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    Chapter 6   
 Development of Land Degradation 
Assessments                     

              Early assessments of land degradation like the Global Assessment of Soil Degradation 
(GLASOD) (Oldeman et al.  1990 ) were compilations of expert opinion. They are 
unrepeatable and systematic data show them to be unreliable (Sonneveld and Dent 
 2009 ). Under the FAO/UNEP program  Land Degradation in Drylands (LADA) , Bai 
et al. ( 2008 ) undertook a global assessment of land degradation and improvement 
(GLADA) by analysis of linear trends of climate-adjusted GIMMS NDVI data. 
GLADA, the fi rst quantitative assessment of global land degradation, aimed to iden-
tify and delineate  hot spots of land degradation, and their counterpoint—bright 
spots of land improvement  (Bai et al.  2008 ). The study revealed that about 24 % of 
the global land area was affected by land degradation between 1981 and 2003. Humid 
areas accounted for 78 % of the global degraded land area, while arid and semiarid 
areas accounted for only 13 %. Cropland and rangelands accounted for 18 % and 
43 %, respectively, of the 16 % of global land area where the NDVI increased. The 
authors observed a positive correlation between population density and NDVI but, 
also, a correlation between poverty and land degradation. They emphasized that 
NDVI cannot be other than a proxy for land degradation and that it reveals nothing 
about the kind of degradation or the drivers (Bai et al.  2008 ). 

 Potential false alarms caused by drought cycles and rising global temperatures 
were removed by screening the data using rain-use effi ciency (RUE) and energy-use 
effi ciency (EUE). RUE was estimated from the ratio of the annual sum NDVI to 
annual rainfall calculated from the VASClimO station-observed monthly rainfall 
data gridded to 0.5° latitude/longitude (Beck et al.  2005 ); EUE was represented by 
the ratio of NDVI and accumulated temperature calculated from the CRU dataset 
(Jones and Harris  2013 ; Mitchell and Jones  2005 ). The sequence of operations was:

    1.    Areas where biomass productivity depends on annual rainfall were identifi ed as 
those with a signifi cant positive relationship between NDVI and rainfall. In these 
areas, years of below-normal rainfall exhibit below-normal NDVI and also, usu-
ally, increased RUE. Where there is decreasing NDVI but steady or increasing 
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RUE, the loss of productivity was attributed to drought and these areas were 
masked. Where both NDVI and RUE declined, something else is happening and 
these areas were included in the next stage of analysis.   

   2.    For the remaining areas where productivity is not limited by rainfall and, also, 
for those with a positive relationship between productivity and rainfall but 
declining RUE, greening and browning trends were calculated as  RUE-adjusted 
NDVI . Similarly, EUE was used to separate trends caused by rising temperatures, 
the net result being a  climate-adjusted NDVI.    

   3.    Urban areas were masked (this makes little difference to the global results 
−0.5 % for the identifi ed degrading land and 0.2 % for improving land). Irrigated 
areas were not masked; the separation of areas of positive and negative correla-
tion with rainfall effectively separates wetlands, irrigated areas, and areas with 
surplus rainfall from the areas where unadjusted NDVI is a good measure of 
degradation and improvement. Humid areas have not been masked; unadjusted 
NDVI was used for all of those areas where RUE is  not  appropriate.   

   4.    The T-test was used to test the signifi cance of the linear regression; class bound-
aries were defi ned for 90, 95, and 99 % levels.   

   5.    To arrive at a measure amenable to economic analysis, NDVI trend was trans-
lated into gain or loss of NPP by correlation with MODIS 8-day NPP data 
(Running et al.  2004 ) for the overlapping period (2000–2006).   

   6.    Several indices of land degradation and improvement were compared with land 
cover, land use, and landform. Land-use change is a main driver of land degrada-
tion so it would be useful to undertake analysis of NDVI against change in land 
use and management, but there are no corresponding time series data for land use 
or land cover. GLC2000 (Bartholomé and Belward  2005 ) global land-cover and 
land-use systems of the world (FAO  2013 ) were used for preliminary compari-
son with NPP trends.   

   7.    Soil and terrain: A global soil and terrain database at scale 1:1 million-scale was 
compiled using the 90 m-resolution SRTM digital elevation model and a dataset 
of key soil attributes for the LADA partner countries (ISRIC  2008a ,  b ). 
Correlations between land degradation and soil and terrain were investigated in 
country studies.   

   8.    Population, urban areas, and poverty indices: The CIESIN Global Rural–urban 
Mapping Project provides data for population and urban extent, gridded at 30 
arc-second resolution (CEISIN  2004 ). Subnational rates of infant mortality and 
child underweight status and the gridded population for 2005 at 2.5 arc-minutes 
resolution (CEISIN  2007 ) were compared with indices of land degradation.    

  The picture revealed by GLADA was against received wisdom which reckoned 
that degradation was worst in the Sahel, the Amazon rain forest, and, more gener-
ally, in drylands. But the Sahel, Amazon, and drylands mainly showed increases 
in climate-adjusted NDVI. The areas hardest hit appeared to be Africa South of 
the Equator, Southeast Asia, the Pampas and Chaco regions in South America, 
North Central Australia, and swaths of the high-latitude forest belt extending 
across North America and Siberia. However, the identifi cation of increases in the 
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Amazon by Bai et al. ( 2008 ) may be questioned in the light of more recent studies 
by Morton et al. ( 2014 ) showing that the apparent greening of Amazon forests 
revealed in optical remote sensing data is due to seasonal changes in NIR refl ec-
tance—an artifact of variations in sun-sensor geometry (Morton et al.  2014 ). The 
picture is different again when the same analysis is applied to the extended 
GIMMS3g dataset for 1981–2011; the differences are not just because of the lon-
ger run of data but because of changes in GIMMS data processing to correct better 
for the periodic replacement of AVHRR sensors (especially AVHRR 2 to AVHRR 
3). Importantly, the processing of the latest GIMMS dataset does not assume sta-
tionarity (no overall change in NDVI) but, rather, reveals the underlying trends 
(Pinzon and Tucker  2014 ).      
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