
Rajat Subhra Chakraborty
Peter Schwabe
Jon Solworth (Eds.)

 123

LN
CS

 9
35

4

5th International Conference, SPACE 2015
Jaipur, India, October 3–7, 2015
Proceedings

Security, Privacy, and
Applied Cryptography
Engineering



Lecture Notes in Computer Science 9354

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zürich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7410



Rajat Subhra Chakraborty · Peter Schwabe
Jon Solworth (Eds.)

Security, Privacy, and
Applied Cryptography
Engineering
5th International Conference, SPACE 2015
Jaipur, India, October 3–7, 2015
Proceedings

ABC



Editors
Rajat Subhra Chakraborty
Indian Institute of Technology Kharagpur
Kharagpur
West Bengal
India

Peter Schwabe
Digital Security Group
Radboud University Nijmegen
Nijmegen, Gelderland
The Netherlands

Jon Solworth
Department of Computer Science
University of Illinois at Chicago
Chicago
IL, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-24125-8 ISBN 978-3-319-24126-5 (eBook)
DOI 10.1007/978-3-319-24126-5

Library of Congress Control Number: 2015948708

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Cham Heidelberg New York Dordrecht London
c© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



Preface

It gives us immense pleasure to present the proceedings of the Fifth Interna-
tional Conference on Security, Privacy, and Applied Cryptography Engineering
2015 (SPACE 2015), held during October 3–7, 2015, at the Malaviya National
Institute of Technology (MNIT), Jaipur, Rajasthan, India. This annual event
is devoted to various aspects of security, privacy, applied cryptography, and
cryptographic engineering. This is indeed a very challenging field, requiring the
expertise from diverse domains, ranging from mathematics to solid-state circuit
design.

This year we received 57 submissions from 17 different countries, out of which
17 papers were accepted for presentation at the conference after an extensive
review process. The submissions were evaluated based on their significance, nov-
elty, technical quality, and relevance to the SPACE conference. The submissions
were reviewed in a “double-blind” mode by at least three members of the Pro-
gram Committee. The Program Committee was aided by 28 sub-reviewers. The
Program Committee meetings were held electronically, with intensive discussions
over a period of almost two weeks.

The program also included 9 invited talks and tutorials on several aspects
of applied cryptology, delivered by world-renowned researchers: Jacob Appel-
baum (Eindhoven University of Technology/The Tor Project), Daniel Bernstein
(Eindhoven University of Technology/University of Illinois at Chicago), Claude
Carlet (University of Paris 8), Trent Jaeger (The Pennsylvania State Univer-
sity) Rafael Boix Carpi & Vishwas Raj Jain (Riscure BV), Tanja Lange (Eind-
hoven University of Technology), Sri Parameswaran (University of New South
Wales), Sandeep Shukla (Indian Institute of Technology Kanpur), Graham Steel
(Inria), and Petr Švenda (Masaryk University), We sincerely thank the invited
speakers for accepting our invitations in spite of their busy schedules.

Over the last five years, the SPACE conference has grown considerably, es-
pecially with respect to its appeal to the international applied security research
community. SPACE 2015 was built upon the strong foundation laid down by
dedicated academicians and industry professionals. In particular, we would like
to thank the Program Chairs of the previous editions: Debdeep Mukhopad-
hyay, Benedikt Gierlichs, Sylvain Guilley, Andrey Bodganov, Somitra Sanadhya,
Michael Tunstall, Marc Joye, Patrick Schaumont, and Vashek Matyas. Because
of their efforts, SPACE is already in the “must submit” list of many leading
researchers of applied security around the world. It still has a long way to go,
but it is moving in the right direction.

Like its previous editions, SPACE 2015 was organized in co-operation with
the International Association for Cryptologic Research (IACR). We are thankful
to the Malaviya National Institute of Technology (MNIT) for being the gracious
hosts of SPACE 2015. The conference was sponsored by the Defence Research



VI Preface

and Development Organisation (DRDO), under the auspices of the Ministry of
Defence (Govt. of India). The other sponsors are ISEA and MNIT. We would
like to thank them for their generous financial support, which has helped us to
avoid steep hikes in the registration fees in comparison with previous editions,
thus ensuring wider participation, particularly from the student community of
India.

There is a long list of volunteers who invested their time and energy to put
together the conference, and who deserve accolades for their efforts. We are grate-
ful to all the members of the Program Committee and the sub-reviewers for all
their hard work in the evaluation of the submitted papers. Our heartiest thanks
to Cool Press Ltd., owners of the EasyChair conference management system, for
allowing us to use it for SPACE 2015. EasyChair was largely instrumental in the
timely and smooth operation needed for managing such an international event.
We also sincerely thank our publisher Springer for agreeing to continue to publish
the SPACE proceedings as a volume in the Lecture Notes in Computer Science
(LNCS) series. We are further very grateful to all the members of the Local
Organizing Committee for their assistance in ensuring the smooth organization
of the conference, especially M.S. Gaur, M.C. Govil, R.B. Battula, V. Laxmi,
M. Tripathi, L. Bhargava, E.S. Pilli, and S. Vipparthi fromMNIT Jaipur. Special
thanks to our General Chairs, Adrian Perrig and Debdeep Mukhopadhyay, for
their constant support and encouragement. We would also like to thank Vashek
Matyas for managing the tutorials and the pre-conference workshop. We would
like to thank Swarup Bhunia and R.B. Battula for taking on the extremely im-
portant role of Publicity Chairs. No words can express our sincere gratitude to
Debdeep Mukhopadhyay for being constantly involved in SPACE since its very
inception, and being the person most responsible for SPACE reaching its cur-
rent status. We thank Durga Prasad for his commendable job in maintaining
the website for SPACE 2015, and timely updates.

Last, but certainly not least, our sincere thanks go to all the authors who
submitted papers to SPACE 2015, and to all the attendees. The conference is
made possible by you, and it is dedicated to you. We sincerely hope you find the
program stimulating and inspiring.

October 2015 Rajat Subhra Chakraborty
Peter Schwabe
Jon Solworth



Message from the General Chairs

We are pleased to extend a warm welcome to all participants of the Fifth Interna-
tional Conference on Security, Privacy, and Applied Cryptographic Engineering
2015 (SPACE 2015). Over the years, SPACE has progressed to become a major
international forum for researchers to present and discuss ideas on challeng-
ing problems in the ever expanding field of security and applied cryptography.
SPACE 2015 was held at Malaviya National Institute of Technology (MNIT),
Jaipur, Rajasthan, India, during October 3–7, 2015, in cooperation with the In-
ternational Association for Cryptologic Research (IACR). The proceedings was
published by Springer as an LNCS volume.

The importance of SPACE, as a platform for the development and discus-
sions on “engineering the system right” by researchers working in the areas of
security, privacy, and applied cryptography, needs to be seen in the light of the
revelations of Edward Snowden. These revelations demonstrate the ease with
which current deployed security in today’s connected world can be subverted.
Society’s trust in the increasing use of information systems in critical applica-
tions has been severely eroded. This is a challenge that needs to be addressed
by the research community, to ensure that the necessary assurance about the
adequacy of security technologies can be provided.

With emerging technologies and increasing complexity of hardware and soft-
ware systems, security is not confined to a single layer but needs to be addressed
across layers: hardware, microarchitecture, operating system, compiler, middle-
ware, and application software. We are happy to report that over the years there
has been a steady increase in the diversity of topics of the submissions to SPACE.

The Program Chairs, Rajat Subhra Chakraborty, Peter Schwabe, and Jon
Solworth, deserve a special mention for their efforts in selecting an outstand-
ing Program Committee and conducting a rigorous review process. Our sincere
thanks go to the Program Committee members and sub-reviewers for their time
and efforts in reviewing the submissions and selecting high-quality papers. The
main technical program is accompanied by several tutorials, invited talks, and a
two-day workshop. We are extremely grateful to DRDO, MNIT, ISEA, and all
the other sponsors for their generous financial support. The conference would
not have been possible without their support it. Last but not least, our special
thanks to the Local Organizing Committee at MNIT, especially Prof. Manoj
Gaur, for ensuring the smooth operation of the conference.

We hope you benefit from excellent technical and social interactions during
the conference. Thank you for your participation, and we wish you an enjoyable
and productive time at the conference.

October 2015 Adrian Perrig
Debdeep Mukhopadhyay



SPACE 2015

Fifth International Conference on
Security, Privacy, and Applied Cryptography Engineering

Malaviya National Institute of Technology (MNIT), Jaipur, India.
October 3–7, 2015.

In cooperation with the International Association for Cryptologic Research

General Co-chairs

Adrian Perrig ETH Zurich, Switzerland
Debdeep Mukhopadhyay IIT Kharagpur, India

Program Co-chairs

Rajat Subhra Chakraborty IIT Kharagpur, India
Peter Schwabe Radboud University, The Netherlands
Jon Solworth University of Illinois at Chicago, USA

Organizing Co-chairs

Manoj Singh Gaur MNIT Jaipur, India
Mahesh Chandra Govil MNIT Jaipur, India

Tutorial Chair

Vashek Matyas Masaryk University, Czech Republic

Publicity Co-chairs

Swarup Bhunia Case Western Reserve University, USA
Ramesh Babu Battula MNIT Jaipur, India

Finance Co-chairs

Veezhinathan Kamakoti IIT Madras, India
Vijay Laxmi MNIT Jaipur, India
Meenakshi Tripathi MNIT Jaipur, India
Lava Bhargava MNIT Jaipur, India



X SPACE 2015

Program Committee

Ehab Al-Shaer UNC Charlotte, USA
Lejla Batina Radboud University, The Netherlands
Ramesh Babu Battula MNIT Jaipur, India
Rajat Subhra Chakraborty IIT Kharagpur, India
Jean-Luc Danger Télécom ParisTech, France
Christian Doerr TU Delft, The Netherlands
Praveen Gauravaram Queensland University of Technology, Australia
Sylvain Guilley Télécom ParisTech, France
Michael Hutter Cryptography Research, USA
Vashek Matyas Masaryk University, Czech Republic
Debdeep Mukhopadhyay IIT Kharagpur, India
Michael Naehrig Microsoft Research, USA
Ruchira Naskar IIT Kharagpur, India
Antonio de La Piedra Radboud University, The Netherlands
W. Michael Petullo United States Military Academy, USA
Phuong Ha Nguyen IIT Kharagpur, India
Emmanuel S. Pilli MNIT Jaipur, India
Atul Prakash University of Michigan, USA
Bimal Roy ISI Kolkata, India
Somitra Sanadhya IIT Delhi, India
Ravi Sandhu University of Texas at San Antonio, USA
Palash Sarkar ISI Kolkata, India
Peter Schwabe Radboud University, The Netherlands
Prasad Sistla University of Illinois at Chicago, USA
Jon Solworth University of Illinois at Chicago, USA
Mostafa Taha Assiut University, Egypt
A. Selcuk Uluagac Florida International University, USA
Samuel M. Weber Carnegie Mellon University, USA

External Reviewers

Mostafa Said Sayed
Abd-Elrehim

Mahmoud Abd-Hafeez
Sk Subidh Ali
Hoda Alkhzaimi
Debapriya Basu Roy
Shivam Bhasin
Rishiraj Bhattacharyya
Melissa Chase
Craig Costello
Poulami Das
Benjamin Dowling

Thomas Eisenbarth
Nitesh Emmadi
Sen Gupta
Marc Juarez
Souvik Kolay
Qinyi Li
Patrick Longa
Wouter Lueks
Ahmed Medhat
Zakaria Najm
Mridul Nandi
Harika Narumanchi

Louiza Papachristodoulou
Kostas

Papagiannopoulos
Goutam Paul
Sushmita Ruj
Sami Saab
Santanu Sarkar
Laurent Sauvage
Habeeb Syed
Michael Tunstall
Praveen Vadnala



Abstracts of Invited Talks



Boring Crypto

Daniel J. Bernstein

Department of Computer Science
University of Illinois at Chicago,
Chicago, IL 60607–7045, USA

djb@cr.yp.to

Abstract. Crypto is a thriving research area, full of excitement, which
is exactly what the cryptographic user doesn’t want.

Introduction to Security Analysis
of Crypto APIs

Graham Steel

Cryptosense
19 Boulevard Poissonire
75002 Paris, France

graham.steel@cryptosense.com

Abstract. Using cryptographic APIs in a secure way has become a
core competence in software development thanks to the more and more
widespread use of crypto. In this tutorial we will give a short introduc-
tion to the security analysis of a crypto API. In particular, we will look
at logical and cryptanalytic attacks on the most widely used API for
key management in cryptographic hardware, PKCS#11. The tutorial
will include implementing attacks on a software simulator of a Hardware
Security Module (HSM). Some basic knowledge of C will be required.



The Tor Network: Free Software for a Free
Society

Jacob Appelbaum

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

jacob@appelbaum.net

Abstract. A detailed introduction to the Tor network, the software and
open research questions for the world’s largest anonymity network.

Post-Quantum Cryptography

Tanja Lange

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

tanja@hyperelliptic.org

Abstract. Quantum computers will change the security of currently
used cryptographic systems – the security level of most symmetric sys-
tems will drop to about half while the effects on RSA and ECC will be
much more significant: the best quantum attacks run in polynomial time.
This talk will highlight categories of other public-key systems that are
significantly less affected by quantum computers and thus form the core
or post-quantum cryptography.



Inferring Programmer Expectations to Protect
Program Execution

Trent Jaeger

Department of Computer Science and Engineering
The Pennsylvania State University

344 IST Building
University Park, PA 16802, USA

tjaeger@cse.psu.edu

Abstract. Inferring Programmer Expectations to Prevent Confused
Deputy Attacks Efficiently: Privileged programs are often vulnerable to
confused deputy attacks, which enable an adversary to trick such pro-
grams into misusing their privileges. For example, a web server may be
able to read the password file, so it must be careful not to be tricked into
serving the password file to web clients. However, programmers have
often failed to avoid creating confused deputy vulnerabilities, which ac-
count for 10-15% of vulnerabilities reported each year. Operating systems
designers have proposed various mechanisms to prevent adversaries from
exploiting these vulnerabilities, but these defenses either fail to account
for programmer intent, require extensive program modifications, perform
poorly, or incur false positives. We identify a fundamental reason that
confused deputy vulnerabilities exist – a mismatch between programmer
expectations and the actual deployment in which the program runs. In
this talk, I will discuss a new approach that consists of two main tasks.
First, we develop methods to build knowledge of the programmer expec-
tations of security from the program. Second, we develop an enforcement
mechanism that uses such knowledge to block confused deputy attacks
efficiently. We evaluated our approach on several widely-used programs
on Linux and found that programmers have many implicit expectations.
Using programmer expectations, we found mismatches with deployments
that led us to discover two previously-unknown vulnerabilities and a de-
fault misconfiguration in the Apache webserver. Our enforcement mech-
anism, called a Process Firewall, enforces programmer expectations for
less than 5% overhead, thus blocking many confused deputy vulnerabil-
ities efficiently and in a principled manner.



Side Channel Attacks: Types, Methods and
Countermeasures

Sri Parameswaran

School of Computer Science and Engineering
University of New South Wales
Sydney NSW 2052, Australia

sridevan@cse.unsw.edu.au

Abstract. Deep devastation is felt when privacy is breached, personal
information is lost, or property is stolen. Now imagine when all of this
happens at once, and the victim is unaware of its occurrence until much
later. This is the reality, as increasing amount of electronic devices are
used as keys, wallets and files. Security attacks targeting embedded sys-
tems illegally gain access to information or destroy information. Ad-
vanced Encryption Standard (AES) is used to protect many of these
embedded systems. While mathematically shown to be quite secure, it
is now well known that AES circuits and software implementations are
vulnerable to side channel attacks. Side-channel attacks are performed
by observing properties of the system (such as power consumption, elec-
tromagnetic emission, etc.) while the system performs cryptographic op-
erations. In this talk, differing power based attacks are described, and
various countermeasures are explained.



Contents

Efficient Protocol for Authenticated Email Search . . . . . . . . . . . . . . . . . . . . 1
Sanjit Chatterjee, Sayantan Mukherjee, and Govind Patidar

Analyzing Traffic Features of Common Standalone DoS Attack Tools . . . 21
Vit Bukac and Vashek Matyas

Design of Cyber Security for Critical Infrastructures:
A Case for a Schizoid Design Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Avik Dayal, Yi Deng, and Sandeep K. Shukla

Designing for Attack Surfaces: Keep Your Friends Close, but Your
Enemies Closer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Trent Jaeger, Xinyang Ge, Divya Muthukumaran, Sandra Rueda,
Joshua Schiffman, and Hayawardh Vijayakumar

Improving Application Security through TLS-Library Redesign . . . . . . . . 75
Leo St. Amour and W. Michael Petullo

How Not to Combine RC4 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Subhadeep Banik and Sonu Jha

Preimage Analysis of the Maelstrom-0 Hash Function . . . . . . . . . . . . . . . . . 113
Riham AlTawy and Amr M. Youssef

Meet-in-the-Middle Attacks on Round-Reduced Khudra . . . . . . . . . . . . . . . 127
Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef

Improved Key Recovery Attack on Round-Reduced Hierocrypt-L1 in
the Single-Key Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Ahmed Abdelkhalek, Mohamed Tolba, and Amr M. Youssef

S-boxes, Boolean Functions and Codes for the Resistance of Block
Ciphers to Cryptographic Attacks, with or without Side Channels . . . . . . 151

Claude Carlet

Simulations of Optical Emissions for Attacking AES
and Masked AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Guido M. Bertoni, Lorenzo Grassi, and Filippo Melzani

Fault Tolerant Infective Countermeasure for AES . . . . . . . . . . . . . . . . . . . . 190
Sikhar Patranabis, Abhishek Chakraborty,
and Debdeep Mukhopadhyay

Modified Transparency Order Property: Solution or Just Another
Attempt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Stjepan Picek, Bodhisatwa Mazumdar, Debdeep Mukhopadhyay,
and Lejla Batina



XVIII Contents

Investigating SRAM PUFs in Large CPUs and GPUs . . . . . . . . . . . . . . . . . 228
Pol Van Aubel, Daniel J. Bernstein, and Ruben Niederhagen

Reconfigurable LUT: A Double Edged Sword for Security-Critical
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Debapriya Basu Roy, Shivam Bhasin, Sylvain Guilley,
Jean-Luc Danger, Debdeep Mukhopadhyay, Xuan Thuy Ngo,
and Zakaria Najm

Architecture Considerations for Massively Parallel Hardware Security
Platform: Building a Workhorse for Cryptography as a Service . . . . . . . . . 269

Dan Cvrček and Petr Švenda

Efficient and Secure Elliptic Curve Cryptography for 8-bit AVR
Microcontrollers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Erick Nascimento, Julio López, and Ricardo Dahab

Towards Practical Attribute-Based Signatures . . . . . . . . . . . . . . . . . . . . . . . 310
Brinda Hampiholi, Gergely Alpár, Fabian van den Broek,
and Bart Jacobs

Hierarchical Ring Signatures Revisited – Unconditionally and Perfectly
Anonymous Schnorr Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

�Lukasz Krzywiecki, Ma�lgorzata Sulkowska, and Filip Zagórski

Compact Accumulator Using Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Mahabir Prasad Jhanwar and Reihaneh Safavi-Naini

Almost Optimum Secret Sharing with Cheating Detection . . . . . . . . . . . . . 359
Mahabir Prasad Jhanwar and Reihaneh Safavi-Naini

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373



Efficient Protocol for Authenticated Email

Search

Sanjit Chatterjee, Sayantan Mukherjee, and Govind Patidar

Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, India

{sanjit,sayantan.mukherjee,govind.patidar}@csa.iisc.ernet.in

Abstract. Executing authenticated computation on outsourced data
is currently an area of major interest in cryptology. Large databases
are being outsourced to untrusted servers without appreciable verifica-
tion mechanisms. As adversarial server could produce erroneous output,
clients should not trust the server’s response blindly. Primitive set op-
erations like union, set difference, intersection etc. can be invoked on
outsourced data in different concrete settings and should be verifiable by
the client. One such interesting adaptation is to authenticate email search
result where the untrusted mail server has to provide a proof along with
the search result. Recently Ohrimenko et al. proposed a scheme for au-
thenticating email search. We suggest significant improvements over their
proposal in terms of client computation and communication resources by
properly recasting it in two-party settings. In contrast to Ohrimenko et
al. we are able to make the number of bilinear pairing evaluation, the
costliest operation in verification procedure, independent of the result
set cardinality for union operation. We also provide an analytical com-
parison of our scheme with their proposal which is further corroborated
through experiments.

Keywords: Authenticated email search, outsourced verifiable compu-
tation, bilinear accumulator, pairing-based cryptography.

1 Introduction

With the advent of internet, the amount of data available to an individual has
gone up tremendously and is getting larger everyday. The idea of cloud com-
puting allows us to keep the data in a third party server and access it as and
when required. If the owner asks for certain function of data, the cloud server is
expected to return the result correctly. To ensure correctness of the performed
operation, the server needs to send cryptographic proof of correctness of the
result as well. The proof must be efficiently verifiable by the client without per-
forming the requested operation locally.

In a concrete setting like email, service providers (e.g. gmail, hotmail etc)
provide huge amount of space to store the emails received by a client. Currently,
clients trust the email server unconditionally not to modify or delete any mail
or create new mails. For a search query on the email database (e.g. finding mails

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 1–20, 2015.
DOI: 10.1007/978-3-319-24126-5_1



2 S. Chatterjee, S. Mukherjee, and G. Patidar

received on a specific date and/or from a specific person etc), the client also
trusts the server blindly to return the correct result. Traditional authentication
mechanisms (e.g. MAC or signature schemes) allow us to compute authenticated
information of the whole dataset. Naturally they cannot be used to a scenario
where an untrusted server computes function of the dataset and provide au-
thenticated information about the result. Papamanthou et al. [1] presented the
problem as a conjunction query of two search parameters i.e. keyword and time
interval. In [2] a solution was proposed to verify mails that were received during a
specific time interval and contains specific set of keywords. The solution is based
on the idea of set operation verification technique proposed in [1]. The server
has to return the result along with a cryptographic proof of the result which en-
sures completeness (all relevant mails are returned) and soundness (only relevant
mails are returned).

Related Works. Some of the previous works on verifiable computation were
done in [1–3]. In [1] the first public verification of set operations in a three-party
settings with optimal efficiency was proposed. They posed a concrete problem [1,
Section 11] to verify result of email search based on time interval and keyword
(to search mails that were received during a specific time interval and contain
specific set of keywords). Ohrimenko et al. [2] proposed a solution using the
framework provided in [1]. The problem was instantiated in [2] using Merkle
Hash Tree [4], Inverted Index List and Time Interval Tree. Informally speaking,
they created an inverted index list for the keywords and the mails containing
them and the time interval tree to efficiently find the mails received in different
time intervals and a Merkle hash tree of the dataset. The client keeps some secret
information to itself and makes search query to the server. Computation of the
result is done using the inverted index list and the time interval tree. Along with
the result, appropriate accumulation values [5], Merkle proof [4] of those accu-
mulation values and witness [1] of correctness of the result are sent as proof. In
[3] a verifiable computation mechanism for set operation was constructed which
is more powerful than the basic framework [1] in terms of functionality as dif-
ferent composite queries were allowed. These extra functionalities [3] however
incur extra cost in terms of computation and communication. Therefore we con-
centrate on [1] as the base framework that satisfies our requirement with better
efficiency.

Our Contribution. We solely concentrate on the problem of email searching
in this paper. The functionalities required from the email searching mechanism
are discussed in Section 2.3. For this specific problem, we use [1] as the base of
our improvement. Our primary observation is that in case of email searching,
there are only two entities involved – Server1 and Client. The key point to
note is that client is not only the owner of the emails but also the verifier of
the search results. Being the owner of the data client can use its own secret
information to verify the result of the query efficiently. Thus allowing the client
to have a small secret information leads to significant efficiency improvement as

1 See Section 2.3 for the exact trust assumption of email server.



Efficient Protocol for Authenticated Email Search 3

we can reduce number of bilinear pairing evaluations in intersection verification.
In case of union operation we make a distinction between time interval-based
union and keyword-based union where the former is essentially union verification
for disjoint sets. Separate union verification for disjoint sets (i.e. time interval-
based union) and general sets (i.e. keyword-based union) results in efficiency
improvement for both. In general, it is reasonable to assume that the cardinality
of result set (|R| : R = ∪i{mails containing keyword ki}) is greater than the
cardinality of query (� : query = {k1, k2, . . . , k�} where ki is a keyword). The
union verification mechanism we propose achieves complexity with respect to
cardinality of query which is a significant improvement over complexity with
respect to cardinality of result set [2]. We improve upon the existing technique
of email searching [2] based on these observations which is verified analytically
as well through experiments.

Organization of the Paper. The rest of the paper is organized as follows.
Section 2 deals with basic data structures, cryptographic primitives and a brief
overview of the system. Next we present our proposal to efficiently verify basic
operations like intersection, union and present a new scheme to verify email
search query in Section 3. In Section 4, efficiency of our proposed framework, in
terms of theoretical as well as practical, is briefly described. Section 5 concludes
the paper with some possible future directions.

2 Preliminaries

This section describes basic cryptographic primitives and data structures that
are used in our construction. Also, it provides a brief overview of the system.

2.1 Cryptographic Primitives and Complexity Assumptions

Let G and GT be cyclic multiplicative groups of large prime order p and g be
an arbitrary generator of group G.

Bilinear Pairings. e : G×G → GT is a cryptographic bilinear pairing [6] with
the following properties:

1. Bilinearity: e(Xa, Y b) = e(X,Y )ab where a, b ∈ Zp and X,Y ∈ G.
2. Non degeneracy: e(g, g) �= 1.
3. Computability: The function e is efficiently computable.

Remark: The scheme in this work, similar to its precursors [1, 2], is described in
symmetric pairing setting. Our primary motivation is a proof of concept instanti-
ation of authentication mechanism for email search. For real world applications,
the protocols should be recasted in the most efficient Type-3 asymmetric pairing
setting [7, 8].

Polynomial Interpolation with Fast Fourier Transform (FFT). Let∏n
i=1(s + xi) =

∑n
i=0 ais

i be a degree-n polynomial. The function interpo-
latePolyFFT computes the coefficients ai for 0 ≤ i ≤ n with O(n logn) complexity

given xi (1 ≤ i ≤ n) [9]. If group elements g, gs, gs
2

, . . . , gs
n

are given, any poly-
nomial of degree upto n in exponent of g can be computed, given (x1, x2, . . . , xn)
without knowing the value of s.



4 S. Chatterjee, S. Mukherjee, and G. Patidar

Bilinear Accumulation Value. In [5], accumulation value of a set was com-
puted based on bilinear pairing. The bilinear accumulator is a collision resistant
accumulator [5] with efficient update operation. For a set X = {x1, x2, . . . , x�},
secret key s and arbitrary group generator g, the accumulation value (Acc(X)) is
computed as gΠx∈X (s+x). For a list (L) of sets, accumulation (acc[i]) and digest
of ith element is Acc(L[i]) and Acc(L[i])(s+i) respectively.

Merkle Hash Tree. The Merkle Hash Tree [10] is a binary tree where each
leaf node is hash of data value and each non-leaf node is hash of concatenation
of its children’s hash values. The hash function that computes hash of each node
is collision resistant which results in unforgeability of Merkle Hash value (the
hash value of the root of the tree). For a Merkle hash tree having root u0, the
Merkle proof of leaf u� is the cover [11] of u�. computeMerkleProof computes
the Merkle proof as the ordered set (sibling(u�), sibling(u�−1), . . ., sibling(u1)) for
the path (u0, u1, . . . , u�−1, u�). Given a Merkle proof for u�, verifyProof ensures
any malicious activity on the dataset can be identified efficiently.

Interval Tree. Interval Tree [12], as the name suggests, is an ordered tree
with reference to different intervals. Given any event, it efficiently answers all
the intervals when the event happened. It is implemented as a height balanced
binary tree.

Bilinear q-Strong Diffie-Hellman Assumption. Given a bilinear pairing
instance (G,GT , p, e, g) and the group elements g, gs, gs

2

, . . . , gs
q ∈ G for s ∈R

Z∗
p, where q =poly(κ), there is no polynomial time adversary that can output

(a, e(g, g)1/(s+a)) for some a ∈ Zp except with negligible probability neg(κ), for
some security parameter κ. In other words, q-BSDH problem is intractable.

q-Strong Diffie-Hellman Assumption. For group G, given g, gs, gs
2

,..., gs
q

for s ∈R Z∗
p, no polynomial time adversary can compute (a, g1/(s+a)) efficiently.

For a bilinear q-Strong Diffie-Hellman group G, q-strong Diffie-Hellman (q-SDH)
problem is intractable.

2.2 Authenticated Data Structure

In [1] the notion of authenticated data structure auth(D) was defined to be
the authenticated information of plaintext data structure (D) that is efficiently
searchable. An authenticated data structure supports queries and updates ef-
ficiently and provides efficient cryptographic mechanism to verify the results.
We instantiate D using inverted index data structures indexed by keywords and
time interval and auth(D) using Merkle Hash Tree [10]. Informally speaking, the
authenticated data structure we consider is a collection of five polynomial-time
algorithms - genkey (generates secret (sk) and public key (pk)), setup (generates
auth(D) from D and Merkle hash value (r) of D), update (performs insertion or
deletion of data and correspondingly updates the authenticated data structures),
query (performs search based on the query (q) and computes the proof (Π(q)) of
the result (α(q))) and verify (verifies the result (α(q)) using the proof (Π(q))).



Efficient Protocol for Authenticated Email Search 5

Correctness and Security Definitions. We follow the correctness and secu-
rity definitions of an authenticated data structure from [1, Definition (2),(3)].
The correctness of the authenticated data structure ensures that verify(q,Π(q),
α(q), r, pk) accepts except with negligible probability when α(q) is correct result
of q. The security of the authenticated data structure ensures verify(q,Π(q), α(q),
r, pk) accepts with negligible probability when α(q) is not a correct result of q.

2.3 System Overview

This section describes the system model and the protocol to be followed to
compute set operations.

2.3.1 System Model
The system model we consider is same as [2] with two entities involved.

Client. The client processes keywords present in each mail and the time when
it was received and constructs inverted index data structure (S). It constructs a
Merkle hash tree where digest of each element of S is assigned a different leaf.
The client keeps the secret key (s) and Merkle Hash value (r) to itself and sends
the authentication information to the server.

Server. The server keeps the files (i.e. emails) and reconstructs all the data
structures (the inverted index list of keywords, the interval tree [12] of time
intervals and the Merkle hash tree). For a valid query asked by the client, the
server computes the result using the inverted index data structures. Then it
computes the cryptographic proof of the result based on the accumulation values
and the Merkle hash tree.

In any email-based communication mechanism, the clients are the end users
who send and receive emails. Each client needs to have a mail account in the
mail server where all the mails received by that client will be stored and can be
accessed only by itself when required. Our protocol deals with storing of emails
in the server as well as getting back correct result computed by the server for
a valid query. The server is trusted to deliver the emails correctly to the client
when it is received for the first time. Once received, the client needs to keep
track of the email so that if it is deleted or modified or not included in a search
query result in spite of satisfying the query, the client can correctly identify the
wrongdoing of the server. In general, one can consider a two-party scenario where
client stores data on a cloud server and later executes queries on that data.

Here the client searches are based on predefined keywords and time inter-
vals. On a valid query, the server answers with the mails that satisfy the query
and corresponding accumulation values, Merkle proof and witnesses. The client
verifies the accumulation values using received Merkle proof. The verification
mechanism usually computes large number of bilinear pairings which in terms of
complexity overshadows all other group operations performed – exponentiation,
multiplication etc.

The search query can be abstracted as set operations naturally. For example,
the query to find mails that contain keywords ‘urgent’ and ‘cryptography’ and



6 S. Chatterjee, S. Mukherjee, and G. Patidar

was received in February, 2015 is expressed as S[‘urgent’] ∩ S[‘cryptography’]∩
�ti(S[ti]) where ti is i

th day of February, 2015. The client should verify witness
for set union, intersection and composite operation.

2.3.2 Basic Operations
The basic set operations, the system described in Section 2.3.1 should support,
are set union and set intersection verification.

Set Union. Set union verification was described in [1]. The proof of set union
contains different witnesses along with the accumulation value and Merkle proof.
The membership witness ensures that every element of resultant union is con-
tained in some set for which client requested the union. The subset witness
ensures that all the sets client requested union for, are subsets of the resultant
union.

Set Intersection. The proof of set intersection contains different witnesses
along with the accumulation value and Merkle proof. The subset witness [1]
ensures that the result is a subset of all the sets for which the client requested
intersection. The complete witness [1] ensures that there is no other element
that is present in all the sets but not included in the intersection result. We
use verification technique as mentioned in [1] after suitably modifying it for
two-party settings.

2.3.3 Email Search
Verification of email search result is conceived by the basic set operations – set
union verification and set intersection verification. On a query ‘to find the mails
that contain all the keywords {k1, . . . , k�}’, the server computes the result by
computing intersection of the sets S[k1], . . . , S[k�]. Along with the result, it also
sends back corresponding accumulation value, Merkle proof, subset and complete
witness. On a query ‘to find the mails that were received in the time interval
[tbegin, tend)’, the server computes union of each of the S[ti]-s where tbegin ≤
ti < tend and each ti is distinct time interval. Along with the result, it also
sends back corresponding accumulation value, Merkle proof, membership and
subset witness. In reality, both the queries are often combined where the search
is performed based on both the keywords and the time period. In [2] a solution
was proposed based on a heuristic. They suggested to compute Ik = {mails that
contain all the keywords {k1, . . . , k�}} and use it iteratively (Ik ∩ S[ti] for all
tbegin ≤ ti < tend) to compute the result. The result is sent to the client along
with the proofs and witnesses [2, Algorithm 4]. We propose algorithms to achieve
better complexity in terms of bilinear pairing evaluation performed by the client
while verifying the search result.

3 Proposed Protocol

In this section, we describe our proposal which improves upon the protocol
proposed in [2].



Efficient Protocol for Authenticated Email Search 7

Broadly, the client creates inverted index list (IL) indexed by unique keywords
and interval tree (IT) indexed by distinct time intervals where IL[k] = {mail-
ids that contain keyword k} and IT[t] = {mail-ids received in time interval t}.
Then it creates the dataset (S) (i.e. plaintext searchable data structure (D)) by
merging both IL and IT. The client then chooses secret key (s) uniformly at
random from Z

∗
p and computes the Merkle hash value (r) where digest (D[i]) of

each entry of the dataset (S[i]) is assigned to a different (ith) leaf. To preserve
the integrity of an email, the client sets hash digest of the mail content as mail-id
which also allows the client to uniquely identify the mail. The client sends the
data structures S and D to the server and keeps only the secret key (s) and
Merkle hash value (r) to itself. The server reconstructs the data structures using
the information sent by the client and performs different operations as discussed
in the following sections.

3.1 Setup

Similar to the setup function in [2], the client chooses an arbitrary generator
g ∈ G and the secret key s ∈R Z∗

p using genkey function. It computes the accu-
mulation values Acc(S[i]) for each 1 ≤ i ≤ |S| and computes Merkle hash value

r using D[i] (i.e. digest of each S[i]). It computes list G = [g, gs, gs
2

, . . . , gs
q

]
where q = poly(κ) for security parameter κ. The client sends emails, S, acc[i] =
Acc(S[i]) for each 1 ≤ i ≤ |S| and G to the server and keeps s and r to itself.
Upon receiving the mails and the data structures, the server reconstructs Merkle
hash tree M from acc[i] = Acc(S[i]) for each 1 ≤ i ≤ N and inverted index list
(IL) and interval tree (IT ) from S.

3.2 Update

We use the update function described in [2]. Addition or deletion of a mail is
done based on the keywords present in it and the time interval it was received.
Data structures IL and IT allow efficient updation of the dataset.

3.3 Intersection

The client asks the server for the mails that contain all the queried keywords
(V = {k1, . . . , k�}). The server computes the result I = ∩v∈V S[v] using inverted
index list and computes the proof.

The server uses [2, Algorithm 2] to compute the set intersection and the
accompanying proof. The proof contains accsI and Mproof which are accumu-
lation value acc[v] and Merkle proof of v respectively, ∀v ∈ V . It also contains
the subset witness (subs) that ensures for all v ∈ V , S[v] ⊆ I [1, Equation (6)].
The complete witness (cmplt) is also sent to prove that ∩v∈V (S[v] \ I) = φ [1,
Equation (7)].

We however, modify Algorithm 3 of [2] to improve efficiency of client verifi-
cation in terms of number of bilinear pairing evaluation. We improve the veri-
fication of subsetwitness based on the observation that in two-party model the



8 S. Chatterjee, S. Mukherjee, and G. Patidar

client knows the secret key s. In Algorithm 1, the client using verifyProof, verifies
each of accsI by computing digest of each v ∈ V and using the Mproof computes
the root of the Merkle hash tree to compare with r. It uses cmplt and subs to
ensure that mail-ids that were present in all of S[v], v ∈ V , are returned as I.
Here Expo computes group element exponentiation in G.

Algorithm 1. Verification of Set Intersection run by Client

Input: r, I , accsI, Mproof, subs and cmplt
Output: Accept/Reject

1: for i ∈ {0, 1, . . . , |V | − 1} do
2: if verifyProof(r, accsI[i], Mproof[i]) rejects then
3: return reject
4: end if
5: end for
6: len = length(I)
7: EvalPoly = (I [0] + s)(I [1] + s) . . . (I [len−1] + s)
8: for i ∈ {0, 1, . . . , |V | − 1} do
9: lefts = Expo(subs[i], EvalPoly)
10: rights = accsI[i]
11: if lefts �= rights then
12: return Reject and Abort
13: end if
14: end for
15: leftc = 1
16: for i ∈ {0, 1, . . . , |V | − 1} do
17: leftc × = e(subs[i], cmplt[i])
18: end for
19: rightc = e(g, g)
20: if leftc �= rightc then
21: return Reject and Abort
22: end if
23: return Accept

Improvement. Being in a two-party settings, the client can evaluate the poly-
nomial EvalPoly which allows the client to exponentiate subs[i] to EvalPoly for
each i ∈ [1, len]. This results in significant reduction (see Section 4.1) of bilinear
pairing evaluation as compared to [2, Algorithm 3].

Correctness. The correctness of Algorithm 1 follows from the correctness of
verifyProof and witness verification.

For each v ∈ V , accsI[v] was returned which was used to compute digest of
S[v]. If any of the digests was erroneous, the computed Merkle hash tree root r′

will not be same as r except with negligible probability, due to collision resistant
nature of Merkle hash tree. The correctness of subset and complete witness
verification of Algorithm 1, as done in steps 7-14 and steps 15-22 respectively,
follows from definitions [1, Section 3.1] of both the witnesses.



Efficient Protocol for Authenticated Email Search 9

Security. Informally speaking, the scheme is secure if no polynomial time ad-
versary can produce incorrect result and corresponding proof that will be verified
correctly by the client except with negligible probability. Security is based on
q-SDH and q-BSDH assumption as described below.

Claim 1. Under the assumption of q-SDH, given a set X and its accumulation
value Acc(X) no polynomial time adversary can find another set Y �= X but
Acc(Y ) = Acc(X).

Proof. Let an adversaryA exists that can generate Y �= X but Acc(X) = Acc(Y )
given a set X . We can construct a solver B of q-SDH problem.

Given a q-SDH problem instance [g, gs, gs
2

, . . . , gs
q

] where q = poly(κ), B
sends the set X and [g, gs, gs

2

, . . . , gs
q

] to A. A replies back with Y �= X such
that Acc(X) = Acc(Y ).

As X �= Y , without loss of generality ∃ y′ ∈ Y st y′ /∈ X . Then the polynomial
(y′ + s) � | Πx∈X(x + s). By division theorem, Πx∈X(x + s) = q(s)(y′ + s) +
λ where λ is a constant. Since Acc(X) = Acc(Y ), gΠx∈X (x+s) = gΠy∈Y (y+s)

which implies gq(s)(y
′+s)+λ = gΠy∈Y (y+s). Therefore B can compute g

1
y′+s =

g(Πy �=y′ (y+s)−q(s))/λ.

B returns (y′, g
1

y′+s ) as the solution of the q-SDH instance. Due to hardness of
q-SDH problem, such an efficient adversaryA cannot exist except with negligible
probability.

This ensures no efficient adversary can produce an incorrect result and corre-
sponding incorrect subset witness and make the verification (steps 7-14) accept
except with negligible probability.

We use [1, Lemma 6] to prove security of complete witness verification under
q-BSDH assumption. For the sake of completeness we reproduce the proof here.

Claim 2. Under the assumption of q-BSDH, no polynomial time adversary can
make complete witness verification accept wrong witness.

Proof. Let there be an adversary that generates an incomplete witness CW [i](=
gqi(s)) corresponding to a subset witness SW [i](= gPi(s)) where each of Pi(s)
has a common factor (w + s).

Then tomake the client accept the verification of completewitness,Σiqi(s)Pi(s)
needs to be equal to 1. As Pi(s) shares a common factor (w+ s), there exists some

polynomial A(s) such that (w + s)A(s) = 1. Then e(g, g)
1

w+s = e(g, g)A(s) can be
computed. It contradicts with hardness of q-BSDH problem.

3.4 Union

The client asks the server for the mails that contain any of the queried keywords
(V = {k1, . . . , k�}) or were received in any of the queried time intervals (V =
{t1, . . . , t�}). The server computes the result U = ∪v∈V S[v] using inverted index



10 S. Chatterjee, S. Mukherjee, and G. Patidar

data structures and computes accsU and Mproof which are accumulation value
acc[v] and Merkle proof of v for all v ∈ V .

In case of a disjoint union query (e.g. union query on time intervals), the server
sends the result (U), accsU and Mproof as described in Algorithm 2. In case of
general union query (e.g. keyword-based union query), we design the server to
compute the union as an iterative procedure and send back list of accumulation
values of different sets as described in Algorithm 4. This kind of classification,
leads to improvement in efficiency of both the cases (see Section 4.1).

3.4.1 Disjoint Union
In case of disjoint union query (e.g. time interval-based union query), the server
computes the union (U) with corresponding proof in Algorithm 2 and sends
them to the client.

Algorithm 2. Computation of Set Union run by Server

Input: V : {v : ∪vS[v] is to be computed}
Output: U : S[v] for all v ∈ V
Output: accsU: acc[v] for all v ∈ V
Output: Mproof: Merkle proof of acc[v] for all v ∈ V

1: j = 0
2: for v ∈ V do
3: U [j] = S[v]
4: accsU[j] = acc[v]
5: Mproof[j ++] = computeMerkleProof(M, v)
6: end for

The union result is sent as a list. The client verifies the accumulation values
using Merkle proof, verifies U [j] using the corresponding accumulation value and
constructs the union result iteratively in Algorithm 3.

Algorithm 3. Verification of Set Union run by Client

Input: U , accsU, Mproof as output by Algorithm 2
Output: Computed Union

1: j = 0
2: for v ∈ V do
3: if verifyProof(r, accsU[v], Mproof[v]) rejects then
4: return Reject and Abort
5: end if
6: acc = gΠx∈U[j](s+x)

7: if acc == accsU[v] then
8: R = R � U [j]
9: else
10: return Reject and Abort
11: end if
12: j ++
13: end for
14: return R



Efficient Protocol for Authenticated Email Search 11

Correctness. The correctness of Algorithm 3 follows from collision resistance
of Merkle hash tree and the resultant union is computed correctly in step 8 by
the client as the sets concerned are disjoint in nature.

Security. The security of Algorithm 3 follows from Claim 1 as it ensures that
no two different sets can have same accumulation value except with negligible
probability.

3.4.2 General Union
In case of general union query (i.e. keyword-based union query), the server
computes the union and sends it back along with the accumulation values of
S[v]-s, Merkle proof and accumulation values (accsA[v], accsB[v], accsC[v]) as
described in step 9 of Algorithm 4. In each step of iteration (v), the server
computes sets as given in Table 1.

Table 1. verification list

A[v] = PreU \ S[v] where PreU = CurU[v− 1] is the union computed in last iteration.
B[v] = PreU ∩ S[v]
R[v] = S[v] \ PreU
CurU[v] = CurU[v−1] � R[v] where CurU[v] is the union computed in current iteration.

Computation of general union and corresponding proof is described in Algo-
rithm 4.

Algorithm 4. Computation of Set Union run by Server

Input: V : {v : ∪vS[v] is to be computed}
Output: R: {R[v]} for all v ∈ V
Output: accsR: Acc(S[v]) for all v ∈ V
Output: Mproof: Merkle proof of acc[v] for all v ∈ V
Output: accsA, accsB, accsC: Acc(A[v]), Acc(B[v]) and Acc(CurU[v]) for all v ∈ V

1: PreU = CurU[0] = φ
2: for v ∈ V do
3: accsR[j] = Acc(S[v])
4: Mproof[j ++] = computeMerkleProof(M, v)
5: R[v] = S[v] \ PreU
6: A[v] = PreU \ S[v]
7: B[v] = PreU ∩ S[v]
8: CurU[v] = CurU[v − 1] � R[v]
9: compute accsA[v], accsB[v], accsC[v] by computing the exponentiation of the

polynomial representation of A[v], B[v] and CurU[v] respectively.
10: PreU = CurU[v]
11: end for

The verification technique we present here verifies union in three-party set-
tings. The client needs to verify that for each iteration, all the conditions men-
tioned in Table 1 hold. The verification takes output of Algorithm 4 as input.



12 S. Chatterjee, S. Mukherjee, and G. Patidar

Algorithm 5. Verification of Set Union run by Client in three-party settings

Input: R, accsR, Mproof, accsA, accsB, accsC as output by Algorithm 4
Output: Computed Union

1: Res = φ
2: for i ∈ {0, 1, . . . , |V | − 1} do
3: accR = gΠx∈R[i](s+x).
4: if verifyProof(r, accsR[i], Mproof[i]) rejects then
5: return Reject and Abort
6: end if
7: if e(accsC[i − 1], accR) �= e(accsC[i], g) then
8: return Reject and Abort
9: end if
10: if e(accsB[i], accR) �= e(accsR[i], g) then
11: return Reject and Abort
12: end if
13: if e(accsR[i], accsA[i]) �= e(accsC[i], g) then
14: return Reject and Abort
15: end if
16: Res = Res � R[i]
17: end for
18: return Res

Correctness. In verification, client needs to check:

e(accsC[i− 1], Πx∈R[i](s+ x))
?
= e(accsC[i], g) (1)

e(accsB[i], Πx∈R[i](s+ x)))
?
= e(accsR[i], g) (2)

e(accsR[i], accsA[i])
?
= e(accsC[i], g) (3)

Equation (1) ensures that in each iteration, updation of elements (PreU, R[i]
⊆ CurU) in the union result, is performed correctly. Equation (2) ensures the
membership condition (B[i] ⊆ S[i]) of union verification. Equation (3) ensures
the subset condition (S[i] ⊆ CurU) of union verification. In every iteration, union
result is updated correctly because of these conditions.

Even though, Algorithm 5 is devised in three-party settings, it can be recasted
into two-party settings naturally. We can significantly reduce (see Table 3) the
number of bilinear pairing evaluation based on the same observation (availability
of secret key to the client) as suggested in the case of intersection verification
(Section 3.3). To ensure correctness, the client needs to verify Expo(accsC[i− 1],
accR) = accsC[i], Expo(accsB[i], accR) = accsR[i] and e(accsR[i], accsA[i]) =
e(accsC[i], g), where accR = Πx∈R[i](s+ x).

Security. Claim 1 ensures that the server cannot send wrong R[v] for all v ∈ V
except with negligible probability. Equations (1), (2) and (3) along with [1,
Lemma 1] ensure that any wrong accumulation value present in either of accsA[i]
and accsB[i] will not pass the verification except with negligible probability.



Efficient Protocol for Authenticated Email Search 13

3.5 Composite Query

In case of composite query, as instantiated in [2], for any given {K, tbegin, tend},
the server will compute Ik = ∩k∈KS[k] which will be used to compute R[j] =
Ik ∩ S[t], where tnum = |{t ∈ [tbegin, tend)}| and t is a time interval in between
tbegin and tend and j ∈ {1, . . . , tnum}. The server sends Ik along with its proof,
R[j] ∀j and their proofs to the client. The client will verify Ik and all R[j]-s to
compute ∪jR[j] to get back the result of the query.

In our protocol, the server computes Ik = ∩k∈KS[k], T = ∪t∈[tbegin,tend)S[t]
and R = Ik ∩ T . The server sends back Ik along with its proof, Acc(T ), proof of
T , R and proof of R. The client will verify Ik and R. The client union verification
operation needs to verify Acc(T ) without getting T form the server. To verify
Acc(T ), we use subset condition [1, Equation (6)] in the following way and call
it superset condition:

Let T = S1�S2�· · ·�S� = {y1, y2, . . . , yz}. The superset condition is to check
Si ⊆ T, ∀i ∈ [1, �]. The completeness condition is to ensure ∩i∈[1,�](T \ Si) = φ.

Algorithm 6. Email Search and Proof Computation by Server

Input: K(= {k1, . . . , kr}), tbegin, tend

Output: Ik, accsIk, MproofIk, subsIk, cmpltIk
Output: accT, accsT, MproofT, supsT, cmpltT
Output: R, subsR, cmpltR

1: Ik = ∩i∈{1,...,r}S[ki]
2: j = 0
3: for v ∈ V do
4: accsIk[j] = Acc(S[v])
5: MproofIk[j ++] = computeMerkleProof(M, v)
6: end for
7: j = 0
8: for v ∈ V do
9: subset = S[v] \ I
10: scoeff[j] = interpolatePolyFFT(subset)
11: subsIk[j] = 1
12: for i ∈ {0, . . . , |V | − 1} do
13: subsIk[j] × = Expo(G[i], scoeff[j][i])
14: end for
15: j ++
16: end for
17: ccoeff = extendedEuclidean(scoeff)
18: for j ∈ {0, . . . , |V | − 1} do
19: for i ∈ length(ccoeff[j]) do
20: cmpltIk[j] × = Expo(G[i], ccoeff[j][i])
21: end for
22: end for
23: T = ∪t∈[tbegin,tend)S[t]
24: j = 0
25: for t ∈ [tbegin, tend) do
26: accsT[j] = Acc(S[t])



14 S. Chatterjee, S. Mukherjee, and G. Patidar

27: MproofT[j ++] = computeMerkleProof(M, t)
28: end for
29: accT = Acc(T )
30: j = 0
31: for v ∈ V do
32: supset = T \ S[v]
33: scoeff[j] = interpolatePolyFFT(supset)
34: supsT[j] = 1
35: for i ∈ {0, . . . , |V | − 1} do
36: supsT[j] × = Expo(G[i], scoeff[j][i])
37: end for
38: j ++
39: end for
40: ccoeff = extendedEuclidean(scoeff)
41: for j ∈ {0, . . . , |V | − 1} do
42: for i ∈ length(ccoeff[j]) do
43: cmpltT[j] × = Expo(G[i], ccoeff[j][i])
44: end for
45: end for
46: R = Ik ∩ T
47: Res = [Ik, T ]
48: for j ∈ {0, 1} do
49: subset = Res[j] \R
50: subcoeff[j] = interpolatePolyFFT(subset)
51: subsR[j] = 1
52: for i ∈ {0, 1} do
53: subsR[j] × = Expo(G[i], subcoeff[j][i])
54: end for
55: j ++
56: end for
57: compcoeff = extendedEuclidean(subcoeff)
58: for j ∈ {0, . . . , |V | − 1} do
59: for i ∈ length(ccoeff[j]) do
60: cmpltR[j] × = Expo(G[i], compcoeff[j][i])
61: end for
62: end for

The server returns Ik = ∩k∈KS[k], accT=Acc(T )whereT = ∪t∈[tbegin,tend)S[t]
and R = Ik ∩ T and corresponding proofs. The verification is done by the client
by verifying Ik and R using Algorithm 1. As the client does not have T (the server
sent Acc(T )), we propose Algorithm 7 to verify accT using the proof (MproofT,
supsT, cmpltT).

Algorithm 7. Verification of time-interval-based union by Client

Input: r, accT, accsT, MproofT, supsT, cmpltT
Output: Accept/Reject

1: for i ∈ {0, 1, . . . , |V | − 1} do
2: if verifyProof(r, accsT[i], MproofT[i]) rejects then



Efficient Protocol for Authenticated Email Search 15

3: return Reject and Abort
4: end if
5: end for
6: for i ∈ {0, 1, . . . , |V | − 1} do
7: lefts = e(sups[i], accsT[i])
8: rights = e(accT, g)
9: if lefts �= rights then
10: return Reject and Abort
11: end if
12: end for
13: leftc = 1
14: for i ∈ {0, 1, . . . , |V | − 1} do
15: leftc × = e(sups[i], cmplt[i])
16: end for
17: rightc = e(g, g)
18: if leftc �= rightc then
19: return Reject and Abort
20: end if
21: return Accept

Correctness. To verify Ik and R, the client uses Algorithm 1 which is cor-
rect as demonstrated in Section 3.3. The client uses Algorithm 7 to verify
T = ∪t∈[tbegin,tend)S[t] although T is not provided. Given correct sups[i] and
accsT[i] which correspond to partition of T (i.e. T = sups[i] � accsT[i]), the
verification satisfies. Correct sups[i] and cmplt[i] for all 1 ≤ i ≤ tnum ensures
verification acceptance as each of the S[t] are disjoint, sets corresponding to
sups[i], ∀i are also disjoint. The complete witness cmplt verifies the disjointness.

Security. The verification of composite query response utilizes Algorithm 1 to
verify Ik and R that was proven secure in Section 3.3. Therefore the security
of verification by the client for such a combined query ({K, tbegin, tend}) solely
depends on the security of Algorithm 7.

Claim 3. Server has to send correct accT to make the client accept the verifi-
cation.

Proof. Let us assume the server can send an incorrect accumulation value (accT′)
to make the client accept the verification. This can happen in two exhaustive
way.

E1: The server sends accT′ where ∃z ∈ T but z /∈ T ′.

The verification of superset witness is done in lines [6-12] of Algorithm 7.
In Algorithm 7, lefts depends on accsT[i] which is verified by verifyProof
using MproofT.
The server has to send such sups[i] that when evaluating bilinear pairing
will cancel the (z + s) present in the exponent of accsT[i] for some i (as
e(sups[i], accsT[i]) = e(accT′, g)) and there is no exponent (z + s) in
accT′).



16 S. Chatterjee, S. Mukherjee, and G. Patidar

Therefore the server has to compute gri/(z+s) and use it as sups[i]. By
q-SDH assumption, computing such exponentiation of g is not possible
except with negligible probability.

E2: The server sends accT′ where ∃w ∈ T ′ but w /∈ T .

As w /∈ T , none of the accsT[i] will have (w + s) in its exponent and
accT′ has (w + s) in its exponent. To make the client verify superset
witness in steps 6-12 of Algorithm 7, all the sups[i] must have a (w + s)
in the exponent. Therefore each of the corresponding polynomial (Pi(s))
of sups[i] will have a zero at (−w) where 1 ≤ i ≤ tnum, tnum = |{t :
t ∈ [tbegin, tend)}|. The GCD of the polynomials (Pi(s)) will be m(w+s)
where m is some polynomial.
To accept complete witness verification in steps 13-20 of Algorithm 7,
the client needs qi(s), 1 ≤ i ≤ tnum st Σiqi(s)Pi(s) = 1. As all the Pi(s)
share a common factor (w + s), there exists some polynomial A(s) such

that (w+ s)A(s) = 1. Then e(g, g)
1

w+s = e(g, g)A(s) can be computed. It
contradicts with hardness of q-BSDH problem.

Union bound ensures that Pr[E1 ∪ E2] is negligible.

4 Comparison

In this section we provide comparison between [2] and our protocol. We first
provide an analytical comparison between both the protocols followed by exper-
imental data supporting it.

4.1 Analytical Comparison

As discussed in Section 2.3.1, two parties are involved in the email search mecha-
nism. The client has access to secret key (s) that can be used during verification
of different queries. Number of bilinear pairing evaluation in case of intersection
operation verification reduces to half (Algorithm 1). But it increases number of
group exponentiation by cardinality of the query (|V |).

Let’s assume m = cardinality of the query and n = cardinality of result set.
In general, for union, m << n. In Table 2 we show an asymptotic comparison
of the scheme described in [1] and our scheme in case of disjoint union for two
parties. In Table 3, however, we present an asymptotic comparison of scheme
described in [1] and our scheme in case of general union.

4.1.1 Composite Query Verification Comparison
Here we present a comparative analysis between email search verification of [2]
and our proposal. On query ‘to find the mails that contain all the keywords
{k : k ∈ K} and were received in the time interval [tbegin, tend]’, let us define
knum := |{k : k ∈ K}| and tnum := |{t : t ∈ [tbegin, tend)}|.



Efficient Protocol for Authenticated Email Search 17

Table 2. Comparison of number of operations required by the client for disjoint union

[1] Improved

Multiplication n− 1 n−m

Exponentiation n m

Bilinear Pairing m+ 1 0

Communication cost n m logm

Table 3. Comparison of number of operations required by the client for general union

[1]
three party two party

union union

Multiplication n log n n log n n−m

Exponentiation 2n n m

Bilinear Pairing 2m + 2n 5m 2m

Communication cost n m logm m logm

Analysis of [2, Algorithm 4]. As described in [2, Algorithm 4], the server
computes Ik = ∩k∈KS[k] and R[j] = Ik ∩S[t] where t is a time interval between
tbegin and tend and sends all such R[j] along with their proofs. e(g, g) needed for
every complete witness verification is precomputed.

To verify Ik, the client will need 2∗knum bilinear pairing evaluation for subset
witness verification (Ik ⊆ S[ki], ∀ki ∈ K), knum bilinear pairing computation
for complete witness verification (∩ki∈K(S[ki] \ Ik) = φ).

To verify R[j], the client will need 4 bilinear pairings for subset witness verifi-
cation ((R[j] ⊆ Ik)∩(R[j] ⊆ S[t])) and 2 bilinear pairing evaluation for complete
witness verification ((Tk \ R[j]) ∩ (S[t] \ R[j]) = φ). The client needs to verify
every R[j], 1 ≤ j ≤ tnum to compute their union to get back the result. Total
number of bilinear pairings required to verify R = [R[1], R[2], . . . , R[tnum]] is
(4 + 2) ∗ tnum = 6 ∗ tnum.

Total number of bilinear pairing evaluation required is (3 ∗ knum+6 ∗ tnum)
to verify email search query in [2].

Analysis of Verification of Composite Query (Section 3.5). Again e(g, g)
needed for every complete witness verification is precomputed.

To verify Ik, the client will need knum group exponentiations in G for subset
witness verification (Ik ⊆ S[ki], ∀ki ∈ K), knum many bilinear pairing compu-
tation for complete witness verification (∩ki∈K(S[ki] \ Ik) = φ) [1].

To verify T , the client will need 2∗ tnum bilinear pairing evaluation for super-
set witness verification (S[t] ⊆ T, ∀t ∈ [tbegin, tend)) and tnum bilinear pairing
evaluation for complete witness verification (∩t∈[tbegin,tend)(T \ S[t])) [1].

To verify R, the client will need 4 bilinear pairings for subset witness verifica-
tion (R ⊆ Ik and R ⊆ T ) and 2 bilinear pairing for complete witness verification
((Ik \R) ∩ (T \R) = φ) [1].

Total number of group exponentiations needed = knum.



18 S. Chatterjee, S. Mukherjee, and G. Patidar

Total number of bilinear pairings needed = knum+2∗ tnum+ tnum+4+2 =
6 + knum+ 3 ∗ tnum.

Thus our method roughly reduces number of pairing computation by a factor
of 2 ∗ knum+ 3 ∗ tnum.

4.2 Experimental Results

Here we provide the experimental comparison of proposed verification protocols
and [2]. The whole experiment is performed on 8-core Intel i7 3.4 GHz with 8GB
RAM running 64-bit Ubuntu 12.04 and the algorithms were implemented using
python. We used the pairing-based cryptographic library Charm-Crypto [13]
available for python to implement the schemes. We use a symmetric curve with
a 1024-bit base field (Fp for prime p of 1024 bit) for the bilinear groups. We
have conducted the experiments on the Enron Email Dataset [14] (accessed Dec,
2014). For the experimental purpose we chose 200 random keywords from the
corpus as done in [2]. We kept the interval fixed at 1 day only. The mail-id is
SHA-2 hash digest of the content of the mail as mentioned in Section 3.

Table 4 shows the comparison between computation time required by the
client in both the frameworks to verify email search based on intersection.

Table 4. Comparison of Intersection verification of [2] and our protocol

Cardinality of Cardinality of [2] Our Protocol Improvement
Query Result (sec) (sec) Factor (X)

3 11 00.370204 00.199130 1.9

7 33 00.397503 00.227689 1.8

5 100 00.721012 00.418794 1.7

4 167 01.495034 01.392456 1.1

2 265 05.378835 04.268893 1.3

In Table 5, we compare computation time required by client in both the
frameworks for verifying email search based on union of keywords.

Table 5. Comparison of Disjoint Union verification of [2] and our protocol

Cardinality of Cardinality of [2] Our Protocol Improvement
Query Result (hr) (hr) Factor (X)

5 25 00:01:20.673509 00:00:00.113024 713

8 84 00:04:25.799064 00:00:00.115579 2300

10 225 00:32:20.001179 00:00:00.298521 6500

21 553 03:15:40.311964 00:00:00.446493 26300

32 1055 11:57:10.013695 00:00:01.403798 30650

Table 6 reflects comparison of computation time required by client in both
the frameworks for verifying email search based on union of time intervals.



Efficient Protocol for Authenticated Email Search 19

Table 6. Comparison of General Union verification of [2] and our protocol

Cardinality of Cardinality of [2] Our Protocol Improvement
Query Result (hr) (hr) Factor (X)

8 174 00:22:11.700000 00:00:02.336589 570

9 238 00:40:40.063144 00:00:01.580584 1540

11 302 00:59:29.774574 00:00:01.512477 2360

14 458 02:25:33.486672 00:00:03.433091 2540

18 974 11:02:04.942754 00:02:28.052102 270

Note that amount of improvement is much higher in case of union verification
query as it was mentioned in Section 4.1.

In Table 7, the comparison between verification time required by the client
for email searching operation on queries that deal with both keywords and time
intervals at the same time is shown.

Table 7. Comparison of Composite Query verification of [2] and our protocol

Cardinality of
Cardinality of [2] Our Protocol Improvement

Query
Result (sec) (sec) Factor (X)

(keywords, time-intervals)

(3, 17) 0 03.858381 02.454596 1.6

(4, 16) 4 03.168813 01.628256 2.0

(5, 12) 6 03.158784 01.661622 1.9

(3, 12) 8 04.744553 01.669637 2.8

(2, 20) 27 07.475947 04.155327 1.8

While our protocols always perform better than [2], the improvements are
most pronounced for union operations as the number of pairing evaluation de-
pends on cardinality of query rather than cardinality of result [2]. In case of
intersection and composite query, even though the exact number of pairing eval-
uation is reduced, it still depends on cardinality of result. As mentioned in Sec-
tion 3.5 and Section 4.1, there is a trade off between decrease in number of
bilinear pairing and increase in number of group exponentiation which results in
non-linearity in the efficiency improvement in our protocols for intersection and
composite query verification.

5 Conclusion

In this paper we revisit the email search verification mechanism of [2] and pro-
pose an improved protocol. Along the way we improve efficiency of basic set
union in three-party setting [1]. The proof computation by the server, although
polynomial in the cardinality of a set, still takes significant time as shown in our
experiments. It would be interesting to improve upon the practical computation
time by the server, thereby improving the efficiency of the overall protocol.



20 S. Chatterjee, S. Mukherjee, and G. Patidar

References

1. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of oper-
ations on dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 91–110. Springer, Heidelberg (2011)

2. Ohrimenko, O., Reynolds, H., Tamassia, R.: Authenticating email search results.
In: Jøsang, A., Samarati, P., Petrocchi, M. (eds.) STM 2012. LNCS, vol. 7783,
pp. 225–240. Springer, Heidelberg (2013)

3. Canetti, R., Paneth, O., Papadopoulos, D., Triandopoulos, N.: Verifiable set op-
erations over outsourced databases. In: Krawczyk, H. (ed.) PKC 2014. LNCS,
vol. 8383, pp. 113–130. Springer, Heidelberg (2014)

4. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables.
In: Proceedings of the 15th ACM Conference on Computer and Communications
Security, CCS 2008, pp. 437–448. ACM, New York (2008)

5. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

6. Joux, A.: A one round protocol for tripartite Diffie–Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000)

7. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings the role of revisited. Discrete Applied Mathematics 159(13), 1311–1322
(2011)

8. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008)

9. Preparata, F.P., Sarwate, D.V.: Computational complexity of fourier transforms
over finite fields 31, 740–751 (1977)

10. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

11. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

12. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer-Verlag New York, Inc., New York (1985)

13. Akinyele, J., Garman, C., Miers, I., Pagano, M., Rushanan, M., Green, M., Ru-
bin, A.: Charm: A framework for rapidly prototyping cryptosystems. Journal of
Cryptographic Engineering 3(2), 111–128 (2013)

14. Klimt,B.,Yang,Y.:The enron corpus:Anewdataset for email classification research.
In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004.
LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004)



Analyzing Traffic Features of Common

Standalone DoS Attack Tools

Vit Bukac and Vashek Matyas

Centre for Research on Cryptography and Security
Faculty of Informatics
Masaryk University
Brno, Czech Republic

bukac@mail.muni.cz, matyas@fi.muni.cz

Abstract. Research on denial of service (DoS) attack detection is com-
plicated due to scarcity of reliable, widely available and representative
contemporary input data. Efficiency of newly proposed DoS detection
methods is continually verified with obsolete attack samples and tools.
To address this issue, we provide a comparative analysis of traffic fea-
tures of DoS attacks that were generated by state-of-the-art standalone
DoS attack tools. We provide a classification of different attack traffic
features, including utilized evasion techniques and encountered anoma-
lies. We also propose a new research direction for the detection of DoS
attacks at the source end, based on repeated attack patterns recognition.

Keywords: denial of service tools, input features, traffic characteristics.

1 Introduction

Even though denial of service (DoS) attacks are steadily gaining on popularity
among both cyber criminals and security researchers, there are only few studies
collecting thorough and truly representative characteristics of DoS attack traffic.
We observe a serious discrepancy between tools that are used by attack per-
pertrators and the tools that are used for testing DoS detection and mitigation
solutions proposed by academia. The list of tools and techniques actively used
in real environment contains advanced tools such as LOIC, HOIC or Slowloris.

Understanding how attacks evolve is a necessary step towards the design of
appropriate DoS attack detection and mitigation systems. Conversely, academic
concepts are notoriously evaluated with obsolete and in practice already for-
gotten tools, most notably TFN, TFN2k, Shaft, Trinoo, Knight, mstream and
Stacheldraht that all date back to year 2000. We still encounter numerous re-
search works that present these tools as representatives of modern DoS attacks,
even in respectable periodics (e.g., [2,7,26]). These tools no longer reflect contem-
porary real DoS attacks. DoS attacks went through an incredible development
not only in terms of overall performance, but also in terms of attack properties.
A brand new class of slow application DoS attacks has emerged and gained on
popularity.

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 21–40, 2015.
DOI: 10.1007/978-3-319-24126-5_2



22 V. Bukac and V. Matyas

Simultaneously, contemporary labeled DoS attack datasets are sparse. Both
DARPA and KDD99 datasets are still being used, despite being 15 years old
and not representing current state in networks. For example, DoS category in
KDD99 contains back, land, neptune, pod, smurf and teardrop attacks, none of
which are seen in the wild any more. Other available datasets are produced by
projects such as CAIDA, MAWI or ONTIC. However, these datasets either do
not provide attack labeling or suffer from little DoS attack variability.

Our research focused on state-of-the art DoS tools, their DoS traffic properties,
employed evasion techniques and further tools characteristics. Network traffic
profiles of standalone DoS tools will help design detection methods that are
based on valid assumptions. Also, by creating a database of attack tools, it will
be possible to estimate what classes of DoS attacks can be detected by each
proposed method.

Our traffic traces contain only attack traffic. Each trace file is labeled with
the name of DoS tool that was used to generate the traffic, attack type and any
attack configuration options. Therefore, our traces are suitable for evaluation
of DoS detection and mitigation systems through attractive overlay methodol-
ogy. Overlay methodology combines the separate attack traffic traces with the
background traces from an arbitrary environment. This widespread methodology
allows to recognize the ground truth and precisely determine the false positives
rate and false negative rate of the evaluated detection system [5].

Our analysis will assist best to researchers focusing on source-end DoS de-
tection solutions, such as D-WARD [17]. Mirkovic et al. argue that detecting
DoS attacks directly at the source computers or first-mile routers brings bene-
fits such as congestion avoidance, small collateral damage, easy traceback and
the possibility to use sophisticated detection strategies due to more available re-
sources [16]. Source-end solutions also bring significant advantages when applied
in cloud environments, software-defined networking or untrustworthy networks.
We believe the importance of source-end detection is proven by the development
direction of host-based antimalware products. Security companies are gradu-
ally introducing more and more network analysis modules to their products,
including DDoS detection modules, such as in the Symantec Endpoint Protec-
tion. Capability to detect outbound DoS attacks coupled with originator system
process identification is a viable behavioral malware detection

This paper is supported by more technical details available in our technical
report [8]. Our dataset of all PCAP traces and used DoS tools is freely available
at [1]. Our paper presents the following contributions:

1. This is the first comparative study aimed exclusively at traffic properties
of DoS attack tools. We overview existing state-of-the-art standalone DoS
attack tools, their attack traffic properties and used evasion techniques. We
provide conclusive evidence that no two DoS tools (of those we examined)
generate DoS attack traffic with the same properties.

2. Identification of network traffic features that are suitable for the source-end
DoS attack detection. We evaluated the importance of selected features for
various classes of DoS attacks. We reject traffic randomization as an universal



Analyzing Traffic Features of Common Standalone DoS Attack Tools 23

answer to the DoS detection evasion. We propose a new area for detection
of DoS attacks based on recognition of unique repeating patterns.

3. Support for the use of these traffic traces for evaluation of DoS intrusion
detection systems in academic research thorough overlay methodology.

The remainder of this paper is organized as follows. Section 2 reviews relevant
work in the traffic analysis of DoS tools. Section 3 describes our experiment and
the selection of tools for analysis. Section 4 supplies our raw observations of the
selected DoS traffic properties. Section 5 summarizes our results and highlights
the impact of our analysis on DoS attacks detection. Section 6 concludes the
paper.

2 Related Work

Exploration of detailed properties of DoS attacks in the wild received limited
to none interest from academia. This may be because of an assumption that
DoS attacks cannot notably alter their properties, otherwise they would have
to sacrifice performance or increase visibility. On the other hand, some of the
most prominent state-of-the-art DoS tools are occasionally examined by freelance
security specialists or companies dealing with DDoS protection solutions. Such
analyses are often thorough and descriptive, but lack a mutual comparison and
frequently skip deriving general concepts.

The tools listed in this paper are extensively and routinely used by hacktivists
to manifest their political opinions and by technically unsavvy users to harass
other users. Bartolacci et al. describe the practice of “kicking”, when online
gamers use simple DoS tools to degrade their oponent’s network connection or
even force them out of the game [6].

Onut and Ghorbani argue there is a general lack of research on input features
[19]. They investigated the effectiveness ranking of 673 network features for the
detection of network attacks. Their evaluation concludes that for the detection
of DoS attacks the best features are related to ICMP protocol. For TCP-based
attacks, they emphasize the importance of SYN packet statistics and flow statis-
tics. Another DARPA dataset traffic features analyzing paper was presented by
Kabiri and Zargar [15]. They note the SYN flag presence, classification fields and
protocol fields as most influential. Slightly enhanced DARPA 2000 dataset was
analyzed by Zi et al. [27]. Their list of top 5 preferable features (in decreasing
order) is TCP SYN occurrence, destination port entropy, entropy of source port,
UDP protocol occurrence and packet volume. Unfortunately, the results based
on DARPA and KDD datasets has been repeatedly criticized for not being a
good representative sample of actual traffic in a network (e.g., [13,21]).

Thing et al. [23] performed a detailed source code analysis of selected then
popular bots for distributed DoS (DDoS) attacks, namely Agobot, SDBot, RBot
and Sybot. Authors emphasize the importance of randomization in creating a
packet, which is a view we share. Given the source code availability, this analysis
is very descriptive with a deep understanding of inner works of each tool, but the



24 V. Bukac and V. Matyas

analysis does not provide a high-level overview of the traffic in real environments,
study is not comparative and the scope is limited.

Traffic features that are significant for old TFN2k DoS tool traffic are exam-
ined by Dimitris et al. [11]. They put emphasis on the presence of SYN and URG
flags, while simultaneously noticing that TTL and Window sizes provide almost
no information. Conversely, our results indicate that the URG flag is not used by
contemporary DoS tools anymore, probably because of its relative rarity, which
would make the attack traffic easily identifiable [8].

Another study aimed at properties of DDoS bots has been performed by Ed-
wards and Nazario [12]. The study focuses on families of DDoS botnet malware
controlled predominantly from the Chinese IP space. An exhaustive summary
of bot communication protocols is provided. Attacks supported by each bot are
listed along with a high-level attack type taxonomy. However, from the perspec-
tive of attack traffic characteristics, only few unique properties of chosen bots
are discussed and description of the traffic is overly general, without sufficient
details to be used as an input in design of DDoS detection systems.

Slow DoS attacks form a class of stealthy attacks where attack hosts aim to
allocate all available resources of the server for themselves, effectively denying the
service for other hosts. Slow attacks require small bandwidth, are very stealthy
and consist of fully established TCP connections. Cambiaso et al. classify slow
attacks into four groups: pending requests DoS, long responses DoS, multi-layer
DoS and mixed attacks [9]. Several representatives of slow DoS attacks have been
discovered already, most notable being Slowloris [14] and Slow HTTP POST [10].

Basic properties of DDoS traffic are frequently listed with DDoS botnet anal-
yses, such as the analysis of Dirt Jumper botnet [3] or Miner botnet [20]. Due
to their primary focus on botnet properties, these studies only rarely provide
sufficient technical details about the generated DDoS traffic. Although an over-
all description helps to understand the basic idea of an attack, missing technical
details make it impossible to use this data as an input source for creation of
new DDoS detection methods. Simultaneously, any estimate of effectiveness of
existing DDoS detection methods against these attacks is difficult and unreliable.

3 Experiment

3.1 DoS Tools Selection

The full list of analyzed tools, versions, respective sources, supported attack
types and tool identifiers used in later text is provided in Table 1. We are con-
vinced that this list accurately represents the types of standalone DoS tools that
can be currently encountered during real attacks.

Firstly, we selected a subset of existing standalone DoS tools based on their
popularity and capabilities of attacking generic web servers. Arbor Networks
Worldwide Infrastructure survey of 2014 notes that 78% of respondents have
been targeted with various types of the HTTP GET flood, 55% with the HTTP
POST flood, 43% with Slowloris attack, 38% with the LOIC DoS tool or its
variants, 27% with the Apache Killer tool, 23% with the HOIC DoS tool or its



Analyzing Traffic Features of Common Standalone DoS Attack Tools 25

Table 1. Selected tools and supported attacks.

Name Version Source Tool ID Attacks

Anonymous DoSer 2.0 OpUSA, OpMyanmar AD HTTP

AnonymousDOS Representative ADR HTTP

BanglaDOS Representative BAD HTTP

ByteDOS 3.2 OpIsrael, OpUSA BD SYN, ICMP

DoS 5.5 Representative DS TCP

FireFlood 1.2 OpMyanmar FF HTTP

Goodbye 3.0 OpUSA, ArborNetworks GB3 HTTP

Goodbye 5.2 OpUSA, ArborNetworks GB5 HTTP

HOIC 2.1.003 OpUSA, OpMyanmar HO HTTP

HULK 1.0 OpUSA, InfoSec HU HTTP

HTTP DoS Tool 3.6 Representative HDT slow headers, slow POST

HTTPFlooder OpUSA HF HTTP

Janidos -Weak ed.- ArborNetworks JA HTTP

JavaLOIC 0.0.3.7 OpUSA, OpMyanmar JL TCP, UDP, HTTP

LOIC 1.0.4.0 OpUSA, OpMyanmar LO1 TCP, UDP, HTTP

LOIC 1.0.7.42 OpUSA, OpMyanmar LO2 TCP, UDP, HTTP

LOIC 1.1.1.25 OpUSA, OpMyanmar LO3 TCP, UDP, HTTP

LOIC 1.1.2.0b OpUSA, OpMyanmar LO4 TCP, UDP, HTTP, Re-
Coil, slowLOIC

Longcat 2.3 Hacker forums LC TCP, UDP, HTTP

SimpleDoSTool Representative SD TCP

Slowloris 0.7 OpIsrael, OpUSA SL HTTP

Syn Flood DOS OpUSA SF SYN

TORSHAMMER 1.0b OpIsrael, InfoSec TH HTTP

UnknownDoser 1.1.0.2 Hacker forums UD HTTP

XOIC 1.3 InfoSec XO TCP, UDP, ICMP

variants and 19% with the SIP Call-control flood. Among trailing attack types
and tools are SlowPost, THC, nkiller, Hulk, RUDY and Recoil [4]. Secondly, we
focused on tools that were used or allegedly used during publicized DDoS cam-
paigns (OpUSA, OpIsrael, OpMyanmar). Thirdly, respected security companies
often publish lists of DoS tools that are either popular or present a new step in
development of DoS tools such as a by Curt Wilson of Arbor Networks [25].

We excluded any tools that are exclusive for a specific target application
(e.g., Apache Killer) and tools that do not directly communicate with the target
(e.g., DNS amplification attack tools). Lastly, we included several tools that are
a popular choice on hacker forums (e.g., GoodBye, Janidos) or are created as
open source in public software repositories (e.g., HTTP DoS Tool) or that take
an extraordinary approach in causing a DoS effect (e.g., AnonymousDoS). Tools
were selected in order to represent a full spectrum of existing types of TCP and
HTTP DoS attacks.

Standalone tools are common inspirations for botnets. Even though most bot-
nets rely on common volume-based attacks, such as generic HTTP GET flood,



26 V. Bukac and V. Matyas

HTTP POST attack or TCP SYN attack, succesful new attacks are occasionally
incorporated as well. For example, since the first release of the Slowloris HTTP
client in June 2009, the Slowloris attack code has been included in advanced
DDoS bots such as Mariposa, Skunkx or SpyEye. Similarly, a slow POST attack
known from the Torshammer tool has been added to the Solar botnet and the
R-U-D-Y attack to the Cyclone botnet. Although we usually observe a delay
between the creation of a new proof-of-concept tool and full weaponization, sup-
port for new attacks is indeed added to botnets. Also, while standalone DoS tools
are mostly free and public, bot binaries may be cracked and therefore unreliable,
may be missing crucial components or may not be available at all. Obtaining
reasonable botnet DoS traffic samples under pre-defined conditions and with
non-interfering background traffic might be extremely difficult. Therefore, we
believe this paper will also be beneficial for research on contemporary botnet
capabilities.

3.2 Environment

The virtual environment was used in order to minimize the influence of real
intermediate network on measurements. Also, virtual machine snapshots allow
returning to a conjoint initial stable state. Therefore, any measurements on a
restored snapshot are not affected by artifacts from previous measurements (e.g.,
keep-alive packets sent by either side). Our virtual environment was built on a
single physical server with Core i7 CPU and 16 GB RAM.

We created a simple point-to-point virtual network between two virtual ma-
chines. The attacker VM had the Windows 7 operating system and the victim
was the IIS 7.0 webserver on the Windows Server 2008 R2. Firewalls on both
machines were configured to allow all incoming traffic from the shared network.
Default settings for other subnets were kept. Except for DoS attack tools and
the operating system itself, no other legitimate network traffic was knowingly
produced. Tools were executed through the Administrator account with UAC
enabled.

Our analysis was performed in a controlled virtual environment with no back-
ground traffic. Background traffic was omitted in order to gain as clear view of
ideal attack conditions as possible. Applying legitimate background traffic would
invalidate our results for scenarios with background traffic differing from the one
we generated. Also, from the perspective of source end DoS attack detection, the
impact of background traffic is diminishing. A reasonable assumption is that the
source host is sending the attack traffic towards only one victim. Therefore, any
source end DoS detection system can be considering traffic of each source IP and
destination IP pair separately.

Background traffic can only alter time distribution of traffic (sections 4.1,
4.2 and 4.3) and only for highly susceptible, usually low-volume, tools. Internal
properties of flows (e.g., HTTP request URI, flow packet count) cannot be altered
by background traffic at all (sections 4.4, 4.5 and 4.6). Given the placement
of source end detectors directly on sending hosts or on first-mile routers, the



Analyzing Traffic Features of Common Standalone DoS Attack Tools 27

complexity of intermediate networks or the number of attacking hosts is similarly
irrelevant.

We used the CNN.com webpage from 11/19/2012 19:39 UTC, renamed to
index.htm, as a testing target page. A popular existing webpage was selected
in order to mimic real conditions under which DoS tools are launched. Saved
webpage has 109 files and the total size is 3.3 MB including images.

3.3 Measurement

We review DoS attack tools from the viewpoint of source-end detection. While
DoS mitigation systems are usually deployed on the victim side, the source-end
side is more sound for the purpose of understanding the attack. Focusing on the
source end enables deep and very precise understanding of inner works of tested
tools without disturbances caused by an intermediate network.

Each tool has been tested with various configurations. The first configuration
of each tool has been set with default tool settings if such exist. Configura-
tions were chosen in order to test primarily settings that can alter the form of
produced network traffic. We did not distinguish between successful and unsuc-
cessful attacks. 60 and 300 second traffic samples were obtained for every tool
configuration. The 300 second limit was chosen in order to track at least several
iterations of even the most stealthy slow attacks. Oppositely, most DoS tools
demonstrated their full traffic properties within first 15 seconds. Due to difficul-
ties with packet recording at high packet transmission speeds, the measurement
was focused on tool capabilities and traffic features, not performance compari-
son. Even though attack volume/performance is one of the cornerstones of victim
end DDoS defense, its use in source end detection is problematic, mostly due to
limited client bandwidth that is commonly saturated with legitimate network
traffic.

DoS tools ran from a common initial state. Both outgoing and incoming net-
work traffic was recorded with the dumpcap tool from the Wireshark suite di-
rectly at the attacker VM. We then performed our analyses offline on the col-
lected PCAP files. Analyses consisted of two parts. First, the traffic was divided
to 1-second intervals. Network features statistics (e.g., byterate, packetrate, TCP
flag ratios) were then computed for each interval. Second, the PCAP file was
processed packet by packet, network flows were reconstructed and flow statistics
were computed (e.g., simultaneous flow count, packets per flow). We define flow
as 5-tuple: source IP address, destination IP address, source TCP/UDP port,
destination TCP/UDP port, protocol.

Graphs on the following pages represent values of respective metrics each sec-
ond of the first minute of the attack. Tables contain tool IDs of tools representing
each category. When an ID is found in multiple categories, the actual behavior is
dependent on chosen tool settings. Identifiers GB and LO represent all versions
of the respective tool.



28 V. Bukac and V. Matyas

4 DoS Traffic Properties

4.1 Traffic Burst Behavior

Traditionally, DoS attacks were believed to produce an excessively high volume
of attack traffic in order to overwhelm the target. However, even though the peak
volumes of observed DoS attacks are steadily increasing, the ratio of low-rate
attacks is increasing as well [4].

Division of tools into classes by the packet rate shows that we can encounter
both volume-rich tools and tools that produce hardly any traffic. Byte rate and
packet rate values are especially interesting for tools that do not enable the attack
intensity to be specified. For the vast majority of configurations the changes of
byte rate value in time correspond to the changes of packet rate value. Note that
the tool IDs are provided in Table 1 above.

In our set, a clear majority of tools employs an immediate full attack strength
approach. Exceptions are LO and JL that may have an initiation period up to
10 seconds long (Fig. 4). We consider this revelation important, because it is a
strong indicator that detection methods based on change detection can be widely
adopted in real environments. Packet rates of many DoS tools in our set exhibit
a burst behavior. We divide observed burst types into four types. Attribution of
tools to each burstiness type is provided in Table 2.
Full burstiness: The attack traffic is delivered only in bursts. Minimal or no
traffic is exchanged between bursts (Fig. 3). Full burstiness is also very popular
with slow attacks, often probably due to guidance by an internal clock.
Regular peaks: Produced network traffic is very stable except for regular re-
peating anomalies (Fig. 1).
One-time extreme: At one point of the tool run, often at the beginning of the
attack, the traffic characteristics are significantly different from the rest (Fig. 2).
None: The tool does not produce traffic that has observable bursts in packet
rate.

Although according to our knowledge the burst behavior has not yet been
used in the source end DoS attack detection, it could become a valid alternative
to existing detection methods. A new method could be based on the detection of
a burst behavior, recognition of repeated occurrences of bursts and on similarity
comparisons of these bursts.

Table 2. Traffic burstiness.

Full burstiness HDT, HU, LO4, SL, SF

Regular peaks BD, HO, LO, LC, UD

One-time extreme AD, BAD, DS, GB, HDT, TH

None ADR, FF, HF, JA, JL, LO, LC, SD, UD, XO



Analyzing Traffic Features of Common Standalone DoS Attack Tools 29

Fig. 1. BD packet count. Fig. 2. GB5 packet count.

Fig. 3. SF packet count. Fig. 4. LO2 packet count.

Fig. 5. DS flow count. Fig. 6. FF flow count.

Fig. 7. JA flow count. Fig. 8. LO2 flow count.



30 V. Bukac and V. Matyas

4.2 Flow Count

Attacker establishing many connections towards a victim is one of the most
common assumptions about DoS attacks. Reasoning behind this assumption
states that multiple connections imply higher (attack) performance. Also, some
attacks are based on the number of connections or on the rate of their generation
and therefore high number of flows is a desirable property. JL, SD and XO can
generate more than 1000 flows per second without IP spoofing on a standard
laptop. Depending on the configuration and the performance of the source host,
several more tools can be used to reach such limit (e.g., HU, FF), especially when
executed several times in parallel. Oppositely, without regards to tool versions,
following tools can be configured to launch an attack with 100 or less flows:
AD, BAD, HDT, LO (TCP, Recoil, SlowLOIC), LC (HTTP), SL, TH. Low flow
counts make these tools stealthy for source-end intrusion detection systems that
are based on flow count analysis.

Another important aspect of DoS traffic is the change in the number of flows in
time. We classify configurations by the number of flows that were observed during
initial 60 seconds of the attack. Four flow count patterns have been recognized.
Attribution of tools to each flow count type is provided in Table 3.
Stability: Most tools exhibit only minor changes while the long term trend
remains steady, e.g., FF or JA. While minor fluctuations can be expected (Fig.
6), the flow rate is extremely stable for most tools in an ideal closed environment
(Fig. 7). This fact is emphasized in case of tools that require the operator to
specify the flow rate prior to attack, be it directly as request per second ratio
(e.g., BAD) or inderectly by the number of attack threads (e.g., LC, LO).
Pulsing: Intentionally pulsing attack is generally viewed as an attempt to stay
undetected while maintaining a reasonable per host attack strength. Our analysis
shows that pulsing can also be an integral part of the attack. Representatives
are LO, which achieves pulsing by batch flow closures (Fig. 8) or HDT, which
alternates between calm no-traffic periods and periods of batch packet sendings.
Decreasing count: Several tools such as DS (Fig. 5), GB and HDT tend to
decrease the number of observable flows, even if the victim has not been made
unavailable. The reason may be a poor design of the tool or inherent attack
characteristics, especially in the case of slow attacks.
Increasing count: Although an attacker is expected to attempt using all avail-
able resources as soon as possible to overwhelm the victim, increasing strength
could be used to circumvent reputation-based and some anomaly-based intrusion
detection systems. A subtle attack start phase could lead to the attack being
undetected for a prolonged time. Naturally, subtle attacks are not tempting for

Table 3. Flow count change.

Stability AD, ADR, BAD, BD, FF, HF, HO, HDT, JA, JL, LC, LO,
SD, XO

Pulsing HDT, HU, JL, LO, SF, SL, UD

Decreasing count DS, GB, HDT



Analyzing Traffic Features of Common Standalone DoS Attack Tools 31

hacktivists, who want the publicity of the attack. None of the tools in our set
has shown an increasing strength trend, except for a short initialization period
at the beginning of the attack.

4.3 Flow Parallelity

Results of flow parallelity measurements support our observations from the flow
count measurement. The level of flow parallelity generally decreases with the de-
creasing flow count. Our observations show that a true parallelity is not common.
Many tools actually produce flows in succession or in small batches of simulta-
neous flows. The outer effect of massive flow parallelity is caused by the length
of the flow sampling interval. With a decreasing interval, thresholds for DoS
detection via simultaneous flows count should be lowered in order to maintain
detection accuracy, as the count of seemingly simultaneous flows will decrease.
In contrast, the count of truly simultaneous flows would remain constant. Attri-
bution of tools to each flow parallelity type is provided in Table 4.
All simultaneous: Flows that are initiated in a short succession and are never
closed under normal circumstances. Attacker keeps these flows open for the du-
ration of the attack and sends attack packets over them. Attacks with spoofed
source IP address has been inserted into this group (e.g., SF).
Mostly simultaneous: Flows are closed after a prolonged time, usually by the
victim after the connection timeout runs out. Many flows are open at the same
time. Flow duration usually exceeds 60 seconds.
Long-term consecutive, many simultaneous: Generation and existence of
flows themselves is one of the means of attack. Flows are generated rapidly,
often by several process threads simulaneously. Flow duration varies with the
performance of the attack tool, usually between several hundred milliseconds
and several seconds.
Mostly consecutive: Flows are established and closed in succession, eventu-
ally only a few flows overlaps. Attacks aim to overwhelm the victim with flow
generation rate. Flows have a very short duration.

Table 4. Flow parallelity.

All simultaneous AD, BAD, LC, SF, SL

Mostly simultaneous DS, GB, HDT, HU, LO4, TH, UD

Long-term consecutive LO

Mostly consecutive ADR, BD, FF, HF, HO, JA, JL, UD, XO

4.4 HTTP Requests Per Flow

Number of outgoing HTTP requests per flow for a single destination IP address
can also be considered a decent detection metric. Normal non-DoS traffic con-
sists both of TCP flows with only one HTTP request and of TCP flows that
carry multiple HTTP requests along with respective responses. Therefore on



32 V. Bukac and V. Matyas

average, the number of HTTP requests exchanged over destination port 80 is
higher than the number of TCP flows with this destination port. This important
characteristic is only rarely emulated by DoS tools. Volume-based HTTP attack
tools produce many HTTP requests and their distribution between flows is often
very straightforward, as can be seen in Table 5.
One per flow: Each established TCP flow is closed after at most one HTTP
request is sent from the attacker to the victim. The ratio between the number of
HTTP requests and the number of TCP flows carrying HTTP protocol messages
converges to 1 (Fig. 9). Special case are slow attacks based on slow sending of
HTTP header. Although these attacks take a long time, each flow contains only
one HTTP request message that is slowly constructed.
Multiple per flow: Established TCP flows can carry one or more separate
HTTP requests and respective responses. Of the tested tools, none has exhibited
such behavior with chosen configurations.
Infinite per flow: TCP flows carrying attack HTTP requests are never closed
under normal circumstances and the request sending has not been observed to be
stopping during our analysis. The ratio between the number of HTTP requests
and the number of TCP flows carrying HTTP protocol messages during each
interval is much higher than 1. The ratio usually copies the packet rate curve
(Fig. 10).

Table 5. HTTP requests per flow.

One per flow ADR, FF, GB, HDT, HF, HO, HU, JA, JL, LO, SL, TH, UD

Infinite per flow AD, BAD, LC

4.5 HTTP Request URIs

We are convinced that the HTTP uniform resource identifier (URI) monitoring
can be used as one of the most important metrics to verify the presence of
an outgoing DoS attack in a given traffic sample. Observing repeated similar
URIs either within one HTTP flow or within multiple flows with very similar
characteristics is a strong indication of internal relationship and possible evidence
of an outgoing DoS attack. Even though simply storing of all observed URIs
is inefficient, performance problems can be solved, for example, with counting
Bloom filters. Our analysis shows that from the perspective of source end DoS
detection, most DoS tools target only a very limited number of URIs. Observing
such HTTP requests exceeding predefined threshold is a sufficient signal of an
outgoing DoS attack in progress.

There are four basic techniques how DoS tools may process URIs. Attribution
of tools to each of these techniques is provided in Table 6.
URI string set: The tool targets not just one URI on a selected victim server,
but a predefined set of URIs. Using a set may slightly downgrade the attack
efficiency, as not only the most resource demanding page is chosen to be the
target, but also several others. If only one URI is accessed by the tool, the count



Analyzing Traffic Features of Common Standalone DoS Attack Tools 33

Fig. 9. FF HTTP requests per flow. Fig. 10. LC HTTP requests per flow.

Fig. 11. JA unique HTTP request count. Fig. 12. HU unique HTTP request count.

Fig. 13. HU requests without parameters. Fig. 14. JL flow packet count distribution.

Fig. 15. UD flow packet count distribu-
tion.

Fig. 16. HO flow packet count distribu-
tion.



34 V. Bukac and V. Matyas

of unique HTTP requests in time is equal to 1 (Fig. 11). It is also not uncommon
for tools to not allow the change of the target URI at all (i.e., a basic value such
as index.htm is employed).
Page crawling: The tool starts with an initial URI and gets more URIs by pars-
ing the links in the HTTP response. None of the tools in our analysis employed
the page crawling.
Parameter change: The base domain and file path remain constant, but full
URI is made unique by adding unique parameter values. Unique parameter values
render webpage caching servers between the attacker and the victim useless,
therefore make the attack mitigation more difficult. Figures 12 and 13 show the
difference between capturing full URIs and without parameters.
Random URI:URI may be fully randomly generated. That presents a challenge
for attack detection and mitigation, but attack effectiveness is severely degraded.
A huge majority of responses is Error 400, therefore the web server does not
saturate its outgoing bandwidth and also do not devote so much computational
power to retrieve the response.

It should be noted that URI frequency monitoring is unreliable metric when
the webpage in question is limited to only a few pages. Therefore a combination
with other metrics, such as suspicious User-Agent string monitoring, is necessary.

Oppositely, an overly large number of hard-coded URIs negatively impacts the
attack power. Although accessing a large number or URIs makes intermediate
caching less effective, the attacker also partially sacrifices his attack potential.
Different URI requests require different volume of resources to process. With the
suggested approach not only resource-demanding requests (e.g., DB searches,
form submits), but also generic requests are sent towards the victim, lowering
the attack effectiveness.

Table 6. HTTP request URIs.

URI string set ADR, FF, GB, HDT, HF, HO, JA, JL, LO, LC, SL, TH, UD

Parameter change AD, BAD, HU

Random URI JL, UD

4.6 Flow Packet Count

Packet count is one of the most important properties of every flow. We believe
that it can be used to detect spoofed attacks, some classes of non-spoofed DoS
attacks and, most importantly, it can serve as an indicator of similarity between
seemingly unrelated flows. TCP attack tools produce traffic where all closed flows
have exactly the same packet count (disregarding possible TCP retransmissions).
We believe that when applied to high flow (count) tools (e.g., SD, XO, JL),
this metric can be both very precise and computationally efficient. Configurable
precision can be devised from how many flow counts must be correctly predicted
in order to consider those flows being part of a DoS attack.



Analyzing Traffic Features of Common Standalone DoS Attack Tools 35

The purpose of normal traffic is to transmit data between communication par-
ticipants. In terms of TCP, three packets are required to establish the connection
and one or more packets to terminate the connection. Of those, two or more pack-
ets must be sent by connection initiator. Therefore, any closed connection with
only two or less packets sent by the flow initiator could have not transmitted
any data. Oppositely, TCP-based attacks usually transfer few packets per flow,
aiming to exploit TCP rather than transmit data.

As is shown in Table 7, majority of tools can produce homogenous traffic from
the point of flow packet count. For example, HTTP POST flooding attack by
UD generates flows with vast majority having 7 packets after closure (Fig. 15).
Oppositely, HO is one of the tools whose traffic does not provide any recognizable
flow packet count (Fig. 16). Excluded were tools whose connections were never
closed during the first minute of the attack (AD, BAD, HF).

Table 7. Flow packet count distribution.

All flows the same
packet count

ADR, BD, DS, FF, GB, HDT, JA, JL, LC, LO1, SD, SF,
SL, UD, XO

Minimal differences LO, SD, UD

Significant differences HDT, HO, HU, JL, LO, SD, TH, UD

5 Discussion

Most standalone DoS tools are single-purpose programs that are capable of only
one type of attack. Moreover, even tools that support multiple attack types can
rarely launch several attacks simultaneously. Majority of tools does not require
root privileges and therefore can be executed on computers at work, school or
internet cafe. Basic operations with DoS tools do not require advanced knowledge
about the victim or the type of attack. Most tools allow for targeting only one
victim at a time. This is an important observation for source-end detection,
because statistics of multiple flows aimed at a single target can be included in
detection.

5.1 Traffic Features and Aggregation

Network traffic generated by tools in our set presents a variety of DoS attacks.
Even though it was possible to classify attacks by the basic concept, every attack
was unique in some regard.

Although almost every traffic feature that we measured yielded some results,
none proved to be sufficient on its own for the detection of DoS attacks in
the source-end network. Every feature can detect only a subset of existing DoS
attacks. Standalone features suffer from false positives, but more importantly,
have an inherent limit of false negatives rate. Different classes of DoS attacks
have different properties and none of the traffic features could be applied to
all. Employing just one input feature for DoS detection results in an inability



36 V. Bukac and V. Matyas

to detect many classes of attacks. Still prevalent assumptions about DoS traffic
regarding traffic volume, flow composition or protocol compliance are obsolete
and cannot be applied to DoS attacks in general, rather only to small DoS attack
subclasses.

Therefore we believe that an aggregation of multiple features is necessary to
be used for a general detection. We support the approach taken, for example,
by [18,22] that collect multiple feature values and subsequently compute their
aggregate importance.

Serious consideration must be given not only to the computational efficiency
of the detection, but also to an efficient collection of input values. Features
included in the NetFlow standard are therefore preferred. However, as our results
show, this limited set of flow-based statistics and network layer features may not
be sufficient for the reliable confirmation of some classes of DoS attacks (e.g.,
slow attacks cannot be detected with volume-based detection metrics). In order
to balance the complexity of collection and processing of some features and
potentially huge amounts of packets/flows for analysis, sampling and filtering
of suspicious flows may be employed prior to the analysis. We believe that the
analysis process separated into several stages as proposed, for example, by Wang
et al. [24] is promising.

Traditional metrics such as a high bitrate and a high packetrate are by them-
selves not reliable options for the source-end detection. By definition, slow at-
tacks are hardly detectable via metrics focused on high volumes. Also, many tools
enable to specify the attack performance so it is possible to find a configuration
which cannot be detected through volume-based metrics.

5.2 Repeating Patterns

Most important observation of this work is that standalone DoS attack tool traf-
fic comprises of repeating operations. Every attack has a basic construction unit
that is iterated in time, creating a series of similar operations. Although some
characteristics of operations may change with each iteration, most defining prop-
erties are constant. Construction units may have a form of flows with distinct
characteristics in case of TCP-based attacks or HTTP requests and according
responses in case of HTTP-based attacks.

Noise traffic can be filtered out once DoS operations are identified. Subse-
quently, traffic can be analyzed on high scale. Patterns such as packet rate burst
behavior, flow count in time or flow paralellity are recognizable. Existing DoS
detection methods can be applied to the filtered traffic with increased accuracy.

Recognition of repeating patterns opens a new area of detecting outgoing
DoS attacks at the source end. This novel approach presents challenges how
to identify construction units in a traffic that contains both benign traffic and
malicious traffic, how to determine which unit properties are constant and how
to apply chosen pattern matching in time efficiently. Benefits are: high precision
growing with each next correctly identified operation and possibility to detect
yet unknown attacks. Since repeating patterns have been identified across all



Analyzing Traffic Features of Common Standalone DoS Attack Tools 37

classes of attacks, it can become a basis of a very broad detection method. For
illustration, we provide example scenarios of this new approach to DoS detection.
Example 1 – BD. The traffic comprises of separate attack flows. Each flow is
to be considered an operation. Each flow has the same packet count, packet size
distribution and is carrying TCP segments. Each flow has the same TCP flag
composition. The flow is always established via a correct TCP 3-way handshake
(3WH) and terminated by the attacker with the TCP FIN segment, which is
followed by the TCP RST segment from the victim. TCP segments don’t carry
any payload. All of the TCP header option fields of packets in one flow have the
same values as the equivalent packets in other flows. All flows have a very short
duration, 99% of them take between 0.1 and 0.12 seconds. None of the packets
has the time to live (TTL) value altered or is using a spoofed IP address.
Example 2 – AD. The attacker opens a fixed number of simultaneous flows
towards the victim. Repeated HTTP requests are sent over each flow. Each
HTTP request is an operation. All packets with HTTP requests have the same
length, TTL field value and packets are not fragmented. Header of every HTTP
request contains the same fields with the same values. The referer field is always
missing. The full URI comprises of a basic path and parameters. The path is
similar across all flows. The parameter is numeric and is gradually rising, while
the second parameter is a static string.

5.3 Evasion Techniques

Most standalone DoS tools do not support any type of detection evasion tech-
niques. Even if supported, they are not enabled by default. Most frequent are
various kinds of traffic properties randomization. Randomization is usually con-
figurable only for the packet fields chosen by a tool creator. Therefore, the effect
of randomization can frequently be negated if multiple input features/header
fields are analyzed in conjunction.

A similar technique can be observed at URI randomization. Adding random
parameters such as timestamps in Unix format (e.g., AD, BAD), random pa-
rameter values (e.g., LO) or even random parameters (e.g., HU) can be used
both to evade simple DoS detection systems and to circumvent content caching
between the attacker and the victim.

Randomization is a powerful weapon for attacker, but it is not almighty.
Excessive or impromper randomization can be detrimental for the attacker by
making his traffic more visible. For example, as noted above, attack tools com-
monly randomize User-Agent string of HTTP request header [8]. While this is
reasonable for victim end detection systems, because User-Agent string cannot
be used to classify attack traffic, it significantly raises suspicion of source end de-
tection systems. Even more importantly, many attack traffic features cannot be
randomized without severe degradation of attack performance (e.g., flow packet
count for TCP SYN attack).

Employing evasion techniques for the network or transport ISO/OSI layer was
rare. SF was the only tool in our set that employed IP spoofing. We assume that



38 V. Bukac and V. Matyas

IP spoofing is not popular with these tools, because it enforces the use of only
the most primitive attacks, such as SYN flood.

5.4 Future Work

We perceive this work is a necessary prerequisite to our follow-up research on
DDoS attack detection. Creation of this work was compelled by the lack of up-
to-date traffic samples and sparse reliable information on traffic properties of
contemporary DoS attacks. We are convinced that the persistent trend when
DDoS detection methods are evaluated against well-understood, but ruefully
outdated attack descriptions/attack tools, is inherently flawed. Even though the
exact properties of each attack that we analyzed, varied, we have discovered a
set patterns recurring among DoS tools from different creators. We believe these
patterns will prevail for a longer time than simple attack signatures.

The key revelation is the presence of repeating operations in all analyzed DoS
attack traffic. Therefore, we propose a new research area for the detection of
DoS attacks at the source end that is based on repeated attack pattern recog-
nition. We discuss overall DoS tool properties and employed detection evasion
techniques. Since attack features are not mutually comparable due to inherent
detection efficiency limitations, it is crucial that researchers include their DoS
attack traffic assumptions and any possible evasion techniques in every research
output/publication that is dealing with DoS attack detection.

Further research will be required to analyze why these patterns are prevalent.
Possibly, this is because of focus of tools’ creators on victim end defense. Even
though thorough per-packet randomization is possible, it results in an increased
load of the source host, brings implementation issues and most notably, it de-
creases an overall performance of the tool. We frequently encountered per-flow
randomization or even randomization taking place only once when the tool was
run. From the victim end perspective, this level of traffic randomization is usu-
ally sufficient, due to distributed nature of attacks. However, this behavior can
be exploited by source end DDoS detection solutions, because it increases attack
visibility near the source host.

The impact of randomization on detection metrics depending on the place-
ment of detection sensors is another interesting area of further research.

Volumetric DoS attack traffic consists of repeated operations with minimal
differences. We intend to explore the possibility of creating a grammar that
would allow us to describe the attack traffic from the source host perspective in
an easily understandable, yet precise notion. The grammar will give researchers
a good understanding of what operations are common and how the attack traffic
changes between different versions of one tool.

6 Conclusions

This paper encourages and supports the evaluation of new source end DDoS
detection systems against contemporary DoS attacks. We have analyzed state-
of-the-art standalone DoS tools that have been observed in real DoS attacks.



Analyzing Traffic Features of Common Standalone DoS Attack Tools 39

We provided detailed properties of attack traffic and emphasized notable traffic
anomalies from the perspective of source end DoS detection. Attack traffic is
classified by each input feature and overall characteristics of each class are listed.
Attack traffic traces are suitable for evaluation of DoS detection and mitigation
systems through overlay methodology. More details about our experiments can
be found in our technical report [8]. The traces are available for download at [1].

References

1. DDoS-Vault project (2015). https://github.com/crocs-muni/ddos-vault/wiki
2. Alomari, E., Manickam, S., Gupta, B.B., Karuppayah, S., Alfaris, R.: Botnet-based

Distributed Denial of Service (DDoS) Attacks on Web Servers: Classification and
Art. International Journal of Computer Applications 49(7), 24–32 (2012)

3. Andrade, M., Vlajic, N.: Dirt Jumper: A New and Fast Evolving Botnet-for-DDoS.
International Journal of Intelligent Computing Research 3(3), December 2012

4. Arbor Networks. Worldwide Infrastructure Security Report, vol. IX (2014)
5. Aviv, A.J., Haeberlen, A.: Challenges in experimenting with botnet detection sys-

tems. In: 4th USENIX Workshop on Cyber Security Experimentation and Test
(CSET 2011) (2011)

6. Bartolacci, M.R., LeBlanc, L.J., Podhradsky, A.: Personal Denial Of Service
(PDOS) Attacks: A Discussion and Exploration of a New Category of Cyber Crime.
Journal of Digital Forensics, Security and Law 9(1), 19–36 (2014)

7. Bhuyan, M.H., Kashyap, H.J., Bhattacharyya, D.K., Kalita, J.K.: Detecting Dis-
tributed Denial of Service Attacks: Methods, Tools and Future Directions. The
Computer Journal 57(4) (2013)

8. Bukac, V.: Traffic characteristics of common DoS tools. Masaryk University, Tech-
nical report FIMU-RS-2014-02, April 2014

9. Cambiaso, E., Papaleo, G., Aiello, M.: Taxonomy of slow DoS attacks to web
applications. In: Thampi, S.M., Zomaya, A.Y., Strufe, T., Alcaraz Calero, J.M.,
Thomas, T. (eds.) SNDS 2012. CCIS, vol. 335, pp. 195–204. Springer, Heidelberg
(2012)

10. Wong Onn Chee and Tom Brennan. H.....t.....t....p....p....o....s....t. In: OWASP
AppSec DC 2010. The OWASP Foundation (2010)

11. Dimitris, G., Ioannis, T., Evangelos, D.: Feature selection for robust detection of
distributed denial-of-service attacks using genetic algorithms. In: Vouros, G.A.,
Panayiotopoulos, T. (eds.) SETN 2004. LNCS (LNAI), vol. 3025, pp. 276–281.
Springer, Heidelberg (2004)

12. Edwards, J., Nazario, J.: A survey of contemporary Chinese DDoS malware. In:
Proceedings of the 21st Virus Bulletin International Conference (2011)

13. Engen, V., Vincent, J., Phalp, K.: Exploring Discrepancies in Findings Obtained
with the KDD Cup 1999 Data Set. Intelligent Data Analysis 15(2), 251–276 (2011)

14. Hansen, R.: Slowloris HTTP DoS (2009). ha.ckers.org/slowloris/ (October 22,
2014)

15. Kabiri, P., Zargar, G.R.: Category-based selection of effective parameters for intru-
sion detection. International Journal of Computer Science and Network Security
(IJCSNS) 9(9), 181–188 (2009)

16. Mirkovic, J., Prier, G., Reiher, P.: Source-end DDoS defense. In: Second IEEE
International Symposium on Network Computing and Applications, NCA 2003,
pp. 171–178 (2003)

https://github.com/crocs-muni/ddos-vault/wiki
ha.ckers.org/slowloris/


40 V. Bukac and V. Matyas

17. Mirkovic, J., Reiher, P.: D-WARD: A Source-End Defense against Flooding Denial-
of-Service Attacks. IEEE Transactions on Dependable and Secure Computing 2(3),
March 2005

18. Öke, G., Loukas, G.: A Denial of Service Detector based on Maximum Likeli-
hood Detection and the Random Neural Network. The Computer Journal 50(6),
September 2007

19. Onut, I.-V., Ghorbani, A.A.: Features vs. attacks: A comprehensive feature se-
lection model for network based intrusion detection systems. In: Garay, J.A.,
Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp.
19–36. Springer, Heidelberg (2007)

20. Plohmann, D., Gerhards-Padilla, E.: Case study of the miner botnet. In: 4th In-
ternational Conference on Cyber Conflict (CYCON). IEEE (2012)

21. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a sys-
tematic approach to generate benchmark datasets for intrusion detection. Com-
puters & Security 31(3) (2012)

22. Siaterlis, C., Maglaris, V.: Detecting incoming and outgoing DDoS attacks at the
edge using a single set of network characteristics. In: 10th IEEE Symposium on
Computers and Communications (ISCC 2005) (2005)

23. Thing, V.L., Sloman, M., Dulay, N.: A Survey of bots used for distributed denial of
service attacks. In: Venter, H., Eloff, M., Labuschagne, L., Eloff, J. (eds.) New Ap-
proaches for Security, Privacy and Trust in Complex Environments. IFIP, vol. 232,
pp. 229–240. Springer, Heidelberg (2007)

24. Wang, F., Wang, H., Wang, X., Su, J.: A new multistage approach to detect subtle
DDoS attacks. Mathematical and Computer Modelling 55(1–2), 198–213 (2012)

25. Wilson, C.: Attack of the Shuriken: Many Hands, Many Weapons, Webpage (2012).
http://asert.arbornetworks.com/ddos-tools/ (May 29, 2015)

26. Yu, J., Kang, H., Park, D.H., Bang, H.-C., Kang, D.W.: An in-depth analysis on
traffic flooding attacks detection and system using data mining techniques. Journal
of Systems Architecture 59(10), 1005–1012 (2013)

27. Zi, L., Yearwood, J., Wu, X.-W.: Adaptive clustering with feature ranking for
DDoS attacks detection. In: 4th International Conference on Network and System
Security (NSS), pp. 281–286, September 2010

http://asert.arbornetworks.com/ddos-tools/


Design of Cyber Security for Critical

Infrastructures: A Case for a Schizoid Design
Approach

Avik Dayal1, Yi Deng1, and Sandeep K. Shukla2

1 FERMAT Lab, Virginia Tech, Blacksburg, VA 24061, USA
{ad6db,yideng56}@vt.edu

2 Computer Science and Engineering Department,
Indian Institute of Technology Kanpur,

Kanpur, UP 208016, India
sandeeps@cse.iitk.ac.in

Abstract. In this invited talk, we argue that designing cyber security
of critical infrastructure requires a spilt-personality approach to design
as opposed to design for correctness or for performance. Designing a
functionally correct system, or a performance constrained system is fun-
damentally different in the sense that such design requires us to build
models and to systematically refine models towards implementation such
that correctness is preserved between refinements, and performance op-
timizations are introduced during refinements. Designing systems with
cyber-security properties requires us to not only build models from the-
oretical principles, but also require modeling possible behaviors of an
adversary. Modeling adversarial behavior is akin to test-driven model re-
finement, and hence not so different from certain approaches used when
our goal is functionally correct design. However, for cyber-physical sys-
tems, we often need to detect an ongoing cyber attack since safe guards
for cyber security often depend on assumptions which can be invalidated
(e.g., insider attacks may invalidate perimeter security assumptions). De-
tecting ongoing attacks requires detecting behavioral anomalies in the
physical system under cyber control – thus requiring us to build mod-
els from data. Machine learning approaches could be used to build such
models. This we view as a schizoid approach – since the designer has
to not only model the system from physical principles, he/she also has
to build nominal behavioral models from data. While arguing this point
of view, we introduce a virtual SCADA (supervisory control and data
acquisition) laboratory we have built to help design cyber security of
critical systems. The majority of this talk focuses on describing this soft-
ware based virtual laboratory called VSCADA. Most of this research is
published in [8,11] and summarized here for the sake of exposition to the
present audience.

1 Introduction

In the absence of cyber threats, designing functionally correct, and performance
constrained cyber-physical systems usually followmodel based engineering (MDE)

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 41–54, 2015.
DOI: 10.1007/978-3-319-24126-5�3



42 A. Dayal, Y. Deng, and S.K. Shukla

approaches. InMDEapproaches, the first step of the designprocess normallywould
be the construction of a physics based mathematical model of the physical sys-
tem, and a control theoretic model of the control system. These are then put to-
gether in a formal or semi-formal framework (e.g., MATLAB/ Simulink, LabView,
PtolemyModels). Starting from such an abstractmodel, designers refine it down to
an implementationmodel in several refinement steps.The refinementsmaybe done
manually or in a formal transformation framework. The implementation model is
then validated for functional correctness, performance, real-time requirements etc.
Functional Safety, robustness to input assumptions, reliability under fault assump-
tions, and resilience to unknown adversities are considered as good design goals.
This worked well when the cyber-physical systems were placed in an air-gapped
environment with strong physical security, and in the hands of trusted engineers.

With the increasing networked distributed control of large and geographi-
cally distributed critical infrastructures such as smart grid, smart transportation
systems, air traffic control system etc., the world of critical infrastructure has
changed drastically. The business network of a utility are often connected to the
critical control network – a phenomenon known as IP-convergence. This has ush-
ered an unprecedented exposure to network borne cyber-attacks. Further, insider
attacks have been on the rise world wide. Therefore, design goals must include
cyber-security and cyber defense as first class design objectives. In this talk, we
argue that in order to do so, designers’ approach must assume a dual personal-
ity. While designing for robustness, reliability, functional safety – a model driven
engineering approach would work – whereas for designing for cyber-security and
defense, the designer has to step into the shoes of a malicious attacker. This
duality is not necessarily distinct because certain correct-by-construction design
approaches – for example, test-driven development approach requires designers
to think of an environment model which tries to bring the system under devel-
opment to errorenous states. The main duality we speak of comes from physical
principle driven model development vs. data-driven model development.

Examples of first kind of duality could be that one has to consider the various
observation or sampling points of the system (e.g. sensors to read or sample the
physical environment), and think how an attacker might compromise the unob-
servability of those points without authentication. Designer also has to worry
about how much knowledge of the system dynamics or the control mechanism of
the system might be actually reconstructed by the attacker by observing a few
compromised sensors or actuators. Moreover, one has to consider the actuation
points of the system, and ponder how many actuation points the attacker has
to take over in order to disrupt the dynamics of the system enough to create
considerable damage. One has to envision how to obfuscate the dynamics of the
system even when certain sensing or actuation points are compromised.

The second type of duality that we emphasize here arises from that fact that a
large percentage of attacks recently were induced by inside attackers. Perimeter
defense to protect the sensors/actuators/network alone cannot defend the system
from insider attacks. In such cases, the question that one is confronted with is



Design of Cyber Security for Critical Infrastructures 43

whether there is enough indication of an ongoing attack in the dynamics of the
physical system itself.

This approach to viewing the system from an adversarial position requires one
to topple the design paradigm over its head, and we will need to build models
from data, and not just generate data from models. The designer has to observe
a system in action even through partial observations, and construct a model
close enough to the real system model and then use the partial access to create
damages to the because the approximate model allows her to do so. Almost like
a schizophrenic duality, the engineer also has to wear the designers hat, and
consider a game in which the observations are obfuscated enough to render it
impossible for an attacker to build any useful model to induce clever attacks.
The designer has to worry if she can construct from unobfuscated observations a
dynamics quickly enough so that the difference between the expected dynamics
and the real dynamics can trigger alarms to alert the system administrators. In
this talk, while discussing this view of system design, we will also talk about
VSCADA – a virtual distributed SCADA lab we created for modeling SCADA
systems for critical infrastructures, and how to use such a virtual lab completely
implemented in simulation – to achieve the cyber security and cyber defense
objectives of critical infrastructures – through attack injections, attack detection,
and experiments on new defense mechanisms.

In the rest of this paper, we do not discuss this dual-personality issue further
– instead provide an exposition of an experimental virtual lab we constructed
which we envisaged as a tool in the hands of designers of SCADA systems which
are integral parts of critical infrastructures such as power grid, water/suage sys-
tem, transportation systems etc. Since the designers of such SCADA systems
has to consider cyber attacks while designing such systems, a modeling and ex-
perimentation framework might be useful. A number of national laboratories
in the United States, and few academic institutes have built physical SCADA
labs, where real equipments are networked, and a small scale physical system
is controlled and monitored through the real SCADA which can then be used
for experimenting with cyber security. However, building such a lab is capital
intensive, and often not possible. Therefore, our goal is to provide an alternative
solution which can be used at least for certain cyber security experiments, evalu-
ating cyber-security solutions, and educating students, and engineers about the
dual track approach to designing cyber secure critical systems. In this laboratory,
the physical system is simulated with a domain specific simulator – for example,
for a power grid, PSLF or any such simulator can be used as a back-end surrogate
for a real physical power grid. The data collection, measurements, and control
are then designed through a SCADA front-end. Various security measures can
be then emulated in software, and in software simulation of the network using a
network simulator. The approach of data-driven modeling of nominal behavior
of the physical system is done by collecting data from the back-end simulator
when no cyber attack is simulated, a nomimal behavioral model is built with ma-
chine learning techniques, and classification of behaviors to differentiate between
a cyber-attack induced behavior vs. a nominal stochastic variation in behavioris



44 A. Dayal, Y. Deng, and S.K. Shukla

learnt, and then used on-line to check for various cyber-attack scenarios. In what
follows in the rest of the paper is a brief description of the architecture, and use
cases for this virtual SCADA Lab.

1.1 Goals of Designing a Virtual SCADA Lab

Supervisory control and data acquisition (SCADA) systems are systems designed
to provide real time data on production operations, implement efficient con-
trol paradigms, and reduce control costs of operation. Although these systems
were originally built to be in isolation, with the use of advanced computing and
communications technologies, more and more SCADA systems are connected to
proprietary/commercial networks. This allows more information to be shared
across platforms. To assess the efficiency, security, or resilience of the deployed
systems, system engineers need to have a test bed to verify the correctness of
their SCADA configurations. Such a test bed should be scalable, flexible, sup-
porting many SCADA communication protocols, and support multiple scenarios
[1].

Though SCADA is built on a myriad of communication protocols, all we at-
tempt to classify the different methods of attacking and disrupting these proto-
cols into attacks that target availability, integrity, and confidentiality. In general,
SCADA systems have communication protocols at all layers of the OSI reference
model: the Physical layer, MAC layer, Network and Transport Layers, and the
Application layer [1]. Though attacks on other layers can be implemented in our
SCADA system, we consider denial-of-service (DoS) attacks that occurs at the
Network and Transport Layers. For the purposes of our test bed we consider
scenarios that compromise three security objectives and experimentation on our
test bed. In considering the cyber-security of SCADA networks, we classify ma-
licious attacks into three types:

•Attacks targeting availability, also called DoS attacks that aim to delay or
block SCADA communications.

•Attacks targeting integrity that aim to modify or disrupt the data exchange
in the SCADA system

•Attacks targeting confidentiality, such as Man-in-the-Middle attacks that
intend to acquire unauthorized information from the SCADA network.

2 Virtual SCADA Testbed Design Methodology

The distributed virtual SCADA test bed is built on several design main objec-
tives that differentiate with other SCADA test bed. The primary advantages
that this test bed offers are Reconfigurability, Virtualization, Standardization,
and Scalability (RVSS):

• Reconfigurability the configurations of virtual remote devices, instruments,
network simulators and network topologies are adjustable

• Virtualization all hardware devices and their behaviors are modeled and
represented in software so that the users can easily extend the scale of the system.



Design of Cyber Security for Critical Infrastructures 45

• Standardization most commonly used communication protocols such as
OPC, Modbus, etc. are capable of being implemented and integrated into this
platform.

• Scalability heterogeneous systems, large-scale systems are modeled accu-
rately and support multiple users simultaneously.

2.1 Distributed VSCADA Testbed System Architecture Design

In our framework, the scalable unified back-end infrastructure manipulates the
generation of measurement data, and the application specific front-end infras-
tructure implements data visualization and SCADA control features. The back-
end development usually has the application-specific simulation framework;
whether it is a real-time simulator or non-real time simulator. A light-weight
virtual machine (LVM) simulates the operating system of each sensor. The field
database holds the generated information from the simulation engine, and a
script takes changes in the simulation process depending on the messages sent
from the front-end. First the back-end architecture is described, followed by
the front-end. The entire architecture infrastructure is illustrated in Fig. 1. The
network is also simulated through communications simulators, which can be
connected to security analysis tools. These network analysis tools simulate ways
possible attackers can gain information and compromise the SCADA system.

Fig. 1. Block diagram of the proposed Distributed Virtual SCADA

To handle the multiple Human Machine Interfaces (HMIs) that may run mul-
tiple simulations simultaneously, we use discrete event driven simulation to han-
dle the system state. Discrete event driven simulation is when discrete events
cause changes to the system. Usually, these events are anything relevant to a
SCADA system and are unevenly distributed in time. A few examples include a
load change in a power system or energy production in a nuclear control center.



46 A. Dayal, Y. Deng, and S.K. Shukla

Since there are variables constantly changing the simulation, we use an event
scheduler in Python to the different instances of the simulation that is running.
A simulation engine continuously creates scenarios dependent on changes to the
HMI.

2.2 VSCADA Backend Architecture Design

Before the simulation starts, we initialize the system state and create a list of
events. At the start of the simulation, an event scheduler records the current
system time and event list. The events are stored with timestamps in the order
of arrival. These events are sent over the communication network to the front-end
after the start of the simulation. The scheduler replaces existing events with new
events corresponding to the old event when the new simulation is started. After
replacing the events, the scheduler updates the system time. The communication
network then sends the information to the front-end, or HMI.

The figure below shows the backend infrastructure which consists of the net-
work simulator, the sensor nodes, and the application simulators. Each sensor
node is simulated in a lightweight virtual machine, which contains a local net-
work monitor to interact with the network simulator, an OPC server, application
database, and local network monitor. Each node gets sensor data from a database
macro that controls the simulation engine.

In this SCADA system, OPC works as a communication protocol that works
with the HMI and back-end simulator. If a change to the HMI, such as a load
change, is made, the interactive agent picks up that new information and runs a
new simulation. Both the variable change and the results of the new simulation
are sent using the OPC protocol implemented by PyOPC. During the PyOPC
processing, the system will first configure the initial states, and then design
the system topology and system parameters, and finish the simulation control.

Fig. 2. Block diagram of back-end infrastructure and implementation of LVM with
data flow of simulator middleware using PyOPC



Design of Cyber Security for Critical Infrastructures 47

NS2 is used to simulate the communication network. The interactive agent con-
trols the simulation engines. The simulation engine runs a new simulation for a
period of time and saves the new sensor values to a database. A script writes
this time stamped values to tags that are read by PyOPC. Tags are blocks of
information that are used by the HMI to allocate data. Each tag is capable of
receiving information over some protocol and do some calculation and prediction.

Since in between simulations, there is the possibility of a loss of synchroniza-
tion, an algorithm is used to update the simulation. This algorithm is shown in
Fig. 3. The algorithm creates new simulations in an interrupt driven process,
as shown below. After the simulation has started, a scheduling agent checks
for changes in the HMI. The scheduling agent will continue to send out infor-
mation until changes from the HMI are detected. The changes from the HMI
correspond to new simulation parameters and creates a new set of simulation
data. The scheduling agent then changes the pointer from the current time to
the starting point of the new simulation.

Fig. 3. An algorithm for synchronization between the simulation process and the in-
terrupted new inputs

2.3 VSCADA Frontend Architecture Design

The SCADA HMI interacts with the communication network infrastructure by
sending synchronized certain packets of data representing events in the system.
Tags are used as inputs to the system, such as a load change or a fault. These
tags are stored inside of a process database, which updates the HMI. Changes to
the HMI are send to the scheduler and logged. Synchronization error is avoided
with the use of an optimized global scheduler. Each tag is represented either
as an analog or digital input and communicates over the network simulator.
Each tag gets its data from the OPC Client software. The OPC client is part of
the front-end design. The time for polling is predetermined by the HMI. Each
tag connected to the OPC client corresponds to an identical tag on the OPC
Server in the back-end infrastructure. The network delay in the HMI is simulated
through different network simulators, discussed in the next section.



48 A. Dayal, Y. Deng, and S.K. Shukla

Fig. 4. Block diagram of front-end infrastructure and data flow of process database

2.4 Network Simulation/Emulation Architecture Design

When the simulation engine sends out values to the HMI, it is important to
be capable of modeling the time delay in the cyber physical system. This could
potentially be exploited in a cyber-attack. For this reason, we use a network sim-
ulator to model the delay paths that are involved in a large power system. This is
especially prevalent for large scale distributed grids, which have large distances
between nodes, corresponding to significant time delays between measurements.
Thus, for each container, we have to add a delay in the in the network simulator
that corresponds to the geographical distance from the HMI. Another important
part of the network simulation is accurately representing the protocols used in
the network. Since a vast majority of the protocols are implemented using a
TCP/IP suite, we use that in this case, especially when implementing the OPC
protocol over TCP/IP. We also emulate the different tools that are available to
the potential hacker. With this reconfigurable lab, any potential user could gain
or restrict access to certain parts of the network, which could test what damage
an attacker could do with different knowledge about the network. It is important
to consider scenarios where the attacker has detailed knowledge about the struc-
ture of the network, to account for sabotage. In this situation, we use Wireshark
as a tool to observe and record information on the network.

3 VSCADA Implementation

The Virtual SCADA software test bed was divided into five parts: 1) the HMI; 2)
the communications protocol, and the communications network 3) the SCADA
master server, which will be represented using a local process database; 4) the
sensors operating system, which are simulated in a lightweight Linux Container,
and 5) the sensor values which are created in a simulation software. The platform
consisted of computers running 64-bit version of Windows 7. However, the virtual
machines and containers that that hosted the HMI and the sensor operating sys-
tem, respectively, ran Linux. In the platform, we had one computer that served
as the HMI, and another that served as the backend simulator. In simulating
cyber-attacks, a third computer was used as an attacker to the network.



Design of Cyber Security for Critical Infrastructures 49

3.1 Human Machine Interface (HMI)

We use iFix as the software package to simulate the HMI. iFix is developed by
General Electric and includes a SCADA engine, with an open architecture [9].
Since iFix is widely used by power utilities, it gives an advantage over other soft-
ware packages. iFix gives the flexibility of communicating with multiple hardware
components from a single server. It also provides VBA scripting and a scalable
networking model. OPC is used as the communication protocol, though this can
easily be modified to MODBUS or any other protocol. iFix receives simulation
results from an OPC server running on a central server, and then display sensor
values on the iFix GUI.

3.2 SCADA Master Control Server

We use the relational database that comes with the iFIX software that dictates
that information be sent in the form of tags. Each tag corresponds to an aspect
of the SCADA system, such as the voltage or phase of a bus. Over 400 tags can
be stored in a database at once. As shown in Fig. 1, tags can also run some basic
prediction algorithms.

Each tag corresponds to a particular item in the HMI. Tags can be triggered
by alarms that inform the user if an item is out of a specified range. We also use
tags to communicate between HMI and the server running the simulation. For
example, the 39 bus example stores faults values in tags that alert the server
about tripped fault lines. A tripped line creates a new simulation, Tags are given
read/write capability and can be specified as either analog or digital values.

On the backend, an OPC server stores information from the tags. Tags in the
OPC server each map to a tag on the client side. Though iFix has its own client
software, a separate OPC server had to be used. For the 39-bus case, we used
PyOPC as the server for the platform. PyOPC gives the ability to communicate
with other applications through Python Scripting. This gives an added advantage
of maintaining the same scripting language in the power system simulator as well
as the communication standard.

3.3 Communication Protocol

For this application, we used PyOPC as the server for the platform. Using Py-
OPC, tags would be created that would correspond to aspects of the SCADA
system. Data is stored in a database and sent over OPC to the HMI. PyOPC
uses a platform-independent standard, OPC UA (Unified Architecture), which
communicates by sending messages over local networks or internet. Any web
standard supported by the OPC UA server can be used for communication be-
tween an OPC server and client [10].

3.4 Linux Containers/NS2 Interface

In order to properly simulate the operating system of each RTU, we run several
Linux containers that each run a lightweight Linux operating system. Each op-
erating system runs a PyOPC server that obtains information from the software



50 A. Dayal, Y. Deng, and S.K. Shukla

simulator running on the main server. This PyOPC server then sends the par-
ticular sensor value information over the NS2 network simulator that connects
the sensor data to the front-end and mimics the network protocol that is being
used in the cyber-physical system.

NS2 is a communications network simulator that evaluates a network protocols
performance. NS2 can be used as a discrete event simulator. It has a library of
network models which covers all protocol layers except the physical layer in the
network reference model. Most of NS2 is written in C++.

3.5 Software Simulators

To interact with the HMI, information is written into an Excel database with
a Python script. The script is constantly updating the simulations from the
simulation engine to a local database. If any input tags are updated the python
script runs a new simulation and update its local database with a set of values
corresponding to the changed power system. This script can be used across
multiple platforms.

We use several different software suites to simulate the power flow and dynam-
ics simulation. To simulate the power systems, we use Power System Simulator
for Engineering (PSS/E) software for power system dynamic simulation. PSS/E
is a power system software package designed by Siemens, which provides both
steady state and dynamic power system simulations. PSS/E is written in Java
and also gives a GUI to use for power system simulation, though this is not
used. In addition there is a library of electromechanical dynamic models and
can simulate a system with up to 60000 buses. Since Python can be used with
PSS/E we use it for the 39-bus simulation and for the cascading failure example.

4 Cyber Security Case Study

We now present a scenario on our platform where we gain network access to the
SCADA server through which we would be able to learn information about the
structure of the system, and use that information to carry out an attack that
could cripple the cyber-physical infrastructure. We assume that our network
attack could obtain detailed system knowledge about the cyber-physical system.
This system knowledge could be used to launch a data injection attack that leads
to a cascading failure.

In creating these attacks, we simulate network vulnerabilities as well as system
vulnerabilities. For each of these scenarios we assume that the attacker has dis-
ruption resources that enable it to make changes to the system, a prior system
knowledge about critical buses required for stability, and disclosure resources
that allow the attacker to observe the system for long periods of time. Since we
control the simulation, we simulate attacks that require detailed knowledge of
the cyber-physical system.



Design of Cyber Security for Critical Infrastructures 51

4.1 Network Security Scenario

When considering cyber security attacks, we assume the attacker has some
knowledge of the network topology. Since our system uses the OPC protocol
over the TCP/IP protocol suite, we assume that the attacker has some access
to the network that is used to communicate with the devices.

We make a number of assumptions about the network in order for our attacker
to be able to gain access to sensor information. The attacker would require nodes
around the SCADA server to be vulnerable and time on the order of days to be
able to both survey the network and capture the state information necessary for
a data injection attack. Since the attacker has been observing the system, they
are also to estimate the sequence numbers on the TCP/IP packets to account for
the delay between observing the system and sending the false information. Such
a powerful attacker is probably an insider. Since our attacker has a priori system
knowledge, we assume they are targeting particular sensors that are critical to
the system stability. To characterize the network, a large number of open source
tools can be used to survey the network and find the range of IP addresses
near the target server. In this case, we use a software tool Zenmap to use the
TCP/IP protocol suite to isolate the IP address of the target server. This step
would ordinarily require time and knowledge of the network in question to isolate
the IP address of the OPC server. In our example, we find that the OPC server is
located at 38.68.240.171. Since the OPC protocol was designed to operate using
Microsofts DCOM standard, we use port 135 to initiate all connections across
the network. Once gaining access to the network, we use Wireshark to make
observations on the network and gather state information for a data injection
attack. Wireshark is a network packet analyzer that can capture and display
network packets in detail. Since it is cross-platform compatible, we are capable
of using it to observe the network across all operating systems in our network.
Wireshark also allows the ability to filter data and IP addresses, so a potential
attacker could collect data and analyze data at certain points of time. This allows
the attacker to record the system at different points in time that can be used in
a replay attack or for information in a bad data injection attack.

We can relay the information gathered from the device to the actual OPC
server by simultaneously running OPC client software. Doing this, we can create
a model of the dynamic communication and control process in the SCADA net-
work and create an attacker simulation of how the Power System works. Since
we also have the actual values of the entire simulation, we can compare how
similar an attacker model is to the actual power system. This entire process is
illustrated in the Fig. 5.

4.2 Data Injection Attack Implementation

We now describe a data injection attack that could be launched on our system
with knowledge obtained from observing critical sensor values. We assume the
attacker has a priori knowledge of the structure of the power system, which
means that they would know the critical nodes that would cause a cascading



52 A. Dayal, Y. Deng, and S.K. Shukla

Fig. 5. Process of gaining access to network for attack

Fig. 6. Process of gaining access to network for attack

failure. An attacker injects false data that causes a wrong state estimation of
the variables of the power system, which in turn causes cascading failures [13].
We use this network attack to create a cascading failure on our power system.
On our VSCADA system, we use a compromised node on the same network to
send faulty sensor data to the HMI. The simulation is run under steady state
operating conditions. At 1 second in the simulation, we manipulate bus values
to create a three-phase fault between buses 16 and 17. After 100 ms relays act
and trip the line to clear the fault. This causes the system to become congested
and few of the lines to overload. After three seconds, thermal limit relays act
and trip the line between buses 15 and 16. This causes the generators to go
out of synch with the power system completely failing. We demonstrate the
results of this simulated attack in Fig. 6. VSCADA is also capable of simulating
other attacks to SCADA systems. With access to the network we can launch
denial-of-service and man-in-the-middle attacks with varying levels of security.
We can also test the security firmware on the sensors, which can demonstrate
how feasible it is to compromise different sensors. Different security protocols
are also easily emulated and tested in this framework.



Design of Cyber Security for Critical Infrastructures 53

5 Conclusion

Our view regarding the design of cyber secure critical infrastructure is discussed
in this talk in terms of a dual-personality design approach – which we see as a
schizoid approach due to the split between traditional model driven engineering
of such systems, vs. data-driven modeling based approach to security. In order to
facilitate such a design, we are building a virtual laboratory, which we describe
in the paper. We present a virtual test bed that integrates several SCADA appli-
cations into a single framework. We describe the framework and how it emulates
the communication network that is used in the SCADA system. We also discuss
a possible cyber security attack simulation usecases in this framework. This by
no means is a complete solution, but captures our current thinking with regard
to the science of design of secure critical infrastructures.

Acknowledgments. Authors would like to thank the organizers of the SPACE
2015 Conference for inviting us to deliver this invited talk.

References

1. Krutz, R.L.: Securing SCADA Systems. Wiley Publishing, Inc. (2005)
2. Craig Jr., P.A., Mortensen, J., Dagle, J.E.: Metrics for the National SCADA Test

Bed Program, Report, Pacific Northwest National Laboratory, October 2008
3. Reaves, B., Morris, T.: An open virtual test bed for industrial control system

security research. International Journal of Information Security 11(4), 215–229
(2012)

4. Davis, C.M., Tate, J.E., Okhravi, H., Grier, C., Overbye, T.J., Nicol, D.: SCADA
cyber security test bed development. In: 38th North American Power Symposium,
NAPS 2006, pp. 483–488, Septembe 17–19, 2006. doi:10.1109/NAPS.2006.359615

5. Bergman, D.C., Jin, D., Nicol, D.M., Yardley, T.: The virtual power system test
bed and inter-test bed integration. In: Proceedings of the 2nd conference on Cy-
ber security experimentation and test (CSET 2009), p. 5. USENIX Association,
Berkeley (2009)

6. Giani, A., Karsai, G., Roosta, T., Shah, A., Sinopoli, B., Wiley, J.: A test bed
for secure and robust SCADA systems. In: 14th IEEE Real-time and Embedded
Technology and Applications Symposium (RTAS 2008) WIP session (2008)

7. Hong, J., Wu, S.-S., Stefanov, A., Fshosha, A., Liu, C.-C., Gladyshev, P.,
Govindarasu, M.: An intrusion and defense test bed in a cyber-power system
environment. In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–5,
July 24–29, 2011

8. Dayal, A., Deng, Y., Tbaileh, A., Shukla, S.: VSCADA: A reconfigurable virtual
SCADA testbed for simulating power utility control center operations. In: 2015
IEEE To Appear Power and Energy Society General Meeting, July 26–30, 2015

9. GE Intelligent Platforms, Proficy HMI/SCADA - iFIX, datasheet, GFA-562D, Au-
gust 2012

10. Lian, F.-L., Moyne, J.R., Tilbury, D.M.: Performance evaluation of control net-
works: Ethernet, ControlNet, and DeviceNet. IEEE Control Systems 21(1), 66–83
(2001)



54 A. Dayal, Y. Deng, and S.K. Shukla

11. Deng, Y., Lin, H., Shukla, S., Thorp, J., Mili, L.: Co-simulating power systems
and communication network for accurate modeling and simulation of PMU based
wide area measurement systems using a global event scheduling technique. In:
2013 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems
(MSCPES), pp. 1–6, May 20–20, 2013

12. Siemens, Dynamic Simulation, White Paper, 02/2
13. Liu, Y., Reiter, M.K., Ning, P.: False data injection attacks against state estimation

in electric power grids. In: Proc. 16th ACM Conf. Comput. Commun. Security,
Chicago, IL, USA, p. 21, November 2009



Designing for Attack Surfaces: Keep Your
Friends Close, but Your Enemies Closer

Trent Jaeger1, Xinyang Ge1, Divya Muthukumaran2, Sandra Rueda3,
Joshua Schiffman4, and Hayawardh Vijayakumar5

1 The Pennsylvania State University, University Park, PA, USA
2 Imperial College, London, UK

3 Universidad de Los Andes, Bogota, Colombia
4 Hewlett-Packard Labs, Bristol, UK

5 Samsung Research America, Mountain View, CA, USA

Abstract. It is no surprise to say that attackers have the upper hand on secu-
rity practitioners today when it comes to host security. There are several causes
for this problem ranging from unsafe programming languages to the complex-
ity of modern systems at large, but fundamentally, all of the parties involved in
constructing and deploying systems lack a methodology for reasoning about the
security impact of their design decisions. Previous position papers have focused
on identifying particular parties as being “enemies” of security (e.g., users and
application developers), and proposed removing their ability to make security-
relevant decisions. In this position paper, we take this approach a step further
by “keeping the enemies closer,” whereby the security ramifications of design
and deployment decisions of all parties must be evaluated to determine if they
violate security requirements or are inconsistent with other party’s assumptions.
We propose a methodology whereby application developers, OS distributors, and
system administrators propose, evaluate, repair, and test their artifacts to provide
a defensible attack surface, the set of entry points available to an attacker. We
propose the use of a hierarchical state machine (HSM) model as a foundation for
automatically evaluating attack surfaces for programs, OS access control policies,
and network policies. We examine how the methodology tasks can be expressed
as problems in the HSM model for each artifact, motivating the possibility of a
comprehensive, coherent, and mostly-automated methodology for deploying sys-
tems to manage accessibility to attackers.

1 Introduction

It is no surprise to say that attackers have the upper hand on security practitioners to-
day when it comes to host security. For the most part, security practitioners have little
insight into where the next exploitable vulnerability will be found, so there seems to
be little that they can do to detect and remove vulnerabilities before attackers. For ex-
ample, a significant effort has been put into reengineering of network-facing servers
(e.g., OpenSSH [45] and Postfix mail server [65]), but while these improvements have
prevented a variety of new exploits against those daemons, there are so many programs
that have access to network data that security practitioners are overwhelmed. On the

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 55–74, 2015.
DOI: 10.1007/978-3-319-24126-5_4



56 T. Jaeger et al.

positive side, many of these programs are run in unprivileged processes, so their com-
promise does not directly impact the system integrity. However, the negative side is that
we (the security community) are even less effective at preventing local exploits than
remote exploits.

Finding the root causes of such problems has been difficult. It appears that each
party in the construction and deployment of a system is at fault for multiple poor de-
cisions. Application developers clearly are not developing secure code. They still fail
to prevent the same types of basic vulnerabilities (e.g., buffer overflows) that we have
recognized for years. Further, when given type-safe languages with well-defined for-
mal semantics, developers choose C and various scripting languages, which have all
proven very difficult to use securely. OS distributors package the applications together
into distributions, but historically, they abdicate responsibility for securing deployment
of their distributions to application developers (it’s the programs that have the bugs) or
the system administrators (they cannot configure systems properly). Despite the intro-
duction of comprehensive mandatory access control (MAC) systems [43, 63] in some
distributions, we are still suffering from a variety of local exploits1. Finally, the system
administrators are left to try to deploy a secure system from insecure parts. It is an im-
possible task of immense complexity. Currently, in order to deploy a system securely,
a system administrator must understand the manner in which attackers can access their
systems via the network (which they do pretty well), how the access control policy man-
ages attackers’ access to process (such policies are complex), and how programs handle
untrusted input data (there are too many interfaces).

A variety of valuable security mechanisms have been developed, but these have not
resulted in shifting the balance from the attackers to the defenders. For example, we
have known about buffer overflows for many years, so a variety of mechanisms rang-
ing from buffer overflow prevention [14, 44] to protecting the programs execution in-
tegrity [1, 10] to controlling the operating sequences that may be invoked [17, 29]. The
expense of many of these services has prevented or delayed their adoption, so others
have focused on bug detection and prevention (e.g., [5, 40, 46, 68]). Researchers have
also developed models that enable reasoning about the integrity of systems [7,12]. How-
ever, the assumptions underlying these models have been in conflict with the practice
of deploying systems, and the security community has made little or no headway in
changing such practice. Researchers again have developed other models that approx-
imate classical integrity for conventional systems [28, 53, 57], but these require more
effort that has not been forthcoming. Finally, system administrators are left to contem-
plate all the options and trade-offs without any coherent approach to reason about such
options. Their task is far too complex.

Returning to the question of who is at fault, it appears that everyone is at one level or
another, so the question is how to proceed forward. A number of approaches have been
proposed to remove security decision-making from various parties. We agree that the
user cannot be trusted to make anything but win-win security decisions [60], but what
should be done about the application developers, OS distributors, and system adminis-

1 Part of the problem is that to reduce the complexity of use, these systems are used incompletely,
only to protect system services against network attackers, as proposed by other incomplete
methods [36, 41].



Designing for Attack Surfaces: Keep Your Friends Close, but Your Enemies Closer 57

trators? All need to make decisions that may impact security, but as with users, they also
should only decide among win-win choices with respect to security. Wurster and van
Oorschot argue this point for application developers [67], but we argue that this applies
to all parties. The challenge is how to apply this approach to all parties. Solworth argues
that this will require a fundamental change in systems and programming practice [56],
and while we agree that some changes should be encouraged wholeheartedly, we argue
that the revolutionary change must be accompanied by a tool-driven methodology that
enforces any new requirements comprehensively and usably for each party. Building on
the prior analogies, we refer to this approach as “keeping your friends close, but your
enemies closer.”2 The idea is that the application developers, OS distributors, and sys-
tem administrators must work by a methodology that supports decision-making among
secure choices rather than giving insecure choices.

In this paper, we propose a methodology for constructing and deploying systems
based on the concept of a hierarchical state machine [2] (HSM), a model used previ-
ously in software model checking. We find that application developers, OS distributors,
and system administrators each make decisions that impact security and that these deci-
sions build on one another, requiring a representation that enables checking of conflicts
between different party’s decisions. The HSM model represents a hierarchy of compo-
nents (originally, code modules) and their interactions (calls and returns, and resultant
data flows), but we find that this approach can be generalized to represent not only pro-
gram modules, but the data flows that result from the combination of programs into an
OS distribution with its access control policy and the data flows that result from the
combination of OS distributions into systems of OS distribution instances (which we
will call hosts, regardless of whether they run on physical or virtual machines) with
its network policy (and optionally, virtual machine monitor policy). With the system’s
data flows expressed in an HSM, the question then is whether we can automate key
decisions that these parties make. Our methodology identifies the types of decisions
that must be made by each party, which turn out to be the same decisions on different
artifacts, and we examine the possibility of automating or at least providing significant
automated support for these decisions. While it is early, we are optimistic that such
a view of system-wide management of data flow has potential as a new paradigm for
achieving secure construction and deployment in practice.

The remainder of the paper is as follows. In Section 2, we examine problems with
the current approach to configuring systems and discuss some trends that motivate our
proposed approach. In Section 3, we define the concept of attack surfaces, which serves
as the basis for decision-making for each party. In Section 4, we outline the proposed
approach, showing that application developers, OS distributors, and system adminis-
trators need to make decisions that are test against security requirements and be able
to build on each others’ work effectively. In Section 5, we define our approach, based
on the hierarchical state machine model [2] and examine the problems that need to be
solved at each methodology task in detail to identify the opportunities and challenges
in providing automated support for such tasks.

2 There seems to be a lot of confusion about the origin of this quote, ranging from Sun-Tzu
(Art of War), Machiavelli, and Petrarch, but we were not able to find a definitive source that
predates its use in the movie, “The Godfather, Part II.”



58 T. Jaeger et al.

Application
Developer

OS 
Distributor

System
Administrator

Program Distribution

System

Fig. 1. Application developers, OS distributors, and system administrators are the main parties in
constructing software components. The process of constructing a computing system involves the
composition of programs into OS distributions and then into systems.

2 Background

In this section, we review how systems are currently configured, the recent trends that
may change this situation (hopefully for the better).

2.1 System Configuration

Figure 1 shows the process of configuring a system in terms of the major parties. There
would be no system to configure without programs, and application developers pro-
vide programs. A program consists of one or more executables and scripts, optional
program-specific libraries, and deployment-independent data. Operating system (OS)
distributors configure one or more programs for their system, including the definition
of program packages for installation (including configurations) and security policies.
Here, we focus mainly on the access control policy covering the program. System ad-
ministrators compose systems from one or more OS distributions at a time. These distri-
butions may run on one physical platform or more, thanks to ubiquitous virtualization.
System administrators configure network policies to determine how the systems inter-
act, may apply system hardening [6] to improve the security of the system beyond that
of the OS distributor, and may change the configurations and access control policies
over programs. Users are not shown in Figure 1, as, like many others, we assume that
users do not make security-critical decisions [60].

Application developers have a tremendous challenge in building programs that pro-
tect themselves from attackers. Nearly any interesting program consists of multiple
components, written in multiple languages, by many application developers. Also, soft-
ware engineering practice has made design approaches that reuse components success-
ful, but many bugs result from incorrect reuse of components. Further, the trade-offs
that application developers make often involve compromises of security (e.g., features
vs. security) that result in further vulnerabilities. The current state of application de-
veloper practice with respect to security is so dismal that Wurster and van Oorschot
propose to take security-relevant programming decisions away from application devel-
opers through enforcement of best practices [67].

Operating system distributors have an even more difficult challenge in configuring
their OS distributions in a manner that ensures security. Historically, the task of OS
distributors is to provide an ecosystem for deploying applications easily, flexibly, and
with good performance characteristics. While operating systems fundamentally provide
protection mechanisms (e.g., address spaces and access control mechanisms), the aim



Designing for Attack Surfaces: Keep Your Friends Close, but Your Enemies Closer 59

was mainly to keep one program’s failure from affecting another program’s execution.
As a result, security decisions were largely left in the hands of application developers in
conventional systems. This approach is inherently incapable of enforcing security [31].
Some operating systems over the years deploy mandatory access control (MAC) for
controlling, even malicious, programs, but mandatory access control systems that aim
to enforce strong integrity guarantees [4,12,23,30,53] have not seen broad use, and the
application of MAC enforcement to conventional systems [41, 43] has been hampered
by complexity and enforcement of informal goals, such as least privilege [51]. Sol-
worth argues for improved testing effectiveness and reduced complexity in operating
systems [56], which we agree are insufficient in current MAC systems.

System administrators are left with the task of configuring the deployment of these
OS distributions consisting of many such programs. System administration may consist
of many tasks. First, system administrators specify the network policy, which deter-
mines how the deployed systems communicate among one another and the Internet at
large. Second, they may determine the programs that are run on each system. Third,
they may configure various system services based on the site’s security requirements.
Finally, system administrators are often responsible for the access control policies on
their systems. Given that they have many physical machines to manage and they must
respond to the non-deterministic behavior of their user community (and, of course, at-
tackers), the security community’s assumption that they can perform all of these tasks
effectively on such complex systems is misplaced.

Thus, we find that none of these parties is capable of performing the tasks necessary
to configure secure systems. Application developers do not ensure that their programs
can defend themselves from attackers. OS distributors piece these programs together
into systems without understanding the limitations that are built into programs nor con-
figuring systems in a way that ensures any meaningful security property. Finally, system
administrators are left with the responsibility to make all of this work. The semantic gap
between the fine-grained security decisions in programs and those at the system-level
make it impractical for even the best system administrators to configure a secure system
unless they terminate all connections to attackers.

2.2 Trends in System Configuration

Despite our current situation, there are some trends that indicate that the kind of revolu-
tionary change needed to develop systems that protect their integrity may be possible.

System Administrators Can Manage Firewalls. First, we start with a low-hanging fruit.
It appears that network firewalls are an effective approach for protecting systems from
attackers. We surmise that firewalls are effective for two reasons: (1) they actually are
capable of reducing the accessibility of systems to attackers and (2) system administra-
tors can define firewall policies with little knowledge about program or OS behavior.
First, a firewall defines the first line of defense to a system, so its effectiveness is largely
independent of how the system is configured behind the firewall. Thus, a firewall rule
that denies an attacker access to a particular host prevents the host from being directly
accessible to an attacker, regardless of how poorly the OS or programs are built Second,
system administrators only need to understand the binding between ports and programs



60 T. Jaeger et al.

to configure a firewall. This information is standardized, so it is well-known. The re-
sult is that system administrators can do an effective job of defining firewall rules, even
though these rulebases can get complex [66].

OS Distributors Define MAC Policies. MAC policy design unfortunately interacts more
subtly with the system’s programs, but recent trends in MAC policy configuration in-
volve OS distributors learning more about their programs. MAC policies for SELinux
are defined by a small group of experts in SELinux who define policies per program,
implying that they study the permissions necessary for the program to run securely.
This marks a major shift from OSes supporting arbitrary programs and their security
requirements to OS distributors planning for the programs that their OS will run (for
the security-relevant ones, anyway). A problem is that the permissions necessary for
the program to run are easier to determine than the permissions necessary to protect the
security of the system. Also, an artifact of the complexity of MAC policies is that users
of such systems are no longer capable of modifying the OS distributors’ policies. This
may be a blessing in disguise, as this removes the responsibility of MAC policy speci-
fication from system administrators and places more demands on the OS distributors to
assess programs. We have not yet seen the benefit from the former, as MAC policies for
conventional systems are not designed to meet a security goal (e.g., Biba integrity [7],
Clark-Wilson integrity [12], or even any practical approximation [28, 53, 57]) and OS
distributors still lack the tools necessary to understand how a program’s implementation
may impact the security of the system at large.

Application Developers Can Follow Directions. A variety of software engineering
methodologies have been developed, but it was not until recently that security im-
provement became a focus. Meta-compilation [68], ITS4 [61], and Prefast [34] were
developed to find program bugs, including security bugs. However, such tools are un-
sound (i.e., do not find all bugs). More powerful approaches were developed to prove
the correctness of complex software [47], such as drivers, although such techniques do
not scale to large software components. We believe that programmers could be induced
to follow a testing approach that scaled to the size of systems effectively. Many com-
panies implement structured test procedures before releasing code, but that has not had
a tangible effect on overall system security. Studies have shown that “test-driven devel-
opment” [39] does have a significant impact on defect reduction, but our concern is that
we are not doing the right testing in programs nor are we testing the composition of
programs and OS distributions into systems.

Emerging Systems Architectures Might Enable Better Scalability in Administration. Say
what one will about whether to trust your security-critical data to cloud systems [48],
but the cloud architecture offers an opportunity to improve the scalability of system ad-
ministrator decision-making. This occurs in two ways: (1) the cloud base platforms are
defined by the cloud vendor, enabling a single configuration to apply to many systems,
and (2) cloud vendors often provide a list of preconfigured OS distributions for their
clients, aiming to encourage the use of known systems. In the first case, we envision
that a single group of developers and administrators could define and manage the most



Designing for Attack Surfaces: Keep Your Friends Close, but Your Enemies Closer 61

secure system we can configure. Further, as this group could include the skills of applica-
tion developers, OS distributors, and system administrators, they could cover the entire
scope of security decisions. At present, however, few if any concrete security guarantees
are offered by cloud vendors3. Second, by standardizing the OS distributions used, there
is the potential that their configurations could be carefully designed to improve security.
This will depend greatly on how well the OS distributors understand their programs’
security defenses (or lack thereof).

Our claim is that the lack of a comprehensive methodology for designing and de-
ploying systems that meet concrete security requirements prevents us from getting the
upper-hand on attackers. As a result, everyone is the enemy of security. We have been
looking for short-cuts, hoping that by incremental changes, we may be able to luck-out
into the deployment of well-defended systems. However, the reality is otherwise. We
need an approach based on concrete security goals. To date only information flow secu-
rity models offer a precise and comprehensive understanding of possible attacks, as all
the paths that attackers can use to access processes are identified by information flows.
We need application developers to build their programs in such a way that they can un-
derstand the threats to their programs and evaluate the effectiveness of their defenses to
such threats. We need OS distributors to be able to reason about program security in the
context of their access control policy to determine if the threats they face are adequately
addressed. Finally, we need a methodology where system administrators can make the
decisions that they understand and leverage the improved efforts of the OS distributors
and application developers effectively.

3 Attack Surfaces

We propose that the basis for security decisions should be the system’s attack surface.
An attack surface is defined as the entry points that are accessible to an attacker [20].
An attack surface was originally defined in the context of a program, but we use it
in the context of programs, OS distributions, and systems, such that every design and
deployment decision must account for the resulting attack surface and whether that
attack surface can be adequately defended.

The key challenge regarding attack surfaces is to identify all the attack surfaces
that may be used in a deployment. Consider the Apache web server program. The
httpd-2.2.14 distribution including the Apache core and all the modules contains
2451 unique library calls. In theory, any of these library calls may cause an Apache
process to input data from a system object (e.g., a network connect, an IPC, a file, etc.)
accessible to an attacker. However, we may not want just any interface to be used to
read data that may be modified by an attacker. Instead, the Apache team may consider
only the interfaces that are known to be accessible to attackers, Apache’s attack surface.
A problem is that the Apache team’s view of an attack surface may not correspond to
the actual attack surfaces created when it is deployed.

Probably, the Apache team will consider the network interfaces among its attack
surface, but an Apache process may also retrieve untrusted inputs from files, IPCs, etc.

3 As a contrast, concrete claims regarding physical security, such as armed guards for the data
center, are made [3].



62 T. Jaeger et al.

Application
Developer

Propose
Program

Attack 
Surface

w/ Mediators

Tested Prog

Flow Errors 

Mediate

Find

Test

OS
Distributor

Propose
OS Distro

Attack 
Surface

w/ Mediators

Tested Distr

Flow Errors 

Mediate

Find

Test

System
Administrator

Propose
System

Attack 
Surface

w/ Mediators

Tested Sys

Flow Errors 

Mediate

Find

Test

Fig. 2. The proposed approach for testing the composition of programs and OS distributions into
systems.

For example, users may be able to provide content, including scripts, that Apache uses.
In another case, when Apache forks a child process it creates a pipe to receive input
from that child, but that child may be used to execute untrusted content, so such pipes
may be the source of untrusted input. A recent vulnerability was found for this interface.

Previous work in identifying attack surfaces has focused on one component at a time,
either on a program or an OS access control policy, but neither alone is sufficient to rea-
son about attack surfaces accurately. First, researchers examined programs to identify
possible attack surface interfaces and evaluate their significance [32]. In general, any
program interface may define a location through which an attack may originate, so this
work focused on identifying interfaces to valuable resources for attackers, hypothesiz-
ing that these would require the most attention for defense.

Second, others have used the system’s access control policy to identify the programs
that may have attack surfaces [11]. In this case, Linux systems with SELinux [43] and
AppArmor [41] access control policies were compared based on the number of pro-
grams that were accessible to a network attacker and also had direct access to modify the
Linux kernel (e.g., install a rootkit). What we want to know is whether attack surfaces
created by the deployment conflict in some way with the expected attack surfaces of
the program. For example, the OpenSSH daemon was carefully reengineered (privilege-
separated) to limit the interfaces through which it receives untrusted input [45]. Nonethe-
less, a recent vulnerability was found caused by the incorrect parsing of users’
authorized keys files. By looking at attack surfaces in the context of their deployment,
we could locate this interface as a potential risk, rather than waiting for the attacker to
identify it for us [62]. We also believe that examining OS distributions to identify attack
surfaces in the context of their deployment, relative to network policies, is necessary to
ensure that all decisions are acceptable for security.

4 Proposed Approach

What we want is to be able to test: (1) whether the attack surface expected for each
component is consistent with its deployment and (2) that each component only per-
mits authorized operations for its deployment. First, suppose that application developers
constructed their program assuming that a program interface was adequately defended,



Designing for Attack Surfaces: Keep Your Friends Close, but Your Enemies Closer 63

but a vulnerability is found. In that case, OS distributors better design access control
policies that prevent attackers from accessing that program interface. Second, the OS
distributor must verify that the program when limited to this restricted attack surface
only authorizes operations approved by the OS distributor.

The current approach to testing and the use of results of prior testing is inadequate to
build secure systems. We surmise that program vulnerabilities are caused because: (1)
the product was tested under an attack surface that differs (if any was identified) from
the attack surface when deployed; (2) the product was not tested thoroughly enough
to protect itself from threats at the “tested” interfaces; and/or (3) the OS distributors
and system administrators do not know the extent of such testing, so their suggested
deployment is a blind risk. A similar relationship between OS distributors and system
administrators holds for determining whether an entire OS distribution will be deployed
securely. Unfortunately, the testing of access control policies is even more ad hoc than
for programs, as conventional systems that use MAC enforcement typically aim for
least privilege [51], but that requirement cannot be precisely specified and tested. As
a result, we are not surprised that the security community is in a reactive, rather than
proactive mode of operation. The question is whether we can develop a methodology
for comprehensive testing of programs and distributions based on explicit assumptions
that can be validated by parties that use these components. We examine the roles that
application developers, OS distributors, and system administrators would play (enabled
by automated tools) to enable such a methodology.

Figure 2 shows the high-level view of the proposed approach. For each component,
we see a sequence of steps consisting of: (1) (propose) propose the component’s at-
tack surface; (2) (find) identifying data (information) flows where an attacker affects
the component’s integrity, identifying a flow error; (3) (mediate) asserting mediators
that comprehensively resolve all flow errors in the component; and (4) (test) testing the
efficacy of the mediators to thwart all instances of the possible attacks from those flows.
The aim is that each party inputs their component to this methodology and the method-
ology generates a security-tested version of that component. Any other party that uses a
security-tested version obtains the proposed attack surface used in testing (from step 1),
a summary of the information flows enabled by the component (from step 3), and the
testing methodology used in determining the summary (from step 4). Thus, parties can
test the use of others’ components in their systems to obtain a comprehensive evaluation
of security.

What we find intriguing is that the sequence of steps for each component is the same
in this methodology, regardless of whether the component is a program, OS distribution,
or system consisting of many OS distribution instances (hosts).

Application developers need to test their programs against the threats of attackers.
First, they propose an attack surface for their program, which defines their assump-
tion of the threats that are possible. An attack surface identifies low-integrity sources
to the program. Second, application developers need to find what problems exist in
their programs. In this case, a problem is where data from an attacker source may be
used to modify data that is used for a high-integrity sink. That is, there is a data flow
from the attacker to high-integrity program data. Third, the application developers must
assert mediation statements to control such data flows. The problem is to determine



64 T. Jaeger et al.

what mediation statements to place at what locations in the code to address the ille-
gal flow. The placement problem is non-trivial, as the application developer must make
sure that all illegal flows are covered, this is difficult to ensure manually. Determining
what mediation is necessary to prevent attacks is also difficult because such mediation
is program-specific, in general. Fourth, we need to test that these mediations are ade-
quate for the program. In general, testing is language and program-specific, but there
is a rich literature in both testing methods and techniques for various problems, includ-
ing security [5,27,34,54,68,70]. We envision that our methodology will leverage such
methods and techniques, making them available to application developers. Eclipse [16]
is a good foundation for integrating such testing for programmers.

We find that OS distributors have to perform similar tasks as those of application
developers, but they construct a different artifact (an OS distribution) and they build
this from others’ components4 (multiple programs). As mentioned in Section 2.2, a
key trend is that OS distributors will have some prior knowledge about the programs
(security-relevant ones) that run on their systems, so they will configure MAC poli-
cies for the programs running on their systems. For each program, the OS distributor
first proposes an attack surface for their distribution. This typically consists of iden-
tifying the networked programs on their system, but some systems enable inter-VM
communication via hypervisor operations, resulting in more operations to consider.
Second, the OS distributor needs to compute the programs that may be accessible to
attackers, particularly how attackers may impact how the valuable system data may be
accessed. In this case, an information flow analysis is proposed to find how network
processes create information flows in the distribution (e.g., computed from SELinux
policies [19, 22, 52, 59]). Rather than just using the access policy though, we envision
that the information flows enabled by programs (from their data flows computed above)
should be used to compute more accurate flows – not all program data flows, however,
but a summary that expresses the information flows generated. Third, the OS distribu-
tor must identify where to resolve such information flow errors. In Biba integrity [7],
such flows may be mediated by guards, but in conventional systems, the programs are
expected to mediate their low-integrity inputs. In this case, the OS distributor needs in-
formation to make decisions about how to choose among such options based on what
component attack surfaces they will accept. Fourth, the OS distributor must test the ef-
fectiveness of the selected mediation. Where such mediation depends on a program, we
should leverage prior program testing in this evaluation.

Finally, the system administrators must configure systems consisting of one or more
OS distributions into a coherently-defended whole. As described previously, system
administrators’ main focus is network policy (e.g., firewall). The question is how can
configuration of a network policy build effectively on the work of the application de-
velopers and OS distributors. First, system administrators define the actual attack sur-
face of the system from the network policy. However, they may not have as clear an
understanding of what is valuable in the distributions that they use. Currently, OS de-
ployments mix data (which belongs to the system administrator’s organization) with

4 Of course, application developers may have to compose programs from others’ programs, so
in those cases, they may have to adopt some aspects of the OS distributors’ tasks described
here.



Designing for Attack Surfaces: Keep Your Friends Close, but Your Enemies Closer 65

code (which belongs to the OS distributor), so making this separation explicit and en-
abling each of the OS distributor and system administrator to define valuable data would
make the security problem clearer. Second, while system administrators do not need to
make any assumptions about what the attack surface might be, they must determine
how the network policy enables attacks across hosts. A summary of the information
flows generated by OS distributions, including their programs, should be constructed
from which system-level information flows can be computed to identify information
flow errors. Third, system administrators may need to assert network mediation, such
as the placement of firewall rules to control information flow among individual distri-
bution instances. At present, this seems like something that system administrators can
do relatively well, but we may find that more accurate configuration of programs and
systems may expose limitations in manual network configuration. Fourth, the system
administrators must test the resultant configuration. A key ingredient in such testing
is that it builds on the previous testing of OS distributors and application developers,
but also informs system administrators of discrepancies between assumptions in attack
surfaces that underlie any error.

5 Deploying the Approach

In this section, we propose that the hierarchical state machine (HSM) model [2] can
serve as the formal foundation for our approach. First, we show that data flow in pro-
grams, distributions consisting of multiple programs, and systems consisting of multi-
ple distributions can be expressed using an HSM. As a result, we can annotate an HSM
representation with assumptions about attack surfaces, basically untrusted inputs to the
representation. We then discuss the problem of inferring and resolving flow errors using
data flow analyses of an HSM instance, based on the approach of the previous section.

5.1 Hierarchical State Machine Model

First, we define the hierarchical state machine (HSM) model [2].

Definition 1 A hierarchical state machine K is a tuple (K1, ...Kn) of modules, where
each module Ki has the following components:

• A finite set Vi of vertices, and a finite set Bi of boxes.
• Subsets Ii and Oi of Vi, respectively consisting of the entry vertices and exit ver-

tices.
• An indexing function Yi : Bi → {i + 1, ..., n} that maps each box of the i-th

module to an index greater than i. That is, if Yi(b) = j for box b of module Ki, then b
can be viewed as a reference to the definition of module Kj .

• If b is a box of the module Ki with j = Yi(b), then pairs of the form (b, u) with
u ∈ Ij are the calls of Ki and pairs of the form (b, v) with v ∈ Oj are the returns of
Kj .

• An edge relation Ei consisting of pairs (u, v), where the source u is either a vertex
or a return of Ki and v is either a vertex or a call of Ki.



66 T. Jaeger et al.

System

OS OS

Proc
Proc

Var

Import A

Import B

Fig. 3. A system of hosts (OS) and programs (proc) create an encapsulated, hierarchical system
of information flows.

An HSM model represents an hierarchical structure of modules connected by inter-
faces, called boxes. Modules may have an arbitrary internal structure of connections,
so they are represented by a graph. The HSM model is a well-known formalism in the
model checking community, and we leverage it because it gives us a well-understood
formalism on which to base our analysis.

We find that the HSM model maps directly to that of a system of hierarchically-
arranged components, as ours is. We describe the intuition here, shown in Figure 3.
What is important about the structure of such systems is that they are encapsulated, hi-
erarchical systems. A system is encapsulated in that all interaction between components
must be mediated by their reference validation mechanisms. Program information flows
can only be propagated to other programs through operating system mechanisms. The
hosts (i.e., instances of distributions) can only communicate via the network or virtual
machine mechanisms (if on a VM system). These systems are also hierarchical in that
the authority to make security decisions is monotonically-reduced from the root to the
leaves. For example, processes cannot make a security decision unless their operating
system authorizes them to make that decision.

Converting a program, distribution, or system to an HSM representation involves
identifying each component that enforces its own information flow security policy,
computing the authorized information flows of that component, and connecting the in-
formation flows between parent and child components. Figure 3 shows the resultant
representation for a system. At the leaves are the programs that enforce information
flow security. These programs include all the programs that have any attack surface.
These programs must, at a minimum, ensure that low integrity data that they receive is
sanitized effectively, although mandatory access control within programs is also prac-
tical now [38, 58]. Next, each OS distribution enforces its own access control policy,
so if such a policy represents an enforcement of information flow security then it can
be converted to an HSM module. Such policies must be mandatory access control poli-
cies that can be converted to an information flow representation, such as information



Designing for Attack Surfaces: Keep Your Friends Close, but Your Enemies Closer 67

OS

y

X

OS

Import A Import BA

A B

B

Attack Surface 
A>B

Mediate B
to A

Fig. 4. A simple information flow graph where valuable data of integrity level A and attack data
of integrity level B are imported. Vertex x has an attack surface caused by the graph’s flows that
is mediated at vertex y.

flow policies [7, 18], type enforcement policies [43, 63], approximations of informa-
tion flow enforcement [28, 53, 57], or sandbox policies that confine enough processes
to constrain information flow [41]. Dynamic information flow enforcement, such as the
Decentralized Information Flow Control model [25, 69], may be converted to an HSM
model, although program discretion about the creation of new attack surfaces must be
modeled. Finally, virtual machine monitor and/or network policies control information
flow among individual hosts in a system. Figure 3 shows just one level of hosts, where
system policy controls information flow among hosts, using firewalls or VMM policies.
For example, firewalls state communication paths between hosts, and VMM policies
state which virtual resources may be shared by hosts running in VMs [13, 26, 50].

The most difficult task is to connect the information flows between parent and child
modules. In constructing an HSM instance from a set of policies, we need to know how
components at a parent layer (e.g., system) are connected to components at a child layer
(e.g., hosts) and construct boxes to represent such connections (see Definition 1). This
is fairly well-defined between the system and hosts by firewall and VMM policies. For
example, firewalls state which ports can receive a packet, but many ports have well-
known associations with processes. Nonetheless, such information may be ambiguous,
so the use of labeled networking policies [21,35,42] is recommended, as these explicitly
state the security labels of the processes that are authorized to use network connections.
For VMMs, often any root process is typically authorized to make hypervisor calls,
so these processes must be connected to the inter-VM flows authorized by a VMM
policy. Fortunately, the only normal inter-VM interaction is between guest VMs and a
single privileged VM, although this makes the privileged VM more complex. Finally,
for programs, any program interface is authorized to access any resource that its process
is authorized for (based on the process’s security label). This presents a problem in that
any interface may be part of that program’s attack surface, although this is typically
not expected to be the case. The HSM model makes this relationship explicit, and our
approach aims to tease out the actual program attack surfaces.

5.2 Proposing Attack Surfaces

Assuming an attack surface for a program, distribution, or system involves identifying
where an attacker may access that component. While the notion of “assuming” an at-
tack surface is inherently incomplete and subject to change, it is important to state the



68 T. Jaeger et al.

assumptions under which one makes security decisions for a component. Others can
then use a component under those assumptions or cause the assumptions to be re-
evaluated. Neither task is performed in any principled manner currently.

An attack surface has a similar meaning for each component, but a different physical
manifestation. All attack surfaces refer to the sources of untrusted data to the com-
ponent. In the Common Criteria, these are called imports5. For a program, its attack
surface consists of program interfaces (code instructions) that import data that may be
modified by an attacker. For a host, its attack surface consists of a set of processes that
have access to attacker data (e.g., data imported via devices, such as the network or
disk, or program data downloaded with the distribution). For a system, its attack sur-
face consists of the untrusted hosts and external components accessible to the system
(e.g., via the network). Finally, we note that components also have valuable data, so
imports must also identify key valuables (otherwise the attacker has nothing to attack).
Elliciting imports with minimal manual effort is the goal, and we are exploring the de-
velopment of a knowledge base to infer a conservative set of imports and their relative
integrity relationships automatically [62].

The simple view of an attack surface in an HSM instance is shown in Figure 4. This
figure shows that all these surfaces are represented by a set of imports to the graph,
which represent set of entry vertices from boxes of its potential parent components.
Imports are explicitly added to the HSM model to show where attacker data (level B)
and valuable data (level A) originates.

5.3 Finding Flow Errors

Once we know we know where attacker data and valuable data are imported into the
component, we need to identify flow errors, cases where an attacker can impact the
component in unauthorized ways. While the security community has significant expe-
rience in inferring information flows and detecting information errors in programs and
systems, we find that inferring information flow errors from OS attack surfaces may
require different methods than for programs.

An information flow error occurs where a component tries to access unauthorized
(i.e., lower integrity) data. For programs, information flows are inferred based on Den-
ning’s lattice model [15]. In this model, a component may either be bound to a security
class (e.g., integrity level) statically or dynamically. If a component is bound to a secu-
rity class statically and an access it performs violates the authorized flows in the lattice,
then that access is a information flow error. If the component is dynamically bound to a
security class, then the security class of the accessed data is combined with the current
security class (e.g., using a least upper bound for the lattice) to assign a new security
class to the component, if necessary. An error may then occur when the dynamically
bound component is used by a component with a statically bound security class. This
method of inference has been applied to identify information flow errors for both se-
crecy and integrity in programs [37].

For OS information flow policies, the bindings are typically all static (Biba and
Clark-Wilson integrity [7,12]) or all dynamic (LOMAC [7,18]), although the IX system

5 Exports are also a concern for secrecy.



Designing for Attack Surfaces: Keep Your Friends Close, but Your Enemies Closer 69

allows dynamic binding with limits [33]. Thus, typical OS integrity policies bind or set
bounds on each process or object a priori, or the entire OS is dynamically bound with
no constraints. In conventional systems, integrity levels are not bound to each process
or objects, so it is necessary to determine what each is supposed to be. However, man-
ually binding each process or object to an integrity level is impractical, so the nature
approach would be to bind some statically (e.g., attackers, which are low, and trusted
components, which are high), and dynamically bind the rest using Denning’s inference
approach. Then, information flow errors can be found.

However, we find that this inference approach does not work well for non-information
flow, OS policies, such as Type Enforcement [8]. If we bind processes that access the
network to low integrity and the kernel to high integrity, we find that almost all the dy-
namically bound processes will be inferred to be low. This may be an accurate represen-
tation of modern, conventional operating systems, but we want to identify problems and
fix them coherently. As an alternative, we propose an inference model where each pro-
cess’s integrity is determined by the transitive closure of the integrity levels that reach
it [49]. This approach reflects a process’s desire to remain high integrity, unless explic-
itly downgraded, but still shows that all processes are insecure (i.e., receive data of mul-
tiple integrity levels), unless mediation is performed somewhere. Using this inference
approach, flow errors correspond to processes or objects (labels in a MAC policy) in the
OS access control policy that receive multiple integrity levels of data.

Figure 4 shows how the HSM model is used to compute information flow errors. A
layer-specific method is used to propagate imported integrity levels through the system.
In practice, the application developer will focus only on their programs and the flow
errors identified at that level, using Denning’s inference. A number of programming
languages have tools that provide such inference, including Java [38], OCaml [55],
and C 6. OS distribution and system layer analysis is either performed based on an
information flow policy or based on the transitive closure approach above for a non-
information flow policy. In Figure 4, transitive closure propagation shows that A and B
both reach vertex X .

5.4 Mediating Flow Errors

Once flow errors are found, then the respective parties need to resolve such errors. The
first decision is which party is assigned to fix the problem. For example, if the problem is
a mismatch between the deployment attack surface and that which was assumed by the
child component, then the question is whether to fix the policy or the attack surface. We
assume that this decision has been made. Traditionally, resolution is a manual process,
but the aim is to leverage the HSM model to automate some steps of the resolution
process.

We have developed a method that generates placements for resolving data flow errors
based on graph cuts [24]. In this method, the program is converted into an information
flow graph, as above, and all paths from a source to a program location where a flow
error occurs must be cut by a mediation statement (e.g., sanitizer or runtime check) that

6 Since C is not type-safe, such inference only applies if the application developer is not adver-
sarial.



70 T. Jaeger et al.

resolves that error. This method is general for information flow graphs, so we propose
to apply it to information flow graphs at different layers in the HSM model like the OS
distribution layer. Figure 4 shows how a flow of level B is cut at vertex y removing
all attack surfaces (not just the one shown at vertex X). However, for the approach to
be practical, we must be able to construct complete cut problems. For this, we need to
know the mediation statements, their possible locations, and costs (we can then use a
min-cut algorithm). We also need to account for functionality, as we cannot simply cut
access control policy flows, as they may be necessary for the system to work.

An advantage of reasoning about security in terms of information flows is that this
reduces the number of options for resolving a flow error. We can either change a vertex
or change the flows into or out of a vertex. Changes to vertex include removing it (e.g.,
removing a program from a distribution) or changing the information flows within the
vertex (e.g., changing attack surface of the program). Changes to an edge include adding
a sanitizer on an edge (e.g., guard process) or changing the integrity level of the imports
(e.g., use more reliable inputs). We note that removing an edge alone is problematic in
that this is likely to remove a necessary function for that vertex.

The problem of automating resolution is complex due to conflicting constraints. A
system may both require particular information flows to occur for the system to function
and restrict certain information flows from occurring. Finding solutions to constraint
systems with positive and negative constraints, in our setting, will result in a PSPACE-
hard branching-time model checking problem [2]. As a result, even with a small number
of resolution options, if there are a large number of possible locations, then automating
resolution will be computationally complex. Powerful solvers (e.g., SAT solvers) are
now available that can search large solution spaces efficiently.

If the solution is to add a sanitizer or runtime check at a particular location, then
the question is what this code should do. Historically, sanitization has been error-prone,
so identifying locations is not sufficient to ensure error resolution. Further, researchers
have found that simply placing one sanitizer may not be sufficient as different uses may
require different sanitizations [5]. Thus, the purpose of the resolution must be clear
enough to assess whether other mediation may also be required to satisfy security con-
straints. For example, if a sanitizer is for a web server to handle untrusted data, then
that mediation may still permit data that is unsafe for the database (e.g., for SQL injec-
tions). Subsequent resolutions must be found for these “secondary” imports resulting
from partial sanitization. Finally, while sanitization is inherently program-specific, a
number of sanitizing functions have been identified over based on the type of error,
programming language, etc. Tools based on this methodology should provide access to
known sanitization functions to reduce the effort of the parties.

5.5 Testing the Resulting System

Finally, once the actor has decided on a resolution to any flow errors, it is necessary
to test such resolutions, particularly for sanitization. Sanitization aims to allow a trans-
formed version of an information flow that meets some requirements. Such require-
ments must be made explicit and test thoroughly. Fortunately, a variety of methods for
testing sanitization procedures have been proposed, although most are language and
bug-specific [5,64]. We envision that such procedures would be provided to application



Designing for Attack Surfaces: Keep Your Friends Close, but Your Enemies Closer 71

developers and sanitizer developers for systems, and that a required degree of testing
would be enforced.

Testing of sanitizers involves conservative static analysis to ensure no false negatives
(errors relative to requirements) and a supplementary runtime analysis to validate the
existence of real errors [5]. Such testing is limited by the problem of identifying the
sources of untrusted data, but the HSM model makes the sources of untrusted data
explicit. Also, test cases need to be generated for the runtime validation. Fuzz testing
tools generate inputs to programs to find vulnerabilities. One tool, EXE, automatically
generates inputs that will crash a program [9]. It tracks possible values that variables
can have symbolically. When an assert statement is reached, EXE checks if there is
an input that causes the statement to become false.

6 Conclusions

Developing a software engineering methodology for security would be a significant un-
dertaking. In addition to providing mechanisms to convert the relevant program, distri-
bution, and system information into a canonical format (an HSM instance), algorithms
must be developed to solve the problems highlighted above, and a user interface must
be designed to convey this information clearly. Finally, testing tools must be integrated
with the methodology to enable comprehensive testing for all the target languages and
bugs.

Waiting for a “big bang” of all the technology above before we have a useful system
pretty much guarantees that it will never happen, so the question is how should we pro-
ceed to provide a useful, but perhaps incomplete, functionality that leads to a desired
goal. We envision that such tools must be integrated into a common, open software en-
gineering ecosystem, such as Eclipse. We imagine that any initial methodology would
enable testing of one component and the testing of its deployment, such as building a
program and testing its deployment in an OS distribution. Finally, the security com-
munity will have to consider how to pull together the myriad of prior research into a
coherent approach, whether for the proposed approach or another. The security com-
munity has undertaken similar challenges for defining assurance criteria, and this will
be a similarly large undertaking.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Proceedings of
CCS 2005. ACM (2005)

2. Alur, R., Yannakakis, M.: Model checking of hierarchical state machines. ACM Trans. Pro-
gram. Lang. Syst. 23(3) (2001)

3. Amazon. Amazon Web Services Security Center, http://aws.amazon.com
4. Ames, J., Gasser, S.R.M., Schell, R.R.: Security kernel design and implementation: An in-

troduction. Computer 16(7), 14–22 (1983)
5. Balzarotti, D., et al.: Saner: Composing static and dynamic analysis to validate sanitization

in web applications. In: Proceedings of the IEEE Symposium on Security and Privacy (2008)
6. The Bastille hardening program: Increased security for your OS,

http://bastille-linux.sourceforge.net

http://aws.amazon.com
http://bastille-linux.sourceforge.net


72 T. Jaeger et al.

7. Biba, K.J.: Integrity Considerations for Secure Computer Systems. Technical Report MTR-
3153, MITRE (April 1977)

8. Boebert, W.E., Kain, R.Y.: A Practical Alternative to Hierarchical Integrity Policies. In: Pro-
ceedings of the 8th NCSC (1985)

9. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: Automatically gener-
ating inputs of death. ACM Trans. Inf. Syst. Secur. 12(2) (2008)

10. Castro, M., Costa, M., Harris, T.: Securing software by enforcing data-flow integrity. In:
Proceedings of OSDI 2006. USENIX Association (2006)

11. Chen, H., Li, N., Mao, Z.: Analyzing and Comparing the Protection Quality of Security
Enhanced Operating Systems. In: Proceedings of NDSS 2009 (2009)

12. Clark, D.D., Wilson, D.: A Comparison of Military and Commercial Security Policies. In:
1987 IEEE Symposium on Security and Privacy (May 1987)

13. Coker, G.: Xen Security Modules (XSM). http://www.xen.org/files/
xensummit 4/xsm-summit-041707 Coker.pdf

14. Cowan, C., et al.: Stackguard: Automatic adaptive detection and prevention of buffer-
overflow attacks. In: Proceedings of the 7th USENIX Security Symp. (1998)

15. Denning, D.: A Lattice Model of Secure Information Flow. Communications of the ACM
19(5) (1976)

16. Eclipse. http://www.eclipse.org
17. Feng, H., et al.: Formalizing sensitivity in static analysis for intrusion detection. In: Proceed-

ing of the 2004 IEEE Symposium on Security and Privacy (2004)
18. Fraser, T.: LOMAC: MAC you can live with. In: Proceedings of the FREENIX Track:

USENIX Annual Technical Conference (June 2001)
19. Guttman, J.D., Herzog, A.L., Ramsdell, J.D., Skorupka, C.W.: Verifying Information Flow

Goals in Security-Enhanced Linux. Journal of Computer Security 13(1) (2005)
20. Howard, M., Pincus, J., Wing, J.M.: Measuring Relative Attack Surfaces. In: Proceedings of

Workshop on Advanced Developments in Software and Systems Security (2003)
21. Jaeger, T., Butler, K., King, D.H., Hallyn, S., Latten, J., Zhang, X.: Leveraging IPsec for

Mandatory Access Control Across Systems. In: Proceedings of SecureComm 2006 (August
2006)

22. Jaeger, T., Sailer, R., Zhang, X.: Analyzing integrity protection in the SELinux example
policy. In: Proceedings of the 12th USENIX Security Symp. (August 2003)

23. Karger, P., Zurko, M., Bonin, D., Mason, A., Kahn, C.: A retrospective on the VAX VMM
security kernel. IEEE Trans. Softw. Eng. 17(11) (1991)

24. King, D., et al.: Automating security mediation placement. In: Proceedings of ESOP 2010,
pp. 327–344 (2010)

25. Krohn, M.N., et al.: Information flow control for standard OS abstractions. In: Proceedings
of the 21st ACM SOSP (October 2007)

26. KVM: Kernel based virtual machine. http://www.linux-kvm.org
27. Larochelle, D., Evans, D.: Statically detecting likely buffer overflow vulnerabilities. In: Pro-

ceedings of the 10th USENIX Security Symposium (2001)
28. Li, N., Mao, Z., Chen, H.: Usable Mandatory Integrity Protection For Operating Systems. In:

Proceedings of the 2007 IEEE Symposium on Security and Privacy (May 2007)
29. Linn, C.M., Rajagopalan, M., Baker, S., Collberg, C., Debray, S.K., Hartman, J.H.: Protect-

ing against unexpected system calls. In: Proceedings of the 14th Conference on USENIX
Security Symposium (2005)

30. Lipner, S.B.: Non-discretionery controls for commercial applications. In: Proceedings of
IEEE Symposium on Security and Privacy (1982)

31. Loscocco, P., et al.: The Inevitability of Failure: The Flawed Assumptions of Security Mod-
ern Computing Environments. In: Proceedings of the 21st National Information Systems
Security Conference (1998)

http://www.xen.org/files/xensummit_4/xsm-summit-041707_Coker.pdf
http://www.xen.org/files/xensummit_4/xsm-summit-041707_Coker.pdf
http://www.eclipse.org
http://www.linux-kvm.org


Designing for Attack Surfaces: Keep Your Friends Close, but Your Enemies Closer 73

32. Manadhata, P., Tan, K., Maxion, R., Wing, J.M.: An Approach to Measuring A System’s
Attack Surface. Technical Report CMU-CS-07-146, School of Computer Science, Carnegie
Mellon University (2007)

33. McIlroy, D., Reeds, J.: Multilevel windows on a single-level terminal. In: Proceedings of the
(First) USENIX Security Workshop (August 1988)

34. Microsoft. Prefast for drivers.
http://www.microsoft.com/whdc/devtools/tools/prefast.mspx

35. Morris, J.: New secmark-based network controls for selinux.
http://james-morris.livejournal.com/11010.html

36. MSDN. Mandatory Integrity Control (Windows). http://msdn.microsoft.com/
en-us/library/bb648648%28VS.85%29.aspx

37. Myers, A.C., Liskov, B.: A decentralized model for information flow control. ACM Operat-
ing Systems Review 31(5) (October 1997)

38. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java information flow
(July 2001-2003). http://www.cs.cornell.edu/jif

39. Nagappan, N., Maximilien, E.M., Bhat, T., Williams, L.: Realizing quality improvement
through test driven development: results and experiences of four industrial teams. Empiri-
cal Softw. Engg. 13(3), 289–302 (2008)

40. Newsome, J., Song, D.X.: Dynamic taint analysis for automatic detection, analysis, and sig-
naturegeneration of exploits on commodity software. In: Proceedings of NDSS 2005 (2005)

41. Novell. AppArmor Linux Application Security.
http://www.novell.com/linux/security/apparmor/

42. NetLabel - Explicit labeled networking for Linux. http://www.nsa.gov/selinux
43. Security-Enhanced Linux. http://www.nsa.gov/selinux
44. PaX homepage. http://pax.grsecurity.net
45. Provos, N., Friedl, M., Honeyman, P.: Preventing privilege escalation. In: Proceedings of the

12th USENIX Security Symp. USENIX Association (2003)
46. Qin, F., et al.: Lift: A low-overhead practical information flow tracking system for detecting

security attacks. In: Proceedings of MICRO (2006)
47. Research, M.: SLAM - Microsoft Research
48. Ristenpart, T., et al.: Hey, you, get off of my cloud: exploring information leakage in third-

party compute clouds. In: Proceedings of the 16th ACM CCS (2009)
49. Rueda, S., Vijayakumar, H., Jaeger, T.: Analysis of virtual machine system policies. In: Pro-

ceedings of SACMAT 2009 (2009)
50. Sailer, R., et al.: Building a MAC-Based Security Architecture for the Xen Open-Source

Hypervisor. In: Proceedings of ACSAC 2005 (2005)
51. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems. Proceed-

ings of the IEEE 63(9) (September 1975)
52. Sarna-Starosta, B., Stoller, S.D.: Policy analysis for security-enhanced linux. In: Proceedings

of the 2004 WITS (April 2004)
53. Shankar, U., Jaeger, T., Sailer, R.: Toward Automated Information-Flow Integrity Verification

for Security-Critical Applications. In: Proceedings of the 2006 NDSS (February 2006)
54. Shankar, U., Talwar, K., Foster, J.S., Wagner, D.: Detecting format string vulnerabilities with

type qualifiers. In: Proceedings of the 10th USENIX Security Symp. (2001)
55. Simonet, V.: The Flow Caml System: Documentation and User’s Manual. Technical Report

0282, Institut National de Recherche en Informatique et en Automatique (INRIA), c©INRIA
(July 2003)

56. Solworth, J.: Robustly secure computer systems: A new security paradigm of system discon-
tinuity. In: Proceedings of NSPW 2007 (2007)

57. Sun, W., et al.: Practical proactive integrity preservation: A basis for malware defense. In:
Proceedings of the 2008 IEEE Symposium on Security and Privacy (2008)

http://www.microsoft.com/whdc/devtools/tools/prefast.mspx
http://james-morris.livejournal.com/11010.html
http://msdn.microsoft.com/en-us/library/bb648648%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/bb648648%28VS.85%29.aspx
http://www.cs.cornell.edu/jif
http://www.novell.com/linux/security/apparmor/
http://www.nsa.gov/selinux
http://www.nsa.gov/selinux
http://pax.grsecurity.net


74 T. Jaeger et al.

58. Tresys. Selinux userspace. http://userspace.selinuxproject.org/trac/
59. Tresys. SETools - Policy Analysis Tools for SELinux.

http://oss.tresys.com/projects/setools
60. Vidyaraman, S., Chandrasekaran, M., Upadhyaya, S.: The user is the enemy. In: Proceedings

of NSPW 2007 (2007)
61. Viega, J., Bloch, J.T., Kohno, T., McGraw, G.: Token-based scanning of source code for

security problems. ACM Trans. Inf. Syst. Secur. 5(3), 238–261 (2002)
62. Vijayakumar, H., et al.: Integrity walls: Finding attack surfaces from mandatory access con-

trol policies. Technical Report Technical Report NAS-TR-0124-2010, Network and Security
Research Center (February 2010)

63. Walker, K.M., et al.: Confining root programs with domain and type enforcement (DTE). In:
Proceedings of the 6th USENIX Security Symp. (1996)

64. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injection vulner-
abilities. SIGPLAN Not. 42(6), 32–41 (2007)

65. Venema, W.: Postfix Architecture Overview.
http://www.postfix.org/overview.html

66. Wool, A.: A quantitative study of firewall configuration errors. IEEE Computer 37(6), 62–67
(2004)

67. Wurster, G., van Oorschot, P.C.: The developer is the enemy. In: Proceedings of NSPW 2008
(2008)

68. Yang, J., Sar, C., Twohey, P., Cadar, C., Engler, D.: Automatically generating malicious disks
using symbolic execution. In: Proceedings of the 2006 IEEE Symposium on Security and
Privacy (2006)

69. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information flow explicit
in HiStar. In: Proceedings of the 7th OSDI (2006)

70. Zhang, X., Edwards, A., Jaeger, T.: Using CQUAL for static analysis of authorization hook
placement. In: Proceedings of the 11th USENIX Security Symp. (2002)

http://userspace.selinuxproject.org/trac/
http://oss.tresys.com/projects/setools
http://www.postfix.org/overview.html


Improving Application Security

through TLS-Library Redesign�

Leo St. Amour1 and W. Michael Petullo2

1 Northeastern University
Boston, Massachusetts 02115, USA
2 United States Military Academy
West Point, New York 10996, USA

Abstract. Research has revealed a number of pitfalls inherent in con-
temporary TLS libraries. Common mistakes when programming using
their APIs include insufficient certificate verification and the use of weak
cipher suites. These programmer errors leave applications susceptible to
man-in-the-middle attacks. Furthermore, current TLS libraries encour-
age system designs which leave the confidentiality of secret authenti-
cation and session keys vulnerable to application flaws. This paper in-
troduces libtlssep (pronounced lib·tē·el·sep), a new, open-source TLS
library which provides a simpler API and improved security architec-
ture. Applications that use libtlssep spawn a separate process whose
role is to provide one or more TLS-protected communication channels;
this child process assures proper certificate verification and isolates au-
thentication and session keys in its separate memory space. We present
a security, programmability, and performance analysis of libtlssep.

1 Introduction

Programs increasingly use Transport Layer Security (TLS) to protect communi-
cations. While TLS has long protected commerce and banking transactions, the
protocol now routinely protects less sensitive services such as search and video
streaming due to privacy concerns [23]. Researchers have even begun to inves-
tigate the notion of ubiquitous encryption [9, 14, 26]. TLS uses authentication
and encryption to protect the confidentiality and integrity of communication
channels, and its authentication makes use of asymmetric-key cryptography.

TLS provides server authentication through the use of X.509 identity certifi-
cates. In the most common model, some trusted Certificate Authority (CA) signs
each identity certificate, ostensibly binding the public key present in the certifi-
cate to a hostname. Systems often rely on password-based client authentication
which takes place after a TLS session initializes. However, TLS also supports
client-side X.509-based authentication.

Yet attackers occasionally violate the confidentiality and integrity of com-
munication channels despite the use of TLS. Studies by Vratonjic et al. [32],

� The rights of this work are transferred to the extent transferable according to title
17 U.S.C. 105.

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 75–94, 2015.
DOI: 10.1007/978-3-319-24126-5_5



76 L.St. Amour and W.M. Petullo

Georgiev et al. [15], and Fahl et al. [12] found that programmers consistently
misuse TLS libraries in their applications. Such errors include:

(1) missing name verification,1

(2) trust of self-signed certificates,
(3) improper error handling,
(4) poor cipher-suite choices, and
(5) missing certificate revocation checks.

These vulnerabilities seem to arise from the Application Programming Interfaces
(APIs) exported by contemporary TLS libraries. It seems that existing APIs
leave too many responsibilities to the application programmer; the deceptive
complexity of these steps overwhelm even those application programmers who
do remember to attempt their implementation (over and over again, as they
write each application). For example, Marlinspike showed how the different string
encodings in X.509 and C give rise to a subtle attack on name verification [22].

Architectural choices also threaten TLS. In many cases, compromised control
flow or ill information flow within an application can result in the compromise
of a private cryptographic key. This is because many applications keep TLS
processing and general logic in the same address space. While Heartbleed [24]
attacked OpenSSL itself to compromise cryptographic keys, there are likely many
more vulnerabilities present in application logic than there are present in the
code included from TLS libraries. This is especially dangerous because systems
often share TLS keys across several applications. For example, we counted 26
subject-alternative names plus a number of wildcards within the certificate which
authenticates bing.com at the time of writing.

In this paper, we introduce libtlssep (pronounced lib·tē·el·sep), a TLS li-
brary that both simplifies the TLS API and utilizes privilege separation to
increase communication security. By using libtlssep, an application forks
a child process which is responsible for the application’s TLS operations.
Keeping private keys isolated in the child’s separate memory space makes
it more difficult for an application bug to result in a compromised key. We
have released a research prototype of libtlssep under an open-source li-
cense, and we have made this prototype and its documentation available at
http://www.flyn.org/projects/libtlssep.

In the following sections, we describe related work; summarize our threat
model; present the design of libtlssep; and present security, programmability,
and performance results.

2 Related Work

Our survey of related work focuses on (1) pitfalls resulting from the APIs pro-
vided by existing TLS libraries, (2) efforts to improve TLS APIs, (3) existing
uses of privilege separation and similar architectures, and (4) systems which

1 In this paper, we refer to verifying a name by which we mean verifying either a certifi-
cate’s subject-common name or its subject-alternative name. Such names generally
represent either a host or a user.

http://www.flyn.org/projects/libtlssep


Improving Application Security through TLS-Library Redesign 77

provide stronger or more universal cryptographic-key isolation than libtlssep,
albeit not without tradeoffs.

2.1 API Pitfalls

Many researchers have studied the efficacy of TLS in practice [32, 15, 12]. From
their work, we better understand a number of pitfalls which arise when using
contemporary TLS libraries. Fahl et al. also provide evidence that the Internet
is ripe with poor advice which results in programmers wrongly employing TLS
libraries [13, §4.1]. We summarized the pitfalls of contemporary APIs in §1, and
here we further describe this previous work.

A connection procedure which returns a TLS connection handle without first
verifying the certificates involved seems to encourage omitting name verification,
yet many contemporary APIs follow this pattern. Figure 1 shows in pseudo-code
an example of an OpenSSL-based client. Note that a programmer could mistak-
enly begin calling SSL_write and SSL_read without first calling and checking
the result of SSL_get_verify_result and verify_name. OpenSSL also provides
a callback-type verification mechanism, but this similarly requires explicit use.

Marlinspike provided one example of why the design of X.509 makes imple-
menting even verify_name difficult. Should any CA issue a certificate which con-
tains an embedded NULL byte—such as www.victim.com\0.attacker.com—
then it is possible that attacker.com could fraudulently assume the identity of
victim.com. All that is necessary is for an application programmer to forget
that NULL bytes are valid within X.509 strings but terminate C strings, such
as by näıvely writing the application to use strcmp to compare the two as C
strings. Fixed applications each duplicate strange but necessary checks such as
the one found in wget [30]:

if (strlen (common_name) != (size_t) ASN1_STRING_length (sdata)) {

/* Fail. */

}

Figure 2 shows in pseudo-code an example of an OpenSSL-based server. The
program assumes that the client authenticates using a certificate. This requires
more work from the application programmer: he would have to modify the
client’s logic to supply client-side certificates.

Researchers have found deployed applications which verify certificates yet
trust self-signed certificates. Trusting self-signed certificates is rarely desirable
except during the implementation and testing phases of development. In any
case, these mistakes seem to arise from either ignorance of the dangers involved
or programmers forgetting to deactivate the trust of self-signed certificates in
their programs before deploying them. It is common in TLS libraries to rely
on control-flow statements written by the application programmer to determine
whether to honor self-signed certificates.

Additional dangers arise when the CA model itself breaks down; Durumeric
et al. performed an extensive study of CA use in practice [11]. Research shows
evidence that it is unreasonable for all Internet users to trust the same set of
CAs [31, 21]. As CAs operate in the context of many juristictions and loyalties,



78 L.St. Amour and W.M. Petullo

1 sock = create_socket (host) // Create BSD socket.

2 method = TLSv1_2_client_method ()

3 ctx = SSL_CTX_new (method)

4 SSL_CTX_set_default_verify_paths(ctx)

5 ssl = SSL_new(ctx)

6 SSL_set_fd (ssl , sock)

7 SSL_connect (ssl)

8 cert = SSL_get_peer_certificate(ssl)

9 // Programmer must explicitly check certificate :

10 if cert != NULL

11 && X509_V_OK == SSL_get_verify_result (ssl)

12 && verify_name (cert , host) { // Cert. name == host?

13 SSL_write (ssl ,request ,len)

14 SSL_read(ssl , response , len)

15 handle(response )

16 }

17 SSL_shutdown (ssl)

18 SSL_free (ssl)

19 close(sock)

Fig. 1. Pseudocode to create a TLS connection using OpenSSL. Omits error handling,
except for errors related to verification. The user-defined procedures are create socket,
verify name, and handle. Beurdouche et al. provide a series of similar examples [7,
Listing 1–3].

an individual is likely not well served by trusting all of them. Furthermore, CAs
themselves have been the target of successful attacks [19]. Alternative models
include PGP’s web-of-trust model [34], DANE [18, 2], and certificate pinning,
which closely resembles the model found in SSH [33]. Yet inspecting Figure 1
shows that programs which directly use OpenSSL each bear the responsibility
of implementing verification logic from within their source code. This makes
adopting emerging trust models across all applications cumbersome.

A certificate signatory ought to revoke certificates which are compromised or
otherwise invalid, and part of the verification process should involve checking
the revocation status of a certificate. However, existing TLS APIs permit the
omission of these checks, and research has found such misuse in production
applications [12, 15].

2.2 Improved APIs and Static Analysis

LibreSSL [4] aims to fix implementation errors in OpenSSL, and it also provides
libtls. Libtls exports a simplified API; for example, it takes the approach
of including certificate verification in the semantics of its tls_connect proce-
dure, although a programmer can disable this name verification using a proce-
dure named tls_config_insecure_noverifyname. Another library, s2n [29],
has similar goals.2

Fahl et al. modified the Android software stack to employ a certificate-
verification service which separately exists from each individual application [13,

2 Amazon announced the s2n project during the final revisions of this paper.



Improving Application Security through TLS-Library Redesign 79

1 sock = accept_connection () // Accept connection.

2 method = TLSv1_2_server_method ()

3 ctx = SSL_CTX_new(method)

4 SSL_CTX_set_verify(ctx , SSL_VERIFY_PEER |

SSL_VERIFY_FAIL_IF_NO_PEER_CERT , ignore);

5 SSL_CTX_use_certificate_file(ctx , cert , SSL_FILETYPE_PEM)

6 SSL_CTX_use_PrivateKey_file(ctx , key , SSL_FILETYPE_PEM)

7 SSL_CTX_check_private_key(ctx)

8 SSL_CTX_set_default_verify_paths(ctx)

9 ssl = SSL_new(ctx)

10 SSL_set_fd(ssl , sock)

11 SSL_accept(ssl)

12 cert = SSL_get_peer_certificate(ssl)

13 // Programmer must explicitly check certificate:

14 if cert != NULL

15 && X509_V_OK == SSL_get_verify_result(ssl)

16 && verify_user(cert) { // Cert. name permitted user?

17 SSL_read(ssl , request , len)

18 response = handle(request)

19 SSL_write(ssl ,response ,len)

20 }

21 SSL_shutdown(ssl)

22 SSL_free(ssl)

23 close(sock)

Fig. 2. Pseudocode to accept a TLS connection using OpenSSL. Omits error han-
dling, except for errors related to verification. The user-defined procedures are
accept connection, verify user, and handle.

§5.2]. Moving verification to a system-wide service reduces the possibility of a
programmer accidentally circumventing verification, and it also simplifies the
selection and configuration of verification techniques such as certificate pinning.
Programmers can also—without modifying the program—configure the verifi-
cation service to enable a per-application development mode which trusts self-
signed certificates. This architecture also centralizes the management of certifi-
cate warnings.

CertShim uses the LD_PRELOAD facility present in many Operating Systems
(OSs) to assure certificate verification by replacing key TLS library procedures
at runtime [3]. For example, CertShim replaces OpenSSL’s SSL_connnect with
a version which adds certificate verification to its semantics. Applications do
not require modifications to take advantage of CertShim. CertShim supports
a number of verification techniques, and it makes use of a single configuration
point which exists separately from each application’s configuration.

The NaCl library provides two common cryptographic operations: public-
key authenticated encryption and signatures [6]. NaCl pursues very-high per-
formance, side-channel-free cryptography, and the library provides a vastly
simpler API than contemporary cryptographic libraries. NaCl in its present form
serves to replace the cryptographic-primitive procedures in TLS libraries, but it



80 L.St. Amour and W.M. Petullo

does not yet itself implement a protected network protocol. Work to build more-
robust and higher-performance protocols around NaCl includes CurveCP [5] and
MinimaLT [27], but these bear the cost of incompatibility with TLS.

Efforts such as the Fedora System-Wide Crypto Policy [1] seek to centralize
the configuration of all cryptographic protections. This could simplify some por-
tions of TLS configuration, although it will help less with verification because
of the amount of application-specific verification code. The main beneficiary of
this work will be cipher-suite selection.

SSLint uses static analysis to determine if existing programs properly use
TLS-library APIs [17]. This appears complimentary to libtlssep, as it can
help convince programmers to fix API misuse, possibly opting to migrate to a
library with an improved API. The researchers behind SSLint discovered 27
previously-unknown vulnerabilities in deployed programs.

2.3 Privilege Separation

Researchers have produced a number of models which increase security by us-
ing separate processes to isolate components; these designs are often described
as providing privilege separation. The OpenSSH dæmon’s privileged component
can access the host’s private key, open pseudo-terminals, and service change-
of-identity requests [28]. Unprivileged components within OpenSSH then make
indirect use of these capabilities through carefully-defined interfaces, for ex-
ample by receiving pseudo-terminal file descriptors via file-descriptor passing.
OpenBSD provides a framework called imsg [25] which aims to ease the explicit
programming of communication between privileged-separated components.

The Plan 9 operating system provides a process called factotum which ne-
gotiates service authentication on behalf of applications [10]. Factotum isolates
authentication keys as well as the code required for performing authentication in
a separate memory space. Concentrating security code within a single program
increases the programmer’s ability to verify that the code is correctly written,
facilitates executing the code with the least privilege required, and makes it
easier to update security software. Most importantly, a logical flaw in a compli-
cated program cannot directly lead to the compromise of an authentication key
because of privilege separation. Plan 9 does not subsume from applications the
work of verifying certificates.

2.4 Specialized Cryptographic Key Isolation

Other systems provide stronger cryptographic key isolation, albeit with more
intrusive requirements. One example, Mimosa [16], uses the properties of trans-
actional memory to protect cryptographic keys from attacks originating both in
user and kernel space. Yet Mimosa requires modifications to the OS kernel as
well as hardware transactional memory.

Ethos is a novel OS kernel which provides digital-signature and encrypted-
networking system calls [26]. This allows the kernel to universally isolate crypto-
graphic keys from applications, and it also makes the kernel aware of the location
in memory of all cryptographic keys. Ethos is clean-slate and thus requires appli-
cations to be rewritten for all of its unique interfaces, and this burden is greater



Improving Application Security through TLS-Library Redesign 81

than the smaller changes required by merely porting to a new TLS API (this is
a tradeoff between expediency and Ethos’ stronger security properties).

Plan 9 also provides special facilities for isolating authentication keys. The
system will not swap factotum to disk and protects factotum’s entry in the
/proc filesystem. Many versions of Unix support an encrypted swap space for
similar reasons.

3 Threat Model

Our threat model includes very powerful Man-in-the-Middle (MitM) attackers
who can capture, modify, and deny the transmission of the messages communi-
cated between two hosts. Specifically, our attacker can respond to the requests
intended for another recipient, generate self-signed certificates, present legiti-
mate certificates for the domains he controls, or capture legitimate certificates
for the domains he does not control. Thus our goal is to use strong, properly-
applied cryptography to provide confidentiality and integrity protections despite
these attacks, namely to (1) blind the attacker to the messages we send and
receive and (2) detect any attacker-manipulated traffic.

Our design removes a number of TLS misuses, and thus reduces the burden on
programmers so that they can focus on the correctness of their program’s core
logic. It is not possible to protect against all programmer errors, yet we expect
that the attacker will try to exploit these errors too. Such errors are orthogonal
to the use of TLS, and thus they are outside of our threat model, except that
we wish to avoid them compromising a cryptographic key.

We also ignore attacks on the host OS, OS access controls, the privileged
account, a virtual machine monitor (if present), and hardware. We assume that
the applications which make use of TLS do not do so with elevated privileges.
Finally, while we are concerned about programmers selecting weak cipher suites,
we ignore attacks on the TLS cryptographic protocol itself. Here there is some
overlap [7], but in any case the techniques we used in libtlssep could likely aid
in crafting libraries to support protected-networking protocols other than TLS.

4 Design of libtlssep

4.1 Libtlssep Architecture

We designed our architecture to employ the isolation facilities already present
in mainstream OSs to engender more robust applications. The architecture of
libtlssep follows from the suggestions of Provos et al. [28], as it aims to
aid in crafting applications which make use of privilege separation. Like SSH,
libtlssep uses file-descriptor passing to transmit capabilities (BSD-socket con-
nections in the case of libtlssep) from one process to another.

As with Plan 9’s factotum, libtlssep aims to apply SSH-style privilege
separation to many applications in a convenient way. Factotum is more general
but isolates only authentication secrets; libtlssep spans both authentication
and encryption, isolates the session key negotiated between two parties, and
provides a TLS-focused API.



82 L.St. Amour and W.M. Petullo

Fig. 3. Our Architecture

Libtlssep’s use of a separate process also resembles Fahl’s certificate-
verification service, but the latter does not isolate session keys. Libtlssep tar-
gets C on POSIX instead of Java on Android, and while it leaves the particulars
of error presentation to application programmers, an untrusted connection will
result in an error code rather than proceeding.

The libtlssep architecture breaks applications into (at least) two processes:
(1) a process containing authentication and encryption functionality, provided
by libtlssep ’s network decorator ; and (2) a process containing program logic,
provided by the application programmer. The decorator itself makes use of
OpenSSL, but could be ported to any existing TLS implementation without re-
quiring further application changes; nonetheless the decorator simplifies the use
of the underlying implementation. Unlike with the direct use of OpenSSL, the
decorator—like LibreSSL’s libtls—assures the verification of certificates and
hides a number of disparate OpenSSL procedure calls behind around a dozen
libtlssep procedures. Figure 3 depicts libtlssep’s architecture.

Libtlssep uses three channels to facilitate communication between an ap-
plication and its decorator: (1) a Unix-domain socket used by the application
to pass file descriptors to its decorator, (2) a shared-memory- and event-file-
descriptor-based control channel which allows the application to make Remote
Procedure Calls (RPCs) to its decorator, and (3) a Unix-domain notification
socket which allows the application to poll for available data. The application



Improving Application Security through TLS-Library Redesign 83

provides yet another file descriptor—the network file descriptor—over which TLS
messages flow between the decorator and remote service.

To use libtlssep, an application first initiates a connection with some ser-
vice using the BSD-socket API. Next, the application calls the tlssep_init

and tlssep_connect (or tlssep_accept) procedures. Tlssep_init executes
the decorator process and initiates the control and file-decriptor-passing chan-
nels with it. Tlssep_connect passes the network socket and a notification
socket to the decorator, and the decorator uses the network socket to initi-
ate a TLS connection with the service. One decorator can support a number
of tlssep_connect calls to different end points; thus two of the communica-
tion channels mentioned are per-run (i.e., the control and file-decriptor-passing
channels) and two are per-TLS-connection (i.e., the network and notification
sockets).

From this point on, the application communicates with the service through the
decorator using libtlssep’s API: the application makes read and write RPCs
across the control channel by calling tlssep_read and tlssep_write (possibly
employing select on the notification socket), and the decorator wraps/unwraps
the contents of these calls using TLS, passing/receiving them to/from the service.

4.2 Libtlssep API and Configuration

API: Libtlssep provides around a dozen procedures which we summarize here.

Most of the procedures take a tlssep_desc_t argument which describes an es-
tablished libtlssep connection. The fields within the tlssep_desc_t structure
are meant to be opaque, with the exception of the notification file descriptor
which bears the field name notificationfd.

tlssep_status_t tlssep_init (tlssep_context_t *context)

The tlssep_init procedure initializes a context structure, executes the dec-
orator process, and establishes the control and file-descriptor-passing channels
described in §4.1. Upon execution, the decorator reads its configuration and
begins polling the control socket.

tlssep_status_t tlssep_connect (tlssep_context_t *context,

int file_descriptor,

const char *expected_name,

char *name,

tlssep_desc_t *desc)

The tlssep_connect procedure provides the decorator with a network file
descriptor, expected name, and the per-TLS-connection notification socket de-
scribed in §4.1. After providing this information to the decorator, libtlssep
closes the application-side copy of the network file descriptor; thereafter the ap-
plication can determine if network data is available for tlssep_read by polling
the per-TLS-connection notification socket.

Given these parameters, the decorator initiates a TLS connection and adds
the given network file descriptor to the set of file descriptors it polls. Finally, the
decorator verifies the certificate received from the server against expected_name,



84 L.St. Amour and W.M. Petullo

aborting the process if the certificate does not satisfy the configured verification
engine. Upon receiving notification of a successful connection, tlssep_connect
initializes the connection descriptor named desc and copies the server’s true
name into the buffer pointed to by name.

tlssep_status_t tlssep_accept (tlssep_context_t *context,

int file_descriptor,

const char *expected_name,

char *name,

tlssep_desc_t *desc)

The tlssep_accept procedure serves the same purpose as tlssep_connect,
except that it implements the server side.

tlssep_status_t tlssep_write (tlssep_desc_t *desc,

const void *buf,

int buf_size,

int *bytes_written)

The tlssep_write procedure provides the decorator with a number of bytes
to write on the given TLS connection.

tlssep_status_t tlssep_read (tlssep_desc_t *desc,

void *buf,

int buf_size,

int *num_read)

The tlssep_read procedure requests from the decorator a number of bytes
to be read from the given TLS connection.

tlssep_status_t tlssep_peek (tlssep_desc_t *desc,

void *buf,

int buf_size,

int *num_read)

The tlssep_peek procedure serves the same purpose as tlssep_read, except
that the returned bytes will remain in the decorator’s buffer and thus remain
available for subsequent reads/peeks.

tlssep_status_t tlssep_poll (tlssep_desc_t *desc,

unsigned int timeout)

The tlssep_poll procedure polls the notification socket associated with the
TLS connection, blocking until the decorator has data for the application. Al-
ternatively, a programmer can directly use Unix’s select system call since the
desc structure contains the notification socket file descriptor.

tlssep_status_t tlssep_setnonblock (tlssep_desc_t *desc)

The tlssep_setnonblock procedure sets the mode of the decorator’s network
file descriptor to non-blocking.



Improving Application Security through TLS-Library Redesign 85

tlssep_status_t tlssep_close (tlssep_desc_t *desc)

The tlssep_close procedure instructs the decorator to close the given TLS
connection and remove its file descriptor from the set of file descriptors it polls.
The procedure also frees any state associated with the connection.

tlssep_status_t tlssep_terminate (tlssep_context_t *context)

The tlssep_terminate procedure instructs the decorator to exit.

char *tlssep_strerror (tlssep_status_t error)

The tlssep_strerror transforms a tlssep_status_t status code into a
human-readable string.

1 sock = create_socket(hostname)

2 tlssep_init(ctx)

3 status = tlssep_connect(ctx , sock , hostname , NULL , desc)

4 if TLSSEP_STATUS_OK == status {

5 tlssep_write(desc , request , len)

6 tlssep_read(desc , response , len)

7 handle(response)

8 tlssep_close(desc)

9 }

10 tlssep_terminate(desc)

Fig. 4. Pseudocode to create a TLS connection using libtlssep. Omits error handling,
other than to check that the server’s certificate satisfies tlssep connect. The user-
defined procedures are create socket and handle.

1 sock = accept_connection ()

2 tlssep_init(ctx)

3 status = tlssep_accept(ctx , sock , NULL , user_name , desc)

4 if TLSSEP_STATUS_OK == status && user_auth(user_name) {

5 tlssep_read(desc , request , len)

6 response = handle(request)

7 tlssep_write(desc , response , len)

8 tlssep_close(desc)

9 }

10 tlssep_terminate(desc)

Fig. 5. Pseudocode to accept a TLS connection using libtlssep. Omits error handling,
other than to check that the client is authorized to connect. The user-defined procedures
are accept connection, user auth, and handle.



86 L.St. Amour and W.M. Petullo

Figure 4 shows in pseudo-code an example of a libtlssep-based client, and
Figure 5 shows a server. In a real application, the programmer would check the
status code returned from each libtlssep call; here we show only those checks
required to perform authentication. §5.1 will describe the security advantages of
libtlssep’s API.

Configuration: CertShim provided the inspiration for libtlssep’s configura-

tion engine. Figure 6 lists a sample libtlssep configuration as is typically found
at /etc/tlssep-decorator-api-version.cfg, where api -version represents
the major and minor version numbers of libtlssep. Lines 1–3 specify the global
configuration parameters, in this case the path to a certificate and private key
as well as the default certificate-trust model.

The application-specific statement beginning on line 5 overrides the configura-
tion when tlssep-decorator acts on behalf of /usr/bin/my-prototype so that
the program chains two verification techniques: the traditional CA model and
self-signed certificates, with the latter presumably supported for development
purposes. Here the meaning of the enough parameter resembles CertShim’s
vote: satisfying one of either CA or self-signed verification is sufficient for this
application.

Had the administrator set enough to 2, the application would require
that both verifications be successful; in the absence of an enough parameter,
tlssep-decorator will enforce all of the specified verification techniques. An
administrator could select other trust models here without making any changes
to application source code.

1 certpath = "/etc/pki/tls/certs/cert.pem";

2 privkeypath = "/etc/pki/tls/certs/key.pem";

3 verification = ( "ca" );

5 programs = ({

6 path = "/usr/bin/my-prototype ";

7 verification = ( "ca", "self -signed" );

8 enough = 1;

9 })

Fig. 6. Sample libtlssep configuration.

5 Security, Programmability, and Performance

5.1 Security Benefits of libtlssep’s API and Architecture

Table 1 summarizes the security advantages of libtlssep which we further
describe here. Libtlssep contributes to application robustness for two reasons:
(1) it has a simple API which we designed to provide clear failure semantics, and
(2) it results in applications which make use of privilege separation to protect
secret cryptographic keys.

Our design represents a tradeoff: for example, combining another TLS li-
brary with OpenBSD’s imsg would provide more flexibility, but such a composi-
tion requires the programmer to design a privilege-separation architecture. With



Improving Application Security through TLS-Library Redesign 87

Table 1. Comparison of OpenSSL and libtlssep.

OpenSSL libtlssep

Certificate
verification

Left to application
programmer; trust model
(including trust of self-signed
certificates) embedded in
application logic

Follows from semantics of
library; trust model selected by
configuration

Name
verification

Application programmer must
check that the certificate’s
name matches the expected
name

Follows from semantics of
library

Error reporting Inconsistent API [15, §4.1] Consistent API

Key isolation Key compromise follows from
application compromise

Architecture isolates keys in
separate memory space

Configuration Each application has its own
configuration mechanism

Single configuration point for
all applications

OS access
controls

OS has difficulty discerning
between encrypted and
cleartext connections

OS can restrict applications
such that they can only
perform network reads and
writes through decorator

Cipher suite
choices

Left to application
programmer; includes null
cipher

Library designers choose cipher
suite

libtlssep, programmers benefit from the architecture we designed to protect
cryptographic keys without needing to reason about privilege separation.

Libtlssep’s API promotes better application security. Recall Figures 1, 2, 4,
and 5 which show examples of using OpenSSL and libtlssep. Figure 1 shows
that a client application programmer who makes direct use of OpenSSL must
call a number of procedures to set up the TLS connection. Most significantly,
explicit code is required to verify the peer certificate involved in the connection;
this involves obtaining the peer certificate using SSL_get_peer_certificate,
verifying it through a call to SSL_get_verify_result, and further checking
the certificate’s name by implementing and calling verify_name. We discussed
in §2 Marlinspike’s attack on subtle flaws in verify_name-like procedures, and
contemporary TLS APIs cause such procedures to be repeated across many
applications.

Figure 4 shows that libtlssep requires fewer procedure calls, and thus
allows less ill composition. Here the programmer does not have to explic-
itly call a verification routine. Instead, verification follows from the seman-
tics of tlssep_connect (or tlssep_accept), as with LibreSSL’s tls_connect.
Libtlssep does not return a valid TLS connection handle if verification fails.



88 L.St. Amour and W.M. Petullo

By using libtlssep instead of directly using OpenSSL, an application remains
simpler, because libtlssep absolves the application programmer of the respon-
sibility of verification. Libtlssep also makes error handling more clear as its
procedures report errors in a consistent manner, unlike many existing APIs [15,
§4.1].

With libtlssep, all network messages subsequent to the initial connection
establishment pass through the decorator. The decorator isolates both long-
term authentication keys and session keys in its own address space. This reduces
the likelihood that an application compromise will result in the compromise of
a cryptographic secret. This design is intended to address issues which stem
from a combination of (1) implementation flaws which allow for applications
to be compromised and (2) design flaws which allow long-term keys to exist
in an application’s memory space. We do not claim to fix all attacks, but our
implementation will help with those that exploit application code to retrieve
long-term keys.

In other architectures, both verification code and configuration settings are
duplicated throughout a number of applications. Bugs fixed in one application
are left latent in others, and administrators must learn each application’s TLS-
configuration syntax. With libtlssep, the API and decorator consolidates ver-
ification code, ensures applications cannot ignore verification failures, and con-
solidates trust-model configuration. Programmers are accustomed to deploying
different configuration files than those used while developing their software, so
this will reduce the likelihood of deploying an application which trusts self-signed
certificates. Furthermore, upgrading libtlssep and modifying the library’s con-
figuration file can add new certificate trust models without modifying applica-
tions. This can also centralize efforts to address emerging threats—such as with
the triple-handshake attack [8]—which with other libraries require updates to
each application.

Libtlssep’s decorator will exist in a filesystem with its setuid bit set. This
ensures that the decorator runs as a different user than the application. The
decorator’s user should have special read access to the appropriate cryptographic
keys, but should not necessarily have full superuser privileges.

Libtlssep’s architecture allows OSs to better constrain applications which
make use of the library. For example, Security-Enhanced Linux (SELinux) or an-
other fine-grained access-control system could forbid an application from reading
or writing cleartext network connections, instead permitting only TLS-protected
communication through the libtlssep decorator. This forces applications to
communicate over the network only in an encrypted manner. Current architec-
tures make it difficult to discern between encrypted and cleartext connections
from within OS access controls. Existing techniques rely on weaker transport-
layer-port filtering or attempts at runtime packet inspection.

Our design does not allow programmers to pick the cipher suites their applica-
tions use. This allows libtlssep to avoid cryptographic disasters such as weak
ciphers, disabled cryptography, or ill-composed cryptographic primitives [6].



Improving Application Security through TLS-Library Redesign 89

5.2 Programmability

To assess the programmability of libtlssep, we ported two common applica-
tions: the wget client [30] and the lighttpd [20] server.

Porting wget required the addition of 231 lines of code—31 of which were
comments—and the removal of three lines (wget totals around 39,000 lines). A
number of these additions involved properly implementing error handling and
following good programming practices. We benefited from the fact that wget

already supports multiple TLS backends, so our additions took the form of a
libtlssep backend and modified only two source files. The libtlssep backend
comprises of 159 lines of code while the OpenSSL backend consumes 590.

Porting lighttpd required the addition of 352 lines and the removal of 15
lines (lighttpd totals around 40,000 lines). Lighttpdwas not written to support
multiple TLS backends, which slightly added to the difficulty of our port. Here
we ended up replacing OpenSSL procedure calls with libtlssep procedure calls
in seven source files.

Modifying wget and lighttpd to use our library shows that existing
applications—both client- and server-side—can easily gain the security benefits
provided by libtlssep. In both cases, we completed the port without having
previously studied the application’s source code. The use of CertShim with ex-
isting applications requires even less effort, but CertShim does not provide the
architectural security benefits of libtlssep. New applications will immediately
benefit from choosing libtlssep’s simpler API.

5.3 Performance

To evaluate libtlssep’s performance, we measured latency and throughput
while comparing libtlssep with pure OpenSSL. We made use of a computer
with a 3.4-GHz four-core Intel Core i7-3770 processor and 32 GB of memory.
We ran our tests by requesting data from a local HTTPS server using the loop-
back interface; thus our results amplify the performance differences between
libtlssep and OpenSSL because they omit real network latency.

For testing purposes, we created four HTTPS clients: for each of OpenSSL and
libtlssep, we implemented a latency- and throughput-testing client. Lighttpd
1.4.36 (compiled to use pure OpenSSL, not libtlssep) provided the HTTPS
server for our test clients. Each benchmark uses the same cipher suite: ephemeral
elliptic-curve Diffie-Hellman, RSA, 128-bit AES, and SHA-256. We also per-
formed tests using wget and lighttpd, each compiled to use both pure OpenSSL
and libtlssep.

Latency Performance: Each of our latency benchmarks repeats the process of

initiating a TLS connection, reading one byte, and then closing the connection.
We measured the time that it took each application to complete 10,000 iterations.
Table 2a summarizes the results of this experiment. We present the results of 10
full runs, along with the mean and standard deviation. The OpenSSL implemen-
tation had an average runtime of 49.580 seconds with a standard deviation of
0.403. The libtlssep implementation had an average runtime of 50.894 seconds



90 L.St. Amour and W.M. Petullo

Table 2. Latency and throughput measurements. Both client and server ran on the
same machine and communicated using the loopback interface.

Runtime (seconds)
# OpenSSL libtlssep

1 49.341 50.903
2 49.474 51.178
3 49.112 50.783
4 49.358 50.945
5 49.457 50.604
6 50.563 51.212
7 49.818 50.594
8 49.764 51.075
9 49.563 51.028
10 49.353 50.616

μ 49.580 50.894

σ 0.403 0.235

(a) Runtime of 10,000
serial connections
using OpenSSL and
libtlssep.

Runtime (seconds)
# OpenSSL libtlssep

101 MB 102 MB 103 MB 101 MB 102 MB 103 MB

1 0.061 0.193 1.517 0.071 0.205 1.625
2 0.061 0.193 1.517 0.070 0.205 1.557
3 0.061 0.193 2.420 0.070 0.206 1.589
4 0.061 0.193 1.521 0.079 0.294 1.585
5 0.061 0.194 1.517 0.070 0.212 1.841
6 0.061 0.194 1.521 0.070 0.212 1.557
7 0.061 0.194 1.559 0.070 0.294 2.446
8 0.061 0.193 1.519 0.071 0.206 1.554
9 0.061 0.194 1.518 0.070 0.207 1.563
10 0.061 0.194 2.417 0.070 0.295 2.456

μ 0.061 0.194 1.703 0.071 0.234 1.777

σ 0.000 0.000 0.378 0.003 0.042 0.365

(b) Single download time of file sizes indicated using
OpenSSL and libtlssep.

with a standard deviation of 0.235 seconds. On average, libtlssep initiates TLS
connections at 97.4% the rate measured with pure OpenSSL.

Throughput Performance: Our throughput benchmarks read files of varying

sizes over a TLS connection. Each creates a single connection, reads 1,024 MB at
a time until the entire file is read, and then closes the connection. We measured
the time that it took each application to download 10 MB, 100 MB, and 1,000
MB files.

Table 2b summarizes the results of this experiment. For the 1,000 MB file, the
pure OpenSSL implementation took an average of 1.703 seconds with a standard
deviation of 0.378, while the libtlssep implementation took an average of 1.777
seconds with a standard deviation of 0.365.

Based on these results, the throughput of libtlssep is 95.8% of that mea-
sured with pure OpenSSL. The slight difference is due to the added overhead
of scheduling an additional process as well as the additional memcpys and RPC-
related shared-memory communication involved. Libtlssep’s throughput dur-
ing our experiments exceeded 4,610 Mb/s.

We also performed benchmarks using both our libtlssep and the upstream-
OpenSSL versions of lighttpd and wget. Here we used variations of the follow-
ing command (note that the libtlssep version of wget presently ignores the
--no-check-certificate option):



Improving Application Security through TLS-Library Redesign 91

Table 3. Single download time of a 1,000 MB file using the OpenSSL and libtlssep

versions of wget and lighttpd.

Runtime (seconds)
OpenSSL server OpenSSL server libtlssep server libtlssep server

# OpenSSL client libtlssep client OpenSSL client libtlssep client

1 1.601 2.643 2.066 2.722
2 1.597 2.565 2.055 2.704
3 1.599 2.566 2.247 2.732
4 1.598 2.559 2.040 2.645
5 1.598 2.584 2.056 2.865
6 1.600 2.590 2.052 2.581
7 1.597 2.565 2.103 2.643
8 1.596 2.563 2.051 2.977
9 1.608 2.564 2.054 2.736
10 1.829 2.619 2.059 2.855

μ 1.622 2.582 2.078 2.746

σ 0.073 0.028 0.062 0.120

Table 4. Total download time of three simultaneous transfers of a 1,000 MB file from
OpenSSL/libtlssep lighttpd to OpenSSL wgets.

Runtime (seconds)
# OpenSSL server libtlssep server

1 4.466 6.449
2 4.470 6.203
3 4.479 6.558
4 4.545 6.621
5 4.622 6.809
6 4.438 6.667
7 4.428 6.725
8 4.432 6.445
9 4.519 6.494
10 4.455 6.310

μ 4.485 6.528

σ 0.061 0.187

time wget --quiet --no-http-keep-alive --no-check-certificate \

-O /dev/null https://127.0.0.1/1000M

We summarize our lighttpd-to-wget results in Tables 3 and 4. The former
table contains measurements of a single 1,000 MB download, and the latter
table contains measurements of three simultaneous 1,000 MB downloads. A sin-
gle serial libtlssep-to-libtlssep download provides approximately 59% the
throughput of its pure-OpenSSL counterpart when transfering over our com-
puter’s loopback interface. This rate would benefit from increasing the size of



92 L.St. Amour and W.M. Petullo

the buffers used within lighttpd and wget to reduce the number of RPCs
libtlssep must invoke to transfer data (also recall that our previous experi-
ments used libtlssep only on one side of the connection). Simultaneous trans-
fers fare better; here libtlssep approaches within 68% of OpenSSL’s through-
put. This performance would also benefit from tuning the buffer sizes within
lighttpd and wget.

6 Conclusion

Libtlssep provides application programmers with a simpler API and more se-
cure design for adding TLS support to their applications. Libtlssep is less
ambitious than other projects; it exists between contemporary TLS libraries
and projects such as NaCL [6] and MinimaLT [27]. Libtlssep serves as an
easy-to-integrate, near-term replacement for existing TLS libraries. Nonethe-
less, libtlssep provides better isolation of cryptographic secrets and reduces
the number of pitfalls faced by network programmers.

Future work on libtlssep will include further performance optimizations,
a review of the library’s source code, and additional application ports. Previ-
ous performance improvements came from replacing our use of Open Network
Computing (ONC) RPC with a custom RPC implementation, moving from a
Unix-socket-based to a shared-memory-based RPC channel, and reusing a single
decorator process across multiple connections within an application. Libtlssep’s
decorator would also benefit from an implementation in a strongly typed lan-
guage such as Go. Once we are satisfied with our implementation and API we
will announce a stable release; our research prototype is already available at
http://www.flyn.org/projects/libtlssep.

Acknowledgments. We thank Suzanne Matthews, Kyle Moses, and Christa
Chewar for their comments on our early work, our anonymous referees for com-
ments on subsequent drafts, and the United States Military Academy for their
support. We are also grateful to Colm MacCárthaigh who encouraged us to
pursue using shared memory to improve the performance of libtlssep’s RPC
channel.

References

[1] Fedora system-wide crypto policy.
http://fedoraproject.org/wiki/Changes/CryptoPolicy (accessed Mach 22,
2014)

[2] Barnes, R.L.: DANE: Taking TLS authentication to the next level using DNSSEC.
IETF Journal, October 2011. http://www.internetsociety.org/articles/
dane-taking-tls-authentication-next-level-using-dnssec accessed June 22,
2015)

[3] Bates, A., Pletcher, J., Nichols, T., Hollembaek, B., Tian, D., Butler, K.R., Alkhe-
laifi, A.: Securing SSL certificate verification through dynamic linking. In: Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2014, pp. 394–405. ACM, New York (2014)

[4] Beck, B.: LibreSSL: The first 30 days and the future. In: presentation at the 11th
BSDCan Conference, May 2014

http://www.flyn.org/projects/libtlssep
http://fedoraproject.org/wiki/Changes/CryptoPolicy
http://www.internetsociety.org/articles/dane-taking-tls-authentication-next-level-using-dnssec
http://www.internetsociety.org/articles/dane-taking-tls-authentication-next-level-using-dnssec


Improving Application Security through TLS-Library Redesign 93

[5] Bernstein, D.J.: CurveCP: Usable security for the Internet. CurveCP: Usable se-
curity for the Internet. http://curvecp.org (accessed July 9, 2015)

[6] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new crypto-
graphic library. In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533,
pp. 159–176. Springer, Heidelberg (2012)

[7] Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M.,
Pironti, A., Strub, P.Y., Zinzindohoue, J.K.: A messy state of the union: Taming
the composite state machines of TLS. In: Proc. IEEE Symp. Security and Privacy.
IEEE Computer Society Press, Washington, DC, May 2015

[8] Bhargavan, K., Lavaud, A., Fournet, C., Pironti, A., Strub, P.: Triple handshakes
and cookie cutters: Breaking and fixing authentication over TLS. In: Proc. IEEE
Symp. Security and Privacy, pp. 98–113. IEEE Computer Society Press, Wash-
ington, DC, May 2014

[9] Bittau, A., Hamburg, M., Handley, M., Mazières, D., Boneh, D.: The case for ubiq-
uitous transport-level encryption. In: Proceedings of the 19th USENIX Security
Symposium. USENIX Association, Berkeley, August 2010

[10] Cox, R., Grosse, E., Pike, R., Presotto, D., Quinlan, S.: Security in Plan 9. In: Proc.
of the USENIX Security Symposium, pp. 3–16. USENIX Association, Berkeley
(2002)

[11] Durumeric, Z., Kasten, J., Bailey, M., Halderman, J.A.: Analysis of the HTTPS
certificate ecosystem. In: Proceedings of the 2013 Conference on Internet Mea-
surement, IMC 2013, pp. 291–304. ACM, New York (2013)

[12] Fahl, S., Harbach, M., Muders, T., Smith, M., Baumgärtner, L., Freisleben, B.:
Why eve and mallory love android: an analysis of android SSL (in)security. In:
Proceedings of the 2012 ACM Conference on Computer and Communications
Security, pp. 50–61. ACM, New York (2012)

[13] Fahl, S., Harbach, M., Perl, H., Koetter, M., Smith, M.: Rethinking SSL develop-
ment in an appified world. In: Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2013, pp. 49–60. ACM, New
York (2013)

[14] Electronic Frontier Foundation: HTTPS everywhere.
https://www.eff.org/https-everywhere (accessed August 26, 2013)

[15] Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The
most dangerous code in the world: validating SSL certificates in non-browser soft-
ware. In: Proceedings of the 2012 ACM Conference on Computer and Communi-
cations Security, CCS 2012, pp. 38–49. ACM, New York (2012)

[16] Guan, L., Lin, J., Luo, B., Jing, J., Wang, J.: Protecting private keys against
memory disclosure attacks using hardware transactional memory. In: Proc. IEEE
Symp. Security and Privacy. IEEE Computer Society Press, Washington, DC, May
2015

[17] He, B., Rastogi, V., Cao, Y., Chen, Y., Venkatakrishnan, V., Yang, R., Zhang, Z.:
Vetting SSL usage in applications with SSLint. In: Proc. IEEE Symp. Security
and Privacy. IEEE Computer Society Press, Washington, DC, May 2015

[18] Hoffman, P., Schlyter, J.: RFC 6698: The DNS-based Authentication of Named
Entities (DANE) Transport Layer Security (TLS) protocol: TLSA, August 2012.
http://www.ietf.org/rfc/rfc6698.txt (accessed June 22, 2015), status: PRO-
POSED STANDARD

[19] IOerror: DigiNotar damage disclosure. The Tor Blog, September 2011.
https://blog.torproject.org/blog/diginotar-damage-disclosure (accessed
May 20, 2015)

http://curvecp.org
https://www.eff.org/https-everywhere
http://www.ietf.org/rfc/rfc6698.txt
https://blog.torproject.org/blog/diginotar-damage-disclosure


94 L.St. Amour and W.M. Petullo

[20] Kneschke, J., et al.: lighttpd. http://www.lighttpd.net/ (accessed Jun 22,
2015)

[21] Leavitt, N.: Internet security under attack: The undermining of digital certificates.
Computer 44(12), 17–20 (2011)

[22] Marlinspike, M.: Null-prefix attacks against SSL/TLS certificates. Presentation at
Black Hat USA, July 2009. http://www.blackhat.com/presentations/
bh-usa-09/MARLINSPIKE/BHUSA09-Marlinspike-DefeatSSL-PAPER1.pdf

accessed June 22, 2015)
[23] Naylor, D., Finamore, A., Leontiadis, I., Grunenberger, Y., Mellia, M., Munafò,

M., Papagiannaki, K., Steenkiste, P.: The cost of the ‘S’ in HTTPS. In: Pro-
ceedings of the 10th ACM International on Conference on Emerging Networking
Experiments and Technologies, CoNEXT 2014, pp. 133–140. ACM, New York
(2014)

[24] NIST National Vulnerability Database: CVE-2014-0160, Decembe 2013.
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160

(accessed April 15, 2014)
[25] OpenBSD manual pages: imsg init(3). http://www.openbsd.org/cgi-bin/

man.cgi/OpenBSD-current/man3/imsg init.3 (accessed July 8, 2015)
[26] Petullo, W.M., Solworth, J.A.: Simple-to-use, secure-by-design networking in

Ethos. In: Proceedings of the Sixth European Workshop on System Security, EU-
ROSEC 2013. ACM, New York, April 2013

[27] Petullo, W.M., Zhang, X., Solworth, J.A., Bernstein, D.J., Lange, T.: MinimaLT:
Minimal-latency networking through better security. In: Proceedings of the 2013
ACM SIGSAC Conference on Computer and Communications Security, CCS 2013.
ACM, New York, Novembe 2013

[28] Provos, N., Friedl, M., Honeyman, P.: Preventing privilege escalation. In: Proc. of
the USENIX Security Symposium, pp. 231–242. USENIX Association, Berkeley,
August 2003

[29] Schmidt, S.: Introducing s2n, a new open source TLS implementation. Amazon
Web Services Security Blog, June 2015. https://blogs.aws.amazon.com/
security/post/TxCKZM94ST1S6Y/Introducing-s2n-a-New-Open-Source-

TLS-Implementation

(accessed July 1, 2015)
[30] Scrivano, G., et al.: wget. http://www.gnu.org/software/wget/ (accessed June

22, 2015)
[31] Soghoian, C., Stamm, S.: Certified lies: Detecting and defeating government inter-

ception attacks against SSL (Short paper). In: Danezis, G. (ed.) FC 2011. LNCS,
vol. 7035, pp. 250–259. Springer, Heidelberg (2012)

[32] Vratonjic, N., Freudiger, J., Bindschaedler, V., Hubaux, J.P.: The inconvenient
truth about web certificates. In: Proceedings of the 10th Workshop on the Eco-
nomics of Information Security (June 2011)

[33] Ylonen, T.: SSH—secure login connections over the Internet. In: Proc. of the
USENIX Security Symposium, pp. 37–42. USENIX Association, San Jose (1996)

[34] Zimmermann, P.R.: The Official PGP Users Guide. MIT Press, Boston (1995)

http://www.lighttpd.net/
http://www.blackhat.com/presentations/bh-usa-09/MARLINSPIKE/BHUSA09-Marlinspike-DefeatSSL-PAPER1.pdf
http://www.blackhat.com/presentations/bh-usa-09/MARLINSPIKE/BHUSA09-Marlinspike-DefeatSSL-PAPER1.pdf
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man3/imsg_init.3
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man3/imsg_init.3
https://blogs.aws.amazon.com/security/post/TxCKZM94ST1S6Y/Introducing-s2n-a-New-Open-Source-TLS-Implementation
https://blogs.aws.amazon.com/security/post/TxCKZM94ST1S6Y/Introducing-s2n-a-New-Open-Source-TLS-Implementation
https://blogs.aws.amazon.com/security/post/TxCKZM94ST1S6Y/Introducing-s2n-a-New-Open-Source-TLS-Implementation
http://www.gnu.org/software/wget/


How Not to Combine RC4 States

Subhadeep Banik1 and Sonu Jha2

1 DTU Compute, Technical University of Denmark, Lyngby 2800, Denmark
subb@dtu.dk

2 National Informatics Center, Sector V, Salt Lake, Kolkata 91, India
jhasonu1987@yahoo.com

Abstract. Over the past few years, an attractive design paradigm has
emerged, that aims to produce new stream cipher designs, by combining
one or more independently produced RC4 states. The ciphers so pro-
duced turn out to be faster than RC4 on any software platform, mainly
because the average number of internal operations used in the cipher per
byte of keystream produced is usually lesser than RC4. One of the main
efforts of the designers is to ensure that the existing weaknesses of RC4
are not carried over to the new ciphers so designed. In this work we will
look at two such ciphers RC4B (proposed by Zhang et. al.) and Quad-
RC4/m-RC4 (proposed by Maitra et. al.). We will propose distinguishing
attacks against all these ciphers, and look at certain design flaws that
made these ciphers vulnerable.

Keywords: RC4, RC4B, Quad-RC4, m-RC4, Distinguishing Attacks,
Stream Cipher.

1 Introduction

From over the past two decades, RC4 has been one of the most extensively used
stream ciphers in many popular protocols like WEP, TLS, TCP etc. The reason
behind the popularity of this byte oriented stream cipher was the simplicity of
its design. Using a very few number of operations, RC4 is able to provide fast
enough encryption in software. It is not very surprising that such an elegant
cipher wrapped in just 4 lines of code was going to gain the attention of the re-
searchers from all over the world. As a result, several attempts have been made
to cryptanalyze this stream cipher (see [7, 8]). Apart from the analysis point of
view, there has also been several proposals of new RC4-like stream ciphers by
introducing some number of modifications on the original RC4 design paradigm.
The major motivations behind these new proposals were to protect the cipher
against some well known cryptanalytic results shown on the RC4 stream cipher
keeping also in mind that the average number of operational steps taken by
those new introduced designs in order to encrypt the data is not much more
than the number of steps taken by RC4 itself. For example, the RC4+ stream
cipher [6] proposed by Maitra et. al. introduced a modified version of RC4 with
a complex 3-phase key schedule and a more complex output function in order
to protect the new design against the above mentioned well known attacks with

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 95–112, 2015.
DOI: 10.1007/978-3-319-24126-5_6



96 S. Banik and S. Jha

the speed being marginally slower in software compared to RC4. Similarly there
were interesting stream cipher proposals (such as VMPC [16], GGHN [3] etc.)
with the introduction of various modifications to achieve faster encryption in
software and to protect the design of the cipher against the potential vulnera-
bilities reported in literature. Nevertheless, some distinguishing attacks on all of
the above mentioned ciphers have already been reported [2, 9, 15].

An interesting advancement proposed by some researchers towards the modi-
fications in the RC4 design has been to increase the number of RC4 states, i.e.,
to increase the number of permutations in order to make the output generation
dependent on more random variables which minimizes the correlation between
the bytes produced. This approach has the added advantage that the number of
steps performed per keystream byte produced may be made smaller than RC4
itself. This makes the ciphers designed under this paradigm faster than RC4
in software. Ciphers like RC4A [12], RC4B [4], Quad-RC4 [11] etc. have been
introduced to fulfill such needs. In this paper we will concentrate on the analysis
of two stream ciphers namely RC4B and Quad-RC4. The RC4B stream cipher
is similar to RC4’s exchange shuffle model i.e. RC4A. It also uses two differ-
ent arrays of permutations. The Key-Scheduling Algorithm (KSA) of RC4B is
same as that of RC4A. The Pseudo-Random Keystream Generation Algorithm
(PRGA) of RC4B differs slightly from that of RC4A. In order to prevent the
strong distinguisher biases [4, 14], the authors of RC4B choose to mix the two
array’s states. A detailed description of the RC4B stream cipher will be given in
Section 2.

Quad-RC4 was first presented at a session in Indocrypt 2012 [5]. Its design
focuses on building a 32-bit RC4 for a 32-word machine, however the basic 8-
bit RC4 is used as a building block at every round of keystream generation.
The KSA of Quad-RC4 is similar to the 3-layer KSA+ of RC4+. Since Quad-
RC4 uses four different 8-bit identity permutations, the authors run the KSA+
routine on four identity permutations independently to generate four scrambled
permutations over Z256 . In the PRGA, the four scrambled pseudo random per-
mutations are merged into a single array of size 256 where each element is a
32 bit number. The output byte is then produced following a certain number
of operations. See Section 3 for a detailed description of the Quad-RC4 stream
cipher. A description of the m-RC4 stream cipher will also be given in section
3.3 in which the authors propose a model of combining m number of different
8-bit pseudo random permutations.

1.1 Contribution and Organization of the Paper

In this paper, we analyze the security of RC4B and Quad-RC4 stream ciphers
by mounting distinguishing attacks on them. The RC4B stream cipher uses two
independent RC4 states in its encryption scheme. In Section 2, we will show that
the probability that the first two output bytes produced by RC4B are both 0
is approximately 2

N2 (N = 256) which is twice the expected probability in the
ideal case. In Section 3, we will show that any r-th 4-byte output word Zr (for
r ≥ 1) produced by the Quad-RC4 stream cipher is biased and the probability



How Not to Combine RC4 States 97

that it is equal to 0 is around 3
N2 . Since in the ideal case, this probability should

have been 1
N4 , this represents a huge bias in the distribution. The authors of

Quad-RC4 also proposed a scheme of combining m number of independent RC4
states (m-RC4) which would produce output bytes of size m bytes. We will also
analyze the m-RC4 stream cipher by mounting distinguishing attacks and show
that this design is still vulnerable for any m. In fact we will show that for the
case of m being even (Section 3.4), the r-th output word Zr produced by the
stream cipher is biased towards 0. Furthermore in Section 3.5, we will show for
the case of any m in general (m > 2), the probability of the first two output
bytes Z1 and Z2 being equal is also biased. Lastly, in Section 3.6, we will discuss
some flaws in the design of these stream ciphers which made them vulnerable to
distinguishing attacks. We tabulate some experimental results in Section 4. We
will conclude the paper in Section 5.

2 Description and Analysis of the RC4B Stream Cipher

In this section we give a detailed description of RC4B stream cipher. In addition
we also analyze the stream cipher by mounting distinguishing attack on its first
two output bytes Z1 and Z2.

2.1 Description of RC4B

The RC4B stream cipher is similar to the RC4A [12], and uses two RC4 states
namely S1 and S2. RC4B uses the same Key Scheduling Algorithm (KSA) as
RC4 and RC4A. The KSA routine is used to construct two permutations S1

and S2 using two keys K1 and K2 respectively (K2 is usually derived as some
pseudorandom function of K1). The PRGA of RC4B is different from RC4A.
Unlike RC4A, RC4B mixes the two arrays of the state. The arrays in RC4A
evolve independent of the other, i.e. the index pointers used to update the array
S1 are generated by S1 itself, and similarly the index pointers used to update S2

are generated by S2. This makes the cipher design vulnerable to distinguishing
attacks. Therefore in RC4B this trend is reversed, the elements to be swapped
in a particular array is determined by the other array. Algorithm 1 describes the
PRGA of RC4B.

The key scheduling algorithm or KSA takes an array S to derive a permutation
of {0, 1, 2, . . . , N − 1} using a variable size key K. The byte-length of the Secret
Key K is denoted by l. Please note that all the addition operations are done in
the integer ring Z256. Three byte indices i, j1 and j2 are used. After performing
the KSA on S1 and S2, the PRGA begins which produces two pseudo-random
bytes Z1 and Z2 using the two permutations derived from KSA. The authors
claim that RC4B generates keystreams faster than RC4 itself, since the number
of operations performed per byte of keystream produced is lesser than that of
RC4. The state space of RC4B is N ! ·N ! ·N3 which is approximately 22388 since
N = 256. Hence it is hard to perform state recovery attack on RC4B.



98 S. Banik and S. Jha

Input: Pseudorandom Permutations S1,S2

Output: Keystream bytes Z1, Z2

i ← 0, j1 ← 0, j2 ← 0;
while Keystream is required do

i ← i+ 1;
j1 ← j1 + S2[i];
Swap(S1[i],S1[j1]);
Z1 = S2[S1[i] + S1[j1]];
j2 ← j2 + S1[i];
Swap(S2[i],S2[j2]);
Z2 = S1[S2[i] + S2[j2]];

end

Algorithm 1. PRGA

2.2 Analysis of RC4B

In this Subsection, we analyze the RC4B stream cipher. We refer to the PRGA
Algorithm 1 of RC4B. Let the initial states of RC4B PRGA be denoted by S1

and S2.

Lemma 1. Let S1 and S2 be random permutations on {0, 1, 2, . . . , 255}. If S1[1]
= 0, S2[1] = X, S1[X ] = Y and S2[Y ] = 0, (where X �= 1, Y �= 0 are any two
byte values) then the first two output bytes Z1 and Z2 are always 0.

Proof. According to the PRGA algorithm described in Algorithm 1, initially
i = j1 = j2 = 0. In the next step, the index i is incremented as i = i + 1. The
secret index j1 is incremented as

j1 = j1 + S2[i] = 0 + S2[1] = X. (1)

After following the swap operation, S1[1] = Y and S1[X ] = 0. In the next step,
the first output byte Z1 is produced as

Z1 = S2[(S1[1] + S1[X ])] = S2[Y + 0] = 0. (2)

The second secret index j2 is incremented as

j2 = j2 + S1[i] = 0 + S1[1] = Y. (3)

After following the next swap operation, S2[1] = 0 and S2[Y ] = X . Thereafter,
the next output byte Z2 is given as

Z2 = S1[(S2[1] + S2[Y ])] = S1[X + 0] = 0. (4)

Hence the first 2 output bytes Z1 and Z2 are always 0.
��



How Not to Combine RC4 States 99

Theorem 1. Let S1 and S2 be random permutations on {0, 1, 2, . . . , 255}. The
probability that Z1 = Z2 = 0 is given by the equation Pr[Z1 = Z2 = 0] = 2

N2 − 1
N4

where N = 256.

Proof. Let E denote the event “S1[1] = 0, S2[1] = X , S1[X ] = Y and S2[Y ] = 0”.
Then we have,

Pr[E] =
1

(N − 1)
· 1

(N − 1)
≈ 1

N2
.

From Lemma 1, we know Pr[Z1 = Z2 = 0|E] = 1. By standard randomness
assumptions and by performing extensive computer experiments using up to 225

keys, we have verified Pr[Z1 = Z2 = 0|Ec] = 1
N2 (Ec denotes the complement of

the Event E). Hence the final probability is given as

Pr[Z1 = Z2 = 0] = Pr[Z1 = Z2 = 0|E] · Pr[E] +
Pr[Z1 = Z2 = 0|Ec] · Pr[Ec]

= 1 · 1

N2
+

1

N2
· (1− 1

N2
)

=
2

N2
− 1

N4
.

(5)

��
For an ideal cipher, the probability Pr[Z1 = Z2 = 0] should be only 1

N2 , so
we can see that in RC4B, this probability is twice that of an ideal cipher. We
now state the following theorem from [7], which outlines the number of output
samples required to distinguish two distributions X and Y .

Theorem 2. (Mantin-Shamir [7]) Let X, Y be distributions, and suppose that
the event e happens in X with probability p and in Y with probability p(1 + q).

Then for small p and q, O
(

1
pq2

)
samples suffice to distinguish X from Y with

a constant probability of success.

Distinguishing RC4B from Random Sources. Let X be the probability
distribution of Z1, Z2 in an ideal random stream, and let Y be the probability
distribution of Z1, Z2 in streams produced by RC4B for randomly chosen keys.
Let the event e denote Z1 = Z2 = 0, which occurs with probability of 1

N2 in X
and 2

N2 − 1
N4 ≈ 2

N2 in Y . By using the Theorem 2 with p = 1
N2 and q = 1, we

can conclude that we need about 1
pq2 = N2 = 216 output samples to reliably

distinguish the two distributions.

3 Description and Analysis of Quad-RC4 and m-RC4
Stream Ciphers

In this section we describe Quad-RC4 and m-RC4 stream ciphers. We also
demonstrate distinguishing attacks on Quad-RC4 and m-RC4 by proving biases
in their output bytes.



100 S. Banik and S. Jha

3.1 Description of Quad-RC4

The rationale behind the design of Quad-RC4 was the optimal utilization of
the resources on the modern processors which are mostly 32 bits. The authors
take a single l-byte key (16 ≤ l ≤ 30) which is used to drive 4 different key
scheduling in parallel to obtain 4 different permutations over Z256. Two byte
indices i and j are used where j is kept secret. The authors of Quad-RC4 argue
that their scheme is more secure than the basic RC4 encryption scheme. The key
scheduling for Quad-RC4 is same as the KSA+ of the stream cipher RC4+ [6].
The KSA+ consists of 3 layers: the basic scrambling of the first layer of KSA+
is similar to the RC4 KSA. Algorithms 2 and 3 describes the other two layers
namely IV Scrambling and Zig-Zag Scrambling of the KSA+ respectively. All
the addition operations are performed in Z256 and ⊕ denotes the bitwise XOR.
The array V used in the Algorithm 2 is of length N = 256 and is defined as

V [i] =

⎧⎨
⎩

IV [N2 − 1− i] if N
2 − l ≤ i ≤ N

2 − 1
IV [i− N

2 ] if N
2 ≤ i ≤ N

2 + l − 1
0 otherwise

Input: S,K, V
Output: Scrambled S

for i = N/2− 1 to 0 do
j = (j + S[i])⊕ (K[i] + V [i]);
Swap(S[i],S[j]);

end

for i = N/2toN − 1 do
j = (j + S[i])⊕ (K[i] + V [i]);
Swap(S[i],S[j]);

end

Algorithm 2. Mix-IV

Input: S,K
Output: Scrambled S

for y = 0 to N − 1 do
if y ≡ 0 mod 2 then

i = y
2
;

end
else

y = N − y+1
2

;
end
j = (j + S[i] +K[i]);
Swap(S[i],S[j]);

end

Algorithm 3. Zig-Zag

Let S1, S2, S3 and S4 denote the 4 pseudo random permutations over Z256

produced after running the key scheduling algorithm. They are merged into
a single array S of size 256, where the i-th entry of S is an 32-bit number
formed by concatenating the 4 bytes S1[i], . . . , S4[i]. Algorithm 4 describes the
PRGA of Quad-RC4. Please note that � and � denotes left and right bitwise
shifts respectively. The | and & signs represent bitwise OR and AND whereas
⊕ represents the bitwise XOR.



How Not to Combine RC4 States 101

Input: 4 pseudo random permutations over Z256

Output: 32-bit output words

i = j = 0;
for i = 0 to 255 do

S[i] = (S1[i] � 24)|(S2[i] � 16)|(S3[i] � 8)|S4[i];
end
while Keystream is required do

i = (i+ 1) mod 256;
j = (j + S4[i]) mod 256;
Swap(S[i] , S[j]);
t = (S[i] + S[j]) mod 232;
t1 = t&0xFF;
t2 = (t � 8)&0xFF;
t3 = (t � 16)&0xFF;
t4 = (t � 24)&0xFF;
Output Z = S[t1]⊕ S[t2]⊕ S[t3]⊕ S[t4];
{a, b} =Next pair of permutations in turn;
Swap(Sa[i],Sa[ta]);
Swap(Sb[i],Sb[tb]);

end

Algorithm 4. Quad-RC4 PRGA Routine

The authors introduce some additional swaps to break the symmetry in the
swaps of the individual permutations. Two permutations Sa and Sb are selected
at every round. Thereafter the i-th and the ta-th bytes of Sa and the i-th and
the tb-th bytes of Sb are swapped. Note that ta and tb are the a-th and the b-th
bytes of t = t1‖ . . . ‖t4. Note that 2 permutations out of 4 can be selected in 6
ways.

3.2 Analysis of Quad-RC4

In this subsection we present the analysis of the Quad-RC4 stream cipher by
demonstrating a distinguishing attack. We refer to the PRGA of Quad-RC4 pre-
sented in Algorithm 4.

Some Notations: Let the initial states of four 8-bit RC4 state permutations
be represented as S1, S2, S3 and S4. Let S denote the 256-element array whose
i-th entry is formed by concatenating the i-th bits of these four RC4 states. Let
t1, . . . , t4 denotes variables of size 1 byte each and t = t1‖ . . . ‖t4 be a 32-bit
variable. Before proceeding, let us define the event Eτ described as follows.

The Event: Consider the four elements t1, t2, t3, t4. Partition these elements

into 2 groups G1, G2 (there are
(42)
2 = 3 ways to do so). The event Eτ will be

said to have occurred if one of the two conditions are satisfied:



102 S. Banik and S. Jha

1. All the t′is are equal i.e. t1 = t2 = t3 = t4.
2. All the t′is are not equal but the two elements in G1 are equal and the two

elements in G2 are also equal.

Lemma 2. If the event Eτ described above occurs, the 4-byte output word Zr

in any PRGA round r is always equal to 0.

Proof. In any PRGA round r of Quad-RC4, the variable t is assigned a value as
follows

t = (S[i] + S[j]) mod 232

In the subsequent operations, t1, . . . , t4 are assigned the values

t1 = t&0xFF, t2 = (t � 8)&0xFF, t3 = (t � 16)&0xFF, t4 = (t � 24)&0xFF.

Now the event Eτ can occur in 2 ways:

1. If t1 = t2 = t3 = t4 = a (say). In that case Z1 = S[a]⊕S[a]⊕S[a]⊕S[a] = 0.
2. If two elements of G1 are equal and the two elements of G2 are also equal.

Without loss of generality assume that G1 consists of t1, t2 and G2 of t3, t4
and t1 = t2 = a and t3 = t4 = b. In this case

Zr = S[a]⊕ S[a]⊕ S[b]⊕ S[b] = 0⊕ 0 = 0

So it is evident that the value of Zr is always going to be 0 under the occurrence
of Eτ . ��
In general, the number of ways one can divide 4 things in 2 groups where each

group has 2 things is
(42)
2 . For each such group, say (t1, t2) and (t3, t4) as shown

earlier, let’s have t1 = t2 = a and t3 = t4 = b. Here a can take N values and b

can take N − 1 values (N = 256) giving N · (N − 1) · (
4
2)
2 = 3N2− 3N total ways

the elements can be partitioned. Also t1 = t2 = t3 = t4 can occur in exactly N
ways, and so the event Eτ can occur in total 3N2 − 3N +N = 3N2 − 2N ways.
The probability that Eτ occurs if we choose the indices t1, t2, t3, t4 randomly is

therefore given as Pr[Eτ ] =
3N2−2N

N4 .

Theorem 3. The probability that the 4-byte output word Zr, produced by Quad-
RC4 in any PRGA round r, is equal to 0 is given by the equation Pr[Zr = 0] ≈ 3

N2 .

Proof. We have established that Pr[Eτ ] =
3N2−2N

N4 . Since Zr is always 0 under
the event Eτ , therefore we have Pr[Zr = 0|Eτ ] = 1. By the results of the extensive
computer experiments performed using 230 keys, we have verified that Pr[Zr =
0|Ec

τ ] =
1
N4 . Therefore the final probability can be given as

Pr[Zr = 0] = Pr[Zr = 0|Eτ ] · Pr[Eτ ] + Pr[Zr = 0|Ec
τ ] · Pr[Ec

τ ]

= 1 · 3N
2 − 2N

N4
+

1

N4
· (1 − 3N2 − 2N

N4
)

=
3N2 − 2N + 1

N4
≈ 3

N2
.

(6)

��



How Not to Combine RC4 States 103

Thus we see a huge bias present in the output words produced Quad-RC4. In
an ideal cipher, the probability of Zr being equal to 0 was required to be 1

N4 .
Thus in Quad-RC4, the value of Pr[Zr = 0] is 3N2 ≈ 217.5 times that of an ideal
cipher. It is clear that the design paradigm of the stream cipher is vulnerable.
This has long term implications in the broadcast scenario, in which a single
plaintext is encrypted by several randomly generated secret keys, and broadcast
over a network. The attacker can perform a ciphertext only plaintext recovery
attack if Quad-RC4 is used for encryption. For example if an attacker can collect
around 220 broadcast ciphertexts, then following our analysis we can say that
any r-th 4-byte word of the plaintext would have been encrypted with around
3·220
N2 ≈ 48 zeroes. Thus the attacker can do a simple statistical test: the most
frequent r-th ciphertext word is also likely to be the r-th plaintext word. Since
the attack works for any r, it makes the entire plaintext easily recoverable. In
the upcoming subsection we will generalize our results for m-RC4 and present
our analysis for odd and even m.

3.3 Description of m-RC4

The m-RC4 stream cipher is similar to the Quad-RC4 stream cipher explained
in the previous section with the difference being the number of different 8-bit
RC4 states to be combined here is m and the output bytes produced through
a suitable function h which takes the quantities S[t], S[i], S[j] and S[tp] where
p = 1, . . . ,m. However the authors argue that if h simply returns the bitwise XOR

Input: m pseudo random permutations over Z256

Output: 8m-bit output words

i = j = 0;
for i = 0 to 255 do

S[i] = (S1[i] � 8(m− 1))| . . . |(Sm−1[i] � 8)|Sm[i];
end
while Keystream is required do

i = (i+ 1) mod 256;
j = (j + Sm[i]) mod 256;
t = (S[i] + S[j]) mod 28m;
t1 = t&0xFF; t2 = (t � 8)&0xFF; . . . tm = (t � 8(m− 1))&0xFF;
Swap(S[i] , S[j]);
Output Z = h(S[t], S[i], S[j], S[t1], S[t2], . . . , S[tm]);
{a, b} =Next pair of permutations in turn;
Swap(Sa[i],Sa[ta]);
Swap(Sb[i],Sb[tb]);

end

Algorithm 5. m-RC4 PRGA Routine



104 S. Banik and S. Jha

of its quantities, then the keystreams produce is not perfectly random. Thus the
design of h with good randomness properties is left by the authors as an open
problem. The PRGA of m-RC4 takes m different pseudo random permutations
over Z256 produced by applying m number of key scheduling namely KSA+. Let
S1, . . . , Sm be the pseudo random permutations produced. They are merged into
a single array S of size 256, where the i-th entry of S is an 8m-bit number formed
by concatenating the m many bytes S1[i], . . . , Sm[i]. Algorithm 5 describes the
PRGA of the m-RC4 stream cipher.

3.4 Analysis for Even m

In this subsection we present an analysis for even m. The analysis is similar
to that for Quad-RC4. Before presenting the analysis, we will go through some
general notations which will be used by us during the proofs.

Some Notations and Assumptions: Let the initial states of m 8-bit RC4
state permutations be represented as S1, S2, S3, . . . , Sm. Let S denote the 256-
element array whose i-th entry is formed by concatenating the i-th bits of thesem
RC4 states. Let t1, . . . , tm denotes variables of size 1 byte each and t = tm‖ . . . ‖t1
be an 8m-bit variable. Since the design of an output function (namely h in Al-
gorithm 5) with good randomness properties is left by the authors as an open
problem, in our analysis we will assume that as in Quad-RC4, the function sim-
ply returns the bitwise XOR of S[t1], S[t2], . . . , S[tm].

The Event: We will start with the definition of the event Eτ for m-RC4, along
similar lines as in Quad-RC4. Consider the m elements t1, t2, . . . , tm. Partition
these elements into k groups G1, G2, . . . , Gk (1 ≤ k ≤ m

2 ), such that the cardi-
nality of each group Gi is even. The event Eτ will be said to have occurred if the
following occurs:

1. The elements in each of the G′
is are equal.

Note that when k = 1, it denotes the degenerate case when all the t′is are equal.
So this definition is consistent with the definition of Eτ given for Quad-RC4.

So, there are exactly f(m2 ) ways in which the groups Gi can be formed, where f
denotes the well-known partition function (i.e. the number of ways of writing an
integer as sum of positive integers) [1]. For example, when m = 6, the number
of partitions are f(3) = 3, i.e., 6, 4 + 2 and 2 + 2 + 2. In the first case we have
t1 = t2 = . . . = t6 and it can happen in N ways where N = 256. In the second
case, we need to divide the 6 elements into 2 groups of 4 and 2. Without loss of
generality let us have t1 = t2 = t3 = t4 = a and t5 = t6 = b. The number of ways
we can divide 6 elements in groups of 4 and 2 is

(
6
2

)
= 15 and the number of ways

we can select a, b is N · (N − 1). So the total number of ways is 15 ·N · (N − 1).
Lastly we have 2 elements in each of the 3 groups and the number of ways it

can happen is given as
(62)·(42)

3! = 15 and the number of ways the elements of



How Not to Combine RC4 States 105

each group can be selected is N · (N − 1) · (N − 2) and so the total number of
combinations is 15 ·N · (N − 1) · (N − 2). Therefore the total number of ways for
all the partitions can be given as 15 ·N · (N − 1) · (N − 2)+15 ·N · (N − 1)+N ,
and so the for m = 6, we have

Pr[Eτ ] =
15 ·N · (N − 1) · (N − 2) + 15 ·N · (N − 1) +N

N6

Similarly, when m = 8, the number of partitions are f(4) = 5 which are 8, 6+2,
4 + 2 + 2, 4 + 4 and 2 + 2 + 2 + 2. For an arbitrary even value of m = 2p, it
is difficult to analytically determine the value of Pr[Eτ ]. However, we can find
a lower bound for this probability. In the case of m = 2p, we know that total
partition is denoted by f(p). However, the dominant partition, that is the one
that will contribute the maximum number of combinations will be

2 + 2 + . . .+ 2︸ ︷︷ ︸
p times

.

We call this event as Em which denotes the situation when t1, . . . , tm are divided
into p groups having 2 elements each and elements of any given group are equal
to each other. The number of ways of dividing m = 2p items in p groups of 2
each is (

2p
2

) · (2p−2
2

) · . . . · (22)
p!

=
2p!

p!2p
=

p∏
i=1

(2i− 1) = Bm (say). (7)

Bm is therefore the product of the first m
2 = p odd integers. So the number of

ways in which the event Em can occur is given by

Bm ·N · (N − 1) · (N − 2) . . . (N − p+ 1) ≈ Bm ·Np. (8)

Therefore we have

Pr[Eτ ] ≈ Pr[Em] =
Bm ·Np

Nm
=

Bm

Np

Lemma 3. If the event Eτ described above occurs, the any m-byte output word
Zr, produced in PRGA round r, is always equal to 0.

Proof. The proof is similar to Lemma 2, and follows from the definition of Eτ .
If Eτ occurs then the t′is are divided into k groups each having an even number
of elements which are equal. In that case the output byte Zr is given as

Zr = (S[a1]⊕ · · ·S[a1])⊕ (S[a2]⊕ · · ·S[a2])⊕ · · · ⊕ (S[ak]⊕ · · ·S[ak]) = 0. (9)

��
Theorem 4. The probability that Zr = 0 in m-RC4, is given by the equation
Pr[Zr = 0] = Bm

Np where m
2 = p.



106 S. Banik and S. Jha

Proof. We know that Pr[Eτ ] =
Bm

Np . Since Zr is always 0 under the event Eτ ,
therefore we have Pr[Zr = 0|Em] = 1. By the results of the extensive computer
experiments performed using 230 keys, we have verified Pr[Zr = 0|Ec

m] = 1
Nm .

Therefore the final probability can be given as

Pr[Zr = 0] = Pr[Zr = 0|Em] · Pr[Em] + Pr[Zr = 0|Ec
m] · Pr[Ec

m]

= 1 · Bm

Np
+

1

Nm
· (1− Bm

Np
)

=
Bm

Np
.

(10)

Note that in an ideal cipher the probability Pr[Zr = 0] was required to be
1

Nm = 1
N2p . So in m-RC4 this probability is Bm · Np times that of an ideal

cipher. For example in 10-RC4, this figure is 945 · 240 ≈ 250. So as m increases
the design becomes increasingly weaker. ��

3.5 Analysis for General m

Previously we demonstrated our analysis for m-RC4 in case when m was an even
number. In this subsection we will present our analysis in case when m is any
integer greater than equal to 4. We will show that the probability of the first
and the second output bytes being equal is biased.

Some Other Notations: We we will denote the m 8-bit RC4 state permu-
tations at the beginning of PRGA round r as Sr

1 , S
r
2 , S

r
3 , . . . , S

r
m. Similarly Sr

denotes the the state of 256-element array S (whose i-th entry is formed by
concatenating the i-th bits of these m RC4 states) at the beginning of round
r. Similarly tr1, . . . , t

r
m and tr denote the values of the variables t1, . . . , tm and t

respectively in round r.

Lemma 4. If S1
m[1] = 2 and S1

m[2] = N − 1, then

a) The value of the of the variables t1 and t2 are both equal,
b) The values of t11 and t21 are both equal to 1.

Proof. We refer to the PRGA (5) of m-RC4. The index pointers i and j are
incremented as i = 0+1 = 1 and j = 0+S1

m[1] = 2. Let us denote S1[1] = x and
S1[2] = y (where x, y are distinct m-byte integers). The variable t1 is updated
in the next step as follows

t1 = S1[1] + S1[2] mod 28m = x+ y mod 28m



How Not to Combine RC4 States 107

We also have

t11 = t1 & 0xFF = (S1[1] + S1[2]) & 0xFF

= (S1[1] & 0xFF) + (S1[2] & 0xFF) mod 256

= S1
m[1] + S1

m[2] mod 256 = 1.

In the next operation, S1[1] and S1[2] are swapped. After the swap we have
S2[1] = y and S2[2] = x. Then in the next round, the index pointers i and j are
incremented as i = 1+1 = 2 and j = 2+S2

m[1] = 2+S1
m[1] = 2+N−1 mod 256 =

1. The above follows, because as per the specifications of m-RC4, the array Sm

is not shuffled in the first round, and so S1
m = S2

m. The variable t2 is updated in
the next step as:

t2 = S2[2] + S2[1] mod 28m = x+ y mod 28m = t1.

Again we have,

t21 = t2 & 0xFF = t1 & 0xFF = t11 = 1. (11)

��

Since it was established in Lemma 4, that t1 = t2, we automatically have
t11 = t21, t

1
2 = t22,. . . , t

1
m = t2m. Furthermore it has already been shown that

t11 = t21 = 1. For convenience let us denote t1k = t2k = bk for all 2 ≤ k ≤ m. Hence
we can write

Z1 = S1[1]⊕ S1[b2]⊕ S1[b3]⊕ · · · ⊕ S1[bm]

Z2 = S2[1]⊕ S2[b2]⊕ S2[b3]⊕ · · · ⊕ S2[bm]

From the proof of Lemma 4, it is also clear that the array S1 and S2 differ in
only two locations which are 1 and 2. We have S1[1] = S2[2] = x and S1[2] =
S2[1] = y. For all other k not equal to 1 or 2 we have S1[k] = S2[k]. So consider
the following non-intersecting cases:

Case 1. If the number of 1′s among b2, b3, . . . , bm, is odd and the number of 2′s
among b2, b3, . . . , bm is even. In this case

Z1 =
⊕
even

S1[1] ⊕
⊕
even

S1[2] ⊕
⊕

bk �=1,2

S1[bk] =
⊕

bk �=1,2

S1[bk]

Z2 =
⊕
even

S2[1] ⊕
⊕
even

S2[2] ⊕
⊕

bk �=1,2

S2[bk] =
⊕

bk �=1,2

S2[bk]

where
⊕

even u denotes the bitwise XOR of u even number of times which is ob-
viously 0. Since S1[bk] = S2[bk] if bk is different from 1 or 2 we have Z1 = Z2.



108 S. Banik and S. Jha

Case 2. If the number of 1′s among b2, b3, . . . , bm, is even and the number of
2′s among b2, b3, . . . , bm is odd. Let the number of 1′s be c and the number
of 2′s be d, where c is even and d is odd. Without loss of generality, let
c+ 1 ≥ d. In this case

Z1 =
⊕
d

(
S1[1]⊕ S1[2]

) ⊕
⊕

c+1−d

S1[1] ⊕
⊕

bk �=1,2

S1[bk]

= (x ⊕ y) ⊕
⊕

bk �=1,2

S1[bk]

Z2 =
⊕
d

(
S2[1]⊕ S2[2]

) ⊕
⊕

c+1−d

S2[1] ⊕
⊕

bk �=1,2

S2[bk]

= (x ⊕ y) ⊕
⊕

bk �=1,2

S2[bk]

Here
⊕

n u denotes the bitwise XOR of u, a total of n times which is 0 if n
is even and u if n is odd. Since d is odd and c + 1 − d is even, the above
result follows. Again since S1[bk] = S2[bk] if bk is different from 1 or 2 we
have Z1 = Z2.

Lemma 5. The event Eμ will said to have occurred if both the events occur
simultaneously.

a) S1
m[1] = 2 and S1

m[2] = N − 1,
b) Either Case 1 or Case 2, described above holds true.

The probability that Pr[Eμ] ≈ 2(m−1)
N3 .

Proof. First of all, from all the previous discussion we have established that
Pr[Z1 = Z2|Eμ] = 1. Turning our attention to Case 1/Case 2, we can make
the following observation:

– Both Case 1 and Case 2, involve fixing an odd number of values among
b2, b3, . . . , bm to either 1 or 2.

Starting with Case 1, if the number of fixed values is 1, this implies only one of
the b′ks equal 1. Hence, the number of combinations is C1 =

(
m−1
1

) · (N − 2)m−2.

The above holds since, the index to be set to 1 can be chosen in
(
m−1
1

)
ways and

the remaining m− 2 indices can be set to any value other than 1 or 2. Similarly,
if the number of fixed values is 3, this implies either three 1′s or one 1 and two
2′s. The total number of combinations is therefore

C3 =

(
m− 1

3

)
· (N − 2)m−4 +

(
m− 1

3

)
· 3!
2!

· (N − 2)m−4

It is clear that if m is much smaller that N then, C1 is much larger than C3.
Similarly, C3 would be much larger than C5, i.e. the number of combinations



How Not to Combine RC4 States 109

when 5 indices are fixed, and so on. Hence C1 contributes the maximum number
of combinations to Case 1 and we have C1 ≈ (C1 +C3 +C5 + · · · ). So we have

Pr[Case 1] ≈ C1

Nm−1
=

(
m−1
1

) · (N − 2)m−2

Nm−1
≈ m− 1

N

Analogously, similar arguments can be made about Case 2, and since these
cases are non-intersecting we have

Pr[Case 1 ∨Case 2] ≈ 2(m− 1)

N
.

And so that the events S1
m[1] = 2 and S1

m[2] = N − 1 and Case 1∨Case 2 are
independently distributed, we have

Pr[Eμ] = Pr[(S1
m[1] = 2) ∧ (S1

m[2] = N − 1) ∧ (Case 1 ∨Case 2)]

=
1

N
· 1

N − 1
· 2(m− 1)

N
≈ 2(m− 1)

N3
.

��
Theorem 5. The probability that Z1 = Z2 in m-RC4 (for m > 2), is given by

the equation Pr[Z1 = Z2] =
2(m−1)

N3 .

Proof. We have already established that Pr[Z1 = Z2|Eμ] = 1. By the results of
the extensive computer experiments performed using 230 keys, we have verified
Pr[Z1 = Z2|Ec

μ] =
1

Nm . Therefore the final probability can be given as

Pr[Z1 = Z2] = Pr[Z1 = Z2|Eμ] · Pr[Eμ] + Pr[Z1 = Z2|Ec
μ] · Pr[Ec

μ]

= 1 · 2(m− 1)

N3
+

1

Nm
·
(
1− 2(m− 1)

N3

)

≈ 2(m− 1)

N3
.

(12)

In an ideal cipher Pr[Z1 = Z2] was required to be 1
Nm . So, in m-RC4 this

probability is 2(m − 1) · Nm−3 times that of an ideal cipher. For example in
3-RC4 this figure is 4, for 7-RC4 this figure is 12 · 232 ≈ 236. This underscores
the point that the design is vulnerable for any m.

��

3.6 The Flaws in the Design

In this subsection we will discuss the flaws in the design of Quad-RC4/m-RC4
which results in highly biased output bytes.

Simple XOR operation in Output Function. The output function based on
simple bitwise XOR of S[t1], S[t2], . . . , S[tm] when m is even is clearly not a



110 S. Banik and S. Jha

good idea. From our analysis presented in the Section 3.4 for evenm, one can
clearly understand that the reason for the high bias in Zr is the simplicity of
the output function is a simple XOR. The output function also contributes to
bias in Z1 = Z2 for any general value of m. Thus the output function needs
to be changed to some operation which would involve modular addition, ro-
tation and XOR (ARX functions). This may result in some degradation of
performance in software with respect to speed, but this is one correction
that the design must make to be secure.

The “not so random” S. Referring to the PRGA of m-RC4 given in Algo-
rithm 5, it is clear that the main array S used in the algorithm is only up-
dated by swaps. In original RC4, swap update works because RC4 state is a
permutation on Z256. Each swap makes the original RC4 state a new permu-
tation on Z256, and therefore the total entropy in the state is log2 256! ≈ 1684
bits. However, the array S used in m-RC4 is not a permutation on Z28m .
Once the cipher array enters the PRGA phase, the array S is updated by
only swap operations, this means that during the entire PRGA phase S con-
tains the same elements. So for a fixed Key/IV, thee entropy of the state
space comes only from the permutation of the 256 elements of S, which is
again 1684 bits. Once m-RC4 states are used, thee designers would have
wanted the entropy of the State Space to be as close to 1684m bits as pos-
sible. However due to the simplistic state update function which consists of
only swaps, the entropy never increases. This implies that the for the design
to be secure, a more complicated state update was necessary.

The effect on t. This effect of the reduced state entropy is directly felt on
the 8m-bit variable t. The designers had probably intended t to be a pseu-
dorandom index with entropy close to 8m bits. However t is calculated as
S[i] + S[j] mod 28m. Because of the simplistic nature of the state-update,
the array S, contains the same N elements during the entire evolution of the
PRGA. As a result S[i], S[j] can take at most N values each, and hence t can
take at most N2 values. Due to this the entropy of t is only log2 N

2 = 16 bits
for any value of m. Thus the probability that the values of t in two succes-
sive PRGA rounds are equal is only about 1

N2 , and it can be seen that this
directly contributes to the bias in the distribution of Z1 = Z2, as described
in Section 3.5. This further emphasizes the point that in a design like Quad-
RC4/m-RC4, which combines several RC4 states by simple concatenation,
the state update can not be a simple swap operation. A more complicated
update using modular addition/XOR is necessary. This would again involve
decrease of software speed, but this is again a necessary correction that the
design must make to be secure.

4 Experimental Results

We will now tabulate some experimental results to validate our theoretical find-
ings. The results can be found in Table 1. All the experiments were performed



How Not to Combine RC4 States 111

Table 1. Experimental Results

# Cipher Event Theoretical Experimental N
Value Result

1 RC4B Pr[Z1 = Z2 = 0] 2/N2 1.99/N2 256

2 Quad-RC4 Pr[Z1 = 0] 3/N2 2.94/N2 256
6-RC4 15/N3 15.53/N3 64

3 Quad-RC4 Pr[Z1 = Z2] 6/N3 6.13/N3 128
5-RC4 8/N3 7.84/N3 128

with 230 randomly chosen Keys, and in certain cases we have reported the prob-
ability values for reduced variants of the actual cipher i.e. for N = 64, 128 in
place of 256. This was done only because the computational resources required to
perform the experiments on the full ciphers were unavailable. As can be seen in
Table 1 the experimental results are in accordance with our theoretical findings.

5 Conclusion

In this paper we discuss the stream ciphers which are designed by combining
one or more independently produced RC4 states. We study three such stream
ciphers namely RC4B, Quad-RC4 and m-RC4 (where m can be odd or even),
and demonstrate distinguishing attacks on them by showing biases in the output
bytes produced by each of these stream ciphers. In addition we also discuss
the scenarios which leads to such vulnerabilities present in the output bytes of
these stream ciphers. Combining multiple stream cipher states to produce new
stream ciphers which perform better than the original stream cipher seems to
be an attractive research discipline as evidenced by numerous papers in this
area [4, 10, 11]. As far as combining RC4 states are concerned, much can be
achieved if the problem is addressed judiciously. This does seem to be an area
worth looking into.

References

1. Partition (Number Theory),
http://en.wikipedia.org/wiki/Partition_%28number_theory%29

2. Banik, S., Sarkar, S., Kacker, R.: Security analysis of the RC4+ stream cipher. In:
Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp. 297–307.
Springer, Heidelberg (2013)

3. Gong, G., Gupta, K.C., Hell, M., Nawaz, Y.: Towards a general RC4-like keystream
generator. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822,
pp. 162–174. Springer, Heidelberg (2005)

4. Lv, J., Zhang, B., Lin, D.: Distinguishing Attacks on RC4 and A New Improvement
of the Cipher. Cryptology ePrint Archive: Report 2013/176

5. Maitra, S.: Four Lines of Design to Forty Papers of Analysis: The RC4 Stream
Cipher, http://www.isical.ac.in/~indocrypt/indo12.pdf

http://en.wikipedia.org/wiki/Partition_%28number_theory%29
http://www.isical.ac.in/~indocrypt/indo12.pdf


112 S. Banik and S. Jha

6. Maitra, S., Paul, G.: Analysis of RC4 and proposal of additional layers for better se-
curity margin. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008.
LNCS, vol. 5365, pp. 27–39. Springer, Heidelberg (2008)

7. Mantin, I., Shamir, A.: A practical attack on broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002)

8. Maximov, A., Khovratovich, D.: New state recovery attack on RC4. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 297–316. Springer, Heidelberg (2008)

9. Maximov, A.: Two linear distinguishing attacks on VMPC and RC4A and weakness
of RC4 family of stream ciphers. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005.
LNCS, vol. 3557, pp. 342–358. Springer, Heidelberg (2005)

10. Paul, G., Chattopadhyay, A.: Designing stream ciphers with scalable data-widths:
a case study with HC-128. J. Cryptographic Engineering 4(2), 135–143 (2014)

11. Paul, G., Maitra, S., Chattopadhyay, A.: Quad-RC4: Merging Four RC4 States
towards a 32-bit Stream Cipher. IACR Cryptology eprint Archive 2013: 572 (2013)

12. Paul, S., Preneel, B.: A new weakness in the RC4 keystream generator and an
approach to improve the security of the cipher. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 245–259. Springer, Heidelberg (2004)

13. Paul, S., Preneel, B.: On the (In)security of stream ciphers based on arrays and
modular addition. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 69–83. Springer, Heidelberg (2006)

14. Sarkar, S.: Further non-randomness in RC4, RC4A and VMPC. Cryptography and
Communications 7(3), 317–330 (2015)

15. Tsunoo, Y., Saito, T., Kubo, H., Shigeri, M., Suzaki, T., Kawabata, T.: The Most
Efficient Distinguishing Attack on VMPC and RC4A. In: SKEW 2005 (2005),
http://www.ecrypt.eu.org/stream/papers.html

16. Zoltak, B.: VMPC one-way function and stream cipher. In: Roy, B., Meier, W.
(eds.) FSE 2004. LNCS, vol. 3017, pp. 210–225. Springer, Heidelberg (2004)

http://www.ecrypt.eu.org/stream/papers.html


Preimage Analysis of the Maelstrom-0 Hash

Function

Riham AlTawy and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Québec, Canada

Abstract. Maelstrom-0 is the second member of a family of AES-based
hash functions whose designs are pioneered by Paulo Baretto and Vin-
cent Rijmen. According to its designers, the function is designed to be
an evolutionary lightweight alternative to the ISO standard Whirlpool.
In this paper, we study the preimage resistance of the Maelstrom-0 hash
function using its proposed 3CM chaining construction. More precisely,
we apply a meet-in-the-middle preimage attack on the compression func-
tion and combine it with a guess and determine approach which allows
us to obtain a 6-round pseudo preimage for a given compression function
output with time complexity of 2496 and memory complexity of 2112.
Then, we propose a four stage attack in which we adopt another meet-
in-the-middle attack and a 2-block multicollision approach to defeat the
two additional checksum chains and turn the pseudo preimage attack
on the compression function into a preimage attack on the hash func-
tion. Using our approach, preimages of the 6-round reduced Maelstrom-0
hash function are generated with time complexity of 2505 and memory
complexity of 2112.

Keywords: Cryptanalysis, Hash functions, Meet in the middle, Preim-
age attack, Maelstrom-0, 3CM.

1 Introduction

The attacks of Wang et al. [27, 28] which broke a large cluster of widely used hash
functions have proven to be most effective against Add-Rotate-Xor (ARX) based
hash functions. The success of such attacks on ARX constructions is attributed to
the possibility of finding differential trails that propagate for a significant number
of rounds with acceptable probabilities. Moreover, considerable improvement in
the attack complexity can be achieved using message modification techniques
[28] which take advantage of the independence of consecutive message words
which may span over a relatively large number of rounds. On the other hand,
the Advanced Encryption Standard (AES) wide trail strategy [7] continues to
show solid resistance to standard differential attacks. This fact has made AES-
based hash functions a favorable direction when considering new designs. Indeed,
at the same time when most of the standardized ARX-based hash functions were
failing to resist the techniques introduced by Wang et al., the already existing

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 113–126, 2015.
DOI: 10.1007/978-3-319-24126-5_7



114 R. AlTawy and A.M. Youssef

ISO standard Whirlpool [23] was not affected by these attacks. This conceptual
shift in hash function designs was clearly evident among the SHA-3 competition
proposals [22] (e.g., the SHA-3 finalists Grøstl [12] and JH [29], and LANE [16]).
Additionally, Whirlwind [6] and Streebog [20], the new Russian hash standard
which is officially known as GOST R 34.11-2012, are also among the recently
proposed AES-based hash functions.

Maelstrom-0 is an AES-based hash function that adopts a modified chaining
scheme called 3CM [8]. The function is proposed by Filho, Barreto, and Rijmen
as an evolutionary lighter alternative to its predecessor Whirlpool. Maelstrom-0
is considered the second member of a family of hash functions which is preceded
by Whirlpool and followed by Whirlwind. The design of Maelstrom-0 is heavily
inspired by Whirlpool but adopts a simpler key schedule and takes into account
the recent development in hash function cryptanalysis. Particularly, the designers
consider those attacks where the cryptanalytic techniques which are applicable
on the compression function can be easily mapped to the hash function due to
the simplicity of the Merkle-Damg̊ard construction used by Whirlpool. In addi-
tion to adopting a simpler key schedule which makes Maelstrom-0 more robust
and significantly faster than Whirlpool, the designers employ the Davis-Mayer
compression mode which is the only mode among the twelve secure constructions
that naturally allows the compression function to accept a message block size
different from the chaining value size, thus allowing faster hashing rate [8]. Also,
all the remaining eleven constructions XOR the message and the chaining value
block, thus forcing either truncation or padding to cope with the different sizes,
and it is unclear to what extent truncation or padding might adversely affect
the security analysis.

The most important feature in the design of Maelstrom-0 is the proposal of
a new chaining construction called 3CM which is based on the 3C/3C+ family
[13]. This construction computes two checksums from the generated intermedi-
ate chaining values, concatenates them, and as a finalization step processes the
result as a message block in the last compression function call. This finaliza-
tion step aims to thwart some generic attacks on the MD construction used in
Whirlpool such as long second preimage and herding attacks, and also inhibits
length extension attacks. According to the designers of Maelstrom-0, the pro-
posed finalization step mitigates the applicability of extending attacks on the
compression function to the hash function. Unfortunately, this is not the case in
our attack where we employ a 4-stage approach that uses a modified technique
which defeats the 3CM chaining construction [9–11] and combines it with an-
other meet-in-the-middle (MitM) attack to extend a pseudo preimage attack on
the compression function to a preimage attack on the hash function.

Literature related to the cryptanalysis of Maelstrom-0 include the analysis
of the collision resistance of its compression function by Kölbl and Mendel [18]
where the weak properties of the key schedule were used to produce semi free-
start collision for the 6 and 7 round reduced compression function and semi
free-start near collision for the 8 and 10-rounds compression function. Finally,
Mendel et al. used the rebound attack to show how employing a message block



Preimage Analysis of the Maelstrom-0 Hash Function 115

whose size is double that of the chaining state is used to present a free start
collisison on the 8.5 reduced round compression function [21].

In this work, we investigate the security of Maelstrom-0 and its compression
function, assessing their resistance to the MitM preimage attacks. Employing
the partial matching and initial structure concepts [24], we present a pseudo
preimage attack on the 6-round reduced compression function. In the presented
attack, we employ a guess and determine approach [26] to guess parts of the
state. This approach helps in maintaining partial state knowledge for an extra
round when all state knowledge is lost due to the wide trail effect. The proposed
6-round execution separation maximizes the overall probability of the attack
by balancing the chosen number of starting values and the guess size. Finally,
we propose a four stage approach which combines a 2-block multicollision attack
[9, 10] with a second MitM attack to bypass the effect of the 3CM checksum used
in the finalization step. Our approach is successfully used to generate preimages
of the 6-round reduced Maelstrom-0 hash function using the presented pseudo
preimage attack on the last compression function. Up to our knowledge, our
analysis is the first to consider the hash function and not only the compression
function of Maelstrom-0.

The rest of the paper is organized as follows. In the next section, a brief
overview of the related work regarding MitM preimage attacks and the used
approaches is provided. The description of the Maelstrom-0 hash function along
with the notation used throughout the paper are given in Section 3. Afterwards,
in Sections 4, we provide detailed description of the pseudo preimage attack
on the compression function. In Section 5, we show how preimages of the hash
function are generated using our four stage approach and the attack presented
in Section 4. Finally, the paper is concluded in Section 6.

2 Related Work

A pseudo preimage attack on a given a compression function CF that processes
a chaining value h and a message block m is defined as follows: Given x, one
must find h and m such that CF (h,m) = x. The ability to generate a pseudo
preimage for the compression function has always been regarded as a certifica-
tional weakness as its local effect on the overall hash function is not important .
However, as we are going to show in Section 5, when a pseudo preimage attack
on the compression function is combined with other attacks, it can be used to
build a preimage for the whole hash function.

The MitM preimage attack was first proposed by Aoki and Sasaki [5]. The
main concept of the proposed MitM attacks is to separate the attacked rounds at
a starting point into two independent executions that proceed in opposite direc-
tions (forward and backward chunks). The two executions must remain indepen-
dent until the point where matching takes place. To maintain the independence
constraint, each execution must depend on a different set of inputs, e.g., if only
the forward chunk is influenced by a change in a given input, then this input is
known as a forward neutral input. Consequently, all of its possible values can



116 R. AlTawy and A.M. Youssef

be used to produce different outputs of the forward execution at the matching
point. Accordingly, all neutral inputs for each execution direction attribute to
the number of independent starting values for each execution. Hence, the output
of the forward and the backward executions can be independently calculated
and stored at the matching point. Similar to all MitM attacks, the matching
point is where the outputs of the two separated chunks meet to find a solution,
from both the forward and backward directions, that satisfies both executions.
While for block ciphers, having a matching point is achieved by employing both
the encryption and decryption oracles, for hash function, this is accomplished by
adopting the cut and splice technique [5] which utilizes the employed mode of
operation. In other words, given the compression function output, this technique
chains the input and output states through the feedforward as we can consider
the first and last states as consecutive rounds. Subsequently, the overall attacked
rounds behave in a cyclic manner and one can find a common matching point
between the forward and backward executions and consequently can also select
any starting point.

Ever since their inception, significant improvements on MitM preimage at-
tacks have been proposed. Such improvements include the initial structure ap-
proach [24, 25] which allows the starting point to span over few successive trans-
formations where bytes in the states are allowed to belong to both the forward
and backward chunks. Additionally, the partial matching technique [5] enables
only parts of the state to be matched at the matching point which extends the
matching point further by not restricting full state knowledge at the matching
point. Once a partial match is found, the starting values of both executions are
selected and used to evaluate the remaining undetermined parts of the state
at the matching point to check for a full state match. Figure 1 illustrates the
MitM preimage attack approaches for a compression function operating in the
Davis-Mayer mode. The red and blue arrows denote the forward and backward
executions on the message state, respectively. S0 is the first state initialized by
h and Si is the last attacked state.

The MitM preimage attack was applied on MD4 [5, 14], MD5 [5], HAS-160
[15], and all functions of the SHA family [3, 4, 14]. The attack exploits the
weak key schedules of ARX-based functions where some of the expanded mes-
sage blocks are used independently in each round. Thus, one can determine which
message blocks affect each execution for the MitM attack. Afterwards, the MitM

Fig. 1. MitM preimage attack techniques used on a Davis-Mayer compression function.



Preimage Analysis of the Maelstrom-0 Hash Function 117

preimage attack was adapted on the AES block cipher in hashing modes [24].
The attack was then applied to Whirlpool and a 5-round pseudo preimage attack
on the compression function was used for a second preimage attack on the whole
hash function in the same work. In the sequel, Wu et al. [30] improved the time
complexity of the 5-round attack on the Whirlpool compression function. More-
over, they applied the MitM pseudo preimage attack on Grøstl and adapted the
attack to produce pseudo preimages of the reduced hash function. Afterwards,
a pseudo preimage attack on the 6-round Whirlpool compression function and a
memoryless preimage attack on the reduced hash function were proposed in [26].
Finally, AlTawy and Youssef employed MitM pseudo preimages of the compres-
sion function of Streebog to generate preimages of the reduced hash function [1],
the complexity of their attack was later improved in [19]. They also presented a
second preimage analysis of Whirlwind [2].

3 Specifications of Maelstrom-0

Maelstrom-0 is an AES-based iterative hash function designed by Filho, Barreto
and Rijmen [8]. Its compression function processes 1024-bit message blocks and
a 512-bit chaining value. As depicted in Figure 2, the message M is padded by 1
followed by zeros to make the length of the last block 768. Then the remaining
265 bits are used for the binary representation of the message length |M |. Hence
the padded message has the form M = m1||m2|| · · · ||mk, where the last 256-bits
of mk denote |M |. The compression function is iterated in the 3CM chaining
mode which is based on 3C/3C+ family [13]. Given that hi denotes the internal
state value after processing the message block mi, i.e., hi = f(mi, hi−1) with
h0 = IV , this chaining mode generalizes the Merkle-Damg̊ard construction by
maintaining three chains hi, si, ti instead of only hi. The extra two chains are
transformed into an additional message blockmk+1 = sk||tk. The second chain si
is a simple XOR accumulation of all intermediate compression function outputs,
recursively defined as s0 = 0, si = hi ⊕ si−1. The third chain is recursively
defined as t0 = IV , ti = hi⊕ ζ(ti−1) where an LFSR is employed by ζ to update
ti−1 by left shifting it by one byte followed by a one byte XOR. More precisely,
we compute the hash value hi in the following way:

Fig. 2. The Maelstrom-0 hash function.



118 R. AlTawy and A.M. Youssef

h0 = IV,

hi = f(hi−1,mi), for i = 1, 2, ..., k,

H(M) = f(hk, sk||tk).

The compression function, f , employs a block cipher, E and uses the Davis-
Mayer mode of operation. The internal cipher is based on the one used in
Whirlpool where it only differs in the key schedule. The round function which
operates on 8 × 8 byte state is initially loaded with the input chaining value.
As depicted in Figure 3, the state is updated through 10 rounds and one key
addition at the beginning. One round of the state update function consists of
the application of the following four transformations:

– The nonlinear layer γ: A transformation that consists of parallel application
of a nonlinear Sbox on each byte using an 8-bit Sbox. The used Sbox is the
same as the one used in Whirlpool.

– The cyclical permutation π: This layer cyclically shifts each column of its ar-
gument independently, so that column j is shifted downwards by j positions,
j = 0, 1, · · · , 7.

– The linear diffusion layer θ: A MixRow operation where each row is multi-
plied by an 8× 8 MDS matrix over F28 . The values of the matrix are chosen
such that the branch number of MixRow is 9. Therefore the total number of
active bytes at both the input and output is at least 9.

– The key addition σ: A linear transformation where the state is XORed with
a round key state.

The key schedule takes as input the 1024-bit message block and generates the
512-bit round keys, K0,K1, · · · ,K10. Since the key scheduling process is not
relevant to our attack, we do not give a detailed description of the round key
generation function. For more details on the specification of Maelstrom-0, the
reader is referred to [8].

Fig. 3. The Maelstrom-0 compression function.



Preimage Analysis of the Maelstrom-0 Hash Function 119

Notation: LetX be (8×8) byte state denoting the internal state of the function.
The following notation is used in our attacks:

– Xi: The message state at the beginning of round i.
– XU

i : The message state after the U transformation at round i, where U ∈
{γ, π, θ, σ}.

– Xi[r, c]: A byte at row r and column c of state Xi.
– Xi[row r]: Eight bytes located at row r of state Xi.
– Xi[col c]: Eight bytes located at column c of state Xi.

4 Pseudo Preimage Attack on the 6-Round Reduced
Compression Function

In our analysis of the compression function, we are forced to adopt a pseudo
preimage attack because the compression function operates in Davis-Mayermode.
Consequently, using the cut and splice technique causes updates in the first state
which is initialized by the chaining value. In our attack, we start by dividing the
two execution chunks around the initial structure. More precisely, we separate
the six attacked rounds into a 3-round forward chunk and a 2-round backward
chunk around the starting round represented by the initial structure. The pro-
posed chunk separation is shown in Figure 4. The number of the forward and
backward starting values in the initial structure amounts for the complexity of
the attack. Accordingly, one must try to balance the number starting values for
each chunk and the number of known bytes at the matching point at the end of
each chunk. The total number of starting values in both directions should pro-
duce candidate pairs at the matching point to satisfy the matching probability.

To better explain the idea, we start by demonstrating how the initial structure
is constructed. The main objective of the MitM attack separation is to maximize
the number of known bytes at the start of each execution chunk. This can be
achieved by selecting several bytes as neutral so that the number of correspond-
ing output bytes of the θ and θ−1 transformations at the start of both chunks
that are constant or relatively constant is maximized. A relatively constant byte
is a byte whose value depends on the value of the neutral bytes in one execution
direction but remains constant from the opposite execution perspective. As de-
picted in Figure 5, we want to have six constants in the lowermost row in state
a, then we need to evaluate the possible values of the corresponding red row in
state b such that the values of the selected six constants in state a hold. The
values of the lowermost red row in state b are the possible forward starting val-
ues. For the lowermost row in state b, we randomly choose the six constant bytes
in a[row 7] and then evaluate the values of red bytes in b[row 7] so that after
applying θ−1 on b[row 7], the chosen values of the six constants hold. Since we
require six constant bytes in the lowermost row in state a, we need to maintain
six variable bytes in b[row 7] in order to solve a system of six equations when
the other two bytes are fixed. Accordingly, for the last row in state b, we can
randomly choose any two red bytes and compute the remaining six so that the



120 R. AlTawy and A.M. Youssef

Fig. 4. Chunk separation for a 6-round MitM pseudo preimage attack the compression
function.

output of θ−1 maintains the previously chosen six constant bytes at state a. To
this end, the number of forward starting values is 216. Similarly, we choose 40
constant bytes in state d and for each row in state c we randomly choose two
blue bytes and compute the other five such that after the θ transformation we
get the predetermined five constants at each row in d. However, the value of
the five shaded red bytes in each row of state d depends also on the one red
byte in the rows of state c. We call these bytes relative constants because their
final values cannot be determined until the forward execution starts and these
values are different for each forward execution iteration. Specifically, their final
values are the predetermined constants acting as offsets which are XORed with
the corresponding red bytes multiplied by the MDS matrix coefficients. In the
sequel, we have two free bytes for each row in c which means 2128 backward
starting values.

Following Figure 4, due to the wide trail strategy where one unknown byte
results in a full unknown state after two rounds, we lose all state knowledge after



Preimage Analysis of the Maelstrom-0 Hash Function 121

Fig. 5. Initial structure used in the attack on the 6-round compression function.

applying θ on Xπ
4 . To maintain partial state knowledge in the forward direction

and reach the matching point at Xπ
5 , we adopt a guess and determine approach

[26], by which, we can probabilistically guess the undetermined bytes in some
rows of the state at round 4 before the linear transformation. Thus, we maintain
knowledge of some state rows after the linear transformation θ which are used
for matching. One have to carefully choose the number of guessed bytes and
both starting values in the initial structure to result in an acceptable number
of correctly guessed matching pairs. Accordingly, we guess the twelve unknown
yellow bytes in stateXπ

4 . As a result, we can reach stateXπ
5 with four determined

bytes in each row where matching takes place.
As depicted in Figure 4, the forward chunk begins at Xθ

2 and ends at Xπ
5

which is the input state to the matching point. The backward chunk starts
at Xπ

1 and ends after the feedforward at Xθ
5 which is the output state of the

matching point. The red bytes denote the bytes which are affected by the forward
execution only and thus can be independently calculated without the knowledge
of the blue bytes. White words in the forward chunk are the ones whose values
depend on the blue bytes of the backward chunk. Accordingly, their values are
undetermined. Same rationale applies to the blue bytes of backward execution.
Grey bytes are constants which can be either the compression function output
or the chosen constants in the initial structure.

At the matching point, we partially match the available row bytes from the
forward execution at Xπ

5 with the corresponding row bytes from the backward
execution at Xθ

5 through the linear θ transformation. In each row, we have four
and six bytes from the forward and backward executions, respectively. Since the
linear mapping is performed on bytes, we compose four byte linear equations in
two unknown bytes. Then we evaluate the values of the two unknown bytes from
two out of the four equations and substitute their values in the remaining two
equations. With probability 2−16 the two remaining byte equations are satisfied.
Hence, the matching probability for one state row is 2−16. Thus, the partial
matching probability for the whole state is 28×−16=−128.

For our attack, the chosen number for the forward and backward starting
values, and the guessed values are 216, 2128, and 296, respectively. Setting these
parameters fixes the number of matching values to 2128. The chosen parameters
maximize the attack probability as we aim to increase the number of starting
forward values and keep the number of backward and matching values as close



122 R. AlTawy and A.M. Youssef

as possible and larger than the number of guessed values. In what follows, we
give a description of the attack procedure and complexity based on the above
chosen parameters:

1. Randomly choose the constants in Xπ
1 and Xθ

2 and the input message block
value.

2. For each forward starting value fwi and guessed value gi in the 216 forward
starting values and the 296 guessed values, compute the forward matching
value fmi at X

π
5 and store (fwi, gi, fmi) in a lookup table T .

3. For each backward starting value bwj in the 2128 backward starting values,
we compute the backward matching value bmj at Xθ

5 and check if there
exists an fmi = bmj in T . If found, then a partial match exists and the full
match should be checked. If a full match exists, then we output the chaining
value hi−1 and the message mi, else go to step 1.

The complexity of the attack is evaluated as follows: after step 2, we have
216+96 = 2112 forward matching values which need 2112 memory for the look up
table. At the end of step 3, we have 2128 backward matching values. Accordingly,
we get 2112+128 = 2240 partial matching candidate pairs. Since the probability
of a partial match is 2−128 and the probability of a correct guess is 2−96, we
expect 2240−128−96 = 216 correctly guessed partially matching pairs. To check
for a full match, we want the partially matching starting values to result in the
correct values for the 48 unknown bytes in both Xπ

5 and Xθ
5 that make the

blue and red words hold. The probability that the latter condition is satisfied is
248×−8 = 2−384. Consequently, the expected number of fully matching pairs is
2−368 and hence we need to repeat the attack 2368 times to get a full match. The
time complexity for one repetition is 2112 for the forward computation, 2128 for
the backward computation, and 216 to check that partially matching pairs fully
match. The overall time complexity of the attack is 2368(2112+2128+216) ≈ 2496

and the memory complexity is 2112.

5 Preimage of the Maelstrom-0 Hash Function

In this section, we propose a 4-stage approach by which we utilize the previously
presented pseudo preimage attack on the Maelstrom compression function to
produce a preimage for the whole hash function. The designers of Maelstrom-
0 proposed the 3CM chaining scheme that computes two additional checksum
chains specifically to inhibit the ability of extending attacks on the compression
function to the hash function. The two additional checksums are computed from
a combination of the XOR of the intermediate chaining values, then the two
results are concatenated and processed as the input message block of the last
compression function call in the hash function. At first instance, this construction
seems to limit the scope of our attack to the compression function. Nevertheless,
employing the 4-stage approach, a preimage of the hash function can be found
when we consider a large set of messages that produce different combinations of
intermediate chaining values and thus different checksums and combine it with



Preimage Analysis of the Maelstrom-0 Hash Function 123

Fig. 6. A 4-stage preimage attack on the Maelstrom-0 hash function.

a set of pseudo preimage attacks on the last compression function call. Hence,
another MitM attack can be performed on both sets to find a message that
correspond to the retrieved checksums. As depicted in Figure 6, the attack is
divided into four stages:

1. Given the hash function output H(M), we produce 2p pseudo preimages
for the last compression function call. The output of this step is 2p pairs of
the last chaining value and the two checksums (h2049, s2049, t2049). We store
these results in a table T .

2. In this stage, we construct a set of 21024 of 2-block messages such that all
of them collide at h2048. This structure is called a 2-block multicollision of
length 1024 [10, 17]. More precisely, an n-block multicollisison of length t
is a set of 2t messages where each message consists of exactly n × t blocks
and every consecutive n application of the compression function results in
the same chaining value. Consequently, we have 2t different possibilities for
the intermediate chaining values and all the 2t n-block messages lead to the
same hn×t value. Constructing a 2t n-block mulitcollision using exhaustive
collision search requires a time complexity of t(2(n−1)+2b/2), where b is the
chaining state size, and a memory complexity of t(2·n) message to store t two
messages of n-block each. In our case, we build 21024 2-block multicollision
where each 2-block collision gives us two choices for the checksum of two
consecutive chaining values. In other words, in the first 2-block collision,
we either choose (h1, h2) or (h

∗
1, h2) and thus two choices for the checksum

chains. To this end, we have 21024 different 2-block massages stored in 1024 ·
2 · 2 = 212 memory and hence 21024 candidate chaining checksums.

3. At this stage, we try to connect the resulting chaining value, h2048, from
stage 2 to one of 2p chaining values, h2049, stored in T which was created
in stage 1, using the freedom of choosing m2049. Specifically, we randomly
choose 512 bit ofm∗

2049, then properly pad it and append the message length,
and using h2048 generated by the multicollison, we compute h∗

2049 and check
if it exists in T . As T contains 2p entries, it is expected to find a match after
2512−p evaluations of the following compression function call:

h∗
2049 = f(h2048,m

∗
2049).



124 R. AlTawy and A.M. Youssef

Once a matching h∗
2049 value is found in T , the corresponding checksums

s∗2049, t
∗
2049 are retrieved. Hence the desired checksums at the output of the

multicollision, s2048 and t2048 are equal to s
∗
2049⊕h∗

2049 and ζ−1(t∗2049⊕h∗
2049),

respectively.
4. At the last stage of the attack, we try to find a message M out of the

21024 2-block messages generated in stage 2 that results in checksums equal
to the ones retrieved in stage 3. For this, we form a system of 1024 equa-
tions in 1024 unknowns to select one combination from the 21024 different
combinations of possible chaining checksums which make the retrieved two
checksums hold. Note that, the algorithm proposed in [9] which employs
2512 2-block multicollision and treats the two checksums independently by
solving two independent systems of 512 equations cannot work on 3CM, as
the two checksums are dependent on each other. This algorithm only works
on the 3C chaining construction [10, 11] because it utilizes only one check-
sum. Accordingly, in our solution, we adopt 1024 2-block messages to find
a common solution for the two checksums simultaneously, hence, having the
required freedom to satisfy two bit constraints for each bit position in the
two checksums. The time complexity of this stage is about 10243 = 230.

The time complexity of the attack is evaluated as follows: we need 2p× (com-
plexity of pseudo preimage attack) in stage 1, 1024 × 2256 + 2048 ≈ 2266 to
build the 2-block multicollision at stage 2, 2512−p evaluations of one compres-
sion function call at stage 3, and finally 230 for stage 4. The memory complexity
for the four stages is as follows: 2p 3-states to store the pseudo preimages in
stage 1 and 2112 for the pseudo preimage attack, and 212 for the multicollision
in stage 2. Since the time complexity is highly influenced by p, so we have cho-
sen p = 8 to maximize the attack probability. Accordingly, preimages for the
6-round Maelstrom-0 hash function can be produced with a time complexity
of 28+496 + 2266 + 2512−8 + 230 ≈ 2505. The memory complexity of attack is
dominated by the memory requirements of the pseudo preimage attack on the
compression function which is given by 2112.

6 Conclusion

In this paper, we have investigated Maelstrom-0 and its compression function
with respect to MitM preimage attacks. We have shown that with a carefully bal-
anced chunk separation and the use of a guess and determine approach, pseudo
preimages for the 6-round reduced compression function are generated with time
complexity of 2496 and memory complexity of 2112. Moreover, we have analyzed
the employed 3CM chaining scheme which is designed specifically to inhibit
the ability of extending attacks on the compression function to the hash func-
tion, and proposed a 4-stage approach to bypass its effect and turn the pseudo
preimage attack on the compression function to a preimage attack on the hash
function. Accordingly, 6-round hash function preimages are generated with time
complexity of 2505 and a memory complexity of 2112. It should be noted that, if
one considers removing the linear transformation from the last round similar to
AES, the attack could be extended to cover seven rounds.



Preimage Analysis of the Maelstrom-0 Hash Function 125

Acknowledgment. The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions that helped improve the quality
of the paper. This work is supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

References

1. AlTawy, R., Youssef, A.M.: Preimage attacks on reduced-round stribog. In:
Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS, vol. 8469,
pp. 109–125. Springer, Heidelberg (2014)

2. AlTawy, R., Youssef, A.M.: Second preimage analysis of whirlwind. In: Lin, D.,
Yung, M., Zhou, J. (eds.) Inscrypt 2014. LNCS, vol. 8957, pp. 311–328. Springer,
Heidelberg (2015)

3. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for step-
reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 578–597. Springer, Heidelberg (2009)

4. Aoki, K., Sasaki, Y.: Meet-in-the-middle preimage attacks against reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

5. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and
more. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 103–119. Springer, Heidelberg (2009)

6. Barreto, P., Nikov, V., Nikova, S., Rijmen, V., Tischhauser, E.: Whirlwind: a new
cryptographic hash function. Designs, Codes and Cryptography 56(2-3), 141–162
(2010)

7. Daemen, J., Rijmen, V.: The Design of Rijndael: AES- The Advanced Encryption
Standard. Springer (2002)

8. Filho, D., Barreto, P., Rijmen, V.: The Maelstrom-0 hash function. In: VI Brazilian
Symposium on Information and Computer Systems Security (2006)

9. Gauravaram, P., Kelsey, J.: Cryptanalysis of a class of cryptographic hash func-
tions. Cryptology ePrint Archive, Report 2007/277 (2007),
http://eprint.iacr.org/

10. Gauravaram, P., Kelsey, J.: Linear-XOR and additive checksums dont protect
Damg̊ard-Merkle hashes from generic attacks. In: Malkin, T. (ed.) CT-RSA 2008.
LNCS, vol. 4964, pp. 36–51. Springer, Heidelberg (2008)

11. Gauravaram, P., Kelsey, J., Knudsen, L.R., Thomsen, S.: On hash functions using
checksums. International Journal of Information Security 9(2), 137–151 (2010)

12. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. NIST submission (2008)

13. Gauravaram, P., Millan, W.L., Dawson, E., Viswanathan, K.: Constructing se-
cure hash functions by enhancing Merkle-Damg̊ard construction. In: Batten, L.M.,
Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 407–420. Springer,
Heidelberg (2006)

14. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advancedmeet-in-the-middle preimage
attacks: First results on full Tiger, and improved results onMD4 and SHA-2. In: Abe,
M. (ed.) ASIACRYPT2010. LNCS, vol. 6477, pp. 56–75. Springer, Heidelberg (2010)

15. Hong, D., Koo, B., Sasaki, Y.: Improved preimage attack for 68-step HAS-160.
In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 332–348. Springer,
Heidelberg (2010)

http://eprint.iacr.org/


126 R. AlTawy and A.M. Youssef

16. Indesteege, S.: The Lane hash function. Submission to NIST (2008),
http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf

17. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

18. Kölbl, S., Mendel, F.: Practical attacks on the Maelstrom-0 compression func-
tion. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 449–461.
Springer, Heidelberg (2011)

19. Ma, B., Li, B., Hao, R., Li, X.: Improved cryptanalysis on reduced-round GOST
and Whirlpool hash function. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.)
ACNS 2014. LNCS, vol. 8479, pp. 289–307. Springer, Heidelberg (2014)

20. Matyukhin, D., Rudskoy, V., Shishkin, V.: A perspective hashing algorithm. In:
RusCrypto (2010) (in Russian)

21. Mendel, F.,Rechberger,C., Schläffer,M.,Thomsen, S.S.:The rebound attack:Crypt-
analysis of reducedWhirlpool and Grøstl. In: Dunkelman,O. (ed.) FSE 2009. LNCS,
vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

22. NIST: Announcing request for candidate algorithm nominations for a new crypto-
graphic hash algorithm (SHA-3) family. In: Federal Register, vol. 72(212), Novem-
ber 2007, http://csrc.nist.gov/groups/ST/hash/documents/
FR Notice Nov07.pdf

23. Rijmen, V., Barreto, P.S.L.M.: The Whirlpool hashing function. NISSIE submis-
sion (2000)

24. Sasaki, Y.: Meet-in-the-middle preimage attacks on AES hashing modes and an ap-
plication to Whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378–396.
Springer, Heidelberg (2011)

25. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer,
Heidelberg (2009)

26. Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating fundamental security require-
ments on Whirlpool: Improved preimage and collision attacks. In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 562–579. Springer, Heidelberg
(2012)

27. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

28. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

29. Wu, H.: The hash function JH (2011),
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh-round3.pdf

30. Wu, S., Feng, D., Wu, W., Guo, J., Dong, L., Zou, J.: (Pseudo) preimage attack on
round-reduced Grøstl hash function and others. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 127–145. Springer, Heidelberg (2012)

http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh-round3.pdf


Meet-in-the-Middle Attacks

on Round-Reduced Khudra

Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Quebéc, Canada

Abstract. Khudra is a hardware-oriented lightweight block cipher that
is designed to run efficiently on Field Programmable Gate Arrays. It
employs an 18-rounds Generalized type-2 Feistel Structure with a 64-
bit block length and an 80-bit key. In this paper, we present Meet-in-
the-Middle (MitM) attacks on 13 and 14 round-reduced Khudra. These
attacks are based on finding a distinguisher that is evaluated offline inde-
pendently of the key. Then in an online phase, some rounds are appended
before and after the distinguisher and the correct key candidates for these
rounds are checked whether they verify the distinguisher property or not.
Using this technique, we find two 6-round distinguishers and use them
to attack 13 and 14 rounds of Khudra with time complexity of 266.11

and 266.19, respectively. Both attacks require the same data and memory
complexities of 251 chosen plaintexts and 264.8 64-bit blocks, respectively.

Keywords: Cryptanalysis, Meet-in-the-middle attacks, Generalized
type-2 Feistel Structure.

1 Introduction

Recently, the design and cryptanalysis of lightweight block ciphers have received
a lot of attention due to the demand for cryptographic protection in the in-
creasingly used resource constrained devices such as RFIDs and wireless sensor
networks. Designing an efficient hardware-oriented lightweight block cipher is
a challenging task. Therefore, novel design criteria were proposed such as the
use of a simple round function along with a simple key schedule. Examples
of lightweight block ciphers that use these new techniques are HIGHT [16],
PRESENT [3], KATAN/KTANTAN [5], KLEIN [12], Zorro [11], TWINE [19],
and Khudra [17]. With such simple design, lightweight block ciphers should be
deeply scrutinized in order to guarantee their security.

Unlike Application-Specific Integrated Circuits (ASICs), low cost Field Pro-
grammable Gate Arrays (FPGAs) are reconfigured and upgraded easily and
therefore are now used extensively in numerous network applications. Conse-
quently, lightweight block ciphers have to be designed with the goal of being
integrated with FPGA applications in order to guarantee their security. Khudra
is a new lightweight block cipher that was proposed by Kolay and Mukhopadhyay
at SPACE 2014 [17] in order to address the issue of efficient lightweight block

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 127–138, 2015.
DOI: 10.1007/978-3-319-24126-5_8



128 M. Tolba, A. Abdelkhalek, and A.M. Youssef

ciphers that operate on FPGAs. To have an efficient lightweight block cipher
for deployment on FPGAs, a new design criterion, namely, recursive structure
was proposed. Khudra has a 64-bit block length and employs an 80-bit key.
Its structure inherits the Generalized type-2 Feistel Structure (GFS) that was
proposed by Hoang and Rogaway [15]. In particular, it uses 4 branches each of
16-bit length.

In 1977, Diffie and Hellman proposed the MitM attack to be used in the
cryptanalysis of Data Encryption Standard (DES) [9]. The MitM attack is one
of the major attacks on block ciphers as it requires low data complexity. Its time
complexity is, however, very close to that of an optimized exhaustive key search.
Hence, enhancing its time complexity and increasing the number of attacked
rounds have always been hot topics in cryptanalysis. For example, Bogdanov
and Rechberger proposed the 3-Subset MitM attack and applied it to the full
KTANTAN cipher [4]. Zhu and Guang presented multidimensional MitM against
KATAN32/48/64 [20]. Demirci and Selçuk attacked 8 rounds of both AES-192
and AES-256 using MitM techniques [6]. The main drawback of their attack is
the high memory requirement. To tackle the high memory requirement issue,
Dunkelman, Keller and Shamir put forward a couple of new ideas. Particularly,
they presented the concepts of differential enumeration and multisets [10] that
have drastically decreased the high memory requirement of the attack of Demirci
and Selçuk. Later on, Derbez et al. enhanced the attack and decreased the mem-
ory requirement even further which made it possible on AES-128 [7]. The MitM
techniques, which were developed to attack AES and Substitution Permutation
Network (SPN) based block ciphers such as Hierocrypt-3 [1] and mCrypton [14],
were also proven to be equally powerful on Feistel constructions, as exempli-
fied by the generic work done by Guo et al. [13] and Lin et al. [18]. Finally,
at FSE 2015, two MitM attacks based on the Demirci and Selçuk approach
were presented on the SPN structure PRINCE [8] and the Feistel construction
TWINE [2].

In this paper, we present MitM attacks on 13 and 14 rounds of Khudra. In
the attack on 13 rounds, we first construct a 6-round distinguisher, append three
rounds at the top and four rounds at the bottom. To attack 14 rounds, the same
distinguisher would require the whole key to be guessed, therefore we construct
a different 6-round distinguisher, and append three rounds at the top and five
rounds at the bottom. The time complexities of these attacks are 266.11 to attack
13 rounds and 266.19 to attack 14 rounds, respectively. Both attacks require the
same data and memory complexities of 251 chosen plaintext and 264.8 64-bit
blocks. To the best of our knowledge, these are the best attacks on Khudra
so far.

The rest of the paper is organized as follows. In section 2, we provide a brief
description of Khudra and the notations used throughout the paper. Our attacks
are presented in section 3 and the paper is concluded in section 4.



Meet-in-the-Middle Attacks on Round-Reduced Khudra 129

2 Specifications of Khudra

Khudra is an iterated lightweight block cipher that operates on 64-bit blocks
using an 80-bit key and employs a Generalized Feistel Structure (GFS). It has
four branches of 16-bit each, i.e., the state is divided into four words and each
word is 16-bit long. The cipher iterates over 18 rounds where in every round, an
unkeyed 16×16-bit F-function is applied on two words. This unkeyed F-function,
designed to be efficient when deploying Khudra on FPGAs, uses a 6-round GFS
as depicted in the right side of Figure 1. Each round of these 6-round GFS has
two 4×4-bit SBoxes identical to the SBox used in PRESENT [3]. After applying
the F-functions of round i, two 16-bit round keys RK2i and RK2i+1 are xored to
the state along with the other two words to generate the two new words of round
i + 1 for i = 0, 1, · · · , 17. Additionally, two pre-whitening keys WK0 and WK1

are xored with the plaintext before the first round and two other post-whitening
keys WK2 and WK3 are xored with the internal state after the last round and
before generating the ciphertext.

� �

��� ���

��� ���

� �
��� ���

� �
���� ����

� �
���� ����

��� ���

� �

� �

�
��
�
�
�
�
	

���������	
�	��

�	�������	
�	��



�
��
�
�
�
�
	

����� ����� ����� ���	�

������ ������ ������ ����	�

�	����

�	����

�	�����

�	�����

������ ������ ������ ����	�

���� ���� ���� ����

���� ���� ���� ����

Fig. 1. Structure of Khudra



130 M. Tolba, A. Abdelkhalek, and A.M. Youssef

The key schedule of Khudra takes an 80-bit master key K and splits it into
five keys ki of 16-bit each where K = k0||k1||k2||k3||k4. Then, it generates 16-bit
36 round keys RKi, 0 � i < 36, two per round, and four 16-bit whitening keys
WKi, 0 � i < 4, as shown in Algorithm 1.

Data: Key Scheduling(k0, k1, k2, k3, k4)
Result: WKi, 0 � i < 4 and RKi, 0 � i < 36
WK0 ← k0,WK1 ← k1,WK2 ← k3,WK3 ← k4;
for i ← 0 to 35 do

RCi ← 0||i(6)||00||i(6)||0;
RKi ← ki mod 5 ⊕RCi;

end
Algorithm 1. The Key Schedule employed in Khudra [17]

2.1 Notations

The following notations will be used throughout the rest of the paper:

– K: The master key.
– ki: The ith 16-bit of K, where 0 ≤ i < 5.
– RKi: The 16-bit key used in round �i/2�.
– WKi: The 16-bit whitening key, where 0 ≤ i < 4.
– Xi: The 64-bit input to round i, where 0 ≤ i ≤ 18, X0 is the plaintext P

and X18 is the ciphertext C.
– Xi[l]: The lth 16-bit word of Xi, where 0 ≤ l < 4.
– ΔXi, ΔXi[l]: The difference at state Xi and word Xi[l], respectively.
– Xj

i : The jth state of the 64-bit input to round i.

– Xj
i [l]: The lth 16-bit word of the jth state of the 64-bit input to round i.

We measure the memory complexity of our attacks in number of 64-bit Khudra
blocks and the time complexity in terms of the equivalent number of round-
reduced Khudra encryptions.

3 MitM Attacks on Round-Reduced Khudra

In our MitM attacks, Khudra is split into three sub-ciphers such that EK(P ) =
EK2◦Edis◦EK1(P ), where Edis is the middle part which exhibits a distinguishing
property. In the offline phase, that particular property is evaluated independently
of the keys used in the middle rounds. Then in the online phase, correct K1 and
K2 key candidates are checked whether they verify this distinguishing property
or not.

The b-δ-set concept [13], as captured by Definition 1, is used to build our
distinguisher. Using a b-δ-set enables us to reduce the memory and data com-
plexities of our distinguisher.



Meet-in-the-Middle Attacks on Round-Reduced Khudra 131

Definition 1. (b-δ-set, [13]). A b-δ-set is a set of 2b state values that are all
different in b state bits (the active bits) and are all equal in the remaining state
bits (the inactive bits).

In the following subsections, we demonstrate our attacks on 13 and 14 rounds
of Khudra in details.

3.1 A MitM Attack on 13-Round Khudra

A b-δ-set is employed in our MitM attack where we set b = 3, i.e., 3 active bits.
b is chosen in order to reduce the memory and data requirements of the attack
without increasing its time complexity. In our 13-round attack, the active word
is P [1], i.e., the second word. The 3 active bits can take any position in this 16-
bit word. Such 3-δ-set enables us to build a 6-round distinguisher, as depicted
in Figure 2, by the following proposition:

Proposition 1. Consider the encryption of 3-δ-set {P 0, P 1, ..., P 7} through six
rounds of Khudra. The ordered sequence [X0

6 [3]⊕X1
6 [3], X

0
6 [3]⊕X2

6 [3], ..., X
0
6 [3]⊕

X7
6 [3]] is fully determined by the following 4 16-bit parameters, X0

1 [0], X0
2 [0],

X0
3 [0] and X0

4 [0].

The above proposition means that we have 24×16 = 264 ordered sequences out
of the 2(2

3−1)×16 = 2112 theoretically possible ones.

Proof. The knowledge of the 3-δ-set = {P 0, P 1, · · · , P 7} allows us to determine
[P 0 ⊕ P 1, P 0 ⊕ P 2, · · · , P 0 ⊕ P 7]. In what follows we show how the knowledge
of the 4 16-bit parameters mentioned in proposition 1 is enough to compute the
ordered sequence of the differences at X6[3]. As there is no F-function involved
in the first round, the difference ΔP [1] is propagated through the first round as
is. The knowledge of X0

1 [0] enables us to bypass the F-function of the second
round to compute ΔX2[0]. Then, the knowledge of X0

2 [0] enables us to bypass
the F-function of the third round to compute ΔX3[0] and the previous steps are
repeated until we compute ΔX6[3]. It is to be noted that after the third (resp.
fourth) round, X3[3] (resp. X4[3]) should have non-zero difference because X2[0]
(resp.X3[0]) has non-zero difference. However, these differences are omitted from
Figure 2 since they do not impact the ordered sequence at X6[3].

The previous proposition is utilized to attack 13-round Khudra by appending
3 rounds on top of it and 4 rounds below it, as illustrated in Figure 3. The attack
has two phases and proceeds as follows:

Offline Phase. Build the distinguisher property by determining all the 264

ordered sequences as illustrated in Proposition 1 and save them in a hash tableH .

Online Phase. As illustrated in Figure 3, the online phase advances as follows:



132 M. Tolba, A. Abdelkhalek, and A.M. Youssef

� �

� �

� �

� �

� �

��������	
�������

����������������	���������	
���
��	���

�����	�������
�������
	
����

� �

���� ���� ���� �� �

!���� !����

!����

!����

!����

!����

!����

!����

!����

!����

!����

!����

!����

!����

!����

!����

!����

!����

!����

!����

!����

!����

!����

!����

Fig. 2. 6-Round distinguisher to attack 13-round Khudra

1. A plaintext P 0 is chosen to act as a reference to all the differences in the
3-δ-set.

2. The 3-δ-set P 0, P 1, · · · , P 7 is determined by guessing the state variables
X0

1 [3], X
0
1 [1], X

0
1 [0], X

0
2 [2] to decrypt the 3-δ-set differences [X0

3 [1]⊕X1
3 [1],

X0
3 [1]⊕X2

3 [1], · · · , X0
3 [1]⊕X7

3 [1]].
3. The corresponding ciphertexts C0, C1, · · · ,C7 are requested.
4. The differences in [X0

9 [3]⊕X1
9 [3], X

0
9 [3]⊕X2

9 [3], · · · , X0
9 [3]⊕X7

9 [3]] are deter-
mined by guessing the state variables X0

9 [2], X
0
10[0], X

0
11[0], X

0
11[2], X

0
12[0],

X0
12[2] that are required to decrypt the ciphertext differences [C0⊕C1, C0⊕

C2, · · · , C0 ⊕ C7].
5. The guessed state variables are filtered by checking if the computed ordered

sequence exists in H or not.



Meet-in-the-Middle Attacks on Round-Reduced Khudra 133

�������	
�����������

� �

��� ���

��� ���

� �

� �

� �

� �

� �

� �
���� ����

��� ���

��� ���

��� ���

���� ����

���� ����

���� ����

�����	�

�����	�

�����	�

�����	�

�����	��

�����	��

�����	��

����	����	����� �����	�����

� ���	�����	������	��	���������	����	�	��	�������

 ����  ����  ����  ����

!"�# !"�# !"�# !"�#

 ����

 ����

 ����

 ����

 ����

 ����

 ����

 ����

 ����  ����  ����  ����

 �����  �����  �����  �����

 �����  �����  �����  �����

 �����  �����  �����  �����

 �����  �����  �����  �����

Fig. 3. 13-Round attack on Khudra

Steps 2 and 4 require the guessing of 10 words and the attack time complexity
would then exceed the exhaustive key search. Therefore, we investigate the key
schedule aiming to find relations between the round keys and thus reduce the
number of guessed words. Indeed, we find that by guessing k0, k1, k3, and with



134 M. Tolba, A. Abdelkhalek, and A.M. Youssef

the knowledge of P 0, we can compute X0
1 [3], X

0
1 [1], X

0
1 [0], X

0
2 [2] and by guessing

k0, k3, k4, and with the knowledge of C0, C1, · · · , C7 and [C0 ⊕ C1, C0 ⊕
C2, · · · , C0 ⊕C7], we can compute X0

9 [2], X
0
10[0], X

0
11[0], X

0
11[2], X

0
12[0], X

0
12[2].

Therefore, instead of guessing 10 words, only 4 key words k0, k1, k3, k4 are to be
guessed. The probability of a wrong key resulting in an ordered sequence in H is
264−(7×16) = 2−48. As we have 264 key guesses, we expect that only 264−48 = 216

keys will remain. Hence, we guess k2 to fully recover the master key and test it
using two plaintext/ciphertext pairs.

Attack Complexity. The memory complexity of the attack is determined by
the memory required to store the hash tableH in the offline phase. This table has
264 entries where each entry contains seven 16-bit words, i.e., 112 bits. Therefore,
the memory complexity is given by 264 × 112/64 = 264.8 64-bit blocks. The
data complexity is determined from step 2. As shown in Figure 3, after the
decryption of step 2, three words are fully active, i.e., they assume all the 216

possible values while the fourth word has only three active bits, i.e., assumes
23 possible values only in correspondence to the 3-δ-set. Therefore, the data
complexity of the attack is upper bounded by 251 chosen plaintext. The time
complexity of the offline phase is determined by the time required to build the
hash table H and is estimated to be 264×8×4/(2×13) = 264.3. The complexity
of the online phase includes the time required to filter the key space and is
estimated to be 264 × 8× (4 + 6)/(2× 13) = 265.62. It also includes the time to
exhaustively search through the remaining key candidates along with the guess of
k2 using two plaintext/ciphertext pairs and is estimated to be 2×2(64−48)×216 =
233. Therefore, the overall time complexity of the attack is estimated to be
264.3 + 265.62 + 233 ≈ 266.11 13-round Khudra encryptions.

3.2 A MitM Attack on 14-Round Khudra

Reusing the same distinguisher to extend our attack by one round requires
guessing the 5 words of the key. Therefore, we construct another distinguisher,
depicted in Figure 4, to attack 14-round reduced Khudra without the post-
whitening keys. The active word in this new distinguisher is P [3]. It is built
according to proposition 2 below and, as in the previous attack, b is set to 3.

Proposition 2. Consider the encryption of 3-δ-set {P 0, P 1, · · · , P 7} through
six rounds of Khudra. The ordered sequence [X0

6 [1]⊕X1
6 [1], X

0
6 [1]⊕X2

6 [1], · · · , X0
6

[1]⊕X7
6 [1]] is fully determined by the following 4 16-bit parameters X0

1 [2], X
0
2 [2],

X0
3 [2] and X0

4 [2].

By appending three rounds on top of this new distinguisher and five rounds
beneath it, we are able to attack 14-round Khudra. The attack proceeds as the
previous one, as illustrated in Figure 5, with the exception that the active word
is X3[3] rather than X3[1] in the 13-round attack and the ordered sequence is
calculated at X9[1] instead of X9[3]. Guessing k0, k1, k2 with the knowledge of



Meet-in-the-Middle Attacks on Round-Reduced Khudra 135

� �

� �

� �

� �

� �

��������	
�������

� �

���� ���� ���� ����

����� �����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

����������������	���������	
���
��	���

 ��!�	�������
���� ��
	
����

Fig. 4. 6-Round distinguisher to attack 14-round Khudra

P 0 enables us to compute the state variables needed to determine the 3-δ-set.
In order to determine the ordered sequence, we need to guess k0, k1, k2, k4.
Therefore, guessing the four key words, k0, k1, k2, k4 allows us to mount an
attack on 14-round Khudra.

Attack Complexity. The memory and data complexities of this attack are
similar to the previous one, i.e., 264.8 64-bit blocks and 251 chosen plaintext,
respectively. The time complexity is 264×8×4/(2×14)+264×8×(4+8)/(2×14)+
2× 2(64−48) × 216 = 264.19 + 265.78 + 233 ≈ 266.19 14-round Khudra encryptions.



136 M. Tolba, A. Abdelkhalek, and A.M. Youssef

�������	
�����������

� �

��� ���

��� ���

� �

� �

� �

� �

� �

��� ���

��� ���

���� ����

���� ����

���� ����

�����	�

�����	�

�����	�

�����	�

�����	��

�����	��

�����	��

����	����	����� �����	�����

� ���	�����	������	��	���������	����	�	��	�������

� �
���� ���������	��

� �
���	 ���


 ����  ����  ����  ����

!"�# !"�# !"�# !"�#

 ����

 ����

 ����

 ����

 ����

 ����

 ����

 ����

 ����  ����  ����  ����

 �����  �����  �����  �����

 �����  �����  �����  �����

 �����  �����  �����  �����

 �����  �����  �����  �����

 �����  �����  �����  �����

Fig. 5. 14-Round attack on Khudra



Meet-in-the-Middle Attacks on Round-Reduced Khudra 137

4 Conclusion and Discussion

We presented MitM attacks on Khudra. The time complexities of the attacks are
given by 266.11 and 266.19 for the 13-round and 14-round reduced cipher, respec-
tively. Both attacks have the same data and memory complexities of 251 chosen
plaintext and 264.8 64-bit blocks, respectively. To the best of our knowledge,
these are the best known attacks on Khudra.

Finally, we briefly discuss why we did not use the notion of differential enu-
meration. In the attack of Dunkelman et al. [10], the differential enumeration
technique helps reduce the number of parameters by using the differential prop-
erty of the SBox over one round. In Feistel constructions, the differential property
of the SBox can be utilized over at least two rounds and can be extended fur-
ther depending on the specific structure of the scheme. However, in the case of
Khudra, differential enumeration does not help reduce the number of parameters
because propagating the difference backward requires a set of parameters that is
different than the set of parameters needed to compute the ordered sequence. In
other words, using the differential enumeration technique reduces the number of
parameters by using the differential property of the SBox but at the same time,
incurs additional parameters to be guessed in order to propagate the difference
backward. Since Khudra has an 80-bit key, the number of parameters is limited
to 4 16-bit parameters. Using the differential enumeration technique, the best
6-round distinguisher that we are able to construct requires 6 parameters which
renders the attack worse than exhaustive key search.

References

1. Abdelkhalek, A., Altawy, R., Tolba, M., Youssef, A.M.: Meet-in-the-middle attacks
on reduced-round hierocrypt-3. In: LatinCrypt. LNCS. Springer (2015, to appear)

2. Biryukov, A., Derbez, P., Perrin, L.P.: Differential analysis and meet-in-the-middle
attack against round-reduced TWINE. In: Leander, G. (ed.) FSE 2015. LNCS,
vol. 9054, pp. 3–27. Springer, Heidelberg (2015)

3. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

4. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: Cryptanalysis
of the lightweight block cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011)

5. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN - A
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

6. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In: Ny-
berg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg (2008)

7. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-
round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013)



138 M. Tolba, A. Abdelkhalek, and A.M. Youssef

8. Derbez, P., Perrin, L.: Meet-in-the-middle attacks and structural analysis of round-
reduced PRINCE. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 190–216.
Springer, Heidelberg (2015)

9. Diffie, W., Hellman, M.E.: Special feature exhaustive cryptanalysis of the NBS
data encryption standard. Computer 10(6), 74–84 (1977)

10. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 158–176. Springer, Heidelberg (2010)

11. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that are
easier to mask: How far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013.
LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013)

12. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A new family of lightweight block ciphers.
In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer,
Heidelberg (2012)

13. Guo, J., Jean, J., Nikolić, I., Sasaki, Y.: Meet-in-the-middle attacks on generic
Feistel constructions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8873, pp. 458–477. Springer, Heidelberg (2014)

14. Hao, Y., Bai, D., Li, L.: A meet-in-the-middle attack on round-reduced mCrypton
using the differential enumeration technique. In: Au, M.H., Carminati, B., Kuo, C.-
C.J. (eds.) NSS 2014. LNCS, vol. 8792, pp. 166–183. Springer, Heidelberg (2014)

15. Hoang, V.T., Rogaway, P.: On generalized feistel networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010)

16. Hong, D., et al.: HIGHT: A new block cipher suitable for low-resource device. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer,
Heidelberg (2006)

17. Kolay, S., Mukhopadhyay, D.: Khudra: A new lightweight block cipher for FPGAs.
In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS,
vol. 8804, pp. 126–145. Springer, Heidelberg (2014)

18. Lin, L., Wu, W.: Improved Meet-in-the-Middle Distinguisher on Feistel Schemes.
IACR Cryptology ePrint Archive, 2015/051 (2015).
https://eprint.iacr.org/2015/051.pdf

19. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

20. Zhu, B., Gong, G.: Multidimensional meet-in-the-middle attack and its applications
to KATAN32/48/64. IACR Cryptology ePrint Archive, 2011/619 (2011).
https://eprint.iacr.org/2011/619.pdf

https://eprint.iacr.org/2015/051.pdf
https://eprint.iacr.org/2011/619.pdf


Improved Key Recovery Attack

on Round-reduced Hierocrypt-L1
in the Single-Key Setting

Ahmed Abdelkhalek, Mohamed Tolba, and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Quebéc, Canada

Abstract. Hierocrypt-L1 is a 64-bit block cipher with a 128-bit key.
It was selected among the Japanese e-Government 2003 recommended
ciphers list and has been reselected in the 2013 candidate recommended
ciphers list. In this work, we cryptanalyze Hierocrypt-L1 in the single-key
setting. In particular, we construct a 5 S-box layers distinguisher that we
utilize to launch a meet-in-the-middle attack on 8 S-box layers round-
reduced Hierocrypt-L1 using the differential enumeration technique. Our
attack allows us to recover the master key with data complexity of 249

chosen plaintexts, time complexity of 2114.8 8-Sbox layers Hierocrypt-
L1 encryptions and memory complexity of 2106 64-bit blocks. Up to the
authors’ knowledge, this is the first cryptanalysis result that reaches 8
S-box layers of Hierocrypt-L1 in the single-key setting.

Keywords: Cryptanalysis, Hierocrypt-L1, Meet-in-the-Middle attack,
Differential Enumeration.

1 Introduction

Hierocrypt-L1 (HC-L1) [24,10,29], designed by Toshiba Corporation in 2000, is
a 64-bit block cipher with a 128-bit key. The cipher employs a nested Substitu-
tion Permutation Network (SPN) structure [24], where each S-box in a higher
SPN level encompasses the lower-level SPN structure. HC-L1 was submitted to
the New European Schemes for Signatures, Integrity, and Encryption (NESSIE)
project [23]. In 2003, HC-L1 was selected as one of the Japanese e-Government
recommended ciphers [9], and its security was reaffirmed by CRYPTREC in 2013
where it was included in the candidate recommended ciphers list [8].

The best known attack on HC-L1 in the single-key setting is the square attack
on 7 S-box layers which was proposed by the designers [19] and independently
by Barreto et al. [5]. Later, Cheon et al. proposed a 4 S-box layers impossible
differential [29] and utilized it to attack HC-L1 reduced to 6 S-box layers. In the
related-key setting, Taga et al. utilized a differential characteristic in the key
scheduling of HC-L1 to attack 8 S-box layers [28].

The meet-in-the-middle (MitM) attack, first proposed by Diffie and Hellman
in 1977, is considered as one of the major attacks on cryptographic primitives.

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 139–150, 2015.
DOI: 10.1007/978-3-319-24126-5_9



140 A. Abdelkhalek, M. Tolba, and A.M. Youssef

Following its introduction, a number of variants has been developed to study the
security of many block ciphers such as DES [15], XTEA, [27], KTANTAN [7],
LBlock [2], and Twine [6]. MitM attacks were also employed in the cryptanalysis
of a number of hash functions [17,26,3] and public key cryptosystems [18].

A new line of research was opened when Demirci and Selçuk presented the first
MitM attack on AES at FSE 2008 [12]. They presented small data complexity
attacks on 8-round AES-256 and 7-round AES-192 using time/memory trade-
off. The major downside of their attack is the high memory required to store
a precomputation table. The issue of the high memory requirement remained
severe untill Dunkelman, Keller, and Shamir [14] introduced the notions of mul-
tisets and differential enumeration that have reduced the memory requirement
drastically but with higher data complexity. Furthermore, Derbez, Fouque and
Jean revised Dunkleman et al.’s attack, by borrowing ideas from the rebound
attack [22], rendering the attack feasible on AES-128 [13]. Then, Li, Jia and
Wang [20] presented attacks on 9-round AES-192 and 8-round PRINCE using
a key-dependent sieving. MitM attacks were also applied on other block ciphers
such as Hierocrypt-3 [1] and mCrypton [16].

In this work, we first construct a 5 S-box layers truncated differential char-
acteristic for HC-L1. Then, we utilize this characteristic as a distinguisher to
launch a MitM attack based on the differential enumeration technique against
HC-L1 reduced to 8 S-box layers. Unlike the majority of existing MitM attack
results, the matching step in our attack is performed around the linear trans-
formation. Particularly, in the offline phase, we compute two specific bytes of
the input of the linear transformation and store their xor in a precomputation
table. Then, in the online phase, we compute two particular bytes of the output
of that linear transformation, compute their xor which is equivalent to the xor
of the two input bytes, and look for a match in the precomputation table. If no
match is found, the key is discarded. Our attack recovers the master key with
data complexity of 249 chosen plaintexts, time complexity of 2114.8 8-Sbox layers
HC-L1 encryptions and memory complexity of 2106 64-bit blocks.

The rest of the paper is organized as follows. Section 2 provides a description
of HC-L1 and the notations adopted in the paper. Section 3 describes our 5 S-
box layers distinguisher and how it is used to launch our MitM attack to recover
the master key. Then, our conclusion is provided in Section 4.

2 Specification of Hierocrypt-L1

HC-L1 is an iterated block cipher with 64-bit blocks and 128-bit key. It adopts
a nested SPN construction which embeds a lower level SPN structure within a
higher SPN one. It has 6 rounds where the last round is slightly different than
the others. As shown in Figure 1, the higher SPN level of HC-L1 consists of the
following three operations:

– AK: Mixes 64-bit layer key with the 64-bit internal state.
– XS: Two 32×32-bit keyed substitution boxes that are applied simultaneously

to the internal state.



Improved Key Recovery Attack 141

– MS: A diffusion layer consisting of a byte-wise linear transform defined by
the matrix

MDSH =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 1 1 0
1 1 0 1 1 1 1 1
1 1 1 0 0 1 1 1
0 1 0 1 1 1 0 1
1 1 0 1 0 1 0 1
1 1 1 0 1 0 1 0
1 1 1 1 1 1 0 1
1 0 1 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The lower SPN level, i.e., the two 32×32-bit XS-boxes, as shown in Figure 1,
comprises of:

– SB: A nonlinear byte bijective mapping layer which applies the same 8×8-bit
S-box 8 times in parallel.

– MC: A diffusion layer consisting of a byte-wise linear transform defined by
a 4× 4 matrix called mdsl which is a Maximum Distance Separable (MDS)
matrix [21,25].

– AK: The 64-bit layer key is divided into halves and each half is mixed with
the 32-bit internal state of one XS box.

– SB: Another nonlinear byte bijective mapping layer which applies the same
8× 8-bit S-box 8 times in parallel.

Each round of HC-L1 includes two S-box layers. The last round of HC-L1 is
an output transformation where the MS linear transformation is substituted by
an xor layer with a layer key. The full encryption function of HC-L1 where the
ciphertext C is computed from the plaintext P is given by:

C = AK[K
(7)
1 ] ◦ ((SB ◦AK[K

(6)
2 ] ◦MC ◦ SB) ◦AK[K

(6)
1 ])

◦ · · · ◦ (MS ◦ (SB ◦AK[K
(1)
2 ] ◦MC ◦ SB) ◦AK[K

(1)
1 ])(P )

To facilitate the understanding of our attacks, we represent the internal state
of HC-L1 as a 4×2 matrix, as depicted in Figure 2, where each 8-bit word in the
ith row and the jth column of this matrix represent a state byte. Consequently,
MC, similar to the MixColumns operation in AES, operates column-wise and
MS affects the entire matrix. Moreover, we exploit the fact that both the linear
transformations (MC, MS), and the key addition AK are linear and swap their
order. In such case, the input data is first xored with an equivalent layer key,
denoted by EKi, and then the linear transformation is applied. The equivalent
layer key at any given S-box layer i is evaluated by EKi = MC−1(Ki) when i
is odd and EKi = MS−1(Ki) when i is even. In addition, we use the following
property of the S-box:

Proposition 1 (Differential Property of S). Given Δi and Δo two non-zero
differences in F256, the equation: S(x) + S(x + Δi) = Δo has one solution on
average. This property also applies to S−1.



142 A. Abdelkhalek, M. Tolba, and A.M. Youssef

�� �� ���� �� �� ����

���� ����

�� �� ���� �� �� ����

�
���

������

�� ��

�	�	

�������	�
�	���

������	�
�	���

�
���


������

Fig. 1. One round of Hierocrypt-L1

Key Schedule. The input to the key schedule is the 128-bit master key and the
output is 13 64-bit layer keys (1 key per S-box layer in addition to the final key).

Themaster key initializes the first key state denoted byV
(−1)
1(32)‖V (−1)

2(32)‖V (−1)
3(32)‖V (−1)

4(32)

which then undergoes 8 rounds relying on a Feistel construction and linear trans-
formations to generate the layer keys where the first round is a bit special as it
omits a linear function and does not produce any layer keys. Then, depending on
the employed function, the other rounds form two groups, which we mark as ‘type
A’ and ‘type B’. The two 32-bit key state words V3(32) and V4(32) are updated lin-
early in each round, while the other two 32-bit key state words V1(32) and V2(32) are
updated using a Feistel construction with additional input from V3(32) and V4(32).
Specifically, as shown in Figure 3, one round of ‘type A’ of the key schedule can be
described by:

(V
(r)
3(32), V

(r)
4(32)) ← L(V

(r−1)
3(32) , V

(r−1)
4(32) );

V
(r)
1(32) ← V2(32)

(r−1);

V
(r)
2(32) ← V

(r−1)
1(32) ;⊕Fσ(V

(r−1)
2(32) ⊕ V

(r)
3(32)), r = 0, 1, · · · , 7

where L is a linear function and the function Fσ is a level of S-boxes succeeded by

another linear transformation. Then, the 64-bit layer keys K
(r)
1(64) (k

(r)
1(32)‖k(r)2(32))

and K
(r)
2(64) (k

(r)
3(32)‖k(r)4(32)) are generated in every round of ‘type A’ as follows:

k
(r)
1(32) ← V

(r−1)
1(32) ⊕ Fσ(V

(r−1)
2(32) ⊕ V

(r)
3(32));

k
(r)
2(32) ← V

(r)
3(32) ⊕ Fσ(V

(r−1)
2(32) ⊕ V

(r)
3(32));

k
(r)
3(32) ← V

(r)
4(32) ⊕ Fσ(V

(r−1)
2(32) ⊕ V

(r)
3(32));

k
(r)
4(32) ← V

(r)
4(32) ⊕ V

(r−1)
2(32) , r = 0, 1, · · · , 7



Improved Key Recovery Attack 143

� �

� �

� �

� 	

�� ��

�� �� ��

��

��

�
���

������

�
���

�������

�� ��

���� ���� ����

Fig. 2. Alternative representation of one round of Hierocrypt-L1

The round function of ‘type B’ is almost equivalent to the inversion of the
‘type A’ round function but the linear function that operates on V3(32) and
V4(32) is different. It is to be noted that in our attacks, we number the layer

keys sequentially from K1 up to K13 where Ki = K
�i/2�
1(64) when i is odd and

Ki = K
�i/2�
2(64) when i is even.

For further details regarding the S-box, the linear transformations or the key
schedule, the reader is referred to [29].

The following notations are used throughout the paper:

– xi: The internal state at the input of layer i

– yi: The internal state after the SB of layer i.

������
�����

������
�����

������
�����

������
�����

�
���

��
���

����

��
���

����

��
���

����

��
���

����

������
���

������
���

������
���

������
���

��
���

����

��
���

����

Fig. 3. 1 Round of Hierocrypt-L1 key schedule



144 A. Abdelkhalek, M. Tolba, and A.M. Youssef

– zi: The internal state after the MC (resp. MS) of layer i when i is odd (resp.
even).

– z
′
i: The internal state after the AK of layer i with an equivalent key EKi.

– xi[j]: The jth byte of the state xi, where j = 0, 1, · · · , 7, and the bytes are
indexed as described in Figure 2.

– xi[j · · · k]: The bytes between the jth position and kth position of the state
xi.

– Δxi,Δxi[j]: The difference at state xi and byte xi[j], respectively.
– X(n): An n-bit word X . Such notation is specifically used in describing the

key schedule.

The memory and time complexities of our attack are measured as 64-bit HC-L1
blocks and round-reduced HC-L1 encryptions, respectively.

3 A Differential Enumeration MitM Attack on HC-L1

Generally, in a MitM attack, a round reduced block cipher EK is split into
3 successive parts, such that EK = E2

K2
◦ Em ◦ E1

K1
, where Em exhibits a

distinguishing property. The exploited property is used to identify the correct
key by checking whether each guess of subkey (K1,K2) yields the property or not.
In our attacks, we use a truncated differential characteristic as the distinguishing
property, such that its input is a δ-set [11] captured by Definition 1. While in
most of the published MitM attacks the matching is performed around a specific
byte or word, adopting such approach on HC-L1 requires a time complexity that
exceeds that of the exhaustive search. Therefore, as explained in details below,
we opt for matching on a single equation that relates two input bytes of the
linear transformation MS with two bytes at its output.

Definition 1 (δ-set of HC-L1). Let a δ-set be a set of 256 HC-L1 states that
are all different in one state byte (the active byte) and all equal in the other state
bytes (the inactive bytes).

In our MitM attack, we use the 5 S-box layers distinguisher embedded in the
truncated differential characteristic, illustrated in Figure 4. It starts at x2 and
ends at the input of the linear transformation MS of layer 6, i.e., z

′
6. We exploit

the simplicity of the MS operation by observing the below equations of two of
its output bytes:

zi[0] = yi[0]⊕ yi[2]⊕ yi[4]⊕ yi[5]⊕ yi[6] (1)

zi[7] = yi[0]⊕ yi[2]⊕ yi[4]⊕ yi[6]⊕ yi[7] (2)

Therefore, from (1) and (2), we have

zi[0]⊕ zi[7] = yi[5]⊕ yi[7] (3)

Consequently, it follows that x7[0]⊕ x7[7] = z′6[5]⊕ z′6[7] (see Figure 4) which is
the single equation upon which the matching is performed as will be explained
in the attack procedure. Proposition 2, below, is the core of our attack.



Improved Key Recovery Attack 145

Proposition 2. If a message m belongs to a pair of states conforming to the
truncated differential characteristic of Figure 4, then the ordered sequence of
differences Δz

′
6[5]⊕Δz

′
6[7] obtained from the δ-set constructed from m in x2[3]

is fully determined by the following 14 bytes: x2[3], Δx2[3], x3[1, 3, 4, 6], y5[4 · · · 7],
Δy6[5], Δy6[7], y6[5] and y6[7].

Proof. The proof is based on rebound-like arguments adopted from the crypt-
analysis of hash functions [22] and used in [13]. Assuming that (m,m

′
) is a pair

that follows the truncated differential characteristic in Figure 4. In the sequel, we
manifest that knowing these specific 14 bytes is sufficient to compute the ordered
sequence of differences Δz

′
6[5]⊕Δz

′
6[7]. To conform to the differential character-

istic in Figure 4, the 14 bytes x2[3], Δx2[3], x3[1, 3, 4, 6], y5[4 · · · 7], Δy6[5], Δy6[7],
y6[5] and y6[7] can take as many as 28×13 = 2104 possible values only. This is
becauseΔy6[5] must equalΔy6[7] in order to result in a difference in just x7[0, 7].
Then for each of these 2104 values, we can determine all the differences shown
in Figure 4.

� �

	 


� �

 �

�� �� ��

��

�� ����

�	

�� �� ��

��

�� ����

�

�� ��

��

�

�

�� ��

���

��

�


�

�

�� ��

���

�� ��

��

��

�

�

�� �� �� �� �� ��

�� �� �� �� �� ��

�� �� �� �� �� ���

�� �� ��� �	 �	 �


��������	�
��

��������	
�����������	���

��

��

Fig. 4. The differential characteristic used in the MitM attack on HC-L1 using differ-
ential enumeration. Offline bytes are colored in black while online bytes are colored in
gray.



146 A. Abdelkhalek, M. Tolba, and A.M. Youssef

– The value x2[3] with the difference Δx2[3] enable us to bypass the S-box of
layer 2 and then propagate the difference linearly through MS to compute
Δx3[1, 3, 4, 6].

– By knowing x3[1, 3, 4, 6], we can bypass the S-box of layer 3 to reach y3, then
linearly through MC to compute Δx4[0 · · · 7].

– Similarly in the other direction, the differences Δy6[5] and Δy6[7] with
the values y6[5] and y6[7] enable us to bypass the S-box of layer 6 and
compute the difference Δz5[5, 7], then linearly through MC−1 we compute
Δy5[4 · · · 7].

– By knowing y5[4 · · · 7], we bypass the S-box of layer 5 to compute Δz4[4 · · · 7]
and then linearly through MS−1 we can compute Δy4[0 · · · 7].

– Now, we have the differences Δx4[0 · · · 7] and Δy4[0 · · · 7]. Hence, by the
differential property of the HC-L1 S-box (Proposition 1), there is, on average,
one solution for each of the 8 bytes of x4.

To build the ordered sequence for each of the 2104 possible values of the 14 bytes
from proposition 1, we consider all the 28 − 1 possible values for the difference
Δx2[3] and propagate them until z

′
6 with the help of the internal state solutions

we have. This creates an ordered sequence of 28 − 1 differences in Δz
′
6[5, 7].

Attack Procedure. Similar to other MitM attacks, our attack has 2 phases; an
offline phase and an online phase that result in recovering the 64-bit last layer
key K9, 2 bytes of EK8 = MC−1(K8) and 4 bytes of K1.

Offline Phase. In the offline phase, we compute all the 2104 values of Δz
′
6[5]⊕

Δz
′
6[7] determined by the 14 bytes listed in proposition 1 and store them in a

precomputation table T .

Online Phase. The online phase can be divided into two stages; data collection
and key recovery. The data collection stage aims at finding pairs of messages that
follow the truncated differential characteristic in Figure 4. Then, for each of the
found pairs, a δ-set is created, its corresponding ordered sequence is computed
and tested for a match in T to identify the correct key in the key recovery stage.

Data Collection. To generate one pair of messages that conforms to the 8 S-
box layers truncated differential characteristic in Figure 4, the encryption oracle
is queried with structures of chosen plaintexts. In a given structure, bytes [0 · · · 3]
take all the 232 possible values while the other 4 bytes are fixed to some, possibly
different, constants and hence, each structure generates 232 × (232 − 1)/2 ≈ 263

pairs. Our 8 S-box layers truncated differential characteristic has a probability
of 2−3×3×8−1×8 = 2−80 because of the three 4 → 1 transitions over MC in ad-
dition to the probability that Δx7[0] equals Δx7[7], marked as a in Figure 4.
Consequently, in order to find one pair that follows our chosen 2−80 probability
truncated differential characteristic, 280 pairs are needed which is equivalent to
280−63, i.e., 217 structures of 232 messages, each. Briefly, 217+32 = 249 messages
are sent to the encryption oracle to generate the required 280 pairs. It is to be



Improved Key Recovery Attack 147

noted that the distinguisher was chosen to start at x2[3] because this specific
byte results into just 4 differences, i.e., z2[1, 3, 4, 6] after the application of the
MS transformation (cf. 4th column of MDSH).

Key Recovery. The key bytes: K9[0 · · · 7], EK8[0, 7] and K1[0 · · · 3] can take
2(2+1+1)×8 = 232 possible values for each of the 280 pairs. This is justified as
follows:

– The difference Δy7[0, 7] is guessed and propagated linearly through MC to
compute Δx8[0 · · · 7].

– The difference Δy8[0 · · · 7] is equal to the difference Δx9[0 · · · 7] which, in
turn, is the difference in the ciphertext pair.

– As we have the difference Δx8[0 · · · 7] and Δy8[0 · · · 7], the differential prop-
erty of the S-box is used to deduce a solution for each byte of x8 and y8
which yields 216 key candidates for the whole K9 by simply xoring y8 with
the ciphertext.

– Then, x8[0 · · · 7] is propagated linearly through MC−1 to deduce z
′
7[0 · · · 7].

– Afterwards, the difference Δy6[5, 7] which, as explained before, assumes 28

values only is guessed and propagated through MS to get the difference
Δx7[0, 7].

– As we have Δx7[0, 7] and Δy7[0, 7] were already guessed in the first step
above, the differential property of the S-box is used to deduce a solution
for y7[0, 7] which with z

′
7[0 · · · 7], computed above, enables us to deduce 28

candidates for EK8[0, 7].

– Next, the differenceΔx2[3] is guessed and propagated linearly throughMC−1

to compute Δy1[0 · · · 3].
– The difference Δx1[0 · · · 3] is actually the difference in the plaintext pair.

Therefore, knowing the differences Δx1[0 · · · 3] and Δy1[0 · · · 3] enables us
to deduce 28 candidates for K1[0 · · · 3] using the differential property of the
S-box.

All in all, guessing 4 bytes helps deduce 14 key bytes. In other words, these 14
key bytes have just 232 possible values for each of the 280 pairs. Then, in order
to recover the key, we enumerate each of the 280 candidate pairs we obtained in
the data collection stage and deduce the corresponding 232 possible key sugges-
tions. Next, we build the plaintext δ-set and compute its corresponding ordered
sequence of Δx7[0]⊕Δx7[7] and look for a match in T and if no match is found,
this key suggestion is discarded.

A valid ordered sequence can be generated by a wrong key with a negligible
probability, 280+32+104−255×8 = 2−1824, which can be relaxed. Therefore, we use
the partial sequence matching idea proposed in [4]. Instead of matching 28 − 1
bytes ordered sequence, we match b bytes such that b < 28 and the probability of
error, chosen to be 2−32, is still small enough to be able to identity the right key.
In that case, the number of required bytes b is calculated by 2−32 = 280+32+104−8b

which yields b = 31. Therefore, it is enough to match 31 bytes of the ordered
sequence to identify the right key with a negligible error probability of 2−32.



148 A. Abdelkhalek, M. Tolba, and A.M. Youssef

So far, we have recovered 14 key bytes; the 8-byte K9, 2 bytes of EK8 and 4
bytes of K1. To recover the master key, 6 bytes of EK8 are guessed to get 248

suggestions for K8, which, using the key schedule notations, means that there

are 248 candidates for the keys k
(4)
3(32), k

(4)
4(32). Along with K9 or rather k

(5)
1(32) and

k
(5)
2(32), these keys are computed as follows:

k
(4)
3(32) = V

(4)
4(32) ⊕ Fσ(V

(3)
2(32) ⊕ V

(4)
3(32)) (4)

k
(4)
4(32) = V

(4)
4(32) ⊕ V

(3)
2(32) (5)

k
(5)
1(32) = V

(4)
1(32) ⊕ Fσ(V

(4)
2(32) ⊕ V

(5)
3(32)) (6)

k
(5)
2(32) = V

(5)
3(32) ⊕ Fσ(V

(4)
2(32) ⊕ V

(5)
3(32)) (7)

Then, the 32-bit V
(3)
2(32) is guessed and V

(4)
4(32) is computed from equation (5) and,

in turn, V
(4)
3(32) is deduced from equation (4). According to the key schedule,

the knowledge of V
(4)
3(32) and V

(4)
4(32) results in knowing V

(5)
3(32) and V

(5)
4(32). Next,

since V
(4)
1(32) = V

(3)
2(32), V

(4)
2(32) is computed from equation (6) and then equation

(7) is used as a 2−32 filter to get one solution for V
(3)
2(32), V

(4)
1(32), V

(4)
2(32), V

(4)
3(32),

V
(4)
4(32), V

(5)
3(32) and V

(5)
4(32). As we recover one full intermediate state of the key

schedule and its round is bijective, we can recover the master key and get 248

candidates for the master key corresponding to the 248 K8 suggestions. The cor-
rect master key is found by exhaustively searching through these 248 candidates
using 2 plaintext/ciphertext pairs with no significant impact on the attack over-
all time complexity.

Attack Complexity. The size of the precomputation table T created in the
offline phase determines the memory requirement of the attack. T contains 2104

ordered sequences, each of 8 × 31 = 248 bits by using the partial sequence
matching technique. Therefore, the memory complexity of the attack is 2104 ×
248/64 ≈ 2106 64-bit blocks. The data collection stage of the online phase sets
the data complexity of the attack to 249 chosen plaintexts. The offline phase
time complexity to build T is attributed to executing 2104 partial encryptions
on 32 messages, which is equivalent to 2104+5× 11/(8× 8) = 2106.46 encryptions.
The online phase time complexity to recover 14 key bytes is determined by the
time needed to partially decrypt the 25 values in a δ-set with all the 232 key
suggestions for all the 280 generated pairs which is equivalent to 280+32+5× (4+
10)/(8 × 8) = 2114.8. Finding the correct master key among the 248 candidates
using 2 plaintext/ciphertext pairs requires 2× 248 = 249 encryptions. Therefore,
the time complexity of the attack is equivalent to 2114.8 + 2106.46 + 249 ≈ 2114.8.



Improved Key Recovery Attack 149

4 Conclusion

In this paper, we have analyzed one of the Japanese e-Government 2013 can-
didate recommended block ciphers; Hierocrypt-L1 using the meet-in-the-middle
(MitM) attack in the single-key setting. Our attack employs the differential enu-
meration technique and is launched against 8 S-box layers using a 5 S-box layers
distinguisher. The attack recovers the master key with data complexity of 249

chosen plaintexts, time complexity of 2114.8 8 S-box layers Hierocrypt-L1 encryp-
tions and memory complexity of 2106 64-bit blocks. To the best of our knowledge,
this is the first attack on Hierocrypt-L1 in the single-key setting that reaches 8
S-box layers.

References

1. Abdelkhalek, A., AlTawy, R., Tolba, M., Youssef, A.M.: Meet-in-the-Middle At-
tacks on Reduced-Round Hierocrypt-3. In: Lauter, K., Rodŕıguez-Henŕıquez, F.
(eds.) LatinCrypt 2015. LNCS, vol. 9230, pp. 187–203. Springer, Heidelberg (2015)

2. AlTawy, R., Youssef, A.M.: Differential Sieving for 2-step matching meet-in-the-
middle attack with application to LBlock. In: Eisenbarth, T., Öztürk, E. (eds.)
LightSec 2014. LNCS, vol. 8898, pp. 126–139. Springer, Heidelberg (2015)

3. AlTawy, R., Youssef, A.M.: Preimage Attacks on Reduced-Round Stribog.
In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS, vol. 8469,
pp. 109–125. Springer, Heidelberg (2014)

4. AlTawy, R., Youssef, A.M.: Meet in the Middle Attacks on Reduced Round
Kuznyechik. Cryptology ePrint Archive, Report 2015/096 (2015),
http://eprint.iacr.org/

5. Barreto, P.L.M., Rijmen, V., Jr. Nakahara, J., Bart, P., Joos, V., Kim, H.Y.: Im-
proved Square Attacks against Reduced-Round Hierocrypt. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 165–173. Springer, Heidelberg (2002)

6. Biryukov, A., Derbez, P., Perrin, L.P.: Differential Analysis and Meet-in-the-Middle
Attack against Round-Reduced TWINE. Fast Software Encryption (2015) (to ap-
pear)

7. Bogdanov, A., Rechberger, C.: A 3-Subset Meet-in-the-Middle Attack: Cryptanaly-
sis of the Lightweight Block Cipher KTANTAN. In: Biryukov, A., Gong, G., Stin-
son, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg
(2011)

8. CRYPTEC. e-Government Candidate Recommended Ciphers List (2013).
http://www.cryptrec.go.jp/english/method.html.

9. CRYPTEC. e-Government Recommended Ciphers List (2003).
http://www.cryptrec.go.jp/english/images/cryptrec_01en.pdf

10. CRYPTEC. Specification on a Block Cipher: Hierocrypt-L1.
http://www.cryptrec.go.jp/cryptrec_03_spec_cypherlist_files/PDF/04_

02espec.pdf

11. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

12. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In: Ny-
berg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg (2008)

http://eprint.iacr.org/
http://www.cryptrec.go.jp/english/method.html
http://www.cryptrec.go.jp/english/images/cryptrec_01en.pdf
http://www.cryptrec.go.jp/cryptrec_03_spec_cypherlist_files/PDF/04_02espec.pdf
http://www.cryptrec.go.jp/cryptrec_03_spec_cypherlist_files/PDF/04_02espec.pdf


150 A. Abdelkhalek, M. Tolba, and A.M. Youssef

13. Derbez, P., Fouque, P.-A.: Improved Key Recovery Attacks on Reduced-RoundAES
in the Single-Key Setting. In: Johansson, T., Nguyen, P. (eds.) Advances in Cryptol-
ogy EUROCRYPT2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013)

14. Dunkelman, O., Keller, N., Shamir, A.: Improved Single-Key Attacks on 8-Round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 158–176. Springer, Heidelberg (2010)

15. Dunkelman, O., Sekar, G., Preneel, B.: Improved meet-in-the-middle attacks
on reduced-round DES. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 86–100. Springer, Heidelberg (2007)

16. Hao, Y., Bai, D., Li, L.: A Meet-in-the-Middle Attack on Round-Reduced mCryp-
ton Using the Differential Enumeration Technique. In: Au, M.H., Carminati, B.,
Kuo, C.-C.J. (eds.) NSS 2014. LNCS, vol. 8792, pp. 166–183. Springer, Heidelberg
(2014)

17. Hong, D., Koo, B., Sasaki, Y.: Improved Preimage Attack for 68-Step HAS-160. In:
Lee, D., Hong, S. (eds.) Information, Security and Cryptology ICISC 2009. LNCS,
vol. 5984, pp. 332–348. Springer, Heidelberg (2010)

18. Howgrave-Graham, N.: A Hybrid Lattice-Reduction and Meet-in-the-Middle At-
tack Against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 150–169. Springer, Heidelberg (2007)

19. Ohkuma, K., Sano, F., Muratani, H., Motoyama, M., Kawamura, S.: On security
of block ciphers Hierocrypt-3 and Hierocrypt-L1. In: The 2001 Symposium on
Cryptography and Information Security (SCIS 2001), 11A-4 (January 2001)

20. Li, L., Jia, K., Wang, X.: Improved Meet-in-the-Middle Attacks on AES-192 and
PRINCE. Cryptology ePrint Archive, Report 2013/573 (2013).
http://eprint.iacr.org/

21. MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes, vol. 16.
Elsevier (1977)

22. Mendel, F., Rechberger, C.: The Rebound Attack: Cryptanalysis of Reduced
Whirlpool and Grφstl. In: Dunkelman, O. (ed.) Fast Software Encryption. LNCS,
vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

23. New European Schemes for Signatures, Integrity, and Encryption.
https://www.cosic.esat.kuleuven.be/nessie.

24. Ohkuma, K., Muratani, H., Sano, F., Kawamura, S.: The Block Cipher Hiero-
crypt. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 72–88.
Springer, Heidelberg (2001)

25. Rijmen, V.: Cryptanalysis and design of iterated block ciphers. PhD thesis, Doc-
toral Dissertation, October 1997, KU Leuven (1997)

26. Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating fundamental security require-
ments on whirlpool: Improved preimage and collision attacks. In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 562–579. Springer, Heidelberg
(2012)

27. Sekar, G., Mouha, N., Velichkov, V., Preneel, B.: Meet-in-the-Middle Attacks on
Reduced-Round XTEA. In: Kiayias, A. (ed.) Topics in Cryptology CT-RSA 2011.
LNCS, vol. 6558, pp. 250–267. Springer, Heidelberg (2011)

28. Taga, B., Moriai, S., Aoki, K.: Differential and Impossible Differential Related-
Key Attacks on Hierocrypt-L1. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS,
vol. 8544, pp. 17–33. Springer, Heidelberg (2014)

29. Toshiba Corporation. Block Cipher Family Hierocrypt.
http://www.toshiba.co.jp/rdc/security/hierocrypt/index.htm

http://eprint.iacr.org/
https://www.cosic.esat.kuleuven.be/nessie
http://www.toshiba.co.jp/rdc/security/hierocrypt/index.htm


S-boxes, Boolean Functions and Codes for the

Resistance of Block Ciphers to Cryptographic
Attacks, with or without Side Channels

Claude Carlet

LAGA, Universities of Paris 8 and Paris 13; CNRS, UMR 7539;
Department of Mathematics,University of Paris 8, 2 rue de la liberté,

93526 Saint-Denis cedex 02, France
claude.carlet@univ-paris8.fr

Abstract. The choice of functions S : Fn
2 → F

m
2 to be used as substitu-

tion boxes (S-boxes), fastly implementable and contributing to resisting
attacks is a crucial question for the design of block ciphers. We summary
the state of the art in this domain, considering also the case m < n
which has been less studied. We also recall the method for protecting
block ciphers against side channel attacks (SCA) by masking, and how
the S-boxes can be processed in order to ensure this protection. We state
a related open problem, also interesting for its own sake. We eventually
see how Boolean functions, vectorial functions and error correcting codes
can be used in different ways for reducing the cost of masking while keep-
ing the same resistance to some SCA and also for allowing resisting fault
injection attacks (FIA).

1 Introduction

If a block cipher has linear (or affine) relationship between its input (the plain-
text) and its output (the cipher text), algorithms from linear algebra are able to
recover the unknown key bits in polynomial time. Substitution boxes (S-boxes)
are often included in the design of block ciphers to provide nonlinear relationship
between the input bits and the output bits, ensuring what Shannon called con-
fusion [69]. These S-boxes are functions from Fn

2 to Fm
2 (called (n,m)-functions).

They were used in the DES [59], and are used in most modern block ciphers
such as AES [36], Serpent [4], PRESENT [10], CLEFIA [70], CAMELLIA [3],
MISTY [57], KASUMI [41], CAST [1], KN [61]. S-boxes in block ciphers with
the Substitution-Permutation-Network (SPN) structure must be bijective (with
n = m, then). Those used in the Feistel structure can be defined with m < n or
even m > n but are better balanced (an (n,m)-function F is balanced if it takes
every value of Fm

2 the same number 2n−m of times, which needs m � n), since
a cipher with unbalanced S-boxes needs heavier diffusion layers, see [63].

Even when the relationship between the input bits and the output bits is
nonlinear, the block cipher may be weak against more sophisticated attacks: the
differential and linear attacks [8,56], other versions of these attacks such as trun-
cated differential cryptanalysis, impossible differential cryptanalysis, boomerang

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 151–171, 2015.
DOI: 10.1007/978-3-319-24126-5�10



152 C. Carlet

attack, multidimensional linear attacks (see [48]), and the higher order differen-
tial attack [47]. Nyberg has introduced in [60] criteria to measure the resistance
of block ciphers against such attacks: the S-boxes must have high nonlinearity
and low differential uniformity to resist linear and differential attacks, respec-
tively, provided that other components of the block cipher contribute to a good
diffusion. The S-boxes in these block ciphers would also better have an algebraic
degree larger than 2 (and even than 3, since cryptographers like to have a se-
curity margin) to avoid the higher order differential attack, within a trade-off
between robustness and efficiency. Summarizing, the design criteria for S-boxes
in block ciphers are:

1. bijectivity when used in SPN, and if possible balancedness when used in
Feistel ciphers,

2. high nonlinearity (for the resistance to linear attacks),
3. low differential uniformity (for the resistance to differential attacks),
4. not too low algebraic degree (for the resistance to higher order differential

attacks).

Satisfying the criteria 1-4 above is not sufficient for an S-box. It needs also to
be fastly computable, since it is not always possible to use a look-up-table for
implementing it; this depends on the device.

The set of (n,m)-functions is denoted by Bn,m. Such function F being given,
the Boolean functions f1, . . . , fm defined by F (x) = (f1(x), . . . , fm(x)) at ev-
ery x ∈ Fn

2 are called the coordinate functions of F . When the numbers m and n
are not specified, (n,m)-functions are called multi-output Boolean functions, vec-
torial Boolean functions or S-boxes. There exist several possible representations
of (n,m)-functions [19] allowing to represent them with uniqueness:

– a multivariate representation called the algebraic normal form (ANF):

F (x) =
∑

I⊆{1,2,...,n}
aI

(∏
i∈I

xi

)
where aI ∈ F

m
2 ,

(this sum being calculated in F
m
2 , in characteristic 2)

– a univariate representation: Fn
2 being endowed with the structure of the

finite field F2n , (n,m)-functions where m divides n are viewed as mapping
elements of the finite field F2n to itself and are represented in the form

F (x) =
∑2n−1

i=0 aix
i , ai ∈ F2n . The coefficients can be obtained by applying

Lagrange’s interpolation. When m does not divide n, the m-bit outputs of
F can be embedded into Fm′

2 where m′ � m divides n, by padding. This
ensures that any function h ∈ Bn,m can be evaluated as a polynomial over
F2n . If padding has been used, then it can be removed after the polynomial
evaluation by mapping the output from F2n to Fn

2 .
– Representations hybrid between these two ones; for instance, when n is even,

an (n, n/2)-function can be viewed as a bivariate polynomial over F2n/2, and
for every n, an (n, n − 1)-function can be viewed as mapping elements of
F2n−1 × F2 to F2n−1.



S-boxes, Boolean Functions and Codes for the Resistance of Block Ciphers 153

In multivariate representation, the algebraic degree d◦(F ) = max{|I|; aI �= 0}
(the global degree of the ANF) equals the maximum algebraic degree of the
coordinate Boolean functions, and also equals the maximum algebraic degree
of their linear combinations with non-all zero coefficients, called the component
functions of F . A function is called affine (respectively quadratic, cubic) if it has
an algebraic degree equal to 1 (respectively 2, 3). In univariate representation, it
can be shown, see e.g. [19], that the algebraic degree equals the maximum Ham-
ming weight HW (i) of those (binary expansions of) exponents with nonzero
coefficients ai. The algebraic degree must then not be confused with the clas-
sical notion of polynomial degree which is the integer value maxai �=0(i). The
algebraic degree plays an important role in counter-measures to side channel
attacks, as well as the notion of higher-order derivative (see Section 3). For any
positive integer t and any t-tuple (a1, a2, . . . , at) ∈ (Fn

2 )
t
, the (n,m)-function

Da1,a2,...,atF which maps any x ∈ F2n to
∑

I⊆[[1,t]] F
(
x+

∑
i∈I ai

)
is called the

tth-order derivative of F with respect to (a1, a2, . . . , at). Any tth-order derivative
of a function of algebraic degree s has an algebraic degree bounded above by

s− t. We denote by ϕ
(t)
F the function:

ϕ
(t)
F : (a1, a2, . . . , at) �→ Da1,a2,...,at F (0) . (1)

If F has algebraic degree s, then ϕ
(t)
F is s-linear symmetric and equals zero for

any family of ai linearly dependent over F2. Conversely, if ϕ
(s)
F is s-linear, then

the algebraic degree of F is at most s.
The Hamming distance between two (n,m)-functions F and G is the size

of the set {x ∈ F
n
2 | F (x) �= G(x)}. The nonlinearity, which is the parameter

quantifying the resistance of the S-box to the linear attack, equals the minimum
Hamming distance between the component functions of the S-box and all affine
functions. The larger the nonlinearity, the better the resistance to this attack.

The differential uniformity, which is the parameter quantifying the resistance
of the S-box to the differential attack, equals the maximum number of solutions
x ∈ Fn

2 of the equations F (x+ a) + F (x) = b where a ∈ Fn
2 , a �= 0, and b ∈ Fm

2 .
This number is even since if x is a solution then x + a is also a solution. We
denote it by δF . Given an integer δ, the function is called differentially δ-uniform
if δF � δ. The smaller the differential uniformity, the better the resistance to
differential attacks. Nyberg [60] observed that δF � 2n−m if n > m and δF � 2 if
n � m. Moreover, she proved that δF = 2n−m (that is, all first-order derivatives
DaF (x) = F (x) + F (x + a), a ∈ Fn

2
∗, that we shall simply call derivatives, are

balanced) if and only if F has the optimal nonlinearity 2n−1 − 2n/2−1. In this
case, F is called bent or perfect nonlinear (PN). Bent (n,m)-functions exist if
and only if n is even and m � n

2 [60].
The (n, n)-functions which contribute to optimal resistance to differential at-

tacks, that is, differentially 2-uniform functions, are called almost perfect non-
linear (APN). All their derivatives DaF , a ∈ Fn

2
∗, are 2-to-1 (every element of

F
n
2 has 0 or 2 pre-images by DaF ).



154 C. Carlet

The implementation of cryptographic algorithms in devices like smart cards,
FPGA or ASIC leaks information on the secret data, leading to very powerful
side channel attacks (SCA) if countermeasures are not included. The most com-
monly used counter-measure is masking. Counter-measures are costly in terms
of running time and of memory when they need to resist higher order SCA.

In this paper, we first recall in Section 2 what are the known S-boxes achieving
high nonlinearity and low differential uniformity. We then recall in Section 3 the
principle of side channel attacks and of the counter-measure of masking. We
describe the known methods for evaluating and masking S-boxes. Eventually in
Section 4, we recall methods using vectorial or Boolean functions and codes for
making the masking less costly, while keeping the same resistance to the most
efficient side channel attacks.

2 Known S-boxes with Good Properties

Several infinite classes of APN functions are known. All are defined over the
finite field F2n rather than the vector space Fn

2 ; this allows using multiplication
to define the functions. Table 1 lists all the known classes of non-quadratic APN
(n, n)-functions, up to composing by linear automorphisms of Fn

2 (such as field

automorphisms x �→ x2i of F2n), to adding an affine function, and to replacing
permutations by their compositional inverses. These APN functions are power
functions (and are then bijective if and only if n is odd, as proved by Dobbertin),
that is, have the form F (x) = xd for some powers d, and are then more easily
implementable than general functions (it is difficult to say if their particular
structure is an advantage for the designer only, since it could be an advantage for
the attacker if a possibility is found of exploiting the structure). There are other

known infinite classes of APN functions, e.g. Gold functions x2i+1, gcd(i, n) = 1
[43], but they are quadratic.

Table 1. Table of known non-quadratic classes of APN (n, n)-functions

Name F (x) Conditions References

Kasami x22i−2i+1 gcd(i, n) = 1 [46]

Welch x2t+3 n = 2t+ 1 [37]

Niho (even) x2t+2
t
2 −1 n = 2t+ 1, t even [38]

Niho (odd) x2t+2
3t+1

2 −1 n = 2t+ 1, t odd [38]

Inverse x22t−1 n = 2t+ 1 [60,6]

Dobbertin x24t+23t+22t+2t−1 n = 5t [39]

There has been considerable efforts in order to classify APN (n, n)-functions
and this could be done for n = 4,5. Bijectivity (which is required for SPN) is
easily achieved for n odd, because of Dobbertin’s result recalled above. Bijective



S-boxes, Boolean Functions and Codes for the Resistance of Block Ciphers 155

APN (7, 7)- and (9, 9)-functions are used for the design of the two S-boxes of
the MISTY block cipher [57] and its variant KASUMI [41] (which have a Feistel
structure). But (see below) n even is in general preferred. Only one APN bijective
(n, n)-function in even dimension was found, for n = 6, but it has a complex
representation [15], and 8 variables would be preferred. The question of finding
an APN bijective (n, n)-function for even n > 6 is still open.

The best situation for the implementation in finite fields being when n equals
a power of 2 (this allows decomposing the computation of multiplication in sub-
fields whose order level can be chosen according to the device to which the imple-
mentation is devoted), many designers have preferred using permutations (over
F24 or F28) which are not APN but are differentially 4-uniform. The known fami-
lies of differentially 4-uniform bijective (n, n)-functions are presented in Table 2.
Other classes of differentially 4-uniform (n, n)-functions exist, mostly obtained
by modifying power (n, n)-functions.

Table 2. Table of known differentially 4-uniform bijective (n, n)-functions

F (x) Conditions Ref

n = 2k, k is odd,

x2i+1 gcd(i, n) = 2 [43]

n = 2k, k is odd,

x22i−2i+1 gcd(i, n) = 2 [46]

x22t−2 n = 2t [60]

x22t+2t+1 n = 4t, t is odd [11]{
X + (X + α+ 1)−1 + (X + α+ 1)−2

X ∈ F2n+1 , T rn+1
1 (X) = 0

n is odd, Trn+1
1 (α) = 1 [20]

n = 3m, m/2 is odd,

αx2s+1

+ α2mx2−m+2m+s

gcd(s, n) = 2, 3|(m+ s), [12]
α primitive element of F2n

x−1 + Trn1

(
x+ (x−1 + 1)−1

)
n = 2t [73]

x−1 + Trn1

(
x−3(2k+1) + (x−1 + 1)3(2

k+1)
)

n = 2t, 2 � k � t− 1 [73]∑2n−3
k=0 xk n = 2t, t is odd [76]

s is even, t ∈ F
∗
2s ,

x−1 + t(x2s + x)2
sn−1 or s, n are odd, t ∈ F

∗
2s [77]

n, s are odd, t ∈ F
∗
2s ,

x2k+1 + t(x2s + x)2
sn−1 gcd(k, sn) = 1 [75]

The Walsh transform of an (n,m)-function F maps any ordered pair (u, v) ∈
Fn
2 × Fm

2 to the sum (calculated in Z):
∑

x∈Fn
2
(−1)v·F (x)+u·x, where the same

symbol “·” is used to denote inner products in Fn
2 and Fm

2 . Note that the function
v · F is a component function of F when v �= 0. The Walsh spectrum of F is
the multi-set of all the values of the Walsh transform of F , for u ∈ Fn

2 , v ∈ Fm
2

∗

(where Fm
2

∗ = Fm
2 \ {0}). We call extended Walsh spectrum of F the multi-set of

their absolute values.



156 C. Carlet

The nonlinearity nl(F ) satisfies:

nl(F ) = 2n−1 − 1

2
max

v∈Fm
2

∗; u∈Fn
2

∣∣∣∣∣∣
∑
x∈Fn

2

(−1)v·F (x)+u·x

∣∣∣∣∣∣ .
The two main known upper bounds on the nonlinearity are:

- the covering radius bound:

nl(F ) � 2n−1 − 2n/2−1

which is tight for n even and m � n/2, as recalled above (achieved with equality
by bent functions);
- the Sidelnikov-Chabaud-Vaudenay bound, valid only for m � n− 1:

nl(F ) � 2n−1 − 1

2

√
3× 2n − 2− 2

(2n − 1)(2n−1 − 1)

2m − 1

which is identical to the covering radius bound when m = n − 1 and is strictly
better when m � n. It is tight only for m = n (in which case it states that

nl(F ) � 2n−1 − 2
n−1
2 ), with n odd (the functions achieving it with equality are

called almost bent AB).
According to Chabaud-Vaudenay’s proof of the Sidelnikov-Chabaud-Vaudenay

bound, any AB function is APN.
The nonlinearity and the δ-uniformity are invariant under affine, extended

affine and CCZ equivalences (in increasing order of generality). Two functions are
called affine equivalent if one is equal to the other, composed on the left and on
the right by affine permutations. They are called extended affine equivalent (EA-
equivalent) if one is affine equivalent to the other, added with an affine function.
They are called CCZ-equivalent if their graphs {(x, y) ∈ Fn

2 × Fn
2 | y = F (x)}

and {(x, y) ∈ Fn
2 ×Fn

2 | y = G(x)} are affine equivalent, that is, if there exists an
affine automorphism L = (L1, L2) of F

n
2 × Fn

2 such that y = F (x) ⇔ L2(x, y) =
G(L1(x, y)).

2.1 The Case m < n

Little theoretical work has been done on (n,m)-functions when m does not equal
n, even though these functions can play a role in Feistel ciphers, and actually play
a role in several block ciphers; for instance, the S-boxes of the DES [59], found by
computer investigations, are (6, 4)-functions; their differential uniformities have
all the same value 16.

A way of designing differentially 2n−m+1-uniform (n,m)-functions is to take
them of the form L ◦ F where F is an APN (n, n)-function and L is an affine
surjective (n,m)-function. Such functions have optimal differential uniformity for
m = n−1, n � 3 (recall that when n is odd and when m > n/2, no differentially
2n−m-uniform (n,m)-function exists, that is, no bent or PN function exists).

Other types of differentially 4-uniform (n, n−1)-functions exist. It is observed
in [21] that taking two APN (n − 1, n − 1)-functions F and G, the function



S-boxes, Boolean Functions and Codes for the Resistance of Block Ciphers 157

(x, xn) ∈ F2n−1 × F2 �→ xnF (x) + (1 + xn)G(x) is differentially 4-uniform if and
only if, for every a ∈ F2n−1 , the function F (x) + G(x + a) is at most 2-to-1
(i.e. each value in the image set has at most two pre-images) or equivalently
F (x+ a) +G(x) is at most 2-to-1.

In [21] is deduced the following construction: let i be a positive integer co-

prime with n−1. The function (x, xn) �→ x2i+1+xnx is differentially 4-uniform.
This function has also good nonlinearity, but it is not balanced and has also the
drawback of being quadratic.

A construction in [2], based on the same structure, allows obtaining non-
quadratic balanced highly nonlinear differentially 4-uniform (n, n−1)-functions,
whatever is the parity of n: for every n > 3, the function (x, xn) �→ (1 +
xn)x

2n−2 + xnαx2n−2, where x, α ∈ F2n−1, α �∈ F2, xn ∈ F2, is differentially
4-uniform if and only if trn−1(α) = trn−1

(
1
α

)
= 1. This same paper gives con-

structions of similar differentially 8-uniform (n, n− 2)-functions.
For m � n − 2, the existence of δF -uniform functions with 2n−m < δF <

2n−m+1 for n even and m > n/2 or for n odd is an open question. In particular,
it is an open problem to determine whether differentially 6-uniform (n, n − 2)-
functions exist for n > 4.

3 Protection of S-boxes against Side Channel Attacks

The implementation of cryptographic algorithms over devices like smart cards,
FPGA, ASIC, leaks information on the secret data, leading to side channel at-
tacks (SCA). These attacks exploit the running-time, the power consumption or
the electromagnetic radiations of a cryptographic computation and apply statis-
tical methods to determine the most probable values of well-chosen bits of the
data processed by the algorithm. The model of attacker for these attacks is the
so-called grey-box model, where a leakage coming from inside the algorithm can be
measured. This leakage can be for instance a noisy version of the Hamming weight
of some sensitive variable depending on a few bits of the secret key. SCA are often
more efficient than cryptanalyses mounted in the so-called black-box model where
no leakage occurs, in particular in the case of iterative ciphers like block ciphers
since it is possible to attack the first round, when the diffusion is not yet optimal.
In particular, continuous side-channel attacks, in which the adversary gets infor-
mation at each invocation of the cryptosystem, are especially threatening. They
allow recovering the key from few plaintext-ciphertext pairs in a few seconds if no
counter-measure is included in the algorithm and/or the device.

Many implementations of block ciphers have been practically broken by con-
tinuous side-channel analysis — see for instance [49,13,58,53] — and securing
them has been a longstanding issue for the embedded systems industry.

3.1 Masking

The most commonly used counter-measure to SCA is a secret-sharing method
called masking. It is efficient for implementations both in smart cards (which



158 C. Carlet

are software implementations including a part of hardware) and in hardware
(FPGA, ASIC) [9,68]. This approach consists in splitting each sensitive variable
Z of the implementation (i.e. each variable depending on the secret key, or better
for the attacker, on a small part of it, and of data known by the attacker, such
as the plaintext) into d + 1 shares M0, . . . ,Md, where d is called the masking
order, such that Z can be recovered from these shares but no information can
be recovered from less than d + 1 shares. In other words, the sensitive variable
Z is a deterministic function of all the Mi, but is independent of (Mi)i∈I if
|I| � d. The simplest way of achieving this is to draw M1, . . . ,Md at random
(they are then called masks) and to take M0 such that M0+ · · ·+Md equals the
sensitive variable, where + is a relevant group operation (in practice, the bitwise
XOR). It has been shown that the complexity of mounting a successful side-
channel attack against a masked implementation increases exponentially with
the masking order [31]. The design of efficient masking schemes at higher order d,
aims at specifying how to update the sharing of the internal state throughout the
processing while ensuring that (1) the final sharing corresponds to the expected
ciphertext, and (2) the dth-order security property is satisfied, in the sense of
the probing security model introduced in [45], which states that every tuple of
d or less intermediate variables is independent of the secret parameter of the
algorithm. When satisfied, it guarantees that no attack of order lower than or
equal to d is possible. A weaker notion of order of security exists, called HO-CPA
resistance, where HO-CPA stands for the higher-order correlation power analysis
by Waddle and Wagner [74], which is the most efficient known univariate attack
(univariate meaning that a single instantaneous leakage is exploited), when the
Gaussian noise is high and the model of leakage is known, see [16]. The dth-
order correlation power analysis consists in testing if a given power d > 0 of the
leakage L statistically depends on the plaintext; the attacker has a model of
L , for instance the Hamming weight of a sensitive variable added with a white
Gaussian noise, and checks for the feasibility of a dth-order attack by studying
the variation of the function of x equal to the mean of L d when the plaintext
is fixed to x, and by selecting the smallest d such that such variation happens.

Most block ciphers apply several times a same transformation, called round,
composed of a key addition, one or several linear transformation(s) and one or
several non-linear transformation(s) called S-box(es). Key addition and linear
transformations are easily handled as linearity enables to process each share in-
dependently. The main difficulty in designing masking schemes for block ciphers
hence lies in masking the S-box(es). The scheme must take at input a (d+ 1)th-
order sharing of the input(s) and return a (d+1)th-order sharing of the output,
while ensuring that any d-tuple of intermediate results during the processing is
independent of the unshared input, or at least (in the weaker version of security)
does not allow a dth-order attack of practicable complexity.

3.2 Masking Schemes

There currently exist four masking schemes which have not been broken, due to
Genelle, Prouff and Quisquater [42] (mixing additive andmultiplicative sharings),



S-boxes, Boolean Functions and Codes for the Resistance of Block Ciphers 159

to Prouff and Roche [64] (using multi-party computation), to Coron [33] (extend-
ing the table re-computation technique introduced in the original paper by Kocher
et al. [49]) and to Carlet, Goubin, Prouff, Quisquater and Rivain [26].

The first method, dedicated to the AES S-box, seems difficult to generalize ef-
ficiently to S-boxes not affinely equivalent to power functions. The second one is
much less efficient than the other schemes (but, contrary to them, remains secure
even in presence of hardware perturbations called glitches [52]). The third one has
a RAMmemory consumption which can quickly exceed the memory capacity of the
hosted device (e.g. a smart card). The onlymethod which is in the same time prac-
tical and general is then the fourth one. It generalizes the method from [66], which
was dedicated to power functions, and was adapting the techniques proposed in
[45] for Boolean circuits by Ishai, Sahai and Wagner (ISW). It decomposes the
S-box into a sequence as short as possible of field multiplications and F2-linear
operations, and then secures these operations independently. The complexity of
the masking scheme for an F2-linear operation (satisfying f(x+ y) = f(x)+ f(y)
for any pair (x, y), e.g. a squaring) is O(d). The complexity for a non-F2-linear
multiplication is O(d2), and the constant terms in these complexities are greater
for the multiplication than for the F2-linear operations.

Processing a Multiplication: Time/memory trade-offs exist in the literature
for implementing multiplications: for hardware implementations and large dimen-
sions n, the Omura-Massey method [62], the Sunar-Koc method [72] and the
Karatsuba algorithm [40]; for software implementations in small dimensions (e.g.
n � 10), the log-alog method, which assumes that the functions log : x ∈ F2n �→
i = logα(x) and alog : i �→ x = αi have been tabulated in ROM and processes
alog[(log[a] + log[b]) mod 2n − 1]; and the Tower Fields approach, which works
recursively as long as n is even, n = 2m, and represents F2n has the degree-2 ex-
tension F2m [X ]/(p′′(X)), where p′′(X) = X2 +X + β is irreducible over F2m .

Masking a Multiplication: the inputs a and b being additively shared into
(a0, a1, · · · , ad) and (b0, b1, · · · , bd) respectively, the scheme from [45,66] involves
2d(d+ 1) additions and (d+ 1)2 multiplications in F2n .

Algorithm 1: Higher-Order Masking Scheme for the Multiplication (Ad-
ditive Sharing)

Input : (d+ 1)th-order sharings (a0, a1, · · · , ad) and (b0, b1, · · · , bd) of a and b in F2n

Output: a (d + 1)th-order sharing (c0, c1, · · · , cd) of c = a × b

1 Randomly generate d(d + 1)/2 elements rij ∈ F2n ; 0 � i < j � d
2 for i = 0 to d do
3 for j = i + 1 to d do
4 rj,i ← (ri,j + ai × bj) + aj × bi

5 for i = 0 to d do
6 ci ← ai × bi
7 for j = 0 to d, j �= i do
8 ci ← ci + ri,j

9 return (c0, c1, . . . , cd)



160 C. Carlet

An alternative to Algorithm 1 exists, proposed by Ben-Or et al. in [5], and
based on Shamir’s polynomial sharing [68]. It has higher complexity but stays
secure even in the presence of glitches. More generaly, as observed by Massey
[55], given any linear [�+ 1, k]-code C (where � + 1 is the code length and k its
dimension) whose dual C⊥ has minimum distance d⊥ � 2, one can define a linear
�-sharing of any a ∈ F2n from a systematic generator matrix G = [I�+1 | M ]
and a (�− 1)-tuple of random values (r0, r1, · · · , r�−1) by (a, a0, a1, · · · , a�−1) =
(a, r0, · · · , r�−1) ×G. This sharing [32] defeats any side channel attack of order
lower than or equal to d⊥ − 2.

Processing an S-box: For reducing the cost of the sharing counter-measure,
we need, when choosing the S-boxes, to minimize, in their processing, the num-
ber of field multiplications which are non-linear. The masking complexity of an
S-box corresponds to the minimal number of non-linear multiplications needed
to evaluate it. Following a brute force approach using that the complexity is
the same for all powers in the same cyclotomic class, [26] exhibited the masking
complexity for all monomials in F2n with n � 8 and addressed the masking
complexity of polynomials by two methods:

- The cyclotomic method which consists in writing P (x) = u0 +
∑q

i=1 Li(x
αi) +

u2n−1x
2n−1 where (Li)i�q is a family of linearized polynomials. The masking

complexity of
∑q

i=1 Li(x
αi) equals the number of non-linear multiplications re-

quired to evaluate all the monomials xαi and is then bounded above by the
number of cyclotomic classes in F2n minus 2. Coron, Roy and Vivek have de-
duced in [35] that for every n, there exists a polynomial P (x) ∈ F2n [x] with

masking complexity at least
√

2n

n − 2.

- Knuth-Eve’s method which consists in applying recursively the decomposi-
tion P (x) = P1(x

2) + P2(x
2)x, where P1(x) and P2(x) have degrees at most

2n−1 − 1. Eventually, the masking complexity of P (x) is bounded above by{
3
22

n/2 − 2 if n is even

2(n+1)/2 − 2 if n is odd.
More recently, methods were found which improved upon these two ones:

- Roy-Vivek’s method [67] consists in recursively decomposing P (x) as follows:
P (x) = (xkt +C0(x))×Q0(x) + xk(t−1) +S0(x), where, assuming that P (x) has
degree k(2t− 1), S0(x) and Q0(x) have degree at most kt− 1.
- Coron-Roy-Vivek’s (CRV) method proposed in [35] is an extension of [67] build-
ing a union C of cyclotomic classes of 2 in Z/(2n−1)Z such that all the powers of
the monomials in P (x) are in C + C, and, denoting by P the subspace of F2n [x]
spanned by all the monomials whose exponents belong to C, fixing a set of r
polynomials P1(x), ..., Pr(x) in P and searching r + 1 polynomials Pr+1(x), ...,
P2r+1(x) in P such that:

P (x) =

r∑
i=1

Pi(x) × Pr+i(x) + P2r+1(x) . (2)



S-boxes, Boolean Functions and Codes for the Resistance of Block Ciphers 161

This can be done by solving the linear system of 2n equations over F2n im-
plied by the evaluation of Equation (2) at every x ∈ F2n . The size � of C is
taken such that the number of equations is smaller than or equal to the num-
ber of unknowns: 2n � �× (r + 1). The complexity of this heuristic but efficient
method in terms of the number of non-linear multiplications is O(

√
2n/n), which

is asymptotically better than the complexity O(
√
2n) of Knuth-Eve’s method.

A comparison with
√

2n

n − 2 shows that Coron-Roy-Vivek’s method is asymp-

totically optimal. The method is applied for the first DES S-box and leads to an
evaluation with only 4 non-linear multiplications. The method is also applied
to the S-boxes of CLEFIA and PRESENT, leading to a complexity of 10 and 2
respectively (which improves all previous methods).
- Carlet-Prouff-Rivain-Roche’s method proposed in [30] consists in a first step:
decompose the S-box by means of functions of low algebraic degree s, and a sec-
ond step: evaluate these low degree functions. The first step starts by deriving

a family of generators Gi as follows:

{
G1(x) = F1(x)
Gi(x) = Fi

(
Gi−1(x)

) where the Fi are

random polynomials of algebraic degree s. Then it randomly generates t poly-
nomials Qi of the form

∑r
j=1 Lj ◦Gj , where the Lj are linearized polynomials.

Eventually, it searches for t polynomials Pi of algebraic degree s and for r + 1
linearized polynomials Li such that the polynomial univariate representation of
the S-box equals:

P (x) =

t∑
i=1

Pi

(
Qi(x)

)
+

r∑
i=1

Li

(
Gi(x)

)
+ L0(x) . (3)

This involves r+ t evaluations of polynomials of algebraic degrees at most s (the
Fi and the Pi), plus some linear operations. As in the CRV method, the search
of polynomials Pi and Li satisfying (3) for given polynomials Gi and Qi amounts
to solve a system of linear equations over F2n : A · b = c . The target vector c
has 2n coordinates which are the values taken by P (x) for all x over F2n . The
coordinates of the vector b are the variables of the system that represent the
solutions for the coefficients of the polynomials Pi and Li.

Masking an S-box: In the frameworks of the cyclotomic method, Knuth-
Eve’s method, Roy-Vivek’s method and Coron-Roy-Vivek’s (CRV) method, the
masking strategy is clear:

– each affine function is masked by applying it to each share (and, in the case
the number of shares is even, adding the constant equal to the value of the
function at 0),

– each nonlinear multiplication is masked by Algorithm 1.

We need now to describe how the masking is performed in Carlet-Prouff-Rivain-
Roche’s method, on a function F of algebraic degree at most s. The definition

of ϕ
(s)
F :

ϕ
(s)
F (a1, a2, . . . , as) =

∑
I⊆[[1,s]]

F
(∑

i∈I

ai

)



162 C. Carlet

allows deducing (see the full version of [30]) that for every d � s:

F
( d∑

i=1

ai

)
=

∑
1�i1<···<is�d

ϕ
(s)
F (ai1 , . . . , ais) +

s−1∑
j=0

ηd,s(j)
∑

I⊆[[1,d]]
|I|=j

F
(∑

i∈I

ai

)
,

where ηd,s(j) =
(
d−j−1
s−j−1

)
mod 2 for every j � s− 1, and this gives then:

F
(∑d

i=1 ai

)
=
∑s

j=0 μd,s(j)
∑

I⊆[[1,d]]
|I|=j

F
(∑

i∈I ai

)
,

where μd,s(j) =
(
d−j−1
s−j

)
mod 2 for every j � s.

Hence, for any d � s, the evaluation of a function F ∈ Bn,m of algebraic degree
s on the sum of d shares can be expressed as several evaluations of F on sums of
at most s shares. Afterwards, a secure scheme of sharing compression combines
the obtained shares of all the F (

∑
i∈I ai), with I ⊆ [[1, d]] such that |I| � s and

μd,s(|I|) = 1, into a d-sharing of F (a), see [30]. It is shown in this same paper
that whenever d ≡ s mod 2� with � = �log2 s�+ 1 (which is a weak assumption
for low algebraic degrees) the whole masking represents the following operation
count (where “#add” and “#rand” respectively denote the number of additions
and the number of sampled random values in the sharing compression).

#SecureEval #add #rand(
d
s

) (
s
(
d
s

)− d
)
(d+ 1) 1

2

(
s
(
d
s

)− d
)
(d− 1)

where SecureEval is a primitive that performs a secure evaluation of F on a
j-sharing input for any j � s.

Moreover, in the particular case of a quadratic function, it is possible to use
an improved sharing compression inspired from ISW, which gives the following
complexity:

# add # evalF # mult # rand
9
2 d(d− 1) + 1 d(2d− 1) - d(d− 1)

3.3 An Open Problem with Multiple Facets

Both CRV and Carlet-Prouff-Rivain-Roche’s methods are heuristic. Proving that
these two methods actually work with high probability under some assumptions
is open. In general, the problem of decomposing a function by means either of low
algebraic degree functions or of functions with prescribed exponents is interesting
to study, not only in the framework of masking but also for its own sake.

Let us consider for instance the problem of characterizing those families of
polynomials (Q1, . . . , Qt) (which can be taken of algebraic degrees at most s or

not) such that any polynomial P (x) =
∑2n−1

j=0 ajx
j ∈ F2n [x] can be decomposed

in the form

P (x) =

t∑
i=1

Pi(Qi(x)) =

t∑
i=1

∑
j∈Z/(2n−1)Z

HW (j)�s

pi,j [Qi(x)]
j , (4)



S-boxes, Boolean Functions and Codes for the Resistance of Block Ciphers 163

where each Pi(x) =
∑

j∈Z/(2n−1)Z
HW (j)�s

pi,jx
j has algebraic degree at most s. This

problem seems difficult. We make a few elementary observations.
Finding the Pi(x), given the Qi(x), amounts to find the t×∑s

j=0

(
n
j

)
coeffi-

cients pi,j as the solutions of a linear system of 2n equations and t ×∑s
j=0

(
n
j

)
unknowns. Such a system admits a solution for every choice of P (x) if and only
if its rank is 2n, which implies the following inequality as a first necessary condi-
tion: t×∑s

j=0

(
n
j

)
� 2n . Note that if (4) has a solution for every (n, n)-function

then it has one for every Boolean function and conversely (this is easily checked
by decomposing over an F2-basis).

If the mapping Q : x ∈ F2n �→ (Q1(x), . . . , Qt(x)) ∈ Ft
2n is non-injective, then

for every x �= x′ such that (Q1(x), . . . , Qt(x)) = (Q1(x
′), . . . , Qt(x

′)), the two
equations (4) corresponding to x and x′ are identical and the system of equations
(4) has rank strictly less than 2n. Hence a second necessary condition is that Q
be injective. We shall assume this condition satisfied in the sequel.

A third necessary condition, which is clearly a necessary and sufficient con-
dition, expresses that no non-zero F2n -linear combination of the equations (4)
completely vanishes: for every non-zero function ϕ : F2n �→ F2n , there exists
i ∈ {1, . . . , t} and j ∈ Z/(2n − 1)Z such that:

HW (j) � s and
∑

x∈F2n

ϕ(x)[Qi(x)]
j �= 0.

Note that, if each Qi is bijective, then
∑

x∈F2n
ϕ(x)[Qi(x)]

j =
∑

x∈F2n
ϕ ◦

Q−1
i (x)xj , and the condition is equivalent to: for every non-zero function ϕ, there

exists i such that ϕ ◦Q−1
i has algebraic degree at least n− s. Equivalently, de-

noting φ(x) = (Q−1
1 (x), . . . , Q−1

t (x)) and ϕ(y1, . . . , yt) = (ϕ(y1), . . . , ϕ(yt)), the
function ϕ◦φ : F2n �→ Ft

2n has algebraic degree at least n−s. Let us take an exam-
ple: we view φ as valued in F2nt and, given a ∈ F2nt \F2n , we define φ(x) = (ax+

1)2
nt−2 =

(
(ax+ 1)2

nt−1−1
)2

=
(∑2nt−1−1

k=0 (ax)k
)2

; x ∈ F2n . Then we have

x2n = x and φ(x) equals then 1+

(∑2n−1
k=1

(∑⌊
2nt−1−k−1

2n−1

⌋
l=0 a(2

n−1)l

)
(ax)k

)2

=

1 +

(∑2n−1
k=1

1+a
(2n−1)

(⌊
2nt−1−k−1

2n−1

⌋
+1

)

1+a2n−1 (ax)k

)2

. The problem would be to deter-

mine if, for every n and s < n, there exists t such that, for some basis (u1, . . . , ut)
of F2nt over F2n , all functions tr

nt
n (uiφ(x)), where tr

nt
n is the trace function from

F2nt to F2n , are bijective and for every ϕ �= 0, the function ϕ ◦ φ has algebraic

degree at least n− s. We could then take Q−1
i (x) = trntn (uiφ(x)).

Coming back to the general case and taking for ϕ a Boolean function over
F2n , we have the necessary condition:



164 C. Carlet

∀f : F2n �→ F2, f �= 0, ∃i ∈ {1, . . . , t}, ∃j ∈ Z/(2n − 1)Z;

HW (j) � s and
∑

x∈F2n ;f(x)=1

[Qi(x)]
j �= 0.

In other words, if S is the support of f , denoting by Qi[S] the set of those
elements in Qi(S) = {Qi(x), x ∈ S} which are matched an odd number of times,
for every non-empty subset S of F2n , there exists i such that the indicator
of Qi[S] has algebraic degree at least n − s. In particular (still assuming that
Q = (Q1, . . . , Qt) is injective):

for every S of size 2s+1, there exists i such that Qi[S] is not empty nor

the indicator of an affine subspace of F2n of dimension s+ 1. (5)

Note that, given any function Q : F2n �→ F2n , if there exists j such that
HW (j) � s and

∑
x∈F2n

[Q(x)]j �= 0, then [Q(x)]j has algebraic degree n and
Q has algebraic degree at least n

s . Hence, a necessary condition is that for every
non-zero Boolean function f over F2n , there exists i such that the function fQi

has algebraic degree at least n
s (for f = 1, this implies that at least one func-

tion Qi has algebraic degree at least n
s ). We are led to study those functions

Q : Fn
2 �→ Fm

2 such that, for every non-zero n-variable Boolean function f , the
function fQ has algebraic degree at least n

s .

4 Boolean Functions, Vectorial Boolean Functions
and Error Correcting Codes for Improving
Counter-Measures to SCA

Counter-measures to SCA are costly in terms of running time (more in software
applications), of implementation area (in hardware applications) and program
executable file size (in software), all the more if they need to resist higher order
side channel attacks. A new role is played in cryptography by Boolean functions,
vectorial functions and error correcting codes for reducing this cost.

4.1 Correlation Immune Boolean Functions, Vectorial Functions
with Correlation Immune Graphs, Complementary Information
Set Codes

Correlation immune functions are those Boolean functions f whose Walsh trans-
form Wf (a) =

∑
x∈Fn

2
(−1)f(x)+a·x vanishes for every vector a of Hamming

weight between 1 and some integer called the correlation immunity order. They
allow the pseudo-random generators using them as combiners in stream ciphers
to resist Siegenthaler’s correlation attack [71]. They allow reducing, at least in
two possible ways, the overhead of masking while keeping the same resistance
to dth-order HO-CPA (see Subsection 3.1), when the leakage is simply (a noisy
version of) a linear combination over the reals of the bits of the sensitive variable:



S-boxes, Boolean Functions and Codes for the Resistance of Block Ciphers 165

– leakage squeezing, introduced in [50] and further studied in [51], allows achiev-
ing with one single mask the same protection as with d ones in the framework
of HO-CPA resistance. It uses a bijective vectorial function F ; the mask M
is not processed as is in the device, but in the form of F (M). The condition
for achieving resistance to dth-order SCA is that the graph indicator of F ,
that is, the 2n-variable Boolean function whose support equals the graph
{(x, y) ∈ Fn

2 × Fn
2 ; y = F (x)} of F , is dth-order correlation immune. Such

graph is a complementary information set code (CIS code for short): it ad-
mits (at least) two information sets which are complement of each other.
The condition that the indicator of this CIS code is dth-order correlation
immune is equivalent to saying that the dual distance of this code is at least
d+1. CIS codes have been studied in [25]. Leakage squeezing has been later
generalized in [23] to several masks and the corresponding higher-order CIS
codes have been studied in [24].

– an alternative way of resisting higher order SCA with one single mask con-
sists in avoiding processing the mask at all: for every sensitive variable Z
which is the input to some box S in the block cipher, Z is replaced by Z+M
where M is drawn at random, and Z +M is the input to a “masked” box
SM whose output is a masked value of S(Z). This method, called Rotating
S-box Masking (RSM), obliges, for each box S in the cipher, to implement a
look-up table for each masked box SM , which is costly for nonlinear boxes.
To reduce the cost,M is drawn at random in a subset of binary vectors of the
same length as Z. The condition for achieving resistance to dth-order SCA
is that the indicator of this set is a dth-order correlation immune function.
The size of the overhead due to the masked look-up tables is proportional to
the Hamming weight of this dth-order correlation immune function and we
wish then to choose this function with lowest possible weight.

In both cases, we need correlation-immune functions of low weights (or equiva-
lently, orthogonal arrays of small sizes, see [17]), and additionally, in the second
case, with a support equal to the graph of a permutation. Most of the numerous
studies made until now on correlation immune functions dealt with balanced
correlation immune functions (called resilient functions). The known construc-
tions of resilient functions do not work for constructing low weight correlation
immune functions; see more in [7,27].

4.2 Linear Complementary Dual Codes

Implementations of cryptographic algorithms are not only prone to SCA, but
also to fault injection attacks (FIA). Non-invasive FIA perturb internal data
(for example with electromagnetic impulses), without damaging the system and
can, thanks to this perturbation, extract sensitive data, without leaving evidence
that they have been perpetrated.

Few generic protections, demonstrably provable against both threats of SCA
and FIA, have been proposed. A recently proposed one uses Linear Complemen-
tary Dual (LCD) codes [29]. Let C andD be two supplementary vector subspaces



166 C. Carlet

of Fn
2 , where n is larger than the length of the sensitive data. The strategy of this

protection is to take the mask in D and the sensitive data in C (whose dimension
is then supposed to equal the number of bits to be protected against SCA). The
data processed by the algorithm is the sum of the sensitive data and the mask.
Considering generator matrices G and G′ of C and D respectively, every vector
z ∈ F

n
2 can be written in a unique way as z = xG+yG′, x ∈ F

k
2 , y ∈ F

n−k
2 , where

k is the dimension of C. If C and D are furthermore orthogonal with respect to
the usual inner product, i.e., if D = C⊥, that is, if the hull C ∩ C⊥ equals {0},
then C is said complementary dual (see [54]). G′ is then a parity-check matrix
of C, that is, GG′T = 0, where G′T is the transposed matrix; we denote then G′

by H . As shown by Massey [54], the three following properties are equivalent:

1. C is LCD,

2. the matrix HHT is invertible,

3. the matrix GGT is invertible.

and x and y can be recovered from z by the formulae: x = zGT(GGT)−1, y =
zHT(HHT)−1.

The masked word z conceals the information x at first degree if for all leakage
function L : Fn

2 → R of unitary numerical degree [18], all the averages of L (z)
over the masks y ∈ D for a given x are equal irrespective of x. This means
that for all x ∈ Fk

2 , the sums
∑

y∈Fn−k L (xG + yH) are the same, i.e., equal∑
y∈Fn−k L (yH). More generally, a masking countermeasure is of degree at least

d if for all x ∈ Fk
2 , the sums

∑
y∈Fn−k L (xG+yH) equal

∑
y∈Fn−k L (yH) for all

L of numerical degrees at most d. The greater the degree of the countermeasure,
the harder to pass a successful SCA. Actually, it is known from [14] that the
countermeasure is (d− 1)thdegree secure if D has dual distance d, i.e., if C has
minimum distance d. This result has been independently validated in [44] for
d ∈ {1, 2}.

Let us now consider a fault injection attack (FIA). The state z is modified
into z + ε. By supplementarity of C and D, there exists a unique ordered pair
(e, f) ∈ Fk

2 × F
n−k
2 such that ε = eG+ fH . Checking whether or not the mask

has been altered, i.e., zHT(HHT)−1 = y, is a harmless detection strategy since y
does not contain information. An undetected fault happens if and only if f = 0,
i.e., ε ∈ C. Harmful faults only happen if ε ∈ C\{0}. In particular, the Hamming
weight of ε must be greater or equal to the minimum distance d of code C for the
fault not to be detected. Hence having C of greatest possible minimum distance
simultaneously improves the resistance against SCA and FIA.

Side-channel analysis starts to be difficult even at low degrees (e.g., d =
2, 3, 4). The same applies to FIA: if all faults on d = 1, 2, 3, 4 bits are detected,
then the success of FIA is compromised. The counter-measure also allows pro-
tection against hardware trojan horses (HTHs), which are gates added by an
adversary (e.g., a silicon foundry) into the design at fabrication time, allowing
to deliver a malicious payload when some activation condition on the value of
some bits of the circuit is satisfied [22]. In a circuit protected by an LCD code C
of minimum distance d, the HTH must connect to at least d bits. Consequently,



S-boxes, Boolean Functions and Codes for the Resistance of Block Ciphers 167

the HTH must modify at least d bits to bypass an integrity check. The minimum
distance d of LCD codes must be then set has high as possible.

The problem is thus the following: for a given dimension k (architecture pa-
rameter) and minimum distance d (security parameter), find a LCD code of
length n as small as possible (and therefore, of rate k/n as large as possible). It
has been studied in [29].

References

1. Adams, C.M.: Constructing symmetric ciphers using the CAST design procedure.
Designs, Codes, and Cryptography (12), 283–316 (1997)

2. Al Salami, Y.: Constructions with High Algebraic Degree of Differentially 4-uniform
(n, n − 1)-Functions and Differentially 8-uniform (n, n − 2)-Functions. Preprint
(2015)

3. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design
and Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

4. Anderson, R., Biham, E., Knudsen, L.: Serpent: A proposal for the advanced en-
cryption standard (1998).
http://www.cl.cam.ac.uk/ftp/users/rja14/serpent.pdf

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC 1988: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 1–10.
ACM, New York (1988)

6. Beth, T., Ding, C.: On almost perfect nonlinear permutations. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 65–76. Springer, Heidelberg (1994)

7. Bhasin, S., Carlet, C., Guilley, S.: Theory of masking with codewords in hardware:
low weight d-th order correlation-immune functions. IACR ePrint Archive 2013/303

8. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)

9. Blakley, G.: Safeguarding cryptographic keys. In: National Comp. Conf., vol. 48,
pp. 313–317. AFIPS Press, New York (1979)

10. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

11. Bracken, C., Leander, G.: A highly nonlinear differentially 4 uniform power map-
ping that permutes fields of even degree. Finite Fields and their Applications 16(4),
231–242 (2010)

12. Bracken, C., Tan, C.H., Tan, Y.: Binomial differentially 4-uniform permutations
with high nonlinearity. Finite Fields Applications 18, 537–546 (2012)

13. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

14. Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.: Orthogonal Di-
rect Sum Masking - A Smartcard Friendly Computation Paradigm in a Code,
with Builtin Protection against Side-Channel and Fault Attacks. In: Naccache, D.,
Sauveron, D. (eds.) WISTP 2014. LNCS, vol. 8501, pp. 40–56. Springer, Heidelberg
(2014)

http://www.cl.cam.ac.uk/ftp/users/rja14/serpent.pdf


168 C. Carlet

15. Browning, K., Dillon, J.F., McQuistan, M.T., Wolfe, A.J.: An APN permutation
in dimension six. Contemporary Mathematics 58, 33–42 (2010)

16. Bruneau, N., Guilley, S., Heuser, A., Rioul, O.: Masks Will Fall Off. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 344–365.
Springer, Heidelberg (2014)

17. Camion, P., Carlet, C., Charpin, P., Sendrier, N.: On correlation-immune functions.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 86–100. Springer,
Heidelberg (1992)

18. Carlet, C.: The monography “Boolean Models and Methods in Mathemat-
ics, Computer Science, and Engineering”. In: Crama, Y., Hammer, P.L. (eds.)
Boolean Functions for Cryptography and Error Correcting Codes, pp. 257–
397. Cambridge University Press (2010), Preliminary version available at
http://www.math.univ-paris13.fr/$\sim$carlet/pubs.html

19. Carlet, C.: The monography Boolean Models and Methods in Mathematics, Com-
puterScience, andEngineering. In:Crama,Y.,Hammer,P.L. (eds.)Vectorial boolean
functions for cryptography, pp. 398–469. CambridgeUniversity Press (2010), Prelim-
inary version available at
http://www.math.univ-paris13.fr/~carlet/pubs.html

20. Carlet, C.: On Known and New Differentially Uniform Functions. In: Proceedings
of Information Security and Privacy - 16th Australasian Conference (ACISP) 2011,
Melbourne, pp. 1–15 (2011)

21. Carlet, C., Al Salami, Y.: A New Construction of Differentially 4-uniform (n,n −
1)-Functions. To appear in Advances in Mathematics of Communications (2015)

22. Carlet, C., Daif, A., Danger, J.-L., Guilley, S., Najm, Z., Thuy Ngo, X., Porteboeuf,
T., Tavernier, C.: Optimized Linear Complementary Codes Implementation for
Hardware Trojan Prevention. In: Proceedings of ECCTD (2015, to appear)

23. Carlet, C., Danger, J.-L., Guilley, S., Maghrebi, H.: Leakage Squeezing of Order
Two. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668,
pp. 120–139. Springer, Heidelberg (2012)

24. Carlet, C., Freibert, F., Guilley, S., Kiermaier, M., Kim, J.-L., Solé, P.: Higher-order
CIS codes. IEEE Transactions on Information Theory 60(9), 5283–5295 (2014)

25. Carlet, C., Gaborit, P., Kim, J.-L., Solé, P.: A new class of codes for Boolean
masking of cryptographic computations. IEEE Transactions on Information The-
ory 58(9), 6000–6011 (2012)

26. Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order mask-
ing schemes for S-boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549,
pp. 366–384. Springer, Heidelberg (2012)

27. Carlet, C., Guilley, S.: Correlation-immune Boolean functions for easing counter-
measures to side channel attacks. In: Proceedings of the Workshop “Emerging
Applications of Finite Fields” Part of the Semester Program on Applications of
Algebra and Number Theory, Linz, December 9-13. Algebraic Curves and Finite
Fields, Radon Series on Computational and Applied Mathematics, pp. 41–70. Pub-
lished by de Gruyter (2014)

28. Carlet, C., Guilley, S.: Side-channel indistinguishability. In: Proceedings of HASP
2013, 2nd International Workshop on Hardware and Architectural Support for
Security and Privacy, Tel Aviv, Israel, pp. 9:1–9:8. ACM, New York (2013)

29. Carlet, C., Guilley, S.: Complementary Dual Codes for Counter-Measures to Side-
Channel Attacks. In: 4th International Castle Meeting, Palmela Castle, Portugal,
September 15-18. CIM Series in Mathematical Sciences, vol. 3 (2014) (Submitted
to the post-proceedings to appear in AMC)

http://www.math.univ-paris13.fr/$\sim $carlet/pubs.html
http://www.math.univ-paris13.fr/~carlet/pubs.html


S-boxes, Boolean Functions and Codes for the Resistance of Block Ciphers 169

30. Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic Decomposition for Prob-
ing Security. In: Gennaro, R., Robshaw, M. (eds.) Proceedings of CRYPTO 2015.
LNCS, vol. 9215, pp. 742–763. Springer, Heidelberg (2015)

31. Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards Sound Approaches to Counteract
Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999)

32. Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure com-
putation from random error correcting codes. In:Naor,M. (ed.) EUROCRYPT2007.
LNCS, vol. 4515, pp. 291–310. Springer, Heidelberg (2007)

33. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg
(2014)

34. Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Con-
version of security proofs from one leakage model to another: A new issue. In:
Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 69–81.
Springer, Heidelberg (2012)

35. Coron, J.-S., Roy, A., Vivek, S.: Fast Evaluation of Polynomials over Finite Fields
and Application to Side-channel Countermeasures. In: Batina, L., Robshaw, M.
(eds.) CHES 2014. LNCS, vol. 8731, pp. 170–187. Springer, Heidelberg (2014); J.
Cryptographic Engineering 5(2), 73–83 (2015)

36. Daemen, J., Rijmen, V.: The design of Rijndael: AES: The advanced encryption
standard. Springer (2002)

37. Dobbertin, H.: Almost perfect nonlinear power functions over GF(2n): the Welch
case. IEEE Transactions on Information Theory 45, 1271–1275 (1999)

38. Dobbertin, H.: Almost perfect nonlinear power functions over GF(2n): the Niho
case. Information and Computation 151, 57–72 (1999)

39. Dobbertin, H.: Almost perfect nonlinear power functions on GF(2n): a new case for
n divisible by 5. In: Proceedings of Finite Fields and Applications Fq5, Augsburg,
Germany, pp. pp. 113–121. Springer (2000)

40. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic
computers. Proceedings of the USSR Academy of Sciences 145, 293–294 (1962);
Translation in the academic journal Physics-Doklady, 7, pp. 595–596 (1963)

41. European Telecommunications Standards Institute. Technical Specification 135 202
V9.0.0: Universal mobile telecommunications system (UMTS); LTE; specification
of the 3GPP confidentiality and integrity algorithms; Document 2: KASUMI spec-
ification (3GPP TS 35.202 V9.0.0 Release 9)

42. Genelle, L., Prouff, E., Quisquater, M.: Thwarting higher-order side channel anal-
ysis with additive and multiplicative maskings. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 240–255. Springer, Heidelberg (2011)

43. Gold, R.: Maximal recursive sequences with 3-valued recursive cross-correlation
functions. IEEE Transactions on Information Theory 14, 154–156 (1968)

44. Grosso, V., Standaert, F.-X., Prouff, E.: Low Entropy Masking Schemes, Revisited.
In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 33–43.
Springer, Heidelberg (2014)

45. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Prob-
ing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

46. Kasami, T.: The weight enumerators for several classes of subcodes of the second
order binary Reed-Muller codes. Information and Control 18, 369–394 (1971)

47. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.)
FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)



170 C. Carlet

48. Knudsen, L.R., Robshaw, M.: The block cipher companion. Springer (2011)
49. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)
50. Maghrebi, M., Guilley, S., Danger, J.-L.: Leakage Squeezing Countermeasure

Against High-Order Attacks. In: Ardagna, C.A., Zhou, J. (eds.) WISTP 2011.
LNCS, vol. 6633, pp. 208–223. Springer, Heidelberg (2011)

51. Maghrebi, H., Carlet, C., Guilley, S., Danger, J.-L.: Optimal first-order mask-
ing with linear and non-linear bijections. In: Mitrokotsa, A., Vaudenay, S. (eds.)
AFRICACRYPT 2012. LNCS, vol. 7374, pp. 360–377. Springer, Heidelberg (2012)

52. Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS
Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

53. Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES
Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 157–171. Springer, Heidelberg (2005)

54. Massey, J.L.: Linear codes with complementary duals. Discrete Mathematics 106-
107, 337–342 (1992)

55. Massey, J.L.: Minimal Codewords and Secret Sharings. In: Sixth Joint Sweedish-
Russian Workshop on Information Theory, pp. 246–249 (1993)

56. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

57. Matsui, M.: Block encryption algorithm MISTY. In: Biham, E. (ed.) FSE 1997.
LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)

58. Messerges, T.: Using Second-order Power Analysis to Attack DPA Resistant soft-
ware. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

59. National Institute of Standards and Technology. Data encryption standard (AES).
Federal Information Processing Standards Publication 49-3. United States National
Institute of Standards and Technology (NIST). Reaffirmed on October 25, 1999

60. Nyberg, K.: Perfect nonlinear S-boxes. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 378–386. Springer, Heidelberg (1991)

61. Nyberg, K., Knudsen, L.R.: Provable security against a differential attack. Journal
of Cryptology 8(1), 27–37 (1995)

62. Omura, J., Massey, J.L.: Computational method and apparatus for finite field
arithmetic. Technical report, Omnet Associates, Patent Number 4,587,627 (May
1986)

63. Piret, G., Roche, T., Carlet, C.: PICARO - A block cipher allowing efficient higher-
order side-channel resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012.
LNCS, vol. 7341, pp. 311–328. Springer, Heidelberg (2012)

64. Prouff, E., Roche, T.: Higher-order glitches free implementation of the aes using
secure multi-party computation protocols. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011)

65. Prouff, E., Rivain, M., Bevan, R.: Statistical Analysis of Second Order Differential
Power Analysis. IEEE Trans. Computers 58(6), 799–811 (2009)

66. Rivain, M., Prouff, E.: Provably secure higher-order masking of aes. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010)

67. Roy, A., Vivek, S.: Analysis and improvement of the generic higher-order masking
scheme of fse 2012. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086,
pp. 417–434. Springer, Heidelberg (2013)



S-boxes, Boolean Functions and Codes for the Resistance of Block Ciphers 171

68. Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)
69. Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical

Journal 28, 656–715 (1949)
70. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit Block-

cipher CLEFIA. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195.
Springer, Heidelberg (2007)

71. Siegenthaler, T.: Decrypting a Class of Stream Ciphers Using Ciphertext Only.
IEEE Transactions on Computer C-34(1), 81–85 (1985)

72. Sunar, B., Koç, Ç.K.: An efficient optimal normal basis type ii multiplier. IEEE
Trans. Computers 50(1), 83–87 (2001)

73. Tan, Y., Qu, L., Tan, C., Li, C.: New families of differentially 4-uniform permuta-
tions over F22k . In: Helleseth, T., Jedwab, J. (eds.) SETA 2012. LNCS, vol. 7280,
pp. 25–39. Springer, Heidelberg (2012)

74. Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

75. Xu, G., Cao, X., Xu, S.: Constructing new differentially 4-uniform permutations
and APN functions over finite fields. To appear in Cryptography and Communica-
tions - Discrete Structures, Boolean Functions and Sequences (2015)

76. Yu, Y., Wang, M., Li, Y.: Constructing low differential uniformity functions from
known ones. Chinese Journal of Electronics 22(3), 495–499 (2013)

77. Zha, Z., Hu, L., Sun, S.: Constructing new differentially 4-uniform permutations
from the Inverse function. Finite Fields Applications 25, 64–78 (2014)



Simulations of Optical Emissions for Attacking

AES and Masked AES

Guido M. Bertoni, Lorenzo Grassi, and Filippo Melzani

STMicroelectronics Agrate Brianza (MB), Italy
{guido.bertoni,filippo.melzani}@st.com, lorenzo.grassi3@hotmail.com

Abstract. In this paper we present a novel attack based on photonic
emission analysis targeting software implementations of AES. We focus
on the particular case in which the attacker can collect the photonic emis-
sion of a limited number of sense amplifiers (e.g. only one) of the SRAM
storing the S-Box. The attack consists in doing hypothesis on the secret
key based on the knowledge of the partial output of the SubBytes opera-
tion. We also consider the possibility to attack a masked implementation
of AES using the photonic emission analysis. In the case of masking, the
attacker needs 2 leakages of the same encryption to overcome the ran-
domization of the masks. For our analysis, we assume the same physical
setup described in other previous works. Reported results are based on
simulations with some hypothesis on the probability of photonic emission
of a single transistor.

Keywords: Photonic side channel, Side channel analysis, Light emis-
sion, AES, Boolean Masking, Chosen plaintext attack, Full key recovery.

1 Introduction

Some physical parameters, such as power consumption, electromagnetic radia-
tions, or execution time, depend on processed data and on the performed oper-
ations. In the context of cryptographic devices, these data-dependent quantities
are called side-channel leakages. If the attacker is able to detect vulnerable leak-
age points and to measure side-channel emanations, she can exploit this depen-
dence to extract information about the secret key. Side Channel Attacks (SCA)
are the cryptanalytic techniques that consist of analyzing the physical leakage (i.e.
measurements of such parameters) produced during the execution of a crypto-
graphic algorithm embedded on a physical device. Example of SCA are Differen-
tial/Correlation power analysis (see [5]) and Electro-magnetic analysis.

Protection against these attacks has become a very important and challeng-
ing task. In the context of symmetric cryptographic algorithms, the most well-
established countermeasure to thwart attacks based on power consumption is
masking. The core idea is to mix the sensitive variables with some random values
(called masks) in order to render every intermediate variable of the computation
statistically independent of any sensitive variable. In this way, the measurements
of the side-channel leakages are unpredictable to the attacker due to the presence
of the masks.

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 172–189, 2015.
DOI: 10.1007/978-3-319-24126-5�11



Simulations of Optical Emissions for Attacking AES and Masked AES 173

Another possible leakage that can be used to set up a side channel attack is
the optical emission. The light emission phenomenon has been mainly studied
for failure analysis during the last 25 years and many techniques have been de-
veloped to extract and process the light emitted by the electronic components
in order to localize different kinds of defects. One of the first uses of photonic
emissions in CMOS in a security application was presented in [3], where the
authors demonstrate the possibility to set up an attack based on light emitted
by the sense amplifiers in order to recover the secret key stored in the micro-
controller RAM. In particular, the authors utilize Picosecond Imaging Circuit
Analysis (PICA), i.e. one kind of the detector technologies in use today, to spa-
tially recover information about exclusive or operations (⊕) related to the initial
AddRoundKey operation of AES. A similar attack has been presented in [9]. In
both these works, the authors suppose that an attacker has complete information
about the photonic emission, that is she is able to observe the photonic emission
of all the sense amplifiers during the reading or/and the writing operations of
the SRAM.

Starting from these works, we consider the particular case in which the at-
tacker has only partial information on the photonic emission. The possibility
to recover the secret key using only the emissions of a single transistor was al-
ready suggested in [6], in [7] and in [2]. In the former paper, the authors perform
a Simple Photonic Emission Analysis (SPEA) of a proof-of-concept AES im-
plementation, and they have been able to recover the full AES secret key by
monitoring accesses to the S-Box, directly exploiting the side channel leakage
of a single transistor of the row inverter. In the second paper (and similarly
in the third one), the authors present a Differential Photonic Emission Anal-
ysis (DPEA), that is a differential side channel analysis technique applied to
the photonic emission measurement of a limited number of sense amplifiers. In
particular, they analyze the emission traces of data-dependent regions of the
datapath to recover a single bit of the S-Box output and, subsequently, they
apply a Difference of Means to recover the full AES secret key. In these previous
works, the authors suppose that the S-Box is stored into the SRAM.

In our work, we set up a simple photonic emission attack in the case in which
the attacker can observe the photonic emission of a limited number (e.g. only
one) of sense amplifiers, that is the photonic emission corresponding to the out-
put of the SubBytes operation. In particular, we focus on the case in which
each row of the SRAM stores only one byte (i.e. it is composed of 8 memory
cells), which is the same model studied in [3] and [9]. Moreover, in order to
minimize the number of plaintexts (and of the tests) that the attacker needs to
discover the secret key, we set up a chosen plaintext attack. Finally we consider
the possibility to use our Photonic Emission Analysis to attack a software AES
implementation protected against first order SCA, even in the previous case of
limited knowledge about the photonic emission of the attacker. For our analysis,
we have assumed the physical setup described in [6], [7] and [9], and we have
focused on the results of these works in order to show our improvements and our
new results, which are obtained using a theoretical approach.



174 G.M. Bertoni, L. Grassi, and F. Melzani

The paper is organized as follow. In Sections 2 and 3 we present additional
background information on the underlying physics of the photonic emissions in
CMOS, the optical emission during the read operation of a SRAM, the AES and
the Masked AES algorithm. In section 4 we detail our proposed attack against
software implementations of AES-128 in the case of partial information about
the photonic emissions, and we set up a chosen plaintext attack. Next, in Section
5 we consider photonic emission analysis on AES with masks as power analysis
countermeasure. We conclude in Section 6.

2 Background on Photonic Emission

Currently, most digital circuits are based on CMOS (i.e. Complementary-MOS)
technology. CMOS circuits use a combination of complementary and symmetrical
pairs of p-type and n-type MOSFETs transistors to implement logic gates and
other digital circuits. We restrict photonic emission to CMOS case only.

2.1 Photonic Emissions in CMOS

One of the particularities of CMOS transistors is that photons are emitted during
their commutation. Indeed, when a current flows between the source and the
drain, the electrons gain energy and accelerate due to the electrical field. At
the drain edge of the channel where the field is most intense, this energy is
released in radiative transitions, generating photons. The optical emission from
a n-channel transistor takes place when the output goes from high to low state,
and from a p-channel when it goes from low to high, that is when the transistor
opens. This hot-carrier luminescence is dominant in n-type transistors due to
the higher mobility of electrons as compared to holes (the photonic emission
in a p-type transistor is usually too low to be acquired). Consequently, this
phenomenon produces an asymmetric light emission profile that can be used to
extract relevant information from the circuit (for more details, see [10] and [12]).

To observe the light emitted, the chip needs to be opened from its backside.
The silicon substrate is then mechanically thinned down and polished, in order
to decrease the absorption rate of the silicon substrate. The photons emission can
be collected by a specific device equipped with a high sensitivity photon sensor
mounted on the optical axis of a conventional microscope (see [14] and [13]).

The number of photons emitted by MOS transistors depends on many complex
physical aspects, the most important of which are the number of electrons flowing
through the MOSFET channel, the probability of each electron to emit a photon
and the physical size of the MOSFET. Approximately, the number of emitted
photons for each switching transition varies from 10−2 to 10−4, but in general
only about 5% of the emitted photons reach the detector. Moreover, when they
come to the sensor itself, photons are only registered with a certain probability
called quantum efficiency (for more details, see [11] and [9]).

Consequently, in contrast to power consumption and electromagnetic field
emissions, not every switching of a transistor results in emission of photons.



Simulations of Optical Emissions for Attacking AES and Masked AES 175

Fig. 1. (a) A sense amplifier with positive feedback - (b) A differential MOS amplifier
with a current-mirror load

Thus, the absolute number of detectable photons must be integrated over mul-
tiple tests.

2.2 Photons Emission by the SRAM during the Reading Operation

Static random-access memory (SRAM) is a type of semiconductor memory that
uses bistable latching circuitry to store each bit. The major part of a memory
chip consists of cells in which bits are stored (one bit for each memory cell), and
are typically organized in a matrix.

Each cell in the array is connected to one of the 2M row lines, known as
word lines, and to one of the 2N column lines, known as bit lines. A particular
cell is selected for reading or writing by activating its word line, via the row-
address decoder, and its bit line, via the column-address decoder. The content
of the selected cell is detected by the sense amplifier, which provides a full-swing
version of it to the data-output terminal of the chip.

During the reading and the writing operations, few photons are emitted both
by the memory cell and by the sense amplifier. For both cases, the photonic
emission is different (in term of location) if the read bit is a 0-logic or a 1-logic.
Thus, knowing the photonic emission during the reading or/and the writing
operations, it is possible to discover which bit has been read or/and written. Since
a sense amplifier is in general bigger than a memory cell and since the intensity
of current flowing through a sense amplifier is greater than that passing through
a memory cell, the number of photons that are emitted by a sense amplifier is
greater than those emitted by a memory cell.

Sense amplifiers are essential to the proper operations of SRAMs and a variety
of sense-amplifier designs are in use. The two most common models of sense
amplifier (shown in Fig. 1) are:



176 G.M. Bertoni, L. Grassi, and F. Melzani

Fig. 2. (a) Schematically representation of a Sense Amplifier with Positive Feedback -
(b) Photons emission when a 0-logic is read - (c) Photons emission when a 1-logic is
read

– Sense Amplifier with Positive Feedback;
– Differential MOS Amplifier with a Current-Mirror Load.

In the following, we study the photonic emission of these two models of sense
amplifier during the reading operation. Observe that optical emission analysis
allows direct observation of the data processed inside semiconductor chips (e.g.
data stored in SRAM can be extracted). For more details about the SRAM and
the Sense Amplifiers, see [8] (chapter 15).

Sense Amplifier with Positive Feedback. The sense amplifier with positive
feedback is a latch formed by cross-coupling two CMOS inverters. Referring to
Fig. 2, one inverter is implemented by transistors Q1 and Q2, and the other by
transistors Q3 and Q4. In particular, transistors Q1 and Q3 are n-MOS type,
while transistorsQ2 andQ4 are p-MOS type. During the read operation, it can be
proven that if the stored bit is a 0-logic, then photons are emitted by transistors
Q2 and Q3, while they are emitted by transistors Q1 and Q4 if the stored bit
is a 1-logic (remember that photons are emitted only by MOS in which current
flows). Thus, there is a difference in term of location of the photonic emission,
but the total number of emitted photons doesn’t change.

An example of a real photonic emission described previously can be found in
[6], Fig. 3. In this image, you can observe the optical emission of the SRAM cells
during the reading operation (remember that the design of a sense amplifier with
positive feedback is very similar to that of a memory cell, and that the photonic
emission of a memory cell is analogous to that of this kind of sense amplifier in
the case of a reading operation). In particular, in this image it is very simple to
note the difference (in term of location) of the photonic emission between the
case in which the read bit is a 0-logic and the case in which it is a 1-logic.

Numerical Model. We want to build a simplified and approximated model
that describes the photonic emission of a sense amplifier with positive feedback.
Let p the following probability:

p =Prob(at least one photon is emitted by the transistor during the

reading operation of a bit and it is detected by the collector).
(1)

Since the number of photons emitted by a p-MOS transistor is negligible com-
pared to the number of photons emitted by a n-MOS transistor, p is well ap-
proximated by the probability that at least one photon is emitted by the n-MOS



Simulations of Optical Emissions for Attacking AES and Masked AES 177

Fig. 3. (a) Schematically representation of a Differential MOS Amplifier with a
Current-Mirror Load - (b) Photons emission when a 0-logic is read - (c) Photons
emission when a 1-logic is read

transistor during the reading operation of a bit and that it is detected by the
collector. Let us suppose to read the same bit N times and to integrate the
photonic emission over the multiple tests, then:

Prob(at least one photon is emitted and detected by the

collector in N reads) = 1− (1− p)N .
(2)

Let Pmin the minimum chosen probability that at least one photon is emitted
and detected by the collector in N reads. To collect at least one emitted photon
in N tests with probability Pmin, N has to satisfy the following condition:

N ≥ log(1− Pmin)

log(1 − p)
. (3)

Differential MOS Amplifier with a Current-Mirror Load. The differ-
ential MOS amplifier with a current-mirror load is composed of two identical
n-MOS transistors Q1 and Q2, as illustrated schematically in Fig. 3. During the
reading operation, it can be proven that photons are (mainly) emitted only by
the transistor Q1 if the stored bit is a 1-logic, and that no photons are emitted if
the read bit is a 0-logic. Thus, the number of emitted photons depends on which
bit has been read.

An example of a real photonic emission described previously can be found in
[9], Fig. 7 and 8. In these images, it is very simple to note that there is an optical
emission only when the read bit is a 1-logic.

Finally, observe that the photonic emission of a differential MOS amplifier
with a current-mirror load can be described by the previous numerical model.
Indeed, for a chosen probability Pmin, let us suppose as before to read the same
bit N times (where N is defined in (3)), and to integrate the photonic emission
over the multiple tests. Then, the read bit is a 1-logic if at least one photon is
emitted in N reads, otherwise it is a 0-logic with probability Pmin.

3 Background on AES

The Advanced Encryption Standard (AES) is a secret key encryption algorithm
based on the Rijndael cipher [1]. AES can process data blocks of 128 bits, using
cipher keys with lengths of 128, 192 and 256 bits, and operates on a 4×4 matrix



178 G.M. Bertoni, L. Grassi, and F. Melzani

of bytes, named the state. The algorithm is specified as a number of identical
rounds (except for the last one) that transform the input plaintext into the
ciphertext. AES consists of 10, 12 and 14 rounds for 128-, 192- and 256-bit keys,
respectively.

Since our attack exploits the leakage obtained during the beginning of the first
round of AES, we present only the two beginning operations that are executed
until then, namely AddRoundKey and SubBytes. In the AddRoundKey step,
each byte of the plaintext is combined with the corresponding byte of the secret
key, using the exclusive or operation (⊕). In the SubBytes step, each byte of the
state is replaced with another according to a fixed 8-bit lookup table, denoted
S-Box. The used S-Box is constructed by combining the multiplicative inverse
function over GF (28) (known to have good non-linearity properties) with an
invertible affine transformation. This operation provides the non-linearity in the
algorithm.

3.1 The Masked AES Algorithm

The core idea of masking is to conceal all intermediate values with some random
values called masks, in order to make the leakage measurements unpredictable.
For every execution of the algorithm, new masks are generated. Hence, the at-
tacker does not know the masks. The masks are added at the (very) beginning of
the algorithm to the plaintext. During the execution of the algorithm, one needs
to take care that every intermediate value stays masked. Obviously, a correct
masking scheme doesn’t have to modify the ciphering.

For our work we decided to focus on the first order masking AES proposed by
C. Herbst et al. in [4]. We only present the masking scheme of AddRoundKey
and SubBytes operations of the beginning of the first round of AES.

In this scheme, we use two (byte) masks, M and M ′, as the input and the
output masks for the masked SubBytes operation. At the start of each AES
encryption, we pre-compute a masked SubBytes table S-Box′ such that ∀x ∈
GF (28)

S-Box′(x⊕M) = S-Box(x) ⊕M ′. (4)

At the beginning of the first round, the plaintext byte p is masked with M (i.e.
pM = p⊕M), and then the AddRoundKey operation is performed on pM . Then,
the SubBytes operation with the table S-Box′ is performed and this changes the
mask to M ′ (indeed: S-Box′(pM ⊕ k) = S-Box(p⊕ k)⊕M ′).

4 Photonic Side Channel Attacks on AES

The typical strategy of side channel attacks is to reveal each byte of the key
separately. Thus, for the following we work on a fixed but arbitrary single byte
of the key, of the plaintext and of the intermediate state.

If an attacker is able to know the photons emission of all the sense amplifiers
of the SRAM, she can use this knowledge to find the key in a very simple way.
In particular, she can discover the secret key using the photons that are emitted



Simulations of Optical Emissions for Attacking AES and Masked AES 179

by the sense amplifiers during the reading of the secret key from the SRAM,
for instance when needed for the AddRoundKey operation (see [3] and [9] for a
detailed exposition).

Let us suppose now that an attacker is only able to collect the photons that are
emitted by a limited number of sense amplifiers. In this case, if the attacker can
know at least 6 bits for each byte of the secret key (that is 96 bits of the complete
key) using for example the previous method, then she can simply discover the
remaining 32 bits (and so the complete secret key) using a brute force attack.
Otherwise, in general the attacker is not able to discover the complete secret key
using only the knowledge of the photons that are emitted by less than 6 sense
amplifiers during its reading.

To discover the secret key in this case we concentrate on the output of the
SubBytes operation, and in particular on the photons that are emitted by (some)
sense amplifiers during the reading of the output of the SubBytes operation.
Indeed, note that the knowledge of one bit of the output of the S-Box allows the
attacker to do some hypothesis on the input of the S-Box (and so on the byte of
the secret key), because each bit of the output of the S-Box depends on all the
bits of its input.

We emphasize that the possibility to recover a single bit of the S-Box out-
put by analyzing emission traces of data-dependent regions of the datapath has
been proven in [7]. More generally, the possibility to recover a bit by analyzing
the photonic emission and using the techniques described in subsection 2.2 has
already been proven in practice in [6] and [9].

4.1 Monitoring the SRAM

We consider the case in which the S-Box is contained within the SRAM, which
led us to consider possible side channels that exist within this memory. As in
[6], our attack needs an initial spatial analysis to allow for at least a basic
understanding of the chip’s functionality and the organization of the SRAM to
identify the S-Box within memory. We refer to [6] for a detailed explanation of
the initial spatial analysis of the SRAM.

We start showing our attack in the simple case in which each row of the
SRAM is composed by 8 memory cells, i.e. each row of the SRAM stores one
byte (observe that this is the same model studied in [3] and [9]). Then we will
generalize the models considered for the attack.

In the simple model, we suppose that there is an area of the SRAM where
each row stores one byte of the S-Box and where all the r-th bits of each byte
of the S-Box are on the r-th bit line. That is, during the read operation, the
r-th bit of the output of the SubBytes operation is read and amplified by the
r-th sense amplifier. Moreover, we suppose that the attacker can observe only
the sense amplifier of the single (fixed) column r of the SRAM, i.e. she is only
able to collect the photons that are emitted by the r-th sense amplifier. Thus,
using this photonic emission, the attacker is able to discover the r-th bit of the
output of the SubBytes operation. In the next subsection, we describe how she
can use this knowledge to do hypothesis on the secret key.



180 G.M. Bertoni, L. Grassi, and F. Melzani

4.2 Key Recovery in the Simple Model

Let us suppose that an attacker discovers that the r-th bit of the output of the
S-Box for an input message m is b. Using this information she can eliminate all
the candidates k ∈ GF (28) of the secret key byte such that

S-Box(m⊕ k)r �= b, (5)

where S-Box(x)r denotes the r-th bit of the output of S-Box(x).
The idea is to repeat this simple operation with different plaintexts m until

the attacker recovers the byte k of the secret key.
Let m1 the first plaintext used by the attacker, and let b1 the r-th bit of the

output of the SubBytes operation of the exclusive or of m1 and of the secret key
byte. We define K1 as the set of all possible candidates of the secret key byte
after the first step:

K1 = {k ∈ GF (28) | S-Box(m1 ⊕ k)r = b1}, (6)

It is simple to verify that |K1| = 1
2 |GF (28)| = 128 for each choice of m1 (remem-

ber that the S-Box is a bijective function), where |K| denotes the cardinality of
the set K.

If the attacker iterates this procedure using different plaintexts, she can dis-
cover the secret key. Indeed, let us suppose to be at the (h − 1)-th step (where
h ≥ 2) and let Kh−1 the set of all the possible candidates of the key byte at this
step (where |Kh−1| > 1). As previously, using the h-th plaintext byte mh (where
mh �= m1, ...,mh−1), she can eliminate other candidates of the key byte. Thus,
starting from Kh−1, let Kh defined as:

Kh = {k ∈ Kh−1 | S-Box(mh ⊕ k)r = bh}, (7)

where bh is defined as before. Observe that |Kh| ≤ |Kh−1|. If |Kh| = 1, then the
attacker has found the secret key byte, otherwise she has to repeat this procedure
for a new plaintext byte mh+1.

The attacker surely discovers the byte of the secret key using a finite number
of different plaintext bytes. Indeed, we have verified by computer simulations
that for each k1, k2 ∈ GF (28) such that k1 �= k2 and for each r ∈ {1, ..., 8}, there
exists at least one m ∈ GF (28) such that

S-Box(k1 ⊕m)r �= S-Box(k2 ⊕m)r.

This implies that for each sequence m1,m2, ...,m256, there exists an integer h
such that 2 ≤ h ≤ 256 and |Kh| = 1.

The number of plaintexts that an attacker needs to discover the byte of the
secret key is not fixed if the plaintexts are chosen in a random way. In particular,
using computer simulations, we found that if she chooses the plaintexts in a
random way, then:



Simulations of Optical Emissions for Attacking AES and Masked AES 181

Fig. 4. The histogram shows (on the vertical axis) the probability that an attacker
needs a certain number of plaintexts (on the horizontal axis) to recover the byte of the
secret key. The histogram was obtained with 250 000 simulations.

– the average number of plaintexts she needs to recover the secret key is about
9.3;

– in the best case, she needs only 5 (different) plaintexts to recover the secret
key;

– in the worst case, she needs up to 146 (different) plaintexts to recover the
secret key.

The probability that an attacker needs a certain number of plaintexts to recover
the byte of the secret key is showed in the histogram in Fig. 4.

To explain the fact that the number of plaintexts is not constant if they are
chosen in a random way, consider the following example. Let the secret key byte
k = 0x65, the first plaintext byte m1 = 0x27 and r = 6. The number of key
candidates after the first step is 128. Let m2 the second plaintext byte. Then,
the number of possible keys after the second step depends on the choice of m2:

– if m2 = 0x2B, the number of key candidates after the second step is 72;
– if m2 = 0x10, the number of key candidates after the second step is 64;
– if m2 = 0xC5, the number of key candidates after the second step is 60.

This situation also occurs in the next steps and this is the reason why the number
of plaintexts that the attacker needs is not constant.

4.3 Chosen Plaintext Attack in the Simple Model

If the attacker has the possibility to do a chosen plaintext attack, she can choose
the plaintexts m1,m2, ... in order to minimize the number of plaintexts that she
needs to recover the byte of the secret key. In the following, we show a way to
choose the plaintexts such that the attacker needs only 8 different plaintexts to
recover the secret key. Moreover, the following algorithm (to choose the plain-
texts) can be easily generalized to more generic models.

The first plaintext byte m1 can be chosen in a random way, because, as we
have seen, any choice of m1 halves the number of the candidates of the secret
key.



182 G.M. Bertoni, L. Grassi, and F. Melzani

The h-th plaintext byte mh (h ∈ {2, ..., 8}) has to satisfy the following condi-
tion1:

|{k ∈ Kh−1 | S-Box(mh ⊕ k)r = 0}| =
= |{k ∈ Kh−1 | S-Box(mh ⊕ k)r = 1}|. (8)

Observe that this condition implies that mh �= m1, ...,mh−1. If mh satisfies the
condition (8) and if Kh is defined as in (7), it is simple to verify that

|Kh| = 1

2
|Kh−1| = 1

2h
|GF (28)| = 256

2h
.

Thus |K8| = 1, that is K8 contains only the secret key.
If there is no mh that satisfies (8), the idea is to choose mh that minimizes

the following quantity:

abs(|{k ∈ Kh−1 | S-Box(mh ⊕ k)r = 0}|−
|{k ∈ Kh−1 | S-Box(mh ⊕ k)r = 1}|). (9)

In this case, the number of plaintexts that the attacker needs to find the byte of
the secret key can be greater than 8, but using this method she can still minimize
the number of plaintexts.

Why does mh have to satisfy the condition (8)? We define:

A = {k ∈ Kh−1 | S-Box(mh ⊕ k̃)r = 0},
B = {k ∈ Kh−1 | S-Box(mh ⊕ k̃)r = 1},

where k̃ is the secret key. Observe that |A|+ |B| = |Kh−1|. It is simple to prove
that if |A| > 1

2 |Kh−1| (or |A| < 1
2 |Kh−1|), the number of the key candidates

after the h-th step is greater than 1
2 |Kh−1| with probability 0.5 (or it is less than

1
2 |Kh−1| with probability 0.5, respectively). Instead if |A| = |B| = 1

2 |Kh−1|, then
the number of the key candidates after the h-th step is equal to 1

2 |Kh−1| with
probability 1.

We repeated the previous computer simulations using the method described
above. In all these tests the attacker always needs 8 plaintexts to find the secret
key. From computer simulations, we can say that:

– the random choice is better in 13.3% of cases;
– the two methods are equivalent in 24.0% of cases;
– the above method is better in 60.7% of cases.

It is simple to note that the plaintext bytes m1, ...,m8 can be precomputed
for each possible output bit sequence b1, ..., b8.

1 The condition (8) is equivalent to the following condition:

∑
k∈Kh−1

S-Box(mh ⊕ k)r =
|Kh−1|

2
.



Simulations of Optical Emissions for Attacking AES and Masked AES 183

Another Way to Choose the Second Plaintext m2. Given K1 and m1,
an equivalent condition that the second plaintext m2 has to satisfy is:

|{k ∈ K1 | k ⊕m1 ⊕m2 ∈ K1}| =
= |{k ∈ K1 | k ⊕m1 ⊕m2 /∈ K1}|.

(10)

It is very important to observe that this condition works only for the choice of
the second plaintext m2. Additionally one can observe that the condition (10)
is independent from the S-Box functionality.

To prove this condition, we introduce two sets A and B:

A = {k ∈ GF (28) | S-Box(m1 ⊕ k)r = j}

B = {k ∈ GF (28) | S-Box(m2 ⊕ k)r = l},
where j, l ∈ {0, 1}. Using:
– |A ∩B|+ |A ∩BC | = |A|,
– if j = l, then

|A ∩B| = |{k ∈ A | k ⊕m1 ⊕m2 ∈ A}|
|A ∩BC | = |{k ∈ A | k ⊕m1 ⊕m2 /∈ A}|,

– if j �= l, then

|A ∩BC | = |{k ∈ A | k ⊕m1 ⊕m2 ∈ A}|
|A ∩B| = |{k ∈ A | k ⊕m1 ⊕m2 /∈ A}|,

it is simple to prove the condition (10).

4.4 Key Recovery in the Generic Model

The method described in the previous subsections can be extended to more
generic models. In particular, if the attacker can observe S (1 ≤ S ≤ 8) sense
amplifiers, our method changes very little (only in the definition of (7)) and
the number of plaintexts/tests that the attacker needs to recover the secret key
decreases.

More interesting is the case in which the number of sense amplifiers is greater
than 8 (that is they are 2N with N > 3). In this case, the idea is to repeat our
attack in the same way. Anyway, it works efficiently only when the attacker can
observe at least one of every 8 sense amplifiers. We plan to further investigate
more specifically the attack for this case in a forthcoming work.

In both the previous cases, it is easy to generalize and to adapt the chosen
plaintext attack described in the previous subsection to these generic models.

Finally, if the attacker can observe both the photonic emission of the row
decoder and of the sense amplifiers, she can combine our attack with the one
described in [6].



184 G.M. Bertoni, L. Grassi, and F. Melzani

5 Photonic Side Channel Attacks on Masked AES

As we said before, the common approach to secure implementations of symmetric
cryptographic algorithms against power analysis attacks is randomize the key-
dependent data by the addition of one or several random masks. Our goal is to
understand if AES with power analysis countermeasure can be considered secure
against photonic side channel attacks. In particular, for our work we consider the
efficient first order masking AES proposed in [4] and explained in subsection 3.1.

As previously, we focus on the case in which each row of the SRAM stores
one byte (that is each row is composed of 8 memory cells) and we suppose that
the masks are stored into the SRAM. However, the following analysis holds for
more generic models.

5.1 Key Recovery

Let us suppose for the moment that an attacker can observe all the sense ampli-
fiers of the SRAM, which means that she is able to collect the photons that are
emitted by all the sense amplifiers. In this case, the masking scheme for the AES
is completely useless against photonic emission analysis. Indeed, as in the case
of unmasked AES, the attacker can discover the secret key using the photons
that are emitted by the sense amplifiers during the reading of the key from the
SRAM (required for the AddRoundKey operation). Since the read secret key is
always the same, she can repeat this operation as many time as she wants, in
order to integrate the photonic emission over multiple tests (remember that the
number of detectable photons is so low that it needs to be averaged over multiple
tests). Using this procedure, she can obtain the secret key in the same way as
the unmasked AES.

Consider now the case in which an attacker can observe only a limited number
(e.g. one) of sense amplifiers of the SRAM, that is she is only able to know the
photons emission of a limited number (e.g. one) of sense amplifiers. As previously,
a possible way to discover all bits of each byte of the secret key is to attack
the output of the SubBytes operation. However, using this method there is an
important difference between the masked and the unmasked case that must
be taken into account. In the case of unmasked AES, an attacker can repeat
the encryption as many time as she wants, and she can integrate the photonic
emissions over multiple tests in order to recover the read bit. Instead, in the case
of masked AES, the attacker can not do this, because the intermediate values
(and so the photonic emissions) are different for every encryption due to the
presence of the masks. Thus, if an attacker is not able to understand if the read
bit is 0- or 1-logic with only one photonic emission, she can not attack masked
AES using the output of the SubBytes operation in this particular case. For the
following, we assume that it is sufficient one photonic emission to understand if
the read bit is 0- or 1-logic. Observe that this assumption is (at the moment)
unrealistic (for example it means that there is no noise), but it is the best
situation for the attacker.



Simulations of Optical Emissions for Attacking AES and Masked AES 185

With this assumption, the attacker must use two leakages to attack the masked
AES, due to the presence of the masks. It is very important to note that these two
leakages must be of the same encryption, that is the masks of the two leakages
have to be the same. There are several possibilities about the leakages that can
be used to implement the attack. We consider the two following cases:

– two different bytes of the masked message (with the same masks);
– one byte of the masked message and of the associated mask.

Another interesting possibility is to attack the key schedule to recover the
secret key (remember that each round key depends on the initial secret key): we
plan to further investigate this possibility in a forthcoming work.

5.2 Two Different Bytes of the Masked Message (with the Same
Masks)

Let us suppose that an attacker knows the r-th bit of the i-th and of the j-th byte
of the output of the masked SubBytes operation (i �= j). We denote respectively
by bi and bj these two bits, and by mi and mj the i-th and the j-th byte of the
plaintext. As before, the idea is to use this information to eliminate some key
candidates. The procedure is very similar to that explained in section 4, but in
this case we attack two different bytes of the secret key simultaneously.

Let K1 the set of all the possible candidates of the i-th and of the j-th byte
of the secret key after the first step2:

K1 = {(ki, kj) ∈ GF (28)×GF (28) | S-Box(mi ⊕ ki)r

⊕ S-Box(mj ⊕ kj)r = bi ⊕ bj}.
(11)

Observe that for each x, y ∈ GF (28):

S-Box′(x)r ⊕ S-Box′(y)r = S-Box(x)r ⊕ S-Box(y)r.

Using different couples of plaintext bytes mi and mj , the attacker can eliminate
other candidates of the key repeating the above procedure, until she finds the
secret key. We define Kh as the set of all possible candidates of the key after the
h-th step:

Kh = {(ki, kj) ∈ Kh−1 | S-Box(mi ⊕ ki)r ⊕ S-Box(mj ⊕ kj)r = bi ⊕ bj}. (12)

Also in this case, if the attacker chooses the plaintext in a random way, the
number of plaintexts that she needs to discover the secret key is not constant.
At the h-th step, if she has the possibility to do a chosen plaintext attack, the
chosen plaintext bytes mi and mj have to satisfy the following condition:

|{(ki, kj) ∈ Kh−1 | S-Box(mi ⊕ ki)r ⊕ S-Box(mj ⊕ kj)r = 0}| =
= |{(ki, kj) ∈ Kh−1 | S-Box(mi ⊕ ki)r ⊕ S-Box(mj ⊕ kj)r = 1}|,

2 In this subsection, we omit the index (h) of the step on m and on b for an easier
reading.



186 G.M. Bertoni, L. Grassi, and F. Melzani

in order to minimize the number of plaintexts that the attacker needs to recover
the bytes of the secret key. It is simple to prove that if mi and mj satisfy the
previous condition, then |Kh| = 1

2 |Kh−1|.

5.3 One Byte of the Masked Message and of the Associated Mask

Let us suppose that an attacker knows the r-th bit of the output of the masked
SubBytes operation for a plaintext byte m (denoted b) and the r-th bit of the
masked M ′ (denoted M ′(r)). Also in this case, she can use these information to
eliminate some candidates of the key and to discover the byte of the secret key.
In this particular case, the attack is completely equivalent to that described in
section 4. For this reason, we refer to that section for a complete explanation of
the attack, and we limit ourselves to re-define the set Kh used in (7) and in (8).

We define K1 as the set of all the possible candidates of the secret key byte
after the first step:

K1 = {k ∈ GF (28) | S-Box(m1 ⊕ k)r = b1 ⊕M
′(r)
1 }, (13)

and, in the same way, let Kh the set of all the possible candidates of the secret
key byte after the h-th step:

Kh = {k ∈ Kh−1 | S-Box(mh ⊕ k)r = bh ⊕M
′(r)
h }, (14)

where, as before, mh �= m1, ...,mh−1. Remember that:
S-Box′(x)r = S-Box(x)r ⊕M ′(r) for each x ∈ GF (28).

If the attacker has the possibility to do a chosen plaintext attack, she can
choose the plaintexts using the algorithm (8) described in subsection 4.3, in
order to minimize the number of plaintexts/tests.

Observe that, during the encryption, the mask M ′ could be read several times
depending on how masked AES is implemented. For example, during the pre-
computation of the masked S-Box′, the mask can be read 256 times, i.e. one for
each input/output of the S-Box, or it can be read only 1 time and then stored
in a working register. If the mask M ′ is read more times, then the attacker may
have more opportunities to have two photons emissions (one for the mask and
one for the plaintext) in the same encryption.

5.4 Numerical Model and Comparison

We want to compare the number of acquisitions required by an attacker in order
to discover one or more bits of the output of the SubBytes operation, both in
the unmasked and in the masked AES case. In this second case, we consider only
the case in which the attacker uses the two leakages of one byte of the masked
message and of the associated mask M ′: remember that the two leakages have to
be of the same encryption (i.e. the masks of the two leakages must be the same).
Moreover, in both cases we suppose that the knowledge of at least 1 emitted
photon is sufficient for the attacker to discover which bit has been read.



Simulations of Optical Emissions for Attacking AES and Masked AES 187

Table 1. The following table gives an estimate of the number of tests that the attacker
needs to do in order to discover the key for different values of p, Pmin and R. Remember
that these numbers are obtained with simple and approximated models.

p Pmin (unmasked) AES Masked AES & R = 256 Masked AES & R = 1

10−4 95 % 29 960 1 170 210 299 573 230

10−4 99.99 % 92 100 3 597 785 921 034 050

10−5 95 % 299 575 117 020 795 29 957 322 740

10−5 99.99 % 921 050 359 778 930 92 103 403 750

In the unmasked AES case, the required number of tests for each plaintext is
given by the equation (3). In a similar way, it can be proven that the required
number of encryptions/tests for each plaintext in the masked AES case is given
by

N ≥ log(1− Pmin)

log(1−R · p2) , (15)

where p is defined in (1), Pmin is the chosen probability that at least one photon
is emitted and detected by the collector in N encryptions, and R is the number
of times that the mask M ′ is read during the encryption process. Observe that
the probability that there is at least one photonic emission in R reads of the
same bit of the mask M ′ is given by 1 − (1 − p)R, but since 0 < p � 1, then
1− (1−p)R � 1− (1−R ·p) = R ·p. The quantity p2 in (15) depends on the fact
that the attacker needs at least two photonic emissions (respectively, at least
one for the bit M ′(r) of the mask and at least one for the bit S-Box′(pM ⊕ k)r)
for the same encryption.

Table 1 gives an estimation of the minimum number of tests that an attacker
needs to do in order to discover the secret key for some different values of p, Pmin

and R. We emphasize that these numbers are obtained with simple and approx-
imated models, and they are useful only in order to do a simple comparison
between the unmasked and masked case.

The relationship between the number of tests in the masked and in the un-
masked AES case is given by:

Nmasked AES

N(unmasked) AES
=

log(1 − p)

log(1−R · p2) � 1

R · p > 1. (16)

If (R · p)−1 � 1, then the number of tests in the masked case is much bigger
than in the unmasked case. In this case, the time that the attacker needs to
collect the two leakages in the same encryption can be so long that the attack
can become unworkable.

6 Conclusion

In this work we have presented a novel attack based on photonic emission analysis
against software implementations of AES-128. We have mainly analyzed the case



188 G.M. Bertoni, L. Grassi, and F. Melzani

in which the attacker can collect the photonic emission of a limited number (e.g.
only one) of sense amplifiers and in which each row of the SRAM stores only one
byte. Based on the state of the art and on the capability of the real equipment,
the analysis of a single spot is shown to be a realistic scenario. The presented
attack can easily be adopted to AES-192 and AES-256.

Attacking masked AES is another novel result reported in this paper. In this
case the attacker needs 2 leakages of the same encryption to overcome the ran-
domization of the masks. Moreover, the number of acquisitions needed by the
attacker increases by a factor proportional to p−1 with respect to the unmasked
AES case, where p is the probability that at least one photon is emitted by the
transistor and detected by the collector during the read operation. Since p is
practically very low and since it is not possible to integrate the photonic emis-
sion over multiple tests, a simple photonic emission analysis seems to be not
practical to attack masked AES.

Acknowledgement. The work has been supported in part by the Austrian
Science Fund (project P26494-N15).

References

1. Daemen, J., Rijmen, V.: The design of Rijndael: AES - the Advanced Encryption
Standard. Springer Verlag (2002)

2. Di-Battista, J., Courrege, J.C., Rouzeyre, B., Torres, L., Perdu, P.: When Failure
Analysis Meets Side-Channel Attacks. In: Mangard, S., Standaert, F.-X. (eds.)
CHES 2010. LNCS, vol. 6225, pp. 188–202. Springer, Heidelberg (2010)

3. Ferrigno, J., Hlavàĉ, M.: When AES blinks: introducing optical side channel. In-
formation Security, IET 2(3), 94–98 (2008)

4. Herbst, C., Oswald, E., Mangard, S.: An AES Smart Card Implementation Resis-
tant to Power Analysis Attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006.
LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

5. Kocher, P.C., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power
analysis. Journal of Cryptographic Engineering 1(1), 5–27 (2011)

6. Schlösser, A., Nedospasov, D., Krämer, J., Orlic, S., Seifert, J.-P.: Simple Photonic
Emission Analysis of AES. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS,
vol. 7428, pp. 41–57. Springer, Heidelberg (2012)

7. Schlösser, A., Nedospasov, D., Krämer, J., Orlic, S., Seifert, J.-P.: Differential Pho-
tonic Emission Analysis. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864,
pp. 1–16. Springer, Heidelberg (2013)

8. Sedra, A.S., Smith, K.C.: Microelectronic Circuits, vol. 6. Oxford University Press
(2009)

9. Skorobogatov, S.P.: Using Optical Emission Analysis for Estimating Contribution
to Power Analysis. In: 6th Workshop on Fault Diagnosis and Tolerance in Cryp-
tography (FDTC), pp. 111–119. IEEE Computer Society (2009)

10. Stellari, F., Zappa, F., Cova, S., Vendrame, L.: Tools for non-invasive optical char-
acterization of CMOS circuits. In: Electron Devices Meeting, IEDM 1999. Technical
Digest. International, pp. 487–490 (December 1999)



Simulations of Optical Emissions for Attacking AES and Masked AES 189

11. Stellari, F., Zappa, F., Ghioni, M., Cova, S.: Non-Invasive Optical Characterisation
Technique for Fast Switching CMOS Circuits. In: Proceeding of the 29th European
Solid-State Device Research Conference, vol. 1, pp. 172–175 (September 1999)

12. Tosi, A., Stellari, F., Zappa, F., Cova, S.: Hot-carrier luminescence: comparison of
different CMOS technologies. In: 33rd Conference on European Solid-State Device
Research, ESSDERC 2003, pp. 351–354 (September 2003)

13. Tsang, J., Fischetti, M.: Why hot carrier emission based timing probes will work for
50 nm, 1V CMOS technologies. Microelectronics Reliability 41(9-10), 1465–1470
(2001)

14. Villa, S., Lacaita, A.L., Pacelli, A.: Photon emission from hot electrons in silicon.
Phys. Rev. B 52, 10 993–10 999 (1995)



Fault Tolerant Infective Countermeasure

for AES

Sikhar Patranabis, Abhishek Chakraborty, and Debdeep Mukhopadhyay

Department of Computer Science and Engg., IIT Kharagpur, India
{sikhar.patranabis,abhishek.chakraborty,debdeep}@cse.iitkgp.ernet.in

Abstract. Infective countermeasures have been a promising class of
fault attack countermeasures. However, they have been subjected to sev-
eral attacks owing to lack of formal proofs of security and improper
implementations. In this paper, we first provide a formal information
theoretic proof of security for one of the most recently proposed state
of the art infective countermeasures against DFA, under the assumption
that the adversary does not change the flow sequence or skip any instruc-
tion. Subsequently, we identify weaknesses in the infection mechanism of
the countermeasure that could be exploited by attacks which change the
flow sequence. Furthermore, we propose an augmented infective counter-
measure scheme obtained by introducing suitable randomizations that
reduce the success probabilities of such attacks. All the claims have
been validated by supporting simulations and real life experiments on
a SASEBO-W platform. We also compare the fault tolerance provided
by our proposed countermeasure scheme against that provided by the
existing scheme.

Keywords: Infective Countermeasure, AES, Randomization, Instruc-
tion Skip, Fault Attack, Fault Tolerant.

1 Introduction

With fault attacks now being an established threat to the security of cryp-
tosystems, sound countermeasures are needed to protect them. Recent research
has demonstrated two major flavors of countermeasures - detection based and
infection based. Detection based countermeasures such as time and hardware re-
dundancy [1, 2] are vulnerable against attacks to the comparison step itself and
also against attacks using biased fault models [3]. Infective countermeasures, on
the other hand, avoid the use of comparison by diffusing the effect of the fault
to render the ciphertext unexploitable. However, deterministic diffusion based
infective countermeasures are vulnerable to attacks as demonstrated by Lomné
et.al [4]. A random variation of the infective countermeasure was proposed by
Gierlichs et.al [5]. However, the infection method employed by this countermea-
sure has a number of shortcomings, as demonstrated by Battistello and Giraud
[6], and in greater detail by Tupsamudre et.al [7]. Tupsamudre et.al have also
proposed an improved infective countermeasure that avoids all the pitfalls of [5]

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 190–209, 2015.
DOI: 10.1007/978-3-319-24126-5�12



Fault Tolerant Infective Countermeasure for AES 191

and thwarts DFA. However, no formal proof of security has been provided for
the proposed scheme. Moreover, fault attacks that allow an adversary to change
the flow sequence of an algorithm by methods such as instruction skips have also
not been considered.

Recent research on microcontrollers and embedded processors has revealed
that fault models in which an adversary can skip one or more instructions is
practically observable on various architectures [8, 9] using different fault injec-
tion techniques [10–12]. Hence, such a fault model is a realistic threat to embed-
ded applications. We demonstrate in this paper that the instruction skip fault
model weakens the infective countermeasure scheme proposed in [7] and allows
easy key recovery. Thus, it is important to make infective countermeasure toler-
ant against attacks that change the flow sequence of the algorithm. This paper
proposes an augmented infective countermeasure scheme with suitable random-
izations that reduce the probability of occurrence such faults considerably.

Contributions: In this paper, we first present a formal information theoretic
proof of security for the infective countermeasure scheme proposed by Tupsamu-
dre et.al [7] against single and multiple fault injection models, under the assump-
tion that an adversary cannot change the flow sequence or skip instructions. We
then investigate in detail the threats posed to this countermeasure by the in-
struction skip fault model and formally analyze the information leakage as a
result of the attack. We also examine in detail the drawbacks of the original
scheme that makes it vulnerable to instruction skips, and then propose an aug-
mented countermeasure scheme by incorporating necessary randomizations in
the existing algorithm to reduce the probability of such attacks. All the claims
have been validated by supporting simulations and real-life experiments on a
SASEBO-W platform that compare the existing and augmented versions of the
infective countermeasures both in terms of performance and security.

2 Preliminaries: The Infective Countermeasure

In this section, we briefly introduce the infective countermeasure scheme pro-
posed by Tupsamudre et.al [7]. Table 1 summarizes the notations used in the
rest of this paper. For the description of the countermeasure scheme, we use
the same notations used in the original paper. Algorithm 1 depicts the infective
countermeasure proposed in [7] for AES-128. In the event of a fault in any of the
computation rounds (redundant or cipher), the algorithm detects the difference
in values of R0 and R1 during the execution of the cipher round. The value of
R0 is then set to R2 as described in step 11 of the algorithm. If, on the other
hand, the adversary attacks the dummy round, (R2 ⊕ β) evaluates to 1 and R0

is once again set to R2. In the event of undisturbed execution, the algorithm
outputs the correct ciphertext. In the following section, we formally examine the
security of the countermeasure scheme against single and multiple fault injec-
tions under the assumption that adversary cannot alter the flow of execution of
the algorithm.



192 S. Patranabis, A. Chakraborty, and D. Mukhopadhyay

Table 1. Notations

RoundFunction The round function of AES128 block cipher
which operates on a 16 byte state matrix and 16 byte round key

S The SubByte operation in the RoundFunction

SR The ShiftRow operation in the RoundFunction

MC The MixColumn operation in the RoundFunction

n The total number of computation rounds (n = 11 for AES128)

t The total number of rounds for the infective algorithm

Ii The 16 byte input to the ith round of AES128, where i ∈ {0, . . . , 10}
K The 16 byte secret key used in AES128

kj The 16 byte matrix that represents (j − 1)th round key,
j ∈ {1, . . . , 11}, derived from the main secret key K

β The 16 byte secret input to the dummy round

k0 The 16 byte secret key used in the computation of dummy round

rstr A ‘t’ bit random binary string,
consisting of (2n) 1’s corresponding to AES rounds
and (t− 2n) 0’s corresponding to dummy rounds

BLFN A Boolean function that maps a 128 bit value to a 1 bit value
(0 input is mapped to 0; all other inputs are mapped to 1)

γ A one bit comparison variable to detect fault injection in AES round

δ A one bit comparison variable to identify a fault injection in dummy round

· A multiplication operation

∧ A bitwise logical AND operation

∨ A bitwise logical OR operation

¬ A bitwise logical NOT operation

⊕ A bitwise logical XOR operation

X A discrete random variable

xi A specific value that X may take

Pr(X = x) or Pr(x) The probability that a random variable X takes a value x
hline Pr(x|y) The conditional probability that X = x given Y = y

H(X) The entropy of random variable X

H(X|Y ) The conditional entropy of X given Y

I(X|Y ) The mutual information of random variables X and Y

K The secret key used by AES

Δ The differential of the fault-free and faulty ciphertexts

N The total number of possible values for K and Δ

{k1, k2, · · · , kN} The sample space from which K takes its values

{Δ1,Δ2, · · · ,ΔN} Sample space from which Δ can take its value

3 Information Theoretic Evaluation of the Infective
Countermeasure

In Differential Fault Analysis (DFA), the adversary uses a fault model of her
choice and obtains both fault-free and faulty ciphertexts. The basic assumption
underlying the DFA principle is that the differential of the correct and faulty
ciphertext leaks some information about the secret key used in the algorithm.
The adversary then infers the key by analyzing the fault propagation under the
assumption of a fault model. However, if the differential provides no additional
information about the key, then obtaining the faulty ciphertext does not give
the adversary any advantage at all. Thus, the capability of a countermeasure



Fault Tolerant Infective Countermeasure for AES 193

Algorithm 1. Infective Countermeasure [7]

Inputs : P , kj for j ∈ {1, . . . , n}, (β, k0), (n = 11) for AES128
Output : C = BlockCipher(P,K)

1. State R0 ← P , Redundant state R1 ← P , Dummy state R2 ← β
2. i ← 1, q ← 1
3. rstr ← {0, 1}t // #1(rstr) = 2n,#0(rstr) = t − 2n
4. while q ≤ t do
5. λ ← rstr[q] // λ = 0 implies a dummy round
6. κ ← (i ∧ λ) ⊕ 2(¬λ)
7. ζ ← λ · �i/2� // ζ is actual round counter, 0 for dummy

8. Rκ ← RoundFunction(Rκ, k
ζ)

9. γ ← λ(¬(i ∧ 1)) · BLFN(R0 ⊕ R1) // check if i is even
10. δ ← (¬λ) · BLFN(R2 ⊕ β)
11. R0 ← (¬(γ ∨ δ) · R0) ⊕ ((γ ∨ δ) · R2)
12. i ← i + λ
13. q ← q + 1
14. end
15. return(R0)

scheme to thwart DFA, can be evaluated by formally quantifying the mutual
information between the output differential and the key. The lesser the mutual
information, the stronger is the countermeasure scheme.

In this section, we first describe in greater detail the aforementioned infor-
mation theoretic security evaluation methodology for countermeasures. We then
evaluate the information leakage from infective countermeasure depicted in Al-
gorithm 1 using this framework under single and multiple fault injection models.
Table 1 summarizes some of the notations used in this section.

3.1 The Evaluation Methodology

Definition 1. In information theory, the mutual information of two discrete
random variables X and Y is defined as:

I(X;Y ) = H(X) − H(X|Y ) (1)

where H(X) denotes the entropy of the random variable X and H(X |Y ) denotes
the conditional entropy of X given Y .

Again, entropy and conditional entropy are represented using the following
formulations:

H(X) =

N∑
i=1

Pr(xi) log(Pr(xi)) (2)

H(X | Y ) =

N∑
i=1

N∑
j=1

Pr(yj)Pr(xi | yj) log(Pr(xi | yj)) (3)

Using this information theoretic measure, we can compute how much infor-
mation a differential fault attack technique leaks about the key, for a given fault
model. Let Δ is the fault observed at the output of a block cipher and K is



194 S. Patranabis, A. Chakraborty, and D. Mukhopadhyay

the key used in the encryption. Then I(K;Δ) provides the mutual information
between Δ and K. Using formulations 1, 2 and 3, we have :

I(K;Δ) =

N∑
i=1

N∑
j=1

Pr(Δj)Pr(ki | Δj) logPr(ki | Δj) −
N∑

i=1

Pr(ki) log Pr(ki) (4)

where Δ and K can take values from the sets {Δ1, Δ2, · · · , ΔN} and
{k1, k2, · · · , kN} respectively. Further, using Bayes’ Theorem, we have Pr(ki |
Δj) =

Pr(Δj |ki)Pr(ki)
Pr(Δj)

. Thus, using the information theoretic measure, one can

evaluate the security of a countermeasure scheme against DFA. We next perform
this analysis for the infective countermeasure in the forthcoming discussion.

3.2 Evaluating the Security of the Infective Countermeasure
against DFA

Assumptions about the Fault Model: In the information theoretic eval-
uation of the security of the infective countermeasure, we make the following
assumptions about the fault model:

1. The flow sequence of the algorithm, that is, the order in which the redun-
dant, cipher and dummy computations are executed for various rounds is
determined solely by the sequence of bits in rstr and does not change during
the course of execution of the algorithm via instruction skip or any other
methodology.

2. The number of rounds of execution of the algorithm is not in any way af-
fected, that is, we have exactly 11 pairs of redundant and cipher computa-
tions, with the redundant computation always preceding the cipher compu-
tation.

3. The values of internal variables and registers other than the state registers
R0, R1 and R2 are not updated except as required by the algorithm.

We now use the mutual information formalism to evaluate the security of the
infective countermeasure proposed by Tupsamudre et.al. Before delving into a
rigorous analysis, we make an important observation about the algorithm.

Observation 1. In the event of a fault injection in a single round of the al-
gorithm, the entire cipher state is affected and is in fact replaced by a random
matrix β which is entirely independent of the key K.

A single fault injection could occur in either a redundant computation round,
or a cipher computation round, or a dummy round. The correctness of observa-
tion 1 can be easily verified by considering each scenario individually.

1. Redundant round affected: In this case, R1 stores the faulty output
after the redundant round computation. When the computation of the cor-
responding cipher round takes place, R0 stores a value different from the
current content of R1. Hence R0 ⊕R1 evaluates to a non-zero value in step
9 of the algorithm. Hence γ is 1 and R0 is replaced by β.



Fault Tolerant Infective Countermeasure for AES 195

2. Cipher round affected: In this case, R0 stores the faulty output after
the original round computation, while R1 stores the correct output. Hence
R0 ⊕ R1 evaluates to 1 in step 9 of the algorithm. Hence γ is 1 and R0 is
replaced by β.

3. Dummy round affected: In this case, R2 stores the faulty output after
the original round computation, which is different from β. Hence R2 ⊕ β
evaluates to 1 in step 9 of the algorithm. Hence δ is 1 and R0 is once again
replaced by β.

3.3 Security against Single Fault Injections

Since the outcome of fault injection in any of the rounds is thus essentially
the same, we present a common analysis for all three scenarios. Assuming that
the adversary cannot affect the number of rounds of computation, a single fault
injection must be detected and the infection will occur. Consequently, the output
differential is of the form Δ = C⊕β̂, for fault injection into either the redundant,
cipher or dummy rounds, C being the fault free ciphertext output and β̂ being
a random 128 bit matrix. Since β̂ and K are independent random variables, we
have:

Pr(β̂ = β̂k | K = ki) = Pr(β̂ = β̂k) (5)

Consequently , the conditional probability Pr(Δj | ki) takes the form :

Pr(Δj | ki) = Pr(β̂ = Δj ⊕ C | ki)

= Pr(β̂ = Δj ⊕ C)

= Pr(Δj)

(6)

Thus Bayes’ theorem and 6 together establish the conditional independence
of K and Δ as:

Pr(ki | Δj) = Pr(ki) (7)

Substituting Pr(ki) in equation 4 yields the following.

I(K;Δ) =
N∑

i=1

N∑
j=1

Pr(Δj)Pr(ki | Δj) logPr(ki | Δj) −
N∑

i=1

Pr(ki) log Pr(ki)

=

N∑
i=1

N∑
j=1

Pr(Δj)Pr(ki) logPr(ki) −
N∑

i=1

Pr(ki) log Pr(ki)

=

N∑
i=1

Pr(ki) logPr(ki) −
N∑

i=1

Pr(ki) logPr(ki)

= 0

(8)



196 S. Patranabis, A. Chakraborty, and D. Mukhopadhyay

3.4 Security against Multiple Fault Injection

Let e′ be the event that the adversary beats the countermeasure by success-
fully injecting identical faults in a redundant-cipher round pair. Then, by a
similar analysis, the information leakage is found to be Pr(e′)(logN − logM +
logPr(e′))+ (1−Pr(e′)) log (1 − Pr(e′)), where M is the number of output dif-
ferentials possible due to fault injection for any given key ki and M < N . The
leakage is thus low if Pr(e′) is low.Figure 1 summarizes the double fault injection
attack probability on rounds p and q of the algorithm. An important assumption
for the analysis presented in this section was that the adversary cannot in any
way disturb the order in which the rounds are executed. If the adversary chooses
to mount an attack that, instead of affecting the cipher state, disturbs the round
counter and prevents the infection from affecting the cipher state, she could gain
access to intermediate cipher state values and exploit it to decipher the key in
a much simpler fashion. In the next section, we show that the instruction skip
fault model indeed allows such an attack that exploits the vulnerability of the
round counter.

Fig. 1. Variation of Pr(e′) with target rounds p and q

4 Instruction Skip Threats to the Infective
Countermeasure

We now look in detail at the threat posed to Algorithm 1 by the instruction
skip fault model. We begin by looking at possible threats to the infective coun-
termeasure other than traditional DFA attacks, on of which is the instruction
skip attack. We next introduce in brief the instruction skip fault model, followed
by a description of how the instruction skip fault model could be used by the
adversary to disturb the number of executed rounds in Algorithm 1. Finally we
focus on the loopholes in the algorithm that allow the adversary to mount such
an attack.



Fault Tolerant Infective Countermeasure for AES 197

4.1 Possible Attacks on the Infective Countermeasure: Affecting
Flow Sequence

The formal proof of security of the infective countermeasure 1, presented in
section 3, makes some assumptions about the fault model of the adversary. One
of these is that the number of rounds and the order of their execution are not
affected by the adversary. However, in a practical implementation of the infective
countermeasure, the adversary could attack the round counter itself to try and
upset the normal execution of the algorithm. As demonstrated in [13, 14], round
reduction and fault round modification allow the adversary to obtain the key
with a relatively small number of computations. Thus, although Algorithm 1
thwarts traditional DFA, it could be vulnerable to this flavor of attacks where
the adversary could play around with the number of effectively executed rounds.

One of the major drawbacks of the infective countermeasure depicted in Al-
gorithm 1 is that there is no validation check for the round counters q and i. If
the value of either of these counters is affected by the adversary, the algorithm
would not be able to detect the fault, which in turn would affect the order of
round execution. There are many ways in which the adversary could inject such
a fault. One approach is to affect the state of either the counter variables q and
i, or other variables affecting them, such as λ. The stuck-at fault model makes
such attacks practically feasible. Alternatively, the adversary could choose to
simply skip the round counter updation step(s), that is, steps 12 and/or 13 of
Algorithm 1. Such attacks come under the purview of the instruction skip fault
model. In the forthcoming discussion, we look in greater detail at the threat
posed by the instruction skip fault model, the corresponding information leak-
age as well the loopholes in the infective countermeasure scheme that make such
an attack possible.

4.2 The Instruction Skip Fault Model

The instruction skip fault model is a subset of the more general instruction re-
placement fault model, in which the adversary is able to replace one instruction
by another. Previous research has shown that it is possible to perform instruc-
tion replacement on embedded processors by a variety of fault injection means
[10, 15]. However, precise control over instruction replacement demands very
accurate fault injection means and is not of much practical significance. How-
ever, a specific category of instruction replacement is the instruction skip fault
model, in which the adversary replaces an instruction by another one that does
not affect any useful register [16] and has the same effect as a NOP. Instruction
skips have been achieved by a number of fault injection schemes on a variety of
architectures - via clock glitches [8, 10] and electromagnetic glitches [11] on 8-bit
AVR microcontroller, via voltage glitches on a 32-bit ARM9 processor [9] and
via laser shots on a 32-bit ARM Cortex-M3 processor [12]. Hence, instruction
skips are considered as a practically achievable fault model and have been used
for cryptanalysis in recent research [17, 18]. We now look into how the adversary
may use the instruction skip fault model to attack Algorithm 1.



198 S. Patranabis, A. Chakraborty, and D. Mukhopadhyay

4.3 Instruction Skip Attack on the Infective Countermeasure

The attack presented here exploits the fact that a redundant round computation
in Algorithm 1 does not involve any infection to the state of the cipher R0. The
adversary targets skipping instruction 12 of Algorithm 1 after the execution of
the last redundant round. As a result of this attack, the final cipher round is
replaced by another redundant computation round. Since a redundant round
does not involve any infection and does not affect the output register R0, the
algorithm simply returns the output of the penultimate cipher round, that is
the output of round 9. The adversary can then exploit this faulty ciphertext to
recover the key by making hypotheses over each key byte.

Description of the Attack Strategy: We now describe the proposed instruc-
tion skip attack strategy on Algorithm 1 in greater detail. The adversary skips
instruction 12 of the algorithm in the last (or the nth) redundant round (which
is the penultimate computation round). As a result i is not incremented while
q is incremented as usual in the next step. Since the affected round is the last
redundant round, it is followed by dummy rounds and a single cipher round. We
claim and establish in the forthcoming discussions that in any of these rounds,
the state register R0 is not infected despite the presence of the fault. Note that
after the instruction skip attack has been mounted in the redundant round, R0

holds the correct output of the 9th round while R1 holds the correct output of
the 10th round.

– For a dummy round (λ = rstr[q] = 0), we have γ = 0 as λ = 0, and δ = 0
as no fault has been injected in the dummy round and R2 = β. So R0 is not
infected and still contains the output of the 9th round.

– For the cipher round (λ = rstr[q] = 1), we have γ = 0 because the oddity
of i did not change in the preceding redundant computation due to the
instruction skip. Additionally, δ = 0 as before. Thus, the algorithm mistakes
the cipher computation for a redundant computation and R0 still holds the
correct output of the 9th round.

Since the algorithm definitely terminates due to normal increment of the round
counter q, the adversary obtains the output of the 9th round. A trivial DFA now
leaks the last round key. Since the key scheduling algorithm of AES is reversible,
the adversary can now obtain the master key from the last round key so obtained.

4.4 The Information Leakage : A Formal Quantification

We now evaluate the security of the infective countermeasure in the light of the
instruction skip attack event e. We denote by ē the event that the adversary fails
to perform the instruction skip attack and the state of the cipher is randomized
due to the infection which breaks any correlation that the output differential Δ
has with the key K. Given that e occurs, for a particular key ki, there is a unique
output differential Δi. Thus we have the conditional probability distribution of



Fault Tolerant Infective Countermeasure for AES 199

occurrence of a random output differential Δj given key ki as Pr(Δj | ki, ē) = 1
N

(since the infection breaks all correlation with the key) and

Pr(Δj | ki, e) =

{
1, if j = i

0, otherwise

The modified conditional fault probability distribution expression takes the
form

Pr(Δj | ki) = Pr(Δj | ki, e)Pr(e) + Pr(Δj | ki, ē)Pr(ē)

=

{
Pr(e) + 1

N (1 − Pr(e)), if j = i
1
N (1 − Pr(e)), otherwise

(9)

The marginal probability distributions are again unaltered and are given by
Pr(Δj) = Pr(ki) =

1
N . From Bayes’ Theorem, we obtain Pr(ki | Δj) = Pr(Δj |

ki)Pr(ki)/Pr(Δj) = Pr(Δj | ki). Finally using the mutual information formal-
ism, we have the following expression for the mutual information I(K;Δ).

I(K;Δ) =
N∑

i=1

N∑
j=1

Pr(Δj)Pr(ki | Δj) log Pr(ki | Δj) −
N∑

i=1

Pr(ki) logPr(ki)

=
N∑

i=1

N−1∑
j=1
j �=i

(1 − Pr(e))/N2 log
(1 − Pr(e))

N

+
N∑

i=1

((1 − Pr(e))/N2 log
(1 − Pr(e))

N
+ Pr(e)/N(logPr(e))) +

N∑
i=1

1/N log
1

N

= (1 − Pr(e))(log (1 − Pr(e)) − logN) + Pr(e) logPr(e) + logN

= Pr(e)(logN + logPr(e)) + (1 − Pr(e))(log (1 − Pr(e))

(10)

Once again, it can be easily verified that when Pr(e) = 0 the mutual informa-
tion I(K;Δ) = 0, while for any non-zero value of Pr(e) the value of I(K;Δ) > 0.
In particular, for Pr(e) = 1, that is, for a sure attack, I(K;Δ) = N and the
entire key is leaked. Thus we have formally established that a successful in-
struction skip attack leaks information about the key to the adversary. The
amount of information leakage depends on the value of Pr(e) as is evident from
Equation 10.

The Attack Probability Pr(e): We now analyze the probability that the ad-
versary successfully performs the aforementioned attack on the infective coun-
termeasure. Let e be the event that the adversary performs a successful instruc-
tion skip in the nth redundant round by attacking the qth loop of Algorithm
1. Note that the attack is only deemed to be successful if instruction 12 of Al-
gorithm 1 is skipped. Any other instruction skip causes an infection and the
adversary gains no information about the key. Also, if the nth redundant round
coincides with the qth iteration of the algorithm, then the bit string rstr has
- (2n − 2) positions set to 1 among the first q − 1 positions, has the qth bit
set and exactly 1 more bit set among the remaining t − q bits. The probability
of this is given by

(
q−1
2n−2

)(
t−q
1

)
/
(

t
2n

)
. Since there are a total of 9 steps in one



200 S. Patranabis, A. Chakraborty, and D. Mukhopadhyay

iteraton of which only one is to be skipped, assuming single instruction skip,
Pr(e) = 1

9 × ( q−1
2n−2

)(
t−q
1

)
/
(

t
2n

)
Moreover, Pr(e) could be further augmented to

Pr(e, r) by repeating the fault injection experiment independently r times, such
that Pr(e, r) = 1− (1 − Pr(e))r. Note that Pr(e, r) is essentially the probabil-
ity of obtaining at least one useful faulty ciphertext in r fault injections. It is
also interesting to note that for this attack, as the number of dummy rounds
increases Pr(e) decreases.

4.5 The Loopholes in the Infective Countermeasure : A Closer Look

There are two major loopholes in the countermeasure that allow the adversary
to mount the aforementioned attack :

Table 2. Computation of Algorithm 1

Step Redundant Round Cipher Round Dummy Round

5. λ = 1, i is odd λ = 1, i is even λ = 0
6. κ ← 1 κ ← 0 κ ← 2
7. ζ ← �i/2� ζ ← �i/2� ζ ← 0

8. R1 ← RoundFunction(R1, k
ζ) R0 ← RoundFunction(R0, k

ζ) R2 ← RoundFunction(R2, k
0)

9. γ ← 0 γ ← BLFN(R0 ⊕R1) γ ← 0
10. δ ← 0 δ ← 0 δ ← BLFN(R2 ⊕ β)
11. R0 ← R0 R0 ← (¬(γ) · R0)⊕ ((γ) ·R2) R0 ← (¬(δ) ·R0)⊕ ((δ) ·R2)
12. i ← i+ 1 i ← i+ 1 i ← i+ 0
13. q ← q + 1 q ← q + 1 q ← q + 1

1. An inherent drawback of the infective countermeasure is the inability to im-
mediately detect a fault injection in the redundant round. The algorithm
must wait until the corresponding cipher round in order to detect the pres-
ence of the fault. On the other hand, a fault injection in a cipher round or
a dummy round is detected immediately. After a faulty redundant round,
R0 still contains the output of the previous round and is not infected. The
phenomenon is made clear in the highlighted row of Table 2 that captures
the execution flow of the algorithm in the redundant, cipher and dummy
rounds respectively.

2. The execution of the redundant round is merely decided by the fact that
the variable i is odd and λ = 1. There is no way to verify if the redundant
round being executed is indeed a valid one. This makes the round counter
vulnerable to attacks by a malicious agent who can manipulate the value of
the internal variables, as done in the aforementioned attack via an instruction
skip, and trick the algorithm into believing that the round to be executed is
a redundant one. This allows the adversary to skip the final cipher round,
and thus avoid fault detection and infection altogether.

An interesting observation about Algorithm 1 is that the order of the redun-
dant and cipher rounds is fixed. For a given round, the redundant computation
always precedes the cipher computation. This is because both the redundant
and the cipher rounds are denoted by a set bit in the bit vector rstr and are
distinguished by the oddity of i. The randomness is thus limited to the occur-
rence of the dummy rounds in between, represented by the 0’s in rstr. Thus the



Fault Tolerant Infective Countermeasure for AES 201

adversary is guaranteed to obtain the output of the penultimate round if she
can skip the last cipher round and replace it by a redundant round. If, on the
other hand, the relative ordering of the redundant and cipher computations cor-
responding to a single round could also be randomized and the output masked,
then the adversary would have to perform additional instruction skips to get the
unmasked output of the penultimate round. In the following section, we present
a modified version of Algorithm 1 that achieves this randomization.

5 A Modified Infective Countermeasure

In this section we present a modified infective countermeasure algorithm. The
idea is to reduce the probability of the instruction skip attack by making it more
uncertain as to whether the fault is introduced in the redundant or cipher round
of computation. Unlike in the original scheme where the redundant round always
precedes the corresponding cipher round, in the modified version, the order of
the redundant and cipher rounds is scrambled and is encoded by an additional
bit string cstr of length 2n. Each 1 bit in cstr corresponds to a redundant round
and each 0 bit corresponds to a cipher round. Since cipher and redundant pair
of computations are still necessary for each round, cstr is a sequence of (1, 0)
and (0, 1) pairs. The cstr vector may be populated by randomly filling out the
odd positions with 0 or 1 and then setting each even position to the negation
of its preceding odd position. Additionally, in the modified algorithm, both R0

and R1 are masked at the end of each odd computation round and unmasked
at the beginning of the corresponding even computation round. The mask m is
a 128 bit vector and is generated randomly at the beginning of each odd com-
putation round. Algorithm 2 details the steps of the modified countermeasure,

Algorithm 2. Modified Infective Countermeasure

Inputs : P , kj for j ∈ {1, . . . , n}, (β, k0), (n = 11) for AES128
Output : C = BlockCipher(P,K)

1. State R0 ← P , Redundant state R1 ← P , Dummy state R2 ← β
2. i ← 1, q ← 1
3. rstr ← {0, 1}t // #1(rstr) = 2n,#0(rstr) = t − 2n
4. cstr ← {0, 1}2n // #1(cstr) = n,#0(cstr) = n
5. while q ≤ t do
6. λ ← rstr[q] // λ = 0 implies a dummy round while λ = 1 implies a computation

round
7. κ ← (λ · cstr[i]) ⊕ 2(¬λ) // κ = 0 or 1 depending on cstr[i]
8. ζ ← λ · �i/2� // ζ is actual round counter, 0 for dummy
9. m ← (¬(λ) ·m)⊕ (λ · (((¬(i∧ 1)) ·m)⊕ ((i∧ 1).RAND()))) // new m if λ is 1 and

i is odd
10. Rκ ← RoundFunction(Rκ ⊕ (¬(i ∧ 1) · m), kζ) // unmask Rκ if i is even
11. γ ← λ(¬(i ∧ 1)) · BLFN(R0 ⊕ R1 ⊕ (¬(i ∧ 1) · m)) // unmask Rκ̄ if i is even
12. δ ← (¬λ) · BLFN(R2 ⊕ β)
13. R0 ← (¬(γ ∨ δ) · (R0 ⊕ ((i ∧ 1) · m))) ⊕ ((γ ∨ δ) · R2) // mask R0 if i is odd
14. R1 ← (¬(λ) · R1) ⊕ (λ · (R1 ⊕ ((i ∧ 1) · m))) // mask R1 if i is odd and λ is 1
15. i ← i + λ
16. q ← q + 1
17. end
18. return(R0)



202 S. Patranabis, A. Chakraborty, and D. Mukhopadhyay

while Table 3 summarizes the functioning of Algorithm 2. The major differences
between Algorithms 1 and 2 are summarized below:

1. In Algorithm 1 no infection occurs during the redundant round since the
redundant round always occurs prior to the cipher round. On the other
hand, in Algorithm 2, the infection occurs (upon fault detection) in the round
that occurs later, which may be either cipher or redundant, depending on
the content of cstr. This makes the treatment of the redundant and cipher
rounds more symmetric.

2. In Algorithm 2 both R0 and R1 are masked in the end of an odd round and
unmasked in the beginning of the corresponding even round computations.
This ensures that neither R0 nor R1 exposes the output of the previous
round after the end of an odd computation round.

3. In Algorithm 1 between each pair of redundant and cipher computations, R0

retains the unmasked output of the previous round, which could be exploited
by an adversary. On the other hand, in Algorithm 2, R0 holds the masked
output of a previous round only if the bit pair in cstr corresponding to the
current round is (1, 0), the probability of which is 1

2 .

Table 3. Computation of Algorithm 2

Step Computation Round 1 Computation Round 2 Dummy Round

6. λ = 1, i is odd λ = 1, i is even λ = 0
7. κ ← 1 κ ← 0 κ ← 2
8. ζ ← �i/2� ζ ← �i/2� ζ ← 0
9. m ← RAND() m ← m m ← m

10. Rcstr[i] ← RoundFunction(Rcstr[i], k
ζ) Rcstr[i] ← RoundFunction((Rcstr[i] ⊕m), kζ) R2 ← RoundFunction(R2, k

0)
11. γ ← 0 γ ← BLFN(R0 ⊕R1 ⊕m) γ ← 0
12. δ ← 0 δ ← 0 δ ← BLFN(R2 ⊕ β)
13. R0 ← R0 ⊕m R0 ← (¬(γ) ·R0)⊕ ((γ) ·R2) R0 ← (¬(δ) ·R0)⊕ ((δ) · R2)
14 R1 ← R1 ⊕m R1 ← R1 R1 ← R1

15. i ← i+ 1 i ← i+ 1 i ← i+ 0
16. q ← q + 1 q ← q + 1 q ← q + 1

Note: The formal proof of security presented for Algorithm 1 in Section 3 also
holds good for Algorithm 2 under the same assumptions that the attacker cannot
alter the flow sequence or skip instructions. A security analysis for the bit string
cstr is presented in Appendix A. We now analyze the impact of the instruction
skip fault model on Algorithm 2 as well as corresponding attack probabilities.

5.1 Instruction Skip Attack on the Modified Algorithm

We now analyze in greater detail the probability that the adversary can still
mount the same instruction skip attack on Algorithm 2 and obtain the output
of the penultimate round. Note that the adversary would have to skip step 15
of Algorithm 2, which corresponds to the increment of the variable i. Since the
order of redundant and cipher rounds is now random, we simply assume that
the adversary skips step 15 in the penultimate computation round, which could
be either a redundant or cipher round. It is to be noted that irrespective of



Fault Tolerant Infective Countermeasure for AES 203

whether a cipher or redundant round is targeted by the adversary, the value of
i corresponding to this round is odd(as it is the penultimate round). So at the
beginning of this round, a new random value of mask m is generated, and both
R0 and R1 are thus masked at the end of this round. Thus, we have the following
scenarios:

Scenario 1: The Penultimate Computation Is Redundant Computation
If the instruction is skipped during the redundant computation, then the the
last cipher round is replaced by a redundant round. Thus, in this scenario, the
adversary gets a ciphertext which is the output of the penultimate encryption
round XOR-ed with two distinct random values of m generated in the two con-
secutive redundant rounds. Thus, the obtained ciphertext gives the adversary
no extra information about the key.

Scenario 2: The Penultimate Computation Is Cipher Computation
Conversely, if the instruction is skipped during the cipher computation, then
the last redundant round is replaced by a cipher round. Thus, the obtained ci-
phertext is the output of an extra encryption round, but again XOR-ed with two
distinct random values of m generated during the two consecutive cipher rounds.
Hence, even in this scenario, the ciphertext so obtained gives the adversary no
information about the key.

Note that the masking step is important; otherwise in either scenario, the at-
tacker would get the key easily, either from the output of the penultimate cipher
round or the output of the additional cipher round. In the presence of the mask-
ing step, the only way for the adversary to get the output of the penultimate or
the extra round is to also skip the masking step (step 13) in the second redun-
dant/cipher round. Note that Algorithm 2 has 11 instructions in each iteration,
out of which exactly one instruction is to be skipped in either round. Thus, if the
instruction skip attacks are now made in rounds q and q′, the new probability of

a successful attack Pr(ê) becomes 1
112 ×

( q−1
2n−2)(

t−q
1 )

( t
2n)

× (q′−1
2n−1)
( t
2n)

which is less than the

original attack probability. Moreover, even if the attacker skips the desired in-
structions, the output so obtained is either the output of the penultimate round
or the output of the additional round with probability 1

2 . This increases the com-
putational complexity of the attack. Figure 2 presents a theoretical comparison
of the variation of the two attack probabilities Pr(e) (on the original infective
scheme) and Pr(e′) (on our proposed infective scheme) with the target rounds
q and q′. The comparison assumes a specific instance of both schemes with 30
dummy rounds, that is, t = 52 and n = 11. The analysis clearly reveals that
the range of values of Pr(ê) is much lesser compared to Pr(e) for similar attack
scenarios. Finally, as the attack probability on the proposed countermeasure is
lower than on the original scheme, the attack on the proposed countermeasure
should intuitively lead to a lesser information leakage. This is indeed the case as
is proved formally in the following discussion.

A Formal Analysis of the Leakage from the Modified Countermeasure.
We now formally analyze the information leakage due to instruction skip at-



204 S. Patranabis, A. Chakraborty, and D. Mukhopadhyay

(a) Attack Probability on Original Coun-
termeasure

(b) Attack Probability on Modified
Countermeasure

Fig. 2. Instruction Skip Attack Probabilities on the Original and Modified Counter-
measure Schemes

tacks on the augmented infective countermeasure scheme. In the presence of the
masking step, the only way for the adversary to get the output of the penulti-
mate or the extra round is to also skip the masking step in the second redun-
dant/cipher round We consider the following mutually exclusive and exhaustive
events:

– Event ê1: The adversary skips neither the increment step in the penultimate
computation round nor the masking step in the final computation round of
Algorithm 2. Thus in this scenario, the output is either the correct ciphertext
or an infected value that has no correlation with the key.

– Event ê2: The adversary skips only the increment step in the penultimate
computation round but not the masking step in the final computation round
of Algorithm 2. In this scenario, the adversary will obtain the output of the
9th or 11th cipher round; however the output so obtained will be masked
with a random value that has no correlation with the key.

– Event ê: As mentioned already in the preceding discussion, The adversary
skips both the increment step in the penultimate computation round as well
as the masking step in the final computation round of Algorithm 2. In this
scenario, the adversary will obtain the unmasked output of the 9th or 11th

cipher round which can then be used to obtain the key, as discussed in
Section 5.1.

Quite evidently ê1 ∪ ê2 = ¯̂e. Given that ê1 occurs, the output differential Δ
has no correlation with the key K because of the infection. Similarly, given that
ê2 occurs, the output differential Δ again has no correlation with the key K due
to the presence of the masking.

The scenario is different for the event ê. Here for each given key, there are
exactly two output differentials possible, one for the 9th round output and the
other for the 11th round output. Since the output differential depends on the
(2n− 1)

th
bit value of the bit string cstr, each of these occur with probability



Fault Tolerant Infective Countermeasure for AES 205

1/2. We denote this set of possible output differentials corresponding to the key
ki as Δ

i, where | Deltai |= 2.
The modified conditional fault probability distribution expression takes the

form

Pr(Δj | ki) = Pr(Δj | ki, ê)Pr(ê) + Pr(Δj | ki, ¯̂e)Pr(¯̂e)

=

{
1
2Pr(ê) + 1

N (1 − Pr(ê)), if Δj ∈ Δi

1
N (1 − Pr(ê)), otherwise

(11)

The marginal probability distributions are again unaltered and are given
by Pr(Δj) = Pr(ki) = 1

N . From Bayes’ Theorem, Pr(ki | Δj) = Pr(Δj |
ki)Pr(ki)/Pr(Δj) = Pr(Δj | ki). Finally using the mutual information formal-
ism, we have Equation 12 for the mutual information I(K;Δ). Once again, it
can be easily verified that when Pr(ê) = 0 the mutual information I(K;Δ) = 0,
while for any non-zero value of Pr(ê) the value of I(K;Δ) > 0. Note that the
factor of 2 in N/2 comes due to the randomization provided by the bit sting cstr.
This implies even if Pr(ê) = 1 the information leakage is only N/2 bits of the
key and not all N bits. This emphasizes the advantage of randomizing the order
of cipher and redundant rounds using the bit string cstr.

I(K;Δ) =

N∑
i=1

N∑
j=1

Pr(Δj)Pr(ki | Δj) logPr(ki | Δj) −
N∑

i=1

Pr(ki) log Pr(ki)

=

N∑
i=1

N−2∑
j=1

Δj /∈Δi

(1 − Pr(ê))/N
2
log

(1 − Pr(ê))

N

+

N∑
i=1

2∑
j=1

Δj∈Δi

((1 − Pr(ê))/N
2
log

(1 − Pr(ê))

N
+ Pr(ê)/2N(log

Pr(ê)

2
))

+

N∑
i=1

1/N log
1

N

≈ (1 − Pr(ê))(log (1 − Pr(ê)) − logN) + Pr(ê)(logPr(ê) − 1) + logN

= Pr(ê)(log (N/2) + logPr(ê)) + (1 − Pr(ê)) log (1 − Pr(ê))

(12)

6 Simulation and Experimental Results

In this section, we present results of performed instruction skip attacks mounted
on the three different versions of the infective countermeasures for AES128 -
Algorithm 1 and Algorithm 2. The results involve both simulation studies as well
as real-life experimental results using a Xilinx MicroBlaze soft-core processor in
Spartan 6 FPGA of SASEBO-W board.

6.1 Simulation Results

The simulation experiments involved inflicting random instruction skips on 105

runs of C implementations of each countermeasure scheme for a given number of



206 S. Patranabis, A. Chakraborty, and D. Mukhopadhyay

0 10 20 30 40 50

0

0.5

1

1.5

·104

Number of Random Dummy Rounds

A
v
er
a
g
e
N
u
m
b
er

o
f
F
a
u
lt

In
je
ct
io
n
s
p
er

S
u
cc
es
s

Algorithm 1

Algorithm 2

(a) Attack Efficiency vs Dummy
Rounds

0 10 20 30 40 50

20

40

60

80

Number of Random Dummy Rounds

A
v
er
a
g
e
In
fo
rm

a
ti
o
n
L
ea
ka

g
e
(I
n
B
it
s
o
f
K
ey

)

Algorithm 1

Algorithm 2

(b) Information Leakage vs
Dummy Rounds

Fig. 3. Simulation results

0 10 20 30 40 50

0

0.5

1

1.5

·105

Number of Random Dummy Rounds

F
a
u
lt

In
je
ct
io
n
s
p
er

u
se
fu
l
fa
u
lt
y
ci
p
h
er
te
x
t

Algorithm 1: 128.0 MHz

Algorithm 1: 128.4 MHz

Algorithm 1: 128.8 MHz

Algorithm 2: 128.0 MHz

Algorithm 2: 128.4 MHz

Algorithm 2: 128.8 MHz

(a) Results at Lower Frequencies

0 10 20 30 40 50

0

1

2

·104

Number of Random Dummy Rounds

F
a
u
lt

In
je
ct
io
n
s
p
er

u
se
fu
l
fa
u
lt
y
ci
p
h
er
te
x
t

Algorithm 1: 129.2 MHz

Algorithm 1: 129.6 MHz

Algorithm 1: 130.0 MHz

Algorithm 2: 129.2 MHz

Algorithm 2: 129.6 MHz

Algorithm 2: 130.0 MHz

(b) Results at Higher Frequencies

Fig. 4. Experimental Results

dummy rounds. The 128 bit plaintext and the 128 bit key were both randomly
chosen, but the same input-key pair was used across all countermeasure schemes
for normalization of results. Figures 1a and 1b summarize the results thus ob-
tained. We note that for the same number of dummy rounds, the number of
fault injections required by Algorithm 2 is approximately double the number of
fault injections required for Algorithm 1, while the information leakage is about
30−40% less for Algorithm 2. This is in accordance with the fact that the proba-
bility of a successful fault injection in Algorithm 2 is less than the corresponding
probability for Algorithm 1 for a given number of dummy rounds.

6.2 Experimental Results

The experimental set up consisted of an FPGA (Spartan-6 XC6SLX150) on a
SASEBO-W platform, Xilinx SDK and an external arbitrary function genera-
tor (Tektronix AFG3252). The FPGA had a DUT (Device Under Test) block,
which consisted of an infective countermeasure implementation for AES128 on
a Xilinx MicroBlaze softcore processor. Instruction skip faults were injected in
the DUT using clock glitches. The external clock signal clkext was supplied from



Fault Tolerant Infective Countermeasure for AES 207

the function generator. The high frequency clock signal clkfast was then de-
rived from the clkext signal via a Xilinx Digital Clock Manager (DCM) module
and supplied to the DUT. We inflicted instruction skip attacks on each of the
three infective countermeasure implementations by causing critical path viola-
tions using clkfast. We compared the number of fault injections required per
useful faulty ciphertext for each of the countermeasure schemes at six different
clkfast frequencies and for the number of the dummy rounds set at 0, 10, 20,
30, 40 and 50 respectively. We performed the fault injection trials in a range
of clkfast frequencies such that the faulty ciphertexts thus obtained were useful
ones. Figures 2a and 2b summarize the experimental results. It is observed that
the number of fault injections per useful ciphertext increases with an increase in
the number of dummy rounds for each version of infective countermeasures. Also,
the number of fault injections per useful ciphertext decreases with an increase
in clock frequency due to increased fault occurrences.

7 Conclusions

The paper shows that a recently proposed infective countermeasure is formally
secure against DFA under the assumption that an attacker cannot subvert the
control flow or skip instructions. The paper identifies that such threats against
the countermeasure exist because the scheme has a fixed ordering of the re-
dundant and cipher rounds, leading to the fact that a fault in the redundant
round is detected in the subsequent cipher round. This leads to the exposure of
the previous round output which can lead to trivial attacks. Furthermore, the
validity of a redundant round is not checked in the proposal. The paper then
proposes a countermeasure scheme against instruction skip attacks. In order to
reduce the attacker’s success probability, the paper proposes suitable random-
izations in the ordering of the redundant and cipher rounds, along with masking
the previous round outputs. Detailed simulations and real life experiments have
been performed on a MicroBlaze implementation of the countermeasure schemes
on a SASEBO-W board, injected with faults via clock glitches. The experiments
have demonstrated that the overall resistance to fault attacks is higher for the
proposed version of the infective countermeasure scheme as compared to the
already existing scheme.

References

1. Malkin, T., Standaert, F.-X., Yung, M.: A comparative cost/security analysis of
fault attack countermeasures. In: Breveglieri, L., Koren, I., Naccache, D., Seifert,
J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 159–172. Springer, Heidelberg (2006)

2. Maistri, P., Leveugle, R.: Double-data-rate computation as a countermeasure
against fault analysis. IEEE Transactions on Computers 57(11), 1528–1539 (2008)

3. Patranabis, S., Chakraborty, A., Nguyen, P.H., Mukhopadhyay, D.: A Biased
Fault Attack on the Time Redundancy Countermeasure for AES. In: Mangard, S.,
Poschmann, A.Y. (eds.) COSADE 2015. LNCS, vol. 9064, pp. 189–203. Springer,
Heidelberg (2015)



208 S. Patranabis, A. Chakraborty, and D. Mukhopadhyay

4. Lomné, V., Roche, T., Thillard, A.: On the Need of Randomness in Fault At-
tack Countermeasures - Application to AES. In: Bertoni, G., Gierlichs, B. (eds.)
Fault Diagnosis and Tolerance in Cryptography – FDTC 2012, pp. 85–94. IEEE
Computer Society (2012)

5. Gierlichs, B., Schmidt, J.-M., Tunstall, M.: Infective Computation and Dummy
Rounds: Fault Protection for Block Ciphers without Check-before-Output. In:
Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 305–321.
Springer, Heidelberg (2012)

6. Battistello, A., Giraud, C.: Fault Analysis of Infective AES Computations. In:
Fischer, W., Schmidt, J.-M. (eds.) Fault Diagnosis and Tolerance in Cryptography
– FDTC 2013, pp. 101–107. IEEE Computer Society Press (2013)

7. Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Destroying fault invariant with
randomization. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731,
pp. 93–111. Springer, Heidelberg (2014)

8. Schmidt, J., Herbst, C.: A practical fault attack on square and multiply. In:
5th Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2008,
pp. 53–58. IEEE (2008)

9. Barenghi, A., Bertoni, G.M., Breveglieri, L., Pelosi, G.: A fault induction technique
based on voltage underfeeding with application to attacks against aes and rsa.
Journal of Systems and Software 86(7), 1864–1878 (2013)

10. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box character-
ization of the effects of clock glitches on 8-bit mcus. In: 2011 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), pp. 105–114. IEEE (2011)

11. Dehbaoui, A., Dutertre, J.-M., Robisson, B., Tria, A.: Electromagnetic transient
faults injection on a hardware and a software implementations of aes. In: 2012
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 7–15.
IEEE (2012)

12. Trichina, E., Korkikyan, R.: Multi fault laser attacks on protected crt-rsa. In: 2010
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 75–86.
IEEE (2010)

13. Choukri, H., Tunstall, M.: Round reduction using faults. FDTC 5, 13–24 (2005)

14. Dutertre, J.-M., Mirbaha, A.-P., Naccache, D., Ribotta, A.-L., Tria, A., Vaschalde,
T.: Fault round modification analysis of the advanced encryption standard. In:
2012 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), pp. 140–145. IEEE (2012)

15. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromag-
netic fault injection: towards a fault model on a 32-bit microcontroller. In: 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 77–88.
IEEE (2013)

16. Heydemann, K., Moro, N., Encrenaz, E., Robisson, B.: Formal verification of a
software countermeasure against instruction skip attacks. In: PROOFS 2013 (2013)

17. Schmidt, J., Medwed, M.: A fault attack on ecdsa. In: 2009 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), pp. 93–99. IEEE (2009)

18. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: Theory, practice, and countermeasures. Proceedings of the
IEEE 100(11), 3056–3076 (2012)



Fault Tolerant Infective Countermeasure for AES 209

A Security of the Bit String cstr in the Modified
Countermeasure

Algorithm 2 uses an additional bit string cstr to randomize the order of redun-
dant and cipher computations. Hence it is important to examine the security of
cstr as well. Note that cstr is a sequence of 01 and 10 pairs, because the coun-
termeasure must duplicate the computation of each round for fault detection. It
is only the order of the redundant and cipher computations for each round that
is scrambled using cstr. An adversary might therefore try to upset the order of
round execution by performing bit flips or stuck-at fault attacks on cstr.

– Bit-Flips: A single bit flip in cstr would result in either two consecutive
redundant rounds or two consecutive cipher rounds. In either scenario, the
same register would be updated twice in both rounds - R1 for redundant or
R0 for cipher round respectively. The algorithm will automatically detect the
fault in the second computation, as one of R0 or R1 will contain the output
of the current round while the other still contains the output of the previous
round. Thus as long as the variable i is incremented appropriately after
each round computation, the algorithm is fault-tolerant to single bit upsets
on cstr. However, the adversary could reverse the order of the redundant
and original computations corresponding to a round r by flipping both the
(2r − 1)th and (2r)th bits. In such a scenario, the algorithm cannot detect
that the order of the redundant and cipher computations has been reversed.
However, in that case, the adversary must make sure that both the bits of
cstr that are flipped correspond to computations for the same round, which
demands slightly greater precision than a naive two bit flip attack. For the
naive attack, the probability of appropriate bit flips is (n− 1)/

(
n
2

)
, which is

much smaller than the single bit flip probability. It is important to note that
the adversary cannot skip any round by only attacking the bit string cstr
because it only decides the order of the redundant and cipher computation.
Moreover, since the adversary has no idea about the content of cstr, the
probability that the rth bit pair is 01 or 10 is still 1/2 and gives the adversary
no extra advantage towards other fault attacks such as instruction skips.

– Stuck-at Faults: A possible stuck at fault on the bit string cstr would
be to set the last bit pair to 01 or 10 thus fixing the relative order of the
last redundant-cipher round pair. Any other instance of stuck-at fault attack
including single bit stuck-at faults would be easily discoverable and would
either result in infection or normal operation (depending on if the fault has
flipped the bit value). Fixing the relative order of the final pair of compu-
tation rounds reduces the uncertainty but as in Algorithm 1 the adversary
would still have to perform a successful instruction skip to take advantage
of this reduction. Due to the presence of the masking the probability of
the instruction skip attack on the modified countermeasure would be less as
compared to the original countermeasure. Moreover, achieving a stuck-at-
zero fault on one of the bits and a stuck-at-one fault on the other requires
high precision and the attack probability is as low as 1

n2 .



Modified Transparency Order Property:

Solution or Just Another Attempt

Stjepan Picek1,2, Bodhisatwa Mazumdar3,
Debdeep Mukhopadhyay4, and Lejla Batina2,5

1 Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
2 ICIS - Digital Security Group, Radboud University Nijmegen, The Netherlands

3 New York University Abu Dhabi, Abu Dhabi
4 Department of Computer Science and Engineering,

IIT Kharagpur, Kharagpur, India
5 ESAT/COSIC, KU Leuven, Belgium

Abstract. S-boxes are usual targets of side-channel attacks and it is an
open problem to develop design techniques for S-boxes with improved
DPA resistance. One result along that line is the transparency order, a
property that attempts to characterize the resilience of S-boxes against
DPA attacks. Recently, it was shown there exist flaws with the original
definition of transparency, which resulted in the new definition - modified
transparency order. This paper develops techniques for constructions us-
ing the modified transparency as a guiding metric. For the 4 × 4 size,
we significantly improve modified transparency order while remaining in
the optimal classes. Experimental results are provided assuming a noisy
HW leakage model to show the proposed S-boxes are more resistant than
the original one of the PRESENT algorithm. We conclude with reports
on 4× 4 and 8× 8 S-boxes where the results indicate that the modified
transparency order could be a more useful metric than the transparency
order. However, both measures are far from definitive solution on how
to improve the DPA resistance.

Keywords: S-box, Modified transparency order, DPA-resilience,
Lightweight cryptography.

1 Introduction

When discussing the security of modern block ciphers, it is often natural to
discuss it through the prism of resilience against certain cryptographic attacks.
Alongside differential [1] and linear [2] cryptanalysis, it is expected today that the
algorithm possesses resistance also against side-channel attacks [3]. In order to
defend against the first two types of cryptanalysis, Substitution Boxes (S-boxes)
play a significant role. In fact, in many block ciphers, S-box is the only nonlinear
part and therefore fundamental for the security of a whole cipher [4]. Somewhat
surprising, in recent years researchers found that S-boxes have inherent resistance
against side-channel analysis (SCA) (some more and some less). Naturally, there

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 210–227, 2015.
DOI: 10.1007/978-3-319-24126-5�13



Modified Transparency Order Property: Solution or Just Another Attempt 211

exist numerous countermeasures such as various hiding and masking schemes
that improve the algorithm resiliency to SCA [5].

First property that connected S-boxes and their resistance against side-channel
attacks was SNR (DPA) [6]. Next, Prouff introduced transparency order [7], a
property that characterizes the resistance of S-boxes to the SCA or more pre-
cisely to differential power analysis (DPA) [8]. Later, Fei introduced confusion
coefficient where it is possible to separate the target device, the number of traces
and the algorithm under the examination [9–12]. Up to now, transparency order
received the most interest so we can speak about a whole line of research about
the transparency order property as it is detailed below in Section 1.1.

Recently, Chakraborty et al. showed that the original transparency order def-
inition is flawed and they proposed amendments to it that resulted in the modi-
fied transparency order property. However, until now, there has been no practical
examination of this new property.

In accordance with that, in this paper we concentrate on generating S-boxes
that have good values of modified transparency order property. By good values,
we mean such values that are better than those found in currently used S-boxes.

When generating S-boxes we concentrate on the two most widely used S-
box sizes; more precisely, 4 × 4 and 8 × 8. The first one is used in lightweight
cryptographic algorithms like PRESENT [13] or PRINCE [14] while the second
one is used in what is probably the most well-known cryptographic algorithm in
the world - AES [15]. In doing so, we experiment with three different approaches
when generating S-boxes: random search, heuristics and affine transformation.

After presenting the newly generated S-boxes for both sizes, we also give SCA
experiments, but only for 4× 4 size. This is due to the two reasons: the first one
is that our new S-box has all the same properties as the S-boxes currently used
except it is superior in modified transparency order property. The second reason
is that our S-box is possible to implement only as a lookup table which does not
represent a difficulty for that size. When considering 8 × 8 size, both of those
arguments do not hold.

1.1 Related Work

Leander and Poschmann classify all optimal 4 × 4 S-boxes [4]. Some exam-
ples of algorithms using optimal S-boxes are PRESENT [13], PRINCE [14] and
Noekeon [16].

Regarding modified transparency order property, except for the paper that
presented the property [17], there are currently no other works. However, when
discussing the original transparency order property there are many (sometimes
contradicting) results. After Prouff in 2005 defined transparency order [7], for a
couple of years this property did not attract a lot of attention. However, from
2012 there have been several works exploring that property. Mazumdar et al.
construct rotation symmetric S-boxes with high nonlinearity and DPA resis-
tance [18]. The same authors use constrained random search to find S-boxes
with low transparency order and high nonlinearity [19]. Picek et al. use heuris-
tics to evolve S-boxes that have improved values of transparency order property



212 S. Picek et al.

for 8 × 8 size [20] and 4 × 4 size [21]. The same authors investigate one more
measure, namely, confusion coefficient that characterizes the resilience of S-boxes
against DPA attacks [22]. Evci and Kavut show the minimal affine transforma-
tion needed to change transparency order property [23]. Nguyen et al. investigate
the influence of transparency order property on Serpent-type S-boxes [24].

1.2 Our Contributions

There are two main contributions in this paper. Our first contribution is that, to
our best knowledge, we are the first to generate S-boxes with improved values of
modified transparency order property. In order to do that we use two techniques;
heuristics and affine transformation. For the 4× 4 size, we find the best possible
value of modified transparency order as well as lower and upper bounds for all
16 optimal classes. The second contribution is extensive DPA analysis of several
newly generated S-boxes as well as their comparison with the PRESENT S-box.

The remainder of this paper is organized as follows: Section 2 gives basic in-
formation about cryptographic properties of S-boxes. In Section 3, we present
S-boxes that have improved values of modified transparency order. Furthermore,
we give a comparison between several methods capable of generating S-boxes.
Side-channel analysis of a number of S-boxes with improved modified trans-
parency order values as well as PRESENT S-box is presented in Section 4. Fi-
nally, in Section 5, we conclude the paper.

2 Preliminaries

Here, we present basic notions about cryptographic properties of S-boxes that
are of direct interest in this research.

2.1 Optimal S-boxes

First, it would be beneficial to offer an answer which S-boxes are actually suit-
able in practice. When considering 4 × 4 S-boxes, there exist in total 16! bijec-
tive S-boxes which is approximately 244 options to search from. Leander and
Poschmann define optimal S-boxes as those that are bijective, have linearity
equal to 8 and δ-uniformity equal to 4. Since the linearity that equals 8 is the
same as nonlinearity of 4, we continue using the nonlinearity property instead
of the linearity. By using some shortcuts they found that all optimal S-boxes
belong to 16 classes, i.e. all optimal S-boxes are affine equivalent to one of those
16 classes [4].

Therefore, for the 4× 4 S-box size, we concentrate only on optimal S-boxes as
those of practical interest. Indeed, as far as the authors know, all ciphers that
use 4× 4 S-boxes actually use optimal S-boxes [13, 14, 16, 25].

For the 8 × 8 size, there exists no such classification, but in general it is
believed that nonlinearity of 112 is the maximum possible and therefore the best
S-boxes should reach that nonlinearity [26]. There are other conditions except



Modified Transparency Order Property: Solution or Just Another Attempt 213

the nonlinearity property, but highly nonlinear S-boxes usually also have other
classical properties with good values [26,27]. In accordance to that, for the 8× 8
size, we restrict our attention to the same properties as for the 4× 4 size.

2.2 Cryptographic Properties of S-boxes

Here, we discuss the properties that are used to define optimal S-boxes: bijectiv-
ity, nonlinearity and δ-uniformity [4]. Besides those properties, we also formally
introduce two properties that constitute the core of this research: transparency
order and modified transparency order.

The addition modulo 2 is denoted as “ ⊕ ”. The inner product of vectors ā
and b̄ is denoted as ā · b̄ and equals ā · b̄ = ⊕n

i=1aibi.
Function F, called S-box or vectorial Boolean function, of size (n,m) is defined
as any mapping F from Fn

2 to Fm
2 [7].

The Hamming weight HW of a vector ā, where ā ∈ F
n
2 , is the number of

non-zero positions in the vector.
An (n,m)-function is called balanced if it takes every value of Fm

2 the same
number 2n−m of times [26]. Balanced (n, n)-functions are permutations on Fn

2 .
Nonlinearity NLF of an (n,m)-function F equals the minimum nonlinearity

of all non-zero linear combinations b̄ · F of its coordinate functions fi, where
b̄ �= 0 [28]:

NLF = 2n−1 − 1

2
max ā ∈ F

n
2

v̄ ∈ F
m∗
2

|WF (ā, v̄)|. (1)

Here, WF (ā, v̄) represents the Walsh-Hadamard transform of F [7]:

WF (ā, v̄) =
∑
x̄∈Fn

2

(−1)v̄·F (x̄)⊕ā·x̄. (2)

Differential delta uniformity δ represents the largest value in the difference
distribution table without counting the value 2n in the first row and first column
position [1, 26, 29].

Prouff introduced transparency order property of S-boxes which can be de-
fined for a (n,m)-function as follows [7]:

TF = maxβ̄∈Fm
2
(|m− 2HW (β̄)| − 1

22n − 2n∑
ā∈Fn∗

2

|
∑

v̄ ∈ F
m
2

HW (v̄) = 1

(−1)v̄·β̄WDaF (0̄, v̄)|). (3)

Here, WDaF represents Walsh-Hadamard transform of the derivative of F
with respect to a vector a ∈ Fn

2 . For further information about the transparency
order property, we refer readers to [7, 28].

Recently, researchers presented modified transparency order property in or-
der to deal with some errors in the original definition [17]. This new, modified
transparency order property equals:



214 S. Picek et al.

MTF = maxβ̄∈Fm
2
(m− 1

22n − 2n

∑
ā∈Fn∗

2

m∑
j=1

|AFj (a) +

m∑
i=1,i�=j

(−1)βi⊕βjCFi,Fj (a)|),
(4)

where AFj (a) represents the autocorrelation function of F and CFi,Fj (a) repre-
sents the crosscorrelation function. The crosscorrelation CFi,Fj (a) between func-
tions Fi and Fj equals:

CFi,Fj (a) =
∑

x∈{0,1}n
(−1)Fi(x)⊕Fj(x⊕a). (5)

We do not give an exhaustive explanation behind the modified transparency
order, but rather we enumerate main problems with the original definition of
transparency order which are corrected in the new, modified measure. In [19], it
was shown that the autocorrelation spectra properties of the coordinate functions
have a bearance on the resistivity of the S-box towards power analysis attacks.
Further, the crosscorrelation term in the modified transparency order show that
the coordinate functions when selected in a pairwise fashion, also affect the
resistance to the power based side-channel attacks. Therefore, along with the
differential uniformity [30], several cryptographic properties of an S-box such
as the autocorrelation spectra and the crosscorrelation spectra properties also
determine the side-channel resistivity of an S-box.

In the transparency order property, there is a maximization over all values
of β which is shown to be redundant. Next, the crosscorrelation terms between
coordinate functions is assumed to be 0 in the original definition which is not
the case in general. Finally, when considering lower bound in the original trans-
parency order, it is calculated for bent functions, but the property itself is defined
only for balanced functions [17]. In the original definition of the transparency
order, the coordinate functions of an S-box are assumed to be balanced, which
though correct for popular S-boxes in block ciphers, is not correct on the entire
space of S-box functions. This makes the definition of original transparency order
incorrect for S-boxes with unbalanced coordinate functions like bent functions.
For instance, it was shown in Chakraborty et al. that for an S-box with pairwise
complement coordinate functions which are bent, DPA is not possible [17]. But
from the definition, transparency order is maximum for such S-boxes, which in-
dicates high vulnerability towards the DPA attacks. This contradiction renders
the original definition of transparency order incorrect.

2.3 Affine Equivalence

For two (n, n)-functions S1 and S2 to be affine equivalent, the following equation
needs to hold:

S2(x) = B(S1(A(x) ⊕ a))⊕ b, (6)

where A and B are invertible n× n matrices and a, b are constants in F
n
2 .



Modified Transparency Order Property: Solution or Just Another Attempt 215

Picek et al. showed that affine transformation can be used to generate affine
equivalent S-boxes that have different values of the transparency order and the
confusion coefficient properties [21, 22].

3 Generating S-boxes

In this section, we use several techniques to generate S-boxes with improved
modified transparency order. Furthermore, we conduct a comparison between
those methods and give an analysis of the lower and upper bounds for the mod-
ified transparency order of 4× 4 S-boxes.

3.1 Random Search

For random search, solutions are generated by creating uniformly at random a
permutation list of values from 0 to 2n−1. Distribution of the random S-boxes
values is shown in Table 1 for the 4× 4 size and Table 2 for 8× 8 size.

Table 1. Distribution of random S-boxes property values, 4× 4, 5 000 evaluations.

Property Max Min Mean Std. dev.

NLF 4 0 2.1 0.69

δ-uniformity 16 4 6.7 1.37

MTF 2.93 1.6 2.44 0.14

Table 2. Distribution of random S-boxes property values, 8× 8, 1 000 evaluations.

Property Max Min Mean Std. dev.

NLF 98 84 92.57 2.13

δ-uniformity 16 10 11.37 1.21

MTF 6.9 6.83 6.86 0.01

3.2 Genetic Algorithm

In accordance with the related works, e.g. [21,31], we experiment with heuristics
to evolve S-boxes that have good modified transparency order values. For the
algorithm of the choice, we use genetic algorithm (GA) since it proved to be
a good choice in related works. We emphasize that the genetic algorithm does
not necessarily represent the best possible approach how to solve this problem,
but rather an option one has at his disposal. For a detailed explanation about
genetic algorithms, we refer interested readers to [32].



216 S. Picek et al.

To represent the problem, we use a permutation representation where an S-
box is represented with decimal values between 0 and 2n − 1, where each of
those values is one entry for the S-box lookup table. For the permutation repre-
sentation, a mutation operator is selected uniformly at random between insert
and inversion mutation [32]. Recombination operator is selected uniformly at
random between the partially mapped crossover (PMX) [33] and order crossover
OX [34]. Both of those crossover operators are among the most common ones
for the permutation encoding.

Fitness Functions. When investigating 4×4 size, fitness function combines all
the properties that the optimal S-box must have plus the modified transparency
order. The goal is to maximize the following function:

fitness = NLF + (n−MTF ) + (2n − δ). (7)

We subtract MTF and δ-uniformity values from the maximum obtainable
values since we represent the problem as a maximization problem and those
properties need to be as small as possible.

For the 8 × 8 case, fitness function equals the sum of nonlinearity (NF ) and
modified transparency order as follows:

fitness = NLF + (n−MTF ). (8)

For this size, we do not add δ-uniformity to the equation since all our ex-
periments show that it does not help in converging to better solutions, but just
makes the evolution process longer.

Common Parameters. Parameters for the GA are the following: the sizes of
(n, n)-function are 4 and 8, number of independent runs for each evolutionary
experiment is 50 and the population size is 50. Tournament size in steady-state
tournament selection is equal to 3. Mutation probability is set to 0.3 per indi-
vidual. This mutation rate is set on a basis of tuning phase where it showed
good results. The evolution process lasts until there is 50 generations without
improvement of the best solution. Common parameters are additionally given in
Table 3.

3.3 Evolved S-boxes

For the 4× 4 size, the best value of modified transparency order we found with
the genetic algorithm is 1.9 for an optimal S-box. The transparency order and
the modified transparency order values for our evolved S-box as well as for the
PRESENT S-box and random S-box are presented in Table 4.

Next, in Table 5, we display a solution that have the best modified trans-
parency order (1.9) property that we found with the genetic algorithm and that
belongs to the one of the optimal classes.

As it can be seen, for the 4 × 4 size, it is possible to obtain S-box that has
significantly lower value of modified transparency order while remaining in one



Modified Transparency Order Property: Solution or Just Another Attempt 217

Table 3. Common parameters for GA.

Parameter Parameter value

Tournament size k 3
Population size 50
Number of experiments 50
Mutation probability 0.3 per individual
Stopping criterion 50 generations without improvement

Table 4. Properties of evolved S-boxes, modified transparency order, 4 × 4.

S-box MTF TF

PRESENT 2.467 3.53
Random S-box 2.44 3.47
Evolved S-box 1.9 3.267

Table 5. S-box evolved with the genetic algorithm.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 2 0 C 6 A E F 7 3 1 8 4 9 D B 5

of the optimal classes. Next, we display results for the 8× 8 size in Table 6. As
it can be seen, in this case properties like the nonlinearity, δ-uniformity, GAC
(ΔF and σF ) [35] significantly deteriorate for the evolved S-boxes. In Figures 1
and 2, we display results for random, AES and evolved S-boxes for sizes 4 × 4
and 8× 8, respectively.

3.4 Affine Transformations

It has been shown that the transparency order property is not affine invariant
under certain affine transformations [21]. Therefore, we investigate whether the
same applies when considering modified transparency order property. We apply
four affine transformations as given in [21], where we see that the transformations
3 and 4 change the modified transparency order values (as is the case for the
transparency order property [21]). Those affine transformations are based on
Eq. (6).

By following the reasoning from [23], we observe that we can apply the same
transformation as in that work in order to conduct an exhaustive search. That
affine transformation has the following form:

S2(x) = B(S1(x)). (9)

Note that the affine transformation in Eq. (9) is the special form of transfor-
mations 3 and 4 from [21] where constants c and d equal 0 and matrix B is the
identity matrix.



218 S. Picek et al.

Table 6. Properties of evolved S-boxes, modified transparency order, 8 × 8.

S-box NLF MTF TF δ ΔF σF

AES S-box 112 6.916 7.86 4 32 133120

Random S-box 92 6.869 9.173 12 96 272128

Evolved S-box 1 100 6.815 7.761 10 104 258304

Evolved S-box 2 98 6.67 7.7 14 96 272896

Fig. 1. Nonlinearity versus modified transparency order, 4× 4.

Fig. 2. Nonlinearity versus modified transparency order, 8× 8.



Modified Transparency Order Property: Solution or Just Another Attempt 219

Results of exhaustive search for all 16 optimal classes’ lower and upper bounds
are given in Table 7. Additionally, we offer results for class representatives where
G1 to G15 are the usual acronyms for the 16 optimal S-box classes.

Table 7. Modified transparency values, 4× 4 size.

S-box MTF

Min Max Class representative

G0 2.067 3 2.23

G1 1.9 2.8 2.53

G2 2.03 2.867 2.56

G3 2.4 2.8 2.46

G4 2.3 2.83 2.56

G5 2.33 2.93 2.53

G6 2.23 2.73 2.46

G7 2.26 2.7 2.53

G8 2.03 2.867 2.3

G9 2.167 2.8 2.5

G10 2.167 2.767 2.36

G11 2.23 2.667 2.46

G12 2.33 2.83 2.5

G13 2.26 2.9 2.66

G14 2.2 2.93 2.6

G15 2.13 2.9 2.5

We see there is only one class that reaches the minimal value of 1.9 and there
are 10 different maximal values over all classes. In Figure 3, we give a frequency
distribution of all values under the affine transformation from Eq. (9) for the
optimal class G1.

Note that the best value from the exhaustive search is the same as from the
genetic algorithm. This shows that such heuristics should present a viable choice
when generating S-boxes of comparable sizes. For larger sizes we believe heuris-
tics like genetic algorithms are not appropriate. This stems from two important
facts. The first one is that the generated S-boxes have significantly worse val-
ues for properties like the nonlinearity and δ-uniformity. The second reason is
that the equation for calculating the modified transparency order is much more
complex and computationally demanding than in the case of e.g. original trans-
parency order property. This results in relatively slow evaluation of the modified
transparency order property, a fact not so important when it is necessary to



220 S. Picek et al.

Fig. 3. Frequency distribution of MTF values for the class G1.

run the equation only a several times. However, for heuristics like genetic algo-
rithm where the number of evaluations can be rather large, this means the whole
process will be long.

When considering 8×8 size, it is not possible to conduct an exhaustive search
since the search space is still to large. Therefore, we run experiment with the
affine transformation as for the 4 × 4 size, but for 1 000 randomly generated B
matrices. The best value we found equals 6.89 (while AES S-box has 6.916).

4 Success Rate Evaluation of DPA Attacks on the
Synthesized S-boxes

In this section, we evaluate the generated 4 × 4 S-boxes when these S-boxes
are subjected to key-recovery attacks like differential power analysis (DPA) in
the form of statistical analysis of the physically observables like power traces
to efficiently discriminate the secret key. In this set of experiments, we consider
Pearson’s coefficient as the statistical analysis parameter.

In this experiment, we consider the standalone module of an S-box to which
the input is the XOR of the secret key and the input message. We employ the
security metric called success rate to measure how easily the physical observable
can be turned into a successful attack [36]. The efficiency of a side-channel attack
to reach a certain success rate (e.g. 80%) is the minimum average number of
queries such that the success rate of this attack attains the value (80%). Here,
we measure this efficiency of the DPA attacks in terms of number of queries
required to extract the secret key.



Modified Transparency Order Property: Solution or Just Another Attempt 221

We inspect the Gaussian noise distribution N with zero mean and standard
deviation σ added to the Hamming weight of the S-box output S(x⊕ k) as the
physically observable power trace. From the literature, this is the standard power
model for hardware implementation and as for the software implementation, this
power model in the microprocessor is applied on each instruction execution [3].

In order to evaluate the success rate, we observe the number of successful
attempts to extract the secret key out of several random attempts to attack on
an average. The success rate of the correlation analysis DPA attacks with noise
with standard deviation values from 0.1 to 2.0 on the synthesized S-boxes is
shown in Fig. 4. We also perform the same experiment on the PRESENT 4× 4
S-box whose results are shown in Fig. 5. In comparison of success rate results
in both the figures, we find that in the presence of noise with high standard
deviation, the success rate of DPA attacks of the synthesized S-boxes is less
than that of the PRESENT S-boxes.

From Table 8, for Gaussian noise with standard deviation as high as 2.0,
the maximum success rate attained in our class of synthesized S-boxes is less
than half of that of PRESENT S-box. In the case the standard deviation of the
Gaussian noise is small, the number of queries required to attain a success rate
of 80% in case of our synthesized S-boxes is lesser compared to the PRESENT
S-box. Furthermore, in the same table we give data about the transparency
order and confusion coefficient values for all S-boxes. We can observe that the
properties are not in line, e.g. different properties point that different S-boxes
have the best DPA resistance. Further, the success rate for small number of
queries is very small in both PRESENT S-box as well as our class of synthesize S-
boxes. Also, contrary to the fact that the success rate of correlation DPA should
increase with increasing number of queries, the dip in success rates (especially
for PRESENT S-box) is significant for some regions of increasing queries. Similar
results were observed in existing literature for classification rates of S-boxes with
increasing number of queries [37].

Table 8. Comparison of modified transparency order parameter with success rates of
the DPA attacks

S-box TF MTF Conf. coeff. # queries to reach 100%
success rate (SD=0.1)

Max success
rate (SD=2.0)

PRESENT 3.533 2.467 1.709 8 65%

S-box 1 3.267 1.9 1.145 8 28%

S-box 2 3.4 2.167 1.615 10 32%

S-box 3 3.333 2.2 1.615 8 35%

S-box 4 3.4 2.233 1.145 7 34%

S-box 5 3.467 2.267 1.145 6 32%

S-box 6 3.467 2.3 0.956 11 34%



222 S. Picek et al.

(a) Success rate plots for the correlation analysis DPA on sim-
ulated power traces of S-box 1.

(b) Success rate plots for the correlation analysis DPA on sim-
ulated power traces of S-box 2.

(c) Success rate plots for the correlation analysis DPA on sim-
ulated power traces of S-box 3.

(d) Success rate plots for the correlation analysis DPA on sim-
ulated power traces of S-box 4.

Fig. 4. Success rate plots for the correlation analysis DPA on simulated power traces
of the generated S-boxes.



Modified Transparency Order Property: Solution or Just Another Attempt 223

(e) Success rate plots for the correlation analysis DPA on sim-
ulated power traces of S-box 5.

(f) Success rate plots for the correlation analysis DPA on sim-
ulated power traces of S-box 6.

Fig. 4. (Continued)

Fig. 5. Success rate plots for the correlation analysis DPA on simulated power traces
of PRESENT S-box.



224 S. Picek et al.

Although smaller modified transparency order should result in an S-box with
better DPA resistivity, our experiments show that in the case of small differ-
ences in modified transparency, such behavior is hard to obtain. This behavior
is similar to that what can be observed when examining original transparency
order measure. However, there are at least two advantages of using the modified
transparency order. The first one is the fact the researcher would use the correct
formula (although, sometimes practical results do not show significant differences
between properties). The second advantage is that the correlation between the
modified transparency order values and max. success rates is more easily notice-
able, although not linear. The answer whether the modified transparency order
property is a sufficient countermeasure against DPA attacks highly depends on
the level of noise in the settings. However, we believe it is not enough (similar to
other DPA related S-box properties), but instead should be used in combination
with some other countermeasures like masking.

5 Conclusion

In this work, we consider the influence of the modified transparency order prop-
erty to the DPA resistance of S-boxes. We generate S-boxes that have improved
values of the modified transparency order where for the 4× 4 size, we remain in
the optimal classes. When considering 8× 8 size, the improvement in the modi-
fied transparency comes at the cost of the deterioration of other properties like
the nonlinearity or δ-uniformity. Furthermore, we show the minimal necessary
affine transformation needed to change the modified transparency order value.
Based on that transformation, we show that the value obtained by our genetic
algorithm is indeed the optimal one. In doing so, we also show that only one of
16 optimal classes for the 4× 4 size can reach the best possible value for modi-
fied transparency. We use the same affine transformation to find the upper and
lower bound for modified transparency order for all 16 optimal classes. Finally,
we conduct practical SCA experiments with our new S-boxes as well as with
the PRESENT S-box. From the results, we observe that the number of neces-
sary traces for the successful attack is significantly lower for our S-boxes than
for the PRESENT S-box in the presence of noise. Although our results indicate
that the modified transparency order is more reliable measure than the original
transparency order, we still do not deem it sufficiently strong to be considered
without other countermeasures.

Acknowledgments. This work was supported in part by the Technology Foun-
dation STW (project 12624 - SIDES), The Netherlands Organization for Scien-
tific Research NWO (project ProFIL 628.001.007) and the ICT COST action
IC1204 TRUDEVICE.



Modified Transparency Order Property: Solution or Just Another Attempt 225

References

1. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

2. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL
cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91.
Springer, Heidelberg (1993)

3. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security). Springer-Verlag New York,
Inc (2007)

4. Leander, G., Poschmann, A.: On the Classification of 4 Bit S-Boxes. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg
(2007)

5. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security). Springer-Verlag New York,
Inc., Secaucus (2007)

6. Guilley, S., Pacalet, R.: Differential Power Analysis Model and Some Results. In:
Proceedings of CARDIS, pp. 127–142. Kluwer Academic Publishers (2004)

7. Prouff, E.: DPA Attacks and S-Boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005)

8. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

9. Fei, Y., Luo, Q., Ding, A.A.: A statistical model for dpa with novel algorithmic con-
fusion analysis. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428,
pp. 233–250. Springer, Heidelberg (2012)

10. Fei, Y., Ding, A.A., Lao, J., Zhang, L.: A statistics-based fundamental model for
side-channel attack analysis. IACR Cryptology ePrint Archive 2014, 152 (2014)

11. Luo, Q., Fei, Y.: Algorithmic collision analysis for evaluating cryptographic systems
and side-channel attacks. In: 2011 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), pp. 75–80 (2011)

12. Ding, A.A., Zhang, L., Fei, Y., Luo, P.: A statistical model for higher order dpa
on masked devices. IACR Cryptology ePrint Archive 2014, 433 (2014)

13. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

14. Borghoff, J., Canteaut, A., Gneysu, T., Kavun, E., Knezevic, M., Knudsen, L.,
Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S., Yaln,
T.: PRINCE: A Low-Latency Block Cipher for Pervasive Computing Applications.
In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225.
Springer, Heidelberg (2012)

15. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer-Verlag New York, Inc.,
Secaucus (2002)

16. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie proposal: the block
cipher Noekeon. Nessie submission (2000), http://gro.noekeon.org/

17. Chakraborty, K., Sarkar, S., Maitra, S., Mazumdar, B., Mukhopadhyay, D., Prouff,
E.: Redefining the transparency order. In: Coding and Cryptography, International
Workshop, WCC 2015, Paris, France, April 13-17 (2015)

http://gro.noekeon.org/


226 S. Picek et al.

18. Mazumdar, B., Mukhopadhyay, D., Sengupta, I.: Design and implementation of
rotation symmetric S-boxes with high nonlinearity and high DPA resilience. In:
2013 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), pp. 87–92 (2013)

19. Mazumdar, B., Mukhopadhyay, D., Sengupta, I.: Constrained search for a class
of good bijective s-boxes with improved DPA resistivity. IEEE Transactions on
Information Forensics and Security 8(12), 2154–2163 (2013)

20. Picek, S., Ege, B., Batina, L., Jakobovic, D., Chmielewski, L., Golub, M.: On Using
Genetic Algorithms for Intrinsic Side-channel Resistance: The Case of AES S-box.
In: Proceedings of the First Workshop on Cryptography and Security in Computing
Systems, CS2 2014, pp. 13–18. ACM, New York (2014)

21. Picek, S., Ege, B., Papagiannopoulos, K., Batina, L., Jakobovic, D.: Optimality
and beyond: The case of 4x4 s-boxes. In: 2014 IEEE International Symposium on
Hardware-Oriented Security and Trust, HOST 2014, Arlington, VA, USA, May
6-7, pp. 80–83 (2014)

22. Picek, S., Papagiannopoulos, K., Ege, B., Batina, L., Jakobovic, D.: Confused
by Confusion: Systematic Evaluation of DPA Resistance of Various S-boxes. In:
INDOCRYPT 2014. LNCS, vol. 8885, pp. 374–390. Springer, Heidelberg (2014)

23. Evci, M.A., Kavut, S.: DPA Resilience of Rotation-Symmetric S-boxes. In: Yoshida,
M., Mouri, K. (eds.) IWSEC 2014. LNCS, vol. 8639, pp. 146–157. Springer, Hei-
delberg (2014)

24. Nguyen, C., Tran, L., Nguyen, K.: On the resistance of serpent-type 4 bit s-boxes
against differential power attacks. In: 2014 IEEE Fifth International Conference
on Communications and Electronics (ICCE), pp. 542–547 (July 2014)

25. Gong, Z., Nikova, S., Law, Y.: A new family of lightweight block ciphers. In: Juels,
A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer, Heidelberg
(2012)

26. Crama, Y., Hammer, P.L.: Boolean Models and Methods in Mathematics, Com-
puter Science, and Engineering, vol. 1. Cambridge University Press, New York
(2010)

27. Braeken, A.: Cryptographic Properties of Boolean Functions and S-Boxes. PhD
thesis, Katholieke Universiteit Leuven (2006)

28. Carlet, C.: On highly nonlinear S-boxes and their inability to thwart DPA attacks.
In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005.
LNCS, vol. 3797, pp. 49–62. Springer, Heidelberg (2005)

29. Nyberg, K.: Perfect Nonlinear S-Boxes. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 378–386. Springer, Heidelberg (1991)

30. Heuser, A., Rioul, O., Guilley, S.: A theoretical study of kolmogorov-smirnov dis-
tinguishers - side-channel analysis vs. differential cryptanalysis. In: Constructive
Side-Channel Analysis and Secure Design - 5th International Workshop, COSADE
2014, Paris, France, April 13-15, pp. 9–28 (2014) (Revised Selected Papers)

31. Picek, S., Ege, B., Batina, L., Jakobovic, D., Chmielewski, L., Golub, M.: On Using
Genetic Algorithms for Intrinsic Side-channel Resistance: The Case of AES S-box.
In: Proceedings of the First Workshop on Cryptography and Security in Computing
Systems, CS2 2014, pp. 13–18. ACM, New York (2014)

32. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Hei-
delberg (2003)

33. Goldberg, D.E., Lingle, R.: Alleles, loci, and the traveling salesman problem. In:
Proc. of the International Conference on Genetic Algorithms and their Applica-
tions, Pittsburgh, PA, pp. 154–159 (1985)



Modified Transparency Order Property: Solution or Just Another Attempt 227

34. Davis, L.: Applying adaptive algorithms to epistatic domains. In: Proceedings of
the 9th International Joint Conference on Artificial Intelligence, IJCAI 1985, pp.
162–164. Morgan Kaufmann Publishers Inc., San Francisco (1985)

35. Zhang, X., Zheng, Y.: GAC-the criterion of global avalanche characteristics of cryp-
tographic functions. Journal of Universal Computer Science 1(5), 316–333 (1995)

36. Standaert, F.X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

37. Kim, Y., Sugawara, T., Homma, N., Aoki, T., Satoh, A.: Biasing power traces to
improve correlation in power analysis attacks. In: First International Workshop on
Constructive Side-Channel Analysis and Secure Design COSADE 2010, pp. 77–80
(2010)



Investigating SRAM PUFs

in large CPUs and GPUs

Pol Van Aubel1, Daniel J. Bernstein2,3, and Ruben Niederhagen3

1 Radboud University
Digital Security Group

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
radboud@polvanaubel.com

2 Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607–7045, USA

djb@cr.yp.to
3 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

ruben@polycephaly.org

Abstract. Physically unclonable functions (PUFs) provide data that
can be used for cryptographic purposes: on the one hand randomness for
the initialization of random-number generators; on the other hand indi-
vidual fingerprints for unique identification of specific hardware compo-
nents. However, today’s off-the-shelf personal computers advertise ran-
domness and individual fingerprints only in the form of additional or
dedicated hardware.

This paper introduces a new set of tools to investigate whether in-
trinsic PUFs can be found in PC components that are not advertised
as containing PUFs. In particular, this paper investigates AMD64 CPU
registers as potential PUF sources in the operating-system kernel, the
bootloader, and the system BIOS; investigates the CPU cache in the
early boot stages; and investigates shared memory on Nvidia GPUs.
This investigation found non-random non-fingerprinting behavior in sev-
eral components but revealed usable PUFs in Nvidia GPUs.

Keywords: Physically unclonable functions, SRAMPUFs, randomness,
hardware identification.

This work was supported by the European Commission through the ICT pro-
gram under contract INFSO-ICT-284833 (PUFFIN), by the Netherlands Organ-
isation for Scientific Research (NWO) under grant 639.073.005, by the U.S. Na-
tional Science Foundation under grant 1018836, and by the Dutch electricity
transmission system operator TenneT TSO B.V. Permanent ID of this document:
2580a85505520618ade3cd462a3133702ae673f7. Date: 2015.07.09.

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 228–247, 2015.
DOI: 10.1007/978-3-319-24126-5_14



Investigating SRAM PUFs in large CPUs and GPUs 229

1 Introduction

Commonly used consumer computing devices, such as desktop computers and
laptop computers, need a multitude of cryptographic primitives, e.g., crypto-
graphic operations with secret keys, keyed hash functions, secure randomness,
and, in some cases, remote attestation and identification capabilities. In this pa-
per we focus on two seemingly conflicting aspects: The generation of random bit
strings, which requires indeterministic behavior, and the generation of unique
identifiers, which requires deterministic behavior.

Randomness is required for several purposes in cryptography. For example,
random bit sequences are used to generate secret encryption keys and nonces
in cryptographic protocols in order to make them impossible for an attacker to
guess. Many cryptographic primitives assume the presence of a secure random
source; however, most processing chips are designed to be deterministic and
sources of randomness are rare [12, 15].

Unique identifiers can be used to deterministically derive an identity-based
cryptographic key. This key can be used for authentication and data protection.
For example, it would be possible to use these keys as an anti-counterfeiting
measure. Bloomberg Business reports in [13] that “an ‘epidemic’ of bogus chips,
routers, and computers costs the electronics industry up to $100 billion annu-
ally”, and Business Wire reports in [1] that “as many as one in ten IT products
sold may actually be counterfeit”. Having the ability to identify a chip as legiti-
mate by comparing some PUF to a database provided by the manufacturer may
help reduce this problem. As another example, it is possible to use this key for
hard disk encryption: The hard drive, i.e., the bootloader, operating system, and
user data, are encrypted with this secret intrinsic key and can only be decrypted
if the unique identifier is available. The identifier thus must be protected from
unauthorized access.

Currently, these features are provided by accompanying the device with ded-
icated hardware: randomness is offered, e.g., by the RDRAND hardware random
number generator; identification, e.g., by a Trusted Platform Module (TPM).
However, these solutions can only be used if a dedicated TPM is available in
the device or if the CPU supports the RDRAND instruction which only recently
was introduced with Intel’s Ivy Bridge CPUs. Furthermore, they do not help in
cases where the cryptographic key should be bound to the identity of a specific
chip itself.

However, for these cryptographic functionalities additional hardware is not
necessarily required: randomness as well as identification can be derived from
individual physical characteristics inherent to a silicon circuit by the use of phys-
ically unclonable functions (PUFs). PUFs can be derived from, e.g., ring oscil-
lators [10], signal delay variations [14, 22], flip-flops [16], latches [21], and static
random-access memory (SRAM)
[11, 4]. While most of these require dedicated circuits, SRAM is already used for
other purposes in many general-purpose, mass-market chips.

SRAM PUFs were initially identified in FPGAs. The PUF characteristics
of SRAM are derived from the uninitialized state of SRAM immediately after



230 P. Van Aubel, D.J. Bernstein, and R. Niederhagen

power-up. When unpowered SRAM cells are powered up, they obtain a value of 0
with a certain probability P0, or 1 with probability P1 = 1−P0. The individual
probabilities of each SRAM cell depend on minor manufacturing differences and
are quite stable over time. Some of the cells have a probability close to 1 for either
P0 or P1 and thus tend to give the same value at every power-up. Because of this
stability, and because the pattern of this stability is different for every block of
SRAM, they can be used for fingerprinting. Other cells have a probability close
to 0.5 for both P0 and P1 and thus tend to give a different value at each power-up.
Since their behavior is unstable, they are a good source for randomness.

Before the power-up state of SRAM can be used as PUF, an enrollment phase
is required: the SRAM is powered up several times in order to measure which
SRAM cells are suitable for randomness and which for fingerprinting. For the
actual use of the SRAM PUF some postprocessing is performed, e.g., a feedback
loop can be used in order to avoid bias in the generated random bit sequence
and an error correction code in order to compensate for occasional bit errors in
the fingerprint.

At TrustED 2013, researchers demonstrated in [23] that SRAM-based PUFs
exist in various brands of popular microcontrollers, such as AVR and ARM,
which are commonplace in mobile and embedded devices. More recently [19]
used this to secure a mobile platform.

We want to investigate the possible presence of PUFs in commonly used desk-
top and laptop computers. For this purpose, the two most attractive targets are
the Central Processing Unit (CPU) and the Graphics Processing Unit (GPU),
since they are present in almost every desktop machine commonly in use, and
they are the chips most directly accessible by the software running on the ma-
chine. Research into PUFs on GPUs was suggested independently by [7].

The most common CPU architecture today for large computing devices, such
as laptop computers, desktop computers, and servers, is the AMD64 architec-
ture. The AMD64 architecture, also known as x86-64 and x64, was introduced
by AMD in 1999 as a backwards-compatible successor to the pervasive x86 ar-
chitecture. SRAM is used in abundance in the caches and registers of AMD64
CPUs. Therefore, they may carry intrinsic PUFs. In [17] the authors propose
an instruction-set extension to utilize this SRAM to build a secure trusted com-
puting environment within the CPU. However, research on existing PUFs in
AMD64 CPUs appears non-existent. The obvious question is whether such PUF
capabilities are currently also exhibited by (i.e., available and accessible in) x86
and AMD64 CPUs. The documentation of these processors contains a number
of statements which suggest that — even though such SRAM PUFs may exist
— they are impossible to access from software running on those CPUs.

This paper introduces new tools to investigate whether it is indeed impossible
to use registers and caches of AMD64 CPUs as PUFs. The result of our investi-
gation is a negative one, in the sense that for the specific CPU we investigated
fully (an AMD E350) we have to confirm that even at the earliest boot stages
we cannot use registers or caches as PUFs.



Investigating SRAM PUFs in large CPUs and GPUs 231

However, the situation is vastly different for older-generation GPUs. Many
desktop and laptop computers include hardware dedicated to processing com-
puter graphics, the GPU. The chips on this hardware are tailored toward parallel
computation for graphics processes (e.g., vectorized floating-point operations),
rather than the general-purpose computation done in CPUs. Typically, GPUs
have large amounts of SRAM. Contrary to the CPU, which provides security
features such as memory protection and therefore has clear reasons to prevent
direct access to the SRAM, GPUs often expose their SRAM directly to the
programmer, and also do not have the same reasons to clear the SRAM after
reset. GPU memory and registers leak sensitive data between processes, as ob-
served in [20] and later in [8]; the absence of memory zeroing between processes,
where sensitive data may be handled, suggests that zeroing to prevent reading
uninitialized memory is also absent.

We therefore think that it will be easier to find and read uninitialized SRAM
on GPUs than on CPUs. In this paper we explore the possibilities for this on
the Nvidia GTX 295 and find that it is indeed possible to extract enough unini-
tialized SRAM to build PUFs. On the other hand, we did not find PUFs on a
newer generation GPU.

To enable reproducibility of our results, and to allow other researchers to
investigate other CPUs, we place all our modifications to the software described
in this paper into the public domain. The source code and patches are available
at https://www.polvanaubel.com/research/puf/x86-64/code/.

This paper is structured as follows: In the next section, we describe our ex-
perimental setup for the CPU, i.e., the AMD64 processor architecture and our
test mainboard, the ASRock E350M1. In Section 3 we describe how we inves-
tigate if CPU registers can be accessed sufficiently early in the boot process in
order to read their power-on state and use them as SRAM PUFs. In Section 4
we investigate the suitability of the CPU cache as SRAM PUF during BIOS
execution when the processor is in the cache-as-RAM mode. In Section 5 we
describe the experimental setup for the GPU, i.e., the Nvidia GTX 295 GPU
architecture. Finally, in Section 6 we describe the experiments conducted on the
GPU. Finally, in Section 7 we discuss our results.

2 Experimental Setup for the CPU

Our main experimental setup consisted of a single mainboard with an AMD64
CPU.

AMD64 Architecture. Computers based on the x86 and AMD64 architectures
have a long history, tracing back to the IBM PC. The most common setup today,
visualized in Figure 1, is based on a motherboard that has a socket for an AMD64
architecture CPU, a memory controller and slots for Random Access Memory,
several communication buses such as PCI and PCI Express and associated slots
for expansion cards, non-volatile memory for storing the system’s boot firmware,
and a “chipset” tying all these together. This chipset consists of a Northbridge,
handling communication between the CPU and high-speed peripherals such as

https://www.polvanaubel.com/research/puf/x86-64/code/


232 P. Van Aubel, D.J. Bernstein, and R. Niederhagen

CPU

Northbridge

(Memory
Controller)

Front-Side
Bus

Southbridge

(I/O Controller)

Internal
Bus

Memory
Bus

High-Speed Bus
AGP or PCIe

PCI Bus

Onboard
Graphics
Controller

PCI
Bus

Flash
ROM
BIOS

Super I/O

LPC Bus

DVI

VGA

. . .

Audio

Ethernet

IDE

SATA

USB

. . .

Floppy Disk

Keyboard

Mouse

Parallel Port

Serial Port

. . .
Motherboard

Fig. 1. Schematic of the AMD64 motherboard architecture.

graphics hardware and main memory, and the Southbridge, handling everything
else, with the Northbridge as an intermediary to the CPU.

Finally, there is the Super I/O chip. This chip condenses many I/O features
which were traditionally handled by different circuits into one chip. This is the
reason that the current iteration of AMD64 motherboards still supports many
features found on boards from 20 years ago, such as serial port I/O, floppy-disk
drives, and parallel ports, next to relatively new features such as Serial ATA
and PCI Express. However, some of these features might not be exposed to the
user: The Super I/O chip that is used to drive these subsystems often supports
the entire range of “old” functionalities, but only those which the motherboard
manufacturer deems worthwhile to offer are actually exposed through sockets
on the board. The serial port, for example, is still exposed as a header on most
boards, or at least as a solder-on option. Since these are relatively simple I/O
devices, they are often the first to be initialized after system startup and can be



Investigating SRAM PUFs in large CPUs and GPUs 233

used for output of, e.g., system diagnostics during the early boot stage before
the graphics hardware has been initialized.

In recent years, functions the Northbridge used to handle, such as memory
control and graphics-hardware control, were integrated into the CPU. This was
done to reduce overhead and speed limitations caused by having to go through
an intermediary chip. Since this lifted most of the high-speed demands from the
Northbridge, this development has caused manufacturers to integrate the few
remaining functions of the Northbridge and the functions of the Southbridge
into a single chip. The main principles of operation of the motherboard, however,
remain the same.

Test Mainboard. Our main test board is the E350M1, manufactured by AS-
Rock. On it runs an AMD E-350 APU (Accelerated Processing Unit, a package
embedding a CPU and graphics controller) which was first manufactured in 2011,
with an AMD A50M chipset. It has an exposed serial port header and a socketed
4 MiB Winbond 25Q32FVAIQ NVRAM chip for the UEFI or BIOS firmware.
The board has on-board flash capabilities for this chip. The form factor is mini-
ITX. The E-350 APU itself has two processor cores, with 32 KiB level-1 data
cache, 32 KiB level-1 instruction cache, and 512 KiB of level-2 cache per core.

As explained later in Section 3.4, the main reasons for picking this mainboard
are that it supports a fairly recent AMD CPU, has a socketed NVRAM chip,
and is supported by the open-source BIOS implementation coreboot [25].

The integration of graphics hardware, combined with the small form factor,
make this a board suited for general-purpose home computing and multimedia
computers.

We acquired two sets of replacement NVRAM chips. The first set consisted
of five MXIC MX25L3206EPI. These chips closely match the original chip’s
specifications, yet are from a different manufacturer. They failed to boot the
board with anything other than the original UEFI firmware. The second set
consisted of two Winbond 25Q64FVSIG chips. These chips are almost identical
to the original, with only two major differences: they have twice the storage size
(8 MiB), and a different form factor (SOIC8 instead of DIP8). Therefore, they
required an adapter circuit to fit the form factor. However, these chips served
the purpose of booting the board with modified firmware. The three different
types of chips can be seen in Figure 2. For flashing these chips under Linux, we
used the open-source software flashrom.

For mass storage (bootloader and operating system) we used a simple USB
stick. For I/O we used a normal setup of keyboard, mouse and screen, but
also attached a serial socket to the serial port header, and used a serial-to-USB
adapter to get serial output from BIOS and bootloader. The test setup can be
seen in Figure 3.

Finally, power was supplied by a normal ATX power supply, and we powered,
unpowered and reset the board by shorting the corresponding pins with a metal
tab. Measurements were taken by manually powercycling the board and read-
ing the measurement output from screen (kernel) or serial output (BIOS and
bootloader).



234 P. Van Aubel, D.J. Bernstein, and R. Niederhagen

Fig. 2. Chips used on the E350M1 motherboard. Left: the original Winbond
25Q32FVAIQ. Center: The unsuitable replacement MX25L3206EPI. Right: The work-
ing replacement Winbond 25Q64FVSIG

Fig. 3. Photograph of the E350M1 motherboard.

3 CPU Registers

There are indications that both Intel and AMD use SRAM to build the register
banks present in their CPUs [5], although this is not explicitly mentioned in
the specification charts for their CPUs. The register banks contain, among oth-
ers, general-purpose registers, MMX vector registers, and XMM vector registers.
Of these, the general-purpose registers are likely to be heavily used from the
moment of system start, since many of them are required to be used in basic
instructions. The XMM registers, however, can only be accessed by the use of
the Streaming SIMD Extensions (SSE) instruction set, which is unlikely to be
used by the system startup code. They are therefore good candidates to check
for PUF behavior.

However, the AMD64 Architecture Programmer’s Manual Volume 2: System
Programming [2] contains several statements which give reason to believe that
it would be extremely hard, if not outright impossible, to get to the power-on



Investigating SRAM PUFs in large CPUs and GPUs 235

state of the register banks. For instance, Table 14-1 of that document shows the
initial processor state that follows RESET or INIT. The table lists a deterministic
state for all the general-purpose registers, most of which get initialized to 0.
The 64-bit media state (MMX registers) and the SSE state (XMM registers)
are also initialized to 0 after RESET. After INIT, however, they are apparently
not modified, but since it is not possible to initialize a processor without going
through power-on RESET at the beginning, this does not help either. Volume 1
of the Programmer’s Manual also states that, upon power-on, all YMM/XMM
registers are cleared. This confirms the conclusions drawn from the table in
Volume 2.

Experimental results show that the register banks are indeed not usable as
PUFs on our testing machines. To explain this conclusion, we will describe the
x86/AM64 boot process, and discuss how to dump the state of the XMM registers
during different stages of the boot procedure.

3.1 Boot Process

The boot process for an AMD64-based machine consists of several steps. The
Southbridge loads the initial firmware code (BIOS or UEFI), and the processor
starts executing from the RESET vector (address 0xFFFFFFF0). This code per-
forms CPU initialization and initialization of other mainboard components such
as the Super-IO chip, responsible for input-output through devices such as the
serial port, and the memory controller, responsible for driving and communi-
cating with main memory. Next, it searches for all bootable devices and finally
loads the bootloader from the desired location.

The bootloader allows the user to select between different operating systems,
loads the desired operating-system kernel and any other required resources, and
then hands over control to this kernel. From this moment on the operating system
is in control.

One of the main differences between BIOS and UEFI boot options is that
a BIOS system will, in order to start the bootloader, drop the CPU back into
16-bit real mode, whereas a UEFI system can directly load the bootloader in
32-bit protected or 64-bit long mode. We have looked at systems using the BIOS
model, but our findings apply to the UEFI model as well since the UEFI model
is not different from the BIOS model in how it initializes the CPU, Super-I/O,
and memory controller. For the rest of this paper, when discussing bootloader
and boot firmware, we assume the BIOS model.

This division of stages in the boot process is also reflected in the complexity
of the software running in each stage. The BIOS is small, very specialized, and
designed to work for specific hardware. The bootloader, in turn, is somewhat
larger, somewhat more portable, but still has a very limited set of tasks. Finally,
an operating-system kernel is often large and complex, and designed to deal
with many different hardware configurations and many different use cases. If
PUF behavior can easily be exposed at the operating system level, without
edits to the underlying layers, this enables wide deployment with relatively little
development. If, however, the BIOS needs to be edited, then deploying a system



236 P. Van Aubel, D.J. Bernstein, and R. Niederhagen

using these PUF results would require edits to each mainboard that the system
will use. The tradeoff here is that a solution which does not require edits to
the BIOS and bootloader would implicitly trust these components, whereas a
solution where the BIOS needs to be edited would be able to work with a much
smaller trusted base system.

Because of these considerations, we decided to explore all three options. In the
following sections, we first look at the kernel level, before going to the bootloader,
and finally to the BIOS.

3.2 Kernel

The operating-system kernel is started by a bootloader in our test setup. We
can only be sure to read potentially uninitialized values from registers if we read
the state of the registers as early as possible, before they are used either by the
operating system or by user processes. Thus, the register state must be stored
during the startup-process of the operating system. This requires us to modify
the source code of the operating-system kernel. Therefore, the obvious choice is
to use an open-source kernel. We decided to use Linux.

Our code that reads out and displays the contents of the XMM registers
consists of two parts: a kernel patch that stores the content of the XMM registers
right after those registers have been made available and a kernel module that
gives access to the stored data after the boot process has been finished.

Kernel Patch. Before XMM registers can be accessed, the processor must be
switched to the correct mode using the CR0 and CR4 control registers
[2, Page 433]. This happens in fpu_init in file arch/x86/kernel/i387.c of
the Linux kernel. Before this function is called, the kernel does not have access
to the XMM registers. Thus, it is not possible that the XMM registers have been
used before within the kernel and that potential PUF data in those registers has
been overwritten by the kernel.

We are storing the data of all XMM registers into memory right after the
control registers have been set, in order to ensure that our code is the first
kernel code that accesses the registers. We use the instruction FXSAVE in order
to save all the FPU and XMM registers to memory at once; the kernel patch
adds only 5 lines of source code.

Kernel Module.Displaying or permanently storing data in the very early phase
of the kernel boot process is tedious. Therefore, we simply store the data at boot
time and make it available to user space applications once the boot process is
finished via a kernel module. The kernel module provides entries (one for each
CPU core) in the proc file system that can simply be read in order to obtain
and display the XMM register data.

Results. We tested our code on two AMD64-based machines, first on a surplus
office machine with an AMD Athlon 64 X2 3800. Later, we re-ran the tests on
the dedicated test-board with an AMD E350 CPU described in Section 2. Both
CPUs are dual-core CPUs. On both boards, all XMM registers on the second



Investigating SRAM PUFs in large CPUs and GPUs 237

CPU core contained all 0. The registers on the first CPU core contained some
data, some of it stable over several reboots, some of it varying. However, some
of the registers obviously contained ASCII code, e.g., the strings “GNU core”,
“GB.UTF-8”, and “: <%s>”. This indicates that the XMM registers have been
used by the boatloader — if not directly in the source code then maybe by C
standard-library calls like memcpy, memcmp, or string operations; disassembling
the GRUB boatloader shows many occurrences of vector instructions on XMM
registers.

Thus, at the time of kernel startup, the initial status of the registers has
been modified and they cannot be used as PUF. Therefore, in the next step we
investigated the status of the XMM registers before the kernel is started, i.e., in
the early stages of the bootloader.

3.3 GRUB

The bootloader is a user-controlled piece of software, often installed into the
boot sector of one of the hard disk drives. However, it runs still fairly early in
the boot process. This combination of factors makes it a good candidate for
attempting to find uninitialized SRAM in the XMM registers of a CPU.

GRUB Patch. GRUB (GRand Unified Bootloader) is a free open-source boot-
loader for AMD64 systems [9]. It is one of the most popular bootloaders used
to boot Linux systems and fairly easy to modify. After GRUB starts, it switches
the CPU back into 32-bit protected mode as soon as possible. Then it does some
more machine initialization and checks, during which it initializes the terminal
console, either over the VGA output or serial output. Next, it loads all the mod-
ules it requires, loads its configuration, and displays the boot menu for the user
to select an operating system.

In the previous section, we mentioned that disassembly of GRUB shows many
uses of the XMM registers. However, at the moment when GRUB starts, the CPU
is still in 16-bit real mode. Therefore no XMM registers are available to be used.
In order to be early enough to read uninitialized registers, we changed the GRUB
source code so that immediately after machine and terminal initialization, we
enable access to the XMM registers ourselves, then read the register contents of
the XMM registers XMM0 to XMM7. Next, we write them to the terminal. First we
allocate a block of memory with a size of 1024 bits (128 bits for each register)
and fill it with a known pattern. Next, we enable SSE-instructions on the CPU in
the first asm-block. Immediately after that we copy the contents of each register
to the memory region allocated before, in the second asm-block. We do not use
the FXSAVE instructions here, rather, we perform a single MOVUPD instruction for
each register we want to store. Finally, we write the values from memory to
the console. Disassembly of the resulting GRUB image shows that, indeed, our
reading of the XMM registers is the first use of these registers within GRUB.

Results.Again, we tested our code on the surplus office machine described above
and later also on the dedicated test mainboard. Unfortunately, on the first test-
machine the contents of all registers except for XMM0 were 0. XMM0 was filled with



238 P. Van Aubel, D.J. Bernstein, and R. Niederhagen

a static value which turned out to be a fill-pattern used in the initialization code
of main memory in AMD-supplied BIOS code. These values were stable over
repeated tests. This indicates that at this point the registers have been zeroed
and that at least register XMM0 has been used already by the BIOS. For the same
reasons as before, this means that at this point the XMM registers cannot be
used as PUF, neither for randomness nor for fingerprinting. Therefore, as the
next step we turned to the BIOS in the attempt to read data usable as a PUF
from the registers.

3.4 Coreboot

As stated before, the BIOS is the first code run by the CPU. It detects and
initializes the hardware and firmware, puts the CPU in the correct mode, runs
software that makes it possible to configure the BIOS itself, and loads and runs
the bootloader. The BIOS is the earliest step in the boot process that can be
controlled, unless one has access to the CPU microcode.

The BIOS is loaded from an NVRAM chip. Often, its machine code is read-
able by reading out the NVRAM chip or by dumping the contents of BIOS
updates. However, it is not easy to edit the BIOS code without access to its
source code, which most mainboard vendors do not provide. Luckily, it is not
necessary to reverse-engineer the closed-source BIOS provided by the mainboard
vendors; there is an alternative: coreboot, formerly linuxBIOS, is a free open-
source machine-initialization system [25]. It is modularly built so that it can
function as a BIOS, a UEFI system, or in several other possible configurations.

Mainboard Selection. Coreboot, despite its modularity, needs to be ported to
every individual new mainboard for which support is desired. This is caused by
subtle differences in hardware configuration, and is even required if a board uses
chips which are all already supported by coreboot. Instead of porting coreboot
to the AMD Athlon 64 X2 3800 mainboard mentioned before that we already
had “in stock”, we decided to acquire a board that coreboot had already been
ported to by the community; our first requirement for the board was that it
must support modern AMD64 CPUs.

Since the BIOS resides in an NVRAM chip on the mainboard, the only way to
install a new BIOS is by flashing this chip. Most modern mainboards have this
flash-capability built into the mainboard itself and software running in the oper-
ating system can flash the BIOS in order to enable user-friendly BIOS updates.
However, should a modification to the BIOS source code render the system un-
bootable, this on-board capability will obviously not be available. Therefore an
additional requirement was that the mainboard that we were going to use must
have a socketed NVRAM chip rather than one soldered onto the board. This
would allow us to boot the board with a “good” chip, then switching the chips
and re-flashing the bad one.

Because of these requirements, our choice was the ASRock E350M1mainboard
described in Section 2.



Investigating SRAM PUFs in large CPUs and GPUs 239

Coreboot Patch. The coreboot boot process begins the same as described in
Section 3.1: the Southbridge loads the coreboot image, then the CPU starts
processing from the RESET vector. The first thing coreboot does is to put the
CPU into 32-bit protected mode. It then does some additional CPU initializa-
tion, initializes the level-2 cache as RAM for stack-based computing, initializes
the Super-IO chip for serial port output, and then starts outputting diagnostic
and boot progress information over the serial port. It initializes the memory
controller, and eventually it loads the payloads stored in NVRAM, which can
vary: a VGA ROM to enable VGA output, a BIOS or UEFI implementation, an
operating-system kernel directly, or several other possibilities.

As soon as the cache-as-RAM initialization is done, memory is available to
store the values of the XMM registers. We changed coreboot similar to how we
changed GRUB. First, we allocate a buffer of 1024 bits of memory and fill them
with a known pattern. Then we copy the contents of the XMM registers to the
buffer. At this point, there is no interface initialized to send data out of the
CPU, except for a very rudimentary POST code interface which can send one
byte at a time and requires a special PCI card to read it. This is inconvenient
at best, so we allow coreboot to continue machine initialization until the serial
port is enabled. Then, we write the values previously read from the registers out
over the serial console.

Results. This time, all the registers contain 0 on our test machine. Manual
analysis of a disassembly of the coreboot firmware image flashed to the device
shows that XMM0 and XMM1 are at some earlier point used to temporarily store
data, but XMM2–XMM7 are not used before being copied by the modified code.
This matches the documentation, and implies that there is no way to get access
to uninitialized SRAM state by using XMM registers.

4 CPU Cache

The AMD64 architecture defines the possibility of several levels of cache, while
leaving the exact implementation to manufacturers of actual CPUs. As men-
tioned before, caches are usually implemented as SRAM. Therefore, reading the
bootup-state of cache could be another source of PUF behavior.

4.1 Cache Operation

During normal operation of an AMD64-based machine, main memory is avail-
able through a memory controller. The use of caches speeds up memory accesses
by granting the CPU fast read and write access to recently touched data which
would otherwise have to be fetched from main memory. On the AMD64 architec-
ture, the data stored in caches is always the result of a read from main memory
or a write to main memory; caches act as a fast temporary buffer. It is not pos-
sible for software to explicitly write to, or read from, cache. If software needs to
use data from a certain address in main memory, the corresponding cache line is
first loaded into cache, then accessed and potentially modified by the software,



240 P. Van Aubel, D.J. Bernstein, and R. Niederhagen

and eventually modifications may be written back to main memory. Thus, the
cache contains a copy of the data that should be in main memory, but that might
not be the exact same data as what is in main memory because the writeback
has not happened yet. When exactly reads from and writes to main memory are
performed, depends on the memory type assigned to the section of main memory
being handled. For the purposes of this paper, we will only examine the memory
type writeback [2, Page 173].

On multicore systems and cache-coherent multi-socket systems, another prob-
lem is that the data in cache itself might not be the most up-to-date copy of
the data. Because of this, the cache controller must keep track of which data
is stored in which location (a specific cache or in main memory) at what time.
In order to keep track of this, the MOESI protocol is used that allows cache
lines to be in one of five different states: Modified, Owned, Exclusive, Shared,
and Invalid [2, Pages 169–176].

Many modern AMD64 CPUs support what is known as cache-as-RAM op-
eration. This uses the level-2 cache in each CPU core to enable stack-based
computing during the early boot process. At this point the memory controller
has not yet been initialized, so main memory is unavailable [3, Pages 32–33].
In cache-as-RAM operation mode, the memory state writeback is assigned to
all available memory addresses. After the CPU received a RESET signal, the en-
tire cache is in the state Invalid. In writeback mode Invalid state, any memory
read will trigger a “read miss”, which would normally cause a read from mem-
ory into cache, and put the cache line in either Shared or Exclusive state. Any
memory write will cause a “write miss”, since the line needs to be modified and
held as Modified in cache. Therefore, a write miss would normally cause a read
from memory, modify the corresponding data, and put the cache line in Modi-
fied state [2, Pages 169–171]. However, the documentation does not state what
happens when these misses are encountered during the early boot process when
the memory controller is still disabled. It could be the case that any read from
main memory will be handled within the CPU to return some static value, e.g.,
zero. It could also be the case that the cache is not actually modified on a read,
in which case reading a block of memory might give us the power-on state of the
SRAM cells in the cache.

4.2 Coreboot

The cache-as-RAM initialization code used by coreboot, written by AMD, con-
tains instructions to explicitly zero out the cache area used as stack. Further-
more, a comment on lines 51–58 of src/cpu/x86/16bit/entry16.inc (one of
the source files used to define the earliest stages of the coreboot boot process
before the CPU is switched to 32-bit protected mode) implies that coreboot used
to explicitly invalidate the cache at that point, but no longer does for perfor-
mance reasons. This could imply that power-on values from the cache are indeed
readable after cache-as-RAM initialization, if the instructions to explicitly zero
the cache are removed.



Investigating SRAM PUFs in large CPUs and GPUs 241

Coreboot Patch. To test this, we replaced the instructions zeroing out the
cache with instructions filling it with a known pattern. Then we allowed the
boot process to continue until initialization of the serial console. As soon as the
serial console was available, we output the entire contents of the memory region
used as stack, and confirmed that the known pattern was there. This ensures that
we were modifying the correct code, and that the values were not being changed
between the initialization of the cache and the output. After this test, we simply
removed the instructions writing the pattern entirely to get the power-on state
of the SRAM. These patches to coreboot should be applied separately from the
earlier, register-related patches.

Results. Unfortunately, as in the previous experiments, the output consisted
mostly of zeroes, and the parts that were non-zero were clearly deterministic
and at the top of the memory region. This part of the memory most likely
is the region of the stack that already has been used by function calls before
and during serial console initialization. Therefore, also cache-as-RAM does not
provide access to SRAM in bootup state; the CPU transparently takes care of
wiping the cache before the first read access.

5 GPU Experimental Setup

Our experimental setup for the GPUs consisted of several modern desktop ma-
chines, each running one or two GPU cards based on the Nvidia GTX 295. We
used the CUDA SDK version 4.0.

Graphics Processing. Graphics cards used to provide only operations for
graphics processing. However, in the past decade, a shift has taken place tailored
to expose this power, providing a more general-purpose instruction set along
with heavily vectorized, parallel computation. Because of this, non-graphical
programs have started to utilize this power by offloading certain computations
to the GPU that would previously have been done by the CPU.

Graphics programming is usually done using various high-level graphics APIs,
such as OpenGL and DirectX. However, the more general-purpose use of their
operations is done through other semi-portable high-level programming inter-
faces, such as CUDA [6] and OpenCL. The CPU, and therefore any normal user
program, does not have direct access to the GPU’s SRAM memory. Further-
more, the public documentation for the actual low-level instruction sets is not
as extensive as for CPUs. For example, one of the ways Nvidia card program-
ming is done is by writing programs in CUDA, which then compiles into still
semi-portable, high-level, “assembly-language-like” PTX [18], still hiding most
of the hardware details. The PTX is in turn compiled by the GPU card’s driver
to a binary “kernel” which is run on the card itself.

On the other hand, GPUs evolved as single-user devices, dedicated to process-
ing (non-sensitive) graphics data, without many of the security features of CPUs.
Considering those features, such as virtual memory, address space separation,
and memory protection, it is unsurprising that the CPU indeed clears its SRAM



242 P. Van Aubel, D.J. Bernstein, and R. Niederhagen

and makes it unavailable to any outside applications. Since GPUs do not have
to take this into consideration, it is possible that there will be no logic to clear
the SRAM or make it unavailable to outside applications. On top of that, in
contrast with their instruction sets, GPU hardware tends to be documented as
well as or better than CPUs. There also exists research into the non-documented
aspects of the architecture, see e.g. [24].

Nvidia GTX 295 GPU Card. The Nvidia GTX 295 GPU card contains two
graphics processing devices. Each of these devices has 896MiB of DDR3 RAM
— “global memory” — and 30 multiprocessors (MPs). Each of the MPs, in turn,
has 8 arithmetic logic units (ALUs), 16384 32-bit registers, and 16KiB SRAM
— “shared memory”. Nvidia GPUs can be programmed for general-purpose
computing using the CUDA framework.

6 GPU Multiprocessor Shared Memory

Even though more SRAM is available in the registers, the shared memory SRAM
is easier to access. The main cause of this is that CUDA and PTX make it easy
to access the shared memory through a linear address space, but there is no
real assembly language provided by NVIDIA that would allow to directly access
registers.

Using Nvidia’s CUDA language, we developed an SRAM readout tool. CUDA
hides most of the hardware details, but it provides enough control to access
specified locations in SRAM. The tool works by copying the shared memory
SRAM to global memory DRAM, after which the code running on the host
CPU reads this data. The actual size of the SRAM is 16384 bytes, but the first
24 bytes are reserved for kernel parameters (e.g., the thread id) and for the
function parameters passed to the kernel. Thus, only the latter 16384− 24 bytes
can be accessed from CUDA code. The resulting loop doing this is very simple:

#define MAX (16384 - 24)

__global__ void read(unsigned char *data)

{

__shared__ unsigned char d[MAX];

for (int i = 0; i < MAX; i++) {

data[blockIdx.x * MAX + i] = d[i];

}

}

Results. The power-on SRAM contents appear to contain large amounts of
random data. Powering off and on again produces a similar, but not identical,
SRAM state. Overwriting the SRAM state and resetting the GPU again produces
a similar state, as if the SRAM state had never been overwritten. A different
GTX 295 GPU has a different power-on SRAM state. These observations were
consistent with what one would expect from uninitialized SRAM.



Investigating SRAM PUFs in large CPUs and GPUs 243

In the end, we were able to read out 490800 bytes out of the 491520 bytes of
shared memory in each GPU. We repeated this experiment on 17 devices.

Figure 4 shows an example of a GPU SRAM PUF from device 0, MP 0 on the
machine “antilles0”. We took 17 measurements, each after a power-off reboot.
The figure shows different colors for each bit of the first 64×64 bits of the SRAM;
white pixels indicate that a bit was 1 on each power-up, black pixels indicate
that the bit was 0; different shades of red indicate the ratio of 1 versus 0 on
each power-on. Thus, the corresponding bits of black/white pixels can be used
to identify the SRAM and thus the device, while the bits of the red pixels can
be used to derive randomness from the device. The first accessible 64 bits are
allways 0 and thus appear to be cleared on kernel launch when kernel parameters
are copied to the SRAM.

Figure 5 shows the within-class Hamming distance from 18 different traces
taken from each MP of device 0 on the machine “antilles2”. Each measurent is
compared to the “enrollment” measurement 0. The Hamming distance for each
comparison is around 5% which indicates that the device can be identified with
high accuracy. Figure 6 shows the between-class Hamming distance pairwise
between all of our measurements. The Hamming distance varied between 40%
and 60%, which again indicates that the difference between distinct devices is
high and that each individual device can be recognized accurately. In particular,
there is no general bias that maps certain bits of the SRAM to the same value
for all devices. These measurements and analysis show no obstacle to building a
usable PUF on top of these devices.

Fig. 4. antilles0, device 0, MP 0, 17 traces.



244 P. Van Aubel, D.J. Bernstein, and R. Niederhagen

Fig. 5. Within-class Hamming distance for antilles2, device 0, MPs 0–29.

Fig. 6. Between-class Hamming distance for all devices.

7 Discussion

Although we did not find a way to access and read either CPU registers or CPU
caches before they are initialized, technically it would be possible to use them as
SRAM PUFs. Thus, CPU vendors could enable these hardware features for the
use as PUFs probably with relatively small modifications to their chip designs.

As we explained, the situation seems to be different with at least older-
generation GPUs, yielding a usable PUF on the Nvidia GTX 295.



Investigating SRAM PUFs in large CPUs and GPUs 245

However, these SRAM PUFs in both CPU and GPU, if available to be read by
software either within the BIOS code or in the bootloader or operating system,
would not be protected against an attacker with any kind of root access to
the machine. In case the attacker is able to read the PUF, he would be able to
reproduce the fingerprint and to impersonate the machine. In case the attacker is
able to deploy malware in the early boot process, he would be able to manipulate
the PUF state and thus he could influence, e.g., random number generation based
on the PUF. Strong software security is thus a prerequisite for truly secure use
of these PUFs.

Our explorations on the GPU encountered challenges when we upgraded to
a different version of the Nvidia GPU drivers. These drivers appeared to clear
large amounts of GPU SRAM, presumably in an effort to reduce the amount
of undocumented behavior exposed to GPU applications. Explicit memory ze-
roing is among the recommended countermeasures against data leakage in [8].
Unfortunately, this also prevents using it as a PUF. Furthermore, when we ran
the same tests on a newer generation Nvidia card, we were no longer able to
retrieve the SRAM data. On ATI cards, we were never able to read uninitialized
SRAM data. This suggests that here, vendors are actually trying to suppress
this PUF-like behavior in their devices.

If CPU and GPU vendors decide to provide access to uninitialized SRAM
state for use as PUFs, further protection of their data is required. However,
data leakage should be prevented, as explained in [8], so maybe direct access is
not the best solution. An instruction-set extension as proposed in [17], where
the PUF data never leaves the CPU, could also be applied to GPUs and seems
to be the best way to implement this.

We have shown that the embedded SRAM in AMD64 CPUs, at least for the
model we tested, is indeed not usable as a PUF. For this, we have made modifi-
cations to several open-source software packages. We release these modifications
into the public domain; they are available online. We have also shown that PUFs
are present in the Nvidia GTX 295 graphics card, and conclude that they may
be present in other graphics devices.

7.1 Future Work

We have noticed the following phenomenon on a Lenovo ThinkPad X1 Carbon
laptop, 2014 edition, with an Intel Core i7-4600U CPU and a 2560×1440 screen;
note that this CPU contains a capable GPU embedded inside the CPU. After
the BIOS boot stage, approximately the lower third of the screen is temporarily
filled with what appear to be randomly colored pixels. This indicates possible
presence of a PUF inside the video buffer on the GPU. The obvious next step is
to use high-resolution photographic equipment to check the Hamming distance
between the colors after multiple power cycles.



246 P. Van Aubel, D.J. Bernstein, and R. Niederhagen

References

1. AGMAUrgesManufacturers to Take Steps to Protect Products from Counterfeiters,
http://businesswire.com/news/home/20071003005260/en/

AGMA-Urges-Manufacturers-Steps-Protect-Products (October 2007)
2. AMD64 Architecture Programmer’s Manual Volume 2: System Programming. 3.23.

AMD (May 2013)
3. BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 14h Models00h-0Fh

Processors. 3.13. AMD (February 2012)
4. van den Berg, R., Škorić, B., van der Leest, V.: Bias-based modeling and entropy

analysis of PUFs. In: Armknecht, F., Seifert, J.-P. (eds.) Proceedings of Trust-
Worthy Embedded Devices — TrustED 2013, pp. 13–20. ACM (2013)

5. Bohr, M.: 22nm SRAM announcement,
http://download.intel.com/pressroom/kits/

events/idffall 2009/pdfs/IDF MBohr Briefing.pdf (September 2009)
6. CUDA C Programming Guide: Design Guide. 7.0. Nvidia (March 2015)
7. Chauvet, J.-M., Mahe, E.: Secrets from the GPU. ArXiv e-prints (2013), See also:

[17]. arXiv:1305.3699
8. Di Pietro, R., Lombardi, F., Villani, A.: CUDA Leaks: Information Leakage in

GPU Architectures. ArXiv e-prints (2013). arXiv:1305.7383
9. GNU GRUB, https://www.gnu.org/software/grub/

10. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: Atluri, V. (ed.) Proceedings of Computer and Communications Security
— CCS 2002, pp. 148–160. ACM (2002)

11. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA Intrinsic PUFs and
Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) Workshop on
Cryptographic Hardware and Embedded Systems — CHES 2007. LNCS, vol. 4727,
pp. 63–80. Springer, Heidelberg (2007)

12. Heninger, N., Durumeric, Z., Wustrow, E., Alex Halderman, J.: Mining Your Ps
and Qs: Detection of Widespread Weak Keys in Network Devices. In: Proceedings
of the 21st USENIX Security Symposium, p. 35. USENIX Association (2012)

13. King, R.: Fighting a Flood of Counterfeit Tech Products,
http://www.bloomberg.com/bw/stories/2010-03-01/

fighting-a-flood-of-counterfeit-tech-productsbusinessweek-

business-news-stock-market-and-financial-advice (March 2010)
14. Lee, J.W., Lim, D., Gassend, B., Edward Suh, G., van Dijk, M., Devadas, S.: A

technique to build a secret key in integrated circuits for identification and authen-
tication applications. In: Symposium on VLSI Circuits 2004, pp. 176–179. IEEE
(2004)

15. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Public Keys. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology —
CRYPTO 2012. LNCS, vol. 7417, pp. 626–642. Springer, Heidelberg (2012)

16. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from Flip-flops on Reconfig-
urable Devices. In: Workshop on Information and System Security — WISSec 2008
(2008)

17. Mahé, E., Chauvet, J.-M.: Secrets from the GPU. Journal of Computer Virology
and Hacking Techniques 10(3), 205–210 (2014)

18. Owusu, E., Guajardo, J., McCune, J., Newsome, J., Perrig, A., Vasudevan, A.:
OASIS: On Achieving a Sanctuary for Integrity and Secrecy on Untrusted Plat-
forms. In: Proceedings of Computer and Communications Security — CCS 2013,
pp. 13–24. ACM (2013)

http://businesswire.com/news/home/20071003005260/en/AGMA-Urges-Manufacturers-Steps-Protect-Products
http://businesswire.com/news/home/20071003005260/en/AGMA-Urges-Manufacturers-Steps-Protect-Products
http://download.intel.com/pressroom/kits/events/idffall_2009/pdfs/IDF_MBohr_Briefing.pdf
http://download.intel.com/pressroom/kits/events/idffall_2009/pdfs/IDF_MBohr_Briefing.pdf
arXiv: 1305.3699
arXiv: 1305.7383
https://www.gnu.org/software/grub/
http://www.bloomberg.com/bw/stories/2010-03-01/fighting-a-flood-of-counterfeit-tech-productsbusinessweek-business-news-stock-market-and-financial-advice
http://www.bloomberg.com/bw/stories/2010-03-01/fighting-a-flood-of-counterfeit-tech-productsbusinessweek-business-news-stock-market-and-financial-advice
http://www.bloomberg.com/bw/stories/2010-03-01/fighting-a-flood-of-counterfeit-tech-productsbusinessweek-business-news-stock-market-and-financial-advice


Investigating SRAM PUFs in large CPUs and GPUs 247

19. Parallel Thread Execution ISA: Application Guide. 4.2. Nvidia (March 2015)
20. Schaller, A., Arul, T., van der Leest, V., Katzenbeisser, S.: Lightweight Anti-

counterfeiting Solution for Low-End Commodity Hardware Using Inherent PUFs.
In: Holz, T., Ioannidis, S. (eds.) Trust and Trustworthy Computing — TRUST
2014. LNCS, vol. 8564, pp. 83–100. Springer, Heidelberg (2014)

21. Schwabe, P.: Graphics Processing Units. In: Markantonakis, K., Mayes, K. (eds.)
Secure Smart Embedded Devices: Platforms and Applications, pp. 179–200.
Springer (2014)

22. Su, Y., Holleman, J., Otis, B.P.: A Digital 1.6 pJ/bit Chip Identification Circuit
Using Process Variations. Journal of Solid-State Circuits 43(1), 69–77 (2008)

23. Suzuki, D., Shimizu, K.: The Glitch PUF: A New Delay-PUF Architecture Exploit-
ing Glitch Shapes. In: Mangard, S., Standaert, F.-X. (eds.) Workshop on Crypto-
graphic Hardware and Embedded Systems — CHES 2010. LNCS, vol. 6225, pp.
366–382. Springer, Heidelberg (2010)

24. Van Herrewege, A., van der Leest, V., Schaller, A., Katzenbeisser, S.,
Verbauwhede, I.: Secure PRNG Seeding on Commercial Off-the-shelf Microcon-
trollers. In: Armknecht, F., Seifert, J.-P. (eds.) Proceedings of Trustworthy Em-
bedded Devices — TrustED 2013, pp. 55–64. ACM (2013)

25. Wong, H., Papadopoulou, M.-M., Sadooghi-Alvandi, M., Moshovos, A.: Demystify-
ing GPU microarchitecture through microbenchmarking. In: Performance Analysis
of Systems Software (ISPASS), pp. 235–246. IEEE (2010)

26. coreboot, http://www.coreboot.org/

http://www.coreboot.org/


Reconfigurable LUT: A Double Edged Sword

for Security-Critical Applications

Debapriya Basu Roy1, Shivam Bhasin3, Sylvain Guilley2,4, Jean-Luc Danger2,4,
Debdeep Mukhopadhyay1, Xuan Thuy Ngo2, and Zakaria Najm2

1 Secured Embedded Architecture Laboratory (SEAL)
Department of Computer Science and Engineering,

Indian Institute of Technology Kharagpur
{deb.basu.roy,debdeep}@cse.iitkgp.ernet.in

2 Institut MINES-TELECOM, TELECOM ParisTech, CNRS LTCI (UMR 5141)
{sylvain.guilley,danger,znajm}@enst.fr,

xuan-thuy.ngo@telecom-paristech.fr
3 Temasek Laboratories, NTU, Singapore

sbhasin@ntu.edu.sg
4 Secure-IC S.A.S., 80 avenue des Buttes de Coësmes, 35 700 Rennes, France

Abstract. Modern FPGAs offer various new features for enhanced re-
configurability and better performance. One of such feature is a dynam-
ically Reconfigurable LUT (RLUT) whose content can be updated in-
ternally, even during run-time. There are many scenarios like pattern
matching where this feature has been shown to enhance the performance
of the system. In this paper, we study RLUT in the context of secure
applications. We describe the basic functionality of RLUT and discuss its
potential applications for security. Next, we design several case-studies to
exploit RLUT feature in security critical scenarios. The exploitation are
studied from a perspective of a designer (e.g. designing countermeasures)
as well as a hacker (inserting hardware Trojans).

Keywords: Reconfigurable LUT (RLUT), FPGA, CFGLUT5, Hard-
ware Trojans, Side-Channel Countermeasures, Secret Ciphers.

1 Introduction

Field Programmable Gate Arrays (FPGAs) have had a significant impact on
the semiconductor market in recent years. FPGAs came into the VLSI industry
as successor of programmable read only memories (PROMs) and programmable
logic devices (PLDs) and has been highly successful due to its reconfigurable
nature. A standard FPGA can be defined as islands of configurable logic blocks
(CLBs) in the sea of programmable interconnects. However, with time, FP-
GAs have become more sophisticated due to the addition of several on-chip
features such as high-density block memories, DSP cores, PLLs, etc. These fea-
tures coupled with their core advantage of reconfigurability and low-time to
market have made FPGA an integral part of the semiconductor industry, as

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 248–268, 2015.
DOI: 10.1007/978-3-319-24126-5_15



Reconfigurable LUT: A Double Edged Sword 249

an attractive economic solution for low to medium scale markets like defense,
space, automotive, medical, etc. The key parameters for FPGA manufacturers
still remain area, performance and power. However, during these recent years,
FPGA manufacturers have started considering security as the fourth parame-
ter. Most recent FPGAs support bitstream protection by authentication and
encryption schemes [1]. Other security features like tamper resistance, blocking
bitstream read-back, temperature/voltage sensing, etc. are also available. FPGA
has also been a popular design platform for implementations of cryptographic
algorithms due to its reconfigurability and in house security. Apart from the
built-in security features, designers can use FPGA primitives and constraints to
implement their own designs in a secure manner. In [2], authors show several
side-channel countermeasures which could be realized on FPGAs to protect one
design. Another work [3] demonstrates the efficient use of block RAMs to imple-
ment complex countermeasures like masking and dual-rail logic. DSPs in FPGAs
have also been widely used to design public-key cryptographic algorithms like
ECC [4, 5] and other post-quantum algorithms [6]. Moreover, papers like [7] have
used FPGA constraints like KEEP, Lock PINS or language like XDL to design
efficient physical countermeasures.

The basic building block of an FPGA is logic slices. Typically a logic slice
contains look up tables (LUTs) and flip-flops. LUTs are used to implement com-
binational logics whereas flip-flops are used to design sequential architectures.
Every LUT contains an INIT value which is basically the truth table of the
combinational function implemented on that LUT. This INIT value is set dur-
ing the programming of the FPGA through bitstream. Generally this INIT value
is considered to be constant until the FPGA is reprogrammed again. However, in
recent years, a new feature has been added to the FPGAs which allows the user
to modify the INIT value of some special LUTs in the run time, without any
FPGA programming. These special LUTs are known as reconfigurable LUTs or
RLUTs as they can be reconfigured during the operation phase to change the
input-output mapping of the LUT. To the best of our knowledge, RLUTs have
found relevant use in pattern matching and filter applications [8]. Side chan-
nel protection methodology using RLUT is presented in [9] where the authors
have combined different side channel protection strategies with RLUTs and have
developed leakage resilient designs. However, in that work the authors have con-
centrated mainly on constructive use of RLUTs, not on destructive applications
which is covered by our paper.

In this paper, we aim to study the impacts and ramifications of these RLUTs
on cryptographic implementations. We have provided a detailed study of RLUTs
and have deployed it in many security related applications. We propose several
industry-relevant applications of RLUT both of constructive and destructive
nature. For example, an RLUT can be easily (ab)used by an FPGA IP designer
to insert a hardware Trojan. On the other hand, using RLUT, a designer can
provide several enhanced features like programming secret data on client-side.
The contribution of the paper can be listed as follows:



250 D.B. Roy et al.

– This paper provides a detailed analysis of RLUTs and how it can be ex-
ploited to create extremely stealthy and serious hardware security threats
like hardware Trojans (destructive applications).

– Moreover, we also propose design methodologies which uses RLUTs to re-
design efficient and lightweight existing side channel countermeasures to mit-
igate power based side channel attacks (constructive applications)

– Thus, in this paper we show that how RLUTs provide a gateway of creating
efficient designs for both adversary and normal users and act as double-edged
swords for security applications. To the best of our knowledge, this is the
first study which provides a detailed security analysis of RLUTs from both
constructive and destructive points of view.

The rest of the paper is organized as follows: Sec. 2 describes the rationale
of an RLUT and discusses its advantages and disadvantages. Thereafter several
destructive and constructive applications of RLUT are demonstrated in Sec. 3
and Sec. 4 respectively. Finally conclusions are drawn in Sec. 5.

2 Rationale of the RLUT

RLUT is a feature which is essentially known to be found in Xilinx FPGAs.
A Xilinx RLUT can be inferred into a design by using a primitive cell called
CFGLUT5 from its library. This primitive allows to implement a 5-input LUT
with a single output whose configuration can be changed. CFGLUT5 was first
introduced in Virtex-5 and Spartan-6 families of Xilinx FPGAs. As we will show
later in this section, the working principle of CFGLUT is similar to the shift reg-
ister or the more popularly known SRL primitives. Moreover, some older families
of Xilinx which do not support CFGLUT5 as a primitive, can still implement
RLUT using the SRL16 primitive. In the following, for sake of demonstration,
we stick to the CFGLUT5 primitives. Nevertheless the results should directly
apply to its alternatives as well.

As stated earlier, a RLUT can be implemented in Virtex-5 FPGAs using a
CFGLUT5 primitive. The basic block diagram of CFGLUT5 is shown in Fig. 1.
It is a 5-input and a 1-output LUT. Alternatively, a CFGLUT5 can also be mod-
eled as a 4-input and 2-output function. The main feature of CFGLUT5 is that
it can be configured dynamically during the run-time. Every LUT is loaded with
a INIT value, which actually represents the truth table of the function imple-
mented on that LUT. A CFGLUT5 allows the user to change the INIT value at
the run-time, thus giving the user power of dynamic reconfiguration internally.
This reconfiguration is performed using the CDI port. A 1-bit reconfiguration
data input is shifted serially into INIT in each clock cycle if the reconfigura-
tion enable signal (CE) is set high. The previous value of INIT is flushed out
serially through the CDO port, 1-bit per clock cycle. Several CFGLUT5 can be
cascaded together using reconfiguration data cascaded output port (CDO).

The reconfiguration property of CFGLUT5 is illustrated in Fig. 2 with the
help of a small example. In this figure, we show how the value of INIT gets
modified:



Reconfigurable LUT: A Double Edged Sword 251

I2
I3
I4

I1
I0

CE

Clk INIT

CFGLUT5
CE= Reconfiguration enable signal (active high)
CDI= Reconfiguration data serial input
O6= LUT output (For 5/4 i/p function)
O5= LUT output (For 4 i/p function)
CDO= Reconfiguration data output, can
be cascaded to CDI input of other CFGLUT
Clk=clock
INIT=Initial content of LUT

I4, I3, I2, I1, I0= LUT i/p (similar to the
address of shift register)

CDI

O6

O5

CDO

Fig. 1. Block diagram of CFGLUT5

– from value O = (O0, O1, O2, . . . , O30, O31),

– to a new value N = (N0, N1, N2, . . . , N30, N31).

This reconfiguration requires 32 clock cycles. As it is evident from the figure,
reconfiguration steps are basic shift register operations. Hence if required, re-
configuration of LUT content can be executed by using shift register primitives
(SRL16E 1) in earlier device families. The CDO pin can also be fed back to the
CDI pin of the same CFGLUT5. In this case, the original INIT value can be
restored after a maximum of 32 clock cycles without any overhead logic. We will
exploit this property of RLUT later to design hardware Trojans.

...

...

O0 O2 O31O30

N31 O0 O1 O30O29

...N30 N31 O0 O28 O29

...N2 N3N1 N31 O0

...N0 N1 N2 N30 N31

O1

CE = 0, CDI = N31

CE = 1, CDI = N31, CDO = O31

CE = 1, CDI = N30, CDO = O30

...

CE = 1, CDI = N1, CDO = O1

CE = 1, CDI = N0, CDO = O0

Stage 0

Stage 1

Stage 2

Stage 31

Stage 32

INIT

Fig. 2. INIT value reconfiguration in CFGLUT5

There are two different kinds of slices in a Xilinx FPGA i.e., SLICE M and
SLICE L. Whereas a simple LUT can be synthesized in either of the slices, CFG-
LUT5 can be implemented only in SLICE M. SLICE M contains LUTs which
can be configured as memory elements like shift register, distributed memory
along with combinational logic function implementation. The LUTs of SLICE L



252 D.B. Roy et al.

Fig. 3. CFGLUT5 mapped in LUT as SRL32 as shown from Xilinx FPGA Editor

can only implement combinational logic. CFGLUT5, when instantiated, is essen-
tially mapped into a SLICE M, configured as shift register (SRL32) as shown
in Fig 3.

2.1 Comparison with Dynamic Configuration

Another alternative to reconfigure FPGA in run-time is to use partial or dynamic
reconfiguration. This reconfiguration can also be exploited to implement secure
architectures [10]. In partial reconfiguration, a portion of the implemented de-
sign is changed without disrupting operations of the other portion of the FPGA.
This operation deploys an Internal Configuration Access Ports (ICAP) and the
design needing reconfiguration must be mapped into a special reconfigurable re-
gion [11]. Reconfiguration latency is in order of milliseconds. Partial reconfigura-
tion is helpful when significant modification of the design is required. However,
for small modification, using RLUT is advantageous as it has very small latency
(maximum 32 clock cycles) compared to partial reconfiguration. RLUT is con-
figured internally and no external access to either JTAG or Ethernet ports are
required for reconfiguring RLUTs. Additionally, traditional DPR (Dynamic Par-
tial Reconfiguration) requires to convey an extra bit file which is not required
in case of RLUT, making RLUT ideal for small reconfiguration of the design, in
particular for Trojans.

2.2 RLUT and Security

Since we have described the functioning of RLUT in detail, we can clearly rec-
ognize some properties which could be helpful or critical for security. A typical
problem of cryptographic implementations is its vulnerability to statistical at-
tacks like Correlation Power Analysis (CPA) [12]. For instance, CPA tries to
extract secret information from static cryptographic implementations by cor-
relating side-channel leakages to estimated leakage models. A desirable feature
to protect such implementations is reconfiguration of few internal features. A
RLUT would be a great solution in this case as it has the power to provide re-
configurability at minimal overhead and with no external access. It is important
to reconfigure internally to avoid the risk of any eavesdropping. On the other



Reconfigurable LUT: A Double Edged Sword 253

hand, RLUT can also be used as a security pitfall. For example, an efficient de-
signer can simply replace a LUT with RLUT in a design keeping the same INIT
value. Until reconfiguration, RLUT would compute normally. However upon re-
configuration, the RLUT can be turned into a potential Trojan. The routing of
the design is actually static, only the functionality of the LUT is modified upon
reconfiguration. In the following sections, we would show some relevant applica-
tions of constructive or deadly nature. Of course it is only a non-exhaustive list
of RLUT applications into security.

3 Destructive Applications of RLUT

In earlier sections, we have presented the basic concepts of RLUTs with major
emphasis on CFGLUT5 of Xilinx FPGAs. Though CFGLUT5 provides user
unique opportunity of reconfiguring and modifying the design in run-time, it also
gives an adversary an excellent option to design efficient and stealthy hardware
Trojan. In this section, we focus on designing tiny but effective hardware Trojan
exploiting reconfigurability of RLUTs.

A hardware Trojan is a malevolent modification of a design, intended for
either disrupting the algorithm operation or leaking secret information from
it. The design of hardware Trojan involves efficient design of Trojan circuitry
(known as payload) and design of trigger circuitry to activate the Trojan opera-
tion. A stealthy hardware Trojan should have negligible overhead, ideally zero,
compared to the original golden circuit. Moreover, probability of Trojan getting
triggered during the functional testing should be very low, preventing accidental
discovery of the Trojan. The threat of hardware Trojans is very realistic due
to the fabless model followed by the modern semiconductor companies. In this
model, the design is sent to remote fabrication laboratories for chip fabrication.
It is very easy for an adversary to make some small modification in the design
without violating the functionality of the design. The affected chip will give de-
sired output in normal condition, but will leak sensitive information upon being
triggered. More detailed analysis of hardware Trojans can be found in [13–15].

Researchers have shown that it is possible to design efficient hardware Trojans
on FPGAs. In [16] the authors have designed a Trojan on a Basys FPGA board
which get triggered depending upon the ‘content and timing’ of the signals. On
the other hand, authors in [17] have designed a hardware Trojan which can be
deployed on the FPGA via dynamic partial reconfiguration to induce faults in
an AES circuitry for differential fault analysis.

In this section, we will focus on effective design of hardware Trojan payload
using RLUT. But before going into the design methodologies of payload using
RLUTs, we will first describe the other two important aspects of the proposed
hardware Trojans: Adversary model and Trigger methodologies.

3.1 Adversary Model

It is a common trend in the semiconductor industry to acquire proven IPs to
reduce time to market and stay competitive. We consider an adversary model



254 D.B. Roy et al.

where a user buys specific proven IPs from a third party IP vendor. By proven
IPs, we mean IPs with well-established performance and area figures. Let us
consider that the IP under consideration is a cryptographic algorithm and the
target device is an FPGA. An untrusted vendor can easily insert a Trojan in
the IP which can act as a backdoor to access sensitive information of other
components of the user circuit. For instance, an IP vendor can provide a user with
an obfuscated or even encrypted netlist (encrypted EDIF (Electronic Design
Interchange Format)). Such techniques are popular and often used to protect the
rights of the IP vendor. A Trojan in an IP is very serious for two major reasons.
First, the Trojan will affect all the samples of the final product and secondly it is
almost impossible to get a golden model. Moreover, research in Trojan detection
under the given attack model is quite limited. The user does not have a golden
circuit to compare, thus making hardware Trojan detection using side channel
methodology highly unlikely. Additionally, this adversary model also makes the
Trojan design challenging. Generally, before buying an IP, user will analyze IPs
from different IP vendors for performance comparison. This competitive scenario
does not leave a big margin (gate-count) for Trojans.

Using RLUT, we can design extremely lightweight hardware Trojan payload as
we can reconfigure the same LUTs, used in the crypto-algorithm implementation,
from correct value to malicious value. This reduces the overhead of the hardware
Trojan and makes it less susceptible to detection techniques based on visual
inspection [18]. We can also restore the original value of RLUT to remove any
trace of Trojan, of course, at minor overheads. An IP designer can easily replace
a normal LUT with RLUT. In this case, the designer has only one restriction
of replacing a LUT implemented in SLICE M. It is not difficult to find such a
LUT in a medium to big-scale FPGA which is often the case with cryptographic
modules. Moreover, if the designer chooses to insert the trojan at RTL level, the
present restriction would not even apply. Additionally, if the access to the client
bitstream is available, the adversary can reverse engineer the bitstream [19] and
can replace a normal LUT with RLUT.

Instantiation of CFGLUT5 does not report any special element in the design
summary report, but a LUT modeled as SRL32 . A shift register has many
usages on the circuit. For example, a counter can be very efficiently designed on
a shift register using one hot encoding. Moreover, lightweight ciphers employs
extensive usage of shift registers for serialized architectures. Thus any suspicion
of malicious activity will not arise in the user’s mind by seeing the design report.

The only requirement is efficient triggering and a reconfiguration logic which
will generate the malicious value upon receiving trigger signal. However, in this
paper we will show that once triggered, malicious value for the hardware
Trojan can be generated without any overhead, thus giving us extremely
lightweight and stealthy design of hardware Trojans. The basic methodology is
same for all the Trojans, which can be tabulated as follows:

– Choose a sensitive sub-module of the crypto-algorithm. For example, one
can choose a 4× 4 Sbox (can be implemented using 2 LUTs) as the sensitive
sub module.



Reconfigurable LUT: A Double Edged Sword 255

– Replace the LUTs of the chosen sub-module with CFGLUT5s without al-
tering the functionality. A 4 × 4 Sbox can also be implemented using two
CFGLUT5.

– Modify the INIT value upon trigger. As shown in Fig. 1, reconfiguration
in CFGLUT5 takes place upon receiving the CE signal. By connecting the
trigger output to the CE port, an adversary can tweak the INIT value of
CFGLUT5 and can change it to a malicious value. For example, the 4 × 4
Sboxes, implemented using CFGLUT5 can be modified in such a way that
non-linear properties of the Sboxes get lost and the crypto-system becomes
vulnerable to standard cryptanalysis. The malicious INIT value can be easily
generated by some nominal extra logic. However, in the subsequent sections,
we will show that it is possible to generate the malicious INIT value without
any extra logic.

– Upon exploitation, restore original INIT value.

3.2 Trigger Design the Hardware Trojans

A trigger for a hardware Trojan is designed in a way that the Trojan gets acti-
vated in very rare cases. The trigger stimulus can be generated either through
output of a sensor under physical stress or some well controlled internal logic.
The complexity of trigger circuit also depends on the needed precision of the trig-
ger in time and space. Several innovative and efficient methods were introduced
as a part of Embedded Systems Challenge (2008) where participants were asked
to insert Trojans on FPGA designs. For instance, one of the the proposition
was content & timing trigger [16], which activates with a correct combination of
input and time. Such triggers are considered practically impossible to simulate.
Other triggers get activated at a specific input pattern. A more detailed analysis
with example of different triggering methodologies and their pros and cons can
be found in [20].

Moreover, modern devices are loaded with physical sensors to ensure correct
operating conditions. It is not difficult to find voltage or temperature sensors
in smart-cards or micro-controllers. Similarly, FPGA also come with monitors
to protect the system for undesired environmental conditions, Virtex-5 FPGAs
contain system monitor. Though system monitor is not a part of cipher, they
are often included in the SoC for tamper/fault/ temperature variation detection.
These sensors are programmed to raise an alarm in event of unexpected physi-
cal conditions like overheating, high/low voltage etc. Now an adversary can use
this system monitor to design an efficient and stealthy hardware Trojan trig-
ger methodology. The trick is to choose a trigger condition which is less than
threshold value but much higher than nominal conditions. For instance, a chip
with nominal temperature of 20◦C− 30◦C and safety threshold of 80◦C, can be
triggered in a small window chosen from the range of 40◦C − 79◦C. Similarly,
user deployed sensors like the one proposed in [21] can also be used to trigger a
Trojan. In our case study, we used the temperature sensor of Virtex-5 FPGAs
system monitor to trigger the Trojan, more precisely on SASEBO-GII boards.



256 D.B. Roy et al.

The heating required to trigger the Trojan can be done by a simple $5 hair-
dryer easily available in the market. The triggering mechanism is explained in
Appendix A. In the following to not deviate from the topic, we focus mainly on
the payload design of the Trojan using RLUT. We let the designer choose any
of the published techniques (including one proposed in Appendix A) or innovate
one. We precisely propose the design of the Trojan and the required triggering
conditions.

3.3 Trojan Description

Before designing Trojan payload for a given hardware, we first demonstrate the
potential of RLUT in inserting malicious activity. Let us consider a buffer which
is a very basic gate. Buffers are often inserted in a circuit by CAD tools to
achieve desired timing requirements. For FPGA designers, another equivalent of
buffer is route-only LUT. These buffers can be inserted in any sensitive wires
without raising an alarm. In fact, sometimes the buffers might already exist.

These buffers are implemented in a LUT6 with INIT=0xAAAAAAAAAAAAAAAA

and can be easily replaced by CFGLUT5. A simple Trojan would consist in
changing the INIT value of CFGLUT5 to 0xAAAAAAAA and feedback CDO output
to CDI input (see Fig 1). The CE input is connected to the trigger of the
Trojan. Now, when the Trojan is triggered once (one clock), INIT value changes
to 0x55555555 which changes the functionality of the gate to inverter. Another
trigger brings back the INIT value to 0xAAAAAAAA i.e., a buffer. The operations
are illustrated in Fig. 4, where red block shows Trojan inverter and black blocks
show a normal buffer. Thus by precisely controlling the trigger, an adversary
can interchange between a buffer and inverter. Such a Trojan can be used in
many scenarios like injecting single bit faults for Differential Fault Attacks [22]
or controlling data multiplexers or misreading status flags, etc.

In the above example, we see how a buffer can be converted to an inverter by
reconfiguring the CFGLUT5 upon receiving the trigger signal. One important
observation is that we do need need any extra reconfiguration logic to modify the
INIT value of the CFGLUT5. The modification of the INIT value is achieved by
the connecting the reconfiguration input port CDI to the reconfiguration data
output port CDO. In other words, we can define the malicious INIT value in
following way

INITmalicious = CSi(INITnormal)

where CSi denotes cyclic right shift by i bits. The approach of RLUT is harder to
detect because the malicious payload does not exist in the design. It is configured
when needed and immediately removed upon exploitation. In normal LUT, the
malicious design is hardwired (requires extra logic) and risk detection, whereas
RLUT modifies existing resources and enables us to design design hardware Tro-
jans without any extra reconfiguration logic. We will use similar methodologies
for all the proposed hardware Trojans in this paper.

Next, we target a basic AES IP as a Trojan target. The architecture of the
AES design is shown in Fig. 5. The AES takes 128 bits of plaintext and key



Reconfigurable LUT: A Double Edged Sword 257

31 30 29 28 3 2 1 0

INIT (32 bits)

CLK
1

31 30 29 28 3 2 1 0

INIT (32 bits)

CLK
1

31 30 29 28 3 2 1 0

INIT (32 bits)

1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0...... ...

Fig. 4. Operations of CFGLUT5 to switch from a buffer to inverter and back

as input and produce 128 bit cipher-text in 11 clock cycles. The control unit of
the AES encryption engine is governed by a 4 bit mod-12 counter and generates
three different control signals which are as follows:

1. load: It is used to switch between plaintext and MixColumns output. During
the start of the encryption, this signal is made high to load the plaintext in
the AES encryption engine.

2. S.R/M.C: It is used to switch between the ShiftRows and MixColumns out-
put in the last round of AES.

3. done: It is used to indicate the end of encryption.

These signals are set high for different values of the counter. In our Trojan design,
we mainly target the control unit of the AES architecture to disrupt the flow of
the encryption scheme so that we can retrieve the AES encryption key. For this,
we have developed four different Trojans and have deployed them on the AES
implementation. The objective of the developed Trojan is to retrieve the AES key
with only one execution of hardware Trojan or single bad encryption. Indeed, it
has been shown that only one faulty encryption, if it is accurate in time, suffices
to extract a full 128-bit key [23]. Triggering conditions can be further relaxed if
several bad encryptions are acceptable. Each Trojan has trigger with different
pulse-width or number of clock cycles. For different payloads, the RLUT content
varies, hence variation in the trigger.

K
E
Y

S
C
H
E
D
U
L

Clk Enable

Counter

4

Control
Signals

Generator

LUT6_2

4

count

Control Unit

Output Cipher Text

done

Reset Master Key

128

128

128

128

Plain−Text

round key
128

128

128

128’d0 128

128

State Register

S.R/M.C

load

128

128

E

ShiftRows

MixColumns

Substitution

Fig. 5. AES architecture without Trojans

K
E
Y

S
C
H
E
D
U
L

Clk Enable

Counter

4

Control
Signals

Generator

count

Control Unit

Output Cipher Text

Reset

128

128

128

128

round key
128

128

128

128’d0 128

128

State Register

S.R/M.C

load

128

128

4

Trig.

CDI CDO

CE

CFGLUT5

done

Plain−Text Master Key

E

Substitution

ShiftRows

MixColumns

Fig. 6. AES architecture with Trojan 1



258 D.B. Roy et al.

The detailed description of the developed Trojans are as follows:

Trojan 1. As we have stated earlier, the control unit of AES is based on a
counter which also generates a done flag to indicate completion of the encryption
cycle and is set to high only if counter value reaches 11. Signal done as shown in
Fig. 5, is driven by a LUT6 2, which takes 4 bit counter value as input, and under
normal operation it should contain INIT value 0x00000800 (it means only the
11th bit is set to one i.e. condition required for done signal). To insert a Trojan
we replace this LUT with CFGLUT5 with INIT=0x80000800. It must be noted
that though the INIT value of LUT6 2 and INIT value of CFGLUT5 are not
same, both will essentially produce the same output upon receiving the 4 bit
counter value. This is because truth-table of a function of 4 variables consists of
16 bits only, hence any change in the upper 16 bits of the INIT value will not
change the functionalities of the LUT.

The CDO output is feedback into CDI input as in the example above. A trig-
ger of 2 clock cycles at the CE input activates the Trojan (INIT=0x00002002)
and produces the round 0 output (at round 0, counter value is 1) as the cipher-
text. The round 0 output is actually same as plaintext XOR key and by knowing
the plaintext, one can easily extract the full key with one wrong encryption.
Again, we can see that malicious value of the INIT is generated by cyclic shift
of the original INIT value of the CFGLUT5, hence we do not need any extra
logic to generate the new INIT value. After extracting the key, a trigger of 10
clock cycles will restore the normal operations of the AES (INIT=0x00800800).
This INIT value need not to be the same value, with which we started the com-
putation (INIT=0x80000800), as long as the LUT generates correct output. The
transition of INIT to activate the Trojan and restore back is shown in Fig 7(a)
and the modifications in the AES architecture is shown in Fig. 6.

In the above Trojan description, we need 2 clock cycles to modify the CFG-
LUT5 to malicious Trojan configuration and 10 clock cycles to restore it to the
original correct value. So in total, we require 12 clock cycles.

Keeping this in mind, we have implemented three different versions of the
same Trojan, depending on the precision of the trigger.

1. Trojan 1a needs a 1 cycle trigger synchronized with the start of the encryp-
tion. This trigger is used to enable a FSM which generates 12 clock cycles
for CE of the CFGLUT , in order to activate the Trojan and restore it back
after exploitation. Because of this, the overhead of the developed Trojan is
6 LUTs and 4 flip-flops.

2. Trojan 1b is a zero overhead Trojan. It assumes an adversary to be slightly
stronger than Trojan 1a who can generate a trigger signal active for precisely
12 cycles and synchronized with the start of encryption.This overhead is
absent in Trojan 1b as the trigger itself act as the CE signal of RLUT.

3. Trojan 1c relaxes the restriction on the adversary seen at previous case.
It assumes that there are some delays of n � 10 clock cycles between two
consecutive encryption. The choice of n � 10 is due to the fact that we
need 2 clock cycles to reconfigure the RLUT into malicious Trojan payload,



Reconfigurable LUT: A Double Edged Sword 259

and 10 clock cycles to restore it back to good value. Hence the gap between
two consecutive AES encryption should be greater than 10. The adversary
provides a trigger of two clock cycles (not necessarily consecutive) before
the start of current encryption. After the faulty encryption is complete, the
adversary generates 10 trigger cycles (again not necessarily consecutive) to
restore back the cipher operations. The overhead for this Trojan is 2 LUTs,
due to routing of RLUT.

Trojan 2. This Trojan targets a different signal in the control unit of the AES
design. As shown in Fig. 5, the design contains a multiplexer which switches be-
tween MixColumns output and input plaintext depending on the round/count
value. The output of the multiplexer is produced at input of AddRoundKey op-
eration. Under normal operation, multiplexer passes the input plaintext in round
0 (load signal of multiplexer is set to 1) and MixColumns output (ShiftRows out-
put in the last round) in other rounds (select signal of multiplexer is set to 0).
To design the Trojan, we have replaced the LUT6 2 (with INIT=0x00000002)
which generates load signal of the multiplexer with CFGLUT5, containing INIT=

0x00400002. As we have observed for Trojan 1, the difference in the INIT value
in LUT6 2 and INIT value of CFGLUT5 will essentially produce the same
output.

In this case also CDO port of CFGLUT5 is connected to CDI port, enabling
cyclic shift of the INIT value. Upon a trigger of 10 clock cycles, the INIT value
gets modified to INIT=0x80000400 (it means load will set to one during the
last round). This actually changes the multiplexer operation, modifying it to
select the plaintext in the last round computation. From the resulting cipher-
text of this faulted encryption, we can easily obtain the last round key, given
the plaintext. Further a trigger of 2 clock cycles restores the normal operation
(INIT=0x00001002) as shown in Fig 7(b). Again the value over bit position 12
is not a problem as the select signal is controlled by a mod-12 counter and the
value is never reached. The counter value 0 indicates idle state, 1− 10 encryp-
tion and 11 indicates end of encryption. This Trojan also has a zero overhead
as reconfiguration of the CFGLUT5 is obtained by cyclic right shifting of INIT.

CLKCLK 0000010000000001 1 1 1 1
102

31 30 29 11 2 1 0 31 30 29 13 2 1 0 31 30 23 11 1 0

INIT (32 bits) INIT (32 bits) INIT (32 bits)

... ...... ... .........

(a)

CLKCLK 010000000010000 1 1 11 0
210

INIT (32 bits)

31 30 29 22 2 1 0 31 30 29 10 2 1 0

INIT (32 bits)

31 30 29 12 1 0

INIT (32 bits)

... ............ ...

(b)

Fig. 7. Operations of CFGLUT5 to activate the Trojan and restore to normal opera-
tions for (a) Trojan 1; (b) Trojan 2. Bit positions not shown contain ‘0’



260 D.B. Roy et al.

Table 1. Area overhead of the Trojans on Virtex-5 FPGA. Trigger is given in clock
cycles and s subscript indicates trigger must be consecutive synchronized with the start
of encryption.

Trojan Trigger LUT Registers Payload Overhead Frequency (MHz)

AES (No Trojan) 1594 260 X 212.85
Trojan 1a 1s 1600 264 6 LUTs & 4 flip-flops 212.85
Trojan 1b 12s 1594 260 0 212.85
Trojan 1c 12 1596 260 2 LUTs 212.85
Trojan 2 12s 1594 260 0 212.85

But the trigger signal need to be precise and should be available for consecutive
12 clock cycles. Hence, triggering cost is same as Trojan 1b.

Tab. 1 summarizes the nature, trigger condition and cost of the four Trojans.
The above described Trojans can also be designed using normal LUTs. The

zero overhead Trojans described above can be designed using 2 LUT overhead
(One LUT for Trojan operation and other for selecting between Trojan and
normal operations). But such Trojan designs can be easy to detect as the Trojan
operated LUT is always present on the design unlike CFGLUT5, where the
Trojan operated LUT is created by run time reconfiguration.

In this section, we have presented different scenarios where CFGLUT5 can be
employed as hardware Trojans and can leak secret information from crypto-IPs
like AES. We specifically have targeted multiplexers and FSMs of the circuit.
It is also possible to design sophisticated Trojans using CFGLUT5 where the
developed Trojan will work in conjunction with side channel attacks or fault
injections to increase the vulnerability of the underlying crypto-system.

4 Constructive Applications for RLUT

In the previous section, we discussed some application of RLUT for hardware
Trojans into third party IPs. However, RLUT do have a brighter side to their
portfolio. The easy and internal reconfigurability of RLUT can surely be well
exploited by the designers to solve certain design issues. In the following, we
detail two distinct cases with several applications, where RLUT can be put to
good use.

4.1 Customizable Sboxes

A common requirement in several industrial application is dynamic or cutomiz-
able substitution boxes (Sboxes) of a cipher. One such scenario which is often en-
countered by IP designers who design secret ciphers for industrial application.
A majority of secret ciphers use a standard algorithm like AES with modified
specification like custom Sboxes or linear operations. Sometimes the client is not
comfortable to disclose these custom specifications to the IP designer. Common
solutions either have a time-space overhead or resort to dynamic reconfiguration,
to allow the client to program secret parameters at their facilities. A RLUT can
come handy in this case.



Reconfigurable LUT: A Double Edged Sword 261

There are several algorithms where the Sboxes can be secret. The former
Soviet encryption algorithm GOST 28147-89 which was standardized by the
Russian standardization agency in 1989 is a prominent example [24]. The A3/A8
GSM algorithm for European mobile telecommunications is another example. In
the field of digital rights management, Cryptomeria cipher (C2) has a secret set
of Sboxes which are generated and distributed to licencees only.

There are certain encryption schemes like DRECON [25], which offers DPA
resistance by construction, exploiting tweakable ciphers. In this scheme, users
exchange a set of tweak during the key exchange. The tweak is used to choose
the set of Sboxes from a bigger pool of precomputed Sboxes. In the proposed
implementation [25], the entire pool of Sboxes must be stored on-chip. Using
RLUT, the Sboxes can be easily computed as a function of the tweak and stored
on the fly. Similarly, a low-cost masking scheme RSM [3] can also benefit from
RLUT to achieve desired rotation albeit at the cost of latency. Thus there exist
several applications where customizable Sboxes are needed.

Architecture of Sbox Generator: As a proof of concept, we implement the
Sbox generation scheme of [25]. The original implementation generates a pool
of 32 4 × 4 Sboxes and stores it into BRAMs, while only 16 are used for a
given encryption. It uses a set of Sboxes which are affine transformations of
each other. For a given cryptographically strong Sbox S(·), one can generate 2n

strong Sboxes by following: Fi(x) = αS(x) ⊕ i for all i = 0, · · · , 2n − 1, where α
is an invertible matrix of dimension n× n. α can also be considered a function
of the tweak value t i.e. α = f(t). Since affine transformation does not change
most of the cryptographic properties of Sboxes, all the generated Sboxes are of
equal cryptographic strength [25].

The Sbox computation scheme of [25] can be very well implemented using
RLUT as follows. The main objective of this Sbox generator is to compute a
new affine Sbox from a given reference Sbox, and store it in the same location.
The architecture is shown in Fig 8. As we have stated earlier, each CFGLUT5
can be modeled as 2 output 4 input function generator, we can implement a 4×4
Sbox using two CFGLUT5 as shown in Fig 8. We consider that the reference
4 × 4 Sbox is implemented using 2 CFGLUT5. We compute the new Sbox and
program it in the same 2 CFGLUT5. The reconfiguration of the Sbox is carried
through following steps:

1. Read the value of the Sbox for input 15.
2. Compute the new value (4-bits {3,2,1,0}) of the Sbox using affine transformer

for the Sbox input 15.
3. Now CFGLUT5 is updated by the computed value, 2 bits for eachCFGLUT5

({3,2},{1,0}). However, only one bit can be shifted in CFGLUT5 in one clock
cycle. Hence we shift in two bits, 1-bit in each CFGLUT5 ({0,2}) and store
the other 2-bit ({1,3}) in two 16 bit registers.



262 D.B. Roy et al.

.

.

.

.

.

.

4

1

2

4
1

11

2

1

1

1

CDI

4

CDI

44’d15

SBox input
Affine

index i

Trans-
former

CFGLUT5

CFGLUT5

0

0

15

15

Sbox

SBOXH

SBOXL

α

Shift

Shift
Reg.

.Reg.
reconfig/encrypt

Fig. 8. Architecture of Sbox Computation using affine transformation and storing in
RLUT

4. After the 2-bits ({0,2}) of new value of Sbox is shifted in to position 0 of
each CFGLUT5, old value for the position 15 is flushed out. The old value
at position 14 is moved up to position 15. Thus the address is hard-coded to
4’d15.

5. Repeat steps 1− 4 until whole old Sbox is read out i.e. 16 clock cycles.
6. After 16 clock cycles, we start to shift in the data which we stored in the

shift register bits ({1,3}) for 16 Sbox entries, which takes another 16 clock
cycles. This completes Sbox reconfiguration.

The architecture requires 56 LUTs, 38 flip-flops with a maximum operat-
ing frequency of 271 MHz. To reconfigure one Sbox, we need 32 clock cycles.
Now depending on the application and desired security the sbox recomputation
can be done after several encryption or every encryption or every round. It is a
purely security-performance trade-off.

4.2 Sbox Scrambling for DPA Resistance

RLUT also have the potential to provide side-channel resistance. The reconfig-
uration provided by RLUT can be very well used to confuse the attackers. A
beneficial target would be the much studied masking countermeasures [2] which
suffer from high overhead due to the requirement of regular mask refresh. One of
the masking countermeasures which was fine-tuned for FPGA implementation
is Block Memory content Scrambling (BMS [2]). This scheme claims first-order
security and, to our knowledge, no practical attack has been published against it.
However, Sbox Scrambling using BRAM is inefficient on lightweight ciphers with
4x4 sboxes due to underutilization of resources. Hence we propose a novel archi-
tecture using RLUT to address this. Nevertheless, this mechanism can easily be
translated to AES also.

The side channel countermeasure using RLUT, shown in [9] is different from
the proposed design architecture. The design of [9] implements standard Boolean



Reconfigurable LUT: A Double Edged Sword 263

SLM1

SL(XM1 ⊕ M1) ⊕ P−1(M1)

SLM0
keyr

XM0 = X ⊕ M0

SL(XM0 ⊕ M0) ⊕ P−1(M0)

64

64

64

64

64

64 64
P

64

SWAP=0

YM0 = P (SL(X)) ⊕ M0

Fig. 9. Architecture of Modified PRESENT Round. SLM0 is the (precomputed) active
SLayer while SLM1 is being computed as in Fig. 10.

masking scheme, where each round uses a different mask. Here, we propose a
lightweight architecture of SBox scrambling scheme presented in [2]. These two
countermeasures have similar objectives but quite different designs.

The BMS scheme works as follows: let Y (X) = P (SL(X)) be a round of
block cipher, where X is the data, P (·) is the linear and SL(·) is the non-linear
layer of the block cipher. For example in PRESENT cipher [26], the non-linear
layer is composed of 16 4 × 4 Sboxes and the linear layer is bit-permutation.
According to the BMS scheme, the masked round can be written as YM (X) =
P (SLM (XM )), where XM is masked data X ⊕M and SLM (·) is the Sbox layer
of 16 scrambled Sbox. Now each Sbox Sm(·) in SLM is scrambled with one
nibble m of the 64-bit mask M . The scrambled Sbox Sm(·) can be simplified
as Sm(xm)) = S(xm ⊕m) ⊕ P−1(m), where x is one nibble of round input X .
Next in a dual-port BRAM which is divided into an active and inactive segment,
where the active segment contains SLM0(·) i.e. Sbox scrambled with mask M0
is used for encryptions. Parallely, another Sbox layer SLM1(·) scrambled with
mask M1 is computed in an encryption-independent process and stored in the
inactive segment. Every few encryption, the active and inactive contents are
swapped and a new Sbox scrambled with a fresh mask is computed and stored
in the current inactive segment. This functioning is illustrated in Fig. 9.

BMS is an efficient countermeasure and shown to have reasonable overhead of
44% for LUTs, 2× BRAMs and roughly 3× extra flip-flops in FPGA. Another
advantage of BMS is that it is generic i.e., it can be applied to any cryptographic
algorithm. BMS can be viewed as a leakage resilient implementation, where the
cipher is not called enough with a fixed mask for an attack to succeed. The
memory contexts are swapped again with a fresh mask. However, for certain
algorithms BMS could become unattractive. For example in a lightweight algo-
rithm like PRESENT, a 4 × 4 Sbox can be easily implemented in 4 LUTs. In
newer FPGA families which support 2-output LUT, 2 LUTs are enough to im-
plement a Sbox. Using a BRAM in such a scenario would lead to huge wastage
of resources.



264 D.B. Roy et al.

MASK m

4

4

64 64

4

ADDR

RNG

4 4

Inverse
pLayer

4

2

2

FIFO

FIFO

RECONFIGURATION
CIRCUIT

SCRAMBLER

SBOXP

CDI

SBOXML

CFGLUT5

CFGLUT5

O6

O5

O5

O6
CDI

SBOXMH

Fig. 10. Architecture of Sbox Scrambler

Table 2. Area and Performance Overhead of Scrambling Scheme on Virtex-5 FPGA

Architecture LUTs Flip-flops Frequency (MHz)

Original 208 150 196
Scrambled 557 552 189
Overhead 2.67× 3.68× 1.03×

Sbox Scrambling Using RLUT: In the following, we use RLUT to imple-
ment BMS like countermeasure. Precisely we design a PRESENT cryptoproces-
sor protected with a BMS like scrambling scheme but using RLUTs to store
scrambled Sboxes. The rest of the scheme is left same as [2]. The architecture
of Sbox scrambler using RLUT is shown in Fig 10. SBOXP is the PRESENT
Sbox. A mod16 counter generates the Sbox address ADDR which is masked
with Mask m of 4-bits. The output of Sbox is scrambled with the inverse permu-
tation of the mask to scramble the Sbox value. Please note that the permutation
must be applied on the whole 64-bits of the mask to get 4-bits of the scram-
bling constant for each Sbox. Each output of the scrambler is 4-bits. As stated
before, each 4 × 4 Sbox can be implemented in 2 CFGLUT5 each producing
2-bits of the Sbox computation. Let us call the CFGLUT5 producing bits 0, 1
as SBOXML and bits 2, 3 as SBOXMH . The 4-bit output of the scrambler is
split into two buses of 2-bits ({3,2},{1,0}). Bits {3,2} and {1,0} are then fed to
the CDI of SBOXML and SBOXMH respectively, through a FIFO. The same
scrambler is used to generate all the 16 Sboxes one after the other and program
CFGLUT5. In total it requires 16 × 32 clock cycles to refresh all 16 inactive
Sboxes. We implement two parallel layers of SBoxes. When the active layer is
computing the cipher, the inactive one is being refreshed. Thus cipher operation
is not stalled. 16× 32 clocks (16 encryptions) are needed to refresh the inactive
layer and this means that we can swap active and inactive SBoxes after every
16 encryptions. Swap means that active SBox become inactive and vice versa.
The cipher design uses active SBox only. The area overhead comes from the
scrambler circuit and multiplexers used to swap active/inactive Sboxes. We im-



Reconfigurable LUT: A Double Edged Sword 265

plemented a PRESENT crypto-processor and protected it with Sbox scrambling
countermeasure. The area and performance figures of the original design and its
protected version are summarized in Tab. 2. It should be noted that proposed
design has more overhead compared to original BMS scheme in terms of LUT
and flip-flops, but does not require any block RAMs which are essential part of
original BMS scheme.

5 Conclusions

This paper addresses methods to exploit reconfigurable LUTs (RLUTs) in FP-
GAs for secure applications, with both views: destructive and constructive. First
it has been shown that the RLUT can be used by an attacker to create Hard-
ware Trojans. Indeed the payload of stealthy Trojans can be inserted easily in
IP by untrusted vendors. The Trojans can be used to inject faults or modify
the control signals in order to facilitate the key extraction. This is illustrated
by a few examples of Trojans in AES. Second the protective property of RLUT
has been illustrated by increasing the resiliency of the Sboxes of cryptographic
algorithms. This is accomplished either by changing dynamically the Sboxes of
customized algorithms or scrambling the Sboxes of standard algorithms. These
type of design techniques are extremely useful for lightweight block ciphers with
SBox of smaller dimension. Moreover, generating Sboxes in runtime is an attrac-
tive design choice for the designer employing ciphers with secret Sboxes.

To sum up, this paper clearly shows that RLUT is a double-edged sword
for security applications on FPGAs. Due to the obvious positive application of
RLUTs in security, one cannot simply restrict the use of RLUT in secure applica-
tions. This motivates further research in two principal directions. Firstly, there
is need for Trojan detection techniques at IP level. This detection techniques
should be capable of distinguishing a RLUT based optimizations from potential
Trojans. Finally certain new countermeasures totally based on RLUTs can be
studied.

Bibliography

1. Trimberger, S.M., Moore, J.J.: FPGA Security: Motivations, Features, and Appli-
cations. Proceedings of the IEEE 102(8), 1248–1265 (2014)

2. Güneysu, T., Moradi, A.: Generic side-channel countermeasures for reconfigurable
devices. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 33–48.
Springer, Heidelberg (2011)

3. Bhasin, S., He, W., Guilley, S., Danger, J.-L.: Exploiting FPGA block memories
for protected cryptographic implementations. In: ReCoSoC, pp. 1–8. IEEE (2013)

4. Güneysu, T., Paar, C.: Ultra High Performance ECC over NIST Primes on Com-
mercial FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 62–78. Springer, Heidelberg (2008)

5. Roy, D.B., Mukhopadhyay, D., Izumi, M., Takahashi, J.: Tile before multiplication:
An efficient strategy to optimize DSP multiplier for accelerating prime field ECC
for NIST curves. In: The 51st Annual Design Automation Conference, DAC 2014,
San Francisco, CA, USA, June 1-5, pp. 1–6. ACM (2014)



266 D.B. Roy et al.

6. Güneysu, T.: Getting Post-Quantum Crypto Algorithms Ready for Deployment.
https://www.cosic.esat.kuleuven.be/ecrypt/cryptofor2020/program.shtml

7. He, W., Otero, A., de la Torre, E., Riesgo, T.: Automatic generation of identical
routing pairs for FPGA implemented DPL logic. In: ReConFig, pp. 1–6. IEEE
(2012)

8. Kumm, M., Möller, K., Zipf, P.: Reconfigurable FIR filter using distributed arith-
metic on FPGAs. In: 2013 IEEE International Symposium on Circuits and Systems
(ISCAS 2013), Beijing, China, May 19-23, pp. 2058–2061. IEEE (2013)

9. Sasdrich, P., Moradi, A., Mischke, O., Güneysu, T.: Achieving Side-Channel Pro-
tection with Dynamic Logic Reconfiguration on Modern FPGAs. In: IEEE In-
ternational Symposium on Hardware Oriented Security and Trust, HOST 2015,
Washington, DC, USA, May 5-7, pp. 130–136 (2015)

10. Madlener, F., Sotttinger, M., Huss, S.A.: Novel hardening techniques against dif-
ferential power analysis for multiplication in gf(2n). In: International Conference
on Field-Programmable Technology, FPT 2009, pp. 328–334 (December 2009)

11. Xilinx. Xilinx Partial Reconfiguration User Guide (UG702),
http://www.xilinx.com/support/documentation/sw manuals/xilinx14 1/

ug702.pdf

12. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage
Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 16–29. Springer, Heidelberg (2004)

13. Ali, S., Chakraborty, R.S., Mukhopadhyay, D., Bhunia, S.: Multi-level attacks: An
emerging security concern for cryptographic hardware. In: Design, Automation and
Test in Europe, DATE 2011, Grenoble, France, March 14-18, pp. 1176–1179 (2011)

14. Chakraborty, R.S., Narasimhan, S., Bhunia, S.: Hardware Trojan: Threats and
Emerging solutions. In: IEEE International High Level Design Validation and Test
Workshop, HLDVT 2009, San Francisco, CA, USA, November 4-6, pp. 166–171
(2009)

15. Tehranipoor, M., Forte, D.: Tutorial T4: All You Need to Know about Hard-
ware Trojans and Counterfeit ICs. In: 2014 27th International Conference on VLSI
Design and 2014 13th International Conference on Embedded Systems, Mumbai,
India, January 5-9, pp. 9–10 (2014)

16. Chen, Z., Guo, X., Nagesh, R., Reddy, A., Gora, M., Maiti, A.: Hardware trojan
designs on basys fpga board

17. Johnson, A.P., Saha, S., Chakraborty, R.S., Mukhopadhyay, D., Gören, S.: Fault
Attack on AES via Hardware Trojan Insertion by Dynamic Partial Reconfigura-
tion of FPGA over Ethernet. In: Proceedings of the 9th Workshop on Embedded
Systems Security, WESS 2014, pp. 1:1–1:8. ACM, New York (2014)

18. Bhasin, S., Danger, J.-L., Guilley, S., Ngo, X.T., Sauvage, L.: Hardware Trojan
Horses in Cryptographic IP Cores. In: Fischer, W., Schmidt, J.-M. (eds.) FDTC,
pp. 15–29. IEEE (2013)

19. Note, J.-B., Rannaud, É.: From the Bitstream to the Netlist. In: Proceedings of the
16th International ACM/SIGDA Symposium on Field Programmable Gate Arrays,
FPGA 2008, pp. 264–264. ACM, New York (2008)

20. Benchmarks. https://www.trust-hub.org/resources/benchmarks (accessed:
January 30, 2015)

21. Homma, N., Hayashi, Y.-i., Miura, N., Fujimoto, D., Tanaka, D., Nagata, M., Aoki,
T.: EM Attack Is Non-invasive? - Design Methodology and Validity Verification
of EM Attack Sensor. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 1–16. Springer, Heidelberg (2014)

https://www.cosic.esat.kuleuven.be/ecrypt/cryptofor2020/program.shtml
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf
https://www.trust-hub.org/resources/benchmarks


Reconfigurable LUT: A Double Edged Sword 267

22. Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

23. Ali, S., Mukhopadhyay, D., Tunstall, M.: Differential fault analysis of AES: towards
reaching its limits. J. Cryptographic Engineering 3(2), 73–97 (2013)

24. Poschmann, A., Ling, S., Wang, H.: 256 Bit Standardized Crypto for 650 GE –
GOST Revisited. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 219–233. Springer, Heidelberg (2010)

25. Hajra, S., Rebeiro, C., Bhasin, S., Bajaj, G., Sharma, S., Guilley, S., Mukhopad-
hyay, D.: DRECON: DPA Resistant Encryption by Construction. In: Pointcheval,
D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS, vol. 8469, pp. 420–439. Springer,
Heidelberg (2014)

26. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

27. Xilinx. Virtex-5 fpga system monitor,
http://www-inst.eecs.berkeley.edu/~cs150/fa13/resources/ug192.pdf

A Trigger Generation for Hardware Trojans

For the hardware Trojan trigger signal, we exploit directly the temperature sen-
sor measurement to generate the trigger signal. The device, used for this exper-
iment, is Xilinx Virtex 5 FPGA mounted on SASEBO-GII boards. As described
in the documentation [27], the temperature measurement is read directly on 10
bits signal output of system monitor. This output allows a value which varies
from 0 to 1023. System monitor measurement allows to sense a temperature in
range of [−273◦C,+230◦C] hence the LSB of the 10 bits output is equal to 1/2◦C.
At the normal operating temperature (25◦C), system monitor output is around
605 = b′1001011101. Thanks to this observation, we decided to use directly the
7th bit of system monitor output as hardware Trojan trigger signal. The hard-
ware Trojan will be activated when 7th bit of monitor output is high, i.e., when
the monitor output is superior to 640 = b′1010000000. This value corresponds
to 42◦C. Therefore the trigger signal will be active when FPGA temperature is
higher than 42◦C. The trigger temperature can be easily changed according to
the design under test. In our case study, a simple hair dryer of cost $5 is enough
to heat the FPGA and reach this temperature. We assume that a system mon-
itor is already instantiated in the design, to monitor device working conditions
and the alarm is raised at a temperature higher than 42◦C. In such a scenario,
the hardware Trojan trigger part does not consume much extra logic and would
result in a very low-cost hardware Trojan example.

Whenever we need to trigger the Trojan, we bring the heater circuit close to
the FPGA. The FPGA heats up slowly to the temperature of 42◦C and raises
the output bit to ’1’. At this point, we switch-off the heater. Now this output
bit stays ’1’ till the FPGA cools down below 42◦C, therefore we cannot precisely

http://www-inst.eecs.berkeley.edu/~cs150/fa13/resources/ug192.pdf


268 D.B. Roy et al.

control the duration of trigger in terms of cycle count. We further process this
output bit of the system monitor to generate a precise duration trigger. This
can be done with some extra logic. In other words, we need a small circuit which
can generate a precise trigger signal when the output bit of system monitor goes
to ’1’. For the Trojans in Tab 1, we either need a trigger of 1 clock cycle or 12
clock cycles. Both these triggers can be generated by deploying one LUT and
one flip-flop to process output bit of system monitor. Thus, we can generate a
very small trigger circuit to trigger a zero-overhead hardware Trojan.



Architecture Considerations for Massively

Parallel Hardware Security Platform

Building a Workhorse for Cryptography as a Service

Dan Cvrček1 and Petr Švenda2

1 Enigma Bridge, Cambridge, Great Britain
2 Masaryk University, Faculty of Informatics, Czech Republic

dan@enigmabridge.com, svenda@fi.muni.cz

Abstract. Cryptography as a service (CaaS) provides means for exe-
cuting sensitive cryptographic operations when the primary computing
platform does not offer the required level of trust and security. Instead
of executing operations like document signing directly by an application
running in untrusted environment, the operation keys are only present in
trusted environment used by CaaS. Once the operation keys are put in
place, the applications use a CaaS interface to obtain results of sensitive
operations - document signatures - executed by CaaS. A typical scenario
is the use of virtual computing platform in the cloud. Use of CaaS re-
duces impact of the potential compromise of this virtual platform and
simplifies subsequent recovery. The attacker will not learn the value of
sensitive keys (e.g., signing keys) and is only able to use the keys for a
limited time. The CaaS is enabling technology for a large number of use
cases where security is important. The concept of scalable and univer-
sally available CaaS has also far-reaching usability, security, legal, and
economics consequences of cloud use. In this position paper, we focus on
requirements for building a CaaS platform – what are the options and
challenges to build hardware and software components for CaaS suitable
for usage scenarios with different load patterns and user requirements.
We propose a suitable architecture for CaaS that can be shared by a large
number of concurrent users, i.e., providing access to a large number of
cryptographic keys. We also provide practical results from our prototype
implementation1.

1 Introduction

There is a strong demand for a secure cryptographic platform for the cloud and
mobile computing to support a variety of sensitive applications. When used in
large scale distributed environments, one of the options is to provide crypto-
graphic operations as a service (CaaS) instead of implementing sensitive com-
putations on end-user device. There are several advantages of this approach,

1 Full details and paper’s supplementary material can be found at
http://crcs.cz/papers/space2015.

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 269–288, 2015.
DOI: 10.1007/978-3-319-24126-5�16



270 D. Cvrček and P. Švenda

as recognized in [17], particularly, end-user device might be more vulnerable to
compromise or lack of entropy source for key generation.

When CaaS is discussed in research literature, performance considerations
are often omitted or neglected. One of such assumptions is that when a CaaS
provider is fully trusted by users, it can have unlimited access to cryptographic
keys. This assumption allows the provider easy scaling of computation power
for cryptographic operations, as there are no security constraints. But the per-
formance becomes quickly an issue when the CaaS provider is untrusted - it
can execute cryptographic operations, but it cannot access keys directly and it
becomes subject of constraints introduced by the API providing access to keys.
Execution of sensitive operations is in this case provided by a specialized trusted
hardware module (HSM) that ensures the cryptographic material cannot be ac-
cessed directly. Current HSMs provide reasonable computational performance
for closed, centralized systems (high-end HSMs can perform up to 9,000 RSA
1024b signatures per second) under certain conditions. But implementing scal-
able CaaS supporting a range of operations and concurrent use of a large number
of keys of CaaS users poses a number of challenges.

So far, high-performance cryptographic hardware platform, providing high
level of shareability was not discussed in details in research literature. In this
work, we summarize existing challenges and introduce open research questions
for alternative architectures capable to host a large number of applications, cryp-
tographic material and concurrent users. Our paper provides considerations and
proposes a suitable architecture for CaaS supporting many users and many key
scenarios, architecture based on secure processors with protected between pro-
cessors. The experience obtained from building such a platform will also be
discussed.

The paper is organized as follows: The next section provides a short intro-
duction to cryptography as a service (CaaS) and defines main usage scenarios
with related requirements on the high-performance cloud-based CaaS platform.
Section 3 reviews different hardware options available and challenges present
to provide high-performance trustworthy computation CaaS platform. The pro-
posed architecture using high number of parallel secure processors connected
with secure channels is described. Section 4 presents case-study of HMAC-based
one-time password provided via proposed architecture together with practical re-
sults from prototype build. Possible future directions are summarized in Section
5 with conclusions given in Section 6.

2 Cryptography as a Service (CaaS)

Information systems face many security threats. Some of them are almost uni-
versal and all systems and business applications have to deal with them, some
are specific. Every designer has to assess risks of their existing or new application
and consider methods to mitigate those risks.

Running applications in the cloud introduces a number of universal threats
that one does not have to think about while he/she runs their applications



Architecture Considerations for Massively Parallel Hardware Security 271

from own servers. All those new threats are related to the fact that the cloud
introduces new entities into the system model of cloud applications - the cloud
provider.

Threat modelling is is a subject on its own (refer to [6] for foundations of
cloud security) but we need to introduce some initial assumptions that we use
below for reasoning about security of CaaS and definitions of security levels. Our
initial classification is based on system components.

The list of components is as follows:

Application – the software application providing beneficial functionality for
Client.

Application Owner – an entity that develops the application itself and is re-
sponsible for its correct operation. In many cases the application owner will
be the client of the application as well.

Client – user of the application; when client is different from application owner
the client would expect the application to provide certain business function-
ality. Security aspects may be still an issue though as secure processing and
storage of data is hard to verify through the business functionality provided
by the application.

CaaS Provider – an entity that provides functionality of CaaS including support
and management of CaaS, e.g., system updates. While CaaS provider would
be typically independent of Cloud Provider but it may be Application Owner.

Cloud Provider – the entity that controls the physical platform on which the
application runs. The platform has several layers of components with each
layer potentially provided a different entity.

Internet – communication between entities of the system (e.g., via web services
API).

2.1 Levels of Trust and Security

We are able to define the following levels of trust for CaaS – using a system
architecture with components defined in the previous section. Let us first assume
different levels of trust in CaaS.

– Client Trust – users may or may not trust CaaS provider directly. The trust,
if it exists, may be complete or based on an assumption of split control
between CaaS provider and Application Owner – an assumption that data
of Client can only be compromised if both parties cooperate. Based on our
empirical experience, CaaS should be trusted more than Application Owner
as CaaS would provide security as its main business and as such have more
expertise needed for implementing security measures correctly.

– Application Owner Trust – if Application Owner trusts CaaS, it can use
its relationship with Clients to leverage own trust in CaaS for persuading
Clients that the use of CaaS increases the security of their data.

– Cloud Provider Trust – from practical point of view it is irrelevant whether
Cloud Provider trusts or distrusts CaaS. It has, however, means to disable
access to CaaS from applications using its platform.



272 D. Cvrček and P. Švenda

Use of CaaS can be either enforced by compliance requirements or by concerns
of Clients. The former will require Application Owner Trust that may be based
on external validations of CaaS. Such validations would have to be sufficient for
compliance. Concerns of Clients may either prompt Application Owner to use
CaaS or find a way to use CaaS on top of the application.
In terms of dataflows, Client may trust parts of dataflows involving its data:

– Client – computers and/or networks under the control of Client.
– CaaS – systems that implement cryptographic functions for an application

must be trusted by Client and usually by Application Owner as well.
– Application Owner – trust in systems of Application Owner would be limited

– either by Clients or even by Application Owner itself.
– Internet – it is generally untrusted; it is possible to relax requirements on

data protection only if the data itself are not confidential or Client’s security
requirements allow for some security properties to be ignored.

The trust balance between Client systems and CaaS is important in terms
of the CaaS setup for Application. In general, we can assume that CaaS will
provide full life-cycle support for applications but Client may decide not to fully
trust CaaS and keep some aspects of cryptography under its own control.

If Client trusts its computers and/or information systems, it can use it for
enrolment or other bootstrapping operations that are otherwise manageable for
it information systems. A generation of application keys may be one of such
examples.

2.2 Usage Scenarios

The typical usage scenario influences significantly properties required for a CaaS
platform as well as imposing restrictions and limitations of the hardware/software
architecture behind the CaaS platform. We will discuss possible usage scenarios
with respect to a number of parallel users and a number of distinct cryptographic
keys used by every user. Note that other classifications are possible, e.g., w.r.t.
the amount of transmitted data (short packets vs. long data streams), number of
messages to finalize a single logical operation (e.g., decryption of single packet
vs. multi-packet challenge-response protocol) or list of required cryptographic
algorithms to name a few. We choose a number of users, and distinct keys be-
cause these factors are the most specific for situation where a CaaS platform is
significantly shared between a number of different entities – a typical “cloud”
scenario that already proved its viability for general purpose computing (but we
will not limit our description only to such scenario).

Note that in the following classification, we will talk about a service rather
than a CaaS platform, as some categories would not classify as CaaS as com-
monly defined, but make sense to list them because of distinct features and
security/performance considerations introduced.

We also use count quantifiers 1, few (M) and many (N) to describe concept
categories, e.g., many users or a few keys per user as different hardware devices



Architecture Considerations for Massively Parallel Hardware Security 273

used to facilitate service are capable to store and handle different numbers of
cryptographic contexts of a particular type (e.g., AES or RSA). When more
contexts than a device is able to hold internally are required, contexts must
be offloaded from device when not used and load in again later, introducing
potential delay and additional requirements like the need for out-of-device secure
storage or key wrapping. A provider of a service can utilize more hardware
devices to linearly increase the number of contexts that can be maintained at
the same time. When we use many keyword, its strictly more than number of
contexts that can be fit into available hardware device(s).

S1: One user, few keys (1:M) – no sharing of the target service, as only a
single user with a single key (or very few keys) is using it. Because of exclusive
use and a small number of keys, there is no need to switch cryptographic con-
texts (pre-scheduled keys, initialized cryptographic engines...) before serving
a new request and the whole cryptographic context can reside directly inside
a service computational device(s). There is little need for CaaS to provide
scalability, while secure remote access, use in virtualized environments and
suitable API (e.g., application oriented rather than low-level PKCS#11) re-
quirements remain. Example: a payment card physically owned by the user
with a payment authentication key or an HTTPS TLS accelerator with one
private key.

S2: One user, many keys (1:N) - this use case does not require service shar-
ing, but it does imply frequent changes of cryptographic contexts because of
a high number of keys involved. If the number of used keys is significantly
higher than the number of contexts that can fit into the underlying hardware,
then cryptographic contexts may need to be changed even with every request.
Context loading, cryptographic engine initialization and key scheduling may
significantly contribute to the overall time required to complete a requested
operation. Subsequent performance degradation with the factor of 2-5 is well
known from benchmarks for encryption throughput measuring the effects of
varying message length (bulk encryption vs. small messages). The perfor-
mance degradation is even more severe in the case of secure switching of
cryptographic contexts between the secure processor and untrusted mem-
ory. Use considerations of CaaS are similar to the 1:M scenario. However, as
the higher number of keys amplifies generic key management issues, CaaS
may offer better overall usability. Example: PIN verification procedure per-
formed inside an HSM on behalf of card issuing bank.

S3: Few users, few keys (M:M) – limited sharing of the target service while
every user uses only a few keys. This is the first use case where service’s com-
putational devices are shared by mutually distrusting users. An additional
overhead is introduced due to a need to securely erase sensitive values before
the context switch between users may occur. As only few keys exist in the
system overall, there is no need to offload cryptographic contexts. Example:
Amazon CloudHSM [4] where a small number of users (e.g., 16) is sharing
same physical hardware device performing cryptographic operations.



274 D. Cvrček and P. Švenda

S4: Few users, many keys (M:N) - an extension of S3: Few users, few keys
(M:M) scenario with a need to perform cryptographic context offload due to
a high number of used keys. As only a few users are present, secure offload can
be done relatively quickly as wrapping and unwrapping engines on service
devices can be left initialized and ready to process next request at all times.

S5: Many users, many keys (N:N) – CaaS service serves many users, each
of them with few keys, resulting in many keys in total. High-level of sharing
of hardware resources of service. Includes also scenarios where primary keys
from many users are used to derive and use new (session) keys based on a user
input. Example: TLS accelerator with different session keys established for
every different user after an initial TLS handshake with the server’s private
key. Note that number of keys can be further amplified if TLS accelerator is
shared as CaaS service between multiple web servers with different private
keys. See Section 4 for details of another example providing HMAC-based
one-time password verification.

2.3 Typical Operations Needed for CaaS

Although many different algorithms and protocols can be implemented and pro-
vided by CaaS, we can identify a short list of common generic operations:

1. Generate/derive new key – new key K (symmetric, asymmetric or other
secret) is generated by CaaS service. The key then either never leaves the
CaaS service (analogy with on-card non-exportable private key for digital
signatures) or alternatively can be exported back to the Client (e.g., in en-
crypted blob).

2. Import new key – Client provides a key K to be imported and later used
by CaaS. Transfer of a key K can be protected for confidentiality, integrity
and freshness.

3. Process input data – Client provides input data M , processed inside
a CaaS service by a key K and cryptographic algorithm F , where C =
F (M,K). Input data M and output data C (returned to a Client) may be
protected for confidentiality, integrity and freshness.

4. Obtain usage statistics – how many times was a particular key K used?
Requires authorization of process input data requests and protection of usage
data.

5. Remove key from service – when Client doesn’t need to use the key
K any more, key is removed. Key removal might be on a Client request,
automatic (time-limited exposure) or as a result of compliance requirements
(e.g., reset the device at least once every 24 hours if it contains Client’s keys)

2.4 Preferred Properties of Cloud-Based High-Performance CaaS

There is no single unified CaaS architecture which would ideally fit all scenar-
ios described in Section 2.2. In this paper, we focus on scenario S5: Many users,



Architecture Considerations for Massively Parallel Hardware Security 275

many keys as we believe this scenario is difficult to support with current technol-
ogy on a sufficient level of security. We believe that the most important principles
for a secure and scalable CaaS platform are as follows:

P1: Untrusted CaaS provider for handling of cryptographic secrets – if the
provider of CaaS doesn’t need to be trusted to preserve secrecy of crypto-
graphic material, the attack surface is significantly reduced (highlight for the
Client). Provider itself will not be subject of internal and external attacks
due to its low impact on CaaS security (highlight for provider). Some sys-
tem designs require to trust only provider with physical access to CaaS as
they mitigate threats of corrupted operator with only logical access [5]. If
operator can’t compromise security of CaaS and its cryptographic material,
we can achieve higher level of overall security. Note that this principle is
also beneficial for CaaS provider as it decrease its attractivity as a target for
compromise.

P2: Easy to use API – because platform will be used as a service, a well-
defined and simple interface is vital for fast adoption. Care should be taken
to provide API not only easy to integrate, but also easy to use securely [8].

P3: Secure import of cryptographic material – secure way to import ini-
tial cryptographic material is required in majority of use case scenarios.
Even when a key is generated directly inside the CaaS service as a result of
Client request, additional shared keys are usually required to authenticate
subsequent process input requests.

P4: Low latency of responses in the presence of many requests from many
parallel user – as a platform will be significantly shared, low latency should
not deteriorate even when many parallel requests are served. The tolerable
latency range is specific to the particular usage scenario and in turn affects
limits on the sharing of a given platform.

P5: High performance in the presence of frequent key change – signif-
icant level of sharing between many users, everyone with potentially distinct
cryptographic keys introduces a high number of expected key scheduling be-
fore request can be processed. In an extreme (but not uncommon) scenario,
every request may cause initialization and key scheduling of several crypto-
graphic engines. Overall platform performance is expected to decrease with
more users/requests scale reasonably.

P6: Authentication of input/output requests – once cryptographic mate-
rial is (securely) imported into a CaaS platform, actual use of the imported
key should be authorized by the Client and performed only on data pro-
vided by authorized Client. Verification of authorization itself should not
significantly impact platform performance. Usually achieved by requests au-
thorization by separate shared request authorization keys (commonly called
“API keys”). An output data provided by service back to the Client should
be authenticated as well to provide strong assurance that Client’s original
request was really processed by the imported key.

P7: Confidentiality of input and output data – if sensitive data are trans-
mitted as part of request and corresponding response, confidentiality should
be protected (again, “API keys” can be used).



276 D. Cvrček and P. Švenda

P8: Easy recovery from client-side compromise – as Client can be com-
promised with the assumption that the key imported to CaaS was not, pro-
cedure to recover from a compromise should be easy to perform (e.g., fresh
re-installation of client environment and transparent change of request au-
thorization keys with perfect forward secrecy property). Eventually, frequent
automatic recovery process can be executed as a preventive measure for un-
detected compromises.

P9: Robust audit trail of key usages – because CaaS is offered as a service,
pay-per-use model may be utilized and Client should be provided with robust
audit trail how often imported key was used. Another important reason for
audit trails steams from potential compromise of client software together
with authorization keys for requests. An attacker can then use an imported
key without a user’s consent. Once the compromise is detected, the user
might be interested in realizing an exact extend of service usage during the
compromise period.

P10: Limit on maximum key usages (before re-authorization) – once a key
is imported and request authorization keys are compromised, an attacker can
issue a large number of requests unless limited by another factor. To limit
an extend of expected malicious usages of imported key, a Client can import
key together with a number of “credits” limiting the maximum number of
requests which can be served by service. Again, the provider of the service
should not be able to manipulate with credits already used.

P11: Tolerance to occasional hardware/software failures – large level of
sharing and high number of requests will inevitably result in occasional fail-
ures of the platform components, which should not impact other parallel
users significantly. Natural requirement, but might be harder to achieve, if
CaaS provider is not trusted and thus cannot inspect the full results of oper-
ation for errors itself. Also, move of Client request from failed to functioning
device is more difficult if relevant contexts are cryptography bound to a
single device.

3 Building Hardware for CaaS Back-End

In this section, we will discuss various options for building hardware platform
which will satisfy principles described in Section 2.4. Different architectures are
discussed both from performance and security perspective with the focus on S5:
Many users, many keys scenario.

3.1 Designing CaaS

There are many ways how to build computational platform for CaaS. The fol-
lowing list shows some of the more obvious options:

1. Use of general-purpose hardware, e.g., high-performance multi-core server
processor and implementation of the required cryptographic functionality in
software. The advantage is fast development and deployment with existing



Architecture Considerations for Massively Parallel Hardware Security 277

cryptographic libraries like OpenSSL [2] or cryptlib++ [1] and medium ex-
pected performance. The main disadvantage is need to trust CaaS provider
as all cryptographic secrets and input/output data are easily accessible in-
side the CaaS implementation. Note that the level of trust to provider with
logical-only access can be limited by a combination of virtualization and
trusted computing [5]. In this particular case, a modified Xen hypervisor is
used to make standard TPM available for secret-less virtual machine result-
ing in significant decrease in the size of trusted computational base (TCB).

2. Use of generic programable hardware (e.g., Field-programmable gate array
(FPGA) or Graphics processing unit (GPU)) with cryptographic operations
accelerated by programmable hardware with advantage of higher perfor-
mance. The disadvantage is increased difficulty of implementation and de-
ployment due to lower number of readily available cryptographic implemen-
tations. Note that GPU architectures like nVidia CUDA [3] provides top
throughput only when the same program (including data-dependent branch-
ing) is executed over multiple input data blocks in parallel. As selected cryp-
tographic operations are heavily data/key dependent (e.g., public-key algo-
rithms based on modular multiplication like RSA) performance gain may be
more difficult to achieve [11]. The need for trust to provider is still present
although more advanced skills may be required to extract cryptographic
secrets from less common architectures, possibly via side-channel attacks.
Additionally, a more complex architecture makes more difficult evaluation
of security assurances when a single device is shared by mutually distrusting
Clients.

3. Use of dedicated cryptographic circuits, e.g., application-specific integrated
circuit (ASIC) can provide very high performance implementation for se-
lected cryptographic algorithms. The disadvantage is a significant increase
in the cost of design and development if required circuits are not readily
available. High-speed cryptographic circuits were proposed and sometimes
built for brute-force cracking of algorithms with insufficient length of key of
used password like Copacobana (based on FPGA) [12]. Note that brute-force
cracking architectures are usually not designed to handle high input/output
traffic. If cryptographic circuit is not additionally protected, trust to provider
is still required.

4. Use of secure processors, e.g., cryptographic smart cards or hardware security
modules (HSM) can significantly limit level of trust put on CaaS provider.
HSMs are able to provide high performance for certain use-cases (see 2.2)
while providing good security for cryptographic keys even for attackers with
physical access to CaaS. Use from virtualized environments is also possible –
Virtual HSM project [15] provides remote physical HSM via PKCS#11 API.

5. Use of fully homomorphic encryption (FHE) – all architectures mentioned so
far except secure processors required trust to CaaS provider. Fully homomor-
phic encryption [10] provides a way to perform sensitive computations on un-
trusted platform – a feature well suited for CaaS as well as cloud-based compu-
tations in general. While performance of FHE schemes has been significantly
improving in recent years [13], including highly optimized implementations for



278 D. Cvrček and P. Švenda

FPGAs [7] , the overall performance is still several orders of magnitude slower
when compared to unprotected implementations.

3.2 The Proposed Design

As discussed in previous section, dedicated high-performance hardware offers the
best overall performance, but also comes with a high additional cost to verify
required security properties in an auditable manner.

We instead propose to build CaaS from simple and small secure processing
units that are easier to test for security assurances. A large number (102 − 104)
of these secure processing units are connected in a massively parallel multi-
processor device2. Every secure processor has limited persistent storage and may
provide acceleration of some cryptographic operations. The design has to take
care of all communication between secure processors if needed and to provide
data confidentiality, integrity and freshness with the use of secure processors.
Due to limited computational resources of secure processors, CaaS design will
have to carefully separate untrusted storage for secure off-loading of sensitive
dat from secure processors, provide untrusted connectivity of CaaS components,
allocate of secure processors to tasks, and so on. Overall resiliency of CaaS can be
high if failed or malfunctioning secure processing units are quickly and efficiently
isolated.

In the rest of the section, we will describe how the proposed design can be
implemented from a large number of modern cryptographic smart cards (secure
processors) and how the principles laid out in Section 2.4 can be achieved with
an example test application for computing OATH HOTP values [9] provided in
Section 4.
The proposed architecture has the following key properties:

1. High number of secure processors – depending on the required perfor-
mance, at least 102− 104 processors. Each processor is able to withstand fo-
cused physical and logical attacks as required by FIPS140-2 Level 3 or 4, CC
EAL 4+, or similar. Attacker should not be able to learn any cryptographic
secrets stored inside secure processors, read any sensitive input/output data
even with direct physical access or modify applications running inside secure
processors.

2. Small trusted computing base – every secure processor contains a small
application capable of processing requests coming from Client using previ-
ously imported cryptographic secrets.

3. Untrusted controller – software responsible for efficient distribution of
Client requests and storage of data offloaded from secure processors. The

2 Note that analogy with the current multi-core graphic processing units (GPUs)
ends with the high number of cores. Parallel cores of GPUs are not designed for
use as secure processors (both for performance and cost reasons). GPU cores share
both memory and program’s instructions. Also, the GPU is not specifically built to
accelerate cryptographic operations (although high-speed encryption, etc. is possible
– especially when only single key and large data are processed).



Architecture Considerations for Massively Parallel Hardware Security 279

controller is untrusted, i.e., it must not be able to access plain values of any
cryptographic material or input/output data supplied by Client for process-
ing. If the controller is compromised, no secrets are revealed.

4. Secure channels between secure processors – if sensitive data is to
be transferred between secure processors, end-to-end secure channels have
to be established and used. A secure channel should be as lightweight as
possible, yet able to withstand common attacks on network layer, such as
packet replay.

5. High-speed I/O data interface – large number of requests imply signif-
icant volumes of data traffic in the order of gigabits per second. Note that
because of a high number of parallel processors, it would be natural to create
logical or physical clusters of processors with dedicated I/O interface to keep
traffic volume within current technology capabilities.

6. Initialization phase – before a CaaS device is ready for operational use, it
has to be securely initialised. This includes bare hardware and other compo-
nents’ configuration, upload and installation of verified application packages,
exchange of initial secrets needed for secure processors’ communication, gen-
eration and certification of keys and public keys. Initialisation phase is the
single most critical operation of any CaaS device and its correct and secure
execution must be independently verifiable at any time afterwards.

7. Operational phase – after a trusted initialization, a CaaS device is switched
into operational mode and starts serving Client requests. Only code inside
secure processors has to be trusted for processing Client’s cryptographic se-
crets and data, once in operation mode.

8. Restricting use and audit trail – trust is the single most important as-
pect of CaaS. While CaaS has to provide maximum security, it must also
offer means to audit and verify its operation. One of the approaches is to use
authorisation tokens that has to be regularly, or on demand, re-issued. Client
cryptographic secrets are then imported together with authorisation tokens
limited use of secrets. Issued tokens can be then matched against a trusted
audit trail produced by secure cryptographic processors. This not only al-
lows independent verification of CaaS operation but it also gives Clients an
efficient way to disable or even remove their secrets from CaaS – simply by
not refreshing authorisation tokens.

3.3 Why Smart Cards?

Cryptographic smart cards [16] were designed to withstand attacks in completely
hostile environment under full control of attackers. Cryptographic smart cards
have following significant advantages in comparison to common CPU: 1) Se-
cure runtime environment (an attacker cannot directly inspect executed code
or manipulated data values including cryptographic keys); 2) Dedicated crypto-
graphic coprocessors to speedup operations (especially relevant for asymmetric
cryptography); 3) Secure on-card TRNG generator (usable for on-card keys gen-
eration); 4) Secure on-card storage (but limited in size); 5) Reasonable price per
unit (when bought in larger quantities).



280 D. Cvrček and P. Švenda

But smart cards are generally perceived as being quite slow and usable only
for a single holder (user), not as a potential component for high-performance
computation. Although it might be true when one compares single card with
a performance of desktop CPU, small size, low energy consumption, relatively
low price and inherent advantage of secure contained environment make smart
cards good candidate for powerful, yet secure computational device following
principles defined in Section 2.4 – if a large number of cards can be utilized as
array of secure processors.

In Table 1, raw performances of selected cryptographic algorithms are pre-
sented3, showing that especially for RSA algorithm, smart cards have decent
performance on its own. If an array of hundreds to thousands of smart cards can
be run in parallel, high-performance composite device can be obtained.

Table 1. The raw performance of Cipher engine with AES-128 key in CBC encryption
mode and RSA-1024/2048 in PKCS1 sign mode with SHA-1 hash function. The raw
performance is performance achievable when only time spend inside cryptographic
coprocessor itself is assumed – no transfer of input data to card, key scheduling, engine
init and startup etc. For AES algorithm, raw performance was computed from the
difference between an encryption time for 512 and 256 bytes. For RSA algorithm, sole
time to execute single sign operation on-card was measured.

Card type AES-128 CBC encrypt RSA-1024 sign RSA-2048 sign

NXP CJ2A081 (2014) 36.5kB/sec 10.5 signs/sec 2.3 signs/sec

NXP CJ3A080 v2.4.1 (2013) 17.6kB/sec 6.3 signs/sec 1.6 signs/sec

Gemalto GXP R4 72K (2008) 10.8kB/sec 2.5 signs/sec 0.6 signs/sec

NXP JCOP4.1 v2.2.1 72K (2008) N/A 9.3 signs/sec 1.6 signs/sec

4 The Case Study: HMAC-Based One-Time Password

HMAC-based one-time password protocol (HOTP) [14] is widely used algorithm
for generation of one-time passwords for an authentication. HOTP authentica-
tion code is based on a secret key shared between an authentication server and
user and changing counter value incremented after every one-time password gen-
eration. HOTP is widely used, e.g., as a basic building block for Initiative For
Open Authentication (OATH) [9]. We selected HOTP as example which involves
not only single operation (e.g., RSA signature), but also maintenance of updated
state (which must be offloaded outside physical card) and need for protected in-
put and output from the Client (authentication server in this case) of a CaaS
service.

3 Note that provided comparison is meant only to demonstrate achievable level of
performance and not as the exact comparison between various cards (there are dif-
ferences between batches of cards). The more detailed comparison is provided in
[18].



Architecture Considerations for Massively Parallel Hardware Security 281

HOTP algorithm (RFC4226 [14]) is defined as sequence of four logical steps:

1. HMAC(K,C) = SHA1(K ⊕ 0x5c5c . . . |SHA1(K ⊕ 0x3636 . . . |C)), where
K is a secret key shared between user and authentication server, C is counter
incremented after every authentication attempt, HMAC is construction de-
fined in RFC2104, and SHA1 is a cryptographic hash function.

2. HOTP (K,C) = Truncate(HMAC(K,C))& 0x7FFFFFFF , where Trun-
cate function selects 4 bytes in a deterministic way from HMAC output.

3. HOTP −Code = HOTP (K,C)mod 10d where d is desired number of digits
of resulting code (system parameter).

4. HOTP −Code generated by user is compared with expected HOTP −Code
generated by the authentication server.

4.1 Why Would HOTP Will Benefit from CaaS?

Because both server and user need to store and use same secret key value K used
during every authentication attempt, not only the user, but also server becomes
a plausible attacker’s target when the value of the secret key is of interest. When
an authentication server is temporarily compromised, an attacker can learn the
secret keys for all of its users – or at least for those authenticated during the com-
promise period. An attacker can then use obtained secret keys to impersonate
legitimate users later. To mitigate this threat, authentication server can utilize
CaaS for HOTP code verification instead of computing expected HOTP code on
its own. When a user provides HOTP code, authentication server asks CaaS ser-
vice to compute expected code and verify it against supplied user code. An au-
thentication server is then just notified about the verification result and does not
need to be able to compute expected HOTP code itself. Even when authentication
server is temporarily compromised, an attacker will not learn used secret key(s)
(although may issue requests to CaaS on behalf of compromised server).

To learn a secret key, an attacker needs to attack CaaS platform, which can
utilize secure hardware (e.g., HSM) to protect manipulated secrets. Authenti-
cation server can also utilize secure hardware itself – but because of associated
upfront costs and management issues, only some will do while others stay with
computation of HOTP in software. Additionally, when the authentication server
runs as a virtual image in a public cloud environment, options to connect own
secure hardware into datacenter are limited or not available at all.

4.2 Moving HOTP into CaaS

Four main operations are required to facilitate HOTP as a CaaS:

1. Import new server’s context – done once for every authentication server.
Contains keys used to protect user states and authenticate requests from
authentication server to CaaS.

2. Generation of initial, wrapped user state – done once for every user of
a particular authentication server. Contains HOTP specific state for given
user including key K and initial value of counter C.



282 D. Cvrček and P. Švenda

3. Verification of user-supplied HOTP code – done for every user au-
thentication request. Generates and compares expected and supplied HOTP
code.

4. Establishment and use of secure channels – used to facilitate distribu-
tion of secrets and authorizations inside CaaS itself. Necessary to limit the
overall number of HOTP verifications and provide cryptographic audit trail
(principles P9 and P10).

4.3 HOTP Implementation

To measure a real cost of HOTP verification in secure hardware using proposed
architecture, we implemented HOTP verification as CaaS service, including all
required operations as a part of CryptoHive design described in Sections 3.2
and 4.6. Using our implementation, we measured detailed time required to per-
form single HOTP verification as well as performance of the whole CryptoHive
prototype.

Note that we excluded overhead related to transmission of Client request to
CaaS service and back as overhead values are highly dependent on platform
settings (e.g., how many credits are uploaded at once before costly recharge
credits operation is invoked or how often is signed audit trail for performed
operations generated).

We also intentionally excluded operations performed by the authentication
server (Client) as this presents no load CryptoHive. We also did not include
operations related to managing user contexts in untrusted part of CryptoHive
where generic computational resources can be made powerful enough to match
required load.

The following data blobs are present and processed: Initial import of authenti-
cation server with imported communication keys (256 bytes in total), Authenti-
cation server context with imported keys (4x AES128b keys, unchanged during
the request, stored on CaaS platform in rewrapped form after initial import,
only some keys shared with the authentication server, 88 bytes in total), user
HOTP state (updated with every request, stored but unreadable by the authen-
tication server, 40 bytes in total), input/output data with user HOTP code or
verification result respectively (new with every request, provided and readable
by authentication server, 24 bytes in total).

Following cryptographic keys are used: 1) The communication keys for encryp-
tionKcommEnc and integrityKcommMAC used for authorization and protection of
data exchanged between the authentication server and CaaS (generated and used
by authentication server). 2) The keys for protection of user HOTP stateKstateEnc

and KstateMAC (generated by CryptoHive and not shared with authentication
server). 3) The authentication keyKauth for given user (stored inside user HOTP
state, generatedbyCryptoHive and not sharedwith authentication server). 4) The
CaaS internal keys KauthServerCtxEnc and KauthServerCtxMAC for protection of
offloaded authentication server contexts with KcommEnc, KcommMAC , KstateEnc



Architecture Considerations for Massively Parallel Hardware Security 283

and KstateMAC) (generated by CryptoHive and not shared with authentication
server) – note that these keys can be used to protect multiple authentication server
contexts4. 5) RSA-2048b keypair KpubCG and KprivCG for import of initial im-
port of authentication server context (generated by CryptoHive with public key
KpubCG distributed to authentication server).

4.4 Performance Results – A Single Card

At first, we provide performance results for primitive operations used as building
blocks to implement whole HOTP in CaaS, followed by the discussion about
possible speedups.

Table 2 provides list of times required to finish HOTP operations5. HOTP
verification operation is measured in two settings – in the first case (called Clean
call) verification is performed with full initialization of all keys and cryptographic
engines – corresponding to the situation when a given user was not authenticated
recently and no pre-initialized engines can be used. In the second case (called
Repeat call), card already have relevant keys initialized from the previous Clean
call – corresponding to the situation when controller was able to keep secrets
on card (e.g., due to low service load or dedicated card for target authentication
server and user – kind of caching).

4.5 Improving Expected Performance

Based on the measured results we can identify the steps which consumes most
of the time to process. At first, Verify HOTP code operation is the dominating
operation as all others are executed only once for every authentication server (Im-
port authentication server context) or limited number of times (Generate HOTP
state for a new user once for every user). The Verify HOTP code operation can
be further divided into a data transmission (about 18 %), setup and clear of
cryptographic engines and key objects (about 54 %), encryption/decryption and
MAC operation (about 20 %) and remaining functionality like HMAC, dynamic
truncation or comparison of expected and supplied HOTP code (about 8 %).

The time required for data transmission can be significantly reduced by in-
crease in communication speed between smart card and reader (default value
negotiated is 38400bps, but some smart cards can support 307200bps or more if
the capable reader or custom build reader can be used).

The largest fraction of a time on the card for HOTP verification is clearly
consumed by the preparation of cryptographic engines and not by the crypto-
graphic operation itself (confirmed also by the performance comparisons for a
wider range of different smart cards [18]). The fixed time required to initialize

4 Unwrap keys and engines can be preinitialized as are shared between multiple con-
texts. Additionally, limited number of unwrapped authentication server contexts can
be also left on-card to decrease latency of subsequent requests.

5 Detailed description of measurements with results for other variants can be found
at http://crcs.cz/papers/space2015

http://crcs.cz/papers/space2015


284 D. Cvrček and P. Švenda

Table 2. The performance of operations required to complete single HOTP code ver-
ification request performed by NXP CJ2A081 smart card. The measured time is an
average taken from 100 independent measurements. Note that results on different cards
may differ, see [18]. Prepare&use means: prepare key object(s), initialize cryptographic
engine(s) with prepared key(s) and decrypt/encrypt and sign/verify data.

Operation Length (bytes) Clean call Repeat call

Verify HOTP code I/O:157/66B 288ms 134ms

1. Transfer authentication server context, input data and user
state into card

5+88+40+24 34ms 34ms

2. Unwrap authentication server context – use:
KauthServerCtxEnc and KauthServerCtxMAC

88 14ms 14ms

3. Unwrap user state (HOTP counter, failed attempts,
settings, HMAC key) – prepare&use: KstateEnc and
KstateMAC

40 65ms 11ms

4. Unwrap input data (HOTP code provided by user) – pre-
pare&use: KcommEnc and KcommMAC

24 63ms 10ms

5. Compute HMAC&truncation over current value of counter
obtained from user state– prepare&use: Kauth

- 20ms 20ms

6. Compare expected and supplied HOTP code, update failed
attempts count, update counter

- 4ms 4ms

7. Wrap output data with status of HOTP code verifi-
cation (correct/incorrect) – prepare&use: KcommEnc and
KcommMAC

16 33ms 10ms

8. Wrap updated user state – prepare&use: KstateEnc and
KstateMAC

32 36ms 12ms

9. Transfer output data and user state outside card 40+24+2 19ms 19ms

Table 3. The performance of operations required to complete single import of authen-
tication server context by NXP CJ2A081 smart card. Resulting rewrapped context is
later used in other HOTP operations.

Operation Length (bytes) Time (ms)

Import authentication server context I/O:261/90B 534ms

1. Transfer wrapped authentication server context into card 5+256 64ms

2. Unwrap initial authentication server context – use: KprivCG 256 430ms

3. Create internal authentication server context and generate keys
KstateEnc and KstateMAC

32+32 4ms

4. Wrap authentication server context by internal keys – use:
KauthServerCtxEnc and KauthServerCtxMAC

88 14ms

5. Transfer internal authentication server context outside card 88+2 22ms

and setup the engine is especially significant when relatively short data blocks
are processed. The required time can be decreased, if initialized keys and engines
already present on a card are used as demonstrated by Repeat call measurements
in Table 2 – e.g., when multiple requests for the same cryptographic context are
performed in close sequence (requires proper optimization of distribution of re-
quests to same set of cards). Design and implementation should also use lowest
possible (yet secure) number of keys for different operations.



Architecture Considerations for Massively Parallel Hardware Security 285

Table 4. The performance of operations required to complete creation of context
(HOTP state) for new user of given authentication server by NXP CJ2A081 smart
card. Resulting user HOTP state is later used in Verify HOTP code operation.

Operation Length (bytes) Time (ms)

Generate HOTP state for a new user I/O:12/42B 70ms

1. Transfer user state information into card 5+7 14ms

2. Prepare new HOTP state for user and generate new Kauth key 28 3ms

3. Wrap user HOTP state – prepare&use: KstateEnc and KstateMAC 40 36ms

4. Transfer user HOTP state outside card 40+2 17ms

4.6 Performance Results – Network of Processors

So far, we focused on performance of one secure processor – smart card. Even
single card can be suitable platform for smaller uses with ability to serve more
then 300,000 authentications per day. Still, we need to increase transaction rate
significantly to provide CaaS service shared between many users.

We built a prototype “CryptoHive” as described in Section 3.2 to show scala-
bility of our approach. The enclosure is a standard 1U rack-mount with a stan-
dard Intel i5 processor, 4GB of RAM, 2x 120GB SSD disk, and 2x 1Gbps ether-
net interface. The first version used a set of smart cards and smart-card readers
connected to this untrusted controller via USB ports. Prototype characteristics:

– standard size of 1U server, Intel i5, 4GB RAM;
– 45x NXP CJ2A081 smart cards (JavaCard 2.2.2 platform);
– Omnikey 6121 USB SIM Reader as smart card readers;
– 8x active USB hub with 7 ports - connected in a two-level tree; and
– AES128/256 CBC, CBC-MAC/ RSA 2048 as main internal cryptographic

algorithms.

We have encountered several difficulties with this architecture, namely:

– only 10 or 16 card readers are detected by default on OS Windows 7/8 and
Linux (Ubuntu 15.04) respectively;

– parallel requests are inherently serialized by the communication stack (i.e.,
PC/SC interface);

– compatibility issues with some USB hubs and selected readers;
– relatively high failure rate of smart-card readers.

We have eventually overcome these difficulties and created a functional pro-
totype suitable for long-term tests. The experience was used for design of an
improved version. Smart cards are connected via internal Ethernet hub and a
custom communication layer that allow to maximise performance of smart cards
plugged in the “CryptoHive” and significantly improve reliability of the whole
architecture.

Even with relatively small number (45) of smart cards, the only efficient imple-
mentation of the untrusted controller is a fully asynchronous version. It turned



286 D. Cvrček and P. Švenda

out that 30-40 smartcards were able to serve sufficient amount of requests to
create significant synchronisation bottlenecks when the system with partially
synchronous implementation was used.

Asynchronous controller was able to utilise secure cryptographic processors
near to physical maximum – at about 98 % of the theoretical maximum. This in
effect demonstrates almost linear scalability of the computational power of the
“CryptoHive”.

We have introduced an additional overhead to provide auditable audit trails
and key use dependent on the presence of authorisation tokens but their impact
on the system throughput is in the region of 1-2% with authorisations renewed
on average every 30 seconds.

5 Future Directions

We believe that CaaS is only at its beginnings and there are a large number of
research as well as engineering problems that need to be solved. Some particular
issues we encountered while working on this problem include:

Efficient secure channel context management – the question is to find an
efficient mechanism to protect and efficiently access cryptographic contexts
with only a limited secure resources (computational power, memory space).
Scaling of CaaS means that the number of contexts greatly exceeds the
size of secure memory. This is closely related to efficient offload and restore
of intermediate cryptographic context including fully scheduled keys and
initialized engine. Such a feature is not currently supported by smart cards
because in single holder scenario, keys are changed infrequently and will all
fit into available on-card memory. Also, offloading intermediate state extends
an attack surface to mount various side-channel or fault attacks. But benefits
of such a would be high as preparation of cryptographic contexts accounts
for more then half of total time of HOTP verification.

Highly accessible distributed shared state with updates – freshness of
requests in highly distributed environment, where updates have to be in-
stantly distributed to a large number of processing units. The classic option
is either to limit modification of the state data only to single processor (which
would decrease performance) or to combine partial state updates into a final
state later. Delayed combination of state can be performed either in secure
processors (increasing latency to serve request) or in untrusted controller
(which requires suitable secure scheme).

Robust architecture tolerant to hardware/software failures – the archi-
tecture must be be fault tolerant and be able to recover automatically; if a
particular secure computational resource fails permanently, the system has
to adapt to that and continue safe and secure operation.

Encryption and authentication schemes – establishment of cryptographic
contexts is an expensive operation and ability to merge multiple atomic
cryptographic operations into single invocation of cryptographic engine pro-
vides immediate computational boost. For example, it is faster to encrypt



Architecture Considerations for Massively Parallel Hardware Security 287

and transmit 256B of data then encrypt and then MAC only 32B of data.
If some precomputation of data otherwise done by service (e.g., keystream)
can be done by Client and transmitted inside encrypted request to service,
performance gain can be obtained.

6 Conclusions

As more and more services are being moved into cloud environment, user has
less control over his/her sensitive data including cryptographic keys. Cryptog-
raphy as a Service (CaaS) is an attempt to offer cryptographic functions in a
similar manner as a generic computation is offered in cloud. There has been little
systematic discussion yet about actual user needs in such a context as well as
design of new architectures able to fulfil those needs.

We described several usage scenarios of CaaS and discussed its properties.
We believe that scenario with many users and many cryptographic keys fits the
best situation when secure hardware is shared among many users in the cloud
computing. For suchmany users, many keys scenario, we defined set of principles
which should be followed by platform offering CaaS functionality. Based on these
principles, we discussed various available hardware architectures which can be
used to provide computational resources for CaaS.

We propose scalable secure architecture for CaaS based on large numbers of
secure processors, interconnected by secure channels to facilitate information ex-
change via untrusted surrounding environment and provide hierarchical control
yet retains high performance. The proposed architecture was implemented as
a prototype called “CryptoHive” using an array of cryptographic smart cards
and evaluated on HMAC-based one-time password authentication (HOTP) pro-
tocol. We identified frequent switch of the cryptographic context switching (key
scheduling, cryptographic engine initialization) as the major performance im-
pactor in the HOTP as well as other usage scenarios. Based on the practical
experience, a set of tips for improving performance are discussed together with
possible future directions.

References

1. CryptLib++ project, http://www.cryptlib.com/ (July 12, 2015)
2. OpenSSL project, https://openssl.org (July 12, 2015)
3. NVIDIAs next generation CUDA compute architecture: Fermi. NVIDIA (2009)
4. Amazon AWS. CloudHSM, https://aws.amazon.com/cloudhsm/ (July 12, 2015)
5. Bleikertz, S., Bugiel, S., Ideler, H., Nürnberger, S., Sadeghi, A.-R.: Client-

Controlled Cryptography-as-a-Service in the Cloud. In: Jacobson, M., Locasto,
M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 19–36.
Springer, Heidelberg (2013)

6. Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R., Molina,
J.: Controlling data in the Cloud: Outsourcing computation without outsourc-
ing control. In: ACM Workshop on Cloud Computing Security (CCSW 2009),
pp. 85–90. ACM (2009)

http://www.cryptlib.com/
https://openssl.org
https://aws.amazon.com/cloudhsm/


288 D. Cvrček and P. Švenda

7. Doroz, Y., Ozturk, E., Sunar, B.: Accelerating fully homomorphic encryption in
hardware. IEEE Transactions on Computers 64(6), 1509–1521 (2015)

8. Focardi, R., Luccio, F.L., Steel, G.: An introduction to security API analysis. In:
Aldini, A., Gorrieri, R. (eds.) FOSAD 2011. LNCS, vol. 6858, pp. 35–65. Springer,
Heidelberg (2011)

9. Initiative for open authentication (OATH), http://www.openauthentication.org/
(July 12, 2015)

10. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st ACM Sym-
posium on Theory of Computing (STOC), pp. 169–178. ACM (2009)

11. Jang, K., Han, S., Han, S., Moon, S., Park, K.: SSLSshader: cheap SSL acceleration
with commodity processors. In: 8th USENIX Conference on Networked Systems
and Implementation, NSDI 2011. USENIX Association (2011)

12. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: Breaking ciphers with
COPACOBANA –a cost-optimized parallel code breaker. In: Goubin, L., Matsui,
M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 101–118. Springer, Heidelberg (2006)

13. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes
FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS,
vol. 8469, pp. 318–335. Springer, Heidelberg (2014)

14. M’Raihi, D., Bellare, M., Hoornaert, F., Naccache, D., Ranen, O.: HOTP: An
HMAC-based one-time password algorithm. In: RFC 4226. IETF (2005)

15. OpenVZ. VirtualHSM project, https://openvz.org/virtual_hsm (July 12, 2015)
16. Rankl, W., Effing, W.: Smart Card Handbook. Wiley (2004) ISBN 9780470856680
17. Robinson, P.: Cryptography as a service. In: RSAConference Europe 2013 (2013)
18. Švenda, P.: JCAlgTester project, http://www.fi.muni.cz/ xsvenda/jcsupport.

html (July 12, 2015)

http://www.openauthentication.org/
https://openvz.org/virtual_hsm
http://www.fi.muni.cz/~xsvenda/jcsupport.html
http://www.fi.muni.cz/~xsvenda/jcsupport.html


Efficient and Secure Elliptic Curve

Cryptography for 8-bit AVR Microcontrollers

Erick Nascimento, Julio López, and Ricardo Dahab

Institute of Computing, University of Campinas, Campinas, Brazil
ra032483@students.ic.unicamp.br,

{jlopez,rdahab}@ic.unicamp.br

Abstract. The AVR family of 8-bit microcontrollers is widely used in
several applications demanding secure communications and protection
against physical attacks, such as side-channel analysis. In this context,
processing, storage and energy demands of cryptographic software must
be low, requirements which are met by ECC. At the 128-bit security level,
two recently proposed curves are an attractive option for 8-bit microcon-
trollers: Curve25519 for Diffie-Hellman key exchange, and Ed25519 for
signature. Simple power analysis is a significant threat to AVR appli-
cations, but efficient and side-channel tested implementations of SPA
countermeasures for ECC protocols have not yet been dealt with in
this platform, in the literature. This paper describes an efficient imple-
mentation of ECDH-Curve25519 and EdDSA-Ed25519-SHA512 for the
ATmega328P platform. Our implementation provides protection against
timing attacks, SPA and template SPA. The resistance against SPA is
evaluated through the test vector leakage assessment (TVLA) method-
ology based on Welch’s t-test, using the Chipwhisperer platform.

Keywords: Public-key cryptography, elliptic curves, ECDH, EdDSA,
embedded system, AVR, side-channel attack, timing analysis, simple
power analysis, SPA, template SPA, countermeasure.

1 Introduction

Elliptic Curve Cryptography (ECC) is a class of public-key cryptosystems pro-
posed by Koblitz [32] and Miller [40], which provides significant efficiency ad-
vantages for microcontrollers, due to small key sizes which may improve speed,
memory and power. For example, some industry standards require 2048-bit keys
for RSA, whereas the equivalent security for ECC demands 224-bit keys. In fact,
ECC-based protocols are used in many embedded applications, such as payment,
pay-TV, wireless sensors, medical and identification systems.

Passive side-channel attacks (SCA) are a class of implementation attacks ex-
ploiting physical leakages of a device during the execution of a cryptographic
operation, such as: timing [33], power consumption [34] and electromagnetic ra-
diation [47,21]. They present a realistic threat to cryptographic applications,
and have demonstrated to be very effective against smart cards without proper

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 289–309, 2015.
DOI: 10.1007/978-3-319-24126-5_17



290 E. Nascimento, J. López, and R. Dahab

countermeasures [37]. Evaluation of SCA resistance is mandatory in some current
and upcoming standards: Common Criteria [17], FIPS 140-3 [43] and others [31].
SCA attacks can be classified in two categories: Simple Side-Channel Analysis
(SSCA) [33], in which measurements (traces) obtained for a single or few runs
of a private key operation (e.g., signing or decryption) are acquired, and the dif-
ferences in the measured physical quantity depending on the value of the secret
key are analyzed; and Differential Side-channel Analysis (DSCA) [34], which is
based on statistical analysis to retrieve information about the private key based
on a large number of traces. SSCA is considered the main side-channel threat
against implementations of public key cryptographic algorithms.

Current cryptographic standards require a work factor around 128 bits [2,11]
[44,45]. Curve25519 [5] and Ed25519 [6] are two curves at the 128 bit security
level that have achieved promising industry adoption. Curve25519 is a curve in
the Montgomery model over the 255-bit prime field Fp, for p = 2255−19, suitable
for ECDH. Ed25519 is a curve in the twisted Edwards model also defined over
Fp, but designed for the EdDSA (Edwards DSA) signature scheme [6].

Related Work. The closest related works that can be directly compared to
ours are the port of the NaCl library to AVR by Hutter and Schwabe [27], which
includes constant time implementations of both EdDSA-Ed25519 ( 23 216 241
cycles for signing and 32 634 713 cycles for verification) and ECDH-Curve25519
( 22 791 579 cycles for computing a shared secret key using Montgomery ladder)
protocols, and the faster version [19] of ECDH-Curve25519 ( 13 900 397 cycles
using Montgomery ladder). Other implementations of ECC for twisted Edwards
or Montgomery curves for 8-bit AVRs in the literature cannot be directly com-
pared to ours, because they target different curves. Chu et al [14] implemented
ECC for twisted Edwards curves over 160 and 192 bits Optimal Prime Fields
(OPFs), but do not implement any countermeasures against SCA. Liu et al [35]
described an implementation of ECC for Montgomery curves over OPFs with
field sizes ranging from 160 to 256 bits1. Liu et al [36] described constant time,
variable and fixed-base scalar multiplications for twisted Edwards and Mont-
gomery curves over OPFs, the latter uses a highly regular comb algorithm.

Our Contributions.We describe implementations of fixed and variable-base el-
liptic curve scalarmultiplication algorithms for Ed25519, and of EdDSA-Ed25519-
SHA512 signature generation and verification for AVR microcontrollers, which
are efficient, timing analysis resistant through constant time implementation, and
SPA-protected by the randomized coordinates countermeasure. Our EdDSA-
Ed25519-SHA512 implementation improves the current state of the art [27] per-
formance for signing in 17.2%, with 19 221 517 cycles (constant time, randomized
coordinates, and with a lookup-protected precomputed table of 8 points), and for
verification in 5.7%, with 30 776 942 cycles. We also test the SPA leakage of our
constant time implementation of the Montgomery Ladder scalar multiplication
algorithm for Curve25519 with the randomized coordinates countermeasure by

1 They used a version of the binary Extended Euclidean Algorithm for field inversion
which is not constant time, and no SPA-specific countermeasure was applied.



Efficient and Secure Elliptic Curve Cryptography 291

running CRI’s test vector leakage assessment methodology (TVLA) [22,50]. To
the best of our knowledge, this is the first work to provide a SPA leakage assess-
ment of an implementation of ECC on AVR. Finally, we also show that addresses
of loads from Flash memory leak through power, and that such leakage can be
exploited by template SPA.

2 Side-Channel Analysis on the AVR

2.1 Timing Analysis

Timing attacks against implementations of cryptographic algorithms exploit the
fact that the elapsed time typically varies and depends on the specific value of
the input data being processed on the particular run, for fixed (e.g., key) or vari-
able (e.g., plaintext or ciphertext) data. Vulnerability to timing analysis implies
vulnerability to power analysis, as time differences can be visually detected in
power traces. The following are recommendations to prevent timing analysis [7].

Avoiding Secret-Dependent Load Addresses. This is necessary when the
architecture has a memory hierarchy. It is not the case of AVR architecture,
which has just one memory level, the SRAM, and in which all accesses take the
same time. Thus, we do not implement this recommendation.

Avoiding Secret-Dependent Branch Conditions. In other words, to avoid
data flow from secret data to branch conditions. In the case of AVR, there is no
branch prediction mechanism, so this problem could be solved by balancing the
number of instructions executed in the two conditions of the branch, but it has
to be done at the assembly level, is tedious and error prone. Instead, we solve it
by using conditional move operations implemented with logical operations.

2.2 Simple Power Analysis

Generally speaking, power analysis exploits the fact that the instantaneous power
consumption of a device depends on both the data processed and the operation
performed [37,34]. Power analysis attacks are classified as SPA even if the at-
tacker needs to obtain more than one trace to succeed, maybe from different
input data values, provided statistical analysis of the traces are not required [37].

Power analysis countermeasures for both SPA and DPA are based on the
reduction or elimination of the dependency between the power consumption
of a cryptographic device and the intermediate values used by the algorithm,
and are classified in two main groups: hiding and masking [37]. In this work
we apply both kinds of countermeasures. Hiding is employed through highly
regular2 [30] scalar multiplication algorithms, which also do not assume that

2 An algorithm is said to be highly regular when: (i) it always executes the same
instructions, in the same order, for all possible input values; and (ii) there is no
dummy instructions, i.e., all instructions are effective.



292 E. Nascimento, J. López, and R. Dahab

distinct operations have the same leakage characteristics3. Masking is applied
by randomizing the point coordinate representation, to protect against SPA and
template SPA [39].

3 Prime Field Arithmetic

Curve25519 and Ed25519. Curve25519 [5] is the Montgomery curve E(Fp) :
y2 = x3 + 48662x2 + x over the prime field Fp, p = 2255 − 19. Ed25519 [6]
is a twisted Edwards curve birationally equivalent to Curve25519, defined by
E′(Fp) : −x2 + y2 = 1− 121665

121666x
2y2 over the same prime field Fp.

Prime field F2255−19. Following the representation proposed in [9], we also
represent an element of Fp as an integer modulo 2256−38 during field operations,
as do previous implementations of Curve25519 and Ed25519 in AVR [27,19]. This
redundant representation allows for a more efficient reduction than reducing
directly modulo p. Only in the end of the scalar multiplication calculation, if the
integer is not already in Fp, we subtract p in constant time.

Field Multiplication and Squaring. Multi-precision multiplication (256-bit)
is implemented as a 3-level subtractive Karatsuba [10,28]. This variant of Karat-
suba avoids the carry bits when computing the middle partial product, but it
requires the computation of two absolute differences of the low and high halves
of the operands, |AL −AH | and |BL −BH |, and one conditional negation of the
product of these differences. The bottom 32-bit multiplier is fully unrolled. Field
squaring is implemented as a 3-level subtractive Karatsuba, in which case there
is no conditional negation of M. The 32-bit multiplier from the multiplication
is reused here, through a function call, at the bottom level. Both operations are
implemented in assembly, are branch-free and partially unrolled.

Multiplication by Constant 121666. This multiplication is required for the
group arithmetic in Curve25519. Since the constant representation requires 3
bytes (1 ‖ DB ‖ 42), multiplying it by a single word takes only 2 multiplications
and a few addition instructions.

Field Inversion. We use Fermat’s theorem, x−1 ≡ xp−2 (mod p), to compute
inversion in Fp in constant time. We use the same addition chain as [5,27],
consisting of 254 squares and 11 multiplications, but we reduce the number of
temporary field variables required from 10 to only 5.

4 Arithmetic Modulo Ed25519 Group Order

EdDSA-Ed25519 signature scheme requires addition and multiplication modulo
the Ed25519 group order (N). We implemented reduction modulo N in C using
a constant time version of the Barret algorithm obtained by unrolling the final

3 For example, it is not supposed that field squaring and multiplication exhibits the
same leakage patterns.



Efficient and Secure Elliptic Curve Cryptography 293

subtraction loop into two copies of its body (the maximum number of iterations)
and using conditional moves implemented in constant time.We precomputed the
reciprocal of the modulus, R =

⌊
b2n/N

⌋
=
⌊
25664/N

⌋
, a parameter of the

Barret algorithm, and stored it in program memory. The multiplication calls the
256-bit multiplier and then reduces fully. The addition also reduces fully and is
implemented in assembly.

5 Scalar Multiplication

The most computationally expensive operation in ECC is the scalar multiplica-
tion (ECSM), also known as point multiplication (by a scalar). Protocols usually
involve three cases: fixed base point (kG), where G is a fixed point (usually the
subgroup generator) and k is a scalar; variable base point (kP ), where P is a
point not known in advance; and the double scalar multiplication (kP + sG),
where P is variable and G is fixed.

Several algorithms are available for variable, fixed and double-base scalar mul-
tiplication on Curve25519 and Ed25519. The major criteria we used for the se-
lection of ECSM algorithms were high regularity [30], followed by performance.
In the case of fixed-base and double-base ECSM, the size of the table of precom-
puted points was also an important criteria, in view of the small Flash memory
space on ATmega328P. We also wanted to explore the performance of SPA-safe
ECSM algorithms that, to the best of our knowledge, were not yet implemented
in AVR microcontrollers, such as the FLS fixed-base ECSM algorithm [20,8].

5.1 Extended Twisted Edwards Coordinates

The most efficient formulas for point arithmetic on twisted Edwards curves were
proposed by Hisil et al [25], representing points in the extended twisted Edwards
coordinates: a point P = (x, y) is represented by the quadruple (X : Y : T : Z),
such that x = X/Z, y = Y/Z, xy = T/Z and Z �= 0. The auxiliary coordinate
T augments homogeneous projective coordinates (X : Y : Z) with the product
of x and y, and has the property T = XY/Z. The group identity element is
represented by (0 : 1 : 0 : 1), the negative of an element (X : Y : T : Z) is
(−X : Y : −T : Z). A point in affine coordinates (x, y) can be converted to
extended twisted Edwards coordinates by X = x, Y = y, T = xy and Z = 1.
To convert back to affine, T is ignored and an inversion and two multiplications
are required: x = X/Z and y = Y/Z. Similarly, a point can be converted to
homogeneous projective coordinates (X : Y : Z) simply by discarding T .

5.2 Variable-Base Scalar Multiplication

Montgomery Ladder Algorithm. Our implementation uses the formulas in-
troduced by Montgomery [41] for efficient x-coordinate differential point addi-
tion and doubling on elliptic curves in the Montgomery form, as do previous



294 E. Nascimento, J. López, and R. Dahab

implementations of Curve25519-ECDH [7,27]. The so-called Montgomery lad-
der algorithm comprises a sequence of 255 steps, known as ladder steps, each
performing one point addition and one point doubling, where a point is repre-
sented by projective coordinates (X : Z), where x = X/Z is the respective affine
x-coordinate. For a high level description of the algorithm, we refer the reader
to [19, §2]. Our implementation conditionally swaps the two point variables,
P1 = (X1 : Y1) and P2 = (X2 : Y2), in constant time, before the point opera-
tions in each ladder step. Point addition requires 3M + 2S and point doubling
requires 2M + 2S + 1Mc

4.

Joye’s Double-Add Algorithm. Joye’s double-add [29] (Algorithm 1) is a
variable-base right-to-left scalar multiplication algorithm, with no known SSCA
attack, which always repeats the same pattern of effective operations: a point
doubling is always followed by a point addition. The first operand (R1−b) in
the point addition is the result from the last point doubling, while the second
operand is the result from a previous addition, not necessarily the last one. For
this reason, we use the following coordinate systems in the point operations:

ExtTwistEd := 2 · HomoProj

ExtTwistEd := ExtTwistEd + ExtTwistEd

The point doubling algorithm (Algorithm 2 in Appendix B) is based on the
dedicated doubling formula from [25, §3.3], is optimized for a = −1 (the case
for Ed25519) and costs 4M + 4S. In its implementation, the input point is
actually represented in twisted Edwards coordinates, but is then converted to
homogeneous coordinates simply by ignoring the T coordinate (see Sect. 5.1).
The point addition algorithm (Algorithm 3 in Appendix B) is based in the unified
and complete point addition formula from Hisil et al [25, §3.1] and is optimized
for the case a = −1. It costs 8M +1Mc, but as the constant is large in this case,
a full multiplication is needed, therefore the effective cost is 9M . The scalar
multiplication cost is thus 255 · (13M + 4S).

Goundar et al ’s Signed Digit Algorithm. In order to prevent SPA-type
attacks, Goundar et al [24] proposed the use of the zeroless signed-digit expansion
(ZSD) in the binary left-to-right or right-to-left algorithms. The odd scalar k is
recoded on-the-fly with digits in the set {−1, 1} (Algorithm 4 in Appendix B).
We use extended twisted Edwards coordinates for point addition and doubling.
The point addition is actually a readdition, because the second operand, R1 =
(X2 : Y2 : T2 : Z2), can only be P or −P , so we can cache the result of kT2,
(Y2 − X2), (Y2 + X2) and 2Z2, saving a multiplication. Therefore, the scalar
multiplication costs 254 · (12M + 4S).

5.3 Flash Memory Address Leakage Through Power

When the base point P is fixed, scalar multiplication algorithms can employ
(offline) precomputation involving P to speedup the (online) evaluation phase

4 Mc means multiplication by a constant, 121666 in this instance.



Efficient and Secure Elliptic Curve Cryptography 295

of the scalar multiplication. For that end, a table of multiples of the base point
is typically precomputed and stored in a non-volatile memory. In the evaluation
phase, the points in the table are looked up based on some indexing method,
whose index values are dependent on bits of the (secret) scalar.

In the case of AVR, Flash memory is used to store the precomputed point ta-
ble. The time required to load a word from the Flash to the SRAM is constant,
independent of the address referenced. However, different index values corre-
spond to different Flash addresses, with possibly distinct Hamming weights, and
therefore potentially distinct power consumption characteristics. We designed an
experiment to evaluate whether this kind of leakage occurs and whether the leak-
age level is sufficient to distinguish between all the possible Hamming weights of
the addresses referenced in Flash reads. On AVR, Flash has a different address
space than SRAM, and are 16-bit on the ATmega328p.

The experiment consisted of selecting a set of addresses whose Hamming
weights are in the set SHW = {2, ..., 8}. We selected 7 addresses in the range
from 0x00A7 to 0x00FF, which have the upper 8 bits zeroed, one for each Ham-
ming weight in SHW . Let Saddr be this set5. We wrote a fixed byte value (0xDE)
to all addresses in this set. We then executed reads from this addresses (LPM
instruction) to a (fixed) register (the byte 0x00 is written to this register in
advance). For each address Hamming weight in SHW , 100 traces were captured.
Each power trace captured consists of the power consumption of a sequence of
instructions including the target LPM. The samples corresponding to the LPM in-
struction were visually identified, and then, for each address Hamming weight,
the average of the corresponding traces were computed.

Figure 1a shows the “average traces” for each address Hamming weight, for
the sample points corresponding to the LPM instruction. We can see that the
voltage values for the sample index 98 are the best single-point distinguishers for
the address Hamming weights in the set SHW . Therefore, we select the average
and sample standard deviation of voltages at this point to analyze whether this
leakage can be exploited to recover the Hamming weights.

Figure 1b shows the average voltage and the 95% confidence interval for each
Hamming weight in the set SHW . We cannot classify with strong statistical
significance the Hamming weight of a Flash address based only in one voltage
sample, because every confidence interval overlaps with at least one other confi-
dence interval6. However, the following groups can be distinguished: {2}, {3, 6},
{4, 7}, {8, 5}. This enables an adversary to detect sets of possible addresses of
the points being loaded from Flash to SRAM. In practice, in the context of
fixed-base scalar multiplication, during the lookup of a point stored in the pre-
computed point table an adversary could measure the address leakage from the

5 We selected this range of Flash addresses, because it is available for user programs,
but other ranges could be used. The following were the addresses selected: 0x00c0
(hw=2), 0x00e0 (hw=3), 0x00f0 (hw=4), 0x00f8 (hw=5), 0x00fc (hw=6), 0x00fe
(hw=7) and 0x00ff (hw=8).

6 In the case of Hamming weights 4 and 5, the confidence interval for 4 contains the
one for 7.



296 E. Nascimento, J. López, and R. Dahab

load of each word of each coordinate of the point, and thus could combine the
leakage values during the single point lookup to uniquely determine its index.

To counteract this kind of leakage, we implemented a constant time table
lookup. For each point table lookup, we read all words in the point table and
use bitwise arithmetic such that in the end the words of the coordinates val-
ues of the point requested are in the target buffer in SRAM (see Algorithm 6
in Appendix B).

(a) Voltage versus Sample index.
(b) Voltage versus Hamming
weight.

Fig. 1. Figure 1a shows the Voltage versus Sample index, for each Flash address Ham-
ming weight from 2 to 8, in the interval of samples/points in the average trace corre-
sponding to the LPM instruction. LPM takes 3 CPU cycles, and the sampling rate is 4
samples per cycle. Figure 1b shows the Voltage versus Hamming weight for the second
sample (sample index 98), with 95% confidence interval bars, for LPM instructions
referencing Flash addresses with different Hamming weights.

5.4 Fixed-Base ECSM for Ed25519 Key Generation and Signing

Modified LSB-set Algorithm (FLS). We implemented Faz-Hernandez et
al’s modified LSB-set comb algorithm [20], henceforward named FLS, according
to the specification in [8, Alg. 7]. Beyond the curve-related parameters, which
have already been fixed by the curve selection, different pairs of values for the
number of tables of precomputed points v and the window width w have been
selected and experimentally evaluated, to determine their actual performance
when protection against Flash memory address leakage is applied, and also to
compare the required storage costs. Points are represented in extended twisted
Edwards coordinates, both in the working variables and in the precomputed
table, and point addition and doubling formulas are the same used for Joye’s
(Algorithms 3 and 2 in Appendix B). We evaluated the performance with 4
precomputed points (1KB), (v = 1, w = 3) (1 table) and (v = 2, w = 2) (2
tables), and with 8 points (2KB), (v = 1, w = 4) (1 table) and (v = 2, w = 3) (2
tables). We also evaluated the performance impact of the table lookup protection.
In the case of two tables, we use a similar technique as that for a single table
(Algorithm 6 in Appendix B), to guarantee that all words are read from both
tables, but only the desired point is left in the destination variable.



Efficient and Secure Elliptic Curve Cryptography 297

5.5 Projective Coordinate Randomization

In a template SPA [39] attack the adversary first characterizes the power con-
sumption of a sequence of instructions executed on a device similar to the target
device, when a fixed pair (key, data) is processed, and repeats the process for sev-
eral such pairs, resulting in a set of power consumption templates, one for each
pair (template building phase). After that, the templates are matched against a
single trace captured from the target (template matching phase).

Highly regular scalar multiplication algorithms implemented in constant time
are not enough to protect against template SPA attacks, as it was shown in [39,4].
According to Medwed and Oswald [39], the only way to make an implementation
resistant to template SPA attacks is to make it resistant against DPA attacks,
and they also assert that among Coron’s proposed countermeasures for DPA in
ECC [16], only randomized projective coordinates can prevent template SPA.

We applied the randomized projective coordinates countermeasure to the pro-
jective coordinates (X : Z) in Montgomery Ladder and the extended twisted Ed-
wards coordinates (X : Y : T : Z) in Joye’s Double-Add, Goundar’s Signed-digit
and FLS algorithms. In the case of Montgomery Ladder, we generate random
λ ∈ Fp\{0} in the beginning of the algorithm and do Z2 ← λ and X2 ← u · λ,
where u is the x-coordinate of the input point P and P2 = (X2 : Z2) is the
second point variable. In the case of Joye’s Double-add and Goundar’s Signed-
digit algorithms, we randomly generate λ ∈ Fp\{0} and do X ′ ← λx, Y ′ ← λy,
T ′ ← xY ′ and Z ′ ← λ, where P = (x, y) is the input point in affine coordi-
nates and the resultant point P ′ = (X ′ : Y ′, T ′, Z ′) is used in place of P in the
remainder of the algorithms.

In FLS algorithm, we randomize the coordinates of the first point loaded from
the table of precomputed points, P0 = (X : Y : T : Z), as follows: generate ran-
dom λ ∈ Fp\{0} and do X ′ ← λX , Y ′ ← λY , T ′ ← λT and Z ′ ← λZ. The
resultant point P ′

0 = (X ′ : Y ′ : T ′ : Z ′) is used in place of P0. When this coun-
termeasure is applied, the values of the coordinates of the accumulator point Q
are randomized, changing from one execution of the scalar multiplication to the
other, because the value of P ′

0 is assigned to Q in the beginning of evaluation
stage [8, Alg. 7]. Furthermore, as an additional measure to protect against tem-
plate SPA attacks targeting the loading of words stored Flash (i.e., the value
of the words itself, rather than their addresses), the extended twisted Edwards
coordinates of each point Pi,j are randomized before being stored in the table,
with a random λ generated for each point, in the same way P0 was randomized.

6 Hashing and PRNG

SHA-512. The original EdDSA-Ed25519 [6] and the AVRNaCl [27] implementa-
tions of EdDSA-Ed25519 have chosen SHA-512 [42] as the hash function, there-
fore we have also selected it to be able to compare our results to theirs. Our goal
is to achieve a small and simple implementation, so we decided to implement in
assembly only the low-level functions (add64, and64, or64, xor64, rotr64 and



298 E. Nascimento, J. López, and R. Dahab

shr64), while the higher level ones are implemented in C and optimized for size.
The constant H0 and round constants were kept in program memory.

Hash DRBG. Random numbers are required for the projective coordinates ran-
domization and for key pair generation on the device, in particular if ephemeral
ECDH (ECDHE) is used. For this purpose, we implemented theHash DRBGpseu-
dorandom number generator [3] at the 128-bit security level, with SHA-512 as
the underlying hash function.7 The PRNG is seeded during instantiation, and its
seed is the output of a derivation function whose inputs are the entropy input and
nonce. The nonce is stored in the EEPROMwhen the device is programmed. The
entropy input is also assumed to be stored in the EEPROM, as we do not imple-
ment entropy gathering from physical sources.8

7 Elliptic Curve Protocols

Elliptic Curve Diffie-Hellman with Curve25519 (ECDH-Curve25519).
ECDH-Curve25519 protocol consists of two operations: generate key pair and
compute shared secret. The latter consists mainly of a variable-base scalar mul-
tiplication, which is implemented using the Montgomery Ladder, and an inver-
sion in Fp. The first requires a scalar multiplication by a fixed base point, also
implemented with the Montgomery Ladder.

Edwards Digital Signature Algorithmwith Ed25519 (EdDSA-Ed25519-
SHA512). Key generation consists of a scalar multiplication by the subgroup
generator and a SHA512 hash. The signature generation applies SHA512, a fixed-
base scalar multiplication, addition and multiplication modulo the subgroup or-
der, and simple point and scalar encoding operations. The signature verification
consists of simple point and scalar decoding operations followed by SHA512 and
a double scalar multiplication, where one of the points is fixed (subgroup gener-
ator) and the other is variable (the signer public key). The latter is implemented
with “Shamir’s trick”, a special case of Straus’s algorithm [49].

8 Benchmarking Results

The source code was compiled with AVR-GCC v4.8.2, the size optimization
-Os and -fomit-frame-pointer options were applied to the C sources, and the
program was linked with global linker optimization -flto. Table 1 shows the
benchmarking results. The signature generation uses the FLS algorithm with

7 Faster approved hash functions, such as SHA-256 or even SHA-1, could be used at
this security level, but we decided to just call the SHA-512 function already available
to not increase the code size.

8 One such scheme proposed in the literature is Hlavac et al’s [26] method of generating
true random numbers on the AVR based on the jitter of the built-in RC oscillator,
requiring only an external oscillator. However, the resulting TRNG is slow, being ca-
pable of generating only 8 bits of entropy per second.



Efficient and Secure Elliptic Curve Cryptography 299

(v = 1, w = 4) (8 points, 1 table), with and without the table lookup protection
and randomized coordinates countermeasures. In the results for the functions
protected with the coordinate randomization, the PRNG overhead is not taken
into account, i.e., the required number of random bytes are readily available.

The results of our implementation of EdDSA-Ed25519-SHA512 improve the
state of the art performance [27], requiring 19 047 706 cycles for signing, an im-
provement of 17.9%, and 30 776 942 cycles for verification, an improvement of
5.7%. The overhead of the countermeasures table lookup protection and ran-
domized projective coordinates to the FLS algorithm is only 1.0%. Similarly,
when these countermeasures are applied on the signature generation function,
the overhead is also very small (0.9%). In the case of the compute shared secret
function, the overhead of the coordinate randomization is only 0.04%.

Despite having a slower field multiplication than Hutter and Schwabe im-
plementation ( 6208 cycles) [27], we implemented a dedicated field squaring
algorithm in assembly while the authors simply reused the multiplication func-
tion for squaring, resulting in faster scalar multiplications for both Curve25519
and Ed25519. Dull et al [19] described an efficient implementation of field mul-
tiplication and squaring for AVR using more efficient algorithms, significantly
improving the state-of-the-art performance with 13 900 397 cycles for computing
a ECDH-Curve25519 shared secret key.

9 Timing and Simple Power Analysis Leakage Evaluation

Side-channel security evaluations of cryptography devices comprise two phases:
measurement and analysis. The output of such an evaluation should be an as-
sertion, indicating whether the device is vulnerable (Fail) or not (Pass), given
the constraints of the evaluation process9. The proper measurement of the side-
channel traces and its limitations must be properly accounted for, or else the
analysis process could be undermined, probably resulting in false positives, or
worse, false negatives.

Current evaluation methodologies (e.g. Common Criteria [17]) consist of per-
forming a battery of known side-channel attacks against the device under test
(DUT) in an attempt to recover the key. Nonetheless, the rapid evolving set
of side-channel attacks proposed in the literature incur both a more demand-
ing level of expertise of test operators and an increase on the evaluation time.
Even when all attack attempts have failed, residual side-channel leakages may
be available, which may reveal new attack paths for an adversary.

CRI proposed the Test Vector Leakage Assessment (TVLA) testing method-
ology, to solve the aforementioned issues, which is claimed to be effective, in the
sense that it is reproducible and is a reliable indicator of the resistance achieved,
and cost effective, meaning that “validating a moderate level of resistance (e.g.,
FIPS 140 level 3 or 4) should not require an excessive amount of testing time per
algorithm or test operator skills” [22]. Their approach differs fundamentally from

9 E.g., accuracy of the testing equipment, technical expertise and available time.



300 E. Nascimento, J. López, and R. Dahab

Table 1. Benchmarking results on ATmega328P.

Operation Class Operation/Algorithm Msg.(B) Cycles Stack(B)

Field Arith.

Field Multiplication - 7555 -

Field Squaring - 5666 -

Field Inversion - 2 000 762 -

Group Order Arith.

Barret Reduction - 43 045 -

Group Order Addition - 54 303 -

Group Order Negation - 46 773 -

Group Order Multiplication - 72 438 -

Variable-base ECSM
Curve25519

Montgomery Ladder - 20 153 658 -

Montgomery Ladder, rand. coord. - 20 161 213 -

Variable-base ECSM
Ed25519

Joye’s Double-Add - 42 436 422 -

Joye’s Double-Add, rand. coord. - 42 459 087 -

Goundar’s Signed-digit - 35 757 016 -

Goundar’s Signed-digit, rand. coord. - 35 779 681 -

Fixed-base ECSM
Ed25519

FLS (v = 1, w = 3) - 21 553 188 -

FLS (v = 2, w = 2) - 26 661 293 -

FLS (v = 1, w = 3), lookup prot. - 21 658 857 -

FLS (v = 1, w = 4) - 18 119 234 -

FLS (v = 2, w = 3) - 19 170 150 -

FLS (v = 1, w = 4), lookup prot. - 18 264 710 -

FLS (v = 1, w = 4), lookup + rand. coord. - 18 298 387 -

Double ECSM Ed25519 Shamir’s trick - 28 105 811 -

Hash
SHA-512 64 554 280 -

SHA-512 1024 4 974 380 -

ECDH-Curve25519

Compute shared secret [27] - 22 791 579 677

Compute shared secret [19] - 13 900 397 494

Compute shared secret - 20 254 426 686

Compute shared secret, rand. coord. - 20 261 981 743

EdDSA-Ed25519

Signature generation [27] 64 23 216 241 1642

Signature generation 64 19 047 706 1473

Signature generation, lookup + rand. coord. 64 19 221 517 1511

Signature verification [27] 64 32 634 713 1315

Signature verification 64 30 776 942 1226

the attack-focused evaluation strategies currently employed, taking a black-box
and detection-focused strategy [38].

The measurement phase of TVLA is based on the collection of side-channel
traces when standardized test vectors are provided as input to the algorithm
being tested, and establishes requirements for power measurement equipment
and setup, data collection, signal alignment and preprocessing. The analysis
phase is based on Welch’s t-test, can detect different types of leakages and allows
the analyst to identify points in time that deserve further investigation. The
testing methodology has so far been applied to AES and RSA implementations10.

Other methodologies, based on continuous [13] and discrete [12] mutual infor-
mation have also been proposed.Oswald et al [38] analyzedmethodologies [22], [12]

10 For AES, by the methodology authors [22,15] and independently [38]; and for RSA
software implementations [50].



Efficient and Secure Elliptic Curve Cryptography 301

and [13], and concluded they have similar statistical power. The recent work of
Schneider and Moradi [48] address how to perform the t-test in [22] at higher or-
ders, and how to extend it to multivariate settings.

9.1 Application of CRI’s Methodology to ECC

We apply CRI’s methodology to our implementation of ECDH-Curve25519, us-
ing Chipwhisperer as the power measurement equipment. Specifically, we select
a set of test vectors (Table 2) to be used for the power measurement phase,
which cover normal and special cases of the field and group arithmetic when
implemented using the chosen algorithms. Table 3 shows categories of special
values used in Sets 4 and 5 for the compute shared secret function.

Table 2. Sets of test vectors for SPA leakage analysis (k is the secret scalar and P is
the point).

Set # Properties Rationale

1 constant k, constant P
This is the baseline. The tests compare power consumption
from the other sets against it.

2 constant k, varying P
Goal is to detect systematic relationships between power
consumption and the P value.

3 varying k, constant P
Goal is to detect systematic relationships between power
consumption and the k value.

4 constant k, special P Edge cases of the algorithms used.

5 special k, constant P Edge cases of the algorithms used.

Table 3. Categories of special values for n and q in ECDH-Curve25519 compute shared
secret function (q is the encoded point, n is the encoded scalar and l is the subgroup
order).

Cat. # Properties

1 q ∈ {0, 1, ..., 1023}
2 q ∈ {p25519 − 1, ..., p25519 − 1024}
3 n ∈ {0, ..., 1023}
4 n ∈ {l − 1, ..., l − 1024}
5 q has a low Hamming Weight (≤ 230)

6 q has a high Hamming Weight (≥ 25)

9.2 Measurement Setup and Capture of Power Traces

Time Measurement Setup. In an AVR CPU, as the clock frequency is con-
stant, the elapsed time of an algorithm can be measured by simply counting the
number of cycles it takes to execute. We use timer interrupts which increment a
16-bit and a 8-bit counter, resulting in 24-bit resolution.



302 E. Nascimento, J. López, and R. Dahab

Power Measurement Setup. In Chipwhisperer, power consumption traces
are captured by the OpenADC board, which features an ADC with a sample
rate of 105 MS/s, 10-bit sample resolution, 120 MHz analog bandwidth and 0
to 55 dB gain (software adjustable). The sample buffer capacity is 24k samples.
We used the following parameters values in our setup, adhering to the minimum
requirements from [22]. ADC frequency is set to 29.5 MHz, which is exactly four
times the clock rate provided to the ATMega328P (4 x 7.37 MHz), the analog
gain is set to 40 dB. The trigger mode is configured to rising clock edge.

Capture of Power Traces. The first issue we faced to capture power traces
using Chipwhisperer was the small size of the samples buffer. In the latest version
available of its FPGA bitstream and capture software, the samples buffer is
implemented as a FIFO using cells of the small Spartan 6 LX25 FPGA, limiting
its size to just 24573 samples, 10 bits each11. In our settings, this corresponds
to a limit of 6143 cycles (4 samples per cycle) per acquisition operation.

Assuming a Curve25519 variable-base scalar multiplication takes 20M cycles,
then 3256 acquisitions would be required to cover the whole operation. If such
acquisitions are made sequentially, however, samples are lost in the time interval
between an acquisition and the next, creating a gap in the trace, because when
the buffer is full, its content must be sent to the host computer through serial
connection before it could be emptied. To work around this limitation, we cap-
tured 6 traces (numbered from 0 to 5) of the full scalar multiplication, each one
with gaps. Even and odd-numbered traces have time offsets such that the gaps
in even traces don’t overlap the gaps in odd traces. We compute the average of
the 6 traces, not including the gaps in the average computation, obtaining an
average trace to be used as a single trace in the analysis phase.

We obtained 200 average traces for each test vector set, for a total of 1000
traces. The complete trace capture process, including averaging, compression
and disk storage took around 6 hours. Each uncompressed trace has 80, 614, 632
samples, and occupies 100, 768, 290 bytes. The sample acquisition process begin
with a trigger produced by the code running in the AVR, through the assertion of
bit 0 of PORTC register, just before the call to the scalar multiplication function.
Similarly, the end of the acquisition was triggered by deasserting the same bit
after the function returns. As this method provides a very precise synchronization
of the start and end times of capture across traces, no trace alignment was
needed.

9.3 SPA Leakage Analysis

The leakage analysis phase of our implementation of ECDH-Curve25519 with
randomized coordinates countermeasure is identical to CRI’s TVLA [50], and is
conducted in the following way. Let {DS1, . . . , DS5} be the sets of power traces
corresponding to the selected test vectors sets. The full test consists of running
the (pairwise) tests described in [50] for each of the following pairs of datasets:

11 The board provides a 1GB DDR memory, but it is not supported yet.



Efficient and Secure Elliptic Curve Cryptography 303

{(DS1, DS2), . . . , (DS1, DS5)}. If any of the previous tests fails, then the top-
level test fails and the implementation is deemed to have FAILED. Otherwise,
it PASSED. We chose the confidence threshold C = 4.5, the same value used in
CRI’s methodology for RSA [50].

10 Side-Channel Analysis Results

Timing Analysis. Timing measurements were obtained for ECDH-Curve25519
compute shared secret function using a superset of the test vectors used in the
SPA analysis, which includes additional randomly generated test vectors. For the
timing measurements of EdDSA-Ed25519-SHA512 signature generation, we used
randomly generated test vectors and those covering corner cases. The results
obtained show that the implementations of both functions are constant time,
with respect to the private key value.

Fig. 2. t-statistic versus sample index for the experiment comparing DS1 and DS3,
for two independent groups of traces; group A (blue) and group B (red).

SPA Analysis. The leakage analysis methodology was applied to our imple-
mentation of ECDH-Curve25519 with randomized coordinates. Figure 2 shows
the t-statistic for a small range of sample indices12 (time instants), for one run of
Welch’s t-test for group A (SA,1, SA,2) of vectors selected fromDS1 andDS3, and
the same test run over the independent group B (SB,1, SB,2).

13 The t-statistic
for group A is above C = 4.5 at one time instant, meaning a possible strong
dependence between power consumption and key value at that instant. But, as

12 This time interval was selected because it illustrates a range where the t-statistic
values are relatively high, compared to other time instants.

13 Groups A and B are a partition of test vector sets DS1 and DS3: (SA,1 ⊂
DS1, SA,2 ⊂ DS3) and (SB,1 = DS1 \ SA,1, SB,2 = DS3 \ SA,2).



304 E. Nascimento, J. López, and R. Dahab

it did not occur at the same time and in the same direction for group B, it
is therefore considered a false positive by the methodology and thus discarded.
The test results for each pair of test vector sets {(DS1, DS2), . . . , (DS1, DS5)}
showed that at a few time instants the t-statistic value for one of the groups is
above 4.5 or below −4.5, but not for both groups at the same time. Therefore,
we can conclude that our SPA protected implementation of ECDH-Curve25519
passed the SPA leakage evaluation.

11 Conclusion

We describe an efficient implementation of protocols ECDH-Curve25519 and
EdDSA-Ed25519-SHA512 for an AVR 8-bit microcontroller. The implementa-
tions prevent timing attacks by using regular algorithms and constant time field
arithmetic. SPA and template SPA protection is provided by the use of coordi-
nate randomization and by avoiding secret-address dependent loads from Flash
memory. The effectiveness of the SPA countermeasures for ECDH-Curve25519
is evaluated through the application of CRI’s TVLA methodology with selected
test vectors, using Chipwhisperer.

We identify the following open problems. Consider the operations in this ex-
cerpt, which are typically used in constant time code (e.g., CSWAP and CMOV)
to avoid branches dependent on secret data: mask ← −b; t ← mask ∧ x. In this
example, b ∈ {0, 1} is a secret dependent bit and, therefore mask ∈ {0, 255}, in
8-bit unsigned integer representation. We notice that the difference in Hamming
weight between the possible mask values are maximal (7), meaning that if the
device leaks the Hamming weight of the (sum) of the and instruction operands
or their Hamming distance, and the adversary knows the value of x, than she
may be able to exploit it for a template SPA attack. Also, according to a survey
of SCA in ECC [18], some known SCA attacks are not addressed by the counter-
measures we used, such as RPA [23] and ZPA [1], and thus deserve an analysis
regarding their applicability to Curve25519 and Ed25519. Another further work
is to analyze how strong is the leakage of the data read from the Flash and find
a simple leakage model that best characterizes it.

References

1. Akishita, T., Takagi, T.: Zero-value point attacks on elliptic curve cryptosystem.
In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 218–233. Springer,
Heidelberg (2003)

2. ANSSI. Mécanismes cryptographiques - Règles et recommandations. Technical re-
port, Agence nationale de la sécurité des systèmes d’information (2014)

3. Barke, E., Kelsey, J.: SP 800-90A: Recommendation for Random Number Gener-
ation Using Deterministic Random Bit Generators. Technical report, NIST (2012)

4. Batina, L., Chmielewski, L., Papachristodoulou, L., Schwabe, P., Tunstall, M.:
Online Template Attacks. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT
2014. LNCS, vol. 8885, pp. 21–36. Springer, Heidelberg (2014)



Efficient and Secure Elliptic Curve Cryptography 305

5. Bernstein, D.J.: Curve25519: new diffie-hellman speed records. Technical report,
University of Illinois at Chicago (2006)

6. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. Journal of Cryptographic Engineering 2(2), 77–89 (2012)

7. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic
library. In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 159–
176. Springer, Heidelberg (2012)

8. Bos, J., Costello, C., Longa, P., Naehrig, M.: Selecting elliptic curves for cryptog-
raphy: an efficiency and security analysis. Journal of Cryptographic Engineering,
1–28 (2015)

9. Bos, J.W.: High-performance modular multiplication on the cell processor. In:
Hasan, M.A., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 7–24. Springer,
Heidelberg (2010)

10. Brent, R.P., Zimmermann, P.: Modern Computer Arithmetic. Cambridge Univer-
sity Press (2010)

11. BSI. Algorithms for Qualified Electronic Signatures. Technical report, Bundesamt
für Sicherheit in der Informationstechnik (2014)

12. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical Measurement
of Information Leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 390–404. Springer, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-12002-2_33, doi:10.1007/978-3-642-
12002-2 33

13. Chothia, T., Guha, A.: A statistical test for information leaks using continuous
mutual information. In: Proceedings - IEEE Computer Security Foundations Sym-
posium, pp. 177–190 (2011)

14. Chu, D., Großschädl, J., Liu, Z., Müller, V., Zhang, Y.: Twisted Edwards-form
elliptic curve cryptography for 8-bit AVR-based sensor nodes. In: Proceedings of
the First ACM Workshop on Asia Public-Key Cryptography, pp. 39–44. ACM
(2013)

15. Cooper, J., Demulder, E., Goodwill, G., Jaffe, J., Kenworthy, G.: Test Vector Leak-
age Assessment (TVLA) methodology in practice (Extended Abstract). Technical
report, Cryptography Research Inc. (2013)

16. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

17. Criteria, C.: Common Criteria v3.1. Technical report, Common Criteria (2014)
18. Danger, J.-L., Guilley, S., Hoogvorst, P., Murdica, C., Naccache, D.: A synthesis

of side-channel attacks on elliptic curve cryptography in smart-cards. Journal of
Cryptographic Engineering, 1–25 (2013)

19. Düll, M., Haase, B., Hinterwälder, G., Hutter, M., Paar, C., Sánchez, A.H.,
Schwabe, P.: High-speed curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers.
In: Designs, Codes and Cryptography, pp. 1–22 (2015)

20. Faz-Hernández, A., Longa, P., Sánchez, A.H.: Efficient and secure algorithms for
GLV-based scalar multiplication and their implementation on GLV-GLS curves. In:
Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 1–27. Springer, Heidelberg
(2014)

21. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

22. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side channel
resistance validation. Technical report, CRI (2011)

http://dx.doi.org/10.1007/978-3-642-12002-2_33


306 E. Nascimento, J. López, and R. Dahab

23. Goubin, L.: A refined power-analysis attack on elliptic curve cryptosystems. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 199–210. Springer, Heidelberg
(2002)

24. Goundar, R., Joye, M., Miyaji, A., Rivain, M., Venelli, A.: Scalar multiplication
on weierstraß elliptic curves from co-z arithmetic. Journal of Cryptographic Engi-
neering 1(2), 161–176 (2011)

25. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted edwards curves revisited.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343. Springer,
Heidelberg (2008)

26. Hlavac, J., Lorencz, R., Hadacek, M.: True random number generation on an Atmel
AVR microcontroller. In: 2010 2nd International Conference on Computer Engi-
neering and Technology (ICCET), vol. 2, pp. V2–493–V2–495 (2010)

27. Hutter, M., Schwabe, P.: Nacl on 8-bit avr microcontrollers. In: Youssef, A., Nitaj,
A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 156–172.
Springer, Heidelberg (2013)

28. Hutter, M., Schwabe, P.: Multiprecision multiplication on avr revisited. Journal of
Cryptographic Engineering, 1–14 (2015)

29. Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In: Pail-
lier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135–147. Springer,
Heidelberg (2007)

30. Joye, M.: Highly regular m-ary powering ladders. In: Jacobson Jr., M.J., Rijmen,
V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 350–363. Springer,
Heidelberg (2009)

31. Killmann, W., Lange, T., Lochter, M., Thumser, W., Wicke, G.: Minimum Re-
quirements for Evaluating Side-Channel Attack Resistance of Elliptic Curve Im-
plementations. Technical report, BSI (2011)

32. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177),
203–209 (1987)

33. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

34. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

35. Liu, Z., Großschädl, J., Wong, D.S.: Low-weight primes for lightweight elliptic
curve cryptography on 8-bit AVR processors. In: Lin, D., Xu, S., Yung, M. (eds.)
Inscrypt 2013. LNCS, vol. 8567, pp. 217–235. Springer, Heidelberg (2014)

36. Liu, Z., Wenger, E., Großschädl, J.: MoTE-ECC: Energy-scalable elliptic curve
cryptography for wireless sensor networks. In: Boureanu, I., Owesarski, P., Vau-
denay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 361–379. Springer, Heidelberg
(2014)

37. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks: Revealing the secrets
of smart cards, vol. 31. Springer (2007)

38. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does My Device Leak In-
formation? An a priori Statistical Power Analysis of Leakage Detection Tests. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 486–
505. Springer, Heidelberg (2013)

39. Medwed, M., Oswald, E.: Template Attacks on ECDSA. In: Chung, K.-I., Sohn,
K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 14–27. Springer, Heidelberg
(2009)

40. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)



Efficient and Secure Elliptic Curve Cryptography 307

41. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177), 243–264 (1987)

42. NIST. FIPS 180-2: Secure hash standard (SHS). Technical report, NIST (2001)

43. NIST. FIPS 140-3: Security Requirements for Cryptographic Modules. Technical
report, NIST (2009)

44. NIST. SP 800-57 - Recommendation for Key Management. Technical report, Na-
tional Institute for Standards and Technology (2012)

45. NSA. Fact Sheet Suite B Cryptography. Technical report, National Security Agency
(2014)

46. O’Flynn, C., Chen, Z.D.: ChipWhisperer: An Open-Source Platform for Hardware
Embedded Security Research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622,
pp. 243–260. Springer, Heidelberg (2014)

47. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): Measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

48. Schneider, T., Moradi, A.: Leakage Assessment Methodology - a clear roadmap for
side-channel evaluations. Cryptology ePrint Archive, Report 2015/207 (2015)

49. Straus, E.G.: Addition chains of vectors (problem 5125). In: American Mathemat-
ical Monthly, pp. 806–808 (1964)

50. Witteman, M., Jaffe, J., Rohatgi, P.: Efficient side channel testing for public key
algorithms: RSA case study. Technical report, Cryptography Research (2011)

A ATmega328P Microcontroller and Chipwhisperer

The AVR is a family of 8-bit microcontrollers from Atmel featuring a RISC in-
struction set. It is a Harvard-based architecture with separate address spaces
for data (SRAM), program (Flash) and non-volatile data (EEPROM). The AT-
mega328P has a 32KB Flash, a 2KB SRAM and a 1KB EEPROM. It has a
maximum frequency of 20 MHz, but operates at 7.3728 MHz in Chipwhisperer.
The register file contains 32 registers (R0-R31), among which 6 registers serve as
pointers for indirect 16-bit addressing and have the following aliases: X (R27:26),
Y (R29:R28) and Z (R31:R30). Arithmetic instructions take 1 cycle, with the
exception of multiplication instructions, which take 2 cycles. Loads and stores
from/to SRAM take 2 cycles. Loads from Flash memory take 3 cycles.

Chipwhisperer [46] is a toolbox consisting of open source hardware and soft-
ware for side-channel analysis of AVR microcontroller software. It provides fea-
tures for power and electromagnetic (SEMA and DEMA14) side-channel analy-
sis, as well as clock and VCC glitching. On the hardware side, there is a capture
board with an ADC and a Xilinx Spartan 6 FPGA, for system control and cap-
ture, and a target board with ATmega328P and XMega16A4A microcontrollers.
Open source software for trace capture and analysis is also provided.

14 Simple and Differential Electromagnetic Analysis, respectively.



308 E. Nascimento, J. López, and R. Dahab

B Algorithms

Algorithm 1. Joye’s double-add right-to-left algorithm [29]

Input: Point P ∈ E(Fp) and k = (kn−1, . . . , k1, k0)2 ∈ N

Output: Q = [k] · P
1: R0 ← P∞, R1 ← P
2: for i from 0 to n − 1 do
3: b ← ki

4: R1−b ← 2R1−b + Rb

5: end for
6: return R0

Algorithm 2. Point doubling in mixed homogeneous and extended twisted Edwards
coordinates [25]

Input: P1 = (X1, Y1, Z1) in homogeneous projective coordinates.
Output: P3 = 2P1 = (X3, Y3, T3, Z3) in extended twisted Edwards coordinates.
1: A ← X2

1 ; B ← Y 2
1 ; C ← 2Z2

1

2: D ← −A; E ← (X1 + Y1)
2 − A − B; G ← D + B

3: F ← G − C; H ← D − B; X3 ← E · F
4: Y 3 ← G ·H; T3 ← E · H; Z3 ← F · G

Algorithm 3. Point addition in extended twisted Edwards coordinates [25]

Input: P1 = (X1, Y1, T1, Z1) and P2 = (X2, Y2, T2, Z2) in extended twisted Edwards coordinates;
constant k = −2d, where d = −121665/121666.

Output: P3 = (X3, Y3, T3, Z3) in extended twisted Edwards coordinates.
1: A ← (Y1 − X1) · (Y2 − X2); B ← (Y1 + X1) · (Y2 + X2); C ← k · T1 · T2;
2: D ← 2Z1Z2; E ← B − A; F ← D − C;
3: G ← D + C; H ← B + A; X3 ← E · F ;
4: Y3 ← G ·H; T3 ← E · H; Z3 ← F · G;

Algorithm 4. Goundar’s signed-digit left-to-right algorithm [24]

Input: Point P ∈ E(Fp), k = (kn−1, . . . , k1, k0)2 ∈ N with k0 = 1
Output: Q = [k] · P
1: R0 ← P ; R1 ← P
2: for i from n − 1 to 1 do
3: t ← (−1)1+ki

4: R0 ← 2R0 + (t)R1

5: end for
6: return R0



Efficient and Secure Elliptic Curve Cryptography 309

Algorithm 5. Constant-time equality test (CCMP) (AVR assembly code)

Input: Registers Ri and Rt.
Output: register Rd is: 1, if Ri = Rt; and 0, otherwise.

mov Rd, Ri
sub Rd, Rt ; Z (Zero) flag will be 1, if Rd == Rt; and 0, otherwise.
in Rd, SREG ; Rd := SREG, SREG is the status register.
andi Rd, 0x02 ; isolate Z flag.
lsr Rd ; Rd = Z

Algorithm 6. Flash table lookup protected against address leakage through power

Input: table T with dimensions n x m, where n is the number of points and m is the length in
words of a point; and index is the index of the point. Here, T[i][j] means the value of the word
and also the reading of the said word from Flash by the LPM instruction.

Output: m-word array r containing the words of the requested point, i.e, r = T[index][0..m− 1].
1: for j from 0 to m − 1 do
2: r[j] ← 0
3: end for
4: for i from 0 to n − 1 do
5: mask ← CCMP(i, index)−1 /* mask = 0, if i = index. Otherwise, mask = 0xff */
6: for j from 0 to m − 1 do
7: r[j] ← r[j] ⊕ (T [i][j] ∧ mask)
8: end for
9: end for



Towards Practical Attribute-Based Signatures

Brinda Hampiholi, Gergely Alpár, Fabian van den Broek, and Bart Jacobs

Institute for Computing and Information Sciences,
Radboud University, Nijmegen, The Netherlands

{brinda,gergely,f.vandenbroek,bart}@cs.ru.nl

Abstract. An attribute-based signature (ABS) is a special digital sig-
nature created using a dynamic set of issued attributes. For instance, a
doctor can sign a medical statement with his name, medical license num-
ber and medical speciality. These attributes can be verified along with
the signature by any verifier with the correct public keys of the respec-
tive attribute issuers. This functionality not only makes ABS a much
more flexible alternative to the standard PKI-based signatures, but also
offers the ability to create privacy-preserving signatures. However, none
of the ABS constructions presented in the literature is practical or eas-
ily realizable. In fact, to the best of our knowledge, there is currently
no ABS implementation used in practice anywhere. This is why we put
forward a new ABS technique based on the IRMA attribute-based au-
thentication. IRMA already has an efficient and practical smart-card
implementation, and an experimental smart-phone implementation too.
They are currently used in several pilot projects.

In this paper, we propose an ABS scheme based on the existing IRMA
technology, extending the currently available IRMA devices with ABS
functionality. We study the practical issues that arise due to the in-
troduction of the signature functionality to an existing attribute-based
authentication scheme, and we propose possible cryptographic and in-
frastructural solutions. We also discuss use cases and implementation
aspects.

Keywords: attribute-based signature, attribute-based credential, IRMA,
authentication, timestamp, contextual privacy.

1 Introduction

Digital signatures are cryptographic primitives that are used by a person to
digitally sign a message, thus declaring that he agrees with the message. The
digital signature standard based on asymmetric cryptography requires a signer
to sign with his private key and the corresponding public key is used for verifying
this signature. The public key of the signer stated in the public-key certificate
identifies the signer and links all the messages that he ever signed. This type
of digital signature does not allow the signer to make the context or role of the
signer explicit, and this limits the cases in which the signer can sign under a
particular set of attributes and reveal nothing else about himself.

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 310–328, 2015.
DOI: 10.1007/978-3-319-24126-5�18



Towards Practical Attribute-Based Signatures 311

In the case of a medical statement signed by a doctor, the doctor’s attributes
such as his qualification, speciality and license number (for accountability pur-
pose) are necessary along with his signature. With the current public-key infras-
tructure (PKI) based signature, a doctor has to reveal his full identity, public-key
certificate every time he digitally signs a document. This results in the unnec-
essary (or undesired) disclosure of excess data about the doctor’s identity and
all his signatures will always be linkable to him irrespective of the context. This
violates the principle of data minimization and harms the privacy of the signer.

Furthermore, a PKI-based signature provides the signer identity but the iden-
tity itself does not say much about the individual attributes of the signer that
are relevant from the perspective of a signature verifier. Such a signature would
just state that “This message is signed by a signer with common name ‘Jack’
holding public key ‘x’ as attested in the corresponding public key certificate signed
by CA ‘y’.”. Considering the above example, the verifier does not know if the
message was indeed signed by a doctor whose speciality is orthopaedics; he just
knows that the message was signed by Jack holding public key x. This issue
can be solved if the signer could sign under a set of attributes (e.g. ‘doctor’,
‘orthopaedics’) specified by the verifier’s signature policy.

Attribute-based signatures (ABSs) allow a person to sign under a set of se-
lected authentic/certified attributes based on the context. The signature reveals
no more than the fact that a signer, with a specific set of attributes satisfying
a certain condition, has attested the message. Here, the signature proves that
the attributes hold for him at the time of signing and the signature is generated
using a secret key associated with the signer. The signature verification will fail if
the message was changed after signing, which ensures the integrity of the signed
message. In the case of an ABS, non-repudiation of the signer can be achieved by
enforcing the disclosure of signer-identifying attributes in the signature policy
(e.g. the attribute to be revealed may be ‘is a doctor with medical license number
12345’). However, when the disclosed attributes are non-identifying such as ‘age
≥ 18’ or ‘is a doctor’, the verifier cannot link the signed message to the real
identity of the signer solely based on the signature, like for group signatures [1].
Some use cases in which privacy of the signer is essential such as anonymous
voting, anonymous petitions etc., can thus also benefit from ABSs.

Role-Based Signature Generation with ABSs. A traditional digital signature
seems to offer the same signing functionality as an ABS (to a limited extent), if it
dedicates one signing key pair for each role under which a signer wishes to sign.
It means that the signer who is a doctor, for instance, can generate a key pair, get
a medical certification authority sign his public key and use the corresponding
private key to sign as a doctor. Note, however, that he needs to generate another
key pair and get the public key certified from the national government to be able
to sign his tax declaration form as a citizen. Another example is the Belgian
PKI-based national eID card, which allows the cardholders to perform digital
signature function but always as a particular Belgian citizen. In principle, such
a card would require n signing keys for n roles that a cardholder might rightfully
assume while signing. This gives rise to complicated key management issues. In



312 B. Hampiholi et al.

contrast, an ABS allows the signer to digitally sign messages or documents under
different roles with a single signing key. Role-based signatures based on ABSs
also make the role of the signer explicit to the verifiers thus, avoiding confusion.
Consider the two instances when a notary handles the sale of his client’s property
and the sale of his own private property. With ABSs, he can sign as a notary in
the former instance and as the owner of a property in the latter instance. The
difference in the signer’s roles is not apparent to the verifiers when the notary
signs both sale documents with PKI-based signatures whereas ABS clearly states
the role of the signer in each of his signatures. In sum, ABSs are a generalization
of role-based signatures with possibly additional privacy guarantees.

Related Work. Attribute-based signatures (ABSs) have been explicitly intro-
duced by Shaniqng and Yingpei [2] rethinking attribute-based encryption. Maji
et al. [3] proposed an ABS scheme in which attributes belonging to a user are
represented as a credential bundle. They employed a non-interactive proof of
knowledge system to prove the knowledge of a credential bundle that satisfies a
given access formula. Okamoto et al. [4] propose a decentralized multi-authority
ABS which supports non-monotone predicates and prove it to be fully secure in
the random-oracle model. Herranz et al. [5] propose constant-size ABS schemes
for the case of threshold predicates which can also be extended to admit other,
more expressive kinds of monotone predicates. All these schemes employ bilinear
pairings for their construction, which makes them complicated and less practical.
Anada et al. [6] propose an ABS scheme without pairings in the random-oracle
model. Their scheme first obtains a generic attribute-based identification (ABID)
from a boolean proof system, combines ABID with a credential bundle scheme,
and then applies the Fiat-Shamir paradigm to obtain a generic ABS scheme with
attribute privacy.

As we see, there has been a certain amount of research done in the ABS field
so far. However, the proposed schemes are very theoretical and focus only on
the core cryptography. To the best of our knowledge, none of the above schemes
is realized and put into practice. Some of these papers such as [3] mention some
use cases which could use their ABS construction. Nevertheless, none of them
talks about the implementation of their ABS constructions, nor do they discuss
the practicalities in realizing attribute-based signatures.

Contributions. IRMA (I Reveal My Attributes)1 [7] is an attribute-based au-
thentication technology based on the Idemix [8] specification. A distinguishing
feature of IRMA is that it has already an efficient and practical smart card im-
plementation [9]. An important observation is that extending IRMA’s authenti-
cation mechanism to support attribute-based signatures involves relatively little
work. This paper explores the way IRMA can be used for generating practical
attribute-based signatures. A similar idea is mentioned in an ABC4Trust2 deliv-
erable [10] where the authors suggest the possibility of including a application-
specific message as an optional input to the credential presentation protocol that

1 https://www.irmacard.org
2 https://abc4trust.eu/

https://www.irmacard.org
https://abc4trust.eu/


Towards Practical Attribute-Based Signatures 313

authenticates and signs the message with the user’s private key. However, they
do not discuss the way to do it in practice, whereas we focus on the practical
set-up. Also, we suggest that attribute-based signatures provide a viable option
to current digital signatures.

An attribute-based signature within IRMA is essentially a non-interactive
proof of knowledge of authentic attributes (see Section 3). We use the phrase
IRMA signature to refer to this particular realisation of an attribute-based sig-
nature, as opposed to the general concept of attribute-based signatures. Any
device that carries the signer’s attributes in IRMA is called an IRMA token. An
IRMA token can be for instance, a smart card or a mobile phone. In this paper,
we propose a practical ABS scheme arising from an existing implementation of
the IRMA attribute-based authentication. The idea of merging both authenti-
cation and signature on the same token enables fast realization and roll-out of
the technology.

2 About IRMA

The IRMA project aims to design and develop attribute-based credentials (ABCs)
in practice. It is a partial implementation [9] of the Idemix technology [8,11].
Idemix is an attribute-based credential system, developed at IBM Research in
Zürich. IRMA currently has implemented the privacy-enhancing features of ABC
such as selective disclosure of attributes using zero-knowledge protocols.

The main idea behind IRMA is that authentic attributes stored on a token
can be shown selectively via a zero knowledge proof. The token-holder has to
give explicit permission to read a specified set of attributes (e.g. age, name)
by entering a PIN code known only to him. For instance, an IRMA token can
be used to prove the possession of a valid concert ticket or valid credentials to
enter an office building by just revealing the ‘ticket’ or ‘is an employee’ attribute
rather than revealing all the attributes on the token. In such cases there is no
need to reveal a uniquely identifying attribute and this attribute-based method
prevents linking of different proofs and implicit profiling of the token holder.

Attributes & Credentials. An attribute is a characteristic or a qualification of a
person. Attributes can either be identifying or non-identifying properties. For ex-
ample, ‘full name’, ‘address’, ‘Social Security Number’ are identifying attributes
as the person can be uniquely identified by such attributes. Attributes, such as
‘student’ and ‘age over 18’ are non-identifying attributes as they do not uniquely
identify a person; such properties can belong to other people as well. Collectively,
these attributes can constitute the identity of a person.

Attributes are authentic. In the IRMA set-up, several related attributes are
grouped into a cryptographic container known as a credential [7]. Authorities
issue credentials to users following an authentication process. Each credential
has an expiry date that denotes the validity of all the attributes contained in
that credential. There could be n such credentials on the IRMA token issued
by n issuers. However, for reasons of simplicity, in this paper, we consider all
attributes to be contained in a single credential.



314 B. Hampiholi et al.

Cryptographic Background of IRMA. IRMA is based on the Idemix protocol
suite [8,11] and Camenisch-Lysyanskaya (CL) signature scheme [12,13]. All the
zero-knowledge (ZK) proofs in the Idemix library are implemented as non-
interactive ZK proofs using the Fiat-Shamir heuristic [14]. A brief description of
Schnorr’s schemes and the CL signature are provided in Appendix A and B.

3 IRMA’s Selective Disclosure Proofs as Digital
Signatures

The concept of revealing only a selection of necessary attributes for completing
a transaction is termed as Selective Disclosure in Idemix and IRMA. Selective
disclosure is a zero-knowledge protocol currently used for authentication pur-
poses. But, as will be shown here, it can also be used by an IRMA token holder
for signing under selected attributes. When a selective disclosure (SD) proof is
used for signing purposes, it becomes an IRMA signature. The key idea is that
a non-interactive zero-knowledge (NIZK) proof (or so-called signature of knowl-
edge) [14,15] signs a message. See Section A in the appendix for the description
of the way a NIZK proof is constructed.

During an IRMA authentication, the verifier sends a nonce to the IRMA token
to be included in the SD proof generation. This nonce is strongly bound to the
proof and it helps the verifier check the freshness of the proof. It is meant to
prevent a user from replaying the same proof to authenticate during different
authentication sessions. We adapt this approach in a simple manner: If the hash
of a message is used during an SD proof generation instead of the nonce, then the
SD proof becomes the user’s signature on the message. So, the main functional
difference between an SD proof in IRMA authentication and IRMA signatures
is the way the nonce is defined.

An SD proof acting as a user’s signature is written as

SD
(
(ai)i∈D;h(msg)

)
,

where ai is an attribute within a credential, D is the set of disclosed attributes,
and h(msg) is the hash of the message to be signed. Typically, an SD proof
that becomes an IRMA signature proves the signer’s possession of attributes
and of the secret key involved in the proof generation. As this SD proof is a non-
interactive zero-knowledge proof, first, the signer commits to a set of attributes
and creates a commitment3; then he computes a challenge by hashing the com-
mitment and the message to be signed. Conceptually, the challenge computation
is denoted as

challenge = H(commitment, h(msg)). (1)

We input the hash h(msg) of the message instead of the message itself to the
hash function H that computes the challenge. This double hashing of the input

3 As described in Appendix C, in a selective disclosure proof a commitment comprises
an attribute issuer’s randomized signature A′ and the derived value Z̃.



Towards Practical Attribute-Based Signatures 315

Fig. 1. IRMA signature generation and verification

might seem unnecessary. However, we intend as little change in existing IRMA
authentication tokens as possible, and they expect a fixed-length nonce as the
input to the selective disclosure proof. The hashes of messages are of fixed length,
so they are functionally interchangeable with nonces. Also, computing the hash
of a long message can be delegated to an external, more resourceful device from
an IRMA token whose computational power and memory are limited. Here H
and h can technically use the same hash algorithm e.g. SHA-3. The hash of
a message or a document to be signed is denoted by ‘h(msg)’ and the hash
function to compute challenge in the non-interactive SD proof is denoted by ‘H’
throughout this paper.

3.1 IRMA Signature Scheme

The IRMA signature scheme depicted in Figure 1, consists of four algorithms:
Key Generation, Attribute Issuance, Signature Generation, Signature Verifica-
tion.

(1) Key Generation. Upon initialisation of an IRMA token, a secret key is gen-
erated and stored securely. It is used during attribute issuance, authentication
and in signing. Since all these functions require this secret key, they are bound
to the token, and hence to the signer.

(2) Attribute Issuance. An IRMA token owner can obtain attributes from au-
thorized attribute issuers. An attribute issuer signs the credential containing
attributes with its private signing key; the corresponding public key is used by
verifiers, both in authentication and in signature verification.



316 B. Hampiholi et al.

(3) Signature Generation. A selection of the signer’s attributes on an IRMA
token forms the internal input to the signing module on the token. The hash
h(msg) of the message to be signed forms the external input. The IRMA token
outputs the required attributes and an SD proof ensuring that “the token owner
has signed h(msg) and possesses the attributes say, a1 and a2 issued by the
issuer”. A credential4 on an IRMA token carries a CL signature (see Section B)
which is randomized during a selective disclosure. We preserve the randomization
of CL signature in IRMA signatures to ensure unlinkability among signature
verifications. This randomization happens within the IRMA token. We also use
the randomized CL signature to get trusted timestamps for the IRMA signature,
as will be discussed in Section 4.1. Using the randomized CL signature, a signer
generates an IRMA signature, a selective disclosure proof SD

(
(ai)i∈D;h(msg)

)
over h(msg). The operations that have to be performed to generate a SD proof
are described in Algorithm 1 in Section C.

(4) Signature Verification. Any verifier who wants to verify the signature on
h(msg) needs to have the public key of the issuer that has issued the relevant
attributes to the IRMA token. The verifier calculates the hash of the message
and uses it along with the issuer’s public key parameters for verification. The
verification steps are given in Algorithm 2 in Section C. During this verification,
the verifier checks that the message was signed by an IRMA token holder who
possesses the required attributes issued by an authorized issuer.

Privacy and Security Assurances Provided by IRMA Signatures. In terms of
privacy, there are no public parameters of the IRMA token that act as an iden-
tifier of the token or token holder. Thus, it is impossible for the verifier to
identify or link signatures to a particular signer if the disclosed attributes are
non-identifying. This holds even if the signer signs the same document multiple
times. In terms of security, IRMA signatures guarantee integrity and authentic-
ity, more specifically:

– The message is not altered after signing.
– The attributes and the secret key are bound to the issuance and the signature.

3.2 Diversification between SD Proofs Used for Authentication and
Signatures

Our goal is to use both the signature and authentication functions with the
same set of attributes on the same IRMA token. An SD proof is used either
for authentication with a fresh nonce or for signature generation with the hash
of a message as input. As we already have an implementation of IRMA SD
proofs for authentication, IRMA signatures can be easily realized in practice.
Additionally, it is user friendly to have both attribute-based authentication and
signature functions on the same token, along with an interactive user interface.
We are well aware of the fact that, as the hash of a message and a random nonce

4 A credential is conceptually comparable with a public-key certificate. But unlike a
certificate, a credential is randomizable and enables selective disclosure.



Towards Practical Attribute-Based Signatures 317

look alike, an adversary could possibly send the hash of a message posing as a
random nonce during an authentication session and make the user unknowingly
sign this hash with the selective disclosure proof. This is a potential attack
scenario in which an authentication session is misused to get a signature of the
user without the user being aware of it. In this section, we propose a method
to diversify signature and authentication protocol runs, in order to prevent the
afore-mentioned attack.

Although two secret keys could be used for authentication and signing to
separate the two functionalities on the token, all the user credentials would then
have to be issued twice on that token as well, corresponding to both secret
keys. This is because the secret key is associated with the issuance of every
attribute to the IRMA token. Then, using two dedicated keys would be very
similar to having authentication and signature functions on two different IRMA
tokens. This contradicts our original goal. In order to avoid the duplication of
all attributes on the token for authentication and signing purposes, we intend to
use the same secret key for both purposes.

Domain separation is an efficient means to construct different function in-
stances from a single underlying function. If the underlying function is secure,
the derived functions can be considered as independent functions [16]. One can
implement domain separation by appending or prepending different constants
to the input for each of the function instances. We propose to apply domain
separation for securely diversifying IRMA authentication and signing instances.
We reserve a few bits, called Dbit , as the first input to the hash function while
computing the challenge (see Line 11 in Algorithm 1) on the signer’s end. Math-
ematically, the Dbit value is prepended to the rest of the inputs and indicates if
the IRMA token is being used for authentication or for signing. In the current
context, we need to separate two domains so we can use a single bit in Dbit.
This bit will be set to 0 in case of authentication and 1 in case of signatures. We
can program the signature generation module such that it takes user consent as
the basis while deciding the value of Dbit. If the user gives his consent to sign a
message msg, then the signature generation module (Algorithm 1) sets the Dbit
to 1 and expects h(msg) as one of the other inputs to the challenge computation.
Thus, we rely on a correct token implementation.

The challenge computation during an IRMA signature generation previously
denoted by (1) now becomes,

c = H(Dbit = 1, commitment, h(msg)), (2)

where c is the challenge, H is the hash function used to compute the challenge
and h(msg) is the hash function used to hash the message to be signed. If a
valid signature is knowingly created by the legitimate signer, then during the
verification, a verifier can successfully check its validity by reconstructing the
challenge with Dbit = 1.



318 B. Hampiholi et al.

3.3 Brief Security Analysis of IRMA Signatures

In this section, we informally analyze the security of our IRMA signature system
by considering the possible ways in which an attacker can undermine the system.
We assume that the attacker has access to a polynomially bounded set of IRMA
authentication transcripts denoted by AT and signature-message pairs denoted
by SM . In the original IRMA authentication scenario, the attacker tries to
spoof an authentication using the transcripts from the set AT . This is proven
to be impossible in the paper by Camenisch et al. [12]. When we introduce
IRMA signatures, three more possibilities arise for the attacker to undermine
our system:
1. spoof an IRMA authentication by using the signatures from SM ;
2. forge a new IRMA signature using the authentication transcripts from AT ;
3. forge a new IRMA signature using the signature-message pairs from SM .

Case 1: Using IRMA Signatures to Impersonate a User during Authentication.
An attacker attempts to authenticate with one of the IRMA signatures from
SM . We show that this is possible if he successfully finds either of the following
two collisions. We also mention how we deal with such scenarios.

(i) Collision between the hash of a signed message and an authentication nonce.

h(msg) = nonce

where h(msg) is the hash of a signed message msg from SM and nonce is
a random number sent by the verifier during an authentication session. The
attacker can impersonate a user and maliciously authenticate if he finds a
collision between the hash of the signed message that he already had and
the nonce belonging to an authentication session.
However, because of the domain separation (see Section 3.2), the attacker
cannot make the verifier accept this signature as a valid authentication proof.

(ii) Collision between the hash functions used for computing challenge in signa-
ture and authentication instances.

H(Dbit = 1, commitment, h(msg)) = H(Dbit = 0, commitment, nonce)

where H is the hash function used for computing the challenge within an
SD proof. The inputs for H during the signature verification are Dbit = 1
and hash of a message h(msg) whereas the inputs are Dbit = 0 and nonce
for an authentication proof verification. The attack succeeds if the attacker
finds a collision between these two H instances. This is equivalent to having
the same challenge results from the hash functions in authentication and
signature sessions in spite of different inputs. If the attacker manages to find
the above collision then he wins; he can then authenticate with a signature.
We note that the attacker’s chances of winning in this scenario depends on
the collision resistance of the hash function being used in IRMA. If hash
functions with no known collision attacks such as SHA-2 or SHA-3 is used
then the above attack is highly improbable.



Towards Practical Attribute-Based Signatures 319

Case 2: Using IRMA Authentication Transcripts to Forge a new IRMA Signa-
ture. An attacker eavesdrops on many IRMA authentication sessions and collects
authentication transcripts as denoted by AT at the beginning of this section.
Then he tries to forge an IRMA signature out of an authentication transcript in
the set AT . He is successful if he finds a collision in the two scenarios detailed
in Case 1 and the same logic is followed here.

Case 3: Using IRMA Signature-Message Pairs to Forge a New IRMA Signature.
As we said before, the attacker possesses IRMA signatures for several messages
of a user. In this case, the domain separation bit Dbit is 1 for all signatures that
the attacker already has. It is not sufficient if the adversary manages to find a
hash collision between a previously signed message and a new message to create
a valid signature; the attacker will also have to possess the right attributes of the
user on his IRMA token to forge that user’s signature. The security assumptions
underlying the IRMA technology (same as the assumptions made by Idemix)
prevent such forgery attacks. These assumptions are briefly mentioned below.

– As IRMA uses the Camenisch-Lysyanskaya (CL) signature scheme (see Sec-
tion B for explanation), respective discrete logarithms based proofs prove
the possession of valid attributes on the IRMA token.

– Unforgeability of IRMA signatures holds under the strong RSA assumption
and the computational Diffie-Hellman assumption.

– In IRMA, a single proof involving all the attributes required by the signing
policy, secret key of the IRMA token is considered as a valid signature. So,
colluding users cannot combine their attributes associated with their secret
keys in a single proof. This guarantees collusion resistance.

So we conclude that the adversary will not succeed in forging a new and valid
IRMA signature with the help of given signature-message pairs, even if those
pairs are of adversary’s choice. Thus, an IRMA signature is existentially un-
forgeable under a chosen-message attack.

4 Infrastructural Concerns for IRMA Signatures

4.1 Timestamps in IRMA Signatures

A practical aspect that becomes important when we migrate from authentica-
tion to signature functionality is the actual time of signing. A timestamp on
the digital signature attests when the message or the document was signed. It
provides a unequivocal proof that the contents of the signed document existed
at a point-in-time and have not changed since then.

In the case of IRMA signatures, there are two kinds of dates or timestamps
to be considered:

1. date and time at which the signature was generated,
2. expiry dates of the attributes under which the signer has signed h(msg).



320 B. Hampiholi et al.

Fig. 2. Timestamping the IRMA signature

To include the time of signing, a signer has two options: The signer can use
the local time of his IRMA token (if available) as part of the message to be
signed. If a verifier requires a more secure timestamp, the signer can obtain an
authorized timestamp signed by a Timestamp Authority (TA). A TA is an entity
that is trusted to provide accurate time information.

The selective disclosure proof in IRMA discloses the expiry dates of the at-
tributes involved in the proof by default. These expiry dates are included in the
set of disclosed attributes and they can easily be verified by the verifier. Since
attributes should be valid when generating an IRMA signature, the expiry dates
should be greater than the time included in the timestamp. Therefore, it is rec-
ommended to include a validity check at the beginning of an SD proof generation
algorithm (see Algorithm 1 in the Appendix).

We propose a timestamping scheme that enables a signer to get a signed
timestamp from a TA for an IRMA signature as shown in Figure 2. In our scheme,
a signer sends a timestamp request to the TA to get a trusted timestamp. The
timestamp request consists of randomized CL signature5, hash of the message to
be signed and hash of the attributes, denoted by A′, h(msg) and h(attributes)
respectively. This request does not reveal any information about the signer or the
message to the TA, hence, it is privacy friendly. TA issues a signed timestamp.
Upon receiving the timestamp, the signer inputs the timestamp to the IRMA
signature generation. The timestamping scheme is illustrated in Figure 2 and
elaborated in the following steps:

1. Timestamp request. The signer requests TA for a timestamp by sending
A′, h(msg), h(attributes).

2. Timestamp token calculation. TA does the following:

5 The randomized CL signature is used in both IRMA signature generation and veri-
fication (see Algorithms 1 and 2).



Towards Practical Attribute-Based Signatures 321

– concatenates all the data sent by the signer in the timestamp request
with the current timestamp t and digitally signs t data.

– combines t data and TA’s signature on t data together into a timestamp
token T and sends T to the signer.

3. IRMA signature generation with the timestamp token. The signer provides
the timestamp token T as one of the inputs to the IRMA signature generation
algorithm (see Algorithm 1). Now, during the challenge computation, T is
hashed along with the diversifier Dbit , commitment and h(msg) as,

c = H(Dbit = 1, commitment, h(msg), T ). (3)

Finally, the signer sends the IRMA signature on h(msg), T , and the disclosed
attributes to the verifier.

4. IRMA signature with timestamp verification. Upon receiving the IRMA sig-
nature, the verifier verifies

– the IRMA signature using the attribute issuer’s public key and the dis-
closed attributes,

– the TA’s signature on t data within the timestamp token T by using the
TA’s public key,

– if A′, h(msg), attributes are the same in the IRMA signature and t data
that is within the timestamp token T .

As we see, an IRMA signature comprises multiple logical layers. Table 1
summarizes the three signatures that have to be verified during an IRMA
signature with timestamp verification.

Table 1. Abstraction of signature layers involved in IRMA signatures.

Signature Public key used to verify Signing party

Attribute-based signature Disclosed attributes & issuer’s signature Signer

Randomized CL signature Attribute issuer’s public key Attribute issuer

DSA or RSA signature TA’s public key TA

Because of the verifications performed in the above step 4 (IRMA signature with
timestamp verification), a verifier knows/or has cryptographic assurance of the
following properties.

– The IRMA signature was not generated before the time indicated by the
TA’s timestamp t.

– The signature on the message with the enclosed attributes is bound to this
timestamp t.

– The message that is signed has remained unchanged since the time t.

In addition, the implementation guarantees that the signer’s attributes used for
signing were valid at time t, since this is checked in Algorithm 1.



322 B. Hampiholi et al.

4.2 Revocation of Credentials in IRMA

The IRMA project has been focused on preserving user-privacy in authentica-
tion. The revocation scheme [17] for IRMA authentication that has been pro-
posed by the IRMA design team avoids identifiers in revocation that would
enable linking the revocation checks to a single user. This scheme involves a
semi-trusted party in the system, a Revocation Authority (RA) that is responsi-
ble for revoking the credentials. The RA keeps track of the revocation values of
revoked credentials.

In the existing IRMA-revocation scheme [17] the time is split into epochs
(time intervals) and the RA chooses a generator for each epoch and each verifier.
When a credential is revoked the RA makes a global revocation list RL that
consists of revocation tokens Ri1..n that are computed from the generators and
the individual revocation values of the credential holders. The RA sends this
revocation list RL to all the registered verifiers. During an authentication with
a revocation check, the verifier sends the IRMA token its specific per-epoch
generator, and the token calculates the revocation response R by embedding
its token-specific revocation values. This value R is generated along with the
selective disclosure proof and made available to the verifier. The verifier can just
check R ∈ RL to know if the credential used in the generation of the selective
disclosure proof is revoked or not.

However, in the case of signatures, a signer need not know the verifiers in
advance, so, the verifier-specific generators would not work. Also, the per-epoch
concept will have to be modified to suit the signature verification scenario. If
the signer calculates a revocation token for the current epoch along with the
signature, the verifier has to do a revocation check in that epoch. In the case
of a delayed verification in a different epoch, the verifier will have to retrieve
the revocation token list from the RA corresponding to the epoch in which
the signer signed. We realize that the design of a privacy-friendly revocation
scheme for digital signatures that ensures complete unlinkability is not trivial.
The existing revocation scheme for IRMA authentication has to be adapted to
IRMA signatures which is subject to further research.

As a possible solution for revocation, attribute expiry dates can be short
and re-issuing of attributes can be made simple. If a security breach or a key
compromise is detected then the attribute issuer would just stop re-issuing the
attributes to that particular IRMA token.

5 Discussion

We briefly describe a few use cases for attribute-based IRMA signatures, and
give an estimate of their performance.

5.1 Use Case Scenarios

Use cases requiring the flexibility offered of role-based IRMA signatures.



Towards Practical Attribute-Based Signatures 323

1. In the introduction we briefly mentioned a medical doctor signing a med-
ical statement about a patient using his own medical license number and
specialisation attributes. This can be applied to many professionals signing
documents in which their competence is a useful part of the signature. More
generally, this leads to what may be called role-based signatures.

2. With such role-based signatures one can distinguish professional and per-
sonal signatures. For instance, the signature of a notary should be different
when he is selling a house professionally or privately. Attribute-based signa-
tures are ideally suited for making such differences explicit, for all verifiers
to see.

Use cases for signatures that ensure signer privacy/anonymity.

3. Anonymous voting. In large scale elections, there are usually two main phases:
(i) registration and (ii) vote casting. A crucial difference between these two
phases is that the first one should be identifying, whereas the second one
should not.
During the registration phase, a potential voter can authenticate to a voting
authority in a properly identifying manner, e.g. via his citizen registration
number. This identity is needed to check if the person at hand is eligible to
vote.
If the check is successful, then the voting authority can blindly issue a random
‘voting ID’ attribute (via blind signatures) to his IRMA token. During the
election phase, this voter can sign his vote with his IRMA token under
his ‘voting ID’ attribute. The (random) voting IDs of all the voters are
stored and if any voter tries to vote for the second time, then the voter
ID matches with one of the previously stored voter IDs. This second vote
can either be discarded or it can replace the first vote based on the voting
authority’s policy decision. Thus, we can keep the voters anonymous and also
avoid double voting scenario by using IRMA signatures. Here we note that
a potential voter can use the same IRMA token for authenticating during
registration and for signing anonymously during the vote casting phase.

4. Anonymous petitions is another application similar to the anonymous voting
that can benefit from IRMA signatures.

5. IRMA signatures can also be used by confidential sources who want to keep
themselves unidentified to a journalist to whom they reveal information.
But still they can include some relevant attributes in the signatures on their
statements, in order to provide credibility.

5.2 Estimating the Efficiency of IRMA Signatures

As we have described in Section 3, a selective disclosure proof can serve both
authentication and signing purposes. The applied method depends on the input
values given to the proof generation algorithm. Thus, the performance times
of an IRMA authentication and an IRMA signature are comparable. We use
the performance results obtained and documented in the Idemix chapter of Pim



324 B. Hampiholi et al.

Vuller’s PhD thesis [18] as a starting point for our estimation. Based on these
values we assess the execution time of the IRMA signature generation and ver-
ification instances. The smart card type used in this calculation is an Infineon
SLE78 chip with MULTOS platform (ML3-36K-R1). In IRMA, a typical cre-
dential consists of 5 attributes. For estimating the running time of a selective
disclosure proof, we consider two cases. Disclosing one attribute takes 1.2 sec-
onds, while disclosing four attributes takes 0.93 seconds. Note that the more
attributes are disclosed, the fewer are hidden and the shorter time it takes. Fur-
thermore, we also note that in practice the fifth attribute, the secret key, is never
revealed.

Now let us turn from IRMA authentication to IRMA signatures. The total
time taken for an entire signature generation operation is the sum of a selective
disclosure proof and other minor operations like timestamp retrieval, denoted by
δ. The value of δ is dependent on the network connection speed as the timestamp
request and retrieval takes place online. Therefore, the total execution time for
an IRMA signature generation (in the case when only 1 out of 4 attributes from
a credential is disclosed) can be estimated as (1.2 + δ) seconds.

The signature verification consists of an extra modular exponentiation oper-
ation w.r.t. the signature (SD proof) generation. Thus, we expect that the time
taken for SD proof verification is a bit more than the time taken for its genera-
tion. However, the signature verification terminals (e.g. personal computers) are
usually computationally more powerful in terms of both time and memory than
a smart card. So the time taken to verify an SD proof is mostly in the order of
a few milliseconds.

We see that IRMA signature generation on smart cards is reasonably efficient
in terms of execution time to be put into practice. The execution time could
be further decreased if mobile phones are used as IRMA tokens for generating
IRMA signatures.

6 Concluding Remarks

We present the first practical and easily realizable form of attribute-based signa-
tures by building on top of the IRMA technology. What we call IRMA signatures
are created by extending the existing smart card (and phone) implementation of
IRMA authentication. We show how we can securely use authentication and sig-
nature functions on a single IRMA token using the same secret key. In addition
we elaborate on the infrastructural aspects related to usable digital signatures
such as secure timestamping. There is ongoing work in adapting the existing
revocation scheme for attribute-based signatures without forgoing any of its pri-
vacy and unlinkability guarantees.

In conclusion, IRMA signatures offer much greater functionality and flexibility
than traditional PKI-based digital signatures in terms of role-based signing,
contextual privacy guarantees to the signers, and ease of comprehending the
signature semantics to the verifiers.



Towards Practical Attribute-Based Signatures 325

References

1. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

2. Shaniqng, G., Yingpei, Z.: Attribute-based signature scheme. In: Information Se-
curity and Assurance, ISA 2008, pp. 509–511. IEEE (2008)

3. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011)

4. Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone
predicates in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg (2011)

5. Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short attribute-based sig-
natures for threshold predicates. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS,
vol. 7178, pp. 51–67. Springer, Heidelberg (2012)

6. Anada, H., Arita, S., Sakurai, K.: Attribute-based signatures without pairings via
the fiat-shamir paradigm. In: Proceedings of the 2nd ACM Workshop on ASIA
Public-Key Cryptography, pp. 49–58. ACM (2014)

7. Alpár, G., Jacobs, B.: Credential design in attribute-based identity management.
In: Bridging distances in Technology and Regulation, 3rd TILTing Perspectives
Conference, pp. 189–204 (2013)

8. IBM Research, Security Team. Specification of the Identity Mixer Cryptographic
Library, version 2.3.4. Technical report, IBM Research, Zürich (February 2012)

9. Vullers, P., Alpár, G.: Efficient selective disclosure on smart cards using idemix. In:
Fischer-Hübner, S., de Leeuw, E., Mitchell, C. (eds.) IDMAN 2013. IFIP AICT,
vol. 396, pp. 53–67. Springer, Heidelberg (2013)

10. Camenisch, J., Krontiris, I., Lehmann, A., Neven, G., Paquin, C., Rannenberg, K.,
Zwingelberg, H.: D2. 1 architecture for attribute-based credential technologies–
version 1. ABC4Trust Deliverable D 2 (2011)

11. Camenisch, J., Herreweghen, E.V.: Design and implementation of the idemix
anonymous credential system. In: Proceedings of the 9th ACM Conference on Com-
puter and Communications Security, pp. 21–30. ACM (2002)

12. Camenisch, J.L., Lysyanskaya, A.: An Efficient System for Non-transferable Anony-
mous Credentials with Optional Anonymity Revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

13. Camenisch, J.L., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols.
In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp.
268–289. Springer, Heidelberg (2003)

14. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

15. Schnorr, C.-P.: Efficient signature generation by smart cards. Journal of Cryptol-
ogy 4(3), 161–174 (1991)

16. Keccak team. Note on keccak parameters and usage. http://

keccak.noekeon.org/NoteOnKeccakParametersAndUsage.pdf (accessed July
6, 2015)

17. Lueks, W., Alpár, G., Hoepman, J.- H., Vullers, P.: Fast revocation of attribute-
based credentials for both users and verifiers. In: Federrath, H., Gollmann, D. (eds.)
SEC 2015. IFIP AICT, vol. 455, pp. 463–478. Springer, Heidelberg (2015)

18. Vullers, P.: Efficient Implementations of Attribute-based Credentials on Smart
Cards. PhD thesis, Radboud University Nijmegen, The Netherlands (2014)

http://keccak.noekeon.org/NoteOnKeccakParametersAndUsage.pdf
http://keccak.noekeon.org/NoteOnKeccakParametersAndUsage.pdf


326 B. Hampiholi et al.

A Schnorr’s Identification Scheme

Schnorr’s identification scheme [15] is a simple three-way zero-knowledge proof
scheme which proves the knowledge of a discrete logarithm x of a specific number
y (mod n):

PK{(x) : y = gx (mod n)}
where PK is the proof of knowledge, x is the discrete logarithm of y and g is
the generator belonging to the cyclic group Gq of order q.
In order to prove knowledge of x = logg y, the prover interacts with the verifier
as follows:

1. The prover commits to randomness r ∈ [0, q−1]; therefore, the first message
t = gr ∈ Gq is also called a commitment.

2. The verifier replies with a challenge c ∈ [0, q − 1] chosen at random. (In
practice, c can be chosen from a smaller set – depending on the security
parameter –, but here we omit these details.)

3. After receiving c, the prover sends the third and last message (the response)
s = r + cx (mod q).

The verifier accepts, if gs = tyc in Gq.
The security of Schnorr’s identification scheme relies on the hardness of the
discrete logarithm problem. In the interactive proof, the verifier can be sure in
the last step that the prover knows the discrete logarithm of y if it satisfies the
correctness condition:

gs = gr+cx = grgcx = t(gx)c = tyc.

Applying the Fiat–Shamir heuristic [14], one can achieve a non-interactive scheme
which reduces the number of rounds of information exchange between the prover
and the verifier. This is often used to translate a zero-knowledge protocol into
a signature scheme, or to reduce the communication overhead of the interactive
protocols. To make a zero-knowledge protocol non-interactive the challenge c is
not retrieved from the verifier but computed as

c = Hash(msg, t),

where msg is the message to be signed and t is the commitment. The Idemix
technology uses similar non-interactive proofs of knowledge.

B Camenisch-Lysyanskaya (CL) Signature

Camenisch et al. propose a provably secure signature scheme for issuing a sig-
nature on a set of attributes and proving the knowledge of those attributes [13].
The resulting signature from their scheme is termed as CL signature and it is
used as a building block for IRMA. We briefly explain the structure of a CL
signature in this section.



Towards Practical Attribute-Based Signatures 327

Let us consider the safe primes p and q as the signer’s private keys. The
signer randomly selects a, b, c ∈ QRn. Then a, b, c are published as public keys.
If a message m is to be signed, a random number v and a prime number e are
chosen and the signature is computed as shown below:

A ≡ (ambvc)e
−1 mod |QRn| (mod n).

Since we know the values of p and q and they are safe primes, we also know p′

and q′ and | QRn |= p′q′. The CL signature over the message m is composed as

m : {A, e, v}
In the IRMA context, we can define the Camenisch-Lysyanskaya signature over
the messages m as the triplet (A, e, v) such that e is the random prime used
as the ephemeral RSA public key for this signature and v is a random number
and A is the RSA signature over the message m. The following check is done in
order to verify the correctness of the above CL signature:

Ae ≡ ambvc (mod n)

If the verification equation holds, the signature is valid; otherwise, the signature
is invalid. The CL signature described here can also be applied over a block of
messages. The unforgeability of the CL signature scheme relies on the Strong-
RSA assumption.

A CL-signature (A, e, v) can be randomized easily. First, one has to select a
random value r from a specific, large interval, then, one performs the following
computation:.

A′ := A · br (mod n), v′ := v + er.

Indeed, (A′, e, v′) is also a valid signature over message m:

A′e · b−v′ ≡ (A · br)e · b−v−er ≡ Ae · ber · b−v · b−er ≡ Ae · b−v ≡ amc (mod n).

C IRMA Signature and Verification Algorithms

In this section, we provide the technical details and algorithms used for the
IRMA signature generation and verification. As we have described earlier in
Section 3.1, a signer signs a message under a set of attributes with his secret key
and a verifier uses the attribute issuer’s public key to verify this IRMA signature.
The public key of the attribute issuer is (n, S, Z, {Ri}i∈M ) where M denotes the
set of attribute indices, and hence the maximum number of attributes issued by
that issuer. In IRMA selective disclosure, D denotes the set of attributes to be
disclosed from the IRMA token to the verifier and H denotes the set of attributes
on the token that needs to be hidden from the verifier. Therefore, H and D are
disjoint sets of attributes: H ∪D = M and H ∩D = ∅.

Algorithm 1 describes the operations that have to be performed to generate
a proof of knowledge of the secret key and the hidden attributes. The proof



328 B. Hampiholi et al.

Algorithm 1. IRMA signature generation algorithm.

1: function IRMA-Sign({ai}i∈D, {ai}i∈H , (A′, e, v′), h(msg), (n, S, Z, {Ri}i∈M ), T )

2: for all i ∈ D do

3: Verify the validity of each ai w.r.t. timestamp in T

4: if invalid then Exit

5: ẽ ← Random( )

6: ṽ ← Random( )

7: Z̃ ← A′ẽ · Sṽ mod n

8: for all i ∈ H do

9: ãi ← Random( )

10: Z̃ ← Z̃ · Rãi
i mod n

11: c ← Hash(Dbit, A′, Z̃, h(msg), T ) //compute challenge using commitment,

h(msg), timestamp

12: ê ← ẽ+ c · e
13: v̂ ← ṽ + c · v′
14: for all i ∈ H do

15: âi ← ãi + c · ai

return (c,A′, ê, v̂, {âi}i∈H , T )

Algorithm 2. IRMA signature verification algorithm.

1: function IRMA-verify((c, A′, ê, v̂, {âi}i∈H , {ai}i∈D), h(msg), (n, S,Z, {Ri}i∈M , T ))

2: Ẑ ← Z−c · A′ê · Sv̂ mod n

3: for all i ∈ D do

4: Ẑ ← Ẑ ·Rc·ai
i mod n

5: for all i ∈ H do

6: Ẑ ← Ẑ ·Râi
i mod n

7: if c �= Hash(Dbit, A′, Ẑ, h(msg), T ) then return Invalid

return Valid

proves the remaining attributes {ai}i∈H , that are hidden during this phase, are
known by the signer (i.e. token). In the case of IRMA signature generation,
Algorithm 1 takes hash the of message to be signed, denoted by h(msg) and
timestamp, denoted by T as inputs while computing the challenge c. The IRMA
signature is essentially a selective disclosure proof that is generated over h(msg)
and T . This signature can then be verified using the Algorithm 2.



Hierarchical Ring Signatures Revisited –
Unconditionally and Perfectly Anonymous

Schnorr Version�

Łukasz Krzywiecki, Małgorzata Sulkowska, and Filip Zagórski

Wrocław University of Technology
lukasz.krzywiecki@pwr.wroc.pl

Abstract. We propose a ring signature scheme that creates short sig-
natures for large rings. The scheme allows signers to reuse previously
created signatures to enlarge the ring size without expanding the size
of signature itself. The relation between signatures is a tree structure in
which each signature is a node built upon its predecessors. The set of
potential signers of a node grows exponentially with the tree height while
the size of the signature may remain even constant. We give the specific
example of the scheme built on the top of Schnorr ring signatures. We
prove its unconditional anonymity and unforgeability in ROM.

Keywords: short ring signature, anonymity, hierarchical construction,
tree.

1 Introduction

Ring signatures are used to sign messages in such a way that the identity of
the signer remains hidden in some group of people, called a ring. Intuitively, the
bigger the ring is, the better anonymity for the signer it provides. Commonly,
the anonymity is defined in such a way that the probability of indicating the
real signer in the anonymous ring equals 1/ring_size. However, usually one
pays for the better anonymity by the larger size of the resulting ring signature.
In many considered models the length of the ring signature is proportional to
the cardinality of the set of potential signers. In this paper we focus on the
aspect of the dependency of the signature’s size and the size of the signature’s
ring. It seems that in a dynamic scenario where the ring membership changes
rapidly the linear size of the ring cannot be omitted, since it is necessary to
define the ring by specifying (enumerating) its members. Therefore majority of
ring signature constructions are of linear size in the ring cardinality. However,
there are situations where several signatures could be issued on behalf of the
once previously specified ring, which can be distinguished by a short identifier.
For these scenarios ring signature constructions of sub-linear size were proposed
in [8] and [5].
� This research has been partially supported by Polish National Science Centre con-

tract number DEC-2013/09/D/ST6/03927.

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 329–346, 2015.
DOI: 10.1007/978-3-319-24126-5_19



330 Ł. Krzywiecki, M. Sulkowska, and F. Zagórski

Our approach is different. First of all we still want to achieve the sub-linear
ring size but similarly we require also small (sub-linear) computational complex-
ity of the signature creation. Moreover we prefer a clear modular construction
instead of a dedicated and sometimes difficult to understand monolithic schema.
In our method we use previously defined and already proved to be secure cryp-
tographic primitives: regular signatures and ring signatures (they are not of
sub-linear size). That approach provides the following advantages: 1) it is easy
to analyze and prove security of the resulting scheme; 2) it is easier to implement
the scheme using already tested, verified and trusted libraries and modules of
software. Therefore we propose the specific example based on Schnorr ring sig-
natures. Our construction is similar to the idea presented in [11]. However, the
scheme from [11] is not unconditionally anonymous and does not provide the per-
fect anonymity (users from ring who expose secret keys can prove that they did
not sign). Moreover it is provided without the analysis and security discussion
and uses different building blocks. We stress that (unlike [11]) our proposition,
based on Schnorr ring signatures, does provide unconditional anonymity, i.e.,
guarantees anonymity even if the secret keys of the ring members are exposed.
Our construction is based on a ring signature scheme whose security is proved
using Forking Lemma [14]. We assume that there is a public repository of sig-
natures, like a bulletin board, available to all the users. The users create and
publicize signatures and in this way they steadily create a hierarchy which is
a tree built upon previous signatures from the repository. A node in the tree
is a ring signature and members of the ring (potential signers) are signers of
the direct children of that node. This relation goes recursively to the leaf level
nodes. Since each ring signature ensures anonymity, the set of potential signers
of a given node includes all the potential signers of leaves of a sub-tree rooted
in this node. The additional important feature is that the construction provides
a kind of a time-stamping functionality, since parent node signatures have to
be created after their descendant nodes. The proposed scheme may be used in
various scenarios. Here, we describe its application to implementation of secure
anonymous bulletin boards.

Secure Bulletin Board. Secure bulletin boards are authenticated, append-only
broadcast channels and are assumed to exist as a primitive by most of remote
voter-verifiable cryptographic voting schemes. In order to call a voting system
voter verifiable, the following three properties need to be satisfied (i.e., a voter
should be able to detect if any of these does not hold): (i) a ballot is cast as
intended, (ii) is recorded as cast, (iii) is tallied as recorded.

At some point of a voting process, a voter should verify if a cast ballot is
correctly recorded by the voting system (iii), i.e., by comparing the electronic
representation of her vote with the record stored on a public bulletin board. The
integrity of an election depends on two factors: (a) number of voters who perform
this check, (b) reliability of the bulletin board. Implementations of secure bul-
letin boards need to take into account many threats. One of the biggest threats
is a scenario when hackers take control over the bulletin board and are able to:
modify already cast ballots, modify new cast ballots, discard already cast ballots,



Hierarchical Ring Signatures Revisited 331

do not accept new ones, add new ballots. Sometimes it is even hard to detect
that a given system is under attack [18], [19]. A traditional approach to dealing
with data modifications is use of digital signatures – this approach is useful if
a PKI is implemented and all voters have their own keys (like in Estonia where
all voters have electronic ID-cards). The problem arises when voters cannot sign
their ballots and signing is made on the server’s side. If hacker gained access to
the server, one should assume that the hacker is also capable of obtaining new
signatures and thus modifying all new and already cast ballots. So a natural and
desired property is to have a distributed way of signing and time-stamping elec-
tion data. Time-stamping helps with recovering to the state before the attacker
gained the control over the system. Distributed signing makes life of a hacker
harder – now, in order to successfully modify ballots he should take control over
the set of machines that participate in distributed signing election data.

The proposed system of hierarchical ring signatures gives what one needs:
(hierarchy) a time-stamping property that does not depend on just trusting a
single time-stamping server but rather on the order of events; (ring signatures)
ring signatures offer better protection since an attacker cannot tell exactly who
is signing (and one can create large enough anonymity set to make attacker work
hopeless).
Our Contribution. We propose a construction of a ring signature scheme that: 1)
creates a hierarchical structure of the signatures; 2) has a modular architecture
and reuse previously defined, secure regular signatures and ring signatures; 3)
creates short signatures for large rings; 4) provides small computational complex-
ity of the signature creation; 5) provides a kind of time-stamping functionality
for all the node signatures that belong to paths starting from leafs upwards.
We propose a specific example scheme built upon regular cryptographic blocks:
Schnorr signatures and Schnorr ring signatures. We also prove the security and
anonymity of this proposition.

Related Work. The concept of a ring signature was introduced by Rivest et
al. in [15]. In [13] ring signatures were combined with deniable authentication
into deniable ring authentication scheme. A linkable ring signature scheme was
presented in [17] and in [1]; under a strong security model they allow to link
signatures signed by the same person. There are identity based ring signature
schemes that enable to construct rings for different identity-based master do-
mains (see [20,10,12,7,3,2]). Chen et al. proposed in [6] confessible threshold
ring signature scheme, in which the actual creator of a ring signature can prove
to be the signer. Bender et al. presented in [4] the summary of the assumptions
and the security definitions used in the prior work. They proposed stronger
notion of anonymity and unforgeability. Ring schemes of sub-linear size were
proposed in [8] and [5] where security is proved without random oracle model.
Comparison with Schemes of Ring Signatures of Sub-linear Size. Scheme from
[11]: not unconditionally anonymous, does not provide perfect anonymity (users
from ring who expose secret keys can prove that they did not sign); provided
without the analysis and security discussion; uses different building blocks (non
interactive zero knowledge proof of equality of disc. log.); complexity of the



332 Ł. Krzywiecki, M. Sulkowska, and F. Zagórski

scheme is similar to our proposition; provides the hierarchical construction.
Scheme from [8]: security of the proposed efficient implementation is based on
Strong RSA assumption; uses different building blocks (dynamic accumulators,
ring signatures obtained as from Fiat-Shamir transform applied to the proposed
ad-hoc identification scheme); security is proved in ROM; initial time complex-
ity for the new group/ring is proportional to the ring size (subsequently short
keys for the established group/ring are used); does not provide hierarchical con-
struction. Scheme from [5]: security is based on subgroup decision assumption,
the strong Diffie-Hellman assumption and the assumption that the one-time sig-
nature is unforgeable; security is proved without random oracles; uses different
building blocks (Boneh and Boyen signatures); time complexity for the signature
creation and the size of signature is O(

√
n) where n is the ring size; does not

provide hierarchical construction. From the above mentioned papers, the scheme
from [11] is the most similar to our construction. However, our scheme is proved
to be unconditionally anonymous (it ensures anonymity even if the secret keys of
the ring members are exposed - perfect anonymity) and is proved to be unforge-
able in ROM and under Forking Lemma. It is based on Schnorr ring signatures.
In terms of creating keys for the new ring it resembles the schemes from [8] and
[5] but in our construction those keys are used in a different way; namely to
build the tree hierarchy. As a result our scheme creates new ring signatures in
constant time and of size O(1). Signatures are based on previously established
rings and the new ring is the sum of previous rings.
Organization of the paper. In Section 2 we state the required assumptions and the
definitions of the regular and ring signature schemes. We recall Forking Lemma
and the form of a ring signature based on it. Then we provide the overview of
our construction based on regular and ring signatures. We discuss its security. In
Section 3 we give the detailed description of the specific example of our scheme:
we recall the Schnorr ring signature from [9] and propose a specific hierarchical
Schnorr ring signature scheme based on methodology from Section 2. We prove
its unforgeability and perfect anonymity.

2 Construction Overview

2.1 Preliminaries

We consider a group of n participants. We assume that each user has a pair
of secret/public keys (xi, yi) (i = 1, 2, . . . , n) built over an algebraic structure
G. All the public keys are known to all the participants. The structure G is
constructed by means of the security parameter ξ which is chosen in such a way
that it is infeasible to compute xi from yi. From now on we assume that all
computations are done within that structure. In particular, the cryptographic
blocks: hash function H, regular and ring signature schemes given below, are
well defined over the parameters of G.



Hierarchical Ring Signatures Revisited 333

Signature Schemes REGULAR and RING

Definition 1. A REGULAR signature scheme is defined as a following 4-tuple
of procedures:

– Str – structure generation – randomized algorithm, takes a security parameter
ξ and creates an algebraic structure G. We write G ← Str(ξ).

– KeyGen – key generation – randomized algorithm, takes an algebraic structure
G and produces over it a pair (x, y) of private/public keys. We write (x, y) ←
KeyGen(G).

– Sign – signing procedure – randomized algorithm, takes a message m, the
secret key x and returns a signature σ. We write σ ← Sign(m,x).

– Verify – signature verification – deterministic algorithm, takes a message
m, a signature σ for m and the public key y. It returns a bit d (0 or 1)
indicating whether the signature σ is valid, i.e., whether someone having a
public key y has signed m with the corresponding private key x. We write
d ← Verify(m,σ, y).

Besides the scheme REGULAR the participants use the signature scheme RING,
built on the top of their public keys. In the RING scheme the signer may include
not only himself but also some other participants in the ring signature. The set
of all such potential signers (including also the real signer) is called a ring. We
identify the ring by the set of the public keys Y = {y1, . . . , yt} of the participants
included in it.

Definition 2. A RING signature scheme is defined as a following 4-tuple of
procedures:

– Str – structure generation – randomized algorithm, takes a security parameter
ξ and creates an algebraic structure G. We write G ← Str(ξ).

– KeyGen – key generation – randomized algorithm, takes an algebraic structure
G and produces over it a pair (x, y) of private/public keys. We write (x, y) ←
KeyGen(G).

– RSign – signing procedure – randomized algorithm, takes a message m, the
secret key xj and the set of public keys Y = {y1, . . . , yt}, yj ∈ Y . It returns
a signature σ. We write σ ← RSign(m,xj , Y ).

– RVerify – signature verification – deterministic algorithm, takes a message
m, a signature σ for m and the set of public keys Y . It returns a bit d (0 or
1) indicating whether the signature σ is valid, i.e., whether someone having
a public key from the set Y has signed m. We write d ← RVerify(m,σ, Y ).

Throughout this paper we work with the schemes RING and REGULAR that
are correct. The definitions of correctness for both cases are presented below.

Definition 3. (REGULAR Correctness) Any correctly created signature σ is ver-
ifiable to "1" via Verify(). In other words,

Pr[G ← Str(ξ); (x, y) ← KeyGen(G);σ ← Sign(m,x) :

Verify(m,σ, y) = 1] = 1 .



334 Ł. Krzywiecki, M. Sulkowska, and F. Zagórski

Definition 4. (RING Correctness) Any correctly created signature σ is verifiable
to "1" via RVerify(). In other words,

Pr[G ← Str(ξ);Y = {yi : (xi, yi) ← KeyGen(G)};
j ∈ {1, . . . , |Y |};σ ← RSign(m,xj , Y ) : RVerify(m,σ, Y ) = 1] = 1 .

Moreover we assume that the above schemes are unforgeable in the chosen-
message scenario which means the following. Suppose that a forger’s goal is to
produce a verifiable signature σ for the message m which was not previously
signed in the query stage. We say that the forger succeeds, if it can forge σ for
m with a non-negligible probability. Below we state it more formally for both,
REGULAR and RING scheme.

Definition 5. (REGULAR\RING Unforgeability). Suppose that a forger A is
given all the public parameters (including a public key y \ a set of public keys
Y ) and can issue up to qmax queries in an adaptive manner to the signing oracle
OSign(mi) for signatures of messages mi of his choice. We say that the scheme
REGULAR\RING is unforgeable if the probability, that the forger outputs a pair
(m,σ) such that σ is the signature for the message m �= mi verifiable to 1 with
public key y \ public keys from the set Y , is negligible, i.e., is smaller than a neg-
ligible function of the security parameter ε(ξ). In other words, scheme REGULAR
is unforgeable if

Pr[G ← Str(ξ); (x, y) ← KeyGen(G); (m,σ) ← AOSign(mi)(y) :

Verify(m,σ, y) = 1 ∧m /∈ {mi}] < ε(ξ),

scheme RING is unforgeable if

Pr[G ← Str(ξ);Y = {yi : (xi, yi) ← KeyGen(G)}; (m,σ) ← AOSign(mi)(Y ) :

RVerify(m,σ, Y ) = 1 ∧m /∈ {mi}] < ε(ξ).

Unforgeability of Ring Signatures Under Forking Lemma. Forking
Lemma [14] is used to prove unforgeability of ring signature schemes in the
chosen-message scenario. In order to take advantage of Forking Lemma for at-
tacks in this scenario, the signature scheme should take the form of a tuple
(r, h, s), where r depends only on values chosen at random, h is a hash value
that depends on the message m to be signed and r, and s depends on r, m and h.
Moreover such a signature should be simulatable (in the Random Oracle Model -
ROM) without the knowledge of the corresponding secret signing key. According
to Forking Lemma, if the forger existed then it could be run, in a reasonable
time, to acquire two valid signatures (r, h, s) and (r, h′, s′), which subsequently
could be used to break some hard problem on which the security of the signature
scheme is based. A class of unforgeable ring signatures is introduced in [9]. For
a ring of cardinality t a generic ring signature (for message m) presented there
is based on a tuple (r1, . . . , rt, h1, . . . , ht, s), where r1, . . . , rt (ri �= rj) are the
random values, hi is a hash value of m and ri, while s is determined by m,
r1, . . . , rt and h1, . . . , ht. Its unforgeability is proved using Forking Lemma. We



Hierarchical Ring Signatures Revisited 335

use exactly this class of ring signatures as a base of our hierarchical construction
proposed in the next section. Note that the size of this signature is proportional
to the cardinality of the ring. Additionally, the tuple h1, . . . , ht is not included
in the final signature structure since it can be computed from the rest of the
parameters (see example in Fig. 5).

Anonymity of Ring Signatures

Definition 6. (Anonymity). We say that the ring signature is anonymous if
the probability that the verifier guesses the identity of the real signer who has
computed a ring signature on behalf of a ring of k members is not greater than
1/k. If the verifier is one of the members of the ring, distinct from the real signer,
then the probability that she guesses the identity of the real signer is not greater
than 1/(k − 1).

While talking about a perfect anonymity [4] the verifier is also given the set of
corresponding secret keys {x1, . . . xk}. We stress that the construction presented
in this paper is based on the Schnorr Ring Signature Scheme from [9] which
ensures the perfect anonymity.

2.2 Hierarchical Ring Signature Scheme

In this section we discuss in general our hierarchical ring signature scheme HI-
ERARCH. Its high level description may be found in appendix while the formal
and detailed description of a specific hierarchical scheme is presented in Section
3.
Hierarchical Scheme Construction. Recall that we consider a group of n
users each of which has a pair of private/public keys (xi, yi), (i = 1, 2, . . . , n).
We assume that each of them may use REGULAR and RING signature schemes:

– REGULAR: (Str(ξ),KeyGen(G), Sign(m,x), Verify(m,σ, y)),
– RING: (Str(ξ), KeyGen(G), RSign(m,xj , Y ), RVerify(m,σ, Y )).

W.l.o.g. we assume that Str(ξ) and KeyGen(G) procedures are the same for
both schemes. Additionally, we assume that those schemes are correct and un-
forgeable under Forking Lemma. For definiteness we use the ring signature
scheme from [9]. Thus the ring signature can be expressed as a specific tuple
(see Section 2.1) and can be simulated in ROM without the knowledge of the
secret key. Given schemes REGULAR and RING we construct another ring sig-
nature scheme called hierarchical ring signature HIERARCH. It is defined as a
5-tuple of procedures: (Str, KeyGen, NRSign, NRVerify, HierVerify). The HIER-
ARCH signing procedure (compare Fig. 6), called NRSign, creates a signature
that is treated as a node in the tree. All the resulting signatures of our scheme
form a tree structure. NRSign can be regarded as a RING signing procedure
RSign(m,xj , Y ), |Y | = k, that produces a tuple σ=(ynew, r̂1, . . . , r̂k, s), in which
the sub-tuple r̂1, . . ., r̂k is computed in a new specific way: a new pair of pri-
vate/public keys (xnew , ynew) is created; the private key xnew is used to produce
a set Σ of a regular signatures σ1 = Sign(r1, xnew), . . . , σk = Sign(rk, xnew)



336 Ł. Krzywiecki, M. Sulkowska, and F. Zagórski

over the nonces r1, . . ., rk; each pair (ri, σi) is treated as a random r̂i. These
are later hashed altogether with the message m, to produce the tuple of hashes
h1, . . . , hk. The public key ynew is included in the resulting signature. Now the
tuple (ynew, r̂1, . . . , r̂k, h1, . . . , hk, s) embeds the set of regular signatures Σ in
the random nonces r̂i. This construction can be regarded as a kind of self certi-
fication, in which the set of regular signatures Σ and ring signature σ mutually
certify themselves.

The HIERARCH verification procedure (compare Fig. 6) NRVerify verifies
the signature created by NRSign. It verifies all signatures σi from Σ via regular
Verify(ri, σi, ynew) and subsequently verifies the ring signature σ=(ynew, r̂1, . . .,
r̂k, s) via RVerify(m, σ, Y ). If all the verifications hold the hierarchical signature is
accepted. The verifier gets two facts about the creator of the verified hierarchical
signature σ: the signer is the holder of a one private key corresponding to one of
the public keys from the ring Y , and the signer is the holder of the new pair of
private/public keys (xnew , ynew) (i.e., the ring signature certifies the new public
key ynew of the ring). Indeed, without both xj and xnew the creation of the
correct signature σ is infeasible since the underlying schemes REGULAR and
RING are unforgeable. Thus the pair (xnew , ynew) becomes a new private/public
key for the creator of the ring signature σ for the ring Y . Now, if someone verifies
positively another signature by means of ynew can conclude that the signer should
be the same person who created previously the ring signature σ for which keys
(xnew , ynew) were generated.

In Fig. 1 we present the high level description of the HIERARCH scheme
construction.

We illustrate the process of the tree structure creation resulting in the hier-
archy depicted in Fig. 2. Suppose that two different users uA and uB construct
two different hierarchical signatures σA = (yAnew, ., .) and σB = (yBnew, ., .) for two
disjoint rings A = {yA1 , . . . , yAk }, B = {yB1 , . . . , yBk }. At the leaf level the rings
A and B consist of the public keys belonging to the particular users. Now one
of the actual σA and σB creators can build another ring C = {yAnew, yBnew} con-
sisting of new public keys generated in the corresponding signatures σA and σB ,
and construct another signature σC = (yCnew, ., .) for the ring C. These scenario
can be repeated further with other signatures, e.g. σD, σE , σF , σG, resulting in
the tree depicted in Fig. 2.

The verifier of σG can conclude the following. The signer of σG should know
the private key corresponding to one of the public keys from the ring G = {yCnew,
yFnew}, so it is the creator of σC or of σF . Considering the left sub-tree: the signer
of σC should know one private key corresponding to one of the public keys from
the ring C = {yAnew, yBnew}, so it is the signer of σA or σB . Subsequently it is a
user of a public key from the ring A or from the ring B. The same reasoning for
the right sub-tree (rooted in σF ) gives: the potential signer of σF is a user of a
public key from the ring D or from the ring E. Summing up the potential signer
of σG is a holder of a private key corresponding to one of the public keys from the
ring A∪B∪D∪E. Note that although the set of potential signers grows with the
height of the tree, the size of the node signatures at a given tree level is constant.



Hierarchical Ring Signatures Revisited 337

– NRSign(m,xj , Ỹ ) procedure:
1. create new key pair (xnew, ynew) := KeyGen(G),
2. for a leaf level let Ỹ be the set of public keys of particular users; for a

non-leaf levels let Ỹ be the set of public keys coined during the creation
of signatures from the lower level,

3. proceed the computation defined in RSign(m,xj , Y ) for Y = Ỹ till the
step of computation of nonces ri,

4. after obtaining each random ri create a signature σi := Sign(ri, xnew),
5. treat (ri, σi) as a random r̂i,
6. use r̂i instead of ri in hi computation, i.e., hi := H(m, r̂i) = H(m, ri, σi),
7. proceed the computation defined in RSign(m,xj , Y ) for Y = Ỹ ,
8. let R̂ = {r̂i} = {(ri, σi)},
9. include the new public key ynew and R̂ in the signature tuple.

– NRVerify(m,σ, Y ) procedure:
1. extract ynew and R̂ = {r̂i} = {(ri, σi)} from σ,
2. verify each subsignature σi for ri, i.e., Verify(ri, σi, ynew),
3. follow the steps of RING verification procedure RVerify(m, σ̂, Y ) for the

signature σ̂ = (R̂, s) computing hi as H(m, r̂i) = H(m, ri, σi),
4. if all verifications output 1 (OK) then accept the whole signature (output

1) .
– HierVerify(m,σ, Y ) procedure:

1. if σ is a leaf level signature verify NRVerify(m,σ, Y ),
2. if σ is a node signature at a non-leaf level then:

(a) verify NRVerify(m,σ, Y ),
(b) locate signatures σi for each yi ∈ Y ,
(c) call recursively HierVerify(m,σi, Y ) for each signature σi,

3. if all verifications output 1 (OK) then output 1.

Fig. 1. High level description of the HIERARCH scheme construction.

In the example from Fig. 2 we assume that cardinalities of rings at the leaf level
are equal to k. Thus the set of potential signers for signature σC is A ∪ B (of
cardinality 2k) and similarly the set of potential signers for signature σF is D∪E
(of cardinality 2k) while the size of both signatures, σC and σF is proportional to
|C| = |F | = 2. Also the size of σG is proportional to |G| = 2 (G = {yCnew, yFnew})
while the set of potential signers is A ∪B ∪D ∪E of cardinality 4k (we assume
that A,B,D,E are mutually disjoint). In the HIERARCH scheme we will write
Ỹ instead of Y for the set of public keys for which we create a signature. We
do so in order to underline that now Ỹ is the set of public keys of particular
users only at the leaf level and that at the non-leaf level it is a set of public keys
generated in the signatures from the lower level.

Definition 7. We define a Ring Hierarchy as a tree of signatures created by the
procedure NRSign in such a way that: 1) at the leaf level the set Ỹ consists only
of the public keys of the particular users; 2) at higher levels Ỹ consists only of
the public keys generated in the signatures from the lower level.



338 Ł. Krzywiecki, M. Sulkowska, and F. Zagórski

Definition 8. A hierarchical ring signature scheme HIERARCH is defined as a
following 5-tuple of procedures:

– Str – structure generation – randomized algorithm, takes a security parameter
ξ and creates an algebraic structure G. We write G ← Str(ξ).

– KeyGen – key generation – randomized algorithm, takes an algebraic structure
G and produces over it a pair (x, y) of private/public keys. We write (x, y) ←
KeyGen(G).

– NRSign – signing procedure – randomized algorithm, takes a message m,
the secret key xj and the set of public keys Ỹ = {y1, . . . , yk}. It returns a
signature σ. We write σ ← NRSign(m,xj , Ỹ ).

– NRVerify – node signature verification – deterministic algorithm, takes a mes-
sage m, a signature σ for m and the set of public keys Y . It returns a bit d
(0 or 1) indicating whether the signature σ is valid, i.e., whether someone
having a public key from the set Y or someone who previously signed one
signature from Σ, has signed m. We write d ← NRVerify(m,σ, Y ).

– HierVerify – deterministic algorithm, takes a message m, a signature σ for
m and the set of public keys Y . It returns a bit d (0 or 1) indicating whether
the hierarchy of signatures rooted in σ is valid, i.e., whether someone having
a public key in the set Y is the creator of one of the "leaf" signatures of the
tree rooted in σ. We write d ← HierVerify(m,σ, Y ).

Fig. 2. Hierarchical signature tree.

Correctness, Unforgeability and Anonymity. In this subsection we give
the intuitive overview of the correctness, unforgeability and anonymity of the
proposed hierarchical scheme. Formal proofs for the specific scheme instance are
presented in Section 3.2.

Proposition 1 (Correctness). Any correctly created Ring Hierarchy tree, i.e.,
having all nodes created correctly via NRSign procedure, is verifiable to 1 via
HierVerify.

Proof. This is a direct conclusion from the assumption that the REGULAR and
RING schemes are correct. Indeed, note that every node signature is calculated
by means of Sign and RSign procedure, which are verifiable to 1 when they are
correctly computed. ��



Hierarchical Ring Signatures Revisited 339

The next proposition (Prop. 2) forbids inserting new child nodes below the
existing parent by users which are not those parents creators. This is provided
by the unforgeability of the REGULAR scheme. Indeed, if the REGULAR scheme
was forgeable then anyone could produce the node signature by producing a new
ring including herself, and using her secret key to create ring signature and the
forged sub-signatures Σ.

Proposition 2. Only the creator of the node knows the new secret key xnew

corresponding to the new public ynew used during the node creation.

Proof. Assume there is an adversary A that produces a verifiable node signature
σ = (ȳnew, . . .) for some already existing public ȳnew for which it does not know
corresponding x̄new. We can assume that A is given all other parameters - even
all secret keys of the ring members. Then it can be used as a sub-procedure
for the adversary algorithm F which forges REGULAR signatures. Any signature
queries from A can be answered from F by its oracles. Now if A produces a valid
σ = (ȳnew, . . .) then any sub-signature from Σ can be returned by F as a valid
existential forgery of REGULAR scheme. ��
Proposition 3 (Unforgeability). Any node of the Ring Hierarchy is a ring
signature unforgeable in the adaptive chosen-message scenario.

Proof. Take a node signature σ = (ynew, R̂, s) for message m (recall that during
the signature creation we have also computed h1, . . . , hk; however we do not
include them in σ since they can be computed from the rest of parameters). To
prove its unforgeability, we follow the proof of unforgeability for the underly-
ing RING signature (which fulfills Forking Lemma assumptions). Therefore it
suffices to show that the resulting node signature also fulfills Forking Lemma
requirements:

– Here R̂ = {r̂i}, r̂i = (ri, σi) and hi := H(m, r̂i) = H(m, ri, σi), where σi’s
were created by means of a new key pair (xnew , ynew). Note that ynew and
r̂i depend only on the random values, hi is a hash value that depends on m
and r̂i and s is determined by m, r̂1, . . . , r̂k and h1, . . . , hk.

– As underlying RING signatures can be simulated without the private key in
ROM by programming in advance required oracle answers H(m, rj) := hj

for random hj , the same can be achieved for HIERARCH signatures, by
registering in a programmable ROM table all required H(m, rj , σj) := hj for
random hj.

Thus if the forger for the node signatures existed then it could be run, in a rea-
sonable time, to acquire two valid signatures (ynew, R̂, s) and (ynew, R̂, s′) which
subsequently could be used to break the hard problem on which the security
of the underlying RING signature scheme is based. Thus the node signature is
unforgeable under Forking Lemma. ��
Proposition 4 (Anonymity). If the RING signature scheme is anonymous,
then any node signature in the correctly computed Ring Hierarchy tree is also
anonymous (recall that the definition of anonymity was given in Section 2.1).



340 Ł. Krzywiecki, M. Sulkowska, and F. Zagórski

Proof. We consider a node signature σ = (ynew, R̂, s) created by the procedure
NRSign(m,xj , Ỹ ). Recall that R̂ = {(ri, σi)}. Note that the subsignatures σi are
created by means of a new key pair (xnew , ynew) that does not depend on any key
pair (xi, yi) referring to the leaves of the tree rooted in σ. Indeed the additional
(modification) steps that transform RSign(m,xj , Y ) into NRSign(m,xj , Ỹ ) (Fig.
1) could have been computed by any member of the ring with the same proba-
bility, thus do not affect the anonymity of the underlying RING scheme. ��

Suppose that in our tree we have n leaves (not necessarily of the same depth),
each associated with a signature σAi created by a member from the ring Ai,
1 ≤ i ≤ n (we do not assume that the rings are disjoint). Let σ be any signature
from the Ring Hierarchy and let Ai1 , Ai2 , . . . , Aik be the rings associated with
the leaves of the tree rooted in σ, Aσ = Ai1∪Ai2 ∪. . .∪Aik . Then the verifier of σ
can conclude that any member of Aσ could create σ. Moreover, the probability
that any member of Aσ did it is equal to 1/|Aσ| (the distribution is uniform
on Aσ). If a branch of our tree is cut off at a node π (a successor of σ but not
necessarily an immediate one) and Aj1 , Aj2 , . . . , Ajs are the rings associated with
the leaves of the tree rooted in π, Aπ = Aj1∪Aj2 ∪. . .∪Ajs , then the distribution
changes. Now it is uniform on Aσ\Aπ. The verifier of σ knows that the creator
is from the set Aσ but not Aπ and the probability that any member of Aσ \Aπ

created σ is equal to 1/|Aσ \Aπ |. The special case of the Ring Hierarchy which
is a k-ary balanced tree is discussed below.

Proposition 5. Let a Ring Hierarchy be a k-ary balanced tree s.t. the sets of
public keys from the leaf level are pairwise disjoint and equipotent (k). Then any
node signature σ from the level l could have been computed by a holder of any
private key corresponding to public keys from leaf level nodes rooted in σ, with
the same probability (1/k)l.
If a subtree of a tree rooted in σ is cut off at level s < l then the probability that
σ was created by any holder of any private key corresponding to public keys from
remaining leaf level nodes is equal to 1/(kl − ks).

Proof. This is an immediate conclusion from the construction of the probabil-
ity tree based on the correctly computed k-ary balanced Ring Hierarchy with
anonymous node ring signatures, where probability weight on each link is equal
to 1/k. ��
The proposed construction enables to create short ring signatures with anonymity
computed as for the ring of much larger size. For the Ring Hierarchy from Propo-
sition 5 the length of each signature is proportional to k while the set of potential
signers grows exponentially to the value kl for each node signature at the level
l. Another advantage is low computational complexity of signing. Typically the
number of significant operations required for the creation of ring signatures is
proportional to the cardinality of the set of public keys in the ring. Here (for Ring
Hierarchy being a k-ary balanced tree) the operational cost is constant since the
complexity af a node creation is "spread" into the complexities of previously
created nodes from the lower levels. On the other hand the cost of verification



Hierarchical Ring Signatures Revisited 341

is larger than usually, as a node verification requires checking all nodes in the
subtree. This, however, can be facilitated by keeping track of step-by-step verifi-
cation of new signatures that occur in the tree. In fact, in real implementations
(signatures bulletin boards), it can be done by the automated process that cer-
tifies the verification of whole subtrees.
Timestamping Extension. As the node signatures are built gradually using
previously created signatures from lower levels, a kind of straightforward time-
stamping functionality based on the hierarchy is provided. If the creator of the
signature computes the hash value H(Σ) and concatenates it with the message
m before signing (for Σ being the set of previous signatures), it assures that
those signatures had to be created earlier than the current node.

3 Construction Based on Schnorr Ring Signatures

In this section we recall the Schnorr ring signature scheme and describe in de-
tails the specific hierarchical ring signature scheme based on it. Throughout this
section p and q are large primes such that q|p − 1 and q > 2ξ, g is an element
of order q in Z∗

p and H() is a collision resistant hash function which outputs
elements in Zq. The Schnorr signature scheme (consult [16]) is based on Discrete
Logarithm Problem (DLP) and can be implemented in any group G of a prime
order, where DLP is hard. We generate a group G ← Str(ξ), where security
parameter ξ is chosen in such a way that any instance of DLP in G cannot be
trivially computed. Let a ←$ A denote that the element a is drawn uniformly
at random from the set A. In Fig. 3 we recall the key generation procedure and
in Fig. 4 the signature creation and verification procedures.

Fig. 3. Key generation.

The algorithm of the Schnorr ring signature construction (proposed in [9]) is
recalled in Fig. 5. We omit the key generation procedure as it is the same as in the
regular Schnorr signature scheme. The scheme is proved to be unforgeable in a
chosen-message scenario under Forking Lemma, and unconditionally anonymous.
For proofs refer to [9].

3.1 Hierarchical Schnorr Ring Signature

In this subsection we propose the hierarchical Schnorr ring signature scheme
based on the scheme proposed in [9]. The detailed procedures follow the general



342 Ł. Krzywiecki, M. Sulkowska, and F. Zagórski

a) Sign(m, x)
Input : messagem

: private keyx
Output : signatureσ = (r, s)

1 begin
2 a ←$ {1, . . . , q − 1}
3 r := ga mod p
4 h := H(m, r)
5 s := (a + xh) mod q
6 return σ = (r, s)

b) Verify(m, σ, y)
Input : messagem

: signature
σ = (r, s)

: public key y
Output : true or false

1 begin
2 h := H(m, r)
3 if gs == ryh mod p

then
4 return (true )

5 else
6 return (false )

Fig. 4. a) Schnorr Signature Creation, b) Schnorr Signature Verification.

Fig. 5. a) Schnorr Ring Sign. Creation, b) Schnorr Ring Sign. Verification.

construction methodology introduced in Section 2.2 in Fig 1. At the leaf level the
ring signatures use regular keys (xi, yi). At higher levels rings are constructed
using the new key pairs (xnew , ynew) coined ad-hoc. Since these keys could be
reused at higher levels, the verification of the signature at a given level has to in-
volve verification of all node signatures on lower levels, as described in HierVerify
procedure. The definitions of node ring signature creation (NRSign) and node
ring signature verification (NRVerify) procedures are presented in Fig. 6. They
are based on the following procedures: Sign and Verify from the Schnorr scheme
(Fig. 4), RSign and RVerify from the Schnorr ring scheme (Fig. 5). KeyGen pro-
cedure is the same as in the Schnorr scheme (Fig. 3). HierVerify construction
described in Fig. 1 is entirely based on the recursive application of NRVerify and
Verify thus we do not copy that description here.



Hierarchical Ring Signatures Revisited 343

Fig. 6. a) Node Ring Signature Creation, b) Node Ring Sign. Verification.

3.2 Security of the Scheme

In this subsection we prove unforgeability and anonymity of the hierarchical ring
signature scheme.

Proposition 6. The node signatures constructed by the NRSign procedure (see
Fig. 6) can be simulated in the random oracle model without knowing any of
the secret keys of the ring in a polynomial time and with probability distribu-
tion indistinguishable from the one of the ring signatures created by a legitimate
signer.

Proof. We follow strictly the methodology described in Section 2.2 applied to the
simulation of Schnorr ring signature from [9]. We define the simulation algorithm
in Fig. 3.2. It is easy to see that the simulation runs in a polynomial time. Note
that in the line 14 we program ROM table (we are in the random oracle model).
Thus the returned tuple is a valid hierarchical Schnorr ring signature for the
message m. ��
Theorem 1. The scheme HIERARCH (in which signatures are constructed by
the NRSign procedure, see Fig. 6) is unforgeable (according to Def. 5).

Proof. We follow the construction of the proof of unforgeability from [9]. The
scheme fulfills Forking Lemma requirements:

– it can be represented as a tuple (ynew, R̂, h1, . . . , hk, s), where ynew, r̂i depend
only on the random values, hi is a hash value of m and r̂i, and s is determined
by m, r̂1, . . . , r̂k and h1, . . . , hk;

– it can be simulated in ROM without secret key (see Proposition 6).



344 Ł. Krzywiecki, M. Sulkowska, and F. Zagórski

Fig. 7. Node Ring Signature Simulation.

Assume, by contradiction, that the scheme HIERARCH is not unforgeable. We
will show that then one can break an instance of a discrete logarithm problem.
Suppose that A is an adversary algorithm that can be used to obtain an ex-
istential forgery of the hierarchical Schnorr ring signature presented in Section
3.1. According to Forking Lemma it can be "rewind" to obtain in a polynomial
time two different valid signatures with the same random tuple. These subse-
quently can be used to break an instance of the discrete logarithm problem. Let
(p, q, g, y) be the input of this instance in the subgroup 〈g〉 (recall that 〈g〉 is
of order q) of Zp. The solution to this problem is the only element x from Zp

such that y = gx mod p. We draw at random pairwise different αi ∈ Z
∗
q for

1 ≤ i ≤ k and put yi = yαi mod p. Then we run the forger A for the ring of
public keys y1, . . . , yk and obtain two different valid signatures for the same ran-
dom tuple: (r̂1, . . . , r̂k, h1, . . . , hk, s) and (r̂1, . . . , r̂k, h′

1, . . . , h
′
k, s

′) s.t. hj �= h′
j

for some j, and hi = h′
i for all i �= j. Thus we have gs =

∏
i ri ·

∏
i�=j yi

hi · yjhj

and gs
′
=
∏

i ri ·
∏

i�=j yi
hi · yjh′

j . So gs−s′ = yj
hj−h′

j = yαj(hj−h′
j) and we can

compute logg y = (s− s′)α−1
j (hj − h′

j)
−1 mod q. ��

Theorem 2. The node signature of the Ring Hierarchy constructed by NRSign
procedure (see Fig. 6) is unconditionally anonymous, i.e., it could have been
computed by any of the k members of the ring with the same probability.

Proof. Let σ=(ynew, R̂, s) be a valid ring signature for a message m for a set of
public keys {y1, . . . , yk}. Recall that R̂ = {(r1, σ1), . . . , (rk, σk)}. We have for all
i: Verify(ri, σi, ynew) = 1, hi = H(m, ri, σi) and gs =

∏
i ri ·

∏
i yi

hi . Let uj be a
member of the ring. We have the following.

1. The probability that uj computes the correct ynew (line 2 in Fig. 6) is 1/(q−
1), and it does not depend on uj .

2. The probability that uj computes the correct pairwise different ri’s (i �= j)
of σ is 1/(q − 1) · . . . · 1/(q − k + 1), it does not depend on uj .



Hierarchical Ring Signatures Revisited 345

3. The probability that uj computes the correct σi = Sign(ri, xnew) for a given
ri and xnew corresponding to ynew (line 6 in Fig. 6) is 1/(q − 1), which is
the probability of choosing the right nonce in the Sign procedure ( Fig. 4a)
corresponding to the first element of the tuple σi, and it does not depend on
uj .

4. The probability that uj chooses exactly the only value a ∈ Zq that leads
to the value rj of σ, different from 1 and different from all ri’s (i �= j), is
1/(q − k), and it does not depend on uj .

5. The probability that uj computes the correct σj = Sign(rj , xnew) for a given
rj and xnew corresponding to ynew (line 12 in Fig. 6) is 1/(q − 1), which is
the probability of choosing the right nonce in the Sign procedure, and it does
not depend on uj .

Summing up, the probability that uj generates exactly the ring signature σ does
not depend on uj, so it is the same for each member of the ring. ��

4 Conclusions

We provide the method for obtaining a hierarchy of short ring signatures for large
rings. The construction is modular and reuse previously defined cryptographic
blocks: regular signatures and ring signatures. As an example we present the
specific scheme based on Schnorr regular and ring signatures.

References

1. Au, M.H., Chow, S.S.M., Susilo, W., Tsang, P.P.: Short linkable ring signatures
revisited. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp.
101–115. Springer, Heidelberg (2006)

2. Au, M.H., Liu, J.K., Yuen, T.H., Wong, D.S.: Id-based ring signature scheme secure
in the standard model. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama,
Y., Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 1–16. Springer,
Heidelberg (2006)

3. Awasthi, A.K., Lal, S.: Id-based ring signature and proxy ring signature schemes
from bilinear pairings. ArXiv Computer Science e-prints (April 2005)

4. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

5. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007)

6. Chen, Y.-S., Lei, C.-L., Chiu, Y.-P., Huang, C.-Y.: Confessible threshold ring sig-
natures. In: ICSNC, p. 25. IEEE Computer Society (2006)

7. Chow, S.S.M., Yiu, S.-M., Hui, L.C.K.: Efficient identity based ring signature. In:
Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
499–512. Springer, Heidelberg (2005)

8. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad
hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004)



346 Ł. Krzywiecki, M. Sulkowska, and F. Zagórski

9. Herranz, J., Sáez, G.: Forking lemmas for ring signature schemes. In: Johansson,
T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 266–279. Springer,
Heidelberg (2003)

10. Herranz, J., Sáez, G.: A provably secure id-based ring signature scheme. Cryptology
ePrint Archive, Report 2003/261 (2003), http://eprint.iacr.org/

11. Krzywiecki, L., Kutylowski, M., Lauks, A.: Hierarchical ring signatures. Slides pre-
sented at ’Western European Workshop on Research in Cryptology 2009 (2009)

12. Lin, C.-Y., Wu, T.-C.: An identity-based ring signature scheme from
bilinear pairings. Cryptology ePrint Archive, Report 2003/117 (2003),
http://eprint.iacr.org/

13. Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 481–498. Springer, Heidelberg (2002)

14. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptology 13(3), 361–396 (2000)

15. Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

16. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

17. Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and
attestation. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS,
vol. 3439, pp. 48–60. Springer, Heidelberg (2005)

18. van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: Flipit: The game of?stealthy
takeover? Journal of Cryptology 26(4), 655–713 (2013)

19. Wolchok, S., Wustrow, E., Isabel, D., Halderman, J.A.: Attacking the washington,
dc internet voting system. In: FC 2012. LNCS, pp. 114–128. Springer, Heidelberg
(2012)

20. Zhang, F., Kim, K.: Id-based blind signature and ring signature from pairings.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer,
Heidelberg (2002)

http://eprint.iacr.org/
http://eprint.iacr.org/


Compact Accumulator Using Lattices

Mahabir Prasad Jhanwar1,� and Reihaneh Safavi-Naini2,��

1 CR Rao AIMSCS, UoH Campus, India
2 Department of Computer Science, University of Calgary, Canada

Abstract. An accumulator is a succinct aggregate of a set of values
where it is possible to issue short membership proofs for each accu-
mulated value. A party in possession of such a membership proof can
then demonstrate that the value is included in the set. In this paper, we
present the first lattice-based accumulator scheme that issues compact
membership proofs. The security of our scheme is based on the hardness
of the Short Integer Solution problem.

1 Introduction

Accumulators: An accumulator scheme is a cryptographic authentication prim-
itive for optimally verifying set-membership relations. Briefly, given a set X of
elements, an accumulator scheme can compute a short representation of X , de-
noted as AccX and called accumulation value of X , such that for every element
x ∈ X a short membership witness wx of “x belonging to X” can be generated.
The accumulation value AccX is published, and everybody can obtain it in an
authenticated manner. Later, by exhibiting a valid (x,wx) pair, a prover can
convince a verifier that the value x was indeed accumulated into AccX . The se-
curity of the scheme requires that it be difficult to find a valid value-witness pair
(x∗, wx∗) such that x∗ /∈ X . An accumulator is compact if it yields accumulation
values and witnesses that are of constant size (i.e., independent of the number
of elements X contains).

Applications: Accumulators have proven to be a very strong mathematical tool
with applications in a variety of privacy preserving technologies. Applications of
accumulators include efficient time-stamping [7], anonymous credential systems
and group signatures [11,25,26], ring signatures [17], redactable signatures [29],
sanitizable signatures [13], P-homomorphic signatures [2], and Zerocoin [24] (an
extension of the cryptographic currency Bitcoin), etc.

Evolution: Accumulators were first introduced by Benaloh and de Mare [7],
and were later further studied and extended by Baric and Pfitzmann [6]. The
security of both constructions was proved under the strong RSA assumption.

� Part of this research was done while visiting R. C. Bose Center of Cryptology and
Security, Indian Statistical Institute, Kolkata.

�� Financial support for this research was provided in part by Alberta Innovates -
Technology Futures, in the Province of Alberta in Canada.

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 347–358, 2015.
DOI: 10.1007/978-3-319-24126-5_20



348 M.P. Jhanwar and R. Safavi-Naini

Camenisch and Lysyanskaya [12] augmented the latter work and proposed dy-
namic accumulators, in which elements can be efficiently added to and removed
from the set of accumulated values, as well as privacy-preserving membership
proofs. Alternative constructions of dynamic accumulators based on bilinear
pairings [11, 16, 25], Paillier’s trapdoor permutation [30], and vector commit-
ments [15] are also known. Li et al. [20] introduced universal accumulators that
extend the functionality of accumulators by supporting proofs that a given ele-
ment is not a member of the set that has been accumulated. The security of their
proposed instantiation is based on strong RSA assumption. Camacho et al. [10]
and Buldas et al. [9] independently introduced strong universal accumulators
(also known as undeniable accumulators), which do not assume the accumulator
manager is trusted. Both constructions were proved secure under the assumption
that collision-resistant hash functions exists.

1.1 Our Contribution

In recent years, there has been rapid development in the use of lattices for
constructing rich cryptographic schemes (these include digital signatures [8, 14,
19], identity-based encryption [19] and hierarchical IBE [1, 14], non-interactive
zero knowledge [28], and even a fully homomorphic cryptosystem [18]). Among
other reasons, this is because such schemes have yet to be broken by quantum
algorithms, and their security can be based solely on worst-case computational
assumptions.

In the spirit of lattice-based cryptography, we present the first compact accu-
mulator scheme from lattices and prove that it is secure based on the hardness
of the Short Integer Solution (SIS) problem. As the average-case SIS problem
was shown to be as hard as certain worst-case lattice problems [3, 19, 23], our
scheme owns provable security under worst-case hardness assumption.

1.2 Related Work

Although, there exists no direct lattice-based accumulator scheme, the construc-
tions in [7, 9, 10] give indirect lattice-based instantiations because they only as-
sume collision-resistant hash functions exist. This is true as lattice-based con-
structions of collision resistant hash functions are known [21, 27], and therefore
the security of the resulting schemes can also be reduced to worst-case assump-
tions on lattices. However, collision resistant hash based accumulator schemes
are not compact : the size of witness is always logarithmic in the number of values
accumulated.

2 Preliminaries

Notation: Let λ ∈ N be the security parameter and 1λ its unary representation.
We use standard asymptotic notation to describe the order of growth of func-
tions. For any positive real valued functions f(n) and g(n) we write f = O(g)



Compact Accumulator Using Lattices 349

if there exists two constants c1, c2 such that f(n) < c1 · g(n) for all n ≥ c2;
f = Ω(g) if g = O(f); f = Θ(g) if f = O(g) and g = O(f); and f = o(g) if

limn→∞
f(n)
g(n) = 0. We denote f = Õ(g) if f = O(g · poly(log g)). The notation

Θ̃ is defined analogously. We denote ω(f(n)) to denote a function that grows
faster than c · f(n) for any c > 0. We let poly(n) denote an unspecified function
f(n) = O(nc) for some constant c. A function f(n) is called negligible, often writ-
ten as f(n) = negl(n), if f = o( 1g ) for any polynomial g = poly(n). A function of

n is called overwhelming if it is 1−negl(n). For a positive integer k, let [k] denote
the set {1, . . . , k}. We denote the set of integers modulo q by Zq, and identify
it with the set {0, . . . , q − 1} in the natural way. Column vectors are named by
lower-case bold letters (e.g., b) and matrices by upper-case bold letters (e.g., B).
For a matrix S ∈ Rm1×m2 , we call the norm of S as ||S|| = max1≤i≤m2 ||si||,
where ||si|| denotes the �2-norm (Euclidean norm) of the column vector si. We
let S̃ ∈ Rm1×m2 denote the matrix whose columns s̃1, . . . , s̃m2 represent the
Gram-Schmidt orthogonalization of the vectors s1, . . . , sm2 taken in the same
order. Let ||S̃|| denotes the Gram-Schmidt norm of S.

2.1 Lattices

Let Rm be the m-dimensional Euclidean space. A lattice Λ ⊆ Rm is a set

Λ =

{
k∑

i=1

cibi | ci ∈ Z and b1, . . . , bk ∈ R
m

}
(1)

of all integral combinations of k linearly independent vectors b1, . . . , bk in Rm

(m ≥ k) 1. The integers k and m are called the rank and dimension of the lattice,
respectively. The sequence of vectors b1, . . . , bk is called a lattice basis and it is
conveniently represented as a matrix B = [b1, . . . , bk] ∈ Rm×k having the basis
vectors as columns. Using the matrix notation, (1) can be written in a more
compact form as Λ = Λ(B) = {Bc | c ∈ Z

k}, where Bc is the usual matrix-
vector multiplication. When m = k, the lattice is called full-rank. A lattice Λ is
called integer lattice if Λ ⊆ Zm. In this work, every lattice will be a full-rank
lattice.

The minimum distance λ1(Λ) of a lattice Λ is the length (Euclidean length,
i.e., �2 norm, unless otherwise indicated) of a shortest non-zero lattice vector.
More generally, the ith successive minimum λi(Λ) is the smallest radius r such
that Λ contains i linearly independent vectors of norm at most r. The following
are the two standard worst-case approximation problems on lattices: Shortest
Vector Problem (SVPγ) and Shortest Independent Vector Problem (SIVPγ) .
In both problems, γ = γ(m) is the approximation factor as a function of the
lattice-dimension.
1 Alternatively, lattices can also be characterized without any reference to any basis.
A lattice Λ can be defined as a discrete nonempty subset of Rm which is closed under
subtraction, i.e., if x ∈ Λ and y ∈ Λ, then also x− y ∈ Λ. Here discrete means that
there exists a positive real λ > 0 such that the Euclidean distance between any two
lattice vectors is at least λ.



350 M.P. Jhanwar and R. Safavi-Naini

Definition 1 (SVPγ). An input to SVPγ is a basis B of a full-rank m-
dimensional lattice. The goal is to output a nonzero lattice vector Bx (with
x ∈ Zm\{0}) such that ||Bx|| ≤ γ · ||By|| for any y ∈ Zm\{0}.
Definition 2 (SIVPγ). An input to SIVPγ is a basis B of a full-rank m-
dimensional lattice. The goal is to output a set of m linearly independent lattice
vectors Bx1, . . . ,Bxm ∈ Λ(B) such that maxi{||Bxi||} ≤ γ · λm(Λ(B)).

q-ary Lattices. In this work we use q-ary lattices; a special family of full-rank
integer lattices. A lattice from this family is most naturally specified not by a
basis, but instead by a parity check matrix A ∈ Zn×m

q for some positive integer
n and positive integer modulus q. The associated full rank lattice of dimension
m is defined as:

Λ⊥(A) = {x ∈ Z
m | Ax = 0 mod q} (2)

It is routine to check that Λ⊥(A) contains 0 ∈ Zm (thus non-empty) and is
closed under subtraction, hence it is a lattice. The hardness of these lattices is
most naturally parametrized by n (not m, even though m is the dimension of
the lattices) and therefore it is standard to consider the parameters m = m(n)
and q = q(n) as functions of n. By taking m = c ·n log q for some constant c ≥ 1,
it can be shown that with high probability, the minimum distance λ1

(
Λ⊥(A)

)
of Λ⊥(A) is at most Θ(

√
n log q), where A ∈ Zn×m

q is random.
Ajtai [4], Alwen and Peikert [5], Micciancio and Peikert [22] provided methods

to produce a matrix A statistically close to uniform in Zn×m
q along with a short

basis TA of lattice Λ⊥(A). It is summarized in the following lemma.

Proposition 1 (Short Basis Generation). There is a PPT algorithm that,
on input a security parameter 1λ, an odd prime q = poly(λ), and two integers
n = Θ(λ) and m ≥ 6n log q, outputs a matrix A ∈ Z

n×m
q statistically close to

uniform, and a basis TA for Λ⊥(A) with overwhelming probability such that
||T̃A|| ≤ Θ̃(

√
m).

We refer to the algorithm of Proposition 1 by TrapGen(1λ).

Primitive Matrix: We say that a matrix A ∈ Zn×m
q is primitive if its columns

generate all of Zn
q , i.e., A · Zm (mod q) = Zn

q . It is known that for any fixed
constant C > 1 and any m ≥ Cn log q, a uniformly random A ∈ Zn×m

q is

primitive, except with 2−Ω(n) = negl(n) probability. Therefore, throughout the
paper we implicitly assume that such a uniform A is primitive.

Hardness Assumption. The short integer solution (SIS) problem was first
suggested to be hard on average by Ajtai [3] and later in [23] was formalized as
follows. The security of our accumulator scheme is based on the hardness of this
problem.

Definition 3 (SIS Problem). The small integer solution problem SIS (in the
�2 norm) is as follows: given an integer q, a matrix A ∈ Zn×m

q , and a real β,
find an integer vector e ∈ Z

m such that Ae = 0 mod q and ||e|| ≤ β.



Compact Accumulator Using Lattices 351

Clearly, the problem is syntactically equivalent to finding some short nonzero
vector in Λ⊥(A). For functions q(n),m(n), and β(n), an average-case SIS prob-
lem instance is drawn from the probability ensemble over instances (q(n),A, β(n))
where A ∈ Zn×m

q is uniformly random. This average-case problem was shown
to be as hard as certain worst-case lattice problems, first by Ajtai [3], then by
Micciancio and Regev [23], and Gentry et al. [19].

Theorem 1. ( [19]) For any poly-bounded m, any β = poly(n) and for any
prime q ≥ β ·ω(√n logn), the average-case SISq,m,β is as hard as approximating
the Shortest Independent Vector Problem (SIVPγ), among others, in the worst-

case to within certain γ = β · Õ(
√
n) factors.

Discrete Gaussian Distribution over Lattices. For any s > 0 the Gaussian
function ρs,c : Rm → R centered at c ∈ Rm with parameter s is defined as:

∀x ∈ R
m, ρs,c(x) = e−

π||x−c||2
s2 .

For any c ∈ R
m, real s > 0, and m-dimensional lattice Λ, define the discrete

Gaussian distribution DΛ,s,c over Λ (with center c and Gaussian parameter s)
as:

∀x ∈ R
m, DΛ,s,c(x) =

ρs,c(x)

ρs,c(Λ)
,

where ρs,c(Λ) =
∑

y∈Λ ρs,c(y).
Micciancio and Regev [23] proved that the norm (�2 norm) of vectors sampled

from the discrete Gaussian distribution is small with high probability. We present
this result specialized to q-ary lattices.

Lemma 1. Let A ∈ Zn×m
q be a primitive matrix, and s be a Gaussian parameter

with s ≥ ω(
√
logm). Then for m-dimensional full-rank lattice Λ⊥(A), and c ∈

Rm,
Prx←D

Λ⊥(A),s,c

[ ||x− c|| > s
√
m
] ≤ negl(m).

Gentry et al. [19] proved that, given a basisB for a lattice Λ, one can efficiently
sample points in Λ with discrete Gaussian distribution for sufficiently large values
of s.

Theorem 2. There is a PPT algorithm that, given a basisB of anm-dimensional
latticeΛ, a parameter s ≥ ||B̃|| ·ω(√logm), and a center c ∈ Rm, outputs a sample
from a distribution that is statistically close toDΛ,s,c.

We refer to the algorithm of Theorem 2 by SampleD(B, s, c).
We now recall an important lemma from [19] which says that for a vector e,

chosen from an appropriate discrete Gaussian distribution over Zm, the vector
Ae mod q corresponds to a nearly-uniform element in Zn

q .

Lemma 2. Let A ∈ Zn×m
q be primitive. Then for any s ≥ ω(

√
logm), the

distribution of u = Ae mod q ∈ Z
n
q is statistically close to uniform over Z

n
q ,

where e is chosen from DZm,s,0.



352 M.P. Jhanwar and R. Safavi-Naini

The Gaussian Sampling Algorithm: SampleD(B, s, c)

– Input :
• a basis B of a lattice Λ ⊆ R

m,
• a positive real parameter s ≥ ||B̃|| · ω(√logm), and
• a center vector c ∈ R

n.
– Output :

• a fresh random lattice vector x ∈ Λ drawn from a distribution statistically
close to DΛ,s,c.

Basis Delegation. In [14] a deterministic polynomial-time algorithm is given
to extend a basis of Λ⊥(A) to a basis (without any loss of quality) of an arbitrary
higher-dimensional extension Λ⊥(A||Ā). We refer to this algorithm by BasisDel.

The Basis Delegation Algorithm: BasisDel(TA,A, Ā)

– Input :
• an arbitrary A ∈ Z

n×m
q such that A is primitive,

• an arbitrary basis TA of Λ⊥(A), and
• an arbitrary Ā ∈ Z

n×m̄
q .

– Output :
• a basis TA′ of Λ⊥(A′ = A||Ā) ⊆ Z

m+m̄ such that ||T̃A′ || = ||T̃A||.

Cryptographic Accumulators. We now give a formal definition of a crypto-
graphic accumulator scheme.

Definition 4 (Accumulator Scheme). Let M, C and W be three sets (the
message set, the set containing accumulated values and the set containing wit-
nesses respectively). An accumulator scheme is a tuple of PPT algorithms (Setup,
Accumulate, WitGen, Verify) with the following functionalities:

– Setup(1λ): Given a security parameter λ, it outputs a public key pk and a
secret key sk. The remaining algorithms take pk as an implicit input.

– Accumulate(X): If X ⊆ M then it accumulates all the elements of X into
an accumulation value AccX ∈ C.

– WitGen(X, x, sk): If x ∈ X and X ⊆ M, then it outputs a membership
witness wx ∈ W; otherwise it outputs “⊥” denoting Error.

– Verify(x,wx, c): For x ∈ M, wx ∈ W and c ∈ C it outputs either “1” denoting
member or “0” denoting Error.

The correctness of an accumulator scheme requires that correctly accumu-
lated values have valid witnesses with overwhelming probability, i.e., for x ∈ M,
X ⊆ M, the verification algorithm Verify(x,WitGen(X, x, sk),Accumulate(X))
outputs 1 with overwhelming probability if, x ∈ X .



Compact Accumulator Using Lattices 353

Definition 5 (One-way Security). An accumulator scheme is one-way secure
2 if, for all polynomial time adversaries A:

Pr[pk ← Setup(1λ); (X∗, x∗, wx∗) ← A(pk) | x∗ /∈ X∗ ⊆ M and

Verify(x∗, wx∗ , c ← Accumulate(X∗)) = 1] ≤ negl(λ).

If an accumulator satisfies this definition, then it is infeasible for an adversary
to prove that a value x was accumulated in a accumulation value c when in fact
it was not.

3 A Compact Accumulator Scheme

In this section we provide our accumulator scheme from lattices. Next, we discuss
the correctness of our scheme. The security analysis of our scheme will be given
in § 3.2.

The parameters of our scheme consist of:

- a security parameter 1λ;
- integers n and q (a prime) with n = Θ(λ) and q = poly(n);
- a dimension m ≥ 6n lg q and a bound L = O(

√
m);

- a Gaussian parameter s ≥ L · ω
(√

log(m+m′)
)
, where m′ = poly(λ) ∈ N;

- a message set M =
{
B1, . . . ,BQ ∈ Zn×m′

q

}
, where Q = poly(λ) and Bi’s

are independently chosen with uniform distribution.

The scheme is defined as follows.

– Setup(1λ): It uses the algorithm TrapGen(1λ) from Proposition 1 to generate
(A,TA), where A ∈ Zn×m

q is statistically close to uniform and TA is a short

basis of Λ⊥(A) with ||T̃A|| ≤ L. The public key pk is set to A, and the secret
key sk is set to TA. In the following, the other algorithms take pk = A as
an implicit input.

– Accumulate(X ⊂ M): Without loss of generality, supposeX={B1, . . . ,BQ′}
for some Q′ ∈ [Q]. It accumulates the Q′ matrices in the set X into a compact
accumulator value

AccX =

[ ∑
Bi∈X

Bi

]
∈ Z

n×m′
q .

– WitGen(X,B, sk): Let X = {B1, . . . ,BQ′} for some Q′ ∈ [Q]. If B /∈ X ,
return ⊥. Otherwise, B ∈ X and let B = Bj for some j ∈ [Q′]. The witness

2 In the literature, the one-way secure accumulators are also known as collision-
resistant accumulators.



354 M.P. Jhanwar and R. Safavi-Naini

generation algorithm returns a witness wB to the fact that B has been
accumulated in AccX . It first computes the matrix

FB =

⎡
⎣A ||

∑
1≤i( �=j)≤Q′

Bi

⎤
⎦ ∈ Z

n×(m+m′)
q .

It then samples a vector dB ∈ Λ⊥(FB) ⊆ Z(m+m′) following the distribution
DΛ⊥(FB),s,0. This is done, using sk = TA, as follows:

dB ← SampleD

⎛
⎝BasisDel

⎛
⎝TA,A,

∑
1≤i( �=j)≤Q′

Bi

⎞
⎠ , s,0

⎞
⎠ .

The witness wB is set to wB = dB . See Theorem 2 for a description of
SampleD, and § 2.1 for BasisDel.

– Verify(B, wB ,AccX): For an element B ∈ M the verification algorithm pro-
ceeds as follows:
• Compute

FB = [A||(AccX −B)] ∈ Z
n×(m+m′)
q

and check if FB · wB = 0 mod q, i.e., if wB ∈ Λ⊥(FB).
• Finally, check if wB is small by verifying that 0 < ||wB|| ≤ s

√
m+m′.

If all the checks pass, output 1; otherwise, output 0.

3.1 Correctness

It is easy to see by inspection that the accumulator scheme is correct, i.e., the
correctly accumulated values have verifying witnesses with overwhelming prob-
ability. But for completeness we discuss the correctness of our scheme in detail.

LetX = {B1, . . . ,BQ′} ⊆ M, with corresponding accumulation value AccX =∑Q′

i=1 Bi. We show that every B ∈ X admits a verifying witness with respect to
AccX . Without loss of generality, let B = B1. A valid witness for B1 is a short

vector dB1
in the lattice Λ⊥(FB1

) (where FB1
=
[
A||∑Q′

i=2 Bi

]
∈ Z

n×(m+m′)
q ),

i.e., ||dB1
|| ≤ s

√
(m+m′). Lemma 1 says that a sample in Λ⊥(FB1

), follow-

ing DΛ⊥(FB1
),s,0, has norm bounded by s

√
(m+m′) if s ≥ ω

(√
log(m+m′)

)
.

The algorithm of Theorem 2 provides a method to sample from DΛ⊥(FB1
),s,0

if it is provided with a basis T FB1
of Λ⊥(FB1

), such that s ≥ ||T̃FB1
|| ·

ω
(√

log(m+m′)
)
. We now see that this is indeed the case.

The witness generation algorithm has access to a short basis TA of the lat-

tice Λ⊥(A). With
(
TA,A,

∑Q′

i=2 Bi

)
as input, the basis delegation algorithm

BasisDel of § 2.1 constructs a basis TFB1
of Λ⊥(FB1

) such that ||T̃ FB1
|| =

||T̃A||. But ||T̃A|| ≤ L ≤ s

ω
(√

log(m+m′)
) , and therefore we have s ≥ ||T̃ FB1

|| ·

ω
(√

log(m+m′)
)
.



Compact Accumulator Using Lattices 355

Hence, the sampled vector dB1
←SampleD

(
BasisDel

(
TA,A,

∑Q′

i=2 Bi

)
, s,0

)
constitute a valid witness for the membership of B1 in X with respect to AccX .

3.2 Security

In the following theorem we reduce the SIS problem to the problem of breaking
the security of our accumulator scheme.

Theorem 3. For parameters λ, n, q,m,m′, L, s, and Q, as listed in the scheme,
if there is a PPT adversary A that breaks the one-way security of our accumu-
lator scheme, with probability ε, then there is a PPT algorithm B that solves
the SISq,m,β problem with probability ε′ ≥ ε/3, for some polynomial function
β = poly(λ); in particular β = Qs′s(m+m′), where s′ ≥ ω(

√
logm) 3.

Proof: Suppose that there exists such a forger A. We construct a solver B that
simulates an attack environment and uses an invalid element-witness pair (A’s
output) to create its solution for SIS problem. The various operations performed
by B are the following.

– Invocation
• B is invoked on a random instance (q,A ∈ Zn×m

q , β) of SIS problem and
asked to submit a solution.

– Simulation
• B sets the public key pk of the accumulator scheme to pk = A.
• It then picks Q short random matrices R1, . . . ,RQ ∈ Zm×m′

such that
||Ri|| ≤ s′

√
m, for some s′ ≥ ω(

√
logm). It can do so, by independently

sampling the columns of Ri’s from DZm,s′,0.
• It then sets the message space M to {B1 = AR1 mod q, . . . ,BQ =

ARQ mod q ∈ Z
n×m′
q }. By Lemma 2 the distribution of Bi = ARi is

statistically close to uniform over Zn×m
q when columns ofRi’s are chosen

from DZm,s′,0.
• Finally, B gives (A,M) to A.

– Breaking One-way Security
• A outputs (X∗ = {Bi1 , . . . ,Bik} ⊆ M,B∗ = B� ∈ M, w∗

B ∈ Zm+m′
)

such that

B∗ /∈ X∗ and Verify (B∗, w∗
B ,AccX∗ ← Acc(X∗)) = 1.

3 To ensure that the SIS instance with norm bound β = Qs′s(m+m′) is hard (worst-
case to average-case reduction), the modulus q of the scheme should satisfy q >
β · w(

√
n log n) (See Theorem 1). In particular, for q we choose the smallest prime

bigger than λt for the smallest t such that q > β · ω(√n log n). Choosing n log n for
ω(

√
n log n), implies β · ω(√n log n) = poly(λ), as Q, s′, s,m,m′, n are all bounded

above by a poly(λ) size number.



356 M.P. Jhanwar and R. Safavi-Naini

– Solving SIS Instance
• Verify(B∗, w∗

B,AccX∗) = 1 means

w∗
B ∈ Λ⊥(A||(AccX∗ −B∗)), and 0 < ||w∗

B || ≤ s
√
m+m′

• Compute R∗ =
∑k

j=1 Rij −R�. Also, write w
∗
B ∈ Zm+m′

as

[
w∗′

B

w∗′′
B

]
such

that w∗′
B ∈ Zm, w∗′′

B ∈ Zm′
.

• Finally, B outputs e = w∗′
B + R∗w∗′′

B ∈ Zm as solution to SIS instance
(q,A ∈ Z

n×m
q , β).

We now show that e is indeed a valid solution (with probability greater
than 2/3), i.e., Ae = 0 mod q, ||e|| ≤ β, and e �= 0. Clearly Ae = A(w∗′

B +

R∗w∗′′
B ) = Aw∗′

B+(
∑k

j=1 ARij −AR�)w
∗′′
B = Aw∗′

B+(
∑k

j=1 Bij −B�)w
∗′′
B =

[A||(AccX∗ −B∗)]w∗
B = 0 mod q.

Next, we show that ||e|| ≤ β. We have e = w∗′
B + R∗w∗′′

B , where R∗ =∑k
j=1 Rij − R� is a sum of k low norm matrices Rij minus a low norm

matrix R� (||Ri|| ≤ s′
√
m with overwhelming probability). Therefore we

have,

||e|| = ||w∗′
B + (

k∑
j=1

Rij −R�)w
∗′′
B ||

≤ ||w∗′
B ||+ ||

k∑
j=1

Rij −R�||||w∗′′
B ||

≤ s
√
m+m′(1 + (k + 1)s′

√
m)

≤ Qs′s(m+m′).

We now complete the proof by showing that e = w∗′
B +R∗w∗′′

B �= 0. Let us
assume w∗′′

B �= 0 (as w∗
B �= 0, w∗′′

B = 0 implies w∗′
B �= 0 and thus e �= 0). As

0 < ||w∗′′
B || ≤ s

√
m+m′ << q, there must be at least one coordinate of w∗′′

B

that is non-zero modulo q. W.l.o.g., let this coordinate be the first one in
w∗′′

B , and call it z. Let r∗
1 be the first column of R∗, and let rt1 be the first

column of Rt for each t in {i1, . . . , ik, �}. Clearly, r∗
1 =

∑k
j=1 rij1 − r�1. We

focus on ri11. Let u = zri11. Rewrite e as e = zr∗1 + e′ = u+ e′′ such that
u depends on ri11 and e′′ does not. Now, the only information about ri11

available to A is contained in the first column of Bi1 = ARi1 . With even A
being known in the worst case, by a simple pigeonhole principle, there are
a very large (exponential in m− n) number of admissible and equally likely
vectors ri11, in particular more than 3Q of them, that are compatible with
the view of A. At most one such value can result in cancellation of e, for
if some u caused all coordination of e to cancel, then every other u would
fail to do so. Therefore Pr[e = 0] ≤ 1/3Q. Since A can choose Bi1 among Q
possible values (Q = |M|), it follows that A can know the value of u with
probability at most 1/3. Hence, Pr[e �= 0] ≥ 2/3.

Therefore, if A breaks the one-way security of the scheme with probability
ε, then B solves the SIS instance with probability ε′ ≥ 2ε/3.



Compact Accumulator Using Lattices 357

4 Conclusion and Open Problems

We have provided the first lattice-based construction of a one-way accumulator
scheme and proved its security from the hardness assumption of the SIS problem
(which is itself implied by worst-case lattice assumptions). We leave open the
problem of how to extend our basic scheme in order to incorporate dynamic and
universal functionalities. Another interesting problem is to extend our scheme
such that zero-knowledge proofs of membership can be obtained.

Acknowledgments. The authors would like to thank Dr. Damien Stehlé for
very helpful comments and for reviewing parts of this paper. The authors would
also like to thank a reviewer of SPACE 2015 for detailed comments.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in
the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010),
http://crypto.stanford.edu/~dabo/pubs/papers/latticebb.pdf

2. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Com-
puting on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 1–20. Springer, Heidelberg (2012)

3. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC, pp. 99–108 (1996)

4. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999)

5. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In:
STACS. LIPIcs, vol. 3. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Ger-
many (2009)

6. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

7. Benaloh, J.C., de Mare, M.: One-Way Accumulators: A Decentralized Alternative
to Digital Signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765,
pp. 274–285. Springer, Heidelberg (1994)

8. Boyen, X.: Lattice Mixing and Vanishing Trapdoors: A Framework for Fully Secure
Short Signatures and More. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

9. Buldas, A., Laud, P., Lipmaa, H.: Accountable certificate management using un-
deniable attestations. In: ACM CCS, pp. 9–17 (2000)

10. Camacho, P., Hevia, A., Kiwi, M., Opazo, R.: Strong accumulators from collision-
resistant hashing. International Journal of Information Security 11(5), 349–363
(2012)

11. Camenisch, J., Kohlweiss, M., Soriente, C.: An Accumulator Based on Bilinear
Maps and Efficient Revocation for Anonymous Credentials. In: Jarecki, S., Tsudik,
G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

http://crypto.stanford.edu/~dabo/pubs/papers/latticebb.pdf


358 M.P. Jhanwar and R. Safavi-Naini

12. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to ef-
ficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

13. Canard, S., Jambert, A.: On Extended Sanitizable Signature Schemes. In: Pieprzyk,
J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010)

14. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptology 25(4), 601–639 (2012)

15. Catalano, D., Fiore, D.: Vector Commitments and Their Applications. In: Kuro-
sawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer,
Heidelberg (2013)

16. Damg̊ard, I., Triandopoulos, N.: Supporting non-membership proofs with bilinear-
map accumulators. IACR Cryptology ePrint Archive, 2008:538 (2008)

17. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous Identification in Ad
Hoc Groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

18. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178. ACM (2009)

19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) STOC 2008, pp. 197–206. ACM
(2008)

20. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, Springer, Heidelberg
(2007)

21. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

22. Micciancio, D., Peikert, C.: Trapdoors for Lattices: Simpler, Tighter, Faster,
Smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 700–718. Springer, Heidelberg (2012)

23. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

24. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
e-cash from bitcoin. In: IEEE Symposium on Security and Privacy. IEEE Computer
Society

25. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

26. Nyberg, K.: Fast accumulated hashing. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 83–87. Springer, Heidelberg (1996)

27. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006)

28. Peikert, C., Vaikuntanathan, V.: Noninteractive Statistical Zero-Knowledge Proofs
for Lattice Problems. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
536–553. Springer, Heidelberg (2008)

29. Pöhls, H.C., Samelin, K.: On updatable redactable signatures. In: Boureanu, I.,
Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 457–475.
Springer, Heidelberg (2014)

30. Wang, P., Wang, H., Pieprzyk, J.: Improvement of a dynamic accumulator at ICICS
07 and its application in multi-user keyword-based retrieval on encrypted data. In:
Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 1381–1386.
Springer, Heidelberg (2007)



Almost Optimum Secret Sharing with Cheating

Detection

Mahabir Prasad Jhanwar1,� and Reihaneh Safavi-Naini2,��

1 CR Rao AIMSCS, UoH Campus, India
2 Department of Computer Science, University of Calgary, Canada

Abstract. A (t, n, δ) secret sharing scheme with cheating detection prop-
erty (SSCD) is a t-out-of-n threshold secret sharing scheme that has the
following additional property; the probability that any t malicious players
can successfully cheat (without being caught) an honest player by opening
forged shares and causing the honest player to reconstruct the wrong se-
cret is at most δ. There are two flavors of security for such schemes known
as OKS and CDV. The lower bound on share sizes for an OKS-secure SSCD
scheme is known, and concrete schemes in which share sizes are equal
to (or almost the same as) the lower bound have been proposed, albeit
with some limitations. We first present a OKS-secure scheme with share
sizes only one bit longer than its existing lower bound. Our construc-
tion is free from any special requirements. We next present a CDV-secure
SSCD scheme, where a stronger form of cheating is allowed. The share
size of our CDV-secure scheme is also one bit longer than the existing
lower bound.

1 Introduction

Secret sharing is one of the most important primitives in cryptography and in
particular distributed systems. Let t, n be positive integers such that 1 ≤ t < n.
In a perfect t-out-of-n secret sharing scheme [20,2], a dealer D distributes a secret
s to n players, say P1, . . . , Pn in such a way that the combined shares of any
t + 1 or more players can recover the secret s, but no subset of t or less shares
can leak any information about the secret s, where the leakage is in information
theoretic sense, and without assuming any limit on the computational resources
of the adversary. An important efficiency parameter in secret sharing scheme
is the size of shares. Let Σi be the set of possible shares for Pi, and Σ be
the set of possible secrets. It is well known that, for t-out-of-n perfect secret
sharing schemes, |Σi| ≥ |Σ| [12]. Schemes with |Σi| = |Σ| are called ideal.
Shamir [20] constructed an ideal (t, n)-threshold secret sharing scheme in which
secrets and shares lie in a finite field Fq, where q > n, and share generation uses

� A major portion of the work was done when the author was a postdoctoral fellow at
the Univeristy of Calgary.

�� Financial support for this research was provided in part by Alberta Innovates -
Technology Futures, in the Province of Alberta in Canada.

c© Springer International Publishing Switzerland 2015
R.S. Chakraborty et al. (Eds.): SPACE 2015, LNCS 9354, pp. 359–372, 2015.
DOI: 10.1007/978-3-319-24126-5_21



360 M.P. Jhanwar and R. Safavi-Naini

evaluation of polynomials over Fq. Let α1, . . . , αn ∈ Fq be n distinct non-zero
field elements known to all players (e.g., if q > n is a prime, we can have αj = j).
To share a secret s ∈ Fq, a trusted dealer chooses t random elements a1, . . . , at,
independently and randomly with uniform distribution, from Fq. These random

elements together with the secret s define a polynomial f(x) = s+
∑t

i=1 aix
i that

is used to generate a share f(αj) for Pj . The correctness and privacy of Shamir
secret scheme follow from properties of Lagrange interpolation (see § 2.2).

In its basic form, secret sharing assumes that the corrupted participants are
passive (or semi-honest) and follow the protocol during the reconstruction phase.
In practice however, one needs to consider stronger adversaries who deviate
from the protocol, collude and submit wrong shares. Secret sharing schemes in
presence of active adversaries have been considered in different settings and with
different requirements. In this paper, we consider secret sharing with cheater
detection (SSCD) introduced by Tompa and Woll [21], and focus on threshold
schemes. In the following we shall first provide a brief introduction of SSCD
schemes, the relevant questions there in, and finally present our contributions.

Informally, an SSCD scheme allows to detect if a set of submitted shares
contain incorrect entries. To achieve cheating detection functionality, the recon-
struction algorithm is enhanced by a checking mechanism, failing which, the
reconstruction outputs a special symbol “⊥”, indicating that some of the shares
presented are incorrect. The two well known security models for SSCD schemes
are given by OKS [17] and CDV [5], where the later guarantees stronger se-
curity. In the OKS model, t players, say P1, . . . , Pt, want to cheat a (t + 1)th
player, Pt+1, by opening incorrect shares Sh′1, . . . , Sh

′
t. The cheaters succeed if

reconstruction does not output ⊥ and the secret s′ that is reconstructed from
Sh′1, . . . , Sh

′
t and Sht+1 is different from the shared secret s. The CDV model

has a stronger security requirements. It assumes that the t cheating players also
know the shared secret s before cheating the (t+1)th player. Let δoks (resp., δcdv)
denote the best probability of successful cheating under OKS (resp., CDV) model
and for real numbers δoks, δcdv > 0, refer to the schemes as (t, n, δoks) OKS-secure
and (t, n, δcdv) CDV-secure schemes. An SSCD scheme has direct applications to
unconditionally secure robust secret sharing [7,6,11,10], secure message trans-
mission [9,13], and cheater identifiable secret sharing [14].

Like basic secret sharing, the most important complexity measure of SSCD
schemes is their share size, i.e., the maximum share size of each player. Tompa
and Woll [21] have showed that an SSCD scheme cannot be ideal. Motivated by
the true lower bounds on share sizes, Ogata, Kurosawa, and Stinson [17] showed
the following lower bounds on |Σi| for (t, n, δoks) OKS-secure and (t, n, δcdv)
CDV-secure schemes, respectively:

|Σi| ≥ |Σ| − 1

δoks
+ 1; |Σi| ≥ |Σ| − 1

δ2cdv
+ 1. (1)

One of the most important problems in this area is construction of SSCD schemes
in which the share size is equal to (or almost the same as) the lower bounds.



Almost Optimum Secret Sharing with Cheating Detection 361

1.1 Our Contributions

We first present an efficient (t, n, δoks) OKS-secure scheme with share size almost
the same as the lower bound. The bit size log2 |Σi| of shares in our scheme is

only one bit longer than log2(
|Σ|−1
δoks

+1), the bit size of lower bound. The scheme
is a simple modification of t-out-of-n Shamir secret sharing, and it is obtained
by choosing a polynomial whose degree is at most 2t (instead of t). We then
apply the same technique to obtain an efficient (t, n, δcdv) CDV-secure scheme.
The share size of CDV secure scheme is also one bit longer than the known lower
bound. The schemes presented in this paper are proven secure without assuming
any limit on the computational resources of the adversary.

1.2 Related Work

An OKS-secure scheme was proposed in [17] (a brief description is given in §
3.3). This is the only known scheme whose share size is exactly equal to the
lower bound. However, the scheme imposes the restriction that the secret be
drawn with uniform distribution from secret space. Later, a few other OKS-secure
schemes were presented with share size almost the same as the lower bound
[3,18,4,10]. However, they also impose restrictions. The OKS-secure scheme of
[4] (based on [3,18]) requires only non-binary fields for secret space, which is a
major restriction (see § 3.3 for a brief description of the scheme). The scheme
in [10] (see also § 3.3) requires to publish a checking vector on an authenticated
public bulleting board. There is no CDV-secure scheme with share size equal to
the lower bound. An almost optimum scheme was also proposed in [4].

The cheating probability for all of the above schemes is dictated by the cardi-
nality of the secret space S: δ = 1/|Σ|. There are also schemes [15,8] where δ can
be chosen such that δ � 1/|Σ|. This is desirable as it allows flexibility in choosing
the security level of the system. The problem of constructing OKS-secure (resp.,
CDV-secure) SSCD schemes that have share size equal to (or nearly the same) as
the lower bound, and allow flexible security level is an interesting open question.
In [1,16], secure SSCD schemes are proposed under a stronger cheating model,
called CDV′, where up to n − 1 players are allowed to cheat. A closely related
cheating model was proposed by Pieprzyk and Zhang in [19] by introducing the
concept of cheating-immune secret sharing scheme.

2 Preliminaries

2.1 Notations

For any positive integer n, we let [n] denote the set {1, . . . , n}. We write |S|
to denote the number of elements in the set S. We write x ∈R S to indicate
that x is chosen with respect to the uniform distribution on S. By x ← S, we
assume x is chosen with arbitrary distribution. We let Fq denote a finite field
with q elements, and Fq[X ] denote the polynomial ring. For a finite field Fq,



362 M.P. Jhanwar and R. Safavi-Naini

we let F≤t
q [X ] denote the set {f ∈ Fq[X ] | deg f ≤ t}, where t ∈ N ∪ {0} and

deg f denotes the degree of f . For a positive integer n, let Zn denote the ring of
integers modulo n.

2.2 Lagrange Interpolation

Let t be a positive integer and F be a field. Given any t+1 pairs of field elements
(x1, y1), . . . , (xt+1, yt+1) with distinct xi’s, there exists a unique polynomial
f(x) ∈ F[x] of degree at most t such that f(xi) = yi for 1 ≤ i ≤ t + 1. The
polynomial can be obtained using the Lagrange interpolation formula as follows,

f(x) = y1λ
A
x1
(x) + · · ·+ yt+1λ

A
xt+1

(x), (2)

where A = {x1, . . . , xt+1} and λA
xi
(x)’s (1 ≤ i ≤ t + 1) are Lagrange basis

polynomials, given by

λA
xi
(x) =

∏
1≤j≤t+1,j �=i(x − xj)∏
1≤j≤t+1,j �=i(xi − xj)

.

When the base point set A = {x1, . . . , xt+1} is clear from the context, we denote
the interpolation of f by f ← LagInt(y1, . . . , yt+1), and λA

xi
(x) by simply λxi(x).

2.3 Secret Sharing with Cheating Detection

Let t, n be positive integers such that 1 ≤ t < n. Informally, a t-out-of-n thresh-
old secret sharing scheme enables a dealer, holding a secret piece of information,
to distribute this secret among a set of n players such that, later, a subset of
players can reconstruct the secret only if there cardinality is at least t + 1. We
let Σ denote the domain of secrets, and Σi denote the domain of shares of Pi,
1 ≤ i ≤ n. Secutity of SSCD has been studied in different models. We consider
the two main models, refered to as OKS [17] and CDV [5] . For fix real num-
bers δoks, δcdv > 0, the schemes secure under OKS model (resp. CDV model ) are
referred to as (t, n, δoks) OKS-secure (resp. (t, n, δcdv) CDV-secure) schemes.

Definition 1 (Secret Sharing with Cheating Detection). A t-out-of-n se-
cret sharing with cheating detection (SSCD) property is consist of two interac-
tive protocols, Share and Rec. The share distribution protocol Share involves a
dealer D and n players P1, . . . , Pn, and the reconstruction protocol Rec involves
P1, . . . , Pn and a reconstructor R (a third party). The protocols work as follows:

– Share: The dealer D runs the share distribution algorithm Share. It is a proba-

bilistic algorithm that, on input s ∈ Σ returns a share vector (Sh1, . . . , Shn)
$←

Share(s), where each Shi is privately given to Pi.
– Rec: The secret reconstruction algorithm Rec is run by R. It is a determin-

istic algorithm that on input the shares Shi1 , . . . , Shit+1 of any t+ 1 players
Pi1 , . . . , Pit+1 returns a value s ← Rec(Shi1 , . . . , Shit+1), where s ∈ Σ ∪ {⊥}.
The symbol ⊥ indicates that a cheating has occurred and the algorithm is
unable to recover the shared secret.



Almost Optimum Secret Sharing with Cheating Detection 363

Definition 2 (SSCD Security under OKS Model). Let δoks > 0. An SSCD
scheme is said to be (t, n, δoks) OKS-secure if Share and Rec protocols satisfy the
following properties:

– Correctness: For every authorized set of players B ⊂ {P1, . . . , Pn}, i.e.,
|B| ≥ t+ 1, and for every s ∈ Σ, we have

Pr[Rec(Share(s)B) = s] = 1, (3)

where Share(s)B denotes the restriction of the n length vector Share(s) =
(Sh1, . . . , Shn) to its B-entries, i.e., Share(s)B = {Shi}Pi∈B, and the proba-
bility is computed over the random coins of Share.

– Perfect Privacy: For an unauthorized set A ⊂ {P1, . . . , Pn}, i.e., |A| ≤ t,
for every pair of values s1, s2 ∈ S, and for every possible vector of shares
(Shi)Pi∈A, it holds that

Pr[Share(s1)A = (Shi)Pi∈A] = Pr[Share(s2)A = (Shi)Pi∈A], (4)

where the probabilities are computed over the random coins of Share.
– Cheating Detection: The cheating detection property of an OKS-secure

SSCD is measured by the maximum probability with which any unbounded
adversary Aoks, who actively controls the outputs of up to t Pi, can win the
following game - OKSGameAoks

SSCD.

s ← S; (Sh1, . . . ,Shn)
$← Share(s);

(i1, . . . , it) ← Aoks;
(Sh′i1 , . . . , Sh

′
it , it+1) ← Aoks(Shi1 , . . . ,Shit);

s′ ← Rec(Sh′i1 , . . . ,Sh
′
it , Shit+1);

s′ ← Game-Output .

Fig. 1. OKSGameAoks
SSCD: The Cheating Detection Game

The game is played between the dealer D and the adversary Aoks. In the

game, D first picks a secret s ∈ S, and computes (Sh1, . . . , Shn)
$← Share(s).

Next, Aoks corrupts up to t players, say Pi1 , . . . , Pit , learns their shares, and
sends possibly modified shares (Sh′i1 , . . . , Sh

′
it) ← Aoks(Shi1 , . . . , Shit) along

with the identity of a (t+1)th player, say Pit+1 , to R. The adversary is said
to win if, Rec(Sh′i1 , . . . , Sh

′
it , Shit+1 ) = s′ and s′ /∈ {s,⊥}. We measure Aoks’s

success by the real number

AdvAoks

SSCD = Pr[s′ /∈ {s,⊥} | s′ ← Rec(Sh′i1 , . . . , Sh
′
it , Shit+1)]. (5)

The (t, n, δoks) security requires that AdvAoks

SSCD ≤ δoks.



364 M.P. Jhanwar and R. Safavi-Naini

Definition 3 (SSCD Security under CDV Model). The security is strength-
ened under the CDV model for SSCD schemes. In the cheating detection game, it
is assumed that t corrupted players also know the shared secret s before they at-
tempt to cheat the (t+1)th player. Formally, an SSCD scheme is called (t, n, δcdv)
CDV-secure if Share and Rec protocols satisfy following properties:

– The Correctness and Privacy hold true as defined in Definition 2.
– Cheating Detection: Let Acdv denote the adversary in the CDV model.

The cheating detection game, denoted by CDVGameAcdv

SSCD, is the same as the
OKS cheating detection game, except the extra information s available to the
adversary, as shown below.

s ← S; (Sh1, . . . ,Shn)
$← Share(s);

(i1, . . . , it) ← Acdv;
(Sh′i1 , . . . ,Sh

′
it , it+1) ← Acdv(Shi1 , . . . ,Shit , s);

s′ ← Rec(Sh′i1 , . . . , Sh
′
it ,Shit+1);

s′ ← Game-Output .

Fig. 2. CDVGame
Acdv
SSCD: The Cheating Detection Game

The adversary is said to win if, Rec(Sh′i1 , . . . , Sh
′
it , Shit+1) = s′ and s′ /∈

{s,⊥}. The advantage of Acdv is measured by AdvAcdv

SSCD = Pr[s′ /∈ {s,⊥} | s′ ←
Rec(Sh′i1 , . . . , Sh

′
it , Shit+1)]. The (t, n, δcdv) security requires that AdvAcdv

SSCD ≤
δcdv.

Known Lower Bounds. The lower bounds on the share sizes of both OKS-secure
and CDV-secure schemes were presented by Ogata, Kurosawa and Stinson in [17].
In the following, we recall the bounds.

Theorem 1. ([17]) For any (t, n, δoks) OKS-secure SSCD scheme with the do-
main of secrets is denoted by Σ, the size of the total shares of Pi for every i ∈ [n]
is lower bounded by

|Σi| ≥ |Σ| − 1

δoks
+ 1. (6)

The lower bound under the CDV model was derived assuming that the secret
is uniformly distributed.

Theorem 2. ([17]) For any (t, n, δcdv) CDV-secure SSCD scheme where the do-
main of secret is Σ with uniform distribution, the size of total shares of Pi for
every i ∈ [n] is lower bounded by

|Σi| ≥ |Σ| − 1

δ2cdv
+ 1 (7)

Although, the schemes proposed in this paper are not flexible, we include the
following section for completeness.



Almost Optimum Secret Sharing with Cheating Detection 365

2.4 Relationship between δ and |Σ|
The maximum cheating probability δ for existing schemes is largely dictated by
the cardinality of secret space Σ and is given by δ ≈ 1/|Σ|. But from a practical
perspective, it is important to choose δ independently. The schemes in [15,8] can
choose δ that is arbitrarily larger than 1/|Σ|. On the other hand, when the secret
space is small, it is important for the scheme to have δ � 1/|Σ|. For example,
for 20 bit secret size, one may require δ = 1/260 � 1/220.

The construction of a flexible scheme with share size equal to, or nearly the
same as, the known lower bound (under OKS/CDV or both models) is an inter-
esting open problem.

3 A (t, n, δoks) OKS-secure SSCD Scheme

In this section, we present an (t, n, δoks) OKS-secure SSCD scheme with share size
nearly the same as the lower bound of Theorem 1. In our scheme, the secrets
are drawn from a finite field Fq and cheating probability is at most 1

q . The

information rate of our scheme is 1/2.

3.1 The Proposed Scheme Πaopt

Let t and n be positive integers such that 1 ≤ t < n. Choose a finite field Fq

with q > 2n. Choose 2n distinct points, α1, . . . , α2n ∈ Fq, known to all players.
We now present our scheme.

– Share: On input a secret s ∈ Fq, the share generation algorithm Share outputs
a list of shares as follows. The dealer D randomly picks a polynomial f ∈R

F≤2t
q [x] such that f(0) = s. For every j in 1 ≤ j ≤ 2n, it computes sj =

f(αj). Finally, for every i in 1 ≤ i ≤ n, player Pi gets Shi = (si, sn+i) as
their share:

Share Distribution Algorithm
Secret s ∈ Fq

↓ f ∈ F
≤2t
q [x]

f(α1), . . . , f(α2n)
Pi ← (f(αi), f(αn+i)), 1 ≤ i ≤ n

– Rec: The secret reconstruction algorithm Rec proceeds as follows. Suppose
the following t + 1 players Pi1 , . . . , Pit+1 provided shares (correct or cor-
rupted) Sh′i1 , . . . , Sh

′
it+1

respectively. The share of Pi is corrupted if Sh′i =
(s′i, s

′
n+i) �= (si, sn+i). This means R has 2t+ 2 points {s′i1 , s′n+i1

, . . . , s′it+1
,

s′n+it+1
} such that at most 2t of them are possibly modified. To detect a

possible cheating R proceeds as follows.

• First, it interpolates a unique polynomial f ′ ← LagInt(s′i1 , s
′
n+i1 , . . . ,

s′it+1
, s′n+it+1

) (see § 2.2 for Lagrange Interpolation LagInt).



366 M.P. Jhanwar and R. Safavi-Naini

• It then checks if the degree of f ′ ?
= 2t + 1. If yes, it outputs ⊥ which

indicates that cheating has occurred.
• Otherwise (i.e., when degree of f ′ ≤ 2t), R outputs f ′(0) as the recon-
structed secret.

3.2 Security

In order to prove the security of Πaopt, we first prove two simple lemmas.

Lemma 1. Let F be any finite field and let α1, . . . , αk ∈ F be any k distinct
points. Let f =

∑k
i=0 aix

i be chosen at random from F≤k[x]. Then given f(α1),
. . . , f(αk), it holds that one of the coefficients {ai}ki=0 of f is uniformly dis-
tributed over F.

Proof: Given f(α1), . . . , f(αk) for a random f ∈ F≤k[x], we have the following
system of linear equations, where a0, a1, . . . , ak form the unknowns of the system:⎡

⎢⎢⎢⎣
1 α1 . . . αk

1

1 α2 . . . αk
2

...
...

. . .
...

1 αk . . . αk
k

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣
a0
a1
...
ak

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
f(α1)
f(α2)

...
f(αk)

⎤
⎥⎥⎥⎦ (8)

Fixing any of the unknowns, e.g. a1, will transform system (8) in to:⎡
⎢⎢⎢⎣
1 α2

1 . . . αk
1

1 α2
2 . . . αk

2
...

...
. . .

...
1 α2

k . . . αk
k

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣
a0
a2
...
ak

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
f(α1)− a1α1

f(α2)− a1α2

...
f(αk)− a1αk

⎤
⎥⎥⎥⎦ (9)

Clearly, the resulting system admits a unique solution (for (a0, a2, . . . , ak)
T )

as its coefficient matrix is non-singular. Therefore a1 is uniformly distributed.

Lemma 2. Let F be any finite field and let a0, . . . , aj−1, aj+1, . . . , ak be any k

points in F. Let aj be chosen at random from F. Define faj =
∑k

i=0 aix
i ∈

F≤k[x]. Then for every α, β ∈ F with α �= 0, it holds that Pr[faj (α) = β] = 1
|F| .

Proof: Let faj (x) = a0 + · · · + ajx
j + · · · + akx

k. Then Pr[faj (α) = β] =
Pr[a0+ · · ·+ ajα

j + · · ·+ akα
k] = β, where the probability is computed over the

random choice of aj ∈ F. Hence, for a randomly chosen aj ∈ F we have

Pr

[
k∑

i=0

aiα
i = β

]
= Pr

⎡
⎣ajαj = β −

∑
0≤i≤k;i�=j

aiα
i

⎤
⎦

= Pr

⎡
⎣aj = (αj)−1

⎛
⎝β −

∑
0≤i≤k;i�=j

aiα
i

⎞
⎠
⎤
⎦

=
1

|F| ,



Almost Optimum Secret Sharing with Cheating Detection 367

where the second equality holds since α ∈ F and α �= 0 implying that αj is
invertible, and the last equality is due to the fact that aj is randomly chosen
from F. This concludes the proof.

Theorem 3. The SSCD scheme Πaopt of § 3.1 is (t, n, δoks) OKS-secure with
secret space Σ = Fq, share space Σi = Fq × Fq for every Pi, and δoks =

1
q .

Proof: The correctness and privacy of Πaopt follows immediately from Shamir
secret sharing scheme: any set of t+1 players can reconstruct the secret as they
hold 2t+2 shares of f , while a set of t players have only 2t shares which do not
leak any information about the secret as f ∈ F

≤2t
q [X ].

We now derive the maximum probability of cheating. For notational clarity,
suppose t+ 1 players P1, . . . , Pt+1 participate in the reconstruction. We further
assume that P1, . . . , Pt are corrupted and provide shares Sh′1, . . . , Sh

′
t such that

Sh′i = (s′i, s
′
n+i) �= (si, sn+i) for at least one i ∈ [t]. The player Pt+1 who is

honest provides the correct share Sht+1 = (st+1, sn+t+1). The cheating will not
be detected if s′1, s

′
n+1, . . . , s

′
t, s

′
n+t and st+1, sn+t+1 lie on a polynomial of degree

at most 2t. The later is true iff sn+t+1 lies on the polynomial passing through
s′1, s

′
n+1, . . . , s

′
t, s

′
n+t and st+1. Let f ′ =

∑2t
i=0 bix

i be the unique polynomial
passing through 2t + 1 points s′1, s

′
n+1, . . . , s

′
t, s

′
n+t and st+1. As f ′ is of degree

at most 2t, and the shares of the corrupted players constitute 2t points on f ′,
the Lemma 1 implies that at least one coefficient of f ′ will remain uniform to
the corrupted players. Therefore by Lemma 2 it holds that Pr[f ′(αn+t+1) =
sn+t+1] =

1
q . This concludes the proof.

3.3 Efficiency Comparison

Previous Works. In [17] Ogata, Kurosawa and Stinson proposed a (t, n, δoks)
OKS-secure SSCD scheme achieving the lower bound of Theorem 1. The scheme
uses a combinatorial object called difference set. In the following we provide a
brief description of their scheme. The scheme is denoted by Πoks.

Definition 4. ([17] (N, �, λ) Difference Set ) Let (Γ,+) be an Abelian (commu-
tative) group of order N . A subset B ⊂ Γ is called an (N, �, λ) difference set if
|B| = � and the set of non-zero differences {d− d′ | d, d′(d �= d′) ∈ B} contains
each non-zero element of Γ precisely λ times.

For an (N, �, λ) difference set B ⊂ Γ , it is clear that |Γ | = N = �(�−1)
λ + 1.

The Πoks scheme was constructed in [17] using a special (N, �, λ) difference set
B ⊂ Γ such that (Γ,+, ·) is a field. It is known that there exists an (N, �, 1)
difference set B ⊂ ZN if � is a prime power, and therefore the scheme of [17]
can be instantiated using B ⊂ ZN if N is also a prime, i.e., (ZN ,+, ·) is a field.
It is also known that if N ≡ 3 (mod 4) is a prime power, then there exists an
(N, �, λ) difference set B in the field FN such that N = 4k − 1, � = 2k − 1, and
λ = k− 1, where k is a positive integer. We now state the main theorem of [17].



368 M.P. Jhanwar and R. Safavi-Naini

Theorem 4. ([17]) Let N be a prime power, and t, n be positive integers such
that 1 ≤ t < n < N . If there exists an (N, �, λ) difference set B in (FN ,+),
then there exists a (t, n, δoks) OKS-secure secret sharing scheme for a uniformly

distributed secret over Σ = B, such that |Σ| = |B| = �, |Σi| = |FN | = �(�−1)
λ +1

for every i ∈ [n] and δoks =
λ
� , i.e., |Σi| = |Σ|−1

δoks
+ 1 for every i ∈ [n] (meets the

lower bound of Theorem 1).

The Πoks scheme does not work for an arbitrary prime power N ; in particular,
it also requires that there exists an (N, �, λ) difference set for some �, λ ∈ N. The
scheme is proven secure only if secret is chosen with uniform distribution. The
scheme was also compared in [18] to be less computationally efficient.

In [4] Cabello, Padró and Sáez proposed a method (based on [3,18]) that
provides cheating detection functionality for any linear secret sharing scheme
realizing general access structures. When their method is applied to Shamir se-
cret sharing (for threshold access structure), it yields a (t, n, δoks) OKS-secure
SSCD with almost optimum share sizes. A brief description of their scheme,
denoted by Πcps, is given below. Let Fq be a finite field with characteristic dif-
ferent from 2, and q > n. Let α1, . . . , αn ∈ Fq be known to all players. For
a given secret s ∈ Fq, the dealer picks at random two polynomials f1, f2 ∈
F≤t
q [X ] such that f1(0) = s and f2(0) = s2 respectively. Every player Pi re-

ceives the share Shi = (si1, si2) = (f1(αi), f2(αi)). During reconstruction, for
any t + 1 players Pi1 , . . . , Pit+1 , R computes (s1, s2) from their shares, where
s1 ← LagInt(si11, . . . , sit+11) and s2 ← LagInt(si12, . . . , sit+12). If s2 = s21, R out-
puts s = s1 as the correct value of the shared secret; Otherwise when s2 �= s21,
it outputs ⊥. Πcps is summarized in the following theorem.

Theorem 5. ([4]) Let Fq be a finite field with characteristic different from 2,
and q > n. The SSCD scheme Πcps is (t, n, δoks) OKS-secure with secret space
Σ = Fq, share space Σi = Fq × Fq for every Pi, and δoks =

1
q . Clearly the share

size |Σi| = q2 is nearly the same as |Σ|−1
δoks

+ 1 = q2 − q + 1.

The main drawback of Πcps is that it works for finite fields with characteristic
different from 2. This is a serious constraint as binary fields make for a suit-
able choice in implementation of cryptographic protocols and in particular for
resource constrained devices.

Recently, In [10] Jhanwar and Safavi-Naini proposed a (t, n, δoks) OKS-secure
SSCD scheme with almost optimum share sizes. Let Πjs denote this scheme.
The scheme works as follows. Consider a finite field Fq such that q > n. Let
α1, . . . , αn ∈ Fq be known to all players. For a given secret s ∈ Fq, the dealer
first picks at random X(�= 0), r ∈ Fq and computes Y = s +Xr. It then picks
at random two polynomials f1, f2 ∈ F≤t

q [X ] such that f1(0) = s and f2(0) = r
respectively. Every player Pi receives the share Shi = (si, ri) = (f1(αi), f2(αi)).
The tuple (X,Y ) is kept as part of system’s public parameters. During reconstruc-
tion, for any t + 1 players Pi1 , . . . , Pit+1 , R computes (s′, r′) from their shares,
where s′ ← LagInt(si1 , . . . , sit+1) and r′ ← LagInt(ri1 , . . . , rit+1). If Y = s′+Xr′,



Almost Optimum Secret Sharing with Cheating Detection 369

the Rec outputs s = s′ as the correct value of the shared secret and it outputs
⊥ if Y �= s′ +Xr′. We now state the security theorem of Πjs.

Theorem 6. ([10]) Let Fq be a finite field with q > n. The SSCD scheme Πjs

is (t, n, δoks) OKS-secure with secret space Σ = Fq, share space Σi = Fq × Fq for
every Pi, and δoks =

1
q . Clearly the share size |Σi| = q2 is nearly the same as

|Σ|−1
δoks

+ 1 = q2 − q + 1.

The Πjs construction puts X,Y ∈ Fq as part of public parameters that are
stored on a publicly accessible authenticated bulletin board. In the case when
such public bulleting board is not available, the usual way out is to issue pub-
lic parameters as part of shares to the players. Because X and Y are used in
cheating detection, it is necessary to receive them in correct. But this may not
be guaranteed, if they are issued as part of shares.

Efficiency of Our Scheme. We first note that our scheme Πopt does not have
any special requirements. Unlike the previous schemes [17,4], the secret in our
scheme can be from any field. The only requirement is that the field size be
≥ 2n. The security against cheating detection holds for arbitrary distribution of
secret. Suppose k = �log2 q%. The shares in our scheme consist of log2(q

2) = 2k

bits, which is only one bit longer than log2(
|Σ|−1

δ + 1) = log2(q(q − 1) + 1) ≥
log2 q + log2(q − 1) ≥ 2k − 1, the size of lower bound.

4 A (t, n, δcdv) CDV-secure SSCD Scheme

We present a (t, n, δcdv) CDV-secure SSCD scheme that is constructed using the
technique in § 3.1. In CDV model, the reconstruction is against a stronger adver-
sary who, in addition to the t shares, also knows the shared secret. In the share
distribution phase of the new scheme, the dealer picks a polynomial f of degree
at most 3t + 1, and gives out 3 distinct points on f to every Pi. The shares of
any t players and the additional knowledge of the shared secret give 3t+1 points
on f , which means f can not be fully reconstructed. But, any t + 1 shares give
3t+3 points on f , which is one point more than the required 3t+2 points. This
extra point is used for cheating detection. We now formally describe the scheme.

4.1 The Proposed Scheme Π̃aopt

Let t and n are positive integers such that 1 ≤ t < n. Choose a finite field Fq

with q > 3n. Choose 3n distinct points, α1, . . . , α3n ∈ Fq, known to all players.
We now present our scheme.

– Share: On input a secret s ∈ Fq, the share generation algorithm Share out-
puts a list of shares as follows. The dealer D randomly picks a polyno-
mial f ∈R F≤3t+1

q [x] such that f(0) = s. For every j in 1 ≤ j ≤ 3n, the



370 M.P. Jhanwar and R. Safavi-Naini

dealer computes sj = f(αj). Finally, for every i in 1 ≤ i ≤ n, Pi receives
Shi = (si, sn+i, s2n+i) as her share:

Share Distribution Algorithm
Secret s ∈ Fq

↓ f ∈ F
≤3t+1
q [x]

f(α1), . . . , f(α3n)
Pi ← (f(αi), f(αn+i), f(α2n+i)), 1 ≤ i ≤ n

– Rec: The secret reconstruction algorithm Rec proceeds as follows. Suppose
the following t + 1 players Pi1 , . . . , Pit+1 provided shares (correct or cor-
rupted) Sh′i1 , . . . , Sh

′
it+1

respectively. The share of Pi is corrupted if Sh′i =
(s′i, s

′
n+i, s

′
2n+i) �= (si, sn+i, s2n+i). This means, R has 3t + 3 points such

that at most 3t of them are possibly modified. To detect a possible cheating,
R now proceeds as follows.

• First, it interpolates a unique polynomial f ′ ← LagInt(Sh′i1 , . . . , Sh
′
it+1

)
(see § 2.2 for Lagrange Interpolation LagInt).

• It then checks if the degree of f ′ ?
= 3t + 2. If yes, it outputs ⊥ which

indicates that cheating has occurred.
• Otherwise (i.e., when degree of f ′ ≤ 3t + 1), R outputs f ′(0) as the
reconstructed secret.

4.2 Security

Theorem 7. The SSCD scheme Π̃aopt of § 4.1 is (t, n, δcdv) CDV-secure with
secret space Σ = Fq, share space Σi = (Fq)

3 for every Pi, and δcdv =
1
q .

Proof: The correctness and privacy of Πaopt follow immediately from Shamir
secret sharing scheme: any t players hold 3t shares which do not leak any infor-
mation about the secret as f ∈ F≤3t+1

q [X ], and any t+1 players can reconstruct
the secret as they hold 3t+3 shares of f . We now derive the maximum probability
of cheating. Suppose players P1, . . . , Pt+1 provide shares during reconstruction.
We further assume that P1, . . . , Pt are corrupted, and they know the shared se-
cret s. The shares {(s′i, s′n+i, s

′
2n+i)}i∈[t] of corrupted players, together with s,

give 3t+1 points on f . As degree of f is at most 3t+1, Lemma 1 and 2 together
imply that 3t+ 3 points of Sh′1, . . . , Sh

′
t and Sht+1 lie on a polynomial of degree

at most 3t+ 1 with probability at most 1/q.

4.3 Efficiency Comparison

In [4], Cabello, Padró and Sáez proposed a method (based on [3,18]) that pro-
vides cheating detection functionality (under CDV model) for any linear secret
sharing scheme realizing general access structures. When their method is applied
to Shamir secret sharing (for threshold access structure), it yields a (t, n, δcdv)
CDV-secure SSCD with almost optimum share sizes. A brief description of their
scheme, denoted as Π̃cps, is given below. Let us fix a finite field Fq with q > n. Let



Almost Optimum Secret Sharing with Cheating Detection 371

α1, . . . , αn ∈ Fq be known to all players. For a given secret s ∈ Fq it first picks a
random r ∈ Fq. The dealer then picks at random polynomials f1, f2, f3 ∈ F≤t

q [X ]
such that f1(0) = s, f2(0) = r and f3(0) = rs respectively. Every player Pi

receives the share Shi = (si1, si2, si3) = (f1(αi), f2(αi), f3(αi)). During recon-
struction, for any t+ 1 players Pi1 , . . . , Pit+1 , R computes (s1, s2, s3) from their
shares, where sj ← LagInt(si1j , . . . , sit+1j), j ∈ {1, 2, 3}. If s3 = s1s2, the Rec
outputs s = s1 as the correct value of the shared secret; otherwise, i.e., when
s3 �= s1s2, it outputs ⊥. The scheme Π̃cps is almost optimum with respect to the

lower bound of Theorem 1. Π̃cps is summarized in the following theorem.

Theorem 8. ([4]) Let Fq be a finite field with q > n. The SSCD scheme Π̃cps

is (t, n, δcdv) CDV-secure with secret space Σ = Fq, share space Σi = (Fq)
3 for

every Pi, and δcdv = 1
q . Clearly the share size |Σi| = q3 is nearly the same as

|Σ|−1
δ2cdv

+ 1 = q2(q − 1) + 1 = q3 − q2 + 1.

Efficiency of Our Scheme. To the best of our knowledge the schemes Π̃cps

([4]) and the proposed scheme Π̃aopt are the only known schemes that are almost
optimum with respect to the share size. Suppose k = �log2 q%. The shares in
our scheme consist of log2(q

3) = 3k bits, which is only one bit longer than

log2(
|Σ|−1
δ2cdv

+ 1) = log2(q
2(q − 1) + 1) ≥ 2 log2 q + log2(q − 1) ≥ 3k − 1, the size

of the lower bound.

5 Concluding Remarks

We presented a simple method for adding cheating detection to Shamir secret
sharing scheme. We used the same approach for both security models of cheat-
ing detection. The resulting schemes have almost optimum share sizes. Unlike
existing schemes, our constructions do not impose any special requirement on
parameters. It is interesting to see if our technique can be generalized to work for
any linear secret sharing scheme. It is also interesting to find its applicability for
robust secret sharing and secure message transmission that are based on Shamir
secret sharing.

Acknowledgments. The authors would like to thank a reviewer of SPACE
2015 for detailed comments.

References

1. Araki, T.: Efficient (k,n) threshold secret sharing schemes secure against cheating
from n − 1 cheaters. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007.
LNCS, vol. 4586, pp. 133–142. Springer, Heidelberg (2007)

2. Blakley, G.: Safeguarding cryptographic keys. AFIPS National Computer Confer-
ence 48, 313–317 (1979)



372 M.P. Jhanwar and R. Safavi-Naini

3. Cabello, S., Padró, C., Sáez, G.: Secret sharing schemes with detection of cheaters
for a general access structure. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS,
vol. 1684, pp. 185–194. Springer, Heidelberg (1999)

4. Cabello, S., Padró, C., Sáez, G.: Secret sharing schemes with detection of cheaters
for a general access structure. Des. Codes Cryptography 25(2), 175–188 (2002)

5. Carpentieri, M., De Santis, A., Vaccaro, U.: Size of shares and probability of
cheating in threshold schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 118–125. Springer, Heidelberg (1994)

6. Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-secure robust
secret sharing with compact shares. In: Pointcheval, D., Johansson, T. (eds.) EU-
ROCRYPT 2012. LNCS, vol. 7237, pp. 195–208. Springer, Heidelberg (2012)

7. Cramer, R., Damg̊ard, I., Fehr, S.: On the cost of reconstructing a secret, or VSS
with optimal reconstruction phase. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 503–523. Springer, Heidelberg (2001)

8. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg
(2008)

9. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
In: FOCS 1990, pp. 36–45. IEEE Computer Society (1990)

10. Jhanwar, M.P., Safavi-Naini, R.: On the Share Efficiency of Robust Secret Sharing
and Secret Sharing with Cheating Detection. In: Paul, G., Vaudenay, S. (eds.)
INDOCRYPT 2013. LNCS, vol. 8250, pp. 179–196. Springer, Heidelberg (2013)

11. Jhanwar, M.P., Safavi-Naini, R.: Unconditionally-secure ideal robust secret sharing
schemes for threshold and multilevel access structure. J. Mathematical Cryptol-
ogy 7(4), 279–296 (2013)

12. Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE
Transactions on Information Theory 29(1), 35–41 (1983)

13. Kurosawa, K., Suzuki, K.: Almost secure (1-round, n-channel) message transmis-
sion scheme. IEICE Transactions 92-A(1), 105–112 (2009)

14. Obana, S.: Almost optimum t-cheater identifiable secret sharing schemes. In: Pa-
terson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 284–302. Springer,
Heidelberg (2011)

15. Obana, S., Araki, T.: Almost optimum secret sharing schemes secure against cheat-
ing for arbitrary secret distribution. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 364–379. Springer, Heidelberg (2006)

16. Ogata, W., Eguchi, H.: Cheating detectable threshold scheme against most pow-
erful cheaters for long secrets. Des. Codes Cryptography 71(3), 527–539 (2014)

17. Ogata, W., Kurosawa, K., Stinson, D.R.: Optimum secret sharing scheme secure
against cheating. SIAM J. Discrete Math. 20(1), 79–95 (2006)

18. Padró, C., Sáez, G., Villar, J.L.: Detection of cheaters in vector space secret sharing
schemes. Des. Codes Cryptography 16(1), 75–85 (1999)

19. Pieprzyk, J., Zhang, X.-M.: On cheating immune secret sharing. Discrete Mathe-
matics & Theoretical Computer Science 6(2), 253–264 (2004)

20. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

21. Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptology 1(2),
133–138 (1988)



Author Index

Abdelkhalek, Ahmed 127, 139
Alpár, Gergely 310
AlTawy, Riham 113
Amour, Leo St. 75

Banik, Subhadeep 95
Batina, Lejla 210
Bernstein, Daniel J. 228
Bertoni, Guido M. 172
Bhasin, Shivam 248
Bukac, Vit 21

Carlet, Claude 151
Chakraborty, Abhishek 190
Chatterjee, Sanjit 1
Cvrček, Dan 269

Dahab, Ricardo 289
Danger, Jean-Luc 248
Dayal, Avik 41
Deng, Yi 41

Ge, Xinyang 55
Grassi, Lorenzo 172
Guilley, Sylvain 248

Hampiholi, Brinda 310

Jacobs, Bart 310
Jaeger, Trent 55
Jha, Sonu 95
Jhanwar, Mahabir Prasad 347, 359

Krzywiecki, �Lukasz 329

López, Julio 289

Matyas, Vashek 21
Mazumdar, Bodhisatwa 210
Melzani, Filippo 172
Mukherjee, Sayantan 1
Mukhopadhyay, Debdeep 190, 210, 248
Muthukumaran, Divya 55

Najm, Zakaria 248
Nascimento, Erick 289
Ngo, Xuan Thuy 248
Niederhagen, Ruben 228

Patidar, Govind 1
Patranabis, Sikhar 190
Petullo, W. Michael 75
Picek, Stjepan 210

Roy, Debapriya Basu 248
Rueda, Sandra 55

Safavi-Naini, Reihaneh 347, 359
Schiffman, Joshua 55
Shukla, Sandeep K. 41
Sulkowska, Ma�lgorzata 329
Švenda, Petr 269

Tolba, Mohamed 127, 139

Van Aubel, Pol 228
van den Broek, Fabian 310
Vijayakumar, Hayawardh 55

Youssef, Amr M. 113, 127, 139

Zagórski, Filip 329


	Preface
	Message from the General Chairs
	SPACE 2015
	Abstracts of Invited Talks
	Boring Crypto
	Introduction to Security Analysisof Crypto APIs
	The Tor Network: Free Software for a FreeSociety
	Post-Quantum Cryptography
	Inferring Programmer Expectations to ProtectProgram Execution
	Side Channel Attacks: Types, Methods andCountermeasures

	Contents
	Efficient Protocol for Authenticated Email Search
	1 Introduction
	2 Preliminaries
	2.1 Cryptographic Primitives and Complexity Assumptions
	2.2 Authenticated Data Structure
	2.3 System Overview

	3 Proposed Protocol
	3.1 Setup
	3.2 Update
	3.3 Intersection
	3.4 Union
	3.5 Composite Query

	4 Comparison
	4.1 Analytical Comparison
	4.2 Experimental Results

	5 Conclusion

	Analyzing Traffic Features of Common Standalone DoS Attack Tools
	1 Introduction
	2 Related Work
	3 Experiment
	3.1 DoS Tools Selection
	3.2 Environment
	3.3 Measurement

	4 DoS Traffic Properties
	4.1 Traffic Burst Behavior
	4.2 Flow Count
	4.3 Flow Parallelity
	4.4 HTTP Requests Per Flow
	4.5 HTTP Request URIs
	4.6 Flow Packet Count

	5 Discussion
	5.1 Traffic Features and Aggregation
	5.2 Repeating Patterns
	5.3 Evasion Techniques
	5.4 Future Work

	6 Conclusions

	Design of Cyber Security for Critical Infrastructures: A Case for a Schizoid Design Approach
	Introduction
	Goals of Designing a Virtual SCADA Lab

	Virtual SCADA Testbed Design Methodology
	Distributed VSCADA Testbed System Architecture Design
	VSCADA Backend Architecture Design
	VSCADA Frontend Architecture Design
	Network Simulation/Emulation Architecture Design

	VSCADA Implementation
	Human Machine Interface (HMI)
	SCADA Master Control Server
	Communication Protocol
	Linux Containers/NS2 Interface
	Software Simulators

	Cyber Security Case Study
	Network Security Scenario
	Data Injection Attack Implementation

	Conclusion

	Designing for Attack Surfaces: Keep Your Friends Close, but Your Enemies Closer
	1 Introduction
	2 Background
	2.1 System Configuration
	2.2 Trends in System Configuration

	3 Attack Surfaces
	4 Proposed Approach
	5 Deploying the Approach
	5.1 Hierarchical State Machine Model
	5.2 Proposing Attack Surfaces
	5.3 Finding Flow Errors
	5.4 Mediating Flow Errors
	5.5 Testing the Resulting System

	6 Conclusions

	Improving Application Security through TLS-Library Redesign
	Introduction
	Related Work
	API Pitfalls
	Improved APIs and Static Analysis
	Privilege Separation
	Specialized Cryptographic Key Isolation

	Threat Model
	Design of libtlssep
	Libtlssep Architecture
	LibtlssepAPI and Configuration

	Security, Programmability, and Performance
	Security Benefits of libtlssep's API and Architecture
	Programmability
	Performance

	Conclusion

	How Not to Combine RC4 States
	1 Introduction
	1.1 Contribution and Organization of the Paper

	2 Description and Analysis of the RC4B Stream Cipher
	2.1 Description of RC4B
	2.2 Analysis of RC4B

	3 Description and Analysis of Quad-RC4 and m-RC4 Stream Ciphers
	3.1 Description of Quad-RC4
	3.2 Analysis of Quad-RC4
	3.3 Description of m-RC4
	3.4 Analysis for Even m
	3.5 Analysis for General m
	3.6 The Flaws in the Design

	4 Experimental Results
	5 Conclusion

	Preimage Analysis of the Maelstrom-0 Hash Function
	1 Introduction
	2 Related Work
	3 Specifications of Maelstrom-0
	4 Pseudo Preimage Attack on the 6-Round Reduced Compression Function
	5 Preimage of the Maelstrom-0 Hash Function
	6 Conclusion

	Meet-in-the-Middle Attacks on Round-Reduced Khudra
	1 Introduction
	2 Specifications of Khudra
	2.1 Notations

	3 MitM Attacks on Round-Reduced Khudra
	3.1 A MitM Attack on 13-Round Khudra
	3.2 A MitM Attack on 14-Round Khudra

	4 Conclusion and Discussion

	Improved Key Recovery Attack on Round-reduced Hierocrypt-L1 in the Single-Key Setting
	1 Introduction
	2 Specification of Hierocrypt-L1
	3 A Differential Enumeration MitM Attack on HC-L1
	4 Conclusion

	S-boxes, Boolean Functions and Codes for the Resistance of Block Ciphers to Cryptographic Attacks, with or without Side Channels
	Introduction
	Known S-boxes with Good Properties
	The Case m<n

	Protection of S-boxes against Side Channel Attacks
	Masking
	Masking Schemes
	An Open Problem with Multiple Facets

	Boolean Functions, Vectorial Boolean Functions and Error Correcting Codes for Improving Counter-Measures to SCA
	Correlation Immune Boolean Functions, Vectorial Functions with Correlation Immune Graphs, Complementary Information Set Codes
	Linear Complementary Dual Codes


	Simulations of Optical Emissions for Attacking AES and Masked AES
	Introduction
	Background on Photonic Emission
	Photonic Emissions in CMOS
	Photons Emission by the SRAM during the Reading Operation

	Background on AES
	The Masked AES Algorithm

	Photonic Side Channel Attacks on AES
	Monitoring the SRAM
	Key Recovery in the Simple Model
	Chosen Plaintext Attack in the Simple Model
	Key Recovery in the Generic Model

	Photonic Side Channel Attacks on Masked AES
	Key Recovery
	Two Different Bytes of the Masked Message (with the Same Masks)
	One Byte of the Masked Message and of the Associated Mask
	Numerical Model and Comparison

	Conclusion

	Fault Tolerant Infective Countermeasure for AES
	Introduction
	Preliminaries: The Infective Countermeasure
	Information Theoretic Evaluation of the Infective Countermeasure
	The Evaluation Methodology
	Evaluating the Security of the Infective Countermeasure against DFA
	Security against Single Fault Injections
	Security against Multiple Fault Injection

	Instruction Skip Threats to the Infective Countermeasure
	Possible Attacks on the Infective Countermeasure: Affecting Flow Sequence
	The Instruction Skip Fault Model
	Instruction Skip Attack on the Infective Countermeasure
	The Information Leakage : A Formal Quantification
	The Loopholes in the Infective Countermeasure : A Closer Look

	A Modified Infective Countermeasure
	Instruction Skip Attack on the Modified Algorithm

	Simulation and Experimental Results
	Simulation Results
	Experimental Results

	Conclusions
	Security of the Bit String cstr in the Modified Countermeasure

	Modified Transparency Order Property: Solution or Just Another Attempt
	Introduction
	Related Work
	Our Contributions

	Preliminaries
	Optimal S-boxes
	Cryptographic Properties of S-boxes
	Affine Equivalence

	Generating S-boxes
	Random Search
	Genetic Algorithm
	Evolved S-boxes
	Affine Transformations

	Success Rate Evaluation of DPA Attacks on the Synthesized S-boxes
	Conclusion

	Investigating SRAM PUFsin large CPUs and GPUs
	1 Introduction
	2 Experimental Setup for the CPU
	3 CPU Registers
	3.1 Boot Process
	3.2 Kernel
	3.3 GRUB
	3.4 Coreboot

	4 CPU Cache
	4.1 Cache Operation
	4.2 Coreboot

	5 GPU Experimental Setup
	6 GPU Multiprocessor Shared Memory
	7 Discussion
	7.1 Future Work


	Reconfigurable LUT: A Double Edged Sword for Security-Critical Applications
	Introduction
	Rationale of the RLUT
	Comparison with Dynamic Configuration
	RLUT and Security

	Destructive Applications of RLUT
	Adversary Model
	Trigger Design the Hardware Trojans
	Trojan Description

	Constructive Applications for RLUT
	Customizable Sboxes
	Sbox Scrambling for DPA Resistance

	Conclusions
	Trigger Generation for Hardware Trojans

	Architecture Considerations for Massively Parallel Hardware Security Platform
	Introduction
	Cryptography as a Service (CaaS)
	Levels of Trust and Security
	Usage Scenarios
	Typical Operations Needed for CaaS
	Preferred Properties of Cloud-Based High-Performance CaaS

	Building Hardware for CaaS Back-End
	Designing CaaS
	The Proposed Design
	Why Smart Cards?

	The Case Study: HMAC-Based One-Time Password
	Why Would HOTP Will Benefit from CaaS?
	Moving HOTP into CaaS
	HOTP Implementation
	Performance Results – A Single Card
	Improving Expected Performance
	Performance Results – Network of Processors

	Future Directions
	Conclusions

	Efficient and Secure Elliptic Curve Cryptography for 8-bit AVR Microcontrollers
	Introduction 2 pg
	Side-Channel Analysis on the AVR 1 pg
	Timing Analysis
	Simple Power Analysis

	Prime Field Arithmetic
	Arithmetic Modulo Ed25519 Group Order
	Scalar Multiplication
	Extended Twisted Edwards Coordinates
	Variable-Base Scalar Multiplication
	Flash Memory Address Leakage Through Power
	Fixed-Base ECSM for Ed25519 Key Generation and Signing
	Projective Coordinate Randomization

	Hashing and PRNG
	Elliptic Curve Protocols
	Benchmarking Results 1 pg
	Timing and Simple Power Analysis Leakage Evaluation
	Application of CRI's Methodology to ECC
	Measurement Setup and Capture of Power Traces
	SPA Leakage Analysis

	Side-Channel Analysis Results 1 pg
	Conclusion
	ATmega328P Microcontroller and Chipwhisperer
	Algorithms

	Towards Practical Attribute-Based Signatures
	1Introduction
	2About IRMA
	3IRMA's Selective Disclosure Proofs as Digital Signatures
	3.1IRMA Signature Scheme
	3.2Diversification between SD Proofs Used for Authentication and Signatures
	3.3Brief Security Analysis of IRMA Signatures

	4Infrastructural Concerns for IRMA Signatures
	4.1Timestamps in IRMA Signatures
	4.2Revocation of Credentials in IRMA

	5Discussion
	5.1Use Case Scenarios
	5.2Estimating the Efficiency of IRMA Signatures

	6Concluding Remarks
	ASchnorr's Identification Scheme
	BCamenisch-Lysyanskaya (CL) Signature
	CIRMA Signature and Verification Algorithms

	Hierarchical Ring Signatures Revisited – Unconditionally and Perfectly Anonymous Schnorr Version
	1 Introduction
	2 Construction Overview
	2.1 Preliminaries
	2.2 Hierarchical Ring Signature Scheme

	3 Construction Based on Schnorr Ring Signatures
	3.1 Hierarchical Schnorr Ring Signature
	3.2 Security of the Scheme

	4 Conclusions 

	Compact Accumulator Using Lattices
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Lattices

	3 A Compact Accumulator Scheme
	3.1 Correctness
	3.2 Security

	4 Conclusion and Open Problems

	Almost Optimum Secret Sharing with Cheating Detection
	1Introduction
	1.1Our Contributions
	1.2Related Work

	2Preliminaries
	2.1Notations
	2.2Lagrange Interpolation
	2.3Secret Sharing with Cheating Detection
	2.4Relationship between  and ||

	3A (t,n,oks) OKS-secure SSCD Scheme
	3.1The Proposed Scheme aopt
	3.2Security
	3.3Efficiency Comparison

	4A (t,n,cdv) CDV-secure SSCD Scheme
	4.1The Proposed Scheme aopt
	4.2Security
	4.3Efficiency Comparison

	5Concluding Remarks
	References




