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    Chapter 4   
 Limits to the Use of NDVI in Land 
Degradation Assessment                     

              During the past half century, NDVI has been widely used for vegetation mapping 
and monitoring as well as in the assessment of land-cover and associated changes. 
This is because remotely sensed satellite-derived datasets provide spatially contin-
uous data (data that are not sampled at individual points) and yield time-series 
signatures from which temporal patterns, trends, variations, and relationships may 
be derived (Jacquin et al.  2010 ). This has not prevented the misuse of NDVI—care 
is needed in the use of any scientifi c methodology. 

 As a spectral index of vegetation, NDVI provides the most direct quantifi cation 
of the fraction of photosynthetically active radiation (fPAR) that is absorbed by 
vegetation (Running et al.  2004 ) (Figs   4.1   and   9.2    ). The convenience of satellite- 
derived NDVI and techniques of remote sensing for monitoring vegetation cover 
and assessing vegetation condition has been demonstrated at spatial scales from 
local to global and in diverse fi elds of environmental studies:

 –     Desertifi cation (Olsson et al.  2005 ; Sternberg et al.  2011 ; Tucker and Nicholson 
 1999 ; Wessels et al.  2004 ; Symeonakis and Drake  2004 )  

 –   Drought assessment and monitoring (Anyamba and Tucker  2012 ; Bandyopadhyay 
and Saha  2014 ; Karnieli et al.  2010 ; Liu and Juárez  2001 )  

 –   El Nino impacts on ecosystems (Liu and Juárez  2001 )  
 –   Monitoring and assessment of regional to global changes in land cover and land 

use (Achard et al.  2007 ; Bradley and Mustard  2008 ; Cook and Pau  2013 ; Field 
et al.  1995 ; Lambin and Ehrlich  1997 ; Prince and Goward  1995 ; Rouse et al.  1974 )  

 –   Ecosystem health and services (Pettorelli et al.  2014 ; Zhang et al.  2013 ; Bai 
et al.  2013 )    

 Nonetheless, the use of NDVI to discriminate directly between degraded and 
non-degraded areas can be challenging, both in implementation and interpretation. 
Wessels et al. ( 2004 ) studied non-degraded and degraded areas in northeastern 
South Africa, both exposed to identical rainfall regimes, paired and monitored over 
16 growing seasons, and concluded that, in some cases, degraded areas were no less 
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stable than non-degraded areas. This is a call for caution in properly contextualizing 
land degradation assessments based on NDVI-, NPP-, or RUE-derived indices 
(see Sect. 5.5). It is our recommendation in this report that all NDVI studies use 
MODIS NDVI data as the benchmark. If identical NDVI trends between or among 
different NDVI datasets are not found, something is incorrect, and it is not the 
MODIS NDVI data. So all NDVI3g land surface studies be compared to MODIS 
NDVI data from the overlapping period (see Fig.   9.1    ). Failure to perform this inter-
comparison can only lead to confusion. 

 Other issues also need to be considered in the use of NDVI for land degradation 
assessments:

 –     The contentious issue of NDVI saturation at higher LAIs : It has been argued that 
the NDVI signal from tropical evergreen forests is saturated so that there is a low 
signal/noise ratio. This is reported to occur when NDVI is related to LAI through 
a linear or exponential regression model (Schlerf et al.  2005 ). We are using 
NDVI as a surrogate for photosynthetic capacity. When photosynthetic capacity 
is at a maximum, there will be no change in NDVI because there is no change in 
photosynthetic capacity—because all visible photons have been absorbed. This 
is not saturation because primary production or photosynthesis is driven by light 
absorption. When there is no more light to be absorbed in high leaf density 
 situations, photosynthesis is at a maximum and cannot increase (Fig.   4.1  ). 
Furthermore, integrated NDVI is directly related in a linear fashion to integrated 
fl uorescence (Fig.   9.2    ). If NDVI saturation was real, the relationship in Fig.   9.2     
would not occur.  

  Fig. 4.1    Comparison between integrated gross primary production from 12 fl ux towers and inte-
grated NDVI from MODIS Terra for the respective growing seasons where the fl ux towers were 
situated. This demonstrates the strong relationship between NDVI and primary production which 
is directly related to chlorophyll abundance and energy absorption (Myneni et al.  1995 ,  2014 ). 
There is no saturation of NDVI with respect to photosynthetic capacity (also see Fig.   9.2    )       
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 –   Caution is needed in the use of vegetation indices to estimate LAI because there 
is no unique relationship between LAI and any particular vegetation index, but 
rather a set of relationships, each depending on the architecture of the plants in 
question (Haboudane et al.  2004 ). A LAI of a grass canopy cannot be compared 
to the same LAI of a broadleaf forest—the former has vertical leaves and the lat-
ter has horizontal leaves. NDVI is directly related to primary production and 
energy absorption (Myneni et al.  1995 ) and not to LAI.  

 –    It’s hard to separate the effects of climate from the effects of land degradation:  
Wessels et al. ( 2007 ) used the trend of residuals (RESTREND) to distinguish 
human-induced land degradation from the effects of rainfall variability. GLADA’s 
empirical screening using RUE identifi ed much the same patterns as RESTREND 
and has the advantage that it translates to NPP for economic analysis (see discus-
sion in Sect. 5). Conijn et al. ( 2013 ) disentangled climate from other factors 
affecting NDVI by modeling biomass production independently according to crop 
characteristics and global data for climate, soils, and land use. Combining NDVI 
trends and modeled changes in biomass yields four scenarios: (a) positive ∑NDVI 
and positive biomass change (where greening might be explained by improving 
weather), (b) positive ∑NDVI and negative biomass (in spite of worsening 
weather, greenness has increased, thanks to management or atmospheric fertiliza-
tion), (c) negative ∑NDVI and positive biomass (greenness declines against a 
trend of expected increase, so land degradation or land-use change has outweighed 
favorable weather), and (d) negative ∑NDVI and negative biomass (declining 
greenness may be explained by worsening weather) (Conijn et al.  2013 ). Whether 
the benefi ts of clearer separation of the climatic drivers is worth the substantial 
effort required is debatable, bearing in mind that the spatial variability of rainfall 
in drylands makes interpolation of the sparse point measurements problematic 
and the limitations of biomass modeling using a limited number of vegetation 
types and predefi ned management. It is no easier to verify changes in calculated 
biomass using independent data than to verify changes in NDVI.  

 –    Cloudiness:  The traditional approach of dealing with cloud cover has been to use 
Maximum Value Composites (MVC) (Holben  1986 ) which minimizes cloud 
contamination, reduces directional refl ectance and off-nadir viewing effects, 
minimizes sun-angle and shadow effects, and minimizes aerosol and water-vapor 
effects. MVC requires that a series of original daily observations of multitempo-
ral geo-referenced satellite data be processed into NDVI images pixel by pixel. 
Each NDVI value is inspected, and only the highest value is retained for each 
pixel location to eventually form part of an MVC image. MVC has been used in 
the production of the GIMMS NDVI 8-km dataset (Tucker et al.  2005 ). This 
compositing approach was necessary because the needed atmospheric variables 
were not present in the early part of this record for explicit corrections. To avoid 
time-series bias, the same processing approach has been applied to the entire 
1981–2014 NDVI3g dataset. 

 This and any other compositing procedure may give rise to bias if a single 
false high is registered (Pettorelli et al.  2005 ). All compositing approaches may 
underestimate photosynthetic capacity under cloudy conditions, high aerosol 
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situations, and the presence of snow cover. To eliminate these possibilities of 
bias, de Jong et al. ( 2011a ) used the HANTS algorithm to remove residual cloud 
effects by applying Fourier analysis complemented by detection of outliers that 
were replaced by a fi ltered value. This approach identifi es the high frequency 
“noise” components in NDVI time series data sets and removes them. All vegeta-
tion index data sets suffer from these problem and may be corrected using 
HANTS. Comparison of global NDVI trends using the HANTS-reconstructed 
data with the original GIMMS data showed no measurable difference (de Jong 
et al.  2011a ).  

 –    Autocorrelation nullifi es trend analysis:  Autocorrelation (whereby any individ-
ual value is infl uenced by the preceding values) is avoided by using annual 
∑NDVI rather than the fortnightly GIMMS values, but this entails a loss of 
information; for example, we cannot analyze subtly changing seasonal responses 
of the NDVI signal that may indicate the nature of any degradation. De Jong 
et al. ( 2011a ) applied the nonparametric Mann–Kendall model that is unaffected 
by autocorrelation to GIMMS NDVI data and normalized the data for seasonal 
variations in phenology rather than calendar years (which should be better in the 
southern hemisphere where growing seasons do not fall neatly within the calen-
dar year). Linear regression measures annual accumulated photosynthetic activ-
ity, while Mann–Kendall measures the photosynthetic intensity of the growing 
season. Each has its own advantages, but the close similarity of the patterns of 
greening and browning revealed by the two models suggests that both are robust.  

 –    Direct assessment of some land degradation processes:  As discussed in Sect. 
3.5, there are constraints in using NDVI to identify and map soil salinity: most of 
the salt remains below the soil surface so it cannot be detected on satellite images 
(Farifteh et al.  2006 ); surface salinity is very dynamic, and its detection can be 
blurred by vegetation and other surface features (Metternicht and Zinck  2003 ). 
The effects of sodicity and soil acidity are also impossible to distinguish from 
other limitations on the growth and productivity of vegetation.  

 –    Measurement of land degradation using NDVI trends underestimates the prob-
lem:  Farming everywhere is running down stocks of soil organic matter that sup-
plies plant nutrients; maintains infi ltration, available water capacity, and 
resilience against erosion; and fuels soil biodiversity. Over the last century, 60 % 
of soil and biomass carbon has been lost through land-use change. Chernozem, 
the best arable soils in the world, has lost 30–40 % of their organic carbon, yet 
they yield abundantly till a tipping point is reached and then the system fl ips—
like the American Dust Bowl in the 1930s (Krupenikov et al.  2011 ). NDVI data 
do show that heavy use of fertilizer across much of China, the Indo-Gangetic 
Plain, Europe, the American mid-West, and southern Brazil is no longer accom-
panied by increasing production but may be concealing soil degradation.         
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