
Chapter 2
Data Quality Dimensions

2.1 Introduction

In Chap. 1, we provided an intuitive concept of information quality and we infor-
mally introduced several data quality dimensions, such as accuracy, completeness,
currency, and consistency.

This chapter investigates information quality in greater depth, in particular with
reference to structured data, typical of relational databases, and presents multiple
associated dimensions. Due to this focus, in this chapter we will adopt the term
data quality and the acronym DQ for it. Each dimension captures a specific
aspect included under the general umbrella of data quality. Both data and schema
dimensions are important. Data of low quality deeply influence the quality of
business processes, while a schema of low quality, e.g., an unnormalized schema
in the relational model, results in potential redundancies and anomalies during the
life cycle of data usage. Data dimensions can be considered more relevant in real-life
applications and processes than schema dimensions.

More specifically, quality dimensions can refer either to the extension of data,
i.e., to data values, or to their intension, i.e., to their schema. Both data dimensions
and schema dimensions are usually defined in a qualitative way, referring to general
properties of data and schemas, and the related definitions do not provide any
facility for assigning values to dimensions themselves. Specifically, definitions do
not provide quantitative measures, and one or more metrics are to be associated
with dimensions as separate, distinct properties. For each metric, one or more
measurement methods are to be provided regarding (see [521]) (1) where the
measurement is taken, (2) what data are included, (3) the measurement device, and
(4) the scale on which results are reported. Based on the literature, at times we will
distinguish between dimensions and metrics, while at other times we will directly
provide metrics.

The quality of conceptual and logical schemas is very important in database
design and usage. Conceptual schemas are typically produced within the first

© Springer International Publishing Switzerland 2016
C. Batini, M. Scannapieco, Data and Information Quality, Data-Centric Systems
and Applications, DOI 10.1007/978-3-319-24106-7_2

21

22 2 Data Quality Dimensions

phase of the development of an information system (IS). Erroneous conceptual
schema design strongly impacts the system development and must be detected
as soon as possible. Logical schemas are at the base of the implementation of
any database application. Methods and techniques for assessing, evaluating, and
improving conceptual schemas and logical schemas in different application domains
is still a fertile research area.

Despite such recognized importance, the prevalent attention to the definitions of
DQ dimensions has been devoted to data values, which are used, more extensively
than schemas, in business and administrative processes. As a consequence, in this
chapter we deal especially with data dimensions, but we also discuss some of the
most relevant schema dimensions.

In the following sections, we describe in detail data dimensions in order to
understand the different possible meanings and metrics. As a terminological note,
when we refer to the relational model, we use the term tuple to indicate a set
of fields or cell values, corresponding usually to different definition domains or
domains, describing properties or attributes of a specific real-world object; we use
interchangeably the terms relational table or table or relation to indicate a set of
tuples. When we refer to generic data, we use the term record to indicate a set of
fields, and we use interchangeably the terms file or dataset to indicate a set of tuples.
As a consequence, tuple can be used in place of record and table=relation can be
used in place of structured file.

The chapter is organized as follows. In Sect. 2.2, we introduce a classification
framework of data and information quality dimensions grouped in clusters of
“similar” dimensions. In Sects. 2.3–2.6, we focus on specific clusters, namely,
accuracy, completeness, accessibility, and consistency.

Some proposals of comprehensive classifications of dimensions are first illus-
trated and then compared in Sect. 2.7. Section 2.8 deals with schema dimensions,
briefly describing correctness, minimality, completeness, and pertinence and, in
more detail, readability and normalization.

2.2 A Classification Framework for Data and Information
Quality Dimensions

Dimensions for data quality introduced in this chapter and dimensions for informa-
tion quality discussed in subsequent chapters of the book can be characterized by
a common classification framework that allows us to compare dimensions across
different information types. The framework is based on a classification in clusters
of dimensions proposed in [45] where dimensions are included in the same cluster
according to their similarity. Clusters are defined in the following list, where the
first item in italics is the representative dimension of the cluster, followed by other
member dimensions. In this section, dimensions will be introduced informally and
their meaning will be left to intuition:

2.3 Accuracy Cluster 23

1. Accuracy, correctness, validity, and precision focus on the adherence to a given
reality of interest.

2. Completeness, pertinence, and relevance refer to the capability of representing
all and only the relevant aspects of the reality of interest.

3. Redundancy, minimality, compactness, and conciseness refer to the capability
of representing the aspects of the reality of interest with the minimal use of
informative resources.

4. Readability, comprehensibility, clarity, and simplicity refer to ease of under-
standing and fruition of information by users.

5. Accessibility and availability are related to the ability of the user to access
information from his or her culture, physical status/functions, and technologies
available.

6. Consistency, cohesion, and coherence refer to the capability of the information
to comply without contradictions to all properties of the reality of interest, as
specified in terms of integrity constraints, data edits, business rules, and other
formalisms.

7. Usefulness, related to the advantage the user gains from the use of information.
8. Trust, including believability, reliability, and reputation, catching how much

information derives from an authoritative source. The trust cluster encompasses
also issues related to security.

The first six clusters will be considered in this chapter and in Chaps. 3–5. The
usefulness cluster will be considered for images (Chap. 5) and for information in
general in Chap. 11. The trust cluster will be discussed in Chap. 14 dedicated to
Web data and Big Data.

In the following part of the book, dimensions will be introduced and discussed
based on the above classification.

2.3 Accuracy Cluster

Accuracy is defined as the closeness between a data value v and a data value v0,
considered as the correct representation of the real-life phenomenon that the data
value v aims to represent. As an example if the name of a person is John, the value
v0 D John is correct, while the value v D Jhn is incorrect.

The world around us changes, and what we have called in the above definition
“the real-life phenomenon that the data value v aims to represent” reflects such
changes. So, there is a particular yet relevant type of data accuracy that refers to the
rapidity with which the change in real-world phenomenon is reflected in the update
of the data value; we call temporal accuracy such type of accuracy, in contrast to
structural accuracy (or, simply, accuracy), that characterizes the accuracy of data as
observed in a specific time frame, where the data value can be considered as stable
and unchanged. In the following, we will consider first structural accuracy and later
temporal accuracy.

24 2 Data Quality Dimensions

2.3.1 Structural Accuracy Dimensions

Two kinds of (structural) accuracy can be identified, namely, a syntactic accuracy
and a semantic accuracy.

Syntactic accuracy is the closeness of a value v to the elements of the correspond-
ing definition domain D. In syntactic accuracy, we are not interested in comparing v
with the true value v0; rather, we are interested in checking whether v is any one of
the values in D, whatever it is. So, if vD Jack, even if v0 D John, v is considered
syntactically correct, as Jack is an admissible value in the domain of persons’
names. Syntactic accuracy is measured by means of functions, called comparison
functions, that evaluate the distance between v and the values in D. Edit distance
is a simple example of a comparison function, taking into account the minimum
number of character insertions, deletions, and replacements to convert a string s
to a string s0. More complex comparison functions exist, for instance, taking into
account similar sounds or character transpositions. In Chap. 8, a detailed description
of the main comparison functions will be provided.

Let us consider the relation Movies introduced in Chap. 1, shown in Fig. 2.1.
The value Rman Holiday in movie 3 for Title is syntactically inaccurate,

since it does not correspond to any title of a movie. Roman Holiday is the
closest movie name to Rman Holiday; indeed, the edit distance between Rman
Holiday and Roman Holiday is equal to 1 and simply corresponds to the
insertion of the char o in the string Rman Holidays. Since 1 is the edit distance,
the measure of syntactic accuracy is 1. More precisely, given a comparison function
C, we may define a measure of syntactic accuracy of a value v with respect to
a definition domain D, as the minimum value of C, when comparing v with all
the values in D. Such a measure will be in the domain [0; : : : ; n], where n is the
maximum possible value that the comparison function may have.

Semantic accuracy is the closeness of the value v to the true value v0. Let us
consider again the relation Movies in Fig. 2.1. The exchange of directors’ names
in tuples 1 and 2 is an example of a semantic accuracy error: indeed, for movie 1,
a director named Curtiz would be admissible, and thus it is syntactically correct.

198501964NULLSabrina4

NULL01953WylderRmanHoliday3

NULL01989CurtizDead Poets Society 2

194031942WeirCasablanca1

LastRemakeYear#RemakesYearDirectorTitleId

198501964NULL

01953Rman Holiday

01989Curtiz

194031942Weir

Fig. 2.1 A relation Movies

2.3 Accuracy Cluster 25

Nevertheless, Curtiz is not the director of Casablanca; therefore a semantic
accuracy error occurs.

The above examples clearly show the difference between syntactic and semantic
accuracy. Note that while it is reasonable to measure syntactic accuracy using
a distance function, semantic accuracy is measured better with a <yes, no>

or a <correct, not correct> domain. Consequently, semantic accuracy
coincides with the concept of correctness. In contrast with what happens for
syntactic accuracy, in order to measure the semantic accuracy of a value v, the
corresponding true value has to be known, or, else, it should be possible, considering
additional knowledge, to deduce whether the value v is or is not the true value.

From the above arguments, it is clear that semantic accuracy is typically more
complex to calculate than syntactic accuracy. When it is known a priori that the rate
of errors is low and the errors result typically from typos, then syntactic accuracy
tends to coincide with semantic accuracy, since typos produce values close to the
true ones. As a result, semantic accuracy may be achieved by replacing an inaccurate
value with the closest value in the definition domain, under the assumption that it is
the true one.

In a more general context, a technique for checking semantic accuracy consists
of looking for the same data in different data sources and finding the correct
data by comparisons. This latter approach also requires the solution of the object
identification problem, i.e., the problem of understanding whether two tuples refer
to the same real-world entity or not; this problem will be discussed extensively in
Chaps. 8 and 9. The main issues to be addressed for solving the object identification
problem are:

• Identification: Tuples in one or several sources may not have unique identifiers,
and thus they need to be put in correspondence by means of appropriate matching
keys.

• Decision strategy: Once tuples are linked on the basis of a matching key, a
decision must be made to state whether it corresponds to the same entity or not.

The accuracy discussed above is referred to a single value of a relation attribute.
In practical cases, coarser accuracy definitions and metrics may be applied. As an
example, it is possible to calculate the accuracy of an attribute called attribute
(or column) accuracy, of a relation (relation accuracy), or of a whole database
(database accuracy).

When considering accuracy for sets of values instead of single values, a further
notion of accuracy can be introduced, namely, duplication. Duplication occurs when
a real-world entity is stored twice or more in a data source. Of course, if a primary
key consistency check is performed when populating a relational table, a duplication
problem does not occur, provided that the primary key assignment has been made
with a reliable procedure. The duplication problem is more relevant for files or other
data structures that do not allow the definition of key constraints. A typical cost
of duplication is, for example, the additional mailing cost that enterprises pay for
mailing customers, when customers are stored more than once in the their database.
An indirect cost must be added to this direct cost, which consists of the loss of

26 2 Data Quality Dimensions

reputation of the enterprise in the eyes of its customers who may be bothered by
having to receive the same material more than once.

For relation and database accuracy, for both syntactic and semantic accuracy, a
ratio is typically calculated between accurate values and the total number of values.
For instance, the accuracy of a relation can be measured as the ratio between the
number of correct cell values and the total number of cells in the table. More
complex metrics can be defined that consider comparison functions; for instance,
as we said before, a typical process for syntactic accuracy evaluation is to match
tuples from the source under examination with tuples of another source which is
supposed to contain the same but correct tuples.

In such a process, accuracy errors on attribute values can be either those
that do not affect the tuple matching or those that can stop the process itself,
not allowing the matching. For instance, an accuracy error on an attribute
SocialSecurityNumber (SSN) value can seriously affect the matching
attempt; instead, given that SSNs are used for matching, an accuracy error on
an attribute with a minor identification power, such as Age, cannot prevent the
identification process from being carried out correctly. In the rest of this section, we
illustrate a few metrics (see [222]) taking these aspects into account.

Let us consider a relational schema R consisting of K attributes and a relational
table r consisting of N tuples. Let qij (i D 1 : : : N, j D 1 : : : K) be a Boolean variable
defined to correspond to the cell values yij such that qij is equal to 0 if yij is
syntactically accurate; otherwise it is equal to 1.

In order to identify whether or not accuracy errors affect a matching of a
relational table r with a reference table r0 containing correct values, we introduce a
further Boolean variable si equal to 0 if the tuple ti matches a tuple in r0, otherwise
equal to 1. We can introduce three metrics to distinguish the relative importance of
value accuracy in the context of the tuple. The first two metrics have the purpose of
giving a different importance to errors on attributes that have a higher identification
power, in line with the above discussion.

The first metric is called weak accuracy error and is defined as

NX

iD1

ˇ..qi > 0/
V

.si D 0//

N
;

where ˇ.:/ is a Boolean variable equal to 1 if the condition in parentheses is true, 0
otherwise, and qi D PK

jD1 qij. Such metric considers the case in which for a tuple ti

accuracy errors occur .qi > 0/ but do not affect identification .si D 0/.
The second metric is called strong accuracy error and is defined as

NX

iD1

ˇ..qi > 0/
V

.si D 1//

N
;

2.3 Accuracy Cluster 27

where ˇ.:/ and qi have the same meaning as above. Such a metric considers the
case in which accuracy errors occur .qi > 0/ for a tuple ti and actually do affect
identification .si D 1/.

The third metric gives the percentage of accurate tuples matched with the
reference table. It is expressed by the degree of syntactic accuracy of the relational
instance r

NX

iD1

ˇ..qi D 0/
V

.si D 0//

N

by actually considering the fraction of accurate .qi D 0/ matched .si D 0/ tuples.

2.3.2 Time-Related Accuracy Dimensions

A relevant aspect of data is their change and update in time. In Chap. 1 we provided
a classification of types of data according to the temporal dimension, in terms
of stable, long-term-changing, and frequently changing data. The principal time-
related dimensions proposed for characterizing the above three types of data are
currency, volatility, and timeliness.

Currency concerns how promptly data are updated with respect to changes
occurring in the real world. As an example in Fig. 2.1, the attribute #Remakes
of movie 4 has low currency because a remake of movie 4 has been done, but
this information did not result in an increased value for the number of remakes.
Similarly, if the residential address of a person is updated, i.e., it corresponds to the
address where the person lives, then the currency is high.

Volatility characterizes the frequency with which data vary in time. For instance,
stable data such as birth dates have volatility equal to 0, as they do not vary at all.
Conversely, stock quotes, a kind of frequently changing data, have a high degree of
volatility due to the fact that they remain valid for very short time intervals.

Timeliness expresses how current the data are for the task at hand. The timeliness
dimension is motivated by the fact that it is possible to have current data that are
actually useless because they are late for a specific usage. For instance, the timetable
for university courses can be current by containing the most recent data, but it is not
timely if it is available only after the start of the classes.

We now provide possible metrics of time-related dimensions. Currency can be
typically measured with respect to last update metadata, which correspond to the
last time the specific data were updated. For data types that change with a fixed
frequency, last update metadata allow us to compute currency straightforwardly.
Conversely, for data types whose change frequency can vary, one possibility is
to calculate an average change frequency and perform the currency computation
with respect to it, admitting errors. As an example, if a data source stores product
names that are estimated to change every 5 years, then a product with its last update

28 2 Data Quality Dimensions

metadata reporting a date corresponding to 1 month before the observation time can
be assumed to be current; in contrast, if the date reported is 10 years before the
observation time, it is assumed to be not current.

Volatility is a dimension that inherently characterizes certain types of data. A
metric for volatility is given by the length of time (or its inverse) that data remain
valid.

Timeliness implies that data not only are current but are also in time for events
that correspond to their usage. Therefore, a possible measurement consists of (1)
a currency measurement and (2) a check that data are available before the planned
usage time.

More complex metrics can be defined for time-related dimensions. As an
example, we cite the metric defined in [31], in which the three dimensions currency,
volatility, and timeliness are linked by defining timeliness as a function of currency
and volatility. More specifically,

1. Currency is defined as

Currency D Age C .DeliveryTime � InputTime/;

where Age measures how old the data unit is when received, DeliveryTime is the
time the information product is delivered to the customer, and InputTime is the
time the data unit is obtained. Therefore, currency is the sum of how old data are
when received (Age), plus a second term that measures how long data have been
in the information system, (DeliveryTime � InputTime).

2. Volatility is defined as the length of time data remains valid.
3. Timeliness is defined as

max

�
0; 1 � currency

volatility

�
:

Timeliness ranges from 0 to 1, where 0 means bad timeliness and 1 means good
timeliness.

Observe that the relevance of currency depends on volatility: data that are highly
volatile must be current, while currency is less important for data with low volatility.

2.4 Completeness Cluster

Completeness can be generically defined as “the extent to which data are of
sufficient breadth, depth, and scope for the task at hand” [645]. In [504], three
types of completeness are identified. Schema completeness is defined as the degree
to which concepts and their properties are not missing from the schema. Column
completeness is defined as a measure of the missing values for a specific property or

2.4 Completeness Cluster 29

column in a table. Population completeness evaluates missing values with respect to
a reference population.

If focusing on a specific data model, a more precise characterization of complete-
ness can be given. In the following we refer to the relational model.

2.4.1 Completeness of Relational Data

Intuitively, the completeness of a table characterizes the extent to which the table
represents the corresponding real world. Completeness in the relational model can
be characterized with respect to (1) the presence/absence and meaning of null values
and (2) the validity of one of the two assumptions called open world assumption
(OWA) and closed world assumption (CWA). We now introduce the two issues
separately.

In a model with null values, the presence of a null value has the general meaning
of a missing value, i.e., a value that exists in the real world but for some reason is
not available. In order to characterize completeness, it is important to understand
why the value is missing. Indeed, a value can be missing either because it exists but
is unknown or because it does not exist at all or because it may exist but it is not
actually known whether it exists or not. For a general discussion on the different
types of null values, see [30]; here we describe the three types of null values, by
means of an example.

Let us consider a Person relation with the attributes Name, Surname,
BirthDate, and Email. The relation is shown in Fig. 2.2. For the tuples with
Id equal to 2, 3, and 4, the Email value is NULL. Let us suppose that the person
represented by tuple 2 has no e-mail: no incompleteness case occurs. If the person
represented by tuple 3 has an e-mail, but its value is not known, then tuple 3 presents
an incompleteness. Finally, if it is not known whether the person represented by
tuple 4 has an e-mail or not, incompleteness may not be the case.

In logical models for databases, such as the relational model, there are two
different assumptions on the completeness of data represented in a relational
instance r. The CWA states that only the values actually present in a relational

4

3

2

1

ID

NULL01/01/1936WhiteAnthony

11/20/1955

02/03/1967

03/17/1974

BirthDate

NULLMonroeEdward

NULLCollinsMarianne

smith@abc.itSmithJohn

EmailSurnameName not existing

existing
but unknown

not known
if existing

Fig. 2.2 The Person relation, with different null value meanings for the e-mail attribute

30 2 Data Quality Dimensions

table r and no other values represent facts of the real world. In the OWA we can
state neither the truth nor the falsity of facts not represented in the tuples of r.

From the four possible combinations emerging from (1) considering or not
considering null values and (2) assuming OWA or CWA, we will focus on the
following two most interesting cases:

1. Model without null values with OWA
2. Model with null values with CWA

In a model without null values with OWA, in order to characterize completeness,
we need to introduce the concept of reference relation. Given the relation r, the
reference relation of r, called ref(r), is the relation containing all the tuples that
satisfy the relational schema of r, i.e., that represent objects of the real world that
constitute the present true extension of the schema.

As an example, if Dept is a relation representing the employees of a given
department and one specific employee of the department is not represented as a tuple
of Dept, then the tuple corresponding to the missing employee is in ref(Dept),
and ref(Dept) differs from Dept in exactly that tuple. In practical situations,
the reference relations are rarely available. Instead their cardinality is much easier
to get. There are also cases in which the reference relation is available but only
periodically (e.g., when a census is performed).

On the basis of the reference relation, the completeness of a relation r is mea-
sured in a model without null values as the fraction of tuples actually represented in
the relation r, namely, its size with respect to the total number of tuples in ref(r):

C.r/ D jrj
jref .r/j :

As an example, let us consider the citizens of Rome. Assume that, from the
personal registry of Rome’s municipality, the overall number is six million. Let
us suppose that a company stores data on Rome’s citizens for the purpose of its
business; if the cardinality of the relation r storing the data is 5,400,000, then C.r/
is equal to 0.9.

In the model with null values with CWA, specific definitions for completeness
can be provided by considering the granularity of the model elements, i.e., value,
tuple, attribute, and relations, as shown in Fig. 2.3. Specifically, it is possible to
define:

• A value completeness, to capture the presence of null values for some fields of a
tuple

• A tuple completeness, to characterize the completeness of a tuple with respect to
the values of all its fields

• An attribute completeness, to measure the number of null values of a specific
attribute in a relation

• A relation completeness, to capture the presence of null values in a whole relation

2.4 Completeness Cluster 31

Fig. 2.3 Completeness of
different elements in the
relational model

attribute

tuple

value

relation

As an example, in Fig. 2.4, a Student relation is shown. The tuple complete-
ness evaluates the percentage of specified values in the tuple with respect to the
total number of attributes of the tuple itself. Therefore, in the example, the tuple
completeness is 1 for tuples 6754 and 8907, 0.8 for tuple 6587, 0.6 for tuple 0987,
and so on. One way to see the tuple completeness is as a measure of the information
content of the tuple, with respect to its maximum potential information content.
With reference to this interpretation, we are implicitly assuming that all values of
the tuple contribute equally to the total information content of the tuple. Of course,
this may not be the case, as different applications can weight the attributes of a tuple
differently.

The attribute completeness evaluates the percentage of specified values in the
column corresponding to the attribute with respect to the total number of values that
should have been specified. In Fig. 2.4, let us consider an application calculating the
average of the votes obtained by students. The absence of some values for the Vote
attribute simply implies a deviation in the calculation of the average; therefore, a
characterization of Vote completeness may be useful.

The relation completeness is relevant in all applications that need to evaluate the
completeness of a whole relation and can admit the presence of null values on some
attributes. Relation completeness measures how much information is represented
in the relation by evaluating the content of the information actually available with
respect to the maximum possible content, i.e., without null values. According to this
interpretation, completeness of the relation Student in Fig. 2.4 is 53/60.

32 2 Data Quality Dimensions

Fig. 2.4 Student relation
exemplifying the
completeness of tuples,
attributes, and relations

NULLNULLArcherRobert0987

07/17/2004NULLMerralsJulianne6578

07/17/200418HerbertAnne8907

07/17/200429CollinsMike6754

09/30/200425AdamsCarl0098

NULL30MillerJohn6784

09/30/200430AbbottBridget2134

09/30/200426TaylorMark1243

8973

8976

2564

1111

StudentID

NULL21WhiteAnthony

30

NULL

28

Vote

NULLMonroeEdward

10/15/2004CollinsMarianne

09/30/2004SmithJohn

ExaminationDateSurnameName

Collins

2.4.2 Completeness of Web Data

Data that are published in Web information systems can be characterized by evo-
lution in time. While in the traditional paper-based media, information is published
once and for all, Web information systems are characterized by information that is
continuously published.

Let us consider the Web site of a university, where a list of courses given at that
university in the current academic year is published. At a given moment, the list can
be considered complete in the sense that it includes all the courses that have been
officially approved. Nevertheless, it is also known that more courses will be added
to the list, pending their approval. Therefore, there is the need to apprehend how the
list will evolve in time with respect to completeness. The traditional completeness
dimension provides only a static characterization of completeness. In order to
consider the temporal dynamics of completeness, as needed in Web information
systems, we introduce the notion of completability.

We consider a function C.t/, defined as the value of completeness at the instant
t, with t 2 Œt_pub;t_max�, where t_pub is the initial instant of publication of
data and t_max corresponds to the maximum time within which the series of the
different scheduled updates will be completed. Starting from the function C.t/, we
can define the completability of the published data as

Z t_max

t_curr
C.t/;

where t_curr is the time at which completability is evaluated and t_curr <

t_max.

2.5 Accessibility Cluster 33

c_max

c_pub

c_curr

c_max-c_pub/2

0=t_pub t_maxt_curr

C(t)

time

Cb=completability

A

Cb=completability

A

Fig. 2.5 A graphical representation of completability

Completability, as shown in Fig. 2.5, can be graphically depicted as an area Cb
of a function that represents how completeness evolves between an instant t_curr
of observation and t_max. Observe that the value corresponding to t_curr is
indicated as c_curr; c_max is the value for completeness estimated for t_max.
The value c_max is a real reachable limit that can be specified for the completeness
of the series of elements; if this real limit does not exist, c_max is equal to 1. In
Fig. 2.5, a reference area A is also shown, defined as

.t_max � t_curr/ � c_max � c_pub

2
;

that, by comparison with Cb, allows us to define ranges ŒHigh, Medium, Low�

for completability.
With respect to the example above, considering the list of courses published on a

university Web site, the completeness dimension gives information about the current
degree of completeness; the completability information gives the information about
how fast this degree will grow in time, i.e., how fast the list of courses will be
completed. The interested reader can find further details in [498].

In Chap. 14, we will describe the impact that low quality resulting from temporal
variability of Web data has on the object identification problem.

2.5 Accessibility Cluster

Publishing large amounts of data in Web sites is not a sufficient condition for its
availability to everyone. In order to access it, a user needs to access a network,
to understand the language to be used for navigating and querying the Web, and
to perceive with his or her senses the information made available. Accessibility
measures the ability of the user to access the data from his or her own culture,
physical status/functions, and technologies available. We focus in the following

34 2 Data Quality Dimensions

on causes that can reduce physical or sensorial abilities and, consequently, can
reduce accessibility, and we briefly outline corresponding guidelines to achieve
accessibility. Among others, the World Wide Web Consortium [637] defines the
individuals with disabilities as subjects that

1. May not be able to see, hear, move, or process some types of information easily
or at all

2. May have difficulty reading or comprehending text
3. May not have to or be able to use a keyboard or mouse
4. May have a text-only screen, a small screen, or a slow Internet connection
5. May not speak or understand a natural language fluently

Several guidelines are provided by international and national bodies to govern
the production of data, applications, services, and Web sites in order to guarantee
accessibility. In the following, we describe some guidelines related to data provided
by the World Wide Web Consortium in [637].

The first, and perhaps most important, guideline indicates provision of equivalent
alternatives to auditory and visual content, called text equivalent content. In order
for a text equivalent to make an image accessible, the text content can be presented
to the user as synthesized speech, braille, and visually displayed text. Each of
these three mechanisms uses a different sense, making the information accessible
to groups affected by a variety of sensory and other disabilities. In order to be
useful, the text must convey the same function or purpose as the image. For example,
consider a text equivalent for a photographic image of the continent of Africa as
seen from a satellite. If the purpose of the image is mostly that of decoration,
then the text “Photo of Africa as seen from a satellite” might fulfill the necessary
function. If the purpose of the photograph is to illustrate specific information about
African geography, such as its organization and subdivision into states, then the
text equivalent should convey that information with more articulate and informative
text. If the photo has been designed to allow the user to select the image or part
of it (e.g., by clicking on it) for information about Africa, equivalent text could
be “Information about Africa,” with a list of items describing the parts that can be
selected. Therefore, if the text conveys the same function or purpose for the user with
a disability as the image does for other users, it can be considered a text equivalent.

Other guidelines suggest:

• Avoiding the use of color as the only means to express semantics, helping
daltonic people appreciate the meaning of data

• Usage of clear natural language, by providing expansions of acronyms, improv-
ing readability, a frequent use of plain terms

• Designing a Web site that ensures device independence using features that enable
activation of page elements via a variety of input devices

• Providing context and orientation information to help users understand complex
pages or elements

2.6 Consistency Cluster 35

Several countries have enacted specific laws to enforce accessibility in public
and private Web sites and applications used by citizens and employees in order to
provide them effective access and reduce the digital divide.

Chapter 14 will further discuss accessibility of Web data with a focus on
system-dependent features, e.g., session identification problems, robot detection and
filtering, etc.

2.6 Consistency Cluster

The consistency dimension captures the violation of semantic rules defined over (a
set of) data items, where items can be tuples of relational tables or records in a file.
With reference to relational theory, integrity constraints are an instantiation of such
semantic rules. In statistics, data edits are another example of semantic rules that
allow for the checking of consistency.

2.6.1 Integrity Constraints

The interested reader can find a detailed discussion on integrity constraints in the
relational model in [30]. The purpose of this section is to summarize the main
concepts, useful in introducing the reader to consistency-related topics.

Integrity constraints are properties that must be satisfied by all instances of a
database schema. Although integrity constraints are typically defined on schemas,
they can at the same time be checked on a specific instance of the schema that
presently represents the extension of the database. Therefore, we may define
integrity constraints for schemas, describing a schema quality dimension, and for
instances, representing a data dimension. In this section, we will define them for
instances, while in Sect. 2.8, we will define them for schemas.

It is possible to distinguish two main categories of integrity constraints, namely,
intrarelation constraints and interrelation constraints.

Intrarelation integrity constraints can regard single attributes (also called domain
constraints) or multiple attributes of a relation.

Let us consider an Employee relational schema, with the attributes Name,
Surname, Age, WorkingYears, and Salary. An example of the domain
constraint defined on the schema is “Age is included between 0 and 120.” An
example of a multiple attribute integrity constraint is “If WorkingYears is less
than 3, then Salary could not be more than 25.000 Euros per year.”

Interrelation integrity constraints involve attributes of more than one relation. As
an example, consider the Movies relational instance in Fig. 2.1. Let us consider
another relation, OscarAwards, specifying the Oscar awards won by each movie
and including an attribute Year corresponding to the year when the award was

36 2 Data Quality Dimensions

assigned. An example of interrelation constraint states that “Year of the Movies
relation must be equal to Year of OscarAwards.”

Among integrity constraints, the following main types of dependencies can be
considered:

• Key dependency. This is the simplest type of dependency. Given a relational
instance r, defined over a set of attributes, we say that for a subset K of the
attributes, a key dependency holds in r, if no two rows of r have the same K-
values. For instance, an attribute like SocialSecurityNumber can serve
as a key in any relational instance of a relational schema Person. When key
dependency constraints are enforced, no duplication will occur within the relation
(see also Sect. 2.3 on duplication issues).

• Inclusion dependency. Inclusion dependency is a very common type of constraint
and is also known as referential constraint. An inclusion dependency over a
relational instance r states that some columns of r are contained in other columns
of r or in the instances of another relational instance s. A foreign key constraint
is an example of inclusion dependency, stating that the referring columns in one

relation must be contained in the primary key columns of the referenced relation.
• Functional dependency. Given a relational instance r, let X and Y be two

nonempty sets of attributes in r. r satisfies the functional dependency X ! Y, if
the following holds for every pair of tuples t1 and t2 in r:

If t1:X D t2:X; then t1:Y D t2:Y;

where the notation t1.X means the projection of the tuple t1 onto the attributes
in X. In Fig. 2.6, examples of relations respectively satisfying and violating a
functional dependency AB ! C are shown. In the figure, the relation r1 satisfies
the functional dependency, as the first two tuples, having the same values for the
attribute A and the attribute B, also have the same value for the attribute C. The
relation r2 does not satisfy the functional dependency, since the first two tuples
have a different C field.

Fig. 2.6 Example of
functional dependencies

c3

c1

c1

d2b1a1

d3b2a1

d1b1a1

c3

c1

c1

C

d2b1a1

d3b2a1

d1b1a1

DBA

r1

c3

c1

c2

d2b1a1

d3b2a1

d1b1a1

c3

c1

c2

C

d2b1a1

d3b2a1

d1b1a1

DBA

r2

2.7 Approaches to the Definition of Data Quality Dimensions 37

2.6.2 Data Edits

In the previous section, integrity constraints were discussed within the relational
model as a specific category of consistency semantic rules. However, where data are
not relational, consistency rules can still be defined. As an example, in the statistical
field, data coming from census questionnaires have a structure corresponding to the
questionnaire schema. The semantic rules are thus defined over such a structure in a
way very similar to relational constraints. Such rules, called edits, are less powerful
than integrity constraints because they do not rely on a data model like the relational
one. Nevertheless, data editing has been done extensively in the national statistical
agencies since the 1950s and has revealed a fruitful and effective area of application.
Data editing is defined as the task of detecting inconsistencies by formulating rules
that must be respected by every correct set of answers. Such rules are expressed as
edits, which denote error conditions.

As an example, an inconsistent answer to a questionnaire can be to declare

marital status = "married", age = "5 years old":

The rule to detect this kind of errors could be the following:

if marital status is married, age must not be
less than 14:

The rule can be put in the form of an edit, which expresses the error condition,
namely,

marital status = married^ age < 14:

After the detection of erroneous records, the act of correcting erroneous fields
by restoring correct values is called imputation. The problem of localizing errors
by means of edits and imputing erroneous fields is known as the edit-imputation
problem. In Chap. 7 we will examine some issues and methods for the edit-
imputation problem.

2.7 Approaches to the Definition of Data Quality Dimensions

In this section we describe some general proposals for dimensions. There are
three main approaches adopted for proposing comprehensive sets of the dimension
definitions, namely, theoretical, empirical, and intuitive. The theoretical approach
adopts a formal model in order to define or justify the dimensions. The empirical
approach constructs the set of dimensions starting from experiments, interviews,
and questionnaires. The intuitive approach simply defines dimensions according to
common sense and practical experience.

38 2 Data Quality Dimensions

In the following, we summarize three main proposals that clearly represent the
approaches to dimension definitions: Wand and Wang [640], Wang and Strong
[645], and Redman [519].

2.7.1 Theoretical Approach

A theoretical approach to the definition of data quality is proposed in Wand and
Wang [640]. This approach considers an information system (IS) as a representation
of a real-world system (RW); RW is properly represented in an IS if (1) there exists
an exhaustive mapping RW ! IS and (2) no two states in RW are mapped into the
same state in the IS, i.e., the inverse mapping is a function (see Fig. 2.7).

All deviations from proper representations generate deficiencies. They distin-
guish between design deficiencies and operation deficiencies. Design deficiencies
are of three types: incomplete representation, ambiguous representation, and mean-
ingless states. They are graphically represented in Fig. 2.8.

Only one type of operation deficiency is identified, in which a state in RW might
be mapped to a wrong state in an IS; this is referred to as garbling. Garbling with

RW IS

Fig. 2.7 Proper representation of the real-world system in the theoretical approach from [640]

RW IS RW IS RW IS

Fig. 2.8 (a) Incomplete, (b) ambiguous, and (c) meaningless representations of the real-world
system in the theoretical approach

2.7 Approaches to the Definition of Data Quality Dimensions 39

RW IS

Design Operation

RW IS RW IS

Design Operation

RW IS

Fig. 2.9 Garbling representations of the real-world system from [640]. (a) Not meaningful. (b)
Meaningful

a map to a meaningless state is dangerous, as it will preclude a map back to a real-
world state (see Fig. 2.9a). Garbling to a meaningful but wrong state will allow the
user to map back to a real-world state (see Fig. 2.9b).

A set of data quality dimensions are defined by making references to described
deficiencies. More specifically, the identified dimensions are (the quoted text is
from [640]):

• Accuracy: “inaccuracy implies that the information system represents a real-
world state different from the one that should have been represented.” Inaccuracy
refers to a garbled mapping into a wrong state of the IS, where it is possible to
infer a valid state of the real world though not the correct one (see Fig. 2.9b).

• Reliability indicates “whether the data can be counted on to convey the right
information; it can be viewed as correctness of data.” No interpretation in terms
of data deficiencies is given.

• Timeliness refers to “the delay between a change of the real-world state and the
resulting modification of the information system state.” Lack of timeliness may
lead to an IS state that reflects a past RW state.

• Completeness is “the ability of an information system to represent every mean-
ingful state of the represented real-world system.” Completeness is of course tied
to incomplete representations.

• Consistency of data values occurs if there is more than one state of the informa-
tion system matching a state of the real-world system; therefore “inconsistency
would mean that the representation mapping is one-to-many.” This is captured by
the representation, so the inconsistency is not considered a result of a deficiency.

2.7.2 Empirical Approach

In the proposal discussed in Wang and Strong [645], data quality dimensions
have been selected by interviewing data consumers. Starting from 179 data quality
dimensions, the authors selected 15 different dimensions, represented in Fig. 2.10

40 2 Data Quality Dimensions

access to data can be restricted and hence kept secureAccess security

data are available or easily and quickly retrievedAccessibilityAccessibility

data are compactly represented without behing overwhelmedConcise representation

data are always presented in the same format and are compatible
with the previous data

Representational
consistency

data are clear without ambiguity and easily comprehendedEase of understanding

data are in appropriate language and unit and the data definitions
are clear

IntepretabilityRepresentational

the quantity or volume of available data is appropriateAppropriate amount of
data

data are of sufficient depth, breadth, and scope for the task at
hand

Completeness

the age of the data is appropriate for the task at hand Timeliness

data are applicable and useful for the task at handRelevancy

data are beneficial and provide advantages for their useValue-addedContextual

data are trusted or highly regarded in terms of their source and
content

Reputation

data are unbiased and impartialObjectivity

data are correct, reliable and certified free of errorAccuracy

data are accepted or regarded as true, real and credibleBelievabilityIntrinsic

Definition: the extent to which ...DimensionCategory

Fig. 2.10 Dimensions proposed in the empirical approach

with their definitions. A two-level classification is proposed, in which each of four
categories is further specialized into a number of dimensions. The four categories
are:

• Intrinsic data quality, capturing the quality that data has on its own. As an
example, accuracy is a quality dimension that is intrinsic to data.

• Contextual data quality considers the context where data are used. As an
example, the completeness dimension is strictly related to the context of the task.

• Representational data quality captures aspects related to the quality of data
representation, e.g., interpretability.

• Accessibility data quality is related to the accessibility of data and to a further
nonfunctional property of data access, namely, the level of security.

2.7.3 Intuitive Approach

Redman [519] classifies DQ dimensions according to three categories, namely,
conceptual schema, data values, and data format. Conceptual schema dimensions
correspond to what we called schema dimensions. Data value dimensions refer
specifically to values, independently of the internal representation of data; this
last aspect is covered by data format dimensions. Our focus here is on data

2.7 Approaches to the Definition of Data Quality Dimensions 41

Dimension

Name

Type of

dimension

Definition

Accuracy data value Distance between v and v', considered as correct

Completeness data value Degree to which values are present in a data collection

Currency data value Degree to which a datum is up-to-date

Consistency data value Coherence of the same datum, represented in multiple copies, or
different data to respect integrity constraints and rules

Appropriateness data format One format is more appropriate than another if it is more suited
to user needs

Interpretability data format Ability of the user to interpret correctly values from their
format

Portability data format The format can be applied to as a wide set of situations as
possible

Format precision data format Ability to distinguish between elements in the domain that must
be distinguished by users

Format flexibility data format Changes in user needs and recording medium can be easily
accommodated

Ability to
represent null
values

data format Ability to distinguish neatly (without ambiguities) null and
default values from applicable values of the domain

Efficient use of
memory

data format Efficiency in the physical representation. An icon is less
efficient than a code

Representation
consistency

data format Coherence of physical instances of data with their formats

Fig. 2.11 Dimensions proposed in the intuitive approach [519]

extension; therefore, in Fig. 2.11, we provide the definitions for data value and
format dimensions only.

2.7.4 A Comparative Analysis of the Dimension Definitions

According to the definitions described in the previous section, there is no general
agreement either on which set of dimensions defines DQ or on the exact meaning of
each dimension. In fact, in the illustrated proposals, dimensions are not defined in
a measurable and formal way. Instead, they are defined by means of descriptive
sentences in which the semantics are consequently disputable. Nevertheless, we
attempt to make a comparison between the different definitions provided with
the purpose of showing possible agreements and disagreements in the different
proposals. In order to cover a larger number of proposals, besides those previously
described by Wand and Wang [640], Wang and Strong [645], and Redman [519], we
also consider Jarke et al. [341], Bovee et al. [86], Naumann [461], and Liu [408].
Hereafter we will refer to the proposals with the name of the first author of the work.

42 2 Data Quality Dimensions

Reference Definition

Wand 1996 Timeliness refers only to the delay between a change of a real world state
and the resulting modification of the information system state

Wang 1996 Timeliness is the extent to which age of the data is appropriate for the
task at hand

Redman 1996 Currency is the degree to which a datum is up-to-date. A datum value is up-
to-date if it is correct in spite of possible discrepancies caused by time-
related changes to the correct value

Jarke 1999 Currency describes when the information was entered in the sources
and/or the data warehouse.

Volatility describes the time period for which information is valid in the
real world

Bovee 2001 Timeliness has two componenents: age and volatility. Age or currency is a
measure of how old the information is, based on how long ago it was
recorded. Volatility is a measure of information instability-the frequency
of change of the value for an entity attribute

Naumann 2002 Timeliness is the average age of the data in a source

Liu 2002 Timeliness is the extent to which data are sufficiently up-to-date for a
task

Fig. 2.12 Time-related dimension definitions

With regard to time-related dimensions, in Fig. 2.12, definitions for currency,
volatility, and timeliness by different authors are illustrated. In the figure, Wand
and Redman provide very similar definitions but for different dimensions, i.e., for
timeliness and currency, respectively. Wang and Liu assume the same meaning for
timeliness, Naumann proposes a very different definition for it, and Bovee only
provides a definition for timeliness in terms of currency and volatility. Bovee’s
currency corresponds to timeliness as defined by Wang and Liu. Volatility has
a similar meaning in Bovee and Jarke. The comparison shows that there is no
substantial agreement on the names to use for time-related dimensions; indeed,
currency and timeliness are often used to refer to the same concept. There is not
even agreement on the semantics of a specific dimension; indeed, for timeliness,
different meanings are provided by different authors.

With regard to completeness, in Fig. 2.13, different proposals for completeness
definitions are shown. By comparing such definitions, it emerges that there is
substantial agreement on what completeness is, although it often refers to different
granularity levels and different data model elements, e.g., information system in
Wand, data warehouse in Jarke, and entity in Bovee.

2.7 Approaches to the Definition of Data Quality Dimensions 43

Reference Definition

Wand 1996 The ability of an information system to represent every
meaningful state of the represented real world system.

Wang 1996 The extent to which data are of sufficient breadth, depth
and scope for the task at hand

Redman 1996 The degree to which values are present in a data collection

Jarke 1999 Percentage of the real-world information entered in the
sources and/or the data warehouse

Bovee 2001 Deals with information having all required parts of an entity‛s
information present

Naumann 2002 It is the quotient of the number of non-null values in a source
and the size of the universal relation

Liu 2002 All values that are supposed to be collected as per a collection
theory

Fig. 2.13 Completeness dimension definitions

2.7.5 Trade-Offs Between Dimensions

Data quality dimensions are not independent, i.e., correlations exist between them.
If one dimension is considered more important than the others for a specific
application, then the choice of favoring it may imply negative consequences for
the other ones. In this section, we provide some examples of possible trade-offs.

First, trade-offs may need to be made between timeliness and any one of
the three dimensions: accuracy, completeness, and consistency. Indeed, having
accurate (or complete or consistent) data may need checks and activities that require
time, and thus timeliness is negatively affected. Conversely, having timely data
may cause lower accuracy (or completeness or consistency). A typical situation
in which timeliness can be preferred to accuracy, completeness, or consistency is
given by most Web applications: as the time constraints are often very stringent
for Web data, it is possible that such data are deficient with respect to other
quality dimensions. For instance, a list of courses published on a university Web
site must be timely though there could be accuracy or consistency errors and
some fields specifying courses could be missing. Conversely, when considering an
administrative application, accuracy, consistency, and completeness requirements
are more stringent than timeliness, and therefore delays are mostly admitted in
dimensions other than timeliness.

Another significant case of trade-off is between consistency and completeness
[33]. Here the question is “Is it better to have less but consistent data, i.e.,
poor completeness, or to have more but inconsistent data?” This choice is again
very domain specific. As an example, statistical data analysis typically requires a
significant and representative amount of data in order to perform the analysis; in this
case, the approach is to favor completeness, tolerating inconsistencies or adopting
techniques to solve them. Conversely, when considering the publication of a list of

44 2 Data Quality Dimensions

votes obtained by students as the result of an exam, it is more important to have a list
of consistency checked votes than a complete one, possibly deferring the publication
of the complete list.

2.8 Schema Quality Dimensions

In the previous sections, we provided an in-depth characterization of DQ dimen-
sions. In this section, the focus is on schema quality dimensions. However, there is
a strict relationship between quality of schemas and quality of data, as highlighted in
the next example. Let us suppose we want to model residence addresses of people;
in Fig. 2.14, there are two possibilities to model such a concept. Specifically, in
Fig. 2.14a, the residence addresses are modeled as attributes of a relation Person,
while in Fig. 2.14b, the residence addresses are modeled as a relation Address,
with the fields Id, StreetPrefix, StreetName, Number, and City, and
a relation ResidenceAddress storing the address at which the person lives.
The solution in Fig. 2.14a has some problems. First, representing addresses as a
single field creates ambiguity on the meaning of the different components; for
instance, in tuple 3 of the Person relation, is 4 a civic number or the number
of the avenue (it is actually part of the name of the square)? Second, the values
of the attribute Address can also contain information that is not explicitly

ID Name Surname Address

1 John Smith 113 Sunset Avenue
60601 Chicago

2 Mark Bauer 113 Sunset Avenue
60601 Chicago

3 Ann Swenson 4 Heroes Street Denver

Person(a)

Person

Address

PersonID AddressID

1 A11

2 A11

3 A12

ResidenceAddress

ID StreetPrefix StreetName Number City

A11 Avenue Sunset 113 Chicago

A12 Street 4 Heroes null Denver

(b)
ID Name Surname

1 John Smith

2 Mark Bauer

3 Ann Swenson

Fig. 2.14 Two ways of modeling residence addresses

2.8 Schema Quality Dimensions 45

required to be represented (e.g., the floor number and zip code of tuples 1 and
2 of the Person relation). Third, as the Person relation is not normalized, a
redundancy problem occurs and hence further errors on the Address attribute may
be potentially introduced (see the same address values for tuples 1 and 2 of the
Person relation). On the other hand, the solution in Fig. 2.14b is more complex.
In real implementation there is often the need to manage trade-offs between the two
modeling solutions.

A comprehensive proposal on schema dimensions is described in the book of
Redman [519] and includes six dimensions and 15 subdimensions referring to
schema quality.

Here, we focus on dimensions related to the accuracy, completeness, redundancy,
and readability clusters introduced in Sect. 8.5.3. In the definitions we are going to
provide, we assume that the database schema is the result of the translation of a set
of requirements, expressed usually in natural language, into a set of conceptual (or
logical) structures, expressed in terms of a conceptual (or logical) database model.

2.8.1 Accuracy Cluster

Accuracy, or better correctness in this context, is of two types:

1. Correctness with respect to the model concerns the correct use of the constructs
of the model in representing requirements. As an example, in the Entity
Relationship (ER) model, we may represent the logical link between persons
and their first names using the two entities Person and FirstName and a
relationship between them. The schema is not correct with respect to the model
since an entity should be used only when the concept has a unique existence in
the real world and has an identifier; this is not the case with FirstName, which
would be properly represented as an attribute of the entity Person.

2. Correctness with respect to requirements concerns the correct representation of
the requirements in terms of the model constructs. Assume that in an organization
each department is headed by exactly one manager and each manager may head
exactly one department. If we representManager and Department as entities,
the relationship between them should be one-to-one; in this case, the schema is
correct with respect to requirements. If we use a one-to-many relationship, the
schema is incorrect.

2.8.2 Completeness Cluster

Completeness measures the extent to which a conceptual schema includes all the
conceptual elements necessary to meet some specified requirements. It is possible
that the designer has not included certain characteristics present in the requirements

46 2 Data Quality Dimensions

in the schema, e.g., attributes related to an entity Person; in this case, the schema
is incomplete. Pertinence measures how many unnecessary conceptual elements are
included in the conceptual schema. In the case of a schema that is not pertinent, the
designer has gone too far in modeling the requirements and has included too many
concepts.

Completeness and pertinence are two faces of the same issue, i.e., obtaining at
the end of the conceptual design phase a schema that is the exact correspondence in
the model of the reality described by requirements.

2.8.3 Redundancy Cluster

In this section we deal with minimality and normalization.
A schema is minimal if every part of the requirements is represented only once

in the schema. In other words, it is not possible to eliminate some element from
the schema without compromising the information content. Consider the schema
in Fig. 2.15, which represents several relationships between concepts Student,
Course, and Instructor. We represent also minimum and maximum cardinal-
ities of entities in relationships, except in one case, where we indicate the maximum
cardinality with the symbol “?”. The schema is redundant in the case in which the
direct relationship Assigned to between Student and Instructor has the
same meaning as the logical composition of the two relationships Attends and
Teaches; otherwise, it is nonredundant. Notice that the schema can be redundant
only in the case in which the unspecified maximum cardinality of the entity Course
is “1” since only in this case does a unique instructor correspond to each course and
the composition of the two relationships Attends and Teaches may provide the
same result as the relationship Assigned to.

Fig. 2.15 A possibly
redundant schema Student

Course

Instructor

Teaches

Assigned to

Attends

1,n

1,n

1,n

1,n

1,?

1,n

2.8 Schema Quality Dimensions 47

The property of normalization has been deeply investigated, especially in the
relational model, although it expresses a model-independent, general property of
schemas.

In the relational model, normalization is strictly related to the structure of
functional dependencies. Several degrees of normalization have been defined in the
relational model, such as first, second, third, Boyce Codd, fourth, and other normal
forms. The most popular and intuitive normal form is the Boyce Codd normal
form (BCNF). A relational schema R is in BCNF if for every nontrivial functional
dependency X -> Y defined on R, X contains a key K of R, i.e., X is a superkey of
R. For more details on the BCNF and other normal forms, see [30, 198].

To exemplify, a relational schema R is in BCNF if all nontrivial functional
dependencies have a key on the left-hand side of the dependency, so, all non-key
attributes depend on a unique key. The interpretation of this property is that the
relational schema represents a unique concept, with which all nontrivial functional
dependencies are homogeneously associated and whose properties are represented
by all non-key attributes.

We have placed normalization in the redundancy cluster since an unnormalized
schema presents a set of anomalies with respect to a corresponding normalized
schema.

As already mentioned, normalization is a property that can be defined in
every conceptual or logical model; as an example of normalization not applied
to the relational model, Fig. 2.16 shows an unnormalized schema in the Entity
Relationship model. It is made of a unique entity Employee-Project, with
five attributes; two of them, the underlined ones, define the identifier of the entity.
Following [38], we can define the concept of normalized ER schema by associating
the functional dependencies defined among the attributes of the entity and adapting
the above definition of BCNF to the entities and the relationships. We define the
following functional dependencies in the schema:

• EmployeeId ! Salary
• ProjectId ! Budget
• EmployeeId,ProjectId ! Role

that lead to a violation of BCNF. With the objective of normalizing the schema,
we can transform the entity Employee-Project into a new schema (see
Fig. 2.17) made of two entities, Employee and Project, and one many-to-many
relationship defined between them. Now the entities and the relationship are in
BCNF, as is the whole schema.

Fig. 2.16 An unnormalized
Entity Relationship schema

Employee-Project

Employee #
Salary
Project #
Budget
Role

48 2 Data Quality Dimensions

Role

Employee ProjectAssigned to
Project #
Budget

Employee #
Salary

1,n 1,n

Role

Employee ProjectAssigned to
Project #
Budget

Employee #
Salary

1,n 1,n

Fig. 2.17 A normalized schema

2.8.4 Readability Cluster

Intuitively, a schema is readable whenever it represents the meaning of the reality
represented by the schema in a clear way for its intended use. This simple, qualita-
tive definition is not easy to translate in a more formal way, since the evaluation
expressed by the word clear conveys some elements of subjectivity. In models,
such as the Entity Relationship model, that provide a graphical representation of
the schema, called diagram, readability concerns both the diagram and the schema
itself. We now discuss them.

With regard to the diagrammatic representation, readability can be expressed
by a number of aesthetic criteria that human beings adopt in drawing diagrams:
crossings between lines should be avoided as far as possible, graphic symbols should
be embedded in a grid, lines should be made of horizontal or vertical segments, the
number of bends in lines should be minimized, the total area of the diagram should
be minimized, and, finally, hierarchical structures such as generalization hierarchies
among, say, a parent entity E1 and two-child entities E2 and E3 should be such that
E1 is positioned at a higher level in the diagram in respect to E2 and E3. Finally,
the child entities in the generalization hierarchy should be symmetrical with respect
to the parent entity. For further discussion on aesthetic criteria, see [47, 601].

The above criteria are not respected in the case of the Entity Relationship diagram
of Fig. 2.18. We can see in the diagram many crossings between lines. Most objects
are placed casually in the area of the schema, and it is difficult to identify the group
of entities related by generalization hierarchy. The schema, in a few words, has a
“spaghetti style.”

Following the aesthetic rules described above, we may completely restructure
the diagram, leading to the new diagram shown in Fig. 2.19. Here, most relevant
concepts have a larger dimension, there are no bends in lines, and the generalization
hierarchy is more apparent.

The second issue addressed by readability is the compactness of schema
representation. Among the different conceptual schemas that equivalently represent
a certain reality, we prefer the one or the ones that are more compact, because
compactness favors readability. As an example, on the left- hand side of Fig. 2.20,
we see a schema where the represented entity City is related to the three-child
entities in the generalization hierarchy. Due to the inheritance property [198], which
states that all concepts related to the parent entity are also related to all the child
entities, we can drop the three occurrences of relationships involving the entity

2.8 Schema Quality Dimensions 49

Purchase

Of

Order

Worker
Engineer

City

Born

Warehouse

Warranty

Type

In

Employee

Vendor

Acquires

Works

Head

Floor

Located

Department

Produces

Item

Manages

Born

Type

In

Acquires

Works

Head

Located

Produces

Manages

Fig. 2.18 “Spaghetti style” Entity Relationship schema

Order PurchaseOf

Worker Engineer

CityBorn

Warranty

Type

Employee

Vendor

Acquires

Works

Head

Floor

Located

Department

Produces

Item

Warehouse

In

Manages

Born

TypeType

Acquires

Works

Head

Located

Produces

InIn

Manages

Fig. 2.19 An equivalent readable schema

50 2 Data Quality Dimensions

Worker Engineer

City Born

Employee

Vendor
Worker Engineer

CityBorn
Employee

Vendor

Born

Born Born

Born

Born

Born

Fig. 2.20 A schema transformation that improves compactness

City and change them into a single relationship with the entity Employee,
resulting in a more compact and readable schema.

2.9 Summary

In this chapter we have seen a variety of dimensions and metrics that characterize
the concept of information quality for the case of structured data. These dimensions
provide a reference framework to those organizations interested in the quality of
data and allow them to characterize and to some extent measure the quality of
datasets. Furthermore, fixing and measuring DQ dimensions allow comparison with
reference thresholds and values that may be considered target quality values to
be achieved in the organization. As a consequence, quality dimensions are at the
basis of any process of measurement and improvement of DQ in an organization.
As an example, in contracts related to sale of data, the issue of quality of service
is crucial, expressing precisely and unambiguously the demand for quality data.
Finally, dimensions may be mentioned in laws and rules concerning data usage in
government for citizen/business relationships.

Moreover, we have seen general proposals for sets of dimensions that aim to fully
specify the DQ concept in a general setting (see Sect. 2.7). However, there further
exist proposals that are related to specific domains that need ad hoc dimensions
in order to capture the peculiarities of the domain. Examples of proposals for data
quality dimensions come from:

1. The archival domain (see [380, 677] and the InterPARES project [328]), which
makes use of dimensions such as condition (of a document) that refers to the
physical suitability of the document for scanning.

2. The statistical domain: National Statistical Institutes and international organi-
zations such as the European Union or the International Monetary Fund define
several dimensions for statistical and scientific data (see [326]). As an example,
the notion of integrity is related to the fact that statistical systems should be
based on adherence to the principle of objectivity in the collection, compilation,
and dissemination of statistics.

2.9 Summary 51

Dimensions are the core of any investigation in data and information quality,
and they will be used in the rest of the book. From the next chapter, we will
explore several types of information and will discover the characteristics of data
and information quality that are invariant and the characteristics that instead change
according to the information type.

	2 Data Quality Dimensions
	2.1 Introduction
	2.2 A Classification Framework for Data and Information Quality Dimensions
	2.3 Accuracy Cluster
	2.3.1 Structural Accuracy Dimensions
	2.3.2 Time-Related Accuracy Dimensions

	2.4 Completeness Cluster
	2.4.1 Completeness of Relational Data
	2.4.2 Completeness of Web Data

	2.5 Accessibility Cluster
	2.6 Consistency Cluster
	2.6.1 Integrity Constraints
	2.6.2 Data Edits

	2.7 Approaches to the Definition of Data Quality Dimensions
	2.7.1 Theoretical Approach
	2.7.2 Empirical Approach
	2.7.3 Intuitive Approach
	2.7.4 A Comparative Analysis of the DimensionDefinitions
	2.7.5 Trade-Offs Between Dimensions

	2.8 Schema Quality Dimensions
	2.8.1 Accuracy Cluster
	2.8.2 Completeness Cluster
	2.8.3 Redundancy Cluster
	2.8.4 Readability Cluster

	2.9 Summary

