, doi:10.1007/978-3-642-
12002-2 33

13. Chothia, T., Guha, A.: A statistical test for information leaks using continuous
mutual information. In: Proceedings - IEEE Computer Security Foundations Sym-
posium, pp. 177–190 (2011)

14. Chu, D., Großschädl, J., Liu, Z., Müller, V., Zhang, Y.: Twisted Edwards-form
elliptic curve cryptography for 8-bit AVR-based sensor nodes. In: Proceedings of
the First ACM Workshop on Asia Public-Key Cryptography, pp. 39–44. ACM
(2013)

15. Cooper, J., Demulder, E., Goodwill, G., Jaffe, J., Kenworthy, G.: Test Vector Leak-
age Assessment (TVLA) methodology in practice (Extended Abstract). Technical
report, Cryptography Research Inc. (2013)

16. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

17. Criteria, C.: Common Criteria v3.1. Technical report, Common Criteria (2014)
18. Danger, J.-L., Guilley, S., Hoogvorst, P., Murdica, C., Naccache, D.: A synthesis

of side-channel attacks on elliptic curve cryptography in smart-cards. Journal of
Cryptographic Engineering, 1–25 (2013)

19. Düll, M., Haase, B., Hinterwälder, G., Hutter, M., Paar, C., Sánchez, A.H.,
Schwabe, P.: High-speed curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers.
In: Designs, Codes and Cryptography, pp. 1–22 (2015)

20. Faz-Hernández, A., Longa, P., Sánchez, A.H.: Efficient and secure algorithms for
GLV-based scalar multiplication and their implementation on GLV-GLS curves. In:
Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 1–27. Springer, Heidelberg
(2014)

21. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

22. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side channel
resistance validation. Technical report, CRI (2011)

http://dx.doi.org/10.1007/978-3-642-12002-2_33

306 E. Nascimento, J. López, and R. Dahab

23. Goubin, L.: A refined power-analysis attack on elliptic curve cryptosystems. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 199–210. Springer, Heidelberg
(2002)

24. Goundar, R., Joye, M., Miyaji, A., Rivain, M., Venelli, A.: Scalar multiplication
on weierstraß elliptic curves from co-z arithmetic. Journal of Cryptographic Engi-
neering 1(2), 161–176 (2011)

25. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted edwards curves revisited.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343. Springer,
Heidelberg (2008)

26. Hlavac, J., Lorencz, R., Hadacek, M.: True random number generation on an Atmel
AVR microcontroller. In: 2010 2nd International Conference on Computer Engi-
neering and Technology (ICCET), vol. 2, pp. V2–493–V2–495 (2010)

27. Hutter, M., Schwabe, P.: Nacl on 8-bit avr microcontrollers. In: Youssef, A., Nitaj,
A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 156–172.
Springer, Heidelberg (2013)

28. Hutter, M., Schwabe, P.: Multiprecision multiplication on avr revisited. Journal of
Cryptographic Engineering, 1–14 (2015)

29. Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In: Pail-
lier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135–147. Springer,
Heidelberg (2007)

30. Joye, M.: Highly regular m-ary powering ladders. In: Jacobson Jr., M.J., Rijmen,
V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 350–363. Springer,
Heidelberg (2009)

31. Killmann, W., Lange, T., Lochter, M., Thumser, W., Wicke, G.: Minimum Re-
quirements for Evaluating Side-Channel Attack Resistance of Elliptic Curve Im-
plementations. Technical report, BSI (2011)

32. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177),
203–209 (1987)

33. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

34. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

35. Liu, Z., Großschädl, J., Wong, D.S.: Low-weight primes for lightweight elliptic
curve cryptography on 8-bit AVR processors. In: Lin, D., Xu, S., Yung, M. (eds.)
Inscrypt 2013. LNCS, vol. 8567, pp. 217–235. Springer, Heidelberg (2014)

36. Liu, Z., Wenger, E., Großschädl, J.: MoTE-ECC: Energy-scalable elliptic curve
cryptography for wireless sensor networks. In: Boureanu, I., Owesarski, P., Vau-
denay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 361–379. Springer, Heidelberg
(2014)

37. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks: Revealing the secrets
of smart cards, vol. 31. Springer (2007)

38. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does My Device Leak In-
formation? An a priori Statistical Power Analysis of Leakage Detection Tests. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 486–
505. Springer, Heidelberg (2013)

39. Medwed, M., Oswald, E.: Template Attacks on ECDSA. In: Chung, K.-I., Sohn,
K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 14–27. Springer, Heidelberg
(2009)

40. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

Efficient and Secure Elliptic Curve Cryptography 307

41. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177), 243–264 (1987)

42. NIST. FIPS 180-2: Secure hash standard (SHS). Technical report, NIST (2001)

43. NIST. FIPS 140-3: Security Requirements for Cryptographic Modules. Technical
report, NIST (2009)

44. NIST. SP 800-57 - Recommendation for Key Management. Technical report, Na-
tional Institute for Standards and Technology (2012)

45. NSA. Fact Sheet Suite B Cryptography. Technical report, National Security Agency
(2014)

46. O’Flynn, C., Chen, Z.D.: ChipWhisperer: An Open-Source Platform for Hardware
Embedded Security Research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622,
pp. 243–260. Springer, Heidelberg (2014)

47. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): Measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

48. Schneider, T., Moradi, A.: Leakage Assessment Methodology - a clear roadmap for
side-channel evaluations. Cryptology ePrint Archive, Report 2015/207 (2015)

49. Straus, E.G.: Addition chains of vectors (problem 5125). In: American Mathemat-
ical Monthly, pp. 806–808 (1964)

50. Witteman, M., Jaffe, J., Rohatgi, P.: Efficient side channel testing for public key
algorithms: RSA case study. Technical report, Cryptography Research (2011)

A ATmega328P Microcontroller and Chipwhisperer

The AVR is a family of 8-bit microcontrollers from Atmel featuring a RISC in-
struction set. It is a Harvard-based architecture with separate address spaces
for data (SRAM), program (Flash) and non-volatile data (EEPROM). The AT-
mega328P has a 32KB Flash, a 2KB SRAM and a 1KB EEPROM. It has a
maximum frequency of 20 MHz, but operates at 7.3728 MHz in Chipwhisperer.
The register file contains 32 registers (R0-R31), among which 6 registers serve as
pointers for indirect 16-bit addressing and have the following aliases: X (R27:26),
Y (R29:R28) and Z (R31:R30). Arithmetic instructions take 1 cycle, with the
exception of multiplication instructions, which take 2 cycles. Loads and stores
from/to SRAM take 2 cycles. Loads from Flash memory take 3 cycles.

Chipwhisperer [46] is a toolbox consisting of open source hardware and soft-
ware for side-channel analysis of AVR microcontroller software. It provides fea-
tures for power and electromagnetic (SEMA and DEMA14) side-channel analy-
sis, as well as clock and VCC glitching. On the hardware side, there is a capture
board with an ADC and a Xilinx Spartan 6 FPGA, for system control and cap-
ture, and a target board with ATmega328P and XMega16A4A microcontrollers.
Open source software for trace capture and analysis is also provided.

14 Simple and Differential Electromagnetic Analysis, respectively.

308 E. Nascimento, J. López, and R. Dahab

B Algorithms

Algorithm 1. Joye’s double-add right-to-left algorithm [29]

Input: Point P ∈ E(Fp) and k = (kn−1, . . . , k1, k0)2 ∈ N

Output: Q = [k] · P
1: R0 ← P∞, R1 ← P
2: for i from 0 to n − 1 do
3: b ← ki

4: R1−b ← 2R1−b + Rb

5: end for
6: return R0

Algorithm 2. Point doubling in mixed homogeneous and extended twisted Edwards
coordinates [25]

Input: P1 = (X1, Y1, Z1) in homogeneous projective coordinates.
Output: P3 = 2P1 = (X3, Y3, T3, Z3) in extended twisted Edwards coordinates.
1: A ← X2

1 ; B ← Y 2
1 ; C ← 2Z2

1

2: D ← −A; E ← (X1 + Y1)
2 − A − B; G ← D + B

3: F ← G − C; H ← D − B; X3 ← E · F
4: Y 3 ← G ·H; T3 ← E · H; Z3 ← F · G

Algorithm 3. Point addition in extended twisted Edwards coordinates [25]

Input: P1 = (X1, Y1, T1, Z1) and P2 = (X2, Y2, T2, Z2) in extended twisted Edwards coordinates;
constant k = −2d, where d = −121665/121666.

Output: P3 = (X3, Y3, T3, Z3) in extended twisted Edwards coordinates.
1: A ← (Y1 − X1) · (Y2 − X2); B ← (Y1 + X1) · (Y2 + X2); C ← k · T1 · T2;
2: D ← 2Z1Z2; E ← B − A; F ← D − C;
3: G ← D + C; H ← B + A; X3 ← E · F ;
4: Y3 ← G ·H; T3 ← E · H; Z3 ← F · G;

Algorithm 4. Goundar’s signed-digit left-to-right algorithm [24]

Input: Point P ∈ E(Fp), k = (kn−1, . . . , k1, k0)2 ∈ N with k0 = 1
Output: Q = [k] · P
1: R0 ← P ; R1 ← P
2: for i from n − 1 to 1 do
3: t ← (−1)1+ki

4: R0 ← 2R0 + (t)R1

5: end for
6: return R0

Efficient and Secure Elliptic Curve Cryptography 309

Algorithm 5. Constant-time equality test (CCMP) (AVR assembly code)

Input: Registers Ri and Rt.
Output: register Rd is: 1, if Ri = Rt; and 0, otherwise.

mov Rd, Ri
sub Rd, Rt ; Z (Zero) flag will be 1, if Rd == Rt; and 0, otherwise.
in Rd, SREG ; Rd := SREG, SREG is the status register.
andi Rd, 0x02 ; isolate Z flag.
lsr Rd ; Rd = Z

Algorithm 6. Flash table lookup protected against address leakage through power

Input: table T with dimensions n x m, where n is the number of points and m is the length in
words of a point; and index is the index of the point. Here, T[i][j] means the value of the word
and also the reading of the said word from Flash by the LPM instruction.

Output: m-word array r containing the words of the requested point, i.e, r = T[index][0..m− 1].
1: for j from 0 to m − 1 do
2: r[j] ← 0
3: end for
4: for i from 0 to n − 1 do
5: mask ← CCMP(i, index)−1 /* mask = 0, if i = index. Otherwise, mask = 0xff */
6: for j from 0 to m − 1 do
7: r[j] ← r[j] ⊕ (T [i][j] ∧ mask)
8: end for
9: end for

	Efficient and Secure Elliptic Curve Cryptography for 8-bit AVR Microcontrollers
	1Introduction
	2Side-Channel Analysis on the AVR 1 pg
	2.1Timing Analysis
	2.2Simple Power Analysis

	3Prime Field Arithmetic
	4Arithmetic Modulo Ed25519 Group Order
	5Scalar Multiplication
	5.1 Extended Twisted Edwards Coordinates
	5.2Variable-Base Scalar Multiplication
	5.3Flash Memory Address Leakage Through Power
	5.4Fixed-Base ECSM for Ed25519 Key Generation and Signing
	5.5Projective Coordinate Randomization

	6Hashing and PRNG
	7Elliptic Curve Protocols
	8Benchmarking Results 1 pg
	9Timing and Simple Power Analysis Leakage Evaluation
	9.1Application of CRI's Methodology to ECC
	9.2Measurement Setup and Capture of Power Traces
	9.3SPA Leakage Analysis

	10Side-Channel Analysis Results 1 pg
	11Conclusion
	12ATmega328P Microcontroller and Chipwhisperer
	13Algorithms

