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Abstract. Many real-world problems usually deal with high-dimensional data,
such as images, videos, text, web documents and so on. In fact, the classification
algorithms used to process these high-dimensional data often suffer from the low
accuracy and high computational complexity. Therefore, we propose a frame-
work of transforming images from a high-dimensional image space to a
low-dimensional target image space, based on learning an orthogonal smooth
subspace for the SIFT sparse codes (SC-OSS). It is a two stage framework for
subspace learning. Firstly, a sparse coding followed by spatial pyramid max
pooling is used to get the image representation. Then, the image descriptor is
mapped into an orthonormal and smooth subspace to classify images in low
dimension. The proposed algorithm adds the orthogonality and a Laplacian
smoothing penalty to constrain the projective function coefficient to be
orthogonal and spatially smooth. The experimental results on the public datasets
have shown that the proposed algorithm outperforms other subspace methods.
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1 Introduction

Image classification is one of the most fundamental problems in computer vision and
pattern recognition. The primary objective of image classification is to assign one or
more category labels to an image. It has been applied in a variety of fields such as video
surveillance, image and video retrieval, web content analysis and so on. In image
classification, image representation plays a very important role. In the past, many
representation methods based on color, texture, shape, etc. were proposed. For the
images of single color, single texture and single shape, the representations use these
simple features are very excellent for image classification. Moreover, they have a small
amount of computation and low computational complexity. However, in real life, a
large number of images contain various and colorful content, in this case, the
above-mentioned representations are far not enough to do image classification. In
recent years, the Scale Invariant Feature Transform (SIFT) [1] descriptor has been
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widely used. SIFT descriptor is the local feature of the image, it keeps invariant to
rotate, scale zoom, brightness variation, and a certain stability to the change of the
viewing angle, affine transformations and the noise.

However, due to SIFT descriptor’ high dimension, it leads to the “curse of
dimensionality” [2]. So, the work of pre-processing for SIFT descriptor is quite
important. In recent years, the bag of visual words (BoW) model [3] is widely applied
for image analysis. But, there are two main recognized drawbacks [4] existing in BoW
model: (1) In dictionary, the approach selects randomly visual words, which severely
limits the descriptive power of image representation. (2) The model loses the spatial
information of raw image. To overcome the first problem, sparse coding succinctly
represents data vectors with several basis vectors in the dictionary, which requires only
a relatively small number of bases to represent the signal. There are two basic
requirements in sparse coding. One is that sparse coding feature is similar to the
original as possible. Another is that coding coefficient is sparse. This shows that sparse
coding not only can well retain the original features, but also greatly simplifies the
complexity of the subsequent calculation. By overcoming the second problem of the
BoW model, a spatial pyramid method is proposed [4, 5], which extended the BoW
model by partitioning the image into sub-regions and computing histograms of local
features.

From a space perspective, image classification can be considered as a classifier
design problem. In this circumstance, an image of n × m pixels can be represented by a
n × m-dimensional vector. Then, the researchers focus on designing a classifier which
can classify images in the n × m-dimensional space effectively. In fact, the linear
low-dimensional subspace [6] can significantly improve the performance of image
classification. Principle Component Analysis (PCA) [7] and Linear Discriminate
Analysis (LDA) [8] are very prominent subspace methods and they have got promising
accuracies in image classification. However, they failed to consider the specific
structures of images and cannot fully explore the spatial information. Hence, the
orthogonal smooth subspace [9] is proposed. However, the algorithm uses the color
features to classify. For single colorful images with very obvious target, the algorithm
gets good classification performance. But, for various colorful target images e.g. in
each class, the colors of images are various, and there is interference of other objects in
the background of the target image, such as these images in Caltech101, this algorithm
will lose its superior classification performance.

Based on the above-mentioned analysis, considering the low accuracy and high
computational complexity of high-dimensional data in the classification algorithms, an
orthogonal smooth subspace for the SIFT sparse codes (SC-OSS) was proposed. In the
new algorithm, we transform images from a high-dimensional image space to a
low-dimensional space. In the new algorithm, sparse coding followed by spatial pyr-
amid max pooling is used to get the image representation. Then, the obtained repre-
sentation is mapped into an orthonormal and smooth subspace in low dimension.
Experiments will show that our approach get higher classification accuracy on the
public datasets.

The rest of the paper is organized as follows. In Sect. 2, we describe and analyze
sparse codes of SIFT descriptor using spatial pyramid max pooling. Section 3 presents
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the orthogonal smooth subspace learning model. Section 4 explains the parameters
setting. Section 5 shows some experimental results, and Sect. 6 concludes the paper.

2 SIFT Sparse Codes Using Spatial Pyramid Max Pooling

2.1 The Sparse Codes

Let X be a set of SIFT appearance descriptors, X ¼ x1; x2; . . .; xM½ �T2 RM�D. The
sparse coding method mainly solves the following problem

min
u;v

XM
m¼1

xm � umVk k2 þ k umj j ð1Þ

where V ¼ v1; . . .; vk½ �T is the codebook, K is the size of the codebook. Normally, the
codebook V is an overcomplete basis set, i.e.,K > D. U ¼ u1; . . .; uM½ �T is the coding
matrix, um is constrainedL1-norm regularization, i.e., after the optimization, the only
nonzero element in um denotes the vector xm.

The problem (1) is not convex with respect to both variables U and V. Thus, we
cannot directly get the global optima for the problem. So, the way is to solve (1)
iteratively by alternatively optimizing over V or U while fixing the other. Fixing V, we
can solve the following optimization by optimizing over each coefficient um
individually

min
um

xm � umVk k2þk umj j ð2Þ

The optimization (2) is well known as Lasso in the Statistics, and it is essentially a
linear regression problem with L1-norm regularization on the coefficients. Fixing U, we
can solve the optimization (3) by the Lagrange dual as used in [10]. The optimization
(3) is a least square problem with quadratic constraints, where typically applied a unit
L2-norm constraint on vk to avoid trivial solutions.

min
V

X� UVk k2F
s:t: vkk k� 1; 8k ¼ 1; 2; . . .K

ð3Þ

2.2 Spatial Pyramid Max Pooling

In spatial pyramid model, the feature will be partitioned into 2l × 2l blocks in different
scales. Here, we construct two levels spatial pyramid, i.e., l = 0, 1. From sparse coding,
we already get the coefficient U. Then, in each level of spatial pyramid model, the max
pooling function [13] is used to compute the image features:
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rj ¼ max u1j
�� ��; u2j

�� ��; . . .; uMj

�� ��� � ð4Þ

where rj is the j-th element of the image feature, uij is the element of j-th column and
i-th row of the coding matrix U, and M is the number of local descriptors in this region.

3 Orthogonal and Smooth Subspace Method

From the above framework of sparse coding followed by spatial pyramid max pooling,
we get a 5 × K-dimensional feature space. And it is a high dimensional space. The
performance of image classification can be improved significantly in a linear
low-dimensional subspace. So we propose an orthogonal smooth subspace for the SIFT
sparse codes (SC-OSS). A more detailed description of the proposed algorithm is
shown in Fig. 1. Firstly, we extract SIFT feature to get the local descriptor. Then,
sparse coding and max pooling is applied to get the high dimensional description. At
last, the orthonormal and smooth subspace method is proposed to obtain the low
dimensional description of the image.

In the following, we will project each image feature into a low dimensional sub-
space by yi ¼ WTxi after getting the 5 × K-dimensional vector. W 2 R n1�n2ð Þ�d is the
transformation matrix and d is the dimensionality of the subspace.

A popular image classification aim is to find a set of centers for which the
within-cluster spread is small; the between-clustering spread is large in some sense.
Therefore, the optimization objection used of our paper is:

max trace S�1
w Sb

� � ð5Þ

where Sw is the within-class scatter matrix and Sb is the between-class scatter matrix.
Sw measures how compact or tight the classes are and it is defined as

Sw ¼
XC
j¼1

Xqj
i¼1

yi �mj
� �

yi �mj
� �T ð6Þ

where mj ¼ 1
qj

Pqj
i¼1

yi (j = 1, 2, …, C), qj is the number of samples in class j. Sb measures

how scatter the class centers are from the sample mean and it is given by

Sb ¼
XC
j¼1

qj mj �m
� �

mj �m
� �T ð7Þ

where m ¼ 1
n

Pn
i¼1

yi. By making the substitution yi ¼ WTxi into (6) and (7), we can get
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Sw ¼
XC
j¼1

Xqj
i¼1

WTxi �WTmj
� �

WTxi �WTmj
� �T¼WT

XC
j¼1

Xqj
i¼1

xi �mj
� �

xi �mj
� �TW

¼ WTSwxW

ð8Þ

Sb ¼
XC
j¼1

qj WTmj �WTm
� �

WTmj �WTmj
� �T

¼ WT
XC
j¼1

qj mjx �mx
� �

mjx �mx
� �TW ¼ WTSbxW

ð9Þ

Then we can rewrite (5) as

maxtrace WTSwxW
� ��1

WTSbxW
� �� �

ð10Þ

where Swx and Sbx are the within-class scatter matrix and between-class scatter matrix
in the original image feature space. Here, we add the orthogonal constraints, i.e.,
WTW ¼ I. It guarantees that the embedding coefficients are invariant only when one
multiples the transformation matrix by an orthogonal matrix. And then, we use the 2-D
discretized Laplacian smoothing term, which has been successfully used in [11]. It is a
n1n2 × n1n2 matrix:

D ¼ D1 � I2 þ I1 � D2 ð11Þ

where Ij is the nj × nj identity matrix for j = 1, 2. ⊗ is the Kronecker product. Dj is

Dj ¼ 1
h2j

�1 1 0
1 �2 1

. . . . . . . . .
1 �2 1

0 1 �1

0
BBBB@

1
CCCCA

ð12Þ

Fig. 1. The flow-chart of the proposed SC-OSS algorithm
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where hj ¼ 1
nj
, forj = 1, 2.

Therefore, the objective function can be written as:

arg max
WTW¼I

trace WT Swx þ kDTD
� �

W
� ��1� WTSbxW

� �� �
ð13Þ

Where λ is the balance parameter and I is an identity matrix. Use the Lagrangian
method to solve the following problem.

U Wð Þ ¼ trace WT Swx þ kDTD
� �

W
� ��1� WTSbxW

� �� �
� trace C WTW� I

� �� �

ð14Þ

Let A ¼ Swx þ kDTD, B ¼ Sbx. Differentiating U Wð Þ with respect to W and set it
to be zero. Then, we have

WTAW
� ��1

AW WTAW
� ��1

WTBW� BW
� �

�WC ¼ 0 ð15Þ

Multiple both sides of Eq. (15) by WT, we can get WTWC¼0. Note that there
always exists WTW ¼ I. Therefore, we can deduce C¼0. Hence,

AW WTAW
� ��1

WTBW� BW ¼ 0 ð16Þ

Let D¼WTAW, E¼WTBW. Substituting D and E into (16), we can get

BW ¼ AWD�1E ð17Þ

Since D and E are symmetric, there always exists a nonsingular matrix P, satisfying

PTDP ¼ I and PTEP ¼ K, where K is a diagonal matrix. Hence, D ¼ PT
� ��1

P�1,

E ¼ PT
� ��1

KP�1. By making the substitution D and E into (17), we can get

BWP ¼ AWPK ð18Þ

Let V ¼ WP, then W ¼ VP�1. Therefore, V is the generalized Eigen matrix of the
matrix pairs B and A. Substituting W ¼ VP�1 into WTW ¼ I, we have

P�1
� �T

VTVP�1 ¼ I. Perform the following eigenvalue decomposition of the matrix
VTV: VTV ¼ URUT, then

P�1� �T
URUTP�1 ¼ I ð19Þ

Thus, we can get P�1 ¼ UR�1=2. Therefore, we can get the transformation matrix
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W ¼ VP�1 ¼ VUR�1=2 ð20Þ

After getting the low dimensional feature yi, the Nearest Neighbor is used to
classify images.

4 Parameters Selecting

For the orthogonal smooth subspace, we get the balance parameter λ by another
parameter α, which is irrelevant to numerical scale.

k ¼ amaxðdiagðSwxÞÞ ð21Þ

Here, we determine α = 0.001 by cross validation based on previous work [9].
Another parameter is the dimensionality: d. The optimal dimensionality of subspace

is equal to rank Sbxð Þ. In real applications, we know that rank Sbxð Þ ¼ C � 1. Thus, we
also empirically choose d = C – 1 in the following experiments.

5 Experiments

For the purpose of testing the performance of our SC-OSS algorithm, experiments are
conducted on the Caltech 101 data set (only the twenty maximum data sets are used),
the Coil20 data set and the Flickr 13 animal images data set selected from a subset of
NUS-WIDE data sets. In order to verify the classification performance of the SC-OSS,
we compare it with LDA [8], OLDA [12], OSSL [9], KSPM [4], ScSPM [5] and
LLC [14].

Firstly, we compare the performance of the algorithms with different number of
training images and the experiments are repeated for 10 times. The average classifi-
cation accuracy is shown in Tables 1, 2 and 3.

From Table 1, we observe that SC-OSS performs best among all the methods. It
outperforms OSSL by more than 20 % and even outperforms LDA and OLDA by a
large margin. And, it also achieves higher accuracy than ScSPM, KSPM and LLC.
From Tables 2 and 3, the SC-OSS algorithm again achieves much better performance

Table 1. Classification rate (%) comparison on twenty maximum datasets of Caltech101 dataset
(Mean ± Std-Dev%).

Algorithms 15training 30training 45training 60training

LDA 20.5 ± 1.8 26.2 ± 4.1 32.8 ± 2.4 32.8 ± 2.0
OLDA 27.6 ± 3.8 34.7 ± 3.0 36.0 ± 1.2 39.2 ± 4.4
OSSL 43.0 ± 1.9 52.2 ± 1.5 57.1 ± 0.7 61.1 ± 1.0
KSPM 68.3 ± 1.5 76.4 ± 2.1 80.5 ± 1.0 81.5 ± 1.8
ScSPM 76:3� 1:5 80:0� 0:7 82:4� 0:6 83:9� 0:8
LLC 68.9 ± 1.8 74.8 ± 0.9 77.8 ± 0.8 80.3 ± 0.8
SC-OSS 73:1� 1:5 81:8� 1:0 87:2� 0:8 90:2� 0:7
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than listing algorithms. Meanwhile, from experimental standard derivation, we gen-
erally find that our method standard derivations are relatively smaller than another
algorithms, it means that our method is more stable to training samples.

In the following, we compare the max pooling with other pooling methods, namely,
the mean of absolute values (Abs) and the square root of mean squared statistics (Sqrt).
The other two pooling functions are defined as

Abs : zj ¼ 1
M

XM
i¼1

uij
�� �� ð22Þ

Sqrt : zj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
i¼1

u2ij

vuut ð23Þ

As shown in Table 4, the performance of max pooling is the best, probably due to
its robustness to local spatial variations. We also investigate the effects of codebook

Table 2. Classification rate (%) comparison on Coil20 dataset (Mean ± Std-Dev%).

Algorithms 5training 10training

LDA 43.4 ± 8.0 45.4 ± 11.9
OLDA 55.7 ± 6.0 60.3 ± 4.1
OSSL 84.5 ± 2.0 89.7 ± 0.8
KSPM 76.2 ± 2.0 80.5 ± 0.9
ScSPM 89.2 ± 1.4 94.2 ± 1.6
LLC 88.8 ± 0.6 93.8 ± 0.8
SC-OSS 89:4� 0:8 96:9� 0:8

Table 3. Classification rate (%) comparison on Flickr 13 animal images dataset
(Mean ± Std-Dev%).

Algorithms 50training 75training 100training

LDA 9.7 ± 0.5 10.2 ± 0.6 9.1 ± 0.5
OLDA 10.1 ± 0.8 10.6 ± 0.7 9.2 ± 0.5
OSSL 10.8 ± 0.7 10.4 ± 0.9 11.2 ± 0.6
KSPM 26.9 ± 0.8 28.8 ± 0.6 28.7 ± 0.6
ScSPM 34.5 ± 0.8 36:8� 1:1 37:4� 0:8
LLC 34:8� 1:0 36.8 ± 1.2 38.0 ± 1.4
SC-OSS 30:9� 0:8 37:2� 0:8 40:7� 1:2

Table 4. The performance comparison using different pooling methods on ten maximum
datasets of Caltech 101 dataset (Mean ± Std-Dev%).

Pooling Max Abs Sqrt

Caltech101 88:7� 0:8 78.9 ± 1.3 84:3� 1:2
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sizes. Here, we design three sizes: 256, 512 and 1024. As shown in Table 5, we find
that the performance for our method keeps increasing when the codebook size goes up
to 1024.

6 Conclusion

In this paper, we propose a framework of transforming images from a high-dimensional
image space to a low-dimensional target image space, based on learning an orthogonal
smooth subspace for the SIFT sparse codes (SC-OSS). By sparse coding followed by
spatial pyramid max pooling, we get the excellent image representation. Then, the
high-dimensional representation is mapped into a low dimension subspace to classify
images. The low dimension subspace adds the orthogonality and a Laplacian
smoothing penalty to constrain the projective function coefficient to be orthogonal and
spatially smooth. So, comparing with other methods, our method performs better on the
public datasets. Moreover, in terms of the sparse coding, it also has much value to be
worth studying. Further research of this proposed method is a valuable direction.
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