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  Pref ace   

 This report examines the scientifi c basis for the use of remotely sensed data, particularly 
the normalized difference vegetation index (NDVI), for the assessment of land 
degradation at different scales and for a range of applications, including resilience 
of agroecosystems. Evidence is drawn from a wide range of investigations, primarily 
from the scientifi c peer-reviewed literature but also non-journal sources. The litera-
ture review has been corroborated by interviews with leading specialists in the fi eld 
(Chap.   7    ). 

 The use of continuous time series of global NDVI data, based on the NOAA 
AVHRR sensor, developed rapidly in the early 1990s. Since then, data processing 
and techniques for analyses of the data have improved signifi cantly. Developments 
in data quality screening, geometric correction, calibration between sensors, atmo-
spheric and solar zenith corrections, cloud screening, and data mosaicking have 
enabled the production of several databases of global NDVI data of high quality that 
are freely accessible over the Internet. The spatial resolution of these datasets ranges 
from coarse (8–1 km) to medium (250 m). 

 Even if there is no alternative to remotely sensed data for global- and continental- 
scale monitoring of vegetation dynamics, the technique is not without weaknesses. 
The report reviews the use of NDVI for a range of themes related to land degrada-
tion. Land-cover change, including deforestation, has been detected quantitatively 
even though the drivers are elusive (Sect.   3.1    ). Drought monitoring and early warn-
ing systems use NDVI data and have developed fully operational systems for data 
dissemination and analysis (Sect.   3.2    ). Desertifi cation processes at the global, con-
tinental, and subcontinental scale have been studied intensively in the last two 
decades; a key fi nding is that most of the world’s drylands show a trend of increas-
ing NDVI. Interpretation of the causes and implications of that greening trend is 
still a matter of discussion (Sect.   3.3    ). Soil erosion has been studied at national and 
sub-national level, primarily using NDVI derived from data of medium to high 
spatial resolution, such as MODIS at 250 m and Landsat at 30 m resolution (Sect. 
  3.4    ). Salinization of soils has been studied using a wide range of remotely sensed 
data; however, its detection and monitoring is more experimental than for other 
forms of land degradation (Sect.   3.5    ). Monitoring of vegetation burning is a fi eld 
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where NDVI has been widely used for three purposes: to assess the risk of fi re in 
terms of fi re-fuel load, detection and monitoring of fi re, and mapping burned areas, 
as well as monitoring vegetation recovery after fi re (Sect.   3.6    ). Soil carbon is an 
important indicator of land productivity that has been studied by means of NDVI 
(Sect.   3.7    ), both as a stand-alone measure and as input to ecosystem models. Studies 
have shown a high agreement between NDVI-based and ground-based estimates. 
NDVI has been used to facilitate mapping and monitoring of biodiversity loss, even 
though species composition cannot be assessed (Sect.   3.8    ). 

 Part of the Terms of Reference of the report was to assess the potential of NDVI 
for monitoring of agroecosystem resilience. Resilience is a concept with a broad 
range of defi nitions. In its original form, the ability to recover from disturbance or 
stress, ecosystem resilience can be assessed to a certain degree by combining NDVI 
with ancillary data, such as rainfall, often described as a hysteresis curve (Sect.   3.9    ). 

 Even if NDVI is by far the most commonly used vegetation index, other indices 
have been proposed and used for global-scale studies, such as two types of the 
Enhanced Vegetation Index (EVI). These indices are reviewed and compared with 
NDVI. The 3-band EVI is subject to certain technical problems, and the 2-band EVI 
is highly correlated with NDVI. Our conclusion that NDVI is the preferred index 
for operational monitoring is thus strengthened by the comparison (Sect.   2.3    ). 

 Interpretation of trends and patterns of NDVI data cannot automatically be inter-
preted in terms of land degradation and improvement. The report highlights a num-
ber of issues that must be considered for operational use of NDVI for land 
degradation monitoring (Chap.   4    ). 

 It is sometimes asserted that NDVI becomes saturated for dense vegetation (leaf 
area index >1). This is incorrect. The reason for the asymptotic relationship between 
NDVI and LAI is because all visible photons are absorbed at high LAI. In fact this 
confi rms that NDVI represents photosynthetic capacity and primary production 
rather than LAI (Chap.   4    ). 

 Distinction between land degradation/improvement and the effects of climate 
variation is an important and contentious issue. There is no simple and straightfor-
ward way to disentangle these two effects. Rain-use effi ciency (RUE), calculated by 
dividing NDVI by rainfall, is sometimes used to separate human action from natural 
variation. Even if theoretically sound, there are both technical and scientifi c prob-
lems with this approach. The technical problems are related to the mismatch of scale 
between climate data (most often point based) and NDVI (spatially continuous). 
Spatial interpolation of point observations is highly problematic, at least for short 
time periods. The scientifi c problems are concerned with the contextual relationship 
between vegetation and rainfall. The following rule of thumb may be applied: where 
vegetation dynamics are strongly driven by rainfall, i.e., in drylands, declining RUE 
is correlated with land degradation. In humid areas, where vegetation is not as 
strongly driven by variations in rainfall, NDVI in itself is strongly correlated with 
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vegetation dynamics and may be taken as a proxy for land degradation and improve-
ment provided that potential false alarms are accounted for (Chap.   4    , Sect.   5.2    ). 

 The accessibility and reliability of datasets is crucial for operational monitoring. 
The report reviews 14 of the most important datasets of NDVI and six climate data-
bases that potentially can be used in combination with NDVI data. The most widely 
used, and also the most rigorously tested dataset is the GIMMS (Global Inventory 
for Mapping and Modeling Studies) and its most recent version the GIMMS3g. It 
comprises continuous data coverage from August 1981 to the present at 15-day 
intervals. It is the only dataset that is continuously updated with new data. The 
GIMMS3g is accessible free of charge over the Internet. Since 2000, NDVI data are 
available from both AVHRR (at 8-km resolution) and MODIS (1000–250-m resolu-
tion). Normally they are highly correlated, but we recommend the use of MODIS 
data as the benchmark (Chap.   8    ). 

 For monitoring at national, subnational, and project levels, the report recom-
mends the use of nested approaches in which coarse-resolution data, such as 
AVHRR NDVI at 8-km resolution, are combined with other remotely sensed data 
that offer higher spatial resolution ranging from 0.5 to 250 m and better spectral and 
radiometric resolution. These data, calibrated against the long-term but coarse- 
resolution AHVRR database, can be used to elucidate reasons for changes in the 
coarse-resolution NDVI signal (such as forest destruction or other land-use change, 
habitat fragmentation, or soil erosion) and for national, subnational reporting, and 
project monitoring (Chap.   9    ). 

 A combined approach—analyzing spatial patterns and temporal trends in the 
coarse-resolution imagery, zooming in for greater detail using fi ne-resolution NDVI 
supplemented by systematic information on climate, terrain and land cover, and 
spot checks with very high-resolution commercial satellite imagery—can contrib-
ute to the assessment of agroecosystem resilience. Targeted research is needed to 
establish exact procedures for such applications (Chap.   9    ). 

 Although NDVI data are easily accessible and free of charge, successful moni-
toring of land degradation requires adequate technical, institutional, and skilled 
human resources. Such capacity, however, can probably be built effectively at exist-
ing regional and/or national centers (Chap.   10    ). With such capacity, NDVI can be 
used for cost-effective and reliable national reporting on several of the UNCCD 
core indicators (Sect.   11.1    ) and potentially also as input to a revised GEF resource 
allocation method, at least after some further testing on real data (Sect.   11.2    ). 

 To conclude, a substantial body of peer-reviewed research lends unequivocal 
support for the use of coarse-resolution time series of NDVI data for studying veg-
etation dynamics at global, continental, and subcontinental levels. There is compel-
ling evidence that these data are highly correlated with biophysically meaningful 
vegetation characteristics such as photosynthetic capacity and primary production 
that are closely related to land degradation and to agroecosystem resilience. The 
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GIMMS3g dataset that now contains continuous data coverage since August 1981 
is the most reliable, used, and cited database as well as the only database that is up 
to date, free of charge, and will be continued for the foreseeable future.  
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    Chapter 1   
 Introduction                     

1.1                 Introduction 

 The global demand for food is rising steeply as a result of burgeoning population, 
shifting dietary preferences, and food wastage, while increasing demands for renew-
able energy are competing with food production (Hubert et al.  2010 ). In 2009, the 
FAO estimated that we must increase the global food production by 70 % to meet 
demands in 2050 (FAO  2009 ). But this fi gure is questioned and may be an underes-
timate, which further underlines the urgency of global food provisioning (Tilman 
 2010 ; Tilman et al.  2002 ), particularly in the light of the revised World Population 
Prospects 2012 predicting signifi cantly higher population increase than earlier pro-
jections, especially for many countries in sub-Saharan Africa (UN  2013 ). Further, 
accelerating climate change is projected to have severe impacts on crop productivity 
over large parts of the globe (Porter et al.  2014 ). The combination of increasing 
water scarcity, as a result of climate warming, and increasing competition across 
sectors is likely to cause dramatic situations in terms of food and water security in 
many regions (Strzepek and Boehlert  2010 ). At the same time “business as usual is 
not an option.” This was the stern message from the International Assessment of 
Agricultural Science and Technology (IAASTD) when it was presented by its chair-
man Bob Watson in 2008. By this he meant that agriculture does not deliver what 
we need—food security for all—instead it undermines the global environment in 
terms of land degradation; greenhouse gas emissions; pollution of soils, rivers, 
lakes, and oceans; and reducing biodiversity (Foley et al.  2011 ). The threat to food 
security represents a planetary emergency that demands a variety of creative solu-
tions and policies at global, regional, and local levels. One of the most urgent 
responses to this situation must be measures to stop and reverse land degradation. 
But such solutions are currently hampered by the lack of reliable data as well as 
methods for collecting such data. This report is a review of the state of the art of 
remote sensing techniques for assessing land degradation and improvements. 
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1.2      Land Degradation in the UNCCD and GEF 

 Land degradation has been highlighted as a key development challenge by the 
UNCCD, the Convention on Biodiversity, the Kyoto Protocol on global climate 
change, and the Millennium Development Goals (United Nations  2011 ; UNEP 
 2007 ). The GEF was designated a fi nancial mechanism for the UNCCD in 2003; 
through establishment of its land degradation focal area, the GEF aims to arrest 
land degradation, especially desertifi cation and deforestation, by supporting sus-
tainable land management (SLM). SLM implements agricultural practices that 
maintain vegetative cover; build up soil organic matter; make effi cient use of inputs 
such as water, nutrients, and pesticides; and minimize off-site impacts (Bierman 
et al.  2014 ). 

 Both the UNCCD and the GEF use land cover to monitor land degradation and 
implementation of SLM. Likewise, the trend in land cover is a key indicator of 
progress in meeting the UNCCD’s Strategic Objective 2: to improve the condition 
of affected ecosystems (UNCCD decision 22/COP.11). For the GEF, achievement 
of the overall goal of the land degradation focal area is measured through “ change 
in land productivity”  using, as a proxy, net primary productivity NPP which is esti-
mated through remotely sensed normalized difference vegetation index (NDVI) 
screened for drought effects using rain-use effi ciency RUE. To measure the impact 
of interventions, GEF-funded SLM projects should report on changes in land cover 
(GEF  2014 ). The same approach has also been used to allocate resources from the 
land degradation focal area of the GEF; other things being equal, countries suffering 
from serious land degradation, as measured as change in NDVI, are allocated more 
funds than those with lesser measurable evidence of land degradation. 

 Recent improvements and the longer time series of the fundamental NDVI data-
set call for a review of indicators for measuring the implementation of the Convention 
and the GEF’s allocation of resources to combat land degradation, as well as for 
measuring the impacts of its SLM projects.  

1.3     Concepts, Processes, and Scales of Land Degradation 

 Land is defi ned as the “ ensemble of the soil constituents, the biotic components in 
and on it, as well as its landscape setting and climatic attributes ” (Vlek et al.  2010 ). 
Land degradation is a composite concept that has been defi ned in many and various 
ways. Indeed, it is a concept as much as a process, defi ned in various ways by 
researchers and institutions in this fi eld. This could partly be as a result of the diver-
sity of processes of land degradation in type, scale, time, and extent; the processes 
are well known but not always fully understood. According to Warren ( 2002 ), land 
degradation is a very contextual phenomenon and cannot “ be judged independently 
of its spatial, temporal, economic, environmental and cultural context .” This ambigu-
ity makes it hard to establish measurable indicators, remotely sensed or otherwise. 

1 Introduction
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 Stocking and Murnaghan ( 2000 ) describe land degradation as a composite term 
that  has no single readily-identifi able feature, but instead describes how one or 
more of the land resources (soil, water, vegetation, rocks, air, climate, and relief) has 
changed for the worse  (Fig.  1.1 ). Haigh ( 2002 ) offers a more utilitarian defi nition: 
 the aggregate diminution of the productive potential of the land, including its major 
uses (rain-fed, arable, irrigated, rangeland, forest), its farming systems (e.g., small-
holder subsistence) and its value as an economic resource . This defi nition high-
lights deterioration in the biological productive potential of the land, i.e., the entire 
geo-ecological system that includes soils, climate, biodiversity, topography, and 
land use. The key message conveyed by this defi nition is akin to that conveyed by 
the Millennium Ecosystem Assessment’s defi nition of land degradation,  the reduc-
tion in the capacity of the land to perform ecosystem goods, functions and services 
that support society and development  (MEA  2005 ). According to UNEP ( 2007 ), 
 land degradation is the long-term loss of ecosystem function and services, caused 
by disturbances from which the system cannot recover unaided . This defi nition con-
veys two important messages: the resilient properties of landscapes and their con-
stituent parts and the need for intervention if and when disturbances cause the 
resilience thresholds to be breached.

   Degradation may also be considered in terms of specifi c components of the land 
that are affected. For example, vegetation degradation implies reduction in produc-
tivity, declining species diversity, and degeneration in the nutritional value of plant 
populations for the faunal biota. And soil degradation implies deterioration in soil 
quality and fertility. Such changes may be brought about by many factors (erosion, 
pollution, deforestation, and others). Again, land degradation may be considered in 
respect of its physical aspects, referring to changes in the soil composition, espe-
cially loss of soil organic matter, and structure, such as compaction or crusting and 
waterlogging; chemical, pertaining to changes in the soil chemistry’s chemical 
makeup as a result of leaching, salinization, or acidifi cation; and biological degra-
dation referring to reduction of soil biodiversity. 

 Estimates of the extent and severity of land degradation vary substantially. The 
only agreement has been that all global estimates have rested on very poor data 
(Hassan et al.  2005 ). The Millennium Ecosystem Assessment reported estimates 

  Fig. 1.1    The complexity of processes that constitute land degradation (Stocking and Murnaghan 
 2000 )       
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between 70 and 10 % of drylands globally being affected by land degradation and 
concluded with  medium certainty that some 10–20 % of the drylands are suffering 
from one or more forms of land degradation. And the livelihoods of millions of 
people … are affected  (Hassan et al.  2005 ). These fi gures were, however, not based 
on a systematic assessment of empirical data. 

 In order to overcome this uncertainty barrier, GEF/UNEP/FAO initiated the 
LADA project (Land Degradation in Drylands) which adopted the approach used by 
Bai and others (Bai et al.  2008 ). Based on the analysis of a 30-year time series of 
global NDVI data in combination with gridded climate data, Bai et al. ( 2008 ) 
reported that about 20 % of cultivated land, 30 % of forests, and 10 % of grasslands 
are degrading. Many studies have reported increasing severity and extent of land 
degradation in many parts of the world, but estimates tend to be highly method spe-
cifi c (see Annexes   1     and   2    ). 

 Land degradation can be caused by local human activities and biophysical pro-
cesses as well as by activities and processes that are not tied to the local human or 
physical landscape (Fig.  1.2 ). Local activities that contribute to land degradation 
include mining, unsustainable farming practices, overgrazing, pollution from indus-
trial and nonindustrial sources, and landscape modifi cation. Hoekstra et al. ( 2005 ) 

  Fig. 1.2    Linkages and feedback loops among desertifi cation, global climate change, and biodiver-
sity loss (MEA  2005 )       
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argue that land degradation resulting from human conversion of natural habitats is 
most extensive in tropical dry forests (69 % converted in SE Asia), temperate broad-
leaf and mixed forests, temperate grasslands and savannas (>50 % lost in North 
America), and Mediterranean forest and scrub. Human activities responsible for 
land degradation go beyond farming practices, deforestation, and other direct 
human interactions with the land (Hoekstra et al.  2005 ). UNEP ( 2012a ) and MEA 
( 2005 ) see the causes of desertifi cation (nefarious land degradation affecting people 
in arid and semiarid regions) ranging from international economic activities to 
unsustainable land-use practices by local communities. It has also been argued that 
processes such as dryland degradation may be exacerbated by climate change 
(Cowie et al.  2011 ).

1.4        Assessment of Resilience of Agroecosystems 

 No less than land degradation, resilience is an ambiguous term (Thorén and Persson 
 2014 ) subject to scientifi c and political debates (Walker et al.  2004 ). In his seminal 
paper in 1973, Holling writes:  Resilience determines the persistence of relation-
ships within a system and is a measure of the ability of these systems to absorb 
change of state variable, driving variables, and parameters, and still persist  
(Holling  1973 ). Perrings ( 1998 ) offered a more open defi nition:  in its broadest 
sense, resilience is a measure of the ability of a system to withstand stresses and 
shocks—its ability to persist in an uncertain world , and interdisciplinary scientists 
interested in coupled social and ecological systems (SESs) have incorporated the 
idea into their thinking, as expressed by Adger:  The ability of human communities 
to withstand external shocks or perturbations to their infrastructure, such as envi-
ronmental variability or social, economic or political upheaval, and to recover from 
such perturbations  (Adger  2000 ). 

 Renschler et al. ( 2010 ) have argued that environmental and ecosystem resources 
might be used as indicators of ability of the ecological system to return to or near 
pre-shock or pre-event states. The strong correlation of NDVI with aboveground 
NPP makes it a useful indicator of ecosystem resilience. In a study exploring the 
concepts and application of theories of general resilience, Walker et al. ( 2014 ) iden-
tifi ed twelve components of general resilience in fi ve catchments in south eastern 
Australia. These components include diversity (which may be identifi ed and mea-
sured by processes including vegetation clearing, forest fi res, fl oods, and drought), 
and connectivity, modularity, and reserves in ecological systems (Walker et al.  2014 ) 
which can be identifi ed and measured by earth observation methods, including land-
use and land-cover change assessments. In the context of monitoring land degrada-
tion using remotely sensed data, we would prefer a more precise defi nition of 
resilience that can be operationalized by something measurable. A central  concept in 
ecological resilience is a system’s ability to absorb and recover from disturbance or 
stress; this may be depicted by a hysteresis curve (Kinzig et al.  2006 ) (Fig.  1.3 ).

1.4 Assessment of Resilience of Agroecosystems
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   A resilient system subject to stress, such as drought, may reduce its productivity 
as long as the stress persists but, then, return to its prestress productivity. If the sys-
tem is not suffi ciently resilient, it will not regain its prestress productivity. The Sahel 
is an example of resilience at a grand scale. Since the 1980s, long time series of 
NDVI data have been used extensively in the study of land degradation in the Sahel 
(Fensholt et al.  2013 ; Anyamba and Tucker  2005 ; Hickler et al.  2005 ; Prince et al. 
 1998 ), confi rming a general pattern of recovering vegetation. 

 The interpretation of the recovery of vegetation vis-à-vis the resilience of such 
systems must, however, be approached with caution. This is because the state of an 
ecosystem is not defi ned solely by its overall bio-productivity, but also, by the veg-
etation composition as well as the ecosystem services it offers. It therefore follows 
that the stability of positive trends in bio-productivity (an aspect of ecosystem 
dynamics that can be captured by the time-series analysis of NDVI data) may not 
necessarily report the resilience of such systems. Recent studies relating long-term 
NDVI trends to ground observations in Senegal show that positive NDVI trends do 
not systematically indicate positive developments, neither in terms of the composi-
tion of the vegetation cover, which showed impoverishment even in the greening 
areas (Herrmann and Tappan  2013 ), nor in terms of human well-being (Herrmann 
et al.  2014 ). 

 NDVI is proposed as a measure of  land-cover status —one of the eleven impact 
indicators recommended in the UNCCD “Minimum set of Impact Indicators”; its 
purpose (Orr  2011 ) is to  monitor land degradation in terms of long-term loss of 
ecosystem primary productivity and taking into account effects of rainfall on NPP . 

  Fig. 1.3    The principle of hysteresis. At point  A , before the stress, productivity is high. As the 
stress increases, productivity declines to a point  B  where the stress is reduced. As the stress is 
reduced, productivity increases. A fully resilient system ( green curve ) will spring back to its origi-
nal state ( A ). A less-resilient system ( red curve ) will only recover to point  C . The resilience of the 
system,  R , is related to the distance between  A  and  C ; the lower the value, the higher the 
resilience       
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DPSIR (Driving Force, Pressure, State, Impact, Response) is a general framework 
for organizing information and reporting about state of the environment. First devel-
oped by the Organization for Economic Cooperation and Development (OECD) in 
the 1980s, this framework is currently being applied in a range of fi elds and proj-
ects, including those of the UNCCD and GEF (Orr  2011 ). DPSIR is also the meth-
odological framework used by UNEP in its Global Environment Outlook (GEO) 
reports at global, regional, and national levels (UNEP  2012a ). The state variables 
are pointers to the condition of the system (including biophysical factors/processes), 
as well as trends (environmental changes) which may be naturally or human induced 
(Vacik et al.  2007 ; Orr  2011 ). NDVI can be useful in the evaluation of vegetation 
cover, carbon stocks, and land condition (Orr  2014 ) which may provide resilience 
indicators.       

1.4 Assessment of Resilience of Agroecosystems
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Chapter 2
The Potential for Assessment of Land 
Degradation by Remote Sensing

Given the diversity of the biophysical and socioeconomic processes involved, the 
types, extent, and severity of land degradation cannot be encapsulated by a few simple 
measures (Stocking and Murnaghan 2000). In the assessment of land degradation or 
changes in land productivity, two complementary approaches may be distinguished:

	1.	 An assessment of historic trends in land degradation or changes in land produc-
tivity, in which past changes are examined

	2.	 An assessment of future trends, in which scenario building and projections are 
made of expected changes in land degradation or land productivity based on 
defined scenarios

For a comprehensive assessment, monitoring, and mapping of land degradation, 
four main themes need to be explored:

	1.	 Causes of degradation—the drivers, mostly man-made such as agricultural prac-
tices, overgrazing, deforestation, and industrial activities such as mining

	2.	 Type of degradation—the nature of the process driving decline in land quality or 
productivity. For example, drought, salinization, and wind or water erosion

	3.	 Degree of degradation—classified in degrees of severity, such as light, moderate, 
strong, and extreme

	4.	 Extent of degradation—the total area affected

2.1  �Normalized Difference Vegetation Index

The last half century has seen the development and use of various remotely sensed 
vegetation indices. The basic assumption behind the development and use of these 
indices is that some algebraic combination of remotely sensed spectral bands can 
reveal valuable information such as vegetation structure, state of vegetation cover, 
photosynthetic capacity, leaf density and distribution, water content in leaves, 
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mineral deficiencies, and evidence of parasitic shocks or attacks (Jensen 2007; 
Liang 2005). The algebraic combination of spectral bands should, therefore, be 
sensitive to one or more of these factors. Conversely, a good vegetation index should 
be less sensitive to factors that affect spectral reflectance such as soil properties, 
atmospheric conditions, solar illumination, and sensor viewing geometry (Jensen 
2007; Liang 2005; Purkis and Klemas 2011).

The structure of leaves, evolved for photosynthesis, determines how vegetation 
interacts with sunlight. Two processes occur within leaves: absorption and scatter-
ing of sunlight. Plant pigments (chlorophyll and carotenoids) and liquid water 
absorb specific wavelengths of light. Scattering is caused by the internal structure of 
leaves, where the leaf interior is a labyrinth of air spaces and irregularly shaped 
water-filled cells. Internal scattering of light is caused by differences in the refrac-
tive index between air- and water-filled cells and internal reflections from irregu-
larly shaped cells. Green leaves absorb light strongly in the blue and red regions and 
less so in the green region, hence their green color (Jensen 2007). No absorption 
occurs from the upper limit of our vision at 700 nm out to beyond 1300 nm where 
liquid water begins to absorb strongly (Fig. 2.1). No absorption means higher levels 
of reflectance from green vegetation (Tucker and Garratt 1977).
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Fig. 2.1  Spectral response characteristics of vegetation at three stages of development. The spec-
tral bands of the most commonly used sensor for NDVI studies, NOAA AVHRR, are superimposed 
on the spectral response curve. Chlorophyll contained in a leaf has strong absorption at 0.45 and 
0.67 μm and high reflectance in the near-infrared (0.7–1.1 μm). In the shortwave-IR, vegetation 
displays three absorption features that can be related directly to the absorption of water contained 
within the leaf

2  The Potential for Assessment of Land Degradation by Remote Sensing
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The normalized difference vegetation index (NDVI) (Eq. 2.1) is the ratio of the 
difference between the near-infrared band (NIR) and the red band (R) and the sum 
of these two bands (Rouse Jr et al. 1974):

	
NDVI

NIR RED

NIR RED
=

-
+ 	

(2.1)

where NIR is reflectance in the NIR and RED is reflectance in the visible red band. 
The NDVI algorithm takes advantage of the fact that green vegetation reflects less 
visible light and more NIR, while sparse or less green vegetation reflects a greater 
portion of the visible and less near-IR. NDVI combines these reflectance character-
istics in a ratio so it is an index related to photosynthetic capacity. The range of 
values obtained is between −1 and +1. Only positive values correspond to vegetated 
zones; the higher the index, the greater the chlorophyll content of the target.

NDVI has been used to identify and interpret a range of phenology metrics that 
describe periodic plant life-cycle events and how these are influenced by seasonal 
and interannual variations in climate and habitat (see Annexes 1 and 2). So the dura-
tion of photosynthetic activity (identified using NDVI) can be interpreted to indicate 
the length of the growing season; time of maximum NDVI corresponds to time of 
maximum photosynthesis; seasonally integrated NDVI indicates photosynthetic 
activity during the growing season; and the rate of change in NDVI may indicate 
speed of increase or decrease of photosynthesis. These metrics are influenced by 
several characteristics of the vegetation. One of the most important in remote sens-
ing is the leaf area index (LAI) which refers to the projected area of leaves per unit 
of ground area (Ross 1981).

2.2  �Remote Sensing Features That Characterize  
NDVI-Based Assessments of Land Degradation

Potential for the use of NDVI as a proxy for land productivity (one of the indicators 
of the state of land degradation) is based on numerous and rigorous studies that have 
identified a strong relationship between NDVI and NPP (Prince and Goward 1995; 
Vlek et al. 2010; Field et al. 1995) (also see Sect. 5.5). Remotely sensed data prod-
ucts derived from satellite measurements come in several bands of the electromag-
netic spectrum (see Annex 5). NDVI and related indices use bands in the visible and 
infrared wavelengths. When using satellite-derived products, it is important to con-
sider sensor and image characteristics such as image size, region of the earth from 
which images are acquired, spatial resolution, number of bands and wavelengths 
detected, spectral characteristics of the bands concerned, frequency of image acqui-
sition, and date of origin of the sensor (Strand et al. 2007). Another important con-
sideration is the time of acquisition of such data (time of the day, or season in 
question). Such temporal differences may give rise to alterations such as shadows 
(depending on the time of the day) or phenological differences (depending on the 
season) that may affect the quality of the data. Remote sensing products rarely meet 

2.2  Remote Sensing Features That Characterize NDVI-Based Assessments…

http://dx.doi.org/10.1007/978-3-319-24112-8_BM1
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all requirements for image size, spatial and temporal resolution, and availability. 
There is always a need for trade-offs (Purkis and Klemas 2011; Strand et al. 2007). 
Images with large path width have low spatial resolution, lower data volume, and 
shorter temporal resolutions—so they tend to have a longer time series from which 
long-term changes can be observed. With the large path width of low-resolution 
imagery, large areas can be covered and analyzed by a few images. On the other 
hand, high spatial resolution is associated with a smaller path width, large data vol-
umes, and longer temporal resolution; this demands greater resources in data storage, 
manipulation, and analysis. Also, most high-resolution datasets are pricey—beyond 
the reach of many potential users outside the research community of the satellite 
launching program or country (see Annex 7 on current costs of some satellite data 
products). In general, high spatial resolution data are helpful for fine-scale assess-
ments and analysis at local level, while medium spatial resolution data are useful at 
a regional or, even, project scale. At a continental or global scale, coarse spatial reso-
lution data support archives of long time series and are preferred for many NDVI-
based assessments and analyses. Long time series simplify the use of remote sensing 
to assess land degradation and monitor changes (Albalawi and Kumar 2013; 
Anyamba and Tucker 2012; Bai et al. 2008; Cook and Pau 2013; de Jong et al. 2011b; 
Shalaby and Tateishi 2007; Symeonakis and Drake 2004; Townshend et al. 2012).

2.3  �Other Vegetation Indices Closely Related to NDVI

One of the earliest attempts at separating green vegetation from the soil background 
using the NIR/red ratio was carried out by Pearson and Miller (1972). Since then, 
many and various vegetation indices have been developed, tested, modified, and used 
for vegetation-related studies worldwide. These include LAI, percent vegetation 
cover, green leaf biomass, fraction of absorbed photosynthetically active radiation 
(fAPAR), photosynthetic capacity, and carbon dioxide fluxes (Albalawi and Kumar 
2013; Liang 2005; Purkis and Klemas 2011). More than 150 vegetation indices have 
appeared in the literature although few have been systematically tested (Bennett 
et al. 2012; Verrelst et al. 2006; Higginbottom and Symeonakis 2014). Vegetation 
indices derived from satellite data are one of the principal sources of information for 
monitoring and assessment of the Earth’s vegetative cover (Gilabert et al. 2002). We 
direct readers to these references for background information on vegetation indices 
and focus our attention on the NDVI and related vegetation indices.

2.3.1  �Indices Closely Related to NDVI

The Enhanced Vegetation Index (EVI) (Eq. 2.2) is a modification of NDVI with a 
soil adjustment factor, L, and two coefficients, C1 and C2, which describe the use of 
the blue band in correction of the red band for atmospheric aerosol scattering. C1, 

2  The Potential for Assessment of Land Degradation by Remote Sensing
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C2, and L, are coefficients that have been empirically determined as 6.0, 7.5, and 
1.0, respectively. EVI was developed by the MODIS Land Discipline Group for use 
with MODIS data to decouple the canopy background signal and reduce atmo-
spheric influences (Huete et al. 2002; Jensen 2007). However, subsequent work with 
the EVI has raised two scientific controversies resulting from use of this index 
(Morton et  al. 2014; Saleska et  al. 2007). Because of this controversy, NDVI is 
always preferred over EVI. Furthermore, it has been difficult to inter-calibrate EVI 
between or among different instruments because the surface reflectance uncertainty 
of the blue band is high for dense green vegetated areas. Eric Vermote (Personal 
communication 2014) has found the MODIS blue surface reflectance from dense 
green vegetation to be on the order of 3–4 % with an absolute surface reflectance 
uncertainty of ±2 - ± 3 %. For this reason, the VIIRS vegetation index science team 
has proposed discontinuing the three-channel EVI and replacing it with a substitute 
two-channel EVI that is a modified NDVI (Eqs. 2.3 and 2.4). This was first pro-
posed by Jiang et al. (2008):

	

EVI
NIR RED

NIR RED BLUE
= ´

-( )
+ ´ - ´ +

2 5
1 2

.
( C C L

	
(2.2)

2.3.2  �Comparing NDVI to EVI

Here, we discuss only those vegetation indices for which current and freely avail-
able global datasets exist. The contenders are NDVI, the three-channel EVI of 
Huete et al. (2002), and the two-channel EVI of Jiang et al. (2008).

The three-channel EVI will be discontinued for VIIRS because of problems with 
the calibration of the blue band (blue surface reflectance from dense green vegeta-
tion is ±2–3 %); problems with sub-pixel clouds, aerosols, and snow; the fact that 
MODIS data are atmospherically corrected; and the realization that the blue band is 
very highly correlated to the red band for vegetation. The three-channel EVI has 
been replaced by a two-channel EVI (Jiang et al. 2008). Figure 2.2 shows the three-
channel EVI sensitivity to aerosols, smoke, sub-pixel clouds, and snow. It also 
shows the very high correlation between the blue and red surface reflectances from 
vegetated areas which, therefore, adds no new information to this index.

Because of the problems with the EVI3’s blue band, illustrated in Fig. 2.2a, the 
MODIS three-channel EVI products were frequently produced with a two-channel 
red and near-infrared “soil-adjusted vegetation index” or SAVI substitute algorithm, 
depending on circumstances. Thus, MODIS three-channel EVI data were, in practice, 
a combination of three-channel and two-channel products and not the same numerical 
product everywhere all the time. For these reasons, we propose to use the NDVI.

The two-channel EVI proposed by Jiang et al. (2008) (Eq. 2.3) is very similar to 
NDVI and is directly related to the NDVI and gives more weight to the NIR:

	 EVI NIR Red NIR Red2 2 5 2 4 1= ´ -( ) + ´ +( ). / . 	 (2.3)

2.3  Other Vegetation Indices Closely Related to NDVI
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What then is the advantage of the EVI2 over the NDVI? Multiplying each side of 
Eq. 2.3 by (NIR + RED)/(NIR + RED) or 1.0 and rearranging terms gives Eq. 2.4:

	 EVI NDVI NIR Red NIR Red2 2 5 2 4 1= ´ ´ -( ) + ´ +( ). / . 	 (2.4)

The NDVI and EVI2 are very similar, with the NDVI being directly related to pri-
mary production, and the EVI2 being more heavily weighted to mapping LAI in 
very dense plant canopies (Fig. 2.3).

Fig. 2.2  The three-channel blue, red, near-infrared EVI vegetation index suffers from not being 
atmospherically resistant and is very sensitive to high blue-band surface reflectance. (a) Panel 
shows the erroneous three-channel EVI values from sub-pixel clouds, smoke, aerosols, and snow. 
(b) Panel shows the very high correlation between the blue and red bands for vegetated areas. 
Information theory tells us that highly correlated variables do not increase the variance explained 
together over using just one of the variables

Fig. 2.3  A NDVI and EVI2 comparison using SeaWiFS data from the Sudanian Zone of Africa 
combined with similar data from the Central Amazon for 212 points. Note the very high degree of 
similarity between the NDVI and the two-channel EVI

2  The Potential for Assessment of Land Degradation by Remote Sensing
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Quantitative inter-comparability between or among similar satellite instruments 
is important because a global analysis at 8 km spatial resolution, using data over 33 
years, can identify specific areas of possible land degradation which then can be 
investigated in more detail with much higher spatial resolution time-series data 
from MODIS at 250 m. Fortunately, NDVI with only two channels lends itself to 
quantitative inter-comparability among similar satellite instruments (Fig. 2.4).

The VIIRS instrument now flying on the NASA-NOAA NPOESS Preparatory 
Project polar-orbiting meteorological satellite will continue to deliver NDVI and 
two-channel EVI data through 2030 and beyond on the NASA-NOAA Joint Polar 
Satellite System (JPSS) five satellites (JPSS-1 through JPSS-5). The three-channel 
EVI will be discontinued.

We conclude that NDVI has fewer problems than the three-channel EVI because 
it can be inter-calibrated more easily with only two bands and will be replaced by 
the EVI2 from the NPP and JPSS-1 to JPSS-5 satellites. We choose to use the stan-
dard NDVI to identify land degradation because it is directly related to photosyn-
thetic capacity. However, when EVI2 data are available, we and others will evaluate 
this vegetation index for land degradation also. Excellent NDVI data are available 
from MODIS, and these form the foundation of our work because we require 250 m 
NDVI data for disaggregation (Huete et al. 2002). We stress that all of our proposed 
land degradation NDVI work must also use MODIS NDVI data from 2000 to 2014 
to confirm 8 km NDVI3g data from the same time period.
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Fig. 2.4  Comparison of NDVI data from eight different AVHRR instruments at nine times from 
1981 to 2014 (noted by the vertical dashed lines) to NDVIs from SeaWiFS during 1997–2010, 
Terra MODIS from 2000 to 2013, and Aqua MODIS from 2002 to 2013. T NDVI time series from 
these four sources are very similar. There are currently three AVHRR instruments operating, two 
with MetOps and one with NOAA, and one in storage awaiting launch on MetOps-3 in 2016. There 
is an excellent chance that we will have a 35–40-year NDVI record from the AVHRR instruments

2.3  Other Vegetation Indices Closely Related to NDVI
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    Chapter 3   
 Applications of NDVI for Land Degradation 
Assessment                     

              In the late 1960s, several researchers began using red and near-infrared refl ected light 
to study vegetation (Pearson and Miller  1972 ). In the late 1960s, ratios of red and 
near-infrared light were used to assess turf grass condition and tropical rain forest 
leaf area index (Birth and McVey  1968 ; Jordan  1969 ). Compton Tucker was the fi rst 
to use it for determining total dry matter accumulation, fi rst from hand-held instru-
ments (Tucker  1979 ), and then from NOAA AVHRR satellite data (Tucker et al. 
 1981 ,  1985 ), demonstrating that the growing season integral of frequent NDVI mea-
surements represented the summation of photosynthetic potential as total dry matter 
accumulation. Starting in July 1981, a continuous time series of global NDVI data at 
a spatial resolution of 8 km has been available from the AVHRR instrument mounted 
on NOAA weather satellites. Soon, researchers realized the value of NDVI time-
series remote sensing (Goward et al.  1985 ; Justice et al.  1985 ; Townshend et al.  1985 ; 
Tucker et al.  1985 ). This early work was the spur for development of the higher-res-
olution Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument. The 
application of satellite NDVI data has blossomed into many fi elds of natural resources 
investigation (see Annex   1    ). One particular appeal of remote sensing in the study of 
large geographic areas, or at multiple times over the year(s), is the potential for cost 
savings (Pettorelli  2013 ). We examine the use of NDVI in research on land-use and 
land-cover change, drought, desertifi cation, soil erosion, vegetation fi res, biodiver-
sity monitoring and conservation, and soil organic carbon (SOC). 

3.1     Land-Use and Land-Cover Change 

 Land cover is the observed (bio)physical cover on the earth’s surface (Di Gregorio 
 2005 ). In a strict sense, it should be limited to the description of vegetation and 
artifi cial (man-made) features on the land surface, but land-use and land-cover 
change (LULCC) is a general term used to refer to the human modifi cation of the 

http://dx.doi.org/10.1007/978-3-319-24112-8_BM1


18

earth’s terrestrial surface (Bajocco et al.  2012 ). Mankind has modifi ed land and land 
cover for thousands of years to obtain food, fuel, fi ber, and other materials, but cur-
rent rates and intensities of LULCC are far greater than ever before (Lambin et al. 
 2003 ; Mayaux et al.  2008 ). The quantity and quality of vegetation cover are an 
important controls on the evolution landscapes, their resilience or degradation 
(Symeonakis and Drake  2004 ), and the quality of environmental services. 

 Substantial research effort has been invested in the use of NDVI to assess the 
location and extent of land-use and land-cover change (Diouf and Lambin  2001 ; 
Mas  1999 ; Stow et al.  2004 ; UNEP  2012b ; Veldkamp and Lambin  2001 ; Yuan and 
Elvidge  1998 ). Land-cover change analysis is used to study changes in plant com-
position and human settlement patterns (Khorram et al.  2012 ). Such studies are 
important in understanding the scale and reasons for changes in vegetation, biodi-
versity, and associated phenomena. Scales of application range from global studies 
of land-cover classifi cation and mapping (DeFries and Townshend  1994 ; Friedl 
et al.  2002 ; Hansen et al.  2000 ; Turner and Meyer  1994 ), to regional and national 
scales (Lambin and Ehrlich  1997 ; Sobrino and Raissouni  2000 ; Stow et al.  2004 ), to 
very localized studies (Shalaby and Tateishi  2007 ; Sternberg et al.  2011 ; Yuan and 
Elvidge  1998 ; Lunetta et al.  2006 ). Horion et al. ( 2014 ) used long-term trends in 
dry-season minimum NDVI to assess changes in tree cover in the Sahel; dry-season 
minimum NDVI was found to be uncorrelated with dry grass residues from the pre-
ceding growing season or with seasonal fi re frequency and timing over most of the 
Sahel, so the NDVI parameter can be used as a proxy for assessing changes in tree 
cover in such ecosystems. While land-use and land-cover change can serve as point-
ers to the existence (or absence) of land degradation, care must be taken in interpret-
ing the results of such studies. Veldkamp and Lambin ( 2001 ) warn about the need to 
distinguish between the location and quantity of change, as well as the causes of 
such changes. For example, while NDVI can help in identifying deforestation, its 
rate, and area affected, the underlying drivers are often far away in space and time 
(Veldkamp and Lambin  2001 ). And there are many cases where land-cover change 
as detected by NDVI time series does not necessarily lead to degradation but may 
rather be considered benefi cial (Lambin et al.  2003 ; Shalaby and Tateishi  2007 ).  

3.2     Drought and Drought Early Warning 

 Drought generally refers to a substantial decline in the amount of precipitation 
received over a prolonged period (Mishra and Singh  2010 ). Droughts occur in prac-
tically all climatic zones and are recognized as a severe hazard to the environment 
and development (Sivakumar and Stefanski  2007 ). In terms of land degradation, 
droughts cause loss of water availability and quality, declining primary production 
which increases the vulnerability of the land to erosion and disturbed riparian habi-
tats, with potential loss of biodiversity (Mishra and Singh  2010 ; Zargar et al.  2011 ). 

 NDVI and associated vegetation indices have been used to detect and  investigate 
meteorological, hydrological, and agricultural droughts worldwide. Strictly speaking, 
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NDVI is most useful for detecting and investigating drought effects on the vegetation 
cover, in this case agricultural droughts. Generally, meteorological (dry weather 
patterns) and hydrological (low water supply) droughts would not be detected by 
NDVI before they impact the vegetation cover. The exception in this case may be 
hydrological drought, if the analysis includes water level in plant matter. NDVI has 
been used by several studies of the Sahelian drought (see Annex   1    ) an example is 
the investigation of the persistence of drought in the Sahel in the period 1982–1993 
(Anyamba and Tucker  2012 ). Another study combined anomalies of El Niño 
Southern Oscillation (ENSO) indices and NDVI anomalies to construct an ENSO-
induced drought onset prediction model for northeast Brazil using multiple linear 
regression (Liu and Juárez  2001 ). The normalized difference water index (NDWI) 
is a sister index calculated from the 500-m SWIR band of MODIS that has been 
used in drought studies (Chen et al.  2005 ; Delbart et al.  2005 ; Jackson et al.  2004 ; 
Gao  1996 ). Mishra and Singh ( 2010 ) argue that NDWI may be a more sensitive 
indicator than NDVI for drought monitoring, but its developer (Gao  1996 ) empha-
sized that the index is:  complementary to, not a substitute for NDVI . 

 NDVI has also been used widely in attempts to develop famine early warning 
systems, such as the FEWS NET which is an operational system for dissemination 
of data related to food production and availability globally. The system uses NDVI 
data from both NOAA AVHRR and MODIS. The system was preceded by rigorous 
testing of the ability of NDVI to detect areas of imminent food shortages (Henricksen 
and Durkin  1986 ; Hutchinson  1991 ; Quarmby et al.  1993 ). A main fi nding was that 
NDVI in combination with relevant climate data has a very strong potential for 
forecasting crop failure.  

3.3     Desertifi cation 

 Beginning in the 1970s, the international community recognized that land degrada-
tion/desertifi cation was an economic, social, and environmental problem and began 
a process which ultimately resulted in the creation of the UN Convention to Combat 
Desertifi cation (CCD). The convention defi nes desertifi cation as  land degradation 
in arid, semi-arid, and dry sub-humid areas resulting from various factors, includ-
ing climatic variations and human activities  (UNCCD  1994 ). Some studies report 
that desertifi cation poses a serious global threat, affecting both developed and devel-
oping countries (Grainger  2013 ): others report that drylands have been greening and 
caution against broad generalizations (Fensholt et al.  2012 ). Since the 1980s, remote 
sensing has been used extensively in the study of desertifi cation in different parts of 
the world (Erian  2005 ; Fensholt et al.  2013 ; Karnieli and Dall’Olmo  2003 ; Nkonya 
et al.  2011 ; Symeonakis and Drake  2004 ; UNEP  2012b ; Olsson et al.  2005 ; Tucker 
and Nicholson  1999 ). While studies in the 1980s demonstrated the value of the 
NDVI for tracking vegetation dynamics, a clear relationship between NDVI, bio-
mass accumulation (especially in the Sahel), and the many variables which interact 
with them was not fully understood (Herrmann and Sop  2015 ). Most studies simply 
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referred to vegetation trends and embed their hypotheses and fi ndings in the larger 
debate on desertifi cation. Beyond showing changes in bioproductivity, interpreta-
tion of those trends was rather speculative. Today, notwithstanding the signifi cant 
advances in knowledge of these processes, desertifi cation remains a diffi cult process 
to assess given the complex relationship between biomass and ecosystem health 
(Herrmann and Sop  2015 ). More recently, there have been a several studies linking 
remotely sensed trends to ground observations (Brandt et al.  2014 ; Dardel et al. 
 2013 ; Herrmann and Tappan  2013 ). Examples of such recent developments in the 
understanding of desertifi cation also include the use of land productivity dynamics 
in constructing a World Atlas of Desertifi cation (WAD) (see Annex   2    ). 

 In detecting the status and trend of desertifi cation, researchers have built on the 
relationship between NDVI and biomass productivity that has been well established 
in the literature (Jensen  2007 ; Purkis and Klemas  2011 ). These initiatives are greatly 
helped by the continuous global NDVI time series of vegetation that has been avail-
able since the early 1980s. The UNCCD fostered increased interest in desertifi ca-
tion research, especially with regard to the Sahel which was by that time experiencing 
a wet period, captured by satellite imagery, analyzed using NDVI time series, and 
described as a  greening of the Sahel  (Olsson et al.  2005 ). The following studies used 
NDVI time series to investigate temporal and spatial patterns of the Sahel’s green-
ness and rainfall variability as well as their interrelationships (Herrmann et al.  2005 ; 
Hickler et al.  2005 ). Herrmann et al. ( 2005 ) and Olsson et al. ( 2005 ) concluded that 
while increased rainfall was the main reason for greening, there were also a number 
of hypothetical human-induced changes superimposed on the climatic trend-
changes such as improved agricultural practices, as well as migration and popula-
tion displacement. Besides documenting the close coupling of rainfall and vegetation 
response in the Sahel, Anyamba and Tucker ( 2005 ) pointed out that current greener 
conditions are still not as green as those that prevailed from 1930 to 1965. Together, 
these studies and many that have followed (see Annexes   1     and   2    ) demonstrate the 
opportunities offered by NDVI as a proxy for vegetation response to rainfall vari-
ability, especially in arid and semiarid ecosystems. Herrmann et al. ( 2005 ) also 
demonstrated the possibility of using NDVI as a proxy for environmental response 
to management.  

3.4     Soil Erosion 

 Erosion is the displacement of materials like soil, mud, and rock by gravity, wind, 
water, or ice. The most common agents of soil erosion are water and wind (Foth 
 1991 ); their effects may be on-site (where soil detachment and transportation 
occurs) or off-site (where eroded soil is deposited). In soil erosion studies, NDVI is 
commonly used in conjunction with soil-erosion estimation models such as the 
fuzzy-based dynamic soil erosion model (FuDSEM), the Revised Universal Soil 
Loss Equation (USLE/RUSLE), the Water Erosion Prediction Project (WEPP), the 
European Soil Erosion Model (EUROSEM), and the Soil and Water Assessment 
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Tool (SWAT) (Prasannakumar et al.  2012 ; Zhou et al.  2008 ). Mulianga et al. ( 2013 ) 
in Kenya and Ai et al. ( 2013 ) in China, used Terra-MODIS-derived NDVI to char-
acterize the state of the ecosystem (spatial and temporal heterogeneity of the vegeta-
tion conditions), and as one of the input parameters for estimating the potential of 
erosion using fuzzy-set theory. In a study of the effect of vegetation cover on soil 
erosion in the Upper Min River watershed in the Upper Yangtze Basin, China, Zhou 
et al. ( 2008 ) used NDVI as a land-management factor (an input into the RUSLE 
model) representing the effect of soil disturbing activities, land cover, and vegeta-
tion productivity on soil erosion. A similar study, also using NDVI as a land- cover 
management factor to determine the vulnerability to erosion of soils, was carried 
out in a forested mountainous sub-watershed in Kerala, India (Prasannakumar et al. 
 2012 ). In such studies, NDVI proved to be a useful indicator of land-cover condition 
and a reliable input into models of soil dynamics. 

 In most soil erosion research, the NDVI data come from Landsat TM/ETM 
(Thematic Mapper/Enhanced Thematic Mapper) with a spatial resolution of 30 m 
(Ai et al.  2013 ; Chen et al.  2011 ) or MODIS with a spatial resolution of 250 m (Fu 
et al.  2011 ; Mulianga et al.  2013 ). These data are generally used in conjunction with 
a digital elevation model with a spatial resolution of 30 m (Ai et al.  2013 ; Fu et al. 
 2011 ; Mulianga et al.  2013 ; Prasannakumar et al.  2012 ).  

3.5     Soil Salinization 

  Salinity  is salt in the wrong place, affecting water quality, uptake of water, and nutri-
ents by plants and breaking up roads and buildings. It occurs naturally in drylands 
and areas prone to tidewater fl ooding but is often exacerbated by poor soil and water 
management (Zinck and Metternicht  2008 ). A quarter of global cultivated land is 
saline and one third is sodic (high in adsorbed sodium), but salinity can vary signifi -
cantly, even over short distances. While soil salinization is a global problem, the 
phenomenon is more extensive in dry regions than in humid ones (Zinck and 
Metternicht  2008 ). Salinity might be plain to see at the soil surface and has been 
mapped from air photos and Landsat visible-light imagery. However, most of the 
salt is deep in the regolith and it’s hard to isolate the effects of soil salinity on veg-
etation from the effects of other factors (Lobell et al.  2010 ). 

 Assessment employs a combination of methods including airborne and ground- 
based electromagnetic induction (EM), fi eld sampling, and solute modeling (Farifteh 
et al.  2006 ; Dent  2007 ). Airborne EM measures salt in three dimensions to a depth 
of 300 m. Passive sensors like AVHRR and other NDVI methods cannot see below 
the surface, but this has not deterred users—e.g., Platonov et al. ( 2013 ) investigated 
whether the values of maximum multi-annual NDVI refl ected the degree of soil 
salinity within agricultural areas of Syr Darya province of Uzbekistan. The study 
found that by calculating the maximum multi-annual NDVI values from satellite 
images, one can create more spatially detailed soil salinity maps using two methods: 
the pixel based and the average for fi elds (Platonov et al.  2013 ). NDVI was reported 
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to be one of the best band combinations estimating for soil salinity for some crops, 
such as alfalfa and corn, but not for others such as cantaloupe or wheat (Eldeiry and 
Garcia  2010 ). On the other hand, in a study that evaluated the use of multi-year 
MODIS imagery in conjunction with direct soil sampling to assess and map soil 
salinity at a regional scale in North Dakota and Minnesota, Lobell et al. ( 2010 ) 
found that the Enhanced Vegetation Index (EVI) for a 7-year period outperformed 
the NDVI in showing a strong relationship with soil salinity. Nonetheless, the NDVI 
has been used to study top-soil salinity conditions at the local and regional scales in 
different geographical settings. One may doubt whether such studies can be gener-
alized when surface occurrences are so variable from season to season and year to 
year and vegetation effects are so variable (Metternicht and Zinck  2003 ). Nearly all 
the salt—and salt movement—is deep underground: this is a case where NDVI is 
not a suitable technique.  

3.6     Vegetation Burning 

 Fire is a common occurrence in many parts of the world. Wild fi res in forests, savan-
nas, mountain regions, and other ecosystems are integral to the evolution of some of 
these systems; periodic fi res are important in maintaining many grassland, shrub 
steppe, and savanna ecosystems (Mitchell and Roundtable  2010 ). On the other 
hand, fi res (wild or man-made) give rise to soil erosion, greenhouse gas emissions, 
soot, and bad air quality and diminish biodiversity, soil water retention capacity, and 
soil structure (Purkis and Klemas  2011 ). Within the latter context, fi res may consti-
tute a form of land degradation. 

 Satellite remote sensing has been used for modeling and mapping a variety of 
ecosystem conditions associated with fi re risks, potential, and management. These 
include fi re-fuel mapping risk estimation (De Angelis et al.  2012 ), fi re detection, 
postfi re severity mapping, and ecosystem recovery from fi re stress. Besides the 
detection of active fi res, remote sensing is also used to assess and quantify the spatial 
and temporal variations of changes in vegetation cover in fi re-affected areas. Here, 
prefi re and postfi re images are essential for estimating areas affected, especially 
when supported by techniques of supervised classifi cation. Lanorte et al. ( 2014 ) 
used NDVI time series to monitor vegetation recovery after disturbance by fi re at 
two test sites in Spain and Greece. A similar study by Leon et al. ( 2012 ) used MODIS 
NDVI to monitor postfi re vegetation response in New Mexico. Their study outlined 
the potential of using NDVI to monitor the recovery of vegetation cover after fi re 
disturbance (Leon et al.  2012 ). NDVI is also used to determine phenological infor-
mation of the area affected (Chuvieco et al.  2004 ; Díaz-Delgado et al.  2003 ). In 
pre-burn analysis, this information can be used to calculate and map fi re-fuel avail-
ability as well as potential economic and ecological losses likely to result from such 
fi res. In post-burn analysis, NDVI can be used in fi re severity mapping to assess 
ecological recovery from fi res (Malak and Pausas  2006 ; Díaz-Delgado et al.  2003 ), 
to estimate carbon emissions resulting from the fi re episode, and to assess environ-
mental impact (Isaev et al.  2002 ). 

3 Applications of NDVI for Land Degradation Assessment
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 Besides NDVI, studies of vegetation fi res make use of related vegetation indices 
such as the Modifi ed Soil-Adjusted Vegetation Index (MSAVI), Enhanced 
Vegetation Index (EVI), and the Foliar Moisture Index (FMI) (Wang et al.  2010 ) 
and, also, indices specifi c to this fi eld such as the Normalized Burn Ratio (NBR), 
NBR Change Index (dNBR), and the Normalized Thermal Index (NTI) (Wang et al. 
 2010 ). Vegetation fi re research makes use of an array of satellite sensors: MODIS, 
ASTER, Advanced Land Imager (ALI), AVHRR, Landsat 5 TM, Landsat 7 ETM+, 
Spot 4 and 5, Quickbird-2, and IKONOS-2. For most tasks involving the use of 
NDVI such as fuel mapping, vegetation classifi cation, and postfi re burn area and 
severity assessment and mapping, the main sensors are AVHRR, MODIS, Landsat 
5 TM, and Landsat 7 ETM+ (see Annex   1    ).  

3.7     Soil Organic Carbon (SOC) 

 The absorption of carbon by soils and vegetation ecosystems goes some way 
towards offsetting worldwide fossil fuel emissions (Mishra and Singh  2010 ; Piao 
et al.  2009 ; Bernoux and Chevallier  2014 ). SOC is also increasingly recognized as 
an excellent indicator of the status and functioning of soils—hence progressively 
recommended in various international initiatives for monitoring soil quality 
(Bernoux and Chevallier  2014 ). In the 1980s and 1990s, for example, 10–60 % 
global carbon emissions were offset through this process. While the global pattern 
and sources of sinks are imperfectly understood (Piao et al.  2009 ), it is well accepted 
that vegetation plays an important role in carbon sequestration. 

 Vegetation data based on NDVI have been instrumental in the assessment and 
monitoring of key global biomes (see Annex   1    ). The fi rst pan-tropical biomass map 
was developed through MODIS-GLAS data fusion in 2011 (Saatchi et al.  2011 ). 
This has been a benchmark for the assessment of biomass carbon stocks in support 
of REDD assessments at both project and national scales. NDVI has been used in 
regional studies of SOC. Together with terrain attributes and data on climate, land- 
use, and bedrock geology, NDVI data were used to predict the SOC pool for seven 
states in the Midwestern United States (Mishra et al.  2010 ). In another study, NDVI 
data were used as an input into the Carnegie–Ames–Stanford Approach (CASA) 
terrestrial ecosystem model to estimate losses of SOC resulting from wind erosion 
in China (Yan et al.  2005 ). In investigating changes in soil organic C and total N in 
the Hexi Corridor, China, signifi cant correlation was found between NDVI and 
SOC, as well as NDVI and N (Pan et al.  2013 ).  

3.8     Biodiversity Monitoring and Conservation 

 High rates of biodiversity loss threaten to breach planetary boundaries (Rockström 
et al.  2009 ). A growing body of knowledge is developing around the tools 
and techniques for assessing and predicting ecosystem responses to global 
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environmental changes (Pettorelli et al.  2005 ,  2014 ; Yeqiao  2011 ). In mapping and 
studying protected lands, for example, Yeqiao ( 2011 ) notes that satellite remote 
sensing can provide wide-ranging geospatial information at various spatial scales, 
temporal frequencies, spectral properties, and spatial contexts. While traditional 
approaches to measuring species richness provide detailed local data, it is hard to 
upscale this information to large geographical areas (Duro et al.  2007 ). Remote 
sensing tools (with NDVI playing an important role) offer opportunities for such 
large area descriptions of biodiversity in a systematic, repeatable, and spatially 
exhaustive manner (Duro et al.  2007 ; Turner et al.  2003 ). 

 NDVI plays an important role in the development of land-cover maps—an 
important tool in the  direct approach  or  fi rst-order analysis  of species occurrence 
(Turner et al.  2003 ). Depending on the scale, biome, and ecosystem in question, 
land-cover maps provide implicit or explicit data on the composition, abundance, 
and distribution of individual or assemblages of species (Duro et al.  2007 ; Pettorelli 
et al.  2014 ; Turner et al.  2003 ). Data derived from vegetation productivity, in asso-
ciation with other environmental parameters (climatic and geophysical), are statisti-
cally related to species abundance or occurrence data (Duro et al.  2007 ; Pettorelli 
 2013 ). One example is the use of AVHRR-derived NDVI to explain the spatial vari-
ability of species richness of birds at a quarter degree spatial resolution in Kenya, 
fi nding a strong positive correlation between species richness and maximum aver-
age NDVI (Oindo et al.  2000 ). NDVI also contributes to the  indirect approach  to 
measuring species composition, abundance, and distribution. Different aspects of 
vegetation condition (derived from vegetation indices such as NDVI) contribute to 
the mapping of environmental variables which provide indications (through biologi-
cal principles) of species composition, abundance, and distribution (Duro et al. 
 2007 ; Pettorelli et al.  2014 ). A high resource abundance (indicated by high NDVI 
values derived from NOAA/AVHRR satellite imagery) was used to explain the 
occurrence and distribution of the devastating locust specie  Schistocerca gregaria  in 
Mauritania (Despland et al.  2004 ).  

3.9     Monitoring Ecosystem Resilience 

 The use of NDVI in vegetation monitoring and assessment is aimed at improving 
our understanding, predictions, and impacts of disturbances such as drought, fi re, 
fl ood, and frost on global vegetation resources (Pettorelli et al.  2005 ,  2014 ). The use 
of the NDVI to monitor vegetation and plant responses to environmental changes at 
the level of trophic interactions constitutes one of the main uses of the NDVI in 
nature and conservation research. The application of the NDVI as a resilience indi-
cator has been applied in numerous studies, such as reported by Díaz-Delgado et al. 
( 2002 ), Simoniello et al. ( 2008 ), and Cui et al. ( 2013 ). Diaz-Delgado et al. ( 2002 ) 
used NDVI values derived from Landsat imagery to assess the recovery of 
Mediterranean plant communities after recurrent fi re disturbances between the peri-
ods 1975 and 1993. They concluded (among other things) that the use of time-series 
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NDVI and other imagery products can be useful in understanding the resilience of 
Mediterranean plant communities and postfi re vegetation dynamics over large 
regions and long time periods (Díaz-Delgado et al.  2002 ). Simoniello et al. ( 2008 ) 
characterized the resilience of Italian landscapes using NDVI trends to estimate 
mean recovery times of vegetation to different levels of anthropic pressure. They 
concluded that with 8-km AVHRR-NDVI data and remote sensing techniques, sub-
stantial details on vegetation cover activity (pointers to its resilience) at local scale 
could be captured, even in ecologically complex territories such as that of the Italian 
peninsula (Simoniello et al.  2008 ). 

 Cui et al. ( 2013 ) used Landsat TM and Landsat MSS time-series data to charac-
terize land-cover status as a proxy for ecosystem resilience. They observed that the 
state of Southern African ecosystems and their response to a climatic shock (drought 
conditions) could be quantifi ed in terms of vegetation amount and heterogeneity 
(Cui et al.  2013 ). Gibbes et al. ( 2014 ) used 28 years of AVHRR- MODIS NDVI 
time-series data in conjunction with global gridded monthly time series of modeled 
rainfall to determine the resilience of ecological systems in the Kavango–Kwandu–
Zambezi catchments. Besides highlighting the explicit vegetation–precipitation 
linkages across this highly vulnerable region, the study underlined the important 
role played by precipitation in modulating conditions of the savanna ecosystems 
(Gibbes et al.  2014 ). Another application of NDVI to assess the resilience of eco-
systems involves comparing stable-state NDVI trends to post-disturbance (from 
events such as fi re, fl ooding, and hurricanes) NDVI trends to determine differences 
in ecosystem productivity across spatial-temporal scales (Renschler et al.  2010 ). 
These studies confi rm the ability of remote sensing- derived NDVI, in combination 
with rainfall data, to detect land degradation processes that can be related to the 
resilience of ecosystems and landscapes.       

3.9  Monitoring Ecosystem Resilience
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    Chapter 4   
 Limits to the Use of NDVI in Land 
Degradation Assessment                     

              During the past half century, NDVI has been widely used for vegetation mapping 
and monitoring as well as in the assessment of land-cover and associated changes. 
This is because remotely sensed satellite-derived datasets provide spatially contin-
uous data (data that are not sampled at individual points) and yield time-series 
signatures from which temporal patterns, trends, variations, and relationships may 
be derived (Jacquin et al.  2010 ). This has not prevented the misuse of NDVI—care 
is needed in the use of any scientifi c methodology. 

 As a spectral index of vegetation, NDVI provides the most direct quantifi cation 
of the fraction of photosynthetically active radiation (fPAR) that is absorbed by 
vegetation (Running et al.  2004 ) (Figs   4.1   and   9.2    ). The convenience of satellite- 
derived NDVI and techniques of remote sensing for monitoring vegetation cover 
and assessing vegetation condition has been demonstrated at spatial scales from 
local to global and in diverse fi elds of environmental studies:

 –     Desertifi cation (Olsson et al.  2005 ; Sternberg et al.  2011 ; Tucker and Nicholson 
 1999 ; Wessels et al.  2004 ; Symeonakis and Drake  2004 )  

 –   Drought assessment and monitoring (Anyamba and Tucker  2012 ; Bandyopadhyay 
and Saha  2014 ; Karnieli et al.  2010 ; Liu and Juárez  2001 )  

 –   El Nino impacts on ecosystems (Liu and Juárez  2001 )  
 –   Monitoring and assessment of regional to global changes in land cover and land 

use (Achard et al.  2007 ; Bradley and Mustard  2008 ; Cook and Pau  2013 ; Field 
et al.  1995 ; Lambin and Ehrlich  1997 ; Prince and Goward  1995 ; Rouse et al.  1974 )  

 –   Ecosystem health and services (Pettorelli et al.  2014 ; Zhang et al.  2013 ; Bai 
et al.  2013 )    

 Nonetheless, the use of NDVI to discriminate directly between degraded and 
non-degraded areas can be challenging, both in implementation and interpretation. 
Wessels et al. ( 2004 ) studied non-degraded and degraded areas in northeastern 
South Africa, both exposed to identical rainfall regimes, paired and monitored over 
16 growing seasons, and concluded that, in some cases, degraded areas were no less 

http://dx.doi.org/10.1007/978-3-319-24112-8_9
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stable than non-degraded areas. This is a call for caution in properly contextualizing 
land degradation assessments based on NDVI-, NPP-, or RUE-derived indices 
(see Sect. 5.5). It is our recommendation in this report that all NDVI studies use 
MODIS NDVI data as the benchmark. If identical NDVI trends between or among 
different NDVI datasets are not found, something is incorrect, and it is not the 
MODIS NDVI data. So all NDVI3g land surface studies be compared to MODIS 
NDVI data from the overlapping period (see Fig.   9.1    ). Failure to perform this inter-
comparison can only lead to confusion. 

 Other issues also need to be considered in the use of NDVI for land degradation 
assessments:

 –     The contentious issue of NDVI saturation at higher LAIs : It has been argued that 
the NDVI signal from tropical evergreen forests is saturated so that there is a low 
signal/noise ratio. This is reported to occur when NDVI is related to LAI through 
a linear or exponential regression model (Schlerf et al.  2005 ). We are using 
NDVI as a surrogate for photosynthetic capacity. When photosynthetic capacity 
is at a maximum, there will be no change in NDVI because there is no change in 
photosynthetic capacity—because all visible photons have been absorbed. This 
is not saturation because primary production or photosynthesis is driven by light 
absorption. When there is no more light to be absorbed in high leaf density 
 situations, photosynthesis is at a maximum and cannot increase (Fig.   4.1  ). 
Furthermore, integrated NDVI is directly related in a linear fashion to integrated 
fl uorescence (Fig.   9.2    ). If NDVI saturation was real, the relationship in Fig.   9.2     
would not occur.  

  Fig. 4.1    Comparison between integrated gross primary production from 12 fl ux towers and inte-
grated NDVI from MODIS Terra for the respective growing seasons where the fl ux towers were 
situated. This demonstrates the strong relationship between NDVI and primary production which 
is directly related to chlorophyll abundance and energy absorption (Myneni et al.  1995 ,  2014 ). 
There is no saturation of NDVI with respect to photosynthetic capacity (also see Fig.   9.2    )       
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 –   Caution is needed in the use of vegetation indices to estimate LAI because there 
is no unique relationship between LAI and any particular vegetation index, but 
rather a set of relationships, each depending on the architecture of the plants in 
question (Haboudane et al.  2004 ). A LAI of a grass canopy cannot be compared 
to the same LAI of a broadleaf forest—the former has vertical leaves and the lat-
ter has horizontal leaves. NDVI is directly related to primary production and 
energy absorption (Myneni et al.  1995 ) and not to LAI.  

 –    It’s hard to separate the effects of climate from the effects of land degradation:  
Wessels et al. ( 2007 ) used the trend of residuals (RESTREND) to distinguish 
human-induced land degradation from the effects of rainfall variability. GLADA’s 
empirical screening using RUE identifi ed much the same patterns as RESTREND 
and has the advantage that it translates to NPP for economic analysis (see discus-
sion in Sect. 5). Conijn et al. ( 2013 ) disentangled climate from other factors 
affecting NDVI by modeling biomass production independently according to crop 
characteristics and global data for climate, soils, and land use. Combining NDVI 
trends and modeled changes in biomass yields four scenarios: (a) positive ∑NDVI 
and positive biomass change (where greening might be explained by improving 
weather), (b) positive ∑NDVI and negative biomass (in spite of worsening 
weather, greenness has increased, thanks to management or atmospheric fertiliza-
tion), (c) negative ∑NDVI and positive biomass (greenness declines against a 
trend of expected increase, so land degradation or land-use change has outweighed 
favorable weather), and (d) negative ∑NDVI and negative biomass (declining 
greenness may be explained by worsening weather) (Conijn et al.  2013 ). Whether 
the benefi ts of clearer separation of the climatic drivers is worth the substantial 
effort required is debatable, bearing in mind that the spatial variability of rainfall 
in drylands makes interpolation of the sparse point measurements problematic 
and the limitations of biomass modeling using a limited number of vegetation 
types and predefi ned management. It is no easier to verify changes in calculated 
biomass using independent data than to verify changes in NDVI.  

 –    Cloudiness:  The traditional approach of dealing with cloud cover has been to use 
Maximum Value Composites (MVC) (Holben  1986 ) which minimizes cloud 
contamination, reduces directional refl ectance and off-nadir viewing effects, 
minimizes sun-angle and shadow effects, and minimizes aerosol and water-vapor 
effects. MVC requires that a series of original daily observations of multitempo-
ral geo-referenced satellite data be processed into NDVI images pixel by pixel. 
Each NDVI value is inspected, and only the highest value is retained for each 
pixel location to eventually form part of an MVC image. MVC has been used in 
the production of the GIMMS NDVI 8-km dataset (Tucker et al.  2005 ). This 
compositing approach was necessary because the needed atmospheric variables 
were not present in the early part of this record for explicit corrections. To avoid 
time-series bias, the same processing approach has been applied to the entire 
1981–2014 NDVI3g dataset. 

 This and any other compositing procedure may give rise to bias if a single 
false high is registered (Pettorelli et al.  2005 ). All compositing approaches may 
underestimate photosynthetic capacity under cloudy conditions, high aerosol 
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situations, and the presence of snow cover. To eliminate these possibilities of 
bias, de Jong et al. ( 2011a ) used the HANTS algorithm to remove residual cloud 
effects by applying Fourier analysis complemented by detection of outliers that 
were replaced by a fi ltered value. This approach identifi es the high frequency 
“noise” components in NDVI time series data sets and removes them. All vegeta-
tion index data sets suffer from these problem and may be corrected using 
HANTS. Comparison of global NDVI trends using the HANTS-reconstructed 
data with the original GIMMS data showed no measurable difference (de Jong 
et al.  2011a ).  

 –    Autocorrelation nullifi es trend analysis:  Autocorrelation (whereby any individ-
ual value is infl uenced by the preceding values) is avoided by using annual 
∑NDVI rather than the fortnightly GIMMS values, but this entails a loss of 
information; for example, we cannot analyze subtly changing seasonal responses 
of the NDVI signal that may indicate the nature of any degradation. De Jong 
et al. ( 2011a ) applied the nonparametric Mann–Kendall model that is unaffected 
by autocorrelation to GIMMS NDVI data and normalized the data for seasonal 
variations in phenology rather than calendar years (which should be better in the 
southern hemisphere where growing seasons do not fall neatly within the calen-
dar year). Linear regression measures annual accumulated photosynthetic activ-
ity, while Mann–Kendall measures the photosynthetic intensity of the growing 
season. Each has its own advantages, but the close similarity of the patterns of 
greening and browning revealed by the two models suggests that both are robust.  

 –    Direct assessment of some land degradation processes:  As discussed in Sect. 
3.5, there are constraints in using NDVI to identify and map soil salinity: most of 
the salt remains below the soil surface so it cannot be detected on satellite images 
(Farifteh et al.  2006 ); surface salinity is very dynamic, and its detection can be 
blurred by vegetation and other surface features (Metternicht and Zinck  2003 ). 
The effects of sodicity and soil acidity are also impossible to distinguish from 
other limitations on the growth and productivity of vegetation.  

 –    Measurement of land degradation using NDVI trends underestimates the prob-
lem:  Farming everywhere is running down stocks of soil organic matter that sup-
plies plant nutrients; maintains infi ltration, available water capacity, and 
resilience against erosion; and fuels soil biodiversity. Over the last century, 60 % 
of soil and biomass carbon has been lost through land-use change. Chernozem, 
the best arable soils in the world, has lost 30–40 % of their organic carbon, yet 
they yield abundantly till a tipping point is reached and then the system fl ips—
like the American Dust Bowl in the 1930s (Krupenikov et al.  2011 ). NDVI data 
do show that heavy use of fertilizer across much of China, the Indo-Gangetic 
Plain, Europe, the American mid-West, and southern Brazil is no longer accom-
panied by increasing production but may be concealing soil degradation.         

4 Limits to the Use of NDVI in Land Degradation Assessment
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Chapter 5
Key Issues in the Use of NDVI for Land 
Degradation Assessment

5.1  �NDVI, NPP, and Land Degradation

A substantial body of research has established the correlation between NDVI and 
aboveground biomass, and knowledge of the theoretical basis for using satellite-
derived NDVI as a general proxy for vegetation conditions has advanced (Mbow 
et al. 2014; Pettorelli et al. 2005; Sellers et al. 1994). Reduction of primary produc-
tivity is a reliable indicator of the decrease or destruction of the biological produc-
tivity, particularly in drylands (Wessels et al. 2004; Li et al. 2004). NPP expressed 
in g of C m−2 years−1 and quantifies net carbon fixed by vegetation. According to 
Cao et  al. (2003), NPP is “the beginning of the carbon biogeochemical cycle,” 
defined mathematically as in Eq. (5.1):

	
NPP NDVI, PAR, fPAR, aPAR, LAI= ( )f

	 (5.1)

where fPAR is the fraction of absorbed photosynthetic active radiation, aPAR is the 
absorbed photosynthetic active radiation, and LAI is the leaf area index. Changes in 
NPP or, rather, its proxy NDVI induced by land degradation can be measured using 
a range of remote sensing techniques so remote sensing has become an essential 
tool for global, regional, and national studies of land degradation (Anyamba and 
Tucker 2012; Bai et al. 2008; Bajocco et al. 2012; de Jong et al. 2011b; Field et al. 
1995; Horion et al. 2014; Le et al. 2014; Prince and Goward 1995). Many approaches 
have been developed to estimate NPP, notably the Global Production Efficiency 
Model (GLO‐PEM) (Prince and Goward 1995), the Light-Use Efficiency (LUE) 
Model (Monteith and Moss 1977), the Production Efficiency Approach (Goetz et al. 
1999; Goward and Huemmrich 1992), and the Sim‐CYCLE (Ito and Oikawa 2002). 
And models have been developed to estimate NPP directly from remotely sensed 
NDVI at a global scale. Running et al. (2004) offered Eq. (5.2):

	
NPP NDVI PAR R R R= ´ ´ -( ) - -S e lr g m 	 (5.2)
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where ε is the conversion efficiency; PAR is photosynthetically active radiation; Rlr 
is 24-h maintenance respiration of leaves and fine roots; Rg is annual growth respira-
tion required to construct leaves, fine roots, and new woody tissues; and Rm is the 
maintenance respiration of live cells in woody tissues. Drawing on this relationship, 
Bai et al. (2008) adopted an empirical relationship to translate NDVI trends to NPP 
trends for their proxy global assessment of land degradation (Eq. 5.3):

	
NPP year NDVIMOD17

1 1 1106 37 564 55kg C ha- -( ) = ´ -. .S
	

(5.3)

where NPPMOD17 is the annual mean NPP derived from MODIS MOD17 Collection 
four data and sum NDVI is the 4-year (2000–2003) mean annual sum NDVI derived 
from GIMMS.

5.2  �NDVI, RUE, and Land Degradation

The concept of rain-use efficiency (RUE), coined by Le Houerou (1984), is the ratio 
of aboveground NPP to annual precipitation. It tends to decrease with increase in 
aridity and potential evapotranspiration (Purkis and Klemas 2011; Symeonakis and 
Drake 2004; Le Houerou 1984). It has been observed that RUE is generally lower in 
degraded lands than in non-degraded lands (Symeonakis and Drake 2004); Fensholt 
et al. (2013) contend that RUE is “a conservative property of the vegetation cover in 
drylands, if the vegetation cover is not subject to non-precipitation related land deg-
radation.” Nonetheless, the use of RUE as an indicator for land degradation has been 
hotly contested on the grounds of methodology, differences in scale, and ecological 
contexts (Dardel et  al. 2014; Fensholt et  al. 2013; Wessels 2009; Fensholt et  al. 
2012; Wessels et al. 2007).

In the short term, vegetation reacts to natural rainfall variation so RUE needs to 
be examined over the long term to exclude false alarms (Nkonya et al. 2011). The 
common practice in estimating RUE is to use summed NDVI as an EO-based proxy 
for NPP (Fensholt et al. 2013), but the nature of the relationship between ΣNDVI and 
annual precipitation (proportionality, linearity, or nonlinearity) has been seen as an 
important consideration when estimating satellite-based RUE time series (Fensholt 
and Rasmussen 2011). In semiarid landscapes, where livestock farming is predomi-
nant, degradation from overgrazing often results in decreased or changes in  the 
composition of vegetation communities and reduced rain-use efficiency (Diouf and 
Lambin 2001).

Using satellite-based ΣNDVI and annual precipitation, Fensholt and Rasmussen 
(2011) demonstrated that there is no proportionality, but sometimes a linear rela-
tion, between ΣNDVI and annual precipitation for most pixels in Sahel. The authors 
argue that this undermines the generalized use of satellite-based RUE time series as 
a means of detecting nonprecipitation-related land degradation.

RUE itself has been used as a proxy for land degradation (Safriel 2007; 
Symeonakis and Drake 2004) where RUE, itself, is not negatively correlated with 
rainfall. To stress the need for decoupling of precipitation and NDVI correlation in 
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RUE estimation and land degradation assessments, Fensholt et al. (2013) use the 
term nonprecipitation-related land degradation. This decoupling can be partly 
achieved by replacing annual ∑NDVI (a variable commonly and erroneously) used 
in RUE computations by a small NDVI integral that covers only the rainy season 
(not the whole year) and counting only the growth in NDVI in relation to some 
reference level. When this approach is applied to the African Sahel, Fensholt et al. 
(2013) find that positive RUE trends dominate most of the Sahel, which suggests 
that nonprecipitation-related land degradation is not widespread in the region.

While RUE can be used to normalize the effects of rainfall variability in the veg-
etation productivity signal when interpreting degradation trends (Landmann and 
Dubovyk 2014), the interpretation of RUE should be put in the proper environmen-
tal and land-use context; e.g., RUE is closely related to the scale of observation 
(Prince et al. 1998) and is not valid for land-use systems that show no rainfall–veg-
etation productivity correlations (Bradley and Mustard 2008). Given these caveats, 
the usefulness of RUE as a stand-alone indicator of vegetation productivity is lim-
ited. Another approach is through normalized cumulative RUE differences (CRD). 
The computation uses normalized monthly RUE with a Z-score normalization to 
correct for high outliers in the rainfall data (Landmann and Dubovyk 2014). Using 
250-m MODIS NDVI data, this approach was employed to map vegetation produc-
tivity loss over eastern Africa between 2001 and 2011 (Landmann and Dubovyk 
2014). The study concluded that 3.8 million ha of land experienced vegetation loss 
over the period, with an accuracy assessment of 68  % agreement between the 
rainfall-corrected MODIS productivity decline map and all reference pixels discern-
able from Google Earth and the Landsat-derived map and an accuracy of 76 % for 
deforestation. The study concluded that under high land-use intensities, the CRD 
showed a good potential to discern areas with severe vegetation productivity losses.

Dardel et al. (2014) used RUE residuals derived from linear regression as an indi-
cator of ecosystem resilience in the Gourma region in Mali. This study made use of 
data from long-term field observations of herbaceous vegetation mass and GIMMS-3g 
NDVI data to estimate ANPP, RUE, and the ANPP residuals over the period 1984–
2010. Counterintuitively, an increased runoff coefficient was observed over the same 
period of stable RUE. In Burkina Faso, an increase in discharge of rivers was first 
observed despite a reduction in rainfall—the Sahelian Paradox described in 1987 
(Albergel 1988). Dardel et al. 2014 coined the term the second Sahelian Paradox to 
refer to the divergence of these two indicators of ecosystem resilience (stable RUE) 
and land degradation (increasing runoff coefficient) (Dardel et al. 2014).

5.3  �Separating the Effects of Other Causes of NDVI Changes

Vegetative cover is a measurable indicator of ecosystem change, but the perfor-
mance of vegetation depends on many micro- and macro-environmental factors 
(especially climate). Changes in vegetation reflect changes in both the natural fac-
tors that influence vegetation growth and performance, as well as human influences. 

5.3 � Separating the Effects of Other Causes of NDVI Changes



34

Hence, whereas NDVI can be a good indicator of NPP, separating the effects of 
climate variability on NDVI changes from those of land degradation is a challenge 
(Vogt et al. 2011). Different approaches, as described hereafter, have been used in 
recent studies.

One of the most popular techniques of application of NDVI in the assessment 
and monitoring of desertification is through the analysis of time-series NDVI 
images. In NDVI time-series analysis, linear models may be used to best fit the 
cyclic vegetation variation into a line (Eq. 5.4). The slope of the line can then be 
used to deduce the direction of vegetation variation (decrease or increase), as well 
as the strength of variation from the steepness of the trend line (e.g., no change, 
minimal, moderate, or severe change). In this case, the NDVI linear model will be

	 NDVI NDVIt a t= × + 0 	 (5.4)

where a is the trend, NDVI0 is constant, and t is time.
Evans and Geerken (2004) used linear regression on NDVI time series and rainfall 

to discriminate between the NDVI signal attributable to climatic conditions and that 
to human influence. The difference between the observed maximum NDVI and the 
regression-predicted maximum NDVI (referred to as residuals) was calculated pixel 
by pixel to identify the climate signal (the effect of precipitation) (Evans and Geerken 
2004). Once the climate signal is identified and removed from the trends in vegeta-
tion activity, the remaining vegetation variations may be attributed to human activi-
ties. Positive trends in the vegetation represent areas of vegetation recovery, while 
negative trends constitute human-induced degradation of vegetation cover. 
RESTREND involves regressing ΣNDVI from annual precipitation and then calcu-
lating the residuals—the difference between observed ΣNDVI and ΣNDVI as pre-
dicted from precipitation (Fensholt et al. 2013; Fensholt et al. 2012; Wessels et al. 
2007). RUE and RESTREND were compared using AVHRR NDVI from 1985 to 
2003 and modeled NPP from 1981 to 2000 to estimate vegetation production in 
South Africa (Wessels et al. 2007). The study found that RUE was not a reliable 
indicator of land degradation. RESTREND was found to offer better prospects, but 
the study cautioned on the need for local-level investigations to identify the cause of 
negative trends. In a later study, Wessels et al. (2012) concluded that the RESTREND 
approach also has shortcomings, since the calculation of the residual NDVI is based 
on the assumption of a strong linearity between NDVI and rainfall over time, a rela-
tion which in the case of degradation during the period of analysis will be altered, 
thereby compromising the reliability of the RESTREND calculation.

Propastin et al. (2008) proposed the use of geographically weighted regression 
(GWR) between NDVI and precipitation for identifying the human-induced signal 
in NDVI time-series data. Using this method, the GWRs will describe the expected 
(predicted) NDVI for any particular climate signal. Deviations from the regression 
line by the observed NDVI would indicate vegetation changes that are attribut-
able  to stimuli other than climate (Propastin et  al. 2008). Positive deviations  
indicate vegetation improvements, while negative deviations indicate declining in 
vegetation condition.

5  Key Issues in the Use of NDVI for Land Degradation Assessment
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5.4  �Abrupt Changes

Linear trends are easy to calculate, and in the early years of satellite NDVI, this was 
the only feasible approach. However, contrasting trends can balance out so it is 
important to ensure that the necessary assumptions for the determination of linear 
trends are met for each analysis. Citing De Beurs and Henebry (2005), Higginbottom 
and Symeonakis (2014) list them as (1) independence of the dependent variable, (2) 
normality in the model residuals, (3) consistency in residual variance over time, and 
(4) independence in residuals. Where there is need to separate NDVI time series 
into linear trend, seasonal components, and errors, nonlinear NDVI time-series 
models are used (Erian 2005). Key components of such nonlinear models (Eq. 5.5) 
would usually include a linear trend, stochastic component, external variables, peri-
odic components (in terms of cycles and periodic trends), and white noise (Erian 
2005, citing Udelhoven and Stellmes 2007).

	
� (5.5)

The more than 30 years of NDVI record now available reveal many breaks of trend, 
even reversals. The Breaks for Additive Season and Trend (BFAST) approach has 
been developed to detect and capture these NDVI trend changes (de Jong et  al. 
2011c; Verbesselt et al. 2010a; Verbesselt et al. 2010b). The algorithm combines the 
decomposition of time series into seasonal, trend, and remainder component with 
methods for detecting changes. An additive decomposition model is used to itera-
tively fit a piecewise linear trend and a seasonal model (Haywood and Randall, 
2008). According to De Jong et al. (2012), the general form of the model is Eq. (5.6):

	 Y T S e t Tt t t t= + + Î: 	 (5.6)

where, at time t (in the time series T), Yt is the observed NDVI value, Tt is the trend 
component, and St is the seasonal component and the remainder component which 
contains the variation beyond what is explained by Tt and St. Using this method 
(Eq.  5.6), De Jong et  al. (2011a) mapped the global distribution of greening to 
browning or vice versa; about 15 % of the globe witnessed significant trend shifts 
within the period studied. Common change detection methods average out this 
mixed trend effect, underestimating the trend significance (de Jong et al. 2011c).

5.4 � Abrupt Changes
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    Chapter 6   
 Development of Land Degradation 
Assessments                     

              Early assessments of land degradation like the Global Assessment of Soil Degradation 
(GLASOD) (Oldeman et al.  1990 ) were compilations of expert opinion. They are 
unrepeatable and systematic data show them to be unreliable (Sonneveld and Dent 
 2009 ). Under the FAO/UNEP program  Land Degradation in Drylands (LADA) , Bai 
et al. ( 2008 ) undertook a global assessment of land degradation and improvement 
(GLADA) by analysis of linear trends of climate-adjusted GIMMS NDVI data. 
GLADA, the fi rst quantitative assessment of global land degradation, aimed to iden-
tify and delineate  hot spots of land degradation, and their counterpoint—bright 
spots of land improvement  (Bai et al.  2008 ). The study revealed that about 24 % of 
the global land area was affected by land degradation between 1981 and 2003. Humid 
areas accounted for 78 % of the global degraded land area, while arid and semiarid 
areas accounted for only 13 %. Cropland and rangelands accounted for 18 % and 
43 %, respectively, of the 16 % of global land area where the NDVI increased. The 
authors observed a positive correlation between population density and NDVI but, 
also, a correlation between poverty and land degradation. They emphasized that 
NDVI cannot be other than a proxy for land degradation and that it reveals nothing 
about the kind of degradation or the drivers (Bai et al.  2008 ). 

 Potential false alarms caused by drought cycles and rising global temperatures 
were removed by screening the data using rain-use effi ciency (RUE) and energy-use 
effi ciency (EUE). RUE was estimated from the ratio of the annual sum NDVI to 
annual rainfall calculated from the VASClimO station-observed monthly rainfall 
data gridded to 0.5° latitude/longitude (Beck et al.  2005 ); EUE was represented by 
the ratio of NDVI and accumulated temperature calculated from the CRU dataset 
(Jones and Harris  2013 ; Mitchell and Jones  2005 ). The sequence of operations was:

    1.    Areas where biomass productivity depends on annual rainfall were identifi ed as 
those with a signifi cant positive relationship between NDVI and rainfall. In these 
areas, years of below-normal rainfall exhibit below-normal NDVI and also, usu-
ally, increased RUE. Where there is decreasing NDVI but steady or increasing 
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RUE, the loss of productivity was attributed to drought and these areas were 
masked. Where both NDVI and RUE declined, something else is happening and 
these areas were included in the next stage of analysis.   

   2.    For the remaining areas where productivity is not limited by rainfall and, also, 
for those with a positive relationship between productivity and rainfall but 
declining RUE, greening and browning trends were calculated as  RUE-adjusted 
NDVI . Similarly, EUE was used to separate trends caused by rising temperatures, 
the net result being a  climate-adjusted NDVI.    

   3.    Urban areas were masked (this makes little difference to the global results 
−0.5 % for the identifi ed degrading land and 0.2 % for improving land). Irrigated 
areas were not masked; the separation of areas of positive and negative correla-
tion with rainfall effectively separates wetlands, irrigated areas, and areas with 
surplus rainfall from the areas where unadjusted NDVI is a good measure of 
degradation and improvement. Humid areas have not been masked; unadjusted 
NDVI was used for all of those areas where RUE is  not  appropriate.   

   4.    The T-test was used to test the signifi cance of the linear regression; class bound-
aries were defi ned for 90, 95, and 99 % levels.   

   5.    To arrive at a measure amenable to economic analysis, NDVI trend was trans-
lated into gain or loss of NPP by correlation with MODIS 8-day NPP data 
(Running et al.  2004 ) for the overlapping period (2000–2006).   

   6.    Several indices of land degradation and improvement were compared with land 
cover, land use, and landform. Land-use change is a main driver of land degrada-
tion so it would be useful to undertake analysis of NDVI against change in land 
use and management, but there are no corresponding time series data for land use 
or land cover. GLC2000 (Bartholomé and Belward  2005 ) global land-cover and 
land-use systems of the world (FAO  2013 ) were used for preliminary compari-
son with NPP trends.   

   7.    Soil and terrain: A global soil and terrain database at scale 1:1 million-scale was 
compiled using the 90 m-resolution SRTM digital elevation model and a dataset 
of key soil attributes for the LADA partner countries (ISRIC  2008a ,  b ). 
Correlations between land degradation and soil and terrain were investigated in 
country studies.   

   8.    Population, urban areas, and poverty indices: The CIESIN Global Rural–urban 
Mapping Project provides data for population and urban extent, gridded at 30 
arc-second resolution (CEISIN  2004 ). Subnational rates of infant mortality and 
child underweight status and the gridded population for 2005 at 2.5 arc-minutes 
resolution (CEISIN  2007 ) were compared with indices of land degradation.    

  The picture revealed by GLADA was against received wisdom which reckoned 
that degradation was worst in the Sahel, the Amazon rain forest, and, more gener-
ally, in drylands. But the Sahel, Amazon, and drylands mainly showed increases 
in climate-adjusted NDVI. The areas hardest hit appeared to be Africa South of 
the Equator, Southeast Asia, the Pampas and Chaco regions in South America, 
North Central Australia, and swaths of the high-latitude forest belt extending 
across North America and Siberia. However, the identifi cation of increases in the 
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Amazon by Bai et al. ( 2008 ) may be questioned in the light of more recent studies 
by Morton et al. ( 2014 ) showing that the apparent greening of Amazon forests 
revealed in optical remote sensing data is due to seasonal changes in NIR refl ec-
tance—an artifact of variations in sun-sensor geometry (Morton et al.  2014 ). The 
picture is different again when the same analysis is applied to the extended 
GIMMS3g dataset for 1981–2011; the differences are not just because of the lon-
ger run of data but because of changes in GIMMS data processing to correct better 
for the periodic replacement of AVHRR sensors (especially AVHRR 2 to AVHRR 
3). Importantly, the processing of the latest GIMMS dataset does not assume sta-
tionarity (no overall change in NDVI) but, rather, reveals the underlying trends 
(Pinzon and Tucker  2014 ).      

6 Development of Land Degradation Assessments
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    Chapter 7   
 Experts’ Opinions on the Use of NDVI 
for Land Degradation Assessment                     

              Methodological issues were raised by Wessels ( 2009 ) regarding the GLADA assessment, 
chiefl y the interpretation of RUE outside arid and semiarid regions, growing season 
differences between the northern and southern hemisphere and their implications 
for calendar year summations of NPP, and issues of scale in the interpretation of 
AVHRR NDVI vs. MODIS NPP relationships. He also maintained that the 
RESTREND technique provided a more dependable alternative. In response, Dent 
et al. ( 2009 ) clarifi ed that RUE was not being used as an indicator of land condition 
but simply to separate NDVI trends caused by drought in those areas where biomass 
potential is directly related to rainfall, essentially drylands. Regarding seasonal 
differences in growing season between the northern and southern hemispheres, 
there was no difference in the long-term trends when the hydrological year was used 
for the southern hemisphere. And, fi nally, the RESTREND approach was also 
applied to the GLADA data and showed no signifi cant difference with the RUE-
adjusted NDVI approach; the choice of the RUE-adjusted NDVI was made on 
account of its simplicity and amenability to economic evaluation (Dent et al.  2009 ). 

7.1     NDVI: Rainfall Proportionality, an Important 
Consideration 

 Methodological weaknesses that might seem to question the applications of RUE in 
the Bai et al. ( 2008 ) study (as with many studies in this area) have to do with the lack 
of consideration given to the effect of lack of proportionality in the use and interpre-
tation of RUE (computed from NDVI-derived NPP) as a proxy for identifying areas 
of land degradation. The theoretical basis for RUE assumes proportionality between 
NPP (as indicated by NDVI) and rainfall (Le Houerou  1984 ), meaning that a fi xed 
ratio (RUE) exists despite changes in rainfall over time. NDVI and rainfall should 
intercept at zero to meet this assumption of proportionality with changes in the 
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rainfall (Dardel et al.  2014 ; Fensholt and Rasmussen  2011 ; Verón et al.  2005 ). The 
theoretical assumption of proportionality is important in understanding the function-
ing of the relationship between these two variables (rainfall and NDVI). Recent stud-
ies have shed light on the importance of considering proportionality in the use of 
RUE derived from relationship between NPP (derived from NDVI) and rainfall 
(Dardel et al.  2014 ; Fensholt and Rasmussen  2011 ). The practical application of the 
relationship between NDVI and rainfall does not lead to generally robust results 
characterized by proportionality between variables. One of the main reasons for this 
lack of robustness is that NDVI is never zero—NDVI is always slightly positive, 
even on bare soils (Verón et al.  2005 ; Fensholt and Rasmussen  2011 ). The assump-
tion of a linear relationship between NDVI and rainfall will also not to be applicable 
in cases where vegetation growth requires a certain threshold of rainfall (Dardel et al. 
 2014 ), which is the case in many areas of the tropical savannah with a distinct rainy 
and dry season. The result in both cases (either on bare soils or in places where a 
threshold of rainfall is required for vegetation growth to be triggered) is that a linear 
relation between NDVI and rainfall might exist but no proportionality. This means 
that RUE is in fact not able to normalize vegetation productivity for varying rainfall 
and consequently RUE calculated in this case is sensitive to changes in rainfall over 
both space (since it will artifi cially trend to infi nity values (Dardel et al.  2014 )) and 
time (Fensholt and Rasmussen  2011 ; Fensholt et al.  2013 ). The result of the RUE 
dependency on rainfall in a time-series analysis will be that “ signifi cant trends will 
emerge if rainfall undergoes temporal changes within this range of values ” (Dardel 
et al.  2014 ; Fensholt and Rasmussen  2011 ; Fensholt et al.  2013 ). If overlooking this 
fundamental ineffi ciency of RUE to normalize for rainfall changes in the case where 
proportionality between variables is absent, the direct use of RUE for trend analysis 
(or indirect use when masking out pixels due to a certain trend in RUE) may lead to 
misleading interpretations. So as not to include cases with such artifi cial trends sim-
ply refl ecting a change in the rainfall regime rather than land degradation, Fensholt 
and Rasmussen ( 2011 ) restricted their analysis of trends in Sahelian rain-use effi -
ciency to using only cases: (1) where no per-pixel temporal correlation between 
annual RUE and rainfall was found; and (2) where estimates of growing season 
ΣNDVI and annual rainfall correlation were statistically signifi cant ( p  < 0.05).  

7.2     Building on the GLADA Assessment 

 Recent studies have used different approaches to assess land degradation at different 
scales, some using the GLADA methodology at different scales. Bajocco et al. 
( 2012 ) summed NDVI values on a pixel basis recorded for each year between 2000 
and 2002 and computed the mean annual ΣNDVI as a surrogate for the total annual 
biomass production of the Mediterranean region. Le et al. ( 2014 ) used the long-term 
trend of interannual mean NDVI over the period 1982–2006 to delineate land deg-
radation hotspots but cautioned that the use of proxies is subject to uncertainties 
which need to be understood and addressed. De Jong et al. ( 2011a ) made use of the 
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GIMMS NDVI data to analyze global greening and browning, using three 
approaches: a linear model corrected for seasonality, a seasonal nonparametric 
model, and analyzing the time series according to vegetation development stages 
rather than calendar days. The trends found using the linear model approach cor-
rected for seasonality were very close to those identifi ed by Bai et al. ( 2008 ) apply-
ing a linear model to yearly mean values, but there was a substantial difference in 
results from the different models—a cautionary reminder of the importance of put-
ting results within the context of the methods applied and of providing adequate 
metadata to aid interpretation and understanding of the results. de Jong et al. ( 2011a , 
 b ,  c ) also used the Harmonic Analysis of NDVI Time Series (HANTS) algorithm to 
remove residual cloud effects by applying Fourier analysis, complemented by 
detection of outliers that were replaced by a fi ltered value. Comparison of global 
NDVI trends using the HANTS-reconstructed data with the original GIMMS data 
shows no measurable difference—so GLADA is unaffected by cloud cover. Chinese 
researchers have made use of the GIMMS database and the GLADA methodology 
for several countrywide studies. In the process, some new indices were developed, 
such as the sensitivity index—the degree of reaction of NDVI to rainfall change in 
specifi c rainfall regions (see Annexes   3     and   4    ). 

 Nkonya et al. ( 2011 ) used the fi rst difference econometric approach in studying 
the global extent of land degradation and its human dimensions. NDVI trends were 
used to represent land degradation or improvement, and the NDVI-derived global 
land cover change was overlain with poverty distribution to better understand the 
connection between land degradation and poverty. The study found consistencies 
with Bai et al. ( 2008 ) in the relationship between severe poverty and decrease in the 
NDVI in some but not all parts of Africa. In a rigorous analysis of greenness in 
semiarid areas, worldwide, using AVHRR GIMMS data from 1981 to 2007, Fensholt 
et al. ( 2012 ) found that semiarid areas are, on average, greening, but similar increases 
in greenness over the study period may have broadly different explanations and 
cautioned against general assertions of ongoing land degradation in semiarid regions.       

7.2 Building on the GLADA Assessment
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    Chapter 8   
 Main Global NDVI Datasets, Databases, 
and Software                     

              Coarse spatial resolution datasets are invaluable at the global scale, but they lack the 
thematic and spatial detail required for habitat assessments at the country level and 
for fi ner-resolution assessments such as vegetation species distribution or high- 
quality forest-change monitoring. Mapping, monitoring, and assessments at the 
national and subnational level are performed using moderate-resolution sensors 
such as Landsat, ASTER, SPOT HRV, and IRS with spatial resolutions from 15 to 
60 m. Newer, high-resolution optical sensors (5 m or better) provide enough spatial 
and spectral detail to discriminate between individual trees and, in some cases, spe-
cies, but high-resolution imagery is prohibitively costly (see Annex   7    ) for many 
national governments and research institutions (Strittholt and Steininger  2007 ). 

8.1     Main NDVI Datasets 

 Signifi cant research effort has been invested in processing satellite sensor data into 
NDVI. The most common sensor used in these initiatives is the AVHRR sensor on 
board the NOAA satellites which enables assembly of global NDVI datasets. The 
development of these datasets by different research groups involves diverse schemes, 
protocols, and algorithms for corrections and processing (Scheftic et al.  2014 ). As a 
result, the environmental change community currently has a range of datasets that 
may be used for a variety of applications (Table  8.1 ).

   The most widely used global NDVI datasets are the Global Inventory for Mapping 
and Modeling Studies (GIMMS); NOAA/NASA Pathfi nder (PAL); the Long-Term 
Data Record (LTD); and the Fourier-Adjusted, Sensor and Solar zenith angle 
 corrected, Interpolated, Reconstructed (FASIR) adjusted (NDVI) (see Annex   1    ). 

 The  Global Inventory for Mapping and Modeling Studies (GIMMS)  dataset is 
the most updated global time-series NDVI product (Fensholt and Proud  2012 ). 
It has a temporal resolution of 2 weeks (24 scenes/year) and a spatial resolution 

http://dx.doi.org/10.1007/978-3-319-24112-8_BM1
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of approximately 8 km. The GIMMS NDVI3g dataset (Pinzon and Tucker  2014 ) 
now comprises more than 33 years of data corrected for instrument calibration, 
variations in solar angle and view zenith angle, stratospheric aerosols from major 
volcanic eruptions, and other effects not related to vegetation change. Cloud and 
haze effects are minimized by taking the highest fortnightly value within composite 
8 km blocks of pixels (Holben  1986 ). 

 The  NOAA/NASA Pathfi nder (PAL) NDVI  dataset was created from the PAL 8 km 
daily product (Green and Hay  2002 ; James and Kalluri  1994 ). The PAL 8 km daily 
data were spatially re-sampled, based on maximum NDVI values from AVHRR 
Global Area Coverage data which have a minimal resolution of 4 km (De Beurs and 
Henebry  2005 ; James and Kalluri  1994 ). The PAL Global 10-day composite NDVI 
product is part of the Pathfi nder Land dataset archived at the Goddard Earth 
Sciences, Distributed Active Archive Center (GES-DAAC) (Green and Hay  2002 ). 
The data have been corrected for changes in sensor calibration, ozone absorption, 
Rayleigh scattering, and sensor degradation after prelaunch calibration and has 
been normalized for changes in solar zenith angle (James and Kalluri  1994 ). The 
dataset is not continually being processed, and data after 1999 are not accessible 
online at the GES-DAAC website of the Goddard Space Flight Center. 

  Long-Term Data Record (LTD) is a global daily dataset  of 0.05° (about 5 km 
ground spatial distance) developed by the NASA-funded LTDR Project. The dataset 
is currently at its fourth version and available for the period 1981–2013 from the 

   Table 8.1    Commonly utilized normalized difference vegetation index (NDVI) datasets (modifi ed 
from Higginbottom and Symeonakis  2014 )   

 Name  Sensor  Time span  Time step  Resolution 

 Pathfi nder (PAL)  AVHRR  1981–2001  10-day  8 km 
 Global Vegetation Index (GVI)  AVHRR  1981–2009  7-day  4 km 
 Land Long-Term Data Record (LTDR)  AVHRR  1981–2013  Daily  5 km 
 Fourier-Adjusted, Sensor and Solar 
zenith angle corrected, Interpolated, 
Reconstructed (FASIR) 

 AVHRR  1982–1998  10-day  0.125° 

 GIMMS  AVHRR  1981–2006  15-day  8 km 
 GIMMS3g  AVHRR  1981–2015  15-day  8 km 
 S10  SPOT- 

vegetation  
 1998+  10-day  1 km 

 EM10  ENVISAT- 
MERIS  

 2002–2012  10-day  1/1.2 km 

 SeaWiFS  SeaWiFS  1997–2010  Monthly  4 km 
 MOD (MYD)13 A1/A2  Terra (Aqua)  2000+  16-day  500 m/1 km 
 MOD13 (MYD) A3  Monthly  1 km 
 MOD13 (MYD) C1/C2  16-day/

monthly 
 5.6 km 

 MOD13 (MYD) Q1  MODIS  16-day  250 m 
 MEDOKADS  AVHRR  1989+  Daily  1 km 
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reprocessing of the N07-N18 AVHRR data (Pedelty et al.  2007 ). The current version 
includes records from the processing of data from NOAA-16 and NOAA-17 length-
ening the LTDR records from AVHRR to 2013. 

  The Fourier-Adjusted, Sensor and Solar zenith angle corrected, Interpolated, 
Reconstructed (FASIR) adjusted NDVI  datasets are products of the International 
Satellite Land-Surface Climatology Project, Initiative II (ISLSCP II) data collec-
tion, developed to provide a 17-year satellite record of monthly changes in the pho-
tosynthetic activity of terrestrial vegetation for use in general circulation climate 
models and biogeochemical models (Sellers et al.  1994 ; Sietse  2010 ). The NDVI 
collections are provided in data fi les at spatial resolutions of 0.25, 0.5, and 1.0° lati-
tude/longitude. FASIR adjustments concentrated on reducing NDVI variations aris-
ing from atmospheric, calibration, view, and illumination geometries and other 
effects not related to actual vegetation change (Sietse  2010 ). 

 The  Moderate-Resolution Imaging Spectrometer (MODIS)  is an extensive pro-
gram using sensors on both the Terra and Aqua satellites, each of which provide 
complete daily coverage of the Earth. Started in January 2000, the MODIS sensor 
provides vegetation indices (NDVI and EVI) produced globally on 16-day intervals 
at three resolutions (250, 500, and 1000 m). The MODIS NDVI data are fully con-
sistent spatially and temporally with AVHRR-NDVI products (Tucker et al.  2005 ). 
Comparisons between AVHRR and MODIS NDVI products over a wide range of 
vegetation types have shown a very high correlation,  r  > 0.9 according to (Gallo et al. 
 2005 ). See also Fig.   9.1    . A complete collection of MODIS Land products can be 
accessed freely online either from USGS or NASA sites (see Annex   7    ). 

 Before deciding on the data to be used for NDVI-related analysis, users should 
refl ect on a number of questions. According to Khorram et al. ( 2012 ), some of the 
most important of these questions include:

•    What kind of remotely sensed data do I need? More specifi cally, what types of 
data are available from today’s remote sensing instruments, and what are their 
strengths and limitations?  

•   How must my chosen data be prepared prior to analysis? What are the appropri-
ate processing and/or analytical methods?  

•   What is the accuracy of the output products I have created? Is that accuracy suf-
fi cient for my ultimate objectives?     

8.2     Quality-Related Considerations 

 The potential for using free data for assessment and monitoring of environmental 
change (principally forest cover change) at the global level has been most clearly 
demonstrated for Landsat products. The key challenges for creating global products 
on forest cover and cover change are the processes and tools for atmospheric correc-
tion, proper calibration coeffi cients, working with different phenologies between 
compilations, terrain correction, accuracy assessment, and the automation of land 
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cover characterization and change detection (Townshend et al.  2012 ). Most of the 
commonly used datasets mentioned above (such as the PAL, GIMMS, LTDR, and 
the FASIR) have undergone many evaluations and intercomparisons on a range of 
criteria (Beck et al.  2011 ; Fensholt and Proud  2012 ). 

 Beck et al. ( 2011 ) undertook a global intercomparison of the four AVHRR-
NDVI datasets (PAL, GIMMS, LTDR, FASIR) against Landsat imagery for the 
period 1982–1999, fi nding signifi cant differences in trends for almost half of the 
total land surface. The PAL and the LTDR (Version 3) datasets lacked calibration; 
GIMMS had the best calibration and was the most accurate in terms of temporal 
change. In a study investigating whether vegetation trends derived from NDVI and 
phenological parameters are consistent across products, Yin et al. ( 2012 ) compared 
GIMMS and SPOT–VGT-derived NDVI. Strong similarities were found in interan-
nual trends and, also, in trends of the seasonal amplitude and annual sum NDVI. 
But there were signifi cant discrepancies between NDVI-derived trends based on 
phenological parameters such as amplitude (maximum increase in canopy photo-
synthetic activity above the baseline) and integral of NDVI (canopy photosynthetic 
activity across the entire growing season) (Yin et al.  2012 ). These correspond to 
seasonal vegetation cycles revealed by GIMMS and SPOT VGT. The study attrib-
uted these discrepancies to variables such as land cover and vegetation density. 
Such discrepancies highlight the need for appropriate and rigorous preprocessing 
when working with data from different remote sensing systems.  

8.3     Precipitation Datasets 

 Various precipitation datasets are used in combination with NDVI data in many 
earth science applications. Among the most widely used of these datasets are the 
Modern-Era Retrospective Reanalysis for Research and Applications (MERRA), 
Interim Reanalysis (or ERA-Interim Reanalysis), Global Precipitation Climatology 
Project (GPCP), Africa Rainfall Climatology, and the VASClimO (Table  8.2 ).

   The  Modern-Era Retrospective Reanalysis for Research and Applications 
(MERRA)  is a NASA reanalysis for the satellite era using the Goddard Earth 
Observing System Data Assimilation System Version 5 numerical weather and cli-
mate model. The Project focuses on historical analyses of the hydrological cycle on 

   Table 8.2    Commonly used precipitation datasets for earth science and environmental applications   

 Precipitation data  Time span and scale  Reference 

 NASA MERRA  1979–present at 0.5° × 0.5°  Rienecker et al. ( 2011 ) 
 ERA-Interim  1979–present at 80 km  Dee et al. ( 2011 ) 
 GPCP  1979–2012 at 1.0° × 1.0°  Huffman et al. ( 2009 ) 
 African Rainfall 
Climatology 

 1983–2013 at 0.1° × 0.1°  Novella and Thiaw ( 2013 ) 

 VASClimO  1951–2000 at 0.5°, 1.0°, and 2.5°  Beck et al. ( 2005 ), Schneider et al. ( 2008 ) 
 TRMM  1997–present at 0.25° × 0.25°  Gentemann et al. ( 2004 ) 
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a broad range of weather and climate time scales and places the NASA EOS suite of 
observations in a climate context. This dataset has a spatial resolution of 0.5° × 0.5° 
from 1979 to the present (Rienecker et al.  2011 ). 

 The  Interim Reanalysis  (or ERA-Interim Reanalysis) output comes from the 
European Centre for Medium Range Weather Forecasts. It is a global atmospheric 
reanalysis from 1979, continuously updated in real time through the present with a 
spatial resolution of 80 km (Dee et al.  2011 ). 

 The  Global Precipitation Climatology Project (GPCP)  Version 2.2 is a blend of 
precipitation gauge data and satellite data taking advantage of the strengths of each 
data type. These data are 1° × 1° and run from 1979 to 2012 (Huffman et al.  2009 ). 
Tropical Rainfall Measuring Mission or TRMM data form the basis of the GPCP 
dataset and are blended with station data to improve the rainfall accuracies. 

 The  Africa Rainfall Climatology  Version 2 is a gridded, daily 30-year (1983–
2013) precipitation dataset at 0.1° × 0.1° spatial resolution produced by NOAA’s 
Climate Prediction Center (Novella and Thiaw  2013 ), produced using an opera-
tional rainfall estimation algorithm now updated to Rainfall Estimates Version 2 
(Novella and Thiaw  2013 ). 

 The  VASClimO  is a global dataset of station-observed precipitation produced by 
gridding 9343 homogeneity-checked station time series of precipitation for the 
period 1951–2000 (Rudolf et al.  2005 ). It provides a globally gridded total monthly 
precipitation from January 1951 to December 2000 at three resolutions, 0.5° × 0.5°, 
1.0° × 1.0°, and 2.5° × 2.5°, and is updated by the GPCC full-data reanalysis product 
version 4 (Schneider et al. 2008). 

  Tropical Rainfall Measuring Mission (TRMM)  dataset is obtained by active and 
passive microwave measurements derived by instruments on board the Tropical 
Rainfall Measuring Mission’s (TRMM) Microwave Imager (TMI). Besides measur-
ing rain rates, the TMI can also measure sea surface temperature (SST), ocean sur-
face wind speed, columnar water vapor, and cloud liquid water. TRMM is a joint 
program between NASA and the National Space Development Agency of Japan 
(Gentemann et al.  2004 ).  

8.4     NDVI Software 

 Besides the data requirement, the creation of NDVI products requires software. 
There are many software products that can be used to create NDVI products and 
they can be categorized according to the tool sets that they offer, as well as the tasks 
that each of them can accomplish (Steiniger and Hunter  2013 ). The general demands 
for software for geospatial analysis include capabilities for data capture and repre-
sentation, data visualization and exploration, data editing, data storage, integration 
of data from different sources, data queries to select a subset of the data, data analy-
sis, creation of new data from existing or available input data, data transformation, 
and elements of cartographic representation. Not all software have full out of the 
box capabilities of accomplishing these different tasks. Many software depend on 

8.4  NDVI Software



50

extensions, plug-ins, and application program interfaces (sets of routines, protocols, 
and tools which specify how software components should interact and are used 
when programming graphical user interface components) to accomplish some of 
these tasks (Steiniger and Hunter  2013 ). The creation of NDVI products demands 
additional capabilities for the modifi cation, as well as spectral transformation of 
aerial and satellite image data. The appropriate geospatial software for working 
with remote sensing products and the creation of NDVI products therefore need 
capabilities for image radiometric and geometric correction, fi ltering, georeferenc-
ing and ortho-rectifi cation, mosaiking, vectorization, and image object extraction 
(Steiniger and Hunter  2013 ; Jensen  2007 ; Mather and Koch  2011 ). 

 Geospatial software may be commercial or free products. There are many com-
mercial software products with different strengths and levels of specialization in the 
delivery of remote sensing services and products (see Annex   8A     for some of the 
commonly used desktop software). There are also free or open-source software 
which offer a range of possibilities for geospatial analyses, including capabilities 
for the creation of NDVI products (see Annex   8B    ). Over the last decade, there has 
been a notable increase in the availability of free and open-source software projects 
for geographic data collection, storage, analysis, and visualization (Steiniger and 
Hunter  2013 ). The benefi ts of open-source software are well known and include 
cost savings, vendor independence, and open standards (Steiniger and Hunter  2013 ). 
There have been several initiatives to compile and make inventories of existing geo-
spatial software products. 1  

 Besides the desktop applications presented in Annex   8    , there are other platforms 
through which NDVI products can be created. Steiniger and Hunter ( 2013 ) point to 
the importance of Server GIS and WebSphere Process (WPS) Servers which 
host software that expose GIS and remote sensing functionality typically found 
in desktop geographic information systems or remote sensing software. Such 
 functionality does not require direct interaction from a user via a user interface 
(Cepicky and Becchi  2007 ).       

1   Initiatives such as those by Michael de Smith and Paul Longley of University College London, and 
Mike Goodchild of University of California, Santa Barbara, provide information on the main activ-
ity for which each software product is designed, their license status (commercial or free), as well as 
links to their access and further information:  http://www.spatialanalysisonline.com/software.html . 
The Wikipedia page that compares geographic information systems and remote sensing software 
in terms of license status, operating system, and other operational specifi cations can be found at: 
 http://en.wikipedia.org/wiki/Comparison_of_geographic_information_systems_software . 
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    Chapter 9   
 Country-Level Use of Satellite Products 
to Detect and Map Land Degradation 
Processes                     

              For ecological studies and environmental change research, Pettorelli et al. ( 2005 ) 
distinguish two main groups of satellite products:

    (a)    Long-term NDVI datasets including the coarse-scale (8–16 km resolution) 
NOAA–AVHRR time series extending from 1981 to the present and the small- 
scale Landsat–TM dataset extending from 1982; the use of Landsat products 
for land-use and land-cover change has been growing because Landsat has a 
relatively fi ne resolution for land-use change studies and wave bands extend-
ing across the visible, near-infrared, shortwave infrared spectrum (Townshend 
et al.  2012 ).   

   (b)    Finer-scale but short-term NDVI time-series datasets which include 
MODIS–TERRA (250–1000 m resolution) extending from 2000 to the pres-
ent and the 1 km to 300 m resolution SPOT–VGT dataset extending from 
1998 to the present. However, these data are not available free of charge 
(see Annex   7    ).    

  Our approach to assessment of land degradation using satellite data depends on 
observing changes in total seasonal photosynthesis or primary production through 
time at continental scales, with the ability to disaggregate to national- and district- 
level scales when required. This disaggregation is necessary because all actions to 
halt land degradation must be implemented at the national or subnational scale. 
NDVI data exist globally at 8 km-resolution since 1981 from the AVHRR and at 
250 m-resolution from MODIS since 2000. We recommend that all 8-km NDVI3g 
analyses should be complimented by comparisons with MODIS NDVI 250-m data 
for their overlap periods (Fig.  9.1 ).

   What is the possibility of using other sources of primary production data? We 
could also possibly use the MODIS-derived net primary production product 
(MOD17) (Running et al.  2004 ) and chlorophyll fl uorescence from the Greenhouse 
Gases Observing Satellite (GOSAT), the SCanning Imaging Absorption SpectroMeter 
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for Atmospheric CHartographY (SCIAMACHY), or the Global Ozone Monitoring 
Experiment-2 (GOME-2) instruments (Joiner et al.  2012 ,  2013 ), which are alterna-
tive products to map and monitor land primary production. The MODIS NPP product 
is a global-modeled output product and, like many global products, performs less 
well when disaggregated to the national and district levels; its driving variables are 
not available at resolutions <1 km. The fl uorescence products from SCIAMACHY, 
GOSAT, and GOME-2 satellites appear to be very useful for measuring primary 
production; SCIAMACHY data collection begun in early 2002 at a spatial resolution 
of 30 × 60 km (Gottwald et al.  2006 ); GOSAT data start in 2009 and are 10 × 10 km 
in spatial resolution (Joiner et al.  2011 ); GOME-2 data start in late 2006 and have a 
nadir spatial resolution of 0.5 °  × 0.5 °  (Joiner et al.  2013 ). 

 The large spatial scale of these data is because fl uorescence measurements are 
made within several Fraunhofer lines that are only 1 Angstrom (or 0.1-nm) wide so 
it is necessary to collect fl uorescence data over large areas to get enough photons for 
an adequate signal-to-noise ratio. These coarse spatial scales make disaggregation 
to the subnational diffi cult. Recent studies by Joiner and a member of our team, 
Tucker ( submitted ), have shown that the time integral of fl uorescence is linearly and 
very highly correlated to the NDVI time integral (Fig.  9.2 ). The NDVI advantage for 
land degradation studies is that land degradation can be studied over 33+ years with 
the GIMMS3g dataset at 8 km and for 15 years at 250 m from MODIS NDVI with 
the potential to downscale with NDVI data at 30 m from Landsat and at 1 m from 
commercial satellite data.

   At present, there is insuffi cient time history of fl uorescence to assess land degra-
dation for these reasons: (1) Although SCIAMACHY fl uorescence data started 
in 2002, their spatial resolution is 30 × 60 km which is very coarse resolution. 
(2) Fluorescence data from GOME-2 start in 2006 and from GOSAT in 2009 so we 

  Fig. 9.1    Integrating NDVI values is directly related to gross primary production over the growing 
season for an area in Moldova. We have taken the NDVI values from Fig.   4.1     and numerically 
integrated them from the fi rst of March to the end of October for 1981–2013 for the GIMMS 
NDVI3g dataset, for 2001–2013 for MODIS Terra NDVI, and for 2003–2013 for the MODIS 
Aqua NDVI data. Note very similar behavior in integrated NDVI values (NDVI days). There 
appears to be a break point between 2002 and 2003       
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don’t have enough time history to detect land degradation trends using these data. 
Twenty years on, satellite fl uorescence data may be another tool for quantifying 
land degradation over large areas at a coarse scale, but, for the present, there is no 
alternative to NDVI in land degradation assessment.      

  Fig. 9.2    Integrated AVHRR and MODIS NDVI compared to GOME-2 chlorophyll fl uorescence 
for the Russian wheat growing areas of 51 o –56 o N × 40 o –54 o E, 47–53 o N × 54 o –60 o E, and 
50 o –57 o N × 60 o –72 o E from March 15, 2007, to November 15, 2011. Three areas over 5 years pro-
vide a sample size of 15 (Yoshida et al.  2014 ). This fi gure contradicts the allegations that NDVI 
saturates and supports our use of the NDVI as being directly related to primary production       
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    Chapter 10   
 Challenges to the Use of NDVI in Land 
Degradation Assessments                     

               Technological barriers : Currently, most global datasets useful for environmental 
applications are archived in databases that can be accessed using the Internet. These 
include the GIMMS, NOAA-PAL, LTD, and FASIR datasets. There are also free 
online data service platforms for executing preprocessing operations (such as data 
smoothing, spatial and temporal subsetting, mosaicking, and re-projection) of 
MODIS time-series vegetation indices (such as NDVI and EVI) on request. 
Currently, the Internet speed for many regions of the developing world remains too 
slow to enable effective access to these datasets or online processing. 

  Technical capacity : NDVI is a relatively simple index to compute and use in a 
 number of environmental assessments (Liang  2005 ). However, when it comes to 
land degradation assessment, the use of NDVI can be problematic, both in imple-
mentation and interpretation (Wessels et al.  2004 ). Therefore, the analysts need to 
be properly equipped with the intellectual and technical skills to contextualize the 
problems of land degradation for particular cases and the interaction of key 
variables (NDVI-, NPP-, or RUE-derived indices) in the process. 

  Institutional and policy barriers : Effective use of satellite remote sensing products 
and technologies for a range of environmental assessments at the national level 
requires an appropriate institutional and policy framework. At the national level, 
this means the creation and effective management of a geo-information infrastruc-
ture that enables decentralization of information management through integration 
of geographic information and remote sensing systems. The level of integration 
could vary, depending on the setup of a country’s administrative zones, the nature of 
land degradation being assessed, and the distribution of geo-information services in 
the country. 

  Barriers to effective knowledge management, decision support, and continuity : 
Given the complex array of environmental and socioeconomic processes involved in 
land degradation (Fig.   1.1    ), there is need for an effective system of knowledge and 

http://dx.doi.org/10.1007/978-3-319-24112-8_1
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information management. Information has to fl ow between and across sectors 
(such as agriculture, nature conservation, and other kinds of land use) for a proper 
interpretation of the distribution and trends of NDVI signals. A meaningful assess-
ment of historic trends in land degradation or changes in land productivity requires 
continuity in the system of data collection, analysis, presentation, and activities 
related to each dataset or process. In many countries, frequent changes of govern-
ment constitute a major constraint on the implementation of some  programs and 
projects—ongoing policies, programs, and projects are often  abandoned—creating 
a knowledge and continuity gap that may prove diffi cult to fi ll when these programs 
and projects are relaunched. 

  Economic and fi nancial barriers : While the most popular NDVI datasets from major 
archives are free, effective access, processing, and use require some investment. The 
level of investments required depends on the scale of operations envisaged. While 
many governments in poor countries may lack the fi nancial resources to put in place 
the full range of investments required for optimal access and use of existing NDVI 
databases, the costs of key investments in the sector are diminishing. This is espe-
cially true of hardware, some software, and Internet service costs. Investment in a 
professional and technical cadre is a bigger, longer-term issue, but home-grown 
expertise is essential if there is to be national ownership of the issue and the results 
of any assessment.      

10 Challenges to the Use of NDVI in Land Degradation Assessments
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    Chapter 11   
 Recommendations for Future Application 
of NDVI                     

11.1                  In the Convention National Reporting 

 As discussed in the Introduction, both the UNCCD and the GEF use land cover to 
monitor land degradation. The UNCCD progress indicators (formerly known as 
impact indicators) should show progress made in achieving long-term benefi ts for 
people living in areas affected by desertifi cation, land degradation, and drought, for 
affected ecosystems, and for the global environment. At its eleventh session, the 
COP adopted a refi ned set of six progress indicators ( Decision 22/COP.11; see 
Annex     6     ) which will be used for the fi rst time during the second leg of the fi fth 
reporting process in 2016. Recommendations were made to the latest Conference of 
the Parties of the UNCCD (ICCD/COP(11)/CST/2) for refi nements to the provi-
sionally adopted set of impact indicators (Annex   6    ). 

 The fi ndings of this report have implications for all three strategic objectives 
(SOs) of the UNCCD: SO-1  to improve the living conditions of affected popula-
tions , SO-2  to improve the conditions of affected ecosystems , and SO-3  to generate 
global benefi ts through effective implementation of the UNCCD  (Table  11.1 ). 
Monitoring of drought using NDVI and NDWI could have implications for trends in 
access to safe drinking water (SO-1). It has been clearly shown that NDVI is a reli-
able measure of photosynthetic capacity and thus for monitoring trends in land 
cover and productivity of the land (SO-2). NDVI can also support reporting on 
global benefi ts related to trends in carbon stocks and biodiversity (SO-3), as shown 
in other sections of this report (also see Annex   2    ). Ideally, reporting on these indica-
tors should be harmonized with reporting to the UNFCCC on carbon stocks and to 
the CBD on biodiversity indicators.

http://dx.doi.org/10.1007/978-3-319-24112-8_BM1
http://dx.doi.org/10.1007/978-3-319-24112-8_BM1
http://dx.doi.org/10.1007/978-3-319-24112-8_BM1
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11.2        In a Revised GEF Resource Allocation Methodology 

 Land cover is used as an indicator for all three GEF focal areas affected by the 
System for Transparent Allocation of Resources (STAR) that calculates country- 
specifi c allocations from each focal area 1 : 

  Land Degradation —the latest Global Benefi t Index (GBI) for the land degradation 
(LD) focal area was designed to take into account three key factors in accordance 
with GEF mandate for fi nancing: (1) the need to control and prevent land degradation 
in land-based production systems; (2) the challenge of combating desertifi cation in the 
drylands, including the need for adaptation to drought risks; and (3) the need to 
address livelihoods of vulnerable populations. Proxy indicators were derived for 
each of these factors based on available data. 

1   GEF/POLICY: PL/RA/01, March 14 2013: System for Transparent Allocation of Resources 
(STAR). 

    Table 11.1    UNCCD core indicators for national reporting   

 Indicator  Potential use of NDVI 

  Strategic objective 1: to improve the living conditions of affected populations  
 SO-1. (1): Trends in population 
living below the relative poverty 
line and/or income inequality 
in affected areas 

  Not applicable  

 SO-1. (2): Trends in access to safe 
drinking water in affected areas 

 NDVI could be combined with the normalized difference 
water index (NDWI) to monitor drought and be linked to 
water use of land-use systems (see Annex   1    ) 

  Strategic objective 2: to improve the condition of affected ecosystems  
 SO-2. (1): Trends in land cover  NDVI is the best tested vegetation index with the longest 

time series for monitoring of land-cover trends (33 years), 
which compensates for the low resolution. However, 
care needs to be exercised in interpretation of the 
results and the drivers of change (Annex   2    ) 

 SO-2. (2): Trends in land 
productivity or functioning 
of the land 

 The relationship between NDVI and biomass productivity 
has been well established in the literature. NDVI can be 
used to estimate land productivity and monitor such 
productivity over time (Annex   2    ) 

  Strategic objective 3: to generate global benefi ts through effective implementation of the UNCCD  
 SO-3. (1): Trends in carbon 
stocks above- and belowground 

 NDVI can be used together with higher-resolution data 
to estimate trends in carbon stocks, e.g., REDD and SOC 
assessments (Annex   1    ) 

 SO-3. (2): Trends in abundance 
and distribution of selected species 

 NDVI can be used to monitor habitat fragmentation and 
connectivity which crucially affect the abundance and 
distribution of species (Annex   1    ) 
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 With regard to factor (1), a quantitative estimate of land area (in km 2  or as  percent 
of territory) affected by LD was used as a proxy indicator for  loss of ecosystem 
 function and productivity . The indicator was derived by Bai et al. ( 2008 ) using 
NDVI. Each country’s share of the global total area affected was calculated for use 
in the GBI. The three indices were assigned weights as follows: 60 % to dryland 
area, 20 % to rural population, and 20 % to land area affected. 

  GBILD = (0.2 × global share of land area affected) + (0.6 × proportion of dryland 
area) + (0.2 × proportion of rural population)  

  Climate Change : For its land-use, land-use change, and forestry (LULUCF) compo-
nent, it uses forest cover in hectares and absolute change in forest cover, as reported 
by countries to FAO. NDVI could potentially be used to strengthen this index as 
NDVI is strongly correlated with vegetation dynamics in humid areas. 

  Biodiversity : This index uses distribution of terrestrial eco-regions, including threat-
ened eco-regions as monitored by WWF. Also here, the use of NDVI could improve 
data quality if it is used consistently. 

 Trends in NDVI could thus become an important part of a land-cover indicator 
cutting across three GEF focal areas and used as a proxy for productivity, carbon 
stocks, and biodiversity. With regard to the land degradation focal area, a revised 
GEF STAR should be based on all the six core indicators identifi ed for the UNCCD 
Strategic Objectives (see Table  11.1  and Annex   6    ). However, with a more robust 
application of NDVI based on recent advances, this index might be given a greater 
weight in a revised STAR, as it can contribute to monitoring of fi ve of the UNCCD 
indicators if applied consistently and using the most reliable datasets.       

11.2 In a Revised GEF Resource Allocation Methodology

http://dx.doi.org/10.1007/978-3-319-24112-8_BM1
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    Chapter 12   
 Conclusion                     

              This report examines the scientifi c basis for the use of remotely sensed data, particu-
larly NDVI, in land degradation assessments at different scales and for a range of 
applications. It draws on evidence from a wide range of investigations, primarily 
from the scientifi c peer-reviewed literature but also non-journal sources. 

 Research in land degradation currently makes use of a wide variety of datasets of 
different geographical scales and spatial, spectral, and temporal resolutions. The 
availability of free data of continuous observations from medium to coarse spatial 
resolution satellite sensors continues to support a range of ecosystem models and 
environmental applications. At the global level, a few of these datasets stand out. In 
the context of NDVI-based potential for land degradation assessment, the AVHRR-
derived GIMMS dataset is the most widely used product. In the short to medium 
term, the quality control required to make this dataset a transparent source for a 
range of environmental applications is guaranteed. In the same light, continuous 
updates to the archive to extend it well beyond 33 years will enhance the potential 
for this data to be used to identify longer-term trends and trend components. 

 The GLADA approach, which was based on an earlier version of GIMMS, has 
been widely adopted. Several studies have used the same and later versions of the 
GIMMS dataset, with or without the GLADA approach, to investigate an array of 
environmental issues. Many caveats raised initially, fl agged by GLADA itself, have 
been dealt with. As new methods of data analysis are developed, and computers 
become more effi cient in processing information, more questions that draw on the 
relationship between NDVI, RUE, EUE, and NPP may be explored. These questions 
could address growing and emerging concerns about the resilience of ecosystems, 
and the coupling of socio-ecological systems, as well as new horizons in environ-
mental assessment and management. The GLADA approach and NDVI data archives 
offer the potential for assessment of the performance of different policy options and 
can inform the implementation of the UNCCD and the allocation of resources from 
its fi nancial mechanism, the GEF. 
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 As a tool, NDVI and related indices, as well as the GLADA approach, still have 
limitations. Beyond some of the technical weaknesses associated with implementa-
tion and interpretation, there are barriers to their effective use for national assess-
ments. We note that, over recent years, hardware components as well as some 
software to support the use of NDVI in national assessments have become more 
accessible. Notwithstanding the fall in costs of hardware and software, there is need 
for national services to be staffed by personnel with the appropriate technical exper-
tise. This is necessary for many reasons, including the ability to ask the right ques-
tions and use the appropriate tools and depth of analysis in answering them and the 
ability to produce end products that meet international standards for cross-country 
comparisons. 

 NDVI continues to be valid for measuring and reporting some of the key strategic 
objectives of the UNCCD and has the appropriate qualities for use as an indicator 
for a number of indices.   

12 Conclusion
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�Appendix A
�Inventory of Some Global  
and Sub-global Remote Sensing-Based  
Land Degradation Assessments

Scale
Land degradation 
domain Time range Data Main findings

Senegal Land-cover change  
and human  
well-being

1982–2008 GIMMS Interpreting satellite-derived 
greening as an improvement 
of environmental conditions 
that may translate into more 
stable livelihoods and 
greater well-being of 
populations in the area may 
not always be justified 
(Herrmann et al. 2014)

Mali Ecosystem resilience  
in relation to ANPP, 
RUE, and ANPP

1984–2010 GIMMS-3g There is a divergence of two 
key indicators of ecosystem 
resilience: a stable RUE  
and increasing run-off 
coefficient, condition 
termed “the second Sahelian 
paradox” (Dardel et al. 
2014)

Amazon Land-cover change  
and global 
environmental 
implications

2000–2012 MODIS The Amazon forest has 
declined across an area of 
5.4 million km2 since 2000 
as a result of reductions in 
rainfall. If drying continues 
in this region, global 
climate change may be 
accelerated through 
associated feedbacks in 
carbon and hydrological 
cycles (Hilker et al. 2014)

(continued)
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Scale
Land degradation 
domain Time range Data Main findings

Italy Land-use and 
land-cover change

1984–2010 Landsat TM Total regional forest cover 
increased by 19.7 %, 
consistent with National 
Forest Inventory data. 
Considerable forest 
expansion also occurred  
on degraded soils in 
drought-prone 
Mediterranean areas 
(Mancino et al. 2014)

Senegal Land-use, land-cover 
change and 
environmental 
conditions

1982–2008 AVHRR The interpretation of 
satellite-derived greening 
trend as an improvement  
or recovery is not always 
justified. For instance, the 
composition of the 
vegetation cover may show 
impoverishment even in the 
greening areas (Herrmann 
and Tappan 2013)

China Soil organic carbon 
and salinization

2011 Landsat TM Significant decrease in soil 
organic C and total N 
contents were observed with 
increasing salinity. Soil 
organic C and total N 
contents had significant 
positive correlations with 
the NDVI (Pan et al. 2013)

World Trends and drivers  
of greenness  
in semiarid areas

1981–2007 GIMMS-g Current generalizations 
claiming that land 
degradation is ongoing in 
semiarid areas worldwide 
are not supported by the 
satellite-based analysis of 
vegetation greenness 
(Fensholt et al. 2012)

West 
Africa

Soil erosion and land 
productivity

1982–2003 GIMMS Multipronged assessment 
strategies offers better 
insights into different 
processes involved in land 
degradation (Le et al. 2012)

World Vegetation greening 
and browning trends

1981–2006 GIMMS Models confirm prominent 
regional greening trends 
identified by previous 
studies (de Jong et al. 
2011a, b, c)

(continued)

(continued)
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Scale
Land degradation 
domain Time range Data Main findings

South 
Africa

Biodiversity 
monitoring and 
conservation

1995–2006 GIMMS Change in productivity 
driven by rainfall as well  
as that caused by elephant 
populations has 
ramifications for biodiversity 
and also impacts on 
biodiversity (Hayward and 
Zawadzka 2010)

USA Biodiversity 
monitoring and 
conservation

2005 MODIS There is a significant positive 
correlation between species 
compositional dissimilarity 
matrices and NDVI distance 
matrices. Remotely sensed 
NDVI can be a viable tool 
for monitoring species 
compositional changes at 
regional scales (He et al. 
2009)

China Desertification and 
land surface conditions

1980, 1990, 
and 2000

Landsat MSS 
and TM/
ETM+

Human activities might 
explain the expansion of 
desertification from 1980  
to 1990. Conservation 
activities were the main 
driving factor that induced 
the reversion of 
desertification from 1990  
to 2000 (Xu et al. 2009)

Zimbabwe Land-use, land-cover 
change and degradation

2000–2005 MODIS About 16 % of the country 
was at its potential 
production. Total loss in 
productivity due to land 
degradation stood at about 
13 % of the entire national 
potential. Most of the 
degradation was caused by 
human land use, 
concentrated in the heavily 
utilized, communal areas 
(Prince et al. 2009)

Sahel Desertification and 
drought—changing 
trends

1982–1999 PAL A consistent trend  
of increasing vegetation 
greenness may be attributed 
to increasing rainfall, but 
also to factors  
such as land-use change  
and migration (Olsson et al. 
2005)

(continued)

(continued)
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Scale
Land degradation 
domain Time range Data Main findings

Sahel Drought and  
vegetation dynamics

1981–2003 AVHRR The current trends  
of recovery in the Sahel  
are still far below the wetter 
conditions that prevailed  
in the region from 1930  
to 1965. Current trend 
patterns therefore only 
reflect a gradual recovery 
from extreme drought 
conditions that peaked 
during the 1983–1985 
period (Anyamba and 
Tucker 2005)

South 
Africa

Ecosystem resilience 
and stability of 
landscapes

1985–2003 AVHRR While degraded areas were 
no less stable or resilient 
than non-degraded area,  
the productivity of degraded 
areas, per unit rainfall,  
was consistently lower than 
non-degraded areas. 
Degradation impacts tend  
to be reflected as reductions 
in productivity that varies 
along a scale from slight to 
severe (Wessels et al. 2004)

Global Vegetation growth  
and NPP

1982–1999 PAL/GIMMS Global changes in climate 
have reduced several critical 
climatic constraints to plant 
growth, leading to a 6 % 
increase in global NPP 
(Nemani et al. 2003)

China Vegetation dynamics 
and variations  
in NPP

1981–2000 AVHRR Increase in NPP of about 
0.3 % per year and decrease 
in net ecosystem 
productivity between the 
1980s and 1990s due to 
global warming (Cao et al. 
2003)

Spain Vegetation burning  
and recovery

1994 Landsat TM 
and MSS

There are different patterns 
of postfire recovery based 
on dominant plant species, 
severity of burn, and a 
combination of both factors 
(Díaz-Delgado et al. 2003)

(continued)
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�Appendix B
�Use of Remote Sensing-Derived Land 
Productive Capacity Dynamics for the New 
World Atlas of Desertification (WAD)

Courtesy of Michael Cherlet, Hrvoje Kutnjak, Marek Smid, and Stefan Sommer of 
the European Commission, Joint Research Centre, Ispra, Italy; and Eva Ivits, Eva of 
the European Environment Agency, Copenhagen, Denmark

Background and Rationale

The European Commission’s Joint Research Centre of the (JRC), together with 
UNEP and supported by a global network of international research institutions and 
experts, is developing the new World Atlas of Desertification (WAD).

Monitoring and assessing land degradation dynamics involves extracting the 
most relevant information from time series of global satellite observations. The 
dynamics of the Earth’s standing vegetation biomass is considered a valid approxi-
mation of land system productive capacity dynamics thus, also reflecting the under-
lying ecological conditions and possible constraints for primary productivity, such 
as soil fertility, water availability, land use/management, etc., and hence related to 
land degradation. In fact, reduction or loss of land productive capacity, mostly bio-
logical and/or economical, is one common denominator in the various definitions of 
land degradation.

The longest available satellite observation datasets with global coverage at 1-km 
resolution, from, e.g., the SPOT VGT sensor, have a continuous frequent temporal 
sampling over a long enough period, now 15 years, to allow extraction of proxy 
information on the phenology and seasonal productivity for each 1-km2 area on 
Earth. Even longer continuous time series, more than 30 years, are available through 
the GIMMS NDVI product, dating back as far as to 1981. However, its spatial reso-
lution is only 8 × 8 km, which may well be suitable for the analysis of broader land-
atmosphere interaction but which has limitations for monitoring and assessing the 
human-ecosystem interactions at landscape level. These operate and function typi-
cally at smaller scales than can be depicted at the spatial resolution of GIMMS. 
Nevertheless, the length of this NDVI time series raises interest in ways to combine 
it with higher-resolution products for enhanced analysis.
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Methodology for Time Series Processing and Analyses

Building on numerous studies that use time series of remotely sensed vegetation 
indices (e.g., NDVI, Fapar) as base layer, we expand this set of variables by calcu-
lating phenological metrics from time series of the vegetation index. Disaggegation 
of the original time series into phenological metrics yields additional information 
on various aspects of vegetation/land-cover functional composition in relation to 
dynamics of ecosystem functioning and land use (Ivits et al. 2012a). This can pro-
vide a quantitative basis to monitor such information on ecosystem dynamic equi-
librium and change, envisaged to provide users with an independent measure on 
how ecosystems respond to external impacts, be it human induced or natural vari-
ability (Ivits et al. 2012b).

The resulting remote sensing-derived spatial layers are then combined with 
ancillary biophysical and socioeconomic information in order to flag areas that 
show signals of actual land degradation. This includes attributions to different lev-
els of intensity and probability of major causes, which will include major land deg-
radation/desertification issues and the associated land-use transitions considered in 
the WAD. They are summarized below (Sommer et al. 2011):

	1.	 Overuse of agricultural land, intensification, inappropriate agricultural practices/
non-SLM, and increased soil erosion

	2.	 Increase in intensive irrigation, overuse of water resources, and salinization
	3.	 Grazing mismanagement, overgrazing, and decreasing NPP in rangelands, soil 

degradation, and sand encroachment
	4.	 Deforestation
	5.	 Increased aridity or drought
	6.	 Socioeconomic issues, changes in population distribution and density, rural 

migration/land abandonment, and urban sprawl
	7.	 Uncontrolled expansion of mining and industrial activities, extensive air and 

water pollution, and soil contamination

Analysis of long-term changes and current efficiency levels of vegetative or 
standing biomass are combined into land-productivity dynamics according to 
Fig. B.1. According to this scheme, the evaluation proceeds as follows:

Analysis of long-term changes and current efficiency levels of vegetative stand-
ing biomass are combined into land productive capacity dynamics. Output from 
both the long-term change maps and current status map was combined with start 
levels at the beginning of the time series, with the state change of productivity, and 
with a relative productivity map based on the principles of local net scaling approach 
(Prince et al. 2009), relating all pixels within an ecosystem functional unit (Ivits 
et al. 2012a) to the productivity of the best performing samples of that respective 
unit.

This processing chain has been applied at global levels and results in five classes 
indicating areas of negative change, positive change or stability of land productive 
capacity dynamics (see Fig. B.2). The classes are interpreted as indicators of change 

Appendix B  Use of Remote Sensing-Derived Land Productive Capacity…
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Fig. B.1  Processing scheme for deriving land productive capacity dynamics from the remote 
sensing time series (note that the approach was applied both to NOAA GIMMS 3G NDVI (Cherlet 
et al. 2013) as indicated above and also to 15 years SPOT VEGETATION NDVI 1999)

Fig. B.2  Global map of land system productive capacity dynamics derived from SPOT 
VEGETATION 15-year time series (1999–2013)

Appendix B  Use of Remote Sensing-Derived Land Productive Capacity…
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or stability of the land’s apparent capacity to sustain its dynamic equilibrium of 
primary productivity during the given observation period, which is now further ana-
lyzed in relation to available information on land-cover/land-use and environmental 
change relevant to the issues listed in 1–7 above.

Preliminary Findings and Conclusions

This product should not be seen as a direct map of global land degradation, but as a 
globally mapped indicator which should be further evaluated in an integrated inter-
pretation framework as proposed by the WAD or possibly also as outlined by the 
UNCCD ad hoc expert group (AGTE) for the new set of progress indicators.

Therefore, the land system productive capacity data are now further analyzed 
and evaluated in relation to available information on land-cover/land-use and envi-
ronmental change relevant to the issues listed in Table 1.

An example of potential agricultural overexploitation of land is given below for 
Nigeria in Fig. B.3. Convergence of evidence is elaborated for interpreting the land 
productive capacity in the light of identifying and mapping ongoing critical land-
use system transformations. Areas where the dynamics are decreasing are mostly 
areas where a number of land stress factors are coinciding, potentially threatening 
to a sustained use of the land. These are highlighted for further analysis. Stress 

Fig. B.3  Interpretation example in Nigeria: The Kainji reservoir in Nigeria enabled expansion of 
agriculture in areas around the Dagida Game reserve (green area on the above map frame indicat-
ing a long-term stable land productive capacity). The map suggests that the capacity of the land to 
sustain a stable land-productivity dynamic equilibrium is declining in those areas of irrigated agri-
culture expansion around the protected areas; this highlights for further analysis to identify coin-
ciding intensification and stresses

Appendix B  Use of Remote Sensing-Derived Land Productive Capacity…
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factors can be natural, e.g., drought, or human induced such as overextraction of soil 
nutrients by demanding irrigated crops as shown below.

A broader statistical analysis and evaluation is also underway but needs to be 
carefully framed and integrated with the data and information provided within the 
thematic WAD chapters.

Nevertheless, some general observations of observed trends and patterns, here 
from the 15-year time series, appear coherent with other studies.

While excluding land areas with no significant vegetal primary productivity, 
i.e., hyperarid, Arctic, and very-high altitude mountain regions from statistics, it is 
evident that indications of decreasing land system productive capacity can be 
observed globally. About 20 % of the land surface, involving all vegetation cover 
types, are showing signs of decreasing land system productive capacity. Only 
19.5 % of the considered vegetal productive land surface is cropland, of which 
18.5 % show clearly decreasing trends or early signs, while for the rest of the non-
cropland, 19.8 % is affected (which however accounts for 80 % of the overall area 
with declining land system productive capacity). Considering that strong efforts 
and resources are committed to maintain the productivity of agricultural land and 
the fact that there are clear limitations to further expansion of croplands, these 
figures are an issue of concern. The huge seminatural and rangeland areas affected 
(approx. 18 million sq. km), however, highlight the enormous dimension of the 
critical dynamically changing ecological conditions worldwide.

The picture is much more complex when breaking down the statistics to conti-
nental, regional, and subregional levels. As mentioned before, when entering into 
this necessary exercise, the increased use of additional thematic information for 
setting up a more stratified analytical approach is strongly recommended, although 
it is much-more time-consuming and cumbersome.

Nevertheless, when just looking at croplands at continental level, we notice sub-
stantial differences in the dimension/extension of potentially critical areas, which 
will require careful consideration and more in-depth analysis.

In Africa, about 20.6  % of the considered land surface is cropped of which 
21.7 % show signs of decreasing land productive capacity. The relative proportion 
of concerned cropland is similar to that of seminatural rangelands. This is above the 
global average but not extremely. In turn, surprisingly, South America with about 
21.4 % cropland shows a much higher percentage of potentially affected croplands, 
up to 31.9  %, also proportionally higher than for seminatural/rangelands areas 
(25.84 %).

Europe is the continent with the relatively highest extension of croplands, 
i.e., about 32 %, of which 15.75 % may be confronted with critical develop-
ments of land productive capacity, especially in the south of Eastern Europe 
but also the Iberian Peninsula, which is proportionally higher than for other 
land-cover/land-use types (10.3 %).

While human factors will need to be further analyzed at regional to subregional 
level, first analyses at global level dealt with the correlation of some spots of 
decreasing productive capacity in the shorter time-series product (i.e., 15 years, 
from 1999 to 2013) against actual global drought monitoring data. These revealed 
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strong correlations of areas in southern Africa (between Botswana, Namibia and 
South Africa), northeastern Brazil, and Australia–Oceania with recent recurrent 
droughts. In this respect, it will be also a clear issue in the WAD to analyze in more 
in-depth the possible differences of dynamics between drylands and non-drylands.

Issues of uncertainty of remote sensing time-series-derived products as function 
of length of the time-series, spatial, and spectral characteristics will also need to be 
better addressed. It could be recommended that scientific groups developing moni-
toring products should join forces, for example, by addressing these issues in a kind 
of ensemble analysis aiming at ways to take benefit from combinations of longer 
time series and higher spatial detail, thus stimulating additional options and criteria 
for generating new elements of convergence of evidence.

Appendix B  Use of Remote Sensing-Derived Land Productive Capacity…



73© The Author(s) 2015 
G.T. Yengoh et al., Use of the Normalized Difference Vegetation Index  
(NDVI) to Assess Land Degradation at Multiple Scales, SpringerBriefs  
in Environmental Science, DOI 10.1007/978-3-319-24112-8

�Appendix C
�Developments with GLADA

Courtesy of Zhanguo Bai, ISRIC – World Soil Information, Wageningen, The 
Netherlands

A Different View of the World

The original Global Assesment of Land Degradation (GLADA, Bai et al. 2008) 
set out to answer questions about the global extent, severity and cost of land deg-
radation using GIMMS data for 1981–2003. In particular: Is land degradation a 
global issue or just a collection of local problems? Which places are hardest hit? 
Is it mainly a problem of drylands? Is it mainly associated with farming – or pov-
erty? The results were against received wisdom and, therefore, contested. A some-
what different picture is revealed by further analysis of the extended GIMMS3g 
dataset for 1981–2011 (Fig. C.1). The differences are not just because of the lon-
ger run of data but because of changes in GIMMS data processing to better correct 
for the periodic replacement of AVHRR sensors as one satellite replaced another, 
especially AVHRR 2 to AVHRR 3 (Pinzon and Tucker 2014a, b). The original 
calibration of the data from successive AVHRR instruments assumed stationarity, 
i.e., that there was no underlying trend. We now know that NDVI exhibits com-
plex long-term trends. Reprocessing of the whole dataset has removed biases 
introduced by the initial calibration and better reveals the underlying trends. 
Changes like this in the fundamental data do nothing for credibility, but we are 
confident that the fundamental data are now much improved – other datasets do 
not have the advantage of these corrections.

We can now give straight answers to our original policy questions:

–– Land degradation is a global issue with 22 % of the land degrading over the last 
30 years, representing a loss of net primary production of some 150 million tons 
of carbon but a loss of soil organic carbon orders of magnitude more.

–– The areas hardest hit are Africa, especially south of the equator with an arm of 
degradation extending north to the Ethiopian highlands and two outliers in the 
Sahel—the Nile provinces of Sudan and Koulikoro Province, Mali; the Gran 
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Chaco, Pampas, and Patagonia; Southeast Asia; the grain belt from the Ukraine 
eastwards through Russia to Kazakhstan; the Russian far east and northeast 
China; and swaths of high-latitude forest.

–– All kinds of land use are afflicted. Cropland comprises 13 % of the global land 
area but makes up 15 % of the total degrading land; rangeland makes up 29 % of 
the land but 42 % of degraded land; forest is also overrepresented, occupying 
23 % of the land area but 37 % of the degrading area.

–– Comparison of rural population density with land degradation shows no simple 
pattern. Taking infant mortality and the percentage of young children who are 
underweight as proxies for poverty, there is some correlation, but we need a more 
rigorous analysis.

–– Fourteen percent of the land surface has been improving over the period.

�Changing Trends

The longer time series reveals significant changes in trend over the last 30 years. 
Linear trend analysis is a blunt instrument, but using the Breaks for Additive 
Seasonal and Trend (BFAST) algorithm to analyze changes of trend de Jong et al. 
2011a found that most parts of the world have experienced periodic changes of 
trend, even reversals. This is important for interpretation of longer-term trends 
where diverging trends may balance out, for instance, in China where a significant 
change in direction was identified around 1996. Figure C.2 illustrates persistent and 

Fig. C.1  Global changes in greenness by annual sum NDVI, 1981–2011
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expanding degradation in Tibet and the southwestern provinces, a dramatic increase 
in degradation across the northeast, and a loss of impetus in many intensively 
farmed areas in spite of the increasing application of synthetic fertilizer from 7 mil-
lion tons in 1977 to more than 58 million tons in 2012. Over the period 1981–1996, 
1.8  % of the country suffered degradation, but 17.5  % was improving (80.7  % 
showed no significant change or was barren): between 1996 and 2011, 12.6 % of the 
land was degrading and only 10 % showed improvement (77.4 % no change or 
barren).

Fig. C.2  China with provincial boundaries: changes in annual sum NDVI 1981–1996 (a) and 
1996–2011 (b)

Fig. C.3  China: NDVI trends in five southern provinces 1981–2011
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In more detail, trend analysis for the southern provinces of Guangdong, Guangxi, 
Hunan, Jiangxi, and Fujian, which exhibit a general improvement over the last 30 
years, shows cyclically declining NDVI at the beginning of the time series but a 
reversal of the trends after about 1995 (Fig. C.3) which may be attributed to the 
take-up of the Grain-for-Green initiative (Cao et al. 2009; Bai and Dent 2014).

Chinese researchers have also made use of the GIMMS NDVI database and the 
GLADA methodology for several countrywide studies. In the process, some new 
indices have been developed, such as the sensitivity index—the degree of reaction 
of NDVI to rainfall change in specific rainfall regions was developed (see 
Appendix D).

�Making Allowance for Terrain, Soil, and Land Use

We might expect resilience against land degradation to depend on terrain, the kind 
of soils, land use, and management. Bai and Dent (2014) used the SRTM digital 
elevation model and ChinaSOTER at scale 1:1 million to assess the effects of soils 
and terrain on land degradation and improvement. Figure C.4 depicts the relative 
departure of each pixel from the trend of its SOTER unit, separating the impact of 
soil and terrain from other factors and giving a picture of land degradation and 

Fig. C.4  Trends of NDVI residuals from SOTER units, 1981–2011
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improvement at the landscape scale—where most land-use and management deci-
sions are taken.

This analysis examines land degradation and improvement at the landscape 
scale, where most land-use decisions are actually taken, and shows which parts of 
every landscape are doing better and which are doing worse than the landscape as a 
whole—so it is a pointer to specific places where remedial action may be needed. 
Using this technique with finer-resolution data such as MODIS NDVI would be 
useful for national-level reporting and for assessment of policy and project impacts 
on the ground.

Analysis of land degradation in terms of land use and management is more problem-
atic because no two consecutive land-use surveys have used the same classification. 
Our only recourse is to historical analysis of land use change making use of Landsat 
imagery, e.g. Bai et al. (2010).
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�Appendix D
�China’s Experiences on the Usefulness 
of GLADA

Courtesy of Zhang Kebin, Beijing Forestry University, Key Authority implement-
ing LADA in China and the PRC-GEF Land Degradation Partnership.

�Introduction

Based on the practice and experience of the LADA program, the choice of the 
GLADA methodology as the standard method for global assessment of drylands is 
a good decision. The bedrock of the GLADA approach is the use of NDVI as the 
basic indicator, enabling consistency and comparability. Assessment methods for 
land degradation at the national level (LADA-national) have adopted a layered 
approach whereby a comprehensive analysis incorporating social information can 
be conducted on various environments so as to broaden the perspective of people 
when observing land degradation.

Rightly embracing the fundamentals of GLADA and the LADA-national 
approach, GLADIS leads to the improvement and enhancement of GLADA. From 
this point of view, GLADIS is applicable to and ready for the assessment on global 
land degradation and, also, at the national level for countries with a large land area, 
including China. Of course, at the national level, the remote sensing data should be 
at an appropriate resolution.

Certainly, the methodology needs constant improvement so as to make the 
assessment more realistic. For example, according to the GLADA assessment, since 
the early 1980s, subsequent years have witnessed land degradation both in arid 
areas and, also, increasing appearance of hot spots of degradation in more humid 
areas. This is the case in China, but we cannot tell whether it is a coincidence or the 
result of methodological problems.

NDVI is affected by various factors such as climate (rainfall), soil, kind of till-
age, and so on. Fluctuations in climate (especially those of rainfall) often lead to 
fluctuations in NDVI. Especially in arid areas, a high sensitivity of vegetation to 
rainfall always results in fluctuations of NDVI according to those of rainfall. In this 
case, NDVI changes do not mean that the quality or long-lasting production poten-
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tial of land has changed accordingly; that is to say, the land quality may exhibit no 
degradation or improvement. So, if we rely solely on the change of NDVI as an 
indicator of land degradation, such judgment possibly may draw out wrong assess-
ment conclusions. So to eliminate the interference of rainfall fluctuations, GLADA 
employs the concept of RUE.

When testing the GLADA assessment against China’s actual situation and an anal-
ysis of the impact of rainfall on NDVI, it is found that the actual situation is compli-
cated; rainfall has a great impact on NDVI, but this impact is not homogeneous—it 
reduces gradually as rainfall increases. In fact, with rainfall reaching a certain level, 
the impact of increasing rainfall on NDVI gradually weakens until, in the humid area 
with abundant rainfall, the impact of fluctuation of rainfall on the change in NDVI 
becomes very small, even negligible. If RUE is still used as an indicator of land deg-
radation in these humid areas, then we are not certain that it is appropriate. [Editor’s 
comment: There appears to be some misunderstanding here. GLADA uses RUE to 
mask drought effects only in those areas where there is a direct correlation between 
NDVI and rainfall—essentially this applies to drylands. In humid areas (and irrigated 
areas), NDVI is used unmodified as a proxy for biological productivity.]

For this consideration, combining with the actual situation in China, and through 
an analysis of the relation between NDVI and rainfall, we have tried to determine 
the quantitative impact of rainfall on NDVI under different rainfall conditions (i.e., 
different regions), so as to use different corrective factors for different areas accord-
ing to actual rainfall when eliminating the impact of rainfall on NDVI, so that it is 
more scientific to use NDVI as an assessment indicator for land degradation and 
also to supplement the GLADA method.

�Data

GIMMS-8 km-NDVI data: The Chinese team used the GIMMS 2g dataset of NOAA-
AVHRR NDVI 15-day synthesized data from July 1981 to September 2006 (a total 
of 26 years). The average value of the two fortnightly data points was taken as a 
monthly value, and the annual accumulated NDVI value is the sum of 12 monthly 
values. Data resolution is 8 km.

Rainfall data: The rainfall data come from the China National Meteorological 
Information Center which stores and shares historical and real-time meteorological 
data; all data passing a quality test are recompiled. The rainfall data used in this 
study comprised 26 years measured data from 707 meteorological stations in main-
land China from 1981 to 2006, matching the time period of NDVI data.

Appendix D  China’s Experiences on the Usefulness of GLADA 
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�The Relation Between NDVI and Rainfall

Figure D.1 shows the relationship between annual sum NDVI and annual rainfall 
observed from 707 meteorological stations in China from 1981 to 2006:

•	 There is a close relation between NDVI and rainfall.
•	 The relation between NDVI and rainfall is not homogeneous but nonetheless 

direct.
•	 In areas with low rainfall, the rainfall has the strongest impact on NDVI and the 

data are tightly aligned around the best-fitted curve. With increasing rainfall, the 
impact of rainfall on NDVI falls away and the correlation also gradually 
weakens.

Definition and calculation of the Sensitivity Index: In order to express this close 
relation between NDVI and rainfall, we have derived a sensitivity index of NDVI to 
rainfall (Ns) (in short, Sensitivity Index). The Chinese team also defined the sensi-
tivity index as the rate of NDVI change with rainfall change by sensitivity index of 
NDVI to rainfall in the following mathematical expression:

	

Ns =
- ´ - ´

´
0 0424 0 01313 0 01176

10
10 10

2. . log . log

ln

NR NR

NR
a a

a 	

Fig. D.1  Best-fit curve between NDVI accumulated value and annual rainfall
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The Sensitivity Index quantitatively reveals the rate of change of NDVI with the 
change of rainfall under any rainfall conditions. More importantly, the Sensitive 
Index may be used as the parameter for eliminating the impact of rainfall on NDVI 
in the assessment of land degradation.

�Future Studies

More studies should be carried out on the relationship of NDVI and rainfall.

Appendix D  China’s Experiences on the Usefulness of GLADA 
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�Appendix E
Main Features of Image Products 
from the Different Sensors

Products (sensors) Features
Vegetation mapping 
applications

Landsat TM Medium to coarse spatial resolution with 
multispectral data (120 m for thermal 
infrared band and 30 m for multispectral 
bands) from Landsat 4 and 5 (1982  
to present). Each scene covers an area  
of 185 × 185 km. Temporal resolution  
is 16 days

Regional-scale mapping, 
usually capable of mapping 
vegetation at community 
level

Landsat ETM+ 
(Landsat 7)

Medium to coarse spatial resolution with 
multispectral data (15 m for panchromatic 
band, 60 m for thermal infrared, and 30 m for 
multispectral bands) (1999 to present). Each 
scene covers an area of 185 km × 185 km. 
Temporal resolution is 16 days

Regional-scale mapping, 
usually capable of mapping 
vegetation at community 
level, some dominant 
species can possibly be 
discriminated

SPOT A full range of medium spatial resolutions 
from 20 m down to 2.5 m and SPOT VGT 
with coarse spatial resolution of 1 km. 
Each scene covers 60 × 60 km for HRV/
HRVIR/HRG and 1000 × 1000 km (or 
2000 × 2000 km) for VGT. SPOT 1, 2, 3, 
4, and 5 were launched in 1986, 1990, 
1993, 1998, and 2002, respectively. SPOT 
1 and 3 are not providing data now

Regional scale, usually 
capable of mapping 
vegetation at community 
level or species level, 
global-/national-/regional-
scale (from VGT) mapping 
land-cover types (i.e., urban 
area, classes of vegetation, 
water area, etc.)

MODIS Coarse spatial resolution (250–1000 m) 
and multispectral data from the Terra 
Satellite (2000 to present) and Aqua 
Satellite (2002 to present). Revisit interval 
is 1–2 days. The swath is 2330 km (cross 
track) by 10 km (along track at nadir)

Mapping at global, 
continental, or national 
scale. Suitable for 
vegetation mapping at a 
coarse scale and land-cover 
types (urban area, classes of 
vegetation, water area, etc.)

(continued)
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Products (sensors) Features
Vegetation mapping 
applications

AVHRR 1-km GSD with multispectral data  
from the NOAA satellite series (1980  
to present). The approximate scene  
size is 2400 × 6400 km

Global-, continental-,  
or national-scale mapping. 
Suitable for mapping 
land-cover types (urban 
area, classes of vegetation, 
water area, etc.)

IKONOS High-resolution imagery  
at 1-m (panchromatic) and 4-m 
(multispectral bands, including red,  
green, blue, and near-infrared) resolution. 
The revisit rate is 3–5 days (off-nadir). 
The single scene is 11 × 11 km

Local- to regional-scale 
vegetation mapping  
at species or community 
level. Can be used  
to validate other 
classification results

QuickBird High-resolution (2.4–0.6 m) panchromatic 
and multispectral imagery from a 
constellation of spacecraft. Single scene 
area is 16.5 × 16.5 km. Revisit frequency 
is around 1–3.5 days depending on 
latitude

Local- to regional-scale 
vegetation mapping at 
species or community level. 
Can be used to validate 
vegetation cover intepreted 
from other images

ASTER Medium spatial resolution (15–90 m) with 
14 spectral bands from the Terra Satellite 
(2000 to present). Visible  
to near-infrared bands have a spatial 
resolution of 15 m, 30 m for shortwave 
infrared bands, and 90 m for thermal 
infrared bands

Regional- to national-scale 
vegetation mapping at 
species or community level

AVIRIS Airborne sensor collecting images with 
224 spectral bands from visible, near 
infrared to shortwave infrared. Depending 
on the satellite platforms and latitude of 
data collected, the spatial resolution 
ranges from meters to dozens of meters 
and the swath ranges from several 
kilometers to dozens of kilometers

At local to regional scale 
usually capable of mapping 
vegetation at community 
level or even species level.  
Images are created  
as one-time operations on 
an ‘as needs’ basis, data are 
not readily available.

Hyperion Hyperspectral image with  
220 bands ranging from visible to 
shortwave infrared. The spatial  
resolution is 30 m. Data available  
since 2003

At regional scale, capable  
of mapping vegetation at 
community level or species 
level

Source: Modified from (Xie et al. 2008)

(continued)
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�Appendix F
�UNCCD Core Indicators  
for National Reporting: ICCD/COP(11)/CST/2

Proposed refinements to the provisionally adopted set of impact indicators

Indicator Metrics/proxies Description

Potential data source/
reference 
methodology

Strategic Objective 1: to improve the living conditions of affected populations

Trends in population 
living below the 
relative poverty line 
and/or income 
inequality in affected 
areas

Poverty severity 
(or squared 
poverty gap)

Takes account of both 
the distance separating 
the poor from the 
poverty line and the 
inequality among the 
poor

World Banka,b

or

Income 
inequality

Alternative to the 
poverty severity metric 
for those countries where 
poverty is no longer an 
issue; Strategic Objective 
1 has, in this sense, 
already been achieved

OECDc

Trends in access to 
safe drinking water in 
affected areas

Proportion of 
population using 
an improved 
drinking water 
source

An improved drinking 
water source is defined 
as one that is protected 
from outside 
contamination through 
household connection, 
public standpipe, 
borehole, protected dug 
well, protected spring, 
rainwater, etc.

WHO/UNICEF Joint 
Monitoring Program 
for Water Supply and 
Sanitation 
methodologyd

(continued)
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Proposed refinements to the provisionally adopted set of impact indicators

Indicator Metrics/proxies Description

Potential data source/
reference 
methodology

Strategic Objective 2: to improve the condition of ecosystems

Trends in land-cover 
structure

Vegetative 
land-cover 
structure

Intended as the 
distribution  
of land-cover types  
of greatest concern  
for land degradation 
(excluding artificial 
surfaces) by 
characterizing the spatial 
structure of vegetative 
land cover; it should 
include and specify 
natural habitat classes

Sourced from 
products like 
GlobCovere,e,f or 
finer-resolution 
products under 
development (Gong 
et al. 2013), and 
following established 
land-cover 
classifications (e.g., 
FAO/UNEP LCCSg)

Trends in land 
productivity or 
functioning of the 
land

Land-
productivity 
dynamics

Based on long-term 
fluctuations and current 
efficiency levels of 
phenology and 
productivity factors 
affecting standing 
biomass conditions

New World Atlas of 
Desertification 
methodology;h update 
foreseen every 5 
years

Strategic Objective 3: to generate global benefits through effective implementation  
of the UNCCD

Trends in carbon 
stocks above- and 
belowground

Soil organic 
carbon stock

Intended as the status of 
topsoil and subsoil 
organic carbon

Sourced from, e.g., 
the GTOS portali

To be replaced  
by

Total terrestrial 
system carbon 
stock

Including above- and 
below-ground carbon

To be streamlined 
with the GEF-
financed UNEP 
Carbon Benefits 
Projectj,k

Once operational

Trends in abundance 
and distribution of 
selected species 
(potentially to be 
replaced by an 
indicator measuring 
trends in ecosystem 
functional diversity 
once system 
understanding and 
data allows)

Global Wild Bird 
Index

Measures average 
population trends of a 
suite of representative 
wild birds, as an 
indicator of the general 
health of the wider 
environment

Following the 
indicator guidance 
provided for and to be 
streamlined with the 
CBD processl,m

Abbreviations: CBD convention on biological diversity, FAO food and agriculture organization of 
the United Nations, GEF global environment facility, GTOS global terrestrial observing system, 
LCCS land cover classification system, OECD organisation for economic co-operation and devel-
opment, UNEP United Nations environment programme, UNICEF United Nations children’s 
fund, WHO world health organization

(continued)
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ahttp://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTPOVERTY/EXTPA/0,contentM
DK:20242881~isCURL:Y~menuPK:492130~pagePK:148956~piPK:216618~theSit
ePK:430367,00.html
bhttp://siteresources.worldbank.org/INTPA/Resources/tn_measuring_poverty_over_time.pdf
chttp://www.oecd.org/els/soc/43540354.pdf
dhttp://www.wssinfo.org/
ehttp://due.esrin.esa.int/globcover/
fhttp://www.gofcgold.wur.nl/sites/gofcgold_refdataportal.php
ghttp://www.fao.org/docrep/003/X0596E/X0596e00.htm
hhttp://wad.jrc.ec.europa.eu/
ihttp://www.fao.org/gtos/tcoDAT.html
jhttp://carbonbenefitsproject-compa.colostate.edu/
khttp://www.unep.org/climatechange/carbon-benefits/Home/tabid/3502/Default.aspx
lhttp://www.unep-wcmc.org/wild-bird-index_568.html
mhttp://www.bipindicators.net/WBI
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�Appendix H
Software for Processing Satellite  
Images to Develop the NDVI

�Common Commercial Software for Processing Satellite 
Images to Develop the NDVI

 

ArcGIS. ArcGIS is the most popular geospatial product in the industry. According 
to its creators, the Environmental Systems Research Institute (ESRI), the ArcGIS 
platform is a complete GIS suite that permits users to conduct spatial analysis, man-
age data effectively, explore data content, automate advanced workflows, create 
maps, and undertake advanced operations with, and analysis of, imagery. It com-
prises a range of software tools and extensions (most of which are available to users 
depending on the license level of their platforms) with sophisticated desktop GIS 
functionality such as spatial analysis, 3D, geostatistics, server-based data manage-
ment, and geo-processing that leverage Oracle or SQLServer type databases. While 
a range of operations on imagery can be achieved through the use of tools in exten-
sions such as Spatial Analyst, the Image Analyst has functionality for performing 
basic tasks such as image subtraction, vegetation indices, and others. More on the 
features of ArcGIS for Desktop, its extensions and capabilities can be found here: 
http://www.esri.com/software/arcgis/arcgis-for-desktop.

http://www.esri.com/software/arcgis/arcgis-for-desktop
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Erdas Imagine. Erdas Imagine is a powerful but simple-to-use geospatial imagery 
processing application. It is renowned for its ability to enhance satellite imagery to 
make it more meaningful and facilitate complex analysis. It has built-in tools for the 
interchange of numerous file formats and has an extensive array of vector editing 
and analysis capabilities and the ability to design custom geospatial-analysis tools, 
handle multispectral and hyperspectral data, as well as advanced classification tech-
niques. More on Erdas Imagine can be found here: http://www.hexagongeospatial.
com/products/remote-sensing/erdas-imagine.

 

ER Mapper. ER Mapper is a geographic image processing software product, which 
runs on a range of PCs running Windows. This software can be used to display, 
integrate, and enhance raster data, display and edit vector data, and link with data 
from Geographic and Land Information Systems, Database Management Systems, 
or indeed most other sources. The outstanding feature and benefit of ER Mapper is 
its ease of use and processing on the fly feature. This means that different image-
processing algorithms can be launched simultaneously, and the results instantly dis-
played on the user’s screen. This reduces the time it takes for other applications to 
do the same tasks, because, generally, a new file would have to be created before the 
results are displayed. All processing information can be saved in project files called 
Algorithms where all the processing steps are on the image or images. More on ER 
Mapper can be found here: http://www.hexagongeospatial.com/products/remote-
sensing/erdas-er-mapper.

 

IDRISI. IDRISI GIS and image processing application is developed by Clark Labs 
at Clark University. It has been seen by many in the remote sensing community as 
affordable and robust and is widely used for both professional operations and edu-
cation. IDRISI is currently in the Selva version. This is an integrated GIS and Image 
Processing software package with over 300 modules for the processing, analysis, 
and display of digital spatial information. It may be considered the most extensive 
set of GIS and Image Processing tools in the industry in a single, affordable 
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package. It includes tools such as neural network classifiers and change detection 
modules that are not available out-of-the-box in any other software. TerrSet is a 
recent integrated geospatial software system for monitoring and modeling the earth 
system for sustainable development. It incorporates the IDRISI GIS Analysis and 
image processing tools along with a collection of vertical applications to perform 
complex analysis of issues of sustainability in the earth system. More on IDRISI 
and its associated sets of integrated tools can be found here: http://www.clarklabs.
org/.

 

ENVI. ENVI products create the primary geospatial software foundation to convert, 
preprocess, process, and analyze all types of imagery and data such as multispectral, 
hyperspectral, LiDAR, and SAR. They are known for their design which permits 
easy acquaintance with and use by everyone regardless of prior experience with 
imagery—from GIS professionals to image analysts and image scientists. ENVI 
products interoperate well with many geospatial applications. For example, all 
ENVI products integrate with ArcGIS, and can be easily customized to meet unique 
needs of users across disciplines. More about ENVI and its family of products can 
be found here: http://www.exelisvis.com/ProductsServices/ENVIProducts/ENVI.
aspx.

 

PCI Geomatica. PCI Geomatica is an integrated software featuring the majority of 
tools needed by professionals for remote sensing, digital photogrammetry, image 
analysis, map production, and mosaicking. A strong point is the ease of loading 
satellite and aerial imagery and its capability of faster data processing with advanced 
modules to handle complex processes. Geomatica is also known for its comprehen-
sive routines for automation of data processing tasks. Geomatica has been and con-
tinues to be used by many educational institutions and scientific programs throughout 
the world for a range of remote sensing projects. More about PCI Geomatics can be 
found here: http://www.pcigeomatics.com.
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http://www.clarklabs.org/
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�Common Open-Source Software 

Courtesy of GISGeography.com (with some modifications)1

 

SAGA GIS: System for Automated Geoscientific Analyses. SAGA GIS is on the top 
of the list of free remote sensing softare, and for good reason. SAGA GIS is ideal 
for most GIS and remote sensing needs, having a rich library of modules that offer
possibilities for quick, reliable raster analyses and manipulation. What gives SAGA 
GIS a kick is its quick and reliable raster processing. The official user guide is avail-
able here: http://www.saga-gis.org/en/

 

Opticks. The neat part about this software is the long list of extensions you can add. 
There are plug-ins for raster math, radar processing, and hyper-/multispectral data 
processing. It is important to always make sure to check the compatibility before 
downloading an extension. You might have to scale back your Opticks version in 
order for the extension to work properly. For all information concerning Optiks, as 
well as the download of the software, go here: http://opticks.org/confluence/display/
opticks/Welcome+To+Opticks.

 

GRASS: Geographic Resources Analysis Support System. GRASS may be one of 
the most popular software package on this list. GRASS is full of functionality: 
image classification, PCA, edge detection, radiometric corrections, 3D, geostatis-
tics analysis, and filtering options. Another key feature of GRASS is the LiDAR 
processing and analysis. You can filter LiDAR points, create contours, and 

1 We greatly acknowledge the contribution of GISGeography.com in permitting the use of its sum-
mary of  current freely available remote sensing software below (with some modifications). 
The original resource provided by GISGeography can be  found here: http://gisgeography.com/
open-source-remote-sensing-software-packages/.
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http://gisgeography.com/open-source-remote-sensing-software-packages/


97

generate DEMs. The official user guide is available here: https://grass.osgeo.org/
grass70/manuals/.

 

ORFEO: Optical and Radar Federated Earth Observation. The ORFEO toolbox 
was a cooperative project developed by France and Italy. It is a library of remote 
sensing image processing specifically aimed at high spatial resolution. ORFEO pro-
vides a wide range of remote sensing functions: radiometry, PCA, change detection, 
pan sharpening, image segmentation, classification, and filtering. An interesting 
aspect of this software is the capability to do object-based image analysis. This is a 
rare feature in software nowadays. The official user guide is available here: https://
www.orfeo-toolbox.org/SoftwareGuide/SoftwareGuidech33.html.

 

OSSIM: Open-Source Software Image Map. OSSIM is a high-performance open-
source remote sensing software application for high spatial resolution imagery. It 
has been actively developed for almost two decades, funded through US depart-
ments such as in intelligence and defense. Key features are compatibility with more 
than 100 raster and vector formats and over 4000 different projections and datums. 
It supports numerous sensors, but some may require additional plug-ins.

 

InterImage. InterImage is a bit different from the other open-source remote sensing 
software on this list. It specializes in automatic image interpretation. The core theme 
of automatic image interpretation is object-based classification (OBIA). This 
involves segmentation, exploring attributes, and supervised classification. Although 
developed in Brazil, documentation is available in English. More can be found here: 
http://www.lvc.ele.pucrio.br/projects/interimage/
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ILWIS: Integrated Land and Water Information System. ILWIS has been around for 
more than 25 years. It has had over 27,000 downloads since its first release. It wasn’t 
until recently that it has become available for public use. ILWIS was originally built 
for researchers and students. For this reason, effort was concentrated on developing 
a user-friendly environment. The other main focus was compatibility with raster and 
vector formats. This has been done by full integration with the GDAL library. The 
practical uses of ILWIS make it a prime choice for remote sensing activities. More
on ILWIS can be found here: http://www.ilwis.org/

 

gvSIG. gvSIG is known for its wide variety of rich features and powerful capabili-
ties: supervised classification, defining ROIs, band algebra, and decision trees. 
gvSIG stands for Generalitat Valenciana Geographic Information System. 
Generalitat Valenciana is the Spanish regional authority the system was designed 
for. More on gvSIG can be found here: http://www.gvsig.com/en

 

Quantum GIS (QGIS). QGIS is one of the most powerful open-source GIS software 
packages available for free. This software package allows users to visualize, ana-
lyze, interpret, and understand spatial data. Plug-ins are the key to its operations. 
Raster manipulation includes neighborhood analysis, map algebra, surface interpo-
lation, hydrologic modeling, and terrain analysis like slope and aspect. There are 
plug-ins for, among other operations, semiautomated classification, BEAM and 
NEST framework, multitemporal raster analysis, viewshed analysis. The official 
site of QGIS is found here: http://www.qgis.org/en/site/.
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