
Chapter 7
Nonequilibrium Green Functions

The Nonequilibrium Green Function (NGF) method is the most promising approach
to describe quantum transport at nanoscale. The current through a nanosystem (as
well as other observables) can be expressed with the help of NGFs. Before going
to the explicit formulation of the method for transport through nanosystems, we
discuss in this chapter the general properties of nonequilibrium Green functions and
formulate the main equations.

First, in Sect. 7.1 we give the definitions of retarded, advanced, lesser, and greater
Green functions and consider some simple examples, in particular the noninteracting
case. We introduce Green functions of three different types: for fermions (electrons),
for bosons and the special type for vibrons.

Then we include interactions and introduce the interaction representation in
Sect. 7.2—the first important step to the diagrammatic approach. In Sect. 7.3 we
discuss an important concept of the Schwinger-Keldysh closed-time contour, define
the so-called contour Green functions and establish the relations between these func-
tions and the real-time Green functions.

The rest of the chapter is devoted to the equations forNGFswithin two approaches:
Equation of Motion method (EOM) in Sect. 7.4 and the Kadanoff-Baym-Keldysh
method in Sect. 7.5. We derive the expressions of the diagrammatic technique and
come to the self-consistent equations in the integral and differential form.
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174 7 Nonequilibrium Green Functions

7.1 Definition and Properties

7.1.1 Retarded (G R) and Advanced (G A) Functions

Definition

The retarded Green function for fermions is defined as1

G R
αβ(t1, t2) = −iθ(t1 − t2)

〈[
cα(t1), c†β(t2)

]
+

〉
, (7.1)

where c†α(t), cα(t) are creation and annihilation time-dependent (Heisenberg) oper-
ators, [c, d]+ = cd + dc is the anti-commutator, and 〈. . .〉 denotes averaging over
the initial equilibrium state.

We use notations α, β, . . . to denote single-particle quantum states, the other
possible notation is more convenient for bulk systems

G R(x1, x2) = −iθ(t1 − t2)
〈[c(x1), c†(x2)]+

〉
, (7.2)

where x ≡ r, t,σ, . . . or x ≡ k, t,σ, . . ., etc. Some other types of notations can be
found in the literature, they are equivalent.

The advanced function for fermions is defined as

G A
αβ(t1, t2) = iθ(t2 − t1)

〈[
cα(t1), c†β(t2)

]
+

〉
. (7.3)

Finally, retarded and advanced functions for bosons can be defined as

B R
αβ(t1, t2) = −iθ(t1 − t2)

〈[
aα(t1), a†

β(t2)
]

−

〉
, (7.4)

B A
αβ(t1, t2) = iθ(t2 − t1)

〈[
aα(t1), a†

β(t2)
]

−

〉
, (7.5)

where a†
α(t), aα(t) are creation and annihilation boson operators, [a, b]− = ab − ba

is the commutator.

Averaging

The average value of any operator Ô can be written as 〈Ô〉 = 〈t |Ô S|t〉 in the
Schrödinger representation or 〈Ô〉 = 〈0|Ô H (t)|0〉 in the Heisenberg representa-
tion, where |0〉 is some initial state. This initial state is in principle arbitrary, but in

1There are many equivalent notations used in the literature, some of them are Gαβ(t1, t2),
Gnσ,mσ′ (t1, t2), G(x, t, x ′, t ′), G(x1, x2), G(1, 2), G . . . We use different notations depending on
the representation.
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many-particle problems it is convenient to take this state as an equilibrium state, con-
sequently without time-dependent perturbations we obtain usual equilibrium Green
functions.

In accordance with this definition the Heisenberg operators cα(t), c†β(t), etc. are
equal to the time-independent Schrödinger operators at some initial time t0: cα(t0) =
cα, etc. Density matrix of the system is assumed to be equilibrium at this time
ρ̂(t0) = ρ̂eq . Usually we can take t0 = 0 for simplicity, but if we want to use t0 �= 0
the transformation to the Heisenberg operators should be written as

f̂ H (t) = ei Ĥ(t−t0) f̂ Se−i Ĥ(t−t0). (7.6)

In fact, the initial conditions are not important because of dissipation (the memory
about the initial state is completely lost after the relaxation time). However, in some
pathological cases, for example for free noninteracting particles, the initial state
determines the state at all times. Note also, that the initial conditions can be more
conveniently formulated for Green functions itself, instead of corresponding initial
conditions for operators or wave functions.

Nevertheless, thermal averaging is widely used and we define it here explicitly.
If we introduce the basis of exact time-independent many-particle states |n〉 with
energies En , the averaging over equilibrium states can be written as

〈Ô〉 = 1

Z

∑
n

e−En/T
〈
n
∣∣∣Ô H (t)

∣∣∣ n
〉
, Z =

∑
n

e−En/T . (7.7)

In the following when we use notations like
〈
Ô
〉
or
〈
Ψ

∣∣∣Ô(t)
∣∣∣Ψ

〉
, we assume the

averaging with the density matrix (density operator) ρ̂

〈
Ô
〉
= Sp

(
ρ̂Ô

)
, (7.8)

for equilibrium density matrix and Heisenberg operators it is equivalent to (7.7).

Time-Independent Case and Mixed Representation

Nonequilibrium Green functions are originally defined as the two-time functions
G(t1, t2). This complication is the price we pay for a possibility to consider
time-dependent and moreover time-nonlocal phenomena with retarded interactions,
memory, etc. In the stationary case without time-dependent external fields the Green
functions depend only on time differences G(t1 − t2) = G(τ ). In this case it is
convenient to introduce the Fourier transform G(ε). We define it in the same way as
before by the expression (3.19) for the retarded function:

G R(ε) = lim
η→0+

∫ ∞

−∞
G R(τ )ei(ε+iη)τ/�dτ , (7.9)

http://dx.doi.org/10.1007/978-3-319-24088-6_3
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and for the advanced one:

G A(ε) = lim
η→0+

∫ ∞

−∞
G A(τ )ei(ε−iη)τ/�dτ . (7.10)

More generally, transformation (7.9) can be considered as the Laplace transformation
with complex argument z = ε + iη.

For slowly varying time processes the mixed representation (also called Wigner)
G(t, ε) can be used with the same Fourier transform in time difference and the time
t = (t1 + t2)/2.

Spectral Function

Finally, we introduce the important combination of retarded and advanced functions
known as spectral or spectral weight function2

Aαβ(ε) = i
(
G R

αβ(ε) − G A
αβ(ε)

)
, (7.11)

in equilibrium case the Fourie-transformed retarded and advanced functions are com-
plex conjugate G A(ε) = (

G R(ε)
)∗
, and Aαβ(ε) = −2ImG R

αβ(ε).
For free fermions the spectral function is3

Aαβ(ε) = −2Im

(
δαβ

ε − εα + iη

)
= 2πδ(ε − εα)δαβ . (7.12)

The result is transparent—the function Aαβ(ε) is nonzero only at particle eigen-
energies, such that

ρ(ε) = 1

2π
SpAαβ(ε) = 1

2π

∑
α

Aαα(ε) =
∑

α

δ(ε − εα) (7.13)

is the usual energy density of states. Note that the imaginary part iη is necessary to
obtain this result, thus it is not only a mathematical trick, but reflects the physical
sense of the retarded Green function.

If we introduce the finite relaxation time τ , the Green function of free particles
becomes

G R
αβ(τ ) = −iθ(τ )e−iεατ−γτ δαβ, (7.14)

2We already introduced the spectral function in Chap. 3, as well as some other functions, but repeat
it here to keep consistency.
3We derive it later, see the Green function (7.52) for free fermions.

http://dx.doi.org/10.1007/978-3-319-24088-6_3
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then the spectral function has the familiar Lorentzian form

Aαβ(ε) = 2γδαβ

(ε − εα)2 + γ2
. (7.15)

Finally, spectral function has a special property, so-called sum rule, namely

∫ ∞

−∞
Aαβ(ε)

dε

2π
= δαβ . (7.16)

7.1.2 Lesser (G<) and Greater (G>) Functions

Definition

Retarded and advanced functions, described before, determine the single-particle
properties of the system, such as quasiparticle energy, broadening of the levels (life-
time), and density of states. These functions can be modified in nonequilibrium
state, but most important kinetic properties, such as distribution function, charge,
and current, are determined by the lesser Green function

G<
αβ(t1, t2) = i

〈
c†β(t2)cα(t1)

〉
. (7.17)

Indeed, the density matrix is the same as the equal-time lesser function

ραβ(t) =
〈
c†β(t)cα(t)

〉
= −iG<

αβ(t, t). (7.18)

The number of particles in state |α〉 (distribution function) is

nα(t) = 〈
c†α(t)cα(t)

〉 = −iG<
αα(t, t), (7.19)

the tunneling current is

J (t) = ie

�

∑
kq

[
Vqk

〈
c†q(t)ck(t)

〉 − V ∗
qk

〈
c†k(t)cq(t)

〉]

= 2e

�
Re

⎛
⎝∑

kq

Vqk G<
kq(t, t)

⎞
⎠ . (7.20)

In addition to the lesser, the other (greater) function is used

G>
αβ(t1, t2) = −i

〈
cα(t1)c

†
β(t2)

〉
. (7.21)
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For bosons, the lesser and greater functions are defined as

B<
αβ(t1, t2) = −i

〈
a†

β(t2)aα(t1)
〉
, (7.22)

B>
αβ(t1, t2) = −i

〈
aα(t1)a

†
β(t2)

〉
. (7.23)

The name “lesser” originates from the time-ordered Green function, the main
function in equilibrium theory, which can be calculated by the diagrammatic tech-
nique

Gαβ(t1, t2) = −i
〈
T
(

cα(t1)c
†
β(t2)

)〉
, (7.24)

Gαβ(t1, t2) =

⎧
⎪⎨
⎪⎩

−i
〈
cα(t1)c

†
β(t2)

〉
if t1 > t2 ⇒ Gαβ ≡ G>

αβ,

i
〈
c†β(t2)cα(t1)

〉
if t1 < t2 ⇒ Gαβ ≡ G<

αβ,

(7.25)

here the additional sing minus appears for interchanging of fermionic creation-
annihilation operators. Lesser means that t1 < t2.

7.1.3 Some Useful Relations

From the definitions it is clear that the retarded and advanced functions can be
combined from lesser and greater functions

G R
αβ(t1, t2) = θ(t1 − t2)

[
G>

αβ(t1, t2) − G<
αβ(t1, t2)

]
, (7.26)

G A
αβ(t1, t2) = θ(t2 − t1)

[
G<

αβ(t1, t2) − G>
αβ(t1, t2)

]
. (7.27)

The other useful relation is

G R
αβ(t1, t2) − G A

αβ(t1, t2) = G>
αβ(t1, t2) − G<

αβ(t1, t2), (7.28)

and the symmetry relations

G<
αβ(t1, t2) = −

[
G<

βα(t2, t1)
]∗

, (7.29)

G>
αβ(t1, t2) = −

[
G>

βα(t2, t1)
]∗

, (7.30)

G A
αβ(t1, t2) =

[
G R

βα(t2, t1)
]∗

. (7.31)
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The same relations hold in the mixed (Wigner) representation

G<
αβ(t, ε) = −

[
G<

βα(t, ε)
]∗

, (7.32)

G>
αβ(t, ε) = −

[
G>

βα(t, ε)
]∗

, (7.33)

G A
αβ(t, ε) =

[
G R

βα(t, ε)
]∗

. (7.34)

It can be written in the matrix representation using Hermitian conjugation †

G<(t, ε) = −G<†(t, ε), (7.35)

G>(t, ε) = −G>†(t, ε), (7.36)

GA(t, ε) = GR†
(t, ε). (7.37)

Obviously, these relations are true also in the time-independent case.

7.1.4 Equilibrium Case. Fluctuation-Dissipation Theorem

Now we want to consider some general properties of interacting systems. In equi-
librium the lesser function is not independent and is simply related to the spectral
function by the relation

G<
αβ(ε) = i Aαβ(ε) f 0(ε). (7.38)

This relation is important because it establishes an equilibrium initial condition for
the nonequilibrium lesser function, and proposes a useful Ansatz if the equilibrium
distribution function f 0(ε) is replaced by some unknown nonequilibrium function.

Here we prove this relation using the Lehmann representation—quite useful
method in the theory of Green functions. The idea of the method is to use the exact
many-particle eigenstates |n〉, even if they are not explicitly known.

Consider first the greater function. Using states |n〉 we represent this function as

G>
αβ(t1, t2) = −i

〈
cα(t1)c

†
β(t2)

〉
= − i

Z

∑
n

〈
n
∣∣∣e−Ĥ/T cα(t1)c

†
β(t2)

∣∣∣ n
〉

= − i

Z

∑
nm

e−En/T 〈n|cα|m〉〈m|c†β|n〉ei(En−Em )(t1−t2). (7.39)

In Fourier representation

G>
αβ(ε) = −2πi

Z

∑
nm

e−En/T 〈n|cα|m〉〈m|c†β |n〉δ(En − Em + ε). (7.40)
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Similarly, for the lesser function we find

G<
αβ(ε) = 2πi

Z

∑
nm

e−Em/T 〈n|c†β |m〉〈m|cα|n〉δ(Em − En + ε). (7.41)

Now we can use these expressions to obtain some general properties of Green
functions without explicit calculation of the matrix elements. By exchanging indices
n and m in the expression (7.41) and taking into account that Em = En − ε because
of the delta-function, we see that

G>
αβ(ε) = −e−ε/T G<

αβ(ε). (7.42)

From this expression and relation (7.26), which can be written as

Aαβ(ε) = i
[
G>

αβ(ε) − G<
αβ(ε)

]
(7.43)

we derive (7.38).

7.1.5 Free Fermions

Free-Particle Retarded Function for Fermions

Now consider the simplest possible example—the retarded Green function for free
particles (fermions).

The free-particle Hamiltonian has an equivalent form if one uses Schrödinger or
Heisenberg operators

Ĥ =
∑

α

εαc†αcα =
∑

α

εαc†α(t)cα(t), (7.44)

because (here we assume t0 = 0)

c†α(t)cα(t) = ei Ĥ t c†αe−i Ĥ t ei Ĥ t cαe−i Ĥ t = ei Ĥ t c†αcαe−i Ĥ t = c†αcα, (7.45)

where we used that c†αcα is commutative with the Hamiltonian Ĥ = ∑
α εαc†αcα.

From the definitions (7.1) and (7.7) it follows that:

〈[
cα(t1), c†β(t2)

]
+

〉
=
〈
cα(t1)c

†
β(t2) + c†β(t2)cα(t1)

〉

=
〈
ei Ĥ t1cα(t1)e

−i Ĥ t1ei Ĥ t2c†β(t2)e
−i Ĥ t2 + ei Ĥ t2c†β(t2)e

−i Ĥ t2ei Ĥ t1cα(t1)e
−i Ĥ t1

〉

= eiεβ t2−iεαt1
〈
cαc†β + c†βcα

〉
= e−iεα(t1−t2)δαβ, (7.46)



7.1 Definition and Properties 181

G R
αβ(t1, t2) = −iθ(t1 − t2)

〈[
cα(t1), c†β(t2)

]
+

〉

= −iθ(t1 − t2)e
−iεα(t1−t2)δαβ, (7.47)

where we used some obvious properties of the creation and annihilation operators
and commutation relations.

We consider also the othermethod, based on the equations ofmotion for operators.
From the Liouville–von Neuman equation we find (all c-operators are Heisenberg
operators in the formula below, the time dependence (t) is omitted for shortness)

i
dcα(t)

dt
= [cα(t), H ]− =

∑
β

εβ

[
cα, c†βcβ

]
−

=
∑

β

εβ

(
cαc†βcβ − c†βcβcα

)
=
∑

β

εβ

(
cαc†βcβ + c†βcαcβ

)

=
∑

β

εβ

(
cαc†β + c†βcα

)
cβ =

∑
β

εβδαβcβ =εαcα(t), (7.48)

so that Heisenberg operators for free fermions are

cα(t) = e−iεαt cα(0), c†α(t) = eiεαt c†α(0). (7.49)

Substituting these expressions into (7.1) we obtain again (7.47). Note also that if
we take t0 �= 0, the Heisenberg operators for free fermions are

cα(t) = e−iεα(t−t0)cα(t0), c†α(t) = eiεα(t−t0)c†α(t0), (7.50)

but the result for the Green functions is just the same, because

〈[
cα(t1), c†β(t2)

]
+

〉
= −

〈
cα(t1)c

†
β(t2) + c†β(t2)cα(t1)

〉

= eiεβ(t2−t0)−iεα(t1−t0)
〈
cαc†β + c†βcα

〉
= e−iεα(t1−t2)δαβ . (7.51)

It is interesting to make Fourier-transform of this function. In equilibrium the
two-time function G R

αβ(t1, t2) is a function of the time difference only, so that we
apply the transform (7.9). Adding an infinitely small positive complex part to ε is
required to make this integral well defined in the upper limit (this is necessary for
free particles without dissipation because function (7.47) oscillates at large times
τ = t1 − t2 and the integral (7.9) can not be calculated without iη term). Then we
obtain

G R
αβ(ε) = δαβ

ε − εα + iη
. (7.52)
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This Green function looks exactly the same as the retarded matrix function (3.105)
introduced in Chap.3. It is not surprising, that the retarded Green functions of the
NGF formalism for noninteracting systems are exactly the same as the single-particle
retarded Green functions which we used before.

Free-Particle Lesser Function for Fermions

Now let us consider again free fermions. Heisenberg operators for free fermions are
(t0 = 0)

cα(t) = e−iεαt cα(0), c†α(t) = eiεαt c†α(0). (7.53)

Lesser function is

G<
αβ(t1, t2) =i

〈
c†β(t2)cα(t1)

〉
= ieiεβ t2−iεαt1

〈
c†βcα

〉

= ie−iεα(t1−t2) f 0(εα)δαβ, (7.54)

one sees that contrary to the retarded function, the lesser function is proportional to
the distribution function, in equilibrium this is the Fermi distribution function

f 0(ε) = 1

e
ε−μ

T + 1
. (7.55)

It is interesting to compare this answer with the result for nonthermal initial
conditions. Assume that the initial state is described by the density matrix ρ0αβ =〈
c†βcα

〉
, nowwith nonzero off-diagonal elements. The time dependence of the density

matrix is given by

ραβ(t) = ei(εβ−εα)tρ0αβ . (7.56)

We obtain the well known result that off-diagonal elements oscillate in time.
Now define the Fourier-transform for the lesser function (τ = t1 − t2)

G<(ε) =
∫ ∞

−∞
G<(τ )ei[ε+iηsign(τ )]τ dτ , (7.57)

note that here we use Fourie-transform with complicated term iηsign(τ ), which
makes this transformation consistent with previously introduced transformations
(7.9) for retarded (τ > 0) and (7.10) advanced (τ < 0) functions.

Applying this transformation to (7.54) we obtain

G<
αβ(ε) =i f 0(εα)δαβ

∫ ∞

−∞
e+i[ε−εα+iηsign(τ )]τ dτ

= 2πi f 0(εα)δ(ε − εα)δαβ . (7.58)

http://dx.doi.org/10.1007/978-3-319-24088-6_3
http://dx.doi.org/10.1007/978-3-319-24088-6_3


7.1 Definition and Properties 183

For free fermions, the greater function is given by

G>
αβ(t1, t2) = −ie−iεα(t1−t2)(1 − f 0(εα))δαβ, (7.59)

G>
αβ(ε) = −2πi(1 − f 0(εα))δ(ε − εα)δαβ . (7.60)

7.1.6 Free Bosons

For free bosons the retarded and advanced functions are exactly the same and the
lesser and the greater functions are similar, of course the distribution function now
is the Bose function instead of Fermi-Dirac. We give here only the results of calcu-
lations:

B R
αβ(t1, t2) = −iθ(t1 − t2)e

−iεα(t1−t2)δαβ, (7.61)

B A
αβ(t1, t2) = iθ(t2 − t1)e

−iεα(t1−t2)δαβ, (7.62)

B R
αβ(ε) = δαβ

ε − εα + i0
, B A

αβ(ε) = δαβ

ε − εα − i0
, (7.63)

B<
αβ(t1, t2) = −ie−iεα(t1−t2) f 0B(εα)δαβ, (7.64)

B>
αβ(t1, t2) = −ie−iεα(t1−t2)(1 + f 0B(εα))δαβ, (7.65)

B<
αβ(ε) = −2πi f 0B(εα)δ(ε − εα)δαβ, (7.66)

B>
αβ(ε) = −2πi(1 + f 0B(εα))δ(ε − εα)δαβ, (7.67)

f 0B(ε) = 1

e
ε
T − 1

. (7.68)

7.1.7 Green Functions for Vibrons

As one can see from the Hamiltonian of the electron-vibron interaction (6.13), the
relevant operator to describe vibrons is not an individual boson operator, but the
density fluctuation operator Aα = aα + a†

α. Because of that all expressions for
vibron functions are different from both fermion and usual boson functions discussed
previously.

http://dx.doi.org/10.1007/978-3-319-24088-6_6
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Definition

Using the Heisenberg density fluctuation operators Aα(t) = aα(t)+a†
α(t), we define

retarded, advanced, lesser, greater and Keldysh (explained later) Green functions for
vibrons:

DR
αβ(t1, t2) = −iθ(t1 − t2)

〈[
Aα(t1), Aβ(t2)

]
−
〉
, (7.69)

D A
αβ(t1, t2) = iθ(t2 − t1)

〈[
Aα(t1), Aβ(t2)

]
−
〉
, (7.70)

D<
αβ(t1, t2) = −i

〈
Aβ(t2)Aα(t1)

〉
, (7.71)

D>
αβ(t1, t2) = D<

βα(t2, t1) = −i
〈
Aα(t1)Aβ(t2)

〉
, (7.72)

DR
αβ(t1, t2) = θ(t1 − t2)

[
D>

αβ(t1, t2) − D<
αβ(t1, t2)

]
, (7.73)

D A
αβ(t1, t2) = θ(t2 − t1)

[
D<

αβ(t1, t2) − D>
αβ(t1, t2)

]
, (7.74)

DK
αβ(t1, t2) = D<

αβ(t1, t2) + D>
αβ(t1, t2). (7.75)

Symmetry Relations

The symmetry relations are essentially different because of using commutators in
the definition. The most important peculiarities are the special symmetries due to
inversion of ε ⇒ −ε:

D<
αβ(t1, t2) = −

[
D<

βα(t2, t1)
]∗

, D>
αβ(t1, t2) = −

[
D>

βα(t2, t1)
]∗

, (7.76)

D>
αβ(t1, t2) = D<

βα(t2, t1), (7.77)

D A
αβ(t1, t2) =

[
D A

αβ(t1, t2)
]∗ = DR

βα(t2, t1) =
[

DR
βα(t2, t1)

]∗
. (7.78)

In the mixed (Wigner) representation

D<
αβ(t, ε) = −

[
D<

βα(t, ε)
]∗

, D>
αβ(t, ε) = −

[
D>

βα(t, ε)
]∗

, (7.79)

D>
αβ(t, ε) = D<

βα(t,−ε), (7.80)

D A
αβ(t, ε) =

[
D A

αβ(t,−ε)
]∗ = DR

βα(t,−ε) =
[

DR
βα(t, ε)

]∗
. (7.81)

In the matrix representation using Hermitian conjugation †

D<(t, ε) = −D<†(t, ε), D>(t, ε) = −D>†(t, ε), (7.82)

D>(t, ε) = D<T(t,−ε), (7.83)

DA(t, ε) = DA∗
(t,−ε) = DRT

(t,−ε) = DR†
(t, ε). (7.84)
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Free-Particle Functions

Free-particle functions also look significantly different:

DR
αβ(t1, t2) = −iθ(t1 − t2)

[
e−iεα(t1−t2) − eiεα(t1−t2)

]
δαβ, (7.85)

D A
αβ(t1, t2) = iθ(t2 − t1)

[
e−iεα(t1−t2) − eiεα(t1−t2)

]
δαβ, (7.86)

DR
αβ(ε) = δαβ

ε − εα + iη
− δαβ

ε + εα + iη
, D A

αβ(ε) = δαβ

ε − εα − iη
− δαβ

ε + εα − iη
,

(7.87)
D<

αβ(t1, t2) = −i
[
e−iεα(t1−t2) f 0B(εα) + eiεα(t1−t2)(1 + f 0B(εα))

]
δαβ, (7.88)

D<
αβ(ε) = −2πi

[
f 0B(εα)δ(ε − εα) + (1 + f 0B(εα))δ(ε + εα)

]
δαβ, (7.89)

D>
αβ(ε) = −2πi

[
f 0B(εα)δ(ε + εα) + (1 + f 0B(εα))δ(ε − εα)

]
δαβ, (7.90)

f 0B(ε) = 1

eε/T − 1
, (7.91)

f 0B(−ε) = −(1 + f 0B(ε)). (7.92)

We do not present the details of calculations here, they are exactly the same as
we made for fermions. The differences originates from other definition of Green
functions and other commutation relations for boson operators.

Finally the definition for the spectral function is the same:

AD
αβ(ε) = i

(
DR

αβ(ε) − D A
αβ(ε)

)
. (7.93)

For free vibrons the spectral function is

AD
αβ(ε) = 2π

[
δ(ε − εα)δαβ − δ(ε + εα)

]
δαβ . (7.94)

The sum rule is
∫ ∞

−∞
AD

αβ(ε)
dε

2π
= 0. (7.95)

It is obvious for free particles, and true for all spectral function because the spectral
function is asymmetric in ε.
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In equilibrium we have the following relations:

D<
αβ(ε) = −i AD

αβ(ε) f 0B(ε), (7.96)

D>
αβ(ε) = −i AD

αβ(ε)(1 + f 0B(ε)), (7.97)

D>
αβ(ε) = eε/T D<

αβ(ε). (7.98)

7.2 Interaction Representation

Previously we found that nonequilibrium Green functions can be quite easily cal-
culated for free particles, and equations of motion for one-particle Green functions
(the functions which are the averages of two creation-annihilation operators) can
be formulated if we add interactions and time-dependent perturbations, but these
equations include high-order Green functions (the averages of three, four, and larger
number of operators). The equations can be truncated and formulated in terms of
one-particle Green functions in some simple approximations. However, a system-
atic approach is needed to proceed with perturbation expansion and self-consistent
methods (all together is known as diagrammatic approach). The main idea of the
diagrammatic approach is to start from some “simple” Hamiltonian (usually for free
particles), treating interactions and external fields as a perturbation, formulate pertur-
bation expansion, and summarize all most important terms (diagrams) in all orders
of perturbation theory. The result of such a procedure gives, in principle, a non-
perturbative description (ordinary mean-field theory is the simplest example). The
starting point of the method is the so-called interaction representation.

Let us consider the full Hamiltonian Ĥ as the sum of a free-particle time-
independent part Ĥ0 and (possibly time-dependent) perturbation V̂ (t) (note that this
“perturbation” should not be necessarily small)

Ĥ = Ĥ0 + V̂ (t). (7.99)

We define new operators in interaction representation by

f̂ I (t) = ei Ĥ0t f̂ Se−i Ĥ0t , (7.100)

where f̂ S is the time-independent Schrödinger operator. This is equivalent to the
time-dependent Heisenberg operator, defined by the part Ĥ0 of the Hamiltonian. For
a free-particle Hamiltonian Ĥ0 the operators f̂ I (t) can be calculated exactly.

A new wave function corresponding to (7.100) is

Ψ I (t) = ei Ĥ0tΨ S(t). (7.101)
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It is easy to see that transformation (7.100), (7.101) is a unitary transformation and
conserves the average value of any operator

〈Ψ S| f̂ S|Ψ S〉 = 〈Ψ I | f̂ I |Ψ I 〉. (7.102)

Substituting (7.101) into theordinarySchrödinger equation,wederive the equation

i
∂Ψ I

∂t
= V̂ I (t)Ψ I , (7.103)

where V̂ I (t) = ei Ĥ0t V̂ S(t)e−i Ĥ0t is in the interaction representation.
Equation (7.103) seems to be quite simple, however the operator nature of V̂

makes this problem nontrivial. Indeed, consider a small time-step Δt . Then

Ψ (t + Δt) =
[
1 − i V̂ S(t)Δt

]
Ψ (t) = exp−i V̂ S(t)Δt Ψ (t), (7.104)

linear in Δt term can be transformed into the exponent if we understand the expo-
nential function of the operator in the usual way

exp Â = 1 + Â + 1

2! Â2 + · · · + 1

n! Ân + · · · , (7.105)

and assume that only linear terms should be taken at Δt → 0.
If we now repeat this procedure at times ti with step Δt , we obtain finally

Ψ I (t) = Ŝ(t, t0)Ψ
I (t0), (7.106)

with

Ŝ(t, t0) =
t∏

ti =t0

exp
(
−i V̂ I (ti )Δt

)
. (7.107)

This product, however, is not simply exp

(
−i

∫ t

t0

V̂ I (t ′)dt ′
)
in the limit Δt → 0,

because operators V̂ I (t ′) are not commutative at different times, and for two non-
commutative operators Â and B̂ it holds that eÂ+B̂ �= eÂeB̂ .

In the product (7.107) operators at earlier times should be applied first, before
operators at later times. In the limit Δt → 0 we obtain

Ŝ(t, t0) = T exp

(
−i

∫ t

t0

V̂ I (t ′)dt ′
)

, (7.108)
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where T is the time-ordering operator (“-” for fermionic operators)

T
(

Â(t1)B̂(t2)
)

=
⎧
⎨
⎩

Â(t1)B̂(t2) if t1 > t2,

±B̂(t2) Â(t1) if t1 < t2.
(7.109)

Of course, expression (7.108) is defined only in the sense of expansion (7.105).
Consider for example the second-order term in the time-ordered expansion.

T

[∫ t

t0
V̂ I (t ′)dt ′

]2
= T

[∫ t

t0
V̂ I (t ′)dt ′

∫ t

t0
V̂ I (t ′′)dt ′′

]

=
∫ t

t0
dt ′

∫ t ′

t0
dt ′′V̂ I (t ′)V̂ I (t ′′) +

∫ t

t0
dt ′′

∫ t ′′

t0
dt ′V̂ I (t ′′)V̂ I (t ′).

(7.110)

If we exchange t ′ and t ′′ in the second integral, we see finally that

T

[∫ t

t0

V̂ I (t ′)dt ′
]2

= 2
∫ t

t0

dt ′
∫ t ′

t0

dt ′′V̂ I (t ′)V̂ I (t ′′). (7.111)

Properties of Ŝ(t, t0)

Ŝ is the unitary operator and

Ŝ−1(t, t0) = Ŝ†(t, t0) = T̃ exp

(
i
∫ t

t0

V̂ I (t ′)dt ′
)

, (7.112)

where T̃ is time-anti-ordering operator. Some other important properties are

Ŝ−1(t, t0) = Ŝ(t0, t), (7.113)

Ŝ(t3, t2)Ŝ(t2, t1) = Ŝ(t3, t1), (7.114)

Ŝ−1(t2, t1)Ŝ−1(t3, t2) = Ŝ−1(t3, t1). (7.115)

Finally, we need the expression of a Heisenberg operator, defined by the full
Hamiltonian Ĥ = Ĥ0 + V̂ (t), through an operator in the interaction representation.
The transformation, corresponding to (7.106), is given by

f̂ H (t) = e−i Ĥ0t0 Ŝ−1(t, t0) f̂ I (t)Ŝ(t, t0)e
i Ĥ0t0 , (7.116)

and the state Ψ I (t0) is related to the Heisenberg time-independent wave function by

Ψ I (t0) ≡ ei Ĥ0t0Ψ S(t0) = ei Ĥ0t0Ψ H , (7.117)
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in accordance with our previous discussion of averaging we assume that at time
t = t0 Heisenberg operators coincide with time-independent Schrödinger opera-
tors f̂ H (t0) = f̂ S , and Schrödinger wave function coincides at the same time with
Heisenberg time-independent wave function Ψ S(t0) = Ψ H . To avoid these addi-
tional exponents in (7.116) we can redefine the transformation to the interaction
representation as

f̂ I (t) = ei Ĥ0(t−t0) f̂ Se−i Ĥ0(t−t0), (7.118)

in accordance with the transformation (7.6) for the time-independent Hamiltonian.
Previously we showed that free-particle Green functions are not dependent on t0 for
equilibrium initial condition, ifwewant to consider somenontrivial initial conditions,
it is easier to formulate these conditions directly for Green functions. Thus below
we shall use relations

f̂ H (t) = Ŝ−1(t, t0) f̂ I (t)Ŝ(t, t0), (7.119)

and

Ψ I (t0) ≡ Ψ S(t0) = Ψ H . (7.120)

Green Functions in the Interaction Representation

Consider, for example, the lesser function

G<
αβ(t1, t2) = i

〈
c†β(t2)cα(t1)

〉
= i

〈
Ψ H

∣∣∣c†β(t2)cα(t1)
∣∣∣Ψ H

〉
, (7.121)

c-operators here are Heisenberg operators and they should be replaced by operators
cI (t) ≡ c̃(t) in the interaction representation:

G<
αβ(t1, t2) = i

〈
Ψ H

∣∣∣Ŝ−1(t2, t0)c̃
†
β(t2)Ŝ(t2, t0)Ŝ−1(t1, t0)c̃α(t1)Ŝ(t1, t0)

∣∣∣Ψ H
〉
.

(7.122)
Using properties of Ŝ operators, we rewrite this expression as

G<
αβ(t1, t2) = i

〈
Ŝ(t0, t2)c̃

†
β(t2)Ŝ(t2, t1)c̃α(t1)Ŝ(t1, t0)

〉
. (7.123)

7.3 Schwinger-Keldysh Time Contour

7.3.1 Closed Time-Path Integration

Now let us introduce one useful trick, the so-called closed time-path contour of
integration. First, note that the expression of the type
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f̂ H (t) = Ŝ−1(t, t0) f̂ I (t)Ŝ(t, t0) = T̃ ei
∫ t

t0
V̂ I (t ′)dt ′

f̂ I (t)T e−i
∫ t

t0
V̂ I (t ′)dt ′

, (7.124)

can be written as

f̂ H (t) = TCt exp

(
−i

∫

Ct

V̂ I (t ′)dt ′
)

f̂ I (t), (7.125)

where the integral is taken along closed time contour from t0 to t and then back from
t to t0 ∫

Ct

dt ′ =
∫ t

t0

dt ′ +
∫ t0

t
dt ′. (7.126)

The contour time-ordering operator TCt works along the contour Ct , it means that for
times t→ it is usual time-ordering operator T , and for times t← it is anti-time-ordering
operator T̃ . Symbolically

TCt

∫

Ct

dt ′ = T
∫

→
dt ′ + T̃

∫

←
dt ′. (7.127)

Consider now the application of this closed time-path contour to calculation of
Green functions. It is convenient to start from the time-ordered function at t2 > t1

〈
T
(

B̂(t2) Â(t1)
)〉

=
〈
Ŝ(t0, t2)B̃(t2)Ŝ(t2, t1) Ã(t1)Ŝ(t1, t0)

〉
, (7.128)

here Â(t) and B̂(t) are Heisenberg operators, Ã(t) and B̃(t) are operators in the
interaction representation, and in the case of fermionic operators the additionalminus
should be added for any permutation of two operators.

Using the properties of the Ŝ-operator, we transform this expression as

〈
Ŝ(t0, t2)B̃(t2)Ŝ(t2, t1) Ã(t1)Ŝ(t1, t0)

〉
=
〈
Ŝ−1(t2, t0)B̃(t2)Ŝ(t2, t1) Ã(t1)Ŝ(t1, t0)

〉

=
〈
Ŝ−1(∞, t0)Ŝ(∞, t2)B̃(t2)Ŝ(t2, t1) Ã(t1)Ŝ(t1, t0)

〉
=
〈
Ŝ−1T

(
B̃(t2) Ã(t1)Ŝ

)〉
,

(7.129)

where we defined operator
Ŝ = Ŝ(∞, t0). (7.130)

Using contour integration, it can be written as

〈
T
(

B̂(t2) Â(t1)
)〉

=
〈
TC

(
ŜC B̃(t→

2 ) Ã(t→
1 )

)〉
, (7.131)

ŜC = TC exp

(
−i

∫

C
V̂ I (t ′)dt ′

)
, (7.132)
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where the contour C goes from t0 through t1 and t2, and back to t0. If t2 > t1 it is
obvious that contour ordering along C→ gives the terms from Ŝ(t1, t0) to B̂(t2) in
(7.128). The integral over the back path C← gives

TC exp

(
−i

∫

←
V̂ I (t ′)dt ′

)
= T̃ exp

(
−i

∫ t0

t2

V̂ I (t ′)dt ′
)

= T̃ exp

(
i
∫ t2

t0

V̂ I (t ′)dt ′
)

= Ŝ−1(t2, t0) = Ŝ(t0, t2). (7.133)

For t2 < t1 the operators in (7.128) are reordered by T -operator and we again
obtain (7.131).

The lesser and greater functions are not time-ordered and arguments of the oper-
ators are not affected by time-ordering operator. Nevertheless we can write such
functions in the same form (7.131). The trick is to use one time argument from the
forward contour and the other from the backward contour, for example

〈
B̂(t2) Â(t1)

〉
=
〈
TC

(
ŜC B̃(t←

2 ) Ã(t→
1 )

)〉
, (7.134)

here the time t1 is always before t2.

7.3.2 Contour (Contour-Ordered) Green Function

Now we are able to define contour or contour-ordered Green function—the useful
tool of Keldysh diagrammatic technique. The definition is similar to the previous one

GC
αβ(τ1, τ2) = −i

〈
TC

(
cα(τ1)c

†
β(τ2)

)〉
, (7.135)

where, however, τ1 and τ2 are contour times. This function includes all nonequilib-
rium Green functions introduced before. Indeed, depending on contour position of
times we obtain lesser, greater, or time-ordered functions (below we give different
notations used in the literature)

GC
αβ(τ1, τ2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ1, τ2 ∈ C→ : −i
〈
T cα(t1)c

†
β(t2)

〉
=⇒ G−− or GT (t1, t2),

τ1 ∈ C←, τ2 ∈ C→ : −i
〈
cα(t1)c

†
β(t2)

〉
=⇒ G+− or G>(t1, t2),

τ1 ∈ C→, τ2 ∈ C← : i
〈
c†β(t2)cα(t1)

〉
=⇒ G−+ or G<(t1, t2),

τ1, τ2 ∈ C← : −i
〈
T̃ cα(t1)c

†
β(t2)

〉
=⇒ G++ or GT̃ (t1, t2).

(7.136)
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These four functions are not independent, from definitions it follows that

G< + G> = GT + GT̃ , (7.137)

and anti-Hermitian relations hold:

GT
αβ(t1, t2) = −GT ∗

βα(t2, t1), (7.138)

G<
αβ(t1, t2) = −G<∗

βα(t2, t1), (7.139)

G>
αβ(t1, t2) = −G>∗

βα(t2, t1). (7.140)

It is more convenient to use retarded and advanced functions instead of time-
ordered functions. There is a number of ways to express G R and G A through above
defined functions

G R = θ(t1 − t2)
[
G> − G<

] = GT − G< = G> − GT̃ , (7.141)

G A = θ(t2 − t1)
[
G< − G>

] = GT − G> = G< − GT̃ . (7.142)

This technique at real-time axes can be formulated for matrix functions

Ğ =
(

G++ G+−
G−+ G−−

)
. (7.143)

It is, however, more convenient to use the linear dependence of four functions and
after the rotation in “Keldysh space” we get

Ğ =
(

G R G K

0 G A

)
, (7.144)

where we obtain retarded ans advanced functions at the matrix diagonal and intro-
duced new Keldysh function G K

G K = G> + G< = −i〈[cα(t1), c+
β (t2)]−〉, (7.145)

G< = 1
2G K + i

2 A. (7.146)

7.3.3 Contour Green Function in the Interaction
Representation

In the interaction representation one should repeat the calculations performed before
and given the expressions (7.123), (7.128), and then replace usual times by contour
times τ , so we obtain
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〈
TC

(
cα(τ1)c

†
β(τ2)

) 〉
=
〈
TC

(
Ŝ(τ0, τ2)c̃

†
β(τ2)Ŝ(τ2, τ1)c̃α(τ1)Ŝ(τ1, τ0)

) 〉
.

(7.147)

Using contour integration, it can be written as

GC
αβ(τ1, τ2) = −i

〈
TC

(
cα(τ1)c

†
β(τ2)

) 〉
= −i

〈
TC

(
ŜC c̃α(τ1)c̃

†
β(τ2)

) 〉
, (7.148)

ŜC = TC exp

(
−i

∫

C
V̂ I (t ′)dt ′

)
. (7.149)

7.4 Nonequilibrium Equation of Motion Method

Nowwe start to consider the case of interacting nanosystems. Although it is possible
to derive the exact expression for the current through an interacting central region
(we consider it in Chap.8), the problem to find the Green functions of the central
region is sometimes highly nontrivial. At the present time there are several techniques
developed to solve this problem.

The nonequilibrium equation of motion (NEOM) method is the simplest approx-
imate approach. In spite of its simplicity, it is very useful in many cases, and is very
convenient for numerical implementation. In this section we consider only a general
formulation, some particular examples are considered further.

We start from the general definition of a Green function as the average of two
Heisenberg operators Â(t) and B̂(t), denoted as

〈〈 Â(t1), B̂(t2)〉〉R,A,<.

The particular definitions of the averages for spectral and kinetic functions are

〈〈
Â(t1), B̂(t2)

〉〉R = −iθ(t1 − t2)
〈[

Â(t1), B̂(t2)
]

∓

〉
, (7.150)

where upper sign here and below is for boson functions, lower sign for fermions,
〈〈

Â(t1), B̂(t2)
〉〉< = −i

〈
Â(t1), B̂(t2)

〉
. (7.151)

The equations of motion for NGF are obtained from the Heisenberg equation of
motion for operators

i
∂ Â

∂t
=
[

Â, Ĥ
]

−
= ÂĤ − Ĥ Â, (7.152)

for any Heisenberg operator Â(t). Here and below all Hamiltonians are time-
independent. We consider the stationary problem.

http://dx.doi.org/10.1007/978-3-319-24088-6_8
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7.4.1 Spectral (Retarded and Advanced) Functions

Let us start from a retarded function

〈〈
Â(t1), B̂(t2)

〉〉R = −iθ(t1 − t2)
〈[

Â(t1), B̂(t2)
]

∓

〉
. (7.153)

Taking the time derivative we obtain

i
∂

∂t1

〈〈
Â(t1), B̂(t2)

〉〉R = δ(t1 − t2)
〈[

Â(t1), B̂(t1)
]

∓

〉
+
〈〈[

Â(t1), Ĥ
]

−
, B̂(t2)

〉〉R
,

(7.154)

where the first term originates from the time-derivative of the θ-function, and the
(7.152) is used in the second term.

In the stationary case the Fourier transform can be used

(ε + iη)
〈〈

Â, B̂
〉〉R

ε
=
〈[

Â, B̂
]

∓

〉
+
〈〈[

Â, Ĥ
]

−
, B̂

〉〉R

ε
. (7.155)

Now let us assume that the Hamiltonian can be divided into “free particle” and
“interaction” parts Ĥ = Ĥ0 + Ĥ1, and [ Â, Ĥ0]− = ε̂0 Â. (The simple example. For
the free particle Hamiltonian Ĥ0 = ∑

β εβd†
βdβ and the operator Â = d†

α one has

[ Â, Ĥ0]− = ∑
β εβ[d†

α, d†
βdβ]− = εαd†

α, ε̂0 = εα is simply a number. In general, ε̂0
is some time-independent operator). So that

(ε + iη − ε̂0)
〈〈

Â, B̂
〉〉R

ε
=
〈[

Â, B̂
]

∓

〉
+
〈〈[

Â, Ĥ1

]
−
, B̂

〉〉R

ε
, (7.156)

the second term includes interaction and can not be easy simplified.
It is convenient now to introduce the “free particle” function ĝR

ε as a solution of
the equation

(ε + iη − ε̂0)ĝ
R
ε = 1. (7.157)

Now we multiply the right and left parts of (7.156) by ĝR
ε . Using the function

ĝR(t) = ∫
ĝR

ε e−iεt dε
2π we can write the time-dependent solution of (7.154) as

〈〈
Â(t1), B̂(t2)

〉〉R = ĝR(t1 − t2)
〈[

Â(t1), B̂(t1)
]

∓

〉

+
∫

ĝR(t1 − t ′)
〈〈[

Â(t ′), Ĥ1

]
−
, B̂(t2)

〉〉R
dt ′. (7.158)



7.4 Nonequilibrium Equation of Motion Method 195

7.4.2 EOM at the Schwinger-Keldysh Contour

The calculation of the lesser functions by the EOM technique requires some care.
To demonstrate it let us compare the EOM for retarded and lesser functions of free
particles.

The equation for gR
αβ is (assuming the diagonal matrix ε̃αβ)

(ε + iη − ε̃α) gR
αβ = δαβ, (7.159)

from which the free-particle Green function is easily obtained.
At the same time for the lesser function we have the equation

(ε − ε̃α) g<
αβ = 0, (7.160)

from which, however, the free-particle lesser function g<
αβ = 2π f0(ε)δ(ε − εα)δαβ

can not be obtained.
The problem can be generally resolved by using the EOM on the Schwinger-

Keldysh time contour. The contour-ordered Green function is defined as

〈〈
Â(τ1), B̂(τ2)

〉〉C = −i
〈
TC

(
Â(τ1), B̂(τ2)

)〉
, (7.161)

where Â(τ1) and B̂(τ2) are two Heisenberg operators, defined along the contour.
Taking the time derivative we obtain the equation

i
∂

∂τ1

〈〈
Â(τ1), B̂(τ2)

〉〉C = δc(τ1 − τ2)
〈[

Â(τ1), B̂(τ1)
]
∓

〉
+
〈〈[

Â(τ1), Ĥ
]
−, B̂(τ2)

〉〉C
,

(7.162)

in the stationary case this equation can be formally solved if one applies the Fourier
transform along the contour, or perturbation expansion in the interaction representa-
tion (Niu et al. 1999). Using the free particle solution ĝC(τ1 − τ2) we can write the
time-dependent solution as

〈〈
Â(τ1), B̂(τ2)

〉〉C =ĝC(τ1 − τ2)
〈[

Â(τ1), B̂(τ1)
]

∓

〉

+
∫

ĝC(τ1 − τ ′)
〈〈[

Â(τ ′), Ĥ1

]
−
, B̂(τ2)

〉〉C
dτ ′. (7.163)

7.4.3 Kinetic (Lesser) Function

Applying now the Langreth rules (see the next section for details), which shows, that
from



196 7 Nonequilibrium Green Functions

C(τ1, τ2) =
∫

C
A(τ1, τ3)B(τ3, τ2)dτ3 (7.164)

it follows

C R(t1, t2) = ∫
AR(t1, t3)B R(t3, t2)dt3, (7.165)

C<(t1, t2) = ∫ (
AR(t1, t3)B R(t3, t2) + A<(t1, t3)B A(t3, t2)

)
dt3, (7.166)

we get (7.158) for the retarded function, and

〈〈
Â(t1), B̂(t2)

〉〉< = ĝ<(t1 − t2)
〈[

Â(t1), B̂(t1)
]

∓

〉

+
∫

ĝR(t1 − t ′)
〈〈[

Â(t ′), Ĥ1

]
−
, B̂(t2)

〉〉<
dt ′

+
∫

ĝ<(t1 − t ′)
〈〈[

Â(t ′), Ĥ1

]
−
, B̂(t2)

〉〉A
dt ′ (7.167)

for the lesser function. And the Fourier transform is

〈〈
Â, B̂

〉〉<
ε

= ĝ<
ε

〈[
Â, B̂

]
∓

〉
+ ĝR

ε

〈〈[
Â, Ĥ1

]
−
, B̂

〉〉<
ε

+ ĝ<
ε

〈〈[
Â, Ĥ1

]
−
, B̂

〉〉A

ε
.

(7.168)

7.5 Kadanoff-Baym-Keldysh Method

Now we review briefly the other approach. The Kadanoff-Baym-Keldysh method
systematically extends the equilibriummany-body theory to the nonequilibrium case.
Potentially, it is the most powerful approach. Below we give a simple introduction
into the method, which is currently actively developed.

7.5.1 Perturbation Expansion and Diagrammatic Rules for
Contour Functions

We found that Green functions can be written in the interaction representation with
a help of the Ŝ-operator. For example, the time-ordered fermionic Green function is

GT
αβ(t1, t2) = − i

〈
T
(

cα(t1)c
†
β(t2)

) 〉
= −i

〈
Ŝ−1T

(
c̃α(t1)c̃

†
β(t2)Ŝ

) 〉
, (7.169)
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using “usual” Ŝ-operator

Ŝ = Ŝ(∞, t0) = T exp

(
−i

∫ ∞

t0

V̂ I (t ′)dt ′
)

, (7.170)

or

GT
αβ(t1, t2) = −i

〈
TC

(
c̃α(t→

1 )c̃†β(t→
2 )ŜC

) 〉
, (7.171)

using “contour” ŜC -operator

ŜC = TC exp

(
−i

∫

C
V̂ I (t ′)dt ′

)
. (7.172)

We first consider the zero temperature case, when one can set t0 = −∞,

Ŝ = Ŝ(∞,−∞) = T exp

(
−i

∫ ∞

−∞
V̂ I (t ′)dt ′

)
, (7.173)

and assume that interaction is switchedonand switchedoff at t → +∞adiabatically.
This condition is necessary to prevent excitation of the system from its ground state.
The other necessary condition is that the perturbation is time-independent in the
Schrödinger representation. In this case if the initial state |Ψ (t = −∞)〉 = |Ψ0〉 is the
ground state (of free particles), then the final state |Ψ (t = +∞)〉 = Ŝ|Ψ 0〉 = eiθ|Ψ 0〉
is also the ground state, only the phase can be changed. Now, using the average value
of the Ŝ-operator

〈Ŝ〉 = 〈Ψ 0|Ŝ|Ψ 0〉 = eiθ〈Ψ 0|Ψ 0〉 = eiθ, (7.174)

we obtain

Ŝ|Ψ 0〉 = 〈Ŝ〉|Ψ 0〉, (7.175)

and

〈Ψ 0|Ŝ−1 = 〈Ψ 0|
〈Ŝ〉 . (7.176)

So that (7.169) can be written as

GT
αβ(t1, t2) = −i

〈
T
(

c̃α(t1)c̃
†
β(t2)Ŝ

) 〉

〈Ŝ〉 . (7.177)
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Nowwe can expand the exponent (note that S-operator is defined only in the sense
of this expansion)

Ŝ = T exp

(
−i

∫ ∞

−∞
V̂ I (t ′)dt ′

)

= T
∞∑

n=0

(−i)n

n!
∫ ∞

−∞
dt ′

1 . . .

∫ ∞

−∞
dt ′

n V̂ I (t ′
1) . . . V̂ I (t ′

n), (7.178)

and numerator and denominator of the expression (7.177) are

〈
T
(

c̃α(t1)c̃
†
β(t2)Ŝ

)〉

=
∞∑

n=0

(−i)n

n!
∫ ∞

−∞
dt ′

1 . . .

∫ ∞

−∞
dt ′

n

〈
T c̃α(t1)c̃

†
β(t2)V̂ I (t ′

1) . . . V̂ I (t ′
n)
〉
, (7.179)

〈Ŝ〉 =
∞∑

n=0

(−i)n

n!
∫ ∞

−∞
dt ′

1 . . .

∫ ∞

−∞
dt ′

n

〈
T V̂ I (t ′

1) . . . V̂ I (t ′
n)
〉
. (7.180)

These expressions are used to produce the perturbation series.
The main quantity to be calculated is the contour Green function

G(1, 2) ≡ GC
αβ(τ1, τ2) = −i

〈
TC

(
cα(τ1)c

†
β(τ2)

) 〉
, (7.181)

where τ1 and τ2 are contour times. Here 1c ≡ α, τ1.
The general diagrammatic rules for contour Green functions are exactly the same

as in the usual zero-temperature technique (we call it standard rules). The correspon-
dence between diagrams and analytical expressions is established in the following
way:

1. Open bare electron line is iG0(1, 2).
2. Closed bare electron line is n0(1) ≡ n(0)

α (τ1).
3. Bare interaction line is −iv(1, 2).
4. Self-energy is −iΣ(1, 2).
5. Integration over internal vertices, and other standard rules.

7.5.2 Langreth Rules

Although the basic equations and diagrammatic rules are formulated for contour
Green functions, the solution of these equations and final results are much more
transparent when represented by real-time spectral and kinetic functions.
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As in the ordinary diagrammatic technique, the important role is played by the
integration (summation) over space and contour-time arguments of Green functions,
which is denoted as

∫
d1c ≡

∑
α

∫

C
dτ1. (7.182)

After application of the Langreth rules [1], for real-time functions these integrals
become ∫

d1 ≡
∑

α

∫ ∞

−∞
dt1. (7.183)

The Langreth rules show, for example, that from

C(τ1, τ2) =
∫

C
A(τ1, τ3)B(τ3, τ2)dτ3 (7.184)

it follows

C R(t1, t2) = ∫
AR(t1, t3)B R(t3, t2)dt3, (7.185)

C<(t1, t2) = ∫ (
AR(t1, t3)B<(t3, t2) + A<(t1, t3)B A(t3, t2)

)
dt3. (7.186)

The other important rules are: from

C(τ1, τ2) = A(τ1, τ2)B(τ1, τ2) (7.187)

it follows

C R(t1, t2) = AR(t1, t2)B R(t1, t2) + AR(t1, t2)B<(t1, t2) + A<(t1, t2)B R(t1, t2),

(7.188)

C<(t1, t2) = A<(t1, t2)B<(t1, t2), (7.189)

and from

C(τ1, τ2) = A(τ1, τ2)B(τ2, τ1) (7.190)

it follows

C R(t1, t2) = AR(t1, t2)B<(t2, t1) + A<(t1, t2)B A(t2, t1), (7.191)

C<(t1, t2) = A<(t1, t2)B>(t2, t1). (7.192)
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Fig. 7.1 Diagrammatic
representation of the
first-order self-energy

1Σ = +

7.5.3 First-Order Self-Energy and Polarization Operator

Consider, as an example, the first order expression for the self-energy, shown in
Fig. 7.1. Following the diagrammatic rules, we find

Σ1(1, 2) = δ(1 − 2)
∫

v(1, 3)n0(3)d3 + iv(1, 2)G0(1, 2), (7.193)

where the first term is the Hartree contribution, which can be included into the unper-
turbed Green function G0(1, 2). This expression is actually symbolic, and translation
from contour (Keldysh-time) to real-time functions is necessary. Using the Langreth
rules, one obtains

Σ R
1 (1, 2) =δ(1+ − 2)

∫
vR(1, 3)n0(3, 3)d3 + ivR(1, 2)G R

0 (1, 2)

+ iv<(1, 2)G R
0 (1, 2) + ivR(1, 2)G<

0 (1, 2), (7.194)

Σ<
1 (1, 2) = iv<(1, 2)G<

0 (1, 2). (7.195)

There is no Hartree term for lesser function, because the times τ1 and τ2 are always at
the different branches of the Keldysh contour, and the δ-function δ(τ1 − τ2) is zero.

In the stationary case and using explicit matrix indices, we have, finally (here
τ = t1 − t2, not to mix with the Keldysh time)

Σ
R(1)
αβ (τ ) = δ(τ+)δαβ

∑
γ ṽR

αγ(0)n
(0)
γ + ivR

αβ(τ )G R(0)
αβ τ )

+iv<
αβ(τ )G R(0)

αβ (τ ) + ivR
αβ(τ )G<(0)

αβ (τ ), (7.196)

Σ
<(1)
αβ (τ ) = iv<

αβ(τ )G<(0)
αβ (τ ), (7.197)

and we define the Fourier transform of the bare interaction

ṽR
αγ(0) =

∫
vR
αγ(τ )dτ . (7.198)
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Fig. 7.2 Diagrammatic
representation of the
first-order polarization
operator

1Π =

Finally, the Fourier transforms are

Σ
R(1)
αβ (ε) = δαβ

∑
γ

ṽR
αγ(0)n(0)

γ

+ i
∫

dε′

2π

[
vR
αβ(ε′)G R(0)

αβ (ε − ε′) + v<
αβ(ε′)G R(0)

αβ (ε − ε′) + vR
αβ(ε′)G<(0)

αβ (ε − ε′)
]
,

(7.199)

Σ
<(1)
αβ (ε) = i

∫
dε′

2π
v<
αβ(ε′)G<(0)

αβ (ε − ε′). (7.200)

The second important function is the polarization operator (“self-energy for inter-
action”), shown in Fig. 7.2. Following the diagrammatic rules, we find

Π1(1, 2) = −iG0(1, 2)G0(2, 1), (7.201)

note the order of times in this expression.
Using the Langreth rules,

Π R
1 (1, 2) = iG R

0 (1, 2)G<
0 (2, 1) + iG<

0 (1, 2)G A
0 (2, 1), (7.202)

Π<
1 (1, 2) = iG<

0 (1, 2)G>
0 (2, 1). (7.203)

And in the stationary case, restoring the matrix indices

Π
R(1)
αβ (τ ) = −i

[
G R(0)

αβ (τ )G<(0)
βα (−τ ) + G<(0)

αβ (τ )G A(0)
βα (−τ )

]
, (7.204)

Π
<(1)
αβ (τ ) = −iG<(0)

αβ (τ )G>(0)
βα (−τ ). (7.205)

In the Fourier representation

Π
R(1)
αβ (ε) = −i

∫
dε′

2π

[
G R(0)

αβ (ε′)G<(0)
βα (ε′ − ε) + G<(0)

αβ (ε′)G A(0)
βα (ε′ − ε)

]
,

(7.206)

Π
<(1)
αβ (ε) = −i

∫
dε′

2π
G<(0)

αβ (ε′)G>(0)
βα (ε′ − ε). (7.207)

These expressions are quite general and can be used for both electron-electron
and electron-vibron interaction.
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For Coulomb interaction the bare interaction is is v(1, 2) ≡ Uαβδ(τ+
1 − τ2), so

that

vR(1, 2) ≡ Uαβδ(t+
1 − t2), (7.208)

v<(1, 2) = 0. (7.209)

7.5.4 Self-consistent Equations

Hedin’s Equations at Keldysh Contour

The diagrams can be partially summed in all orders of perturbation theory. The
resulting equations are known as Dyson equations for the dressed Green function
G(1, 2) and the effective interaction W (1, 2) (Fig. 7.3). Analytically these equations
are written as (in general nonequilibrium case the functions are contour functions
and integration is over Keldysh contour)

G(1, 2) = G0(1, 2) +
∫ ∫

G0(1, 3)Σ(3, 4)G(4, 2)d3d4, (7.210)

W (1, 2) = v(1, 2) +
∫ ∫

v(1, 3)Π(3, 4)W (4, 2)d3d4. (7.211)

In the perturbative approach the first order (or higher order) expressions for the
self-energy and the polarization operator are used. The other possibility is to sum-
marize further the diagrams and obtain the self-consistent approximations (Figs. 7.4
and 7.5), which include, however, a new unknown function, called vertex function.
We shall write these expressions analytically, including the Hartree-Fock part in the
unperturbed Green function G0(1, 2).

Fig. 7.3 Diagrammatic
representation of the Dyson
equations Σ+=

Π+=
G G

W

0G

Wυ

0G

υ

Fig. 7.4 Diagrammatic
representation of the full
self-energy

Σ = ++L,R
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Fig. 7.5 Diagrammatic
representation of the full
polarization operator Π =
Fig. 7.6 Diagrammatic
representation of the vertex
function = + + ...

Σ ′(1, 2) = i
∫ ∫

W (1, 3)G(1, 4)Γ (3; 4, 2)d3d4, (7.212)

Π(1, 2) = −i
∫ ∫

G(1, 3)G(4, 1)Γ (2; 3, 4)d3d4. (7.213)

Here we introduce the vertex function Γ (1; 2, 3) which depends on three coor-
dinates and connects two electron lines and one interaction line. The equation for
the vertex function can not be closed diagrammatically (Fig. 7.6). Nevertheless, it is
possible to write a closed set of equations (Hedin’s equations [2]), which are exact
equations for full Green functions written through a functional derivative. Hedin’s
equations are (7.210)–(7.213) and the equation for the vertex function

Γ (1; 2, 3) = δ(1, 2)δ(1, 3) +
∫ ∫ ∫ ∫

G(4, 6)G(7, 5)Γ (1; 6, 7)δΣ(2, 3)

δG(4, 5)
d4d5d6d7.

(7.214)
Real-Time Equations

There are several ways to get real-time equations from Hedin’s equations for con-
tour functions. One is to use the Langreth rules. The other, equivalent, method was
suggested by Keldysh [3]. Retarded G R , advanced G A and Keldysh G K (or lesser
G<) functions can be considered as the components of matrices

Ğ =
(

G R G K (G<)

0 G A

)
, Σ̆ =

(
Σ R Σ K (Σ<)

0 Σ A

)
. (7.215)

Below, the symbol ˘... denotes the matrix in Keldysh space, and the spin-matrix
structure of Green functions G(R,A,K ) and Σ(R,A,K ) is assumed if necessary. In the
spin-degenerate case G(R,A,K )

αβ = G(R,A,K )δαβ , in general Ğ and Σ̆ are matrices
in Keldysh and spin spaces. It was shown that diagrammatic expansions for the
matrix functions Ğ and Σ̆ are similar to corresponding expansions for equilibrium
Green functions (see [4] and references there). If Σ̆ is the known functional of Ğ,
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then the functions G(R,A,K ) can be determined from the Dyson-Keldysh equation in
differential form [

i
∂

∂t1
− H̆(t1)

]
Ğ −

{
Σ̆ Ğ

}
= δ̆, (7.216)

or in integral form
Ğ = Ğ0 + {Ğ0Σ̆ Ğ}, (7.217)

where δ̆ = Ĭδηη′δ(t1 − t2), Ĭ is the unity matrix in Keldysh space,

{AB}ηη′(t1, t2) =
∑

γ

∫
dt3Aηγ(t1, t3)Bγη′(t3, t2),

and H̆(t) is the single-particleHamiltonianwhich determines the bareGreen function
Ğ0. The self-energy Σ̆ describes interactions. These equations are mathematically
equivalent to the contour equation (7.210). Take now the components of this matrix
equations.

The equations for the retarded (advanced) functions are:

[
i

∂

∂t1
− H

]
G R(A) − {

Σ R(A)G R(A)
} = δ(x1 − x2). (7.218)

Or in integral form

G R(A) = G R(A)
0 +

{
G R(A)

0 Σ R(A)G R(A)
}

. (7.219)

And the equation for the Keldysh function is

[
i

∂

∂t1
− H

]
G K − {

Σ RG K + Σ K G A
} = 0, (7.220)

it is the same as theKadanoff-Baym equation for the lesser functionG<. Or in integral
form

G K = {
G RΣ K G A

}
, (7.221)

this equation is known as Keldysh equation. The time-independent equations are
obtained then in usual way.

Self-consistent GW Approximation

One of the popular approximations is GW approximation, neglecting the vertex part.
Here we present this equations already in explicit matrix notation.
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For the self-energy shown in Fig. 7.4 we obtain

Σ R
αβ(ε) = i

∫
eiηε′

dε′

2π

[
W R

αβ(ε′)G<
αβ(ε−ε′) + W <

αβ(ε′)G R
αβ(ε−ε′)

+W R
αβ(ε′)G R

αβ(ε−ε′) −
∑

γ

vR
αγG<

γγ(ε
′)δαβ

]
, (7.222)

Σ<
αβ(ε) = i

∫
dε′

2π
W <

αβ(ε′)G<
αβ(ε−ε′). (7.223)

The usual self-consistent Hartree-Fock approximation is obtained from this self-
energy if one neglects renormalization of the effective interaction Wαβ , and uses
unperturbed values vR

αβ(ε) = vA
αβ(ε) = Uαβ , v<

αβ(ε) = 0.
For the polarization operator one gets

Π R
αβ(ε) = −i

∫
dε′

2π

[
G<

αβ(ε′)G A
βα(ε′−ε) + G R

αβ(ε′)G<
βα(ε′−ε)

]
, (7.224)

Π<
αβ(ε) = −i

∫
dε′

2π
G<

αβ(ε′)G>
βα(ε′−ε). (7.225)
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