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Abstract. Visual appearance of landmark photos changes significantly in dif-
ferent weather conditions. In this work, we obtain weather information from a
weather forecast website based on a landmark photo’s geotag and taken time
information. With weather information, we adaptively adjust weightings for
combining distances obtained based on different features and thus propose a
weather-adaptive distance measure for landmark photo classification. We verify
the effectiveness of this idea, and accomplish one of the early attempts to
develop a landmark photo classification system that resists to weather changes.

Keywords: Weather-adaptive distance metric � Landmark classification

1 Introduction

Landmark image classification has emerged as an important research topic due to its
potential usage of location-based service and large-scale image retrieval. Famous
landmarks such as Eiffel Tower and Statute of Liberty attract millions of visitors every
year, who took pictures of the landmarks from unlimited viewpoints in various con-
ditions, and then shared them on social media platforms. Large amounts of landmark
photos thus urge the need of efficient retrieval/access as well as effective
recognition/classification.

Many studies of landmark classification and its extended variants, i.e., location
prediction/recognition, have been widely proposed in recent years. They mainly focus
on integrating multimodal features such as geographical information and visual
information, or developing classification models based on large-scale datasets. How-
ever, the problem of high intra-class variations caused by drastically different visual
conditions still remains.

In this paper, we investigate one factor that largely affects visual appearance of
landmark images: weather types. Through the whole year many people visit Notre
Dame, for example, and take photos under various weather conditions. Figure 1 shows
sample photos taken at Notre Dame and Sacre Coeur on sunny and cloudy days,
respectively. From this figure we see visual appearances are significantly different in
different weathers due to the sky and the intensity of lighting on the building. Such
intra-class variations impede accurate image classification. However, the influence of
weather types on measuring image similarity was overlooked before. In this work we
propose a weather-adaptive distance metric so that better similarity measurement
between images can be achieved, and thus better landmark image classification is
expected.

© Springer International Publishing Switzerland 2015
Y.-S. Ho et al. (eds.): PCM 2015, Part II, LNCS 9315, pp. 139–148, 2015.
DOI: 10.1007/978-3-319-24078-7_14



When comparing two landmark images, we could calculate their distance from
many perspectives, such as texture and local feature points, and then linearly combine
distances respectively calculated based on each feature. With weather properties
obtained from a weather forecast website, we propose to adjust weightings by for-
mulating this task as an optimization problem. As the first contribution of this work, we
consider its analogy to single neuron training and determine the optimal weightings by
the gradient method. As the second contribution, more effective features can be dis-
covered and prioritized through the learnt weightings, and more accurate landmark
image classification can be achieved.

The rest of this paper is organized as follows. In Sect. 2 literature of landmark
image classification will be surveyed. Details of the weather-adaptive distance metric
with weight learning are described in Sect. 3. Section 4 provides discussion of the
proposed metric and performance of landmark image classification, followed by con-
cluding remarks in Sect. 5.

2 Related Works

Landmark image classification has been widely studied in the past decade. We briefly
review some of them in the following. Zheng et al. [14] built an internet-scale landmark
dataset by mining true landmark images from GPS-tagged photos and tour guide web
pages. Unsupervised clustering techniques and visual models based on feature points
were adopted to build a landmark recognition engine. Yi et al. [11] also built a
large-scale dataset and adopted the bag of feature approach associated with multiclass
SVM to achieve landmark image classification. They also showed that using textual
tags and temporal constraints leads to significant performance improvement over the
visual only method. Li et al. [13] combined 2D appearance and 3D constraints to
discover iconic views of a landmark, which were later used in landmark recognition.
Chen et al. [9] proposed a soft bag-of-visual phrase approach for mobile landmark
recognition. Visual phrases were learnt in a category-dependent manner to achieve
promising recognition performance. Min et al. [12] proposed an efficient mobile
landmark search system where the client uploads compressed images to the server, and
the server recognizes landmark by matching the uploaded image with landmark texture
projected from pre-constructed landmark 3D models.

Since the IMG2GPS system proposed in [6], studies of geographical location
estimation emerge in recent years. Hays and Efros [6] estimated the geographical
location of a query photo based on a data-driven scene-matching approach. Li et al. [8]
improved the scene-matching approach by jointly considering visual similarity and
geographical proximity to build a ranking method. Lin et al. [7] greatly extended the
scene-matching approach by further considering overhead appearance and land cover
survey data. A query photo can be localized even if it has no corresponding
ground-level images in the database. Fang et al. [5] adopted latent SVM to discover
geo-informative attributes from regions in order to facilitate better location recognition
and exploration.

Although there have been many works targeting at landmark or location recogni-
tion, few of them specially tackled visual variations caused by lighting, editing, or
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weather change. Shen and Cheng [10] proposed gestalt rule feature points to find visual
correspondence between images of different styles (painting vs. photograph, or pho-
tographs in different colors) but containing the same semantic meaning. However,
methodology or features especially designed to consider visual variations caused by
weather conditions are still missing. In this work, we focus on developing a distance
metric considering weather conditions.

3 Weather-Adaptive Distance Metric

3.1 Common Distance Metric

Given two images Ip and Iq, assuming that each image can be represented by N types of
features, i.e., Ip ¼ fp1; . . .; pNg and Iq ¼ fq1; . . .; qNg, the conventional way to inte-
grate distances derived from features is:

DðIp; IqÞ ¼
XN

i¼1
widiðpi; qiÞ; ð1Þ

where diðpi; qiÞ is the normalized distance calculated based on the ith feature.
Weightings wi’s are often empirically set or simply follows a uniform distribution, i.e.,
wi ¼ 1=N. However, the integrated distance DðIp; IqÞ often cannot reflect impacts of
different features, yielding limited landmark classification performance.

To show the shortage of this simple metric, from Flickr we collect photos of famous
landmarks that were captured on sunny days or cloudy days. We then calculate inte-
grated distance DðIp; IqÞ between photos that are randomly selected following four
schemes: (1) Ip and Iq are from the same landmark under the same weather type (sunny
or cloudy); (2) Ip and Iq are from the same landmark under different weather types (one
is sunny and another is cloudy); (3) Ip and Iq are from different landmarks under the
same weather type; (4) Ip and Iq are from different landmarks under different weather
types. The integrated distance DðIp; IqÞ is obtained by combining individual features
respectively derived from Gabor texture features, haze features, bag of visual words,
and CNN features. The individual distance diðpi; qiÞ is measured by Euclidean distance.
Details of the evaluation dataset and features will be described in Sect. 4.

Figure 2 shows distributions of integrated distances DðIp; IqÞ between photos
selected based on four different schemes. Comparing the distributions obtained based

Fig. 1. Left to right: sample photos of Notre Dame on sunny days, Notre Dame on cloudy days,
Sacre Coeur on sunny days, and Sacre Coeur on cloudy days.

Weather-Adaptive Distance Metric for Landmark 141



on the first and the third schemes, under the same weather condition, distances between
photos from the same landmark are similar to that from different landmarks. This shows
weather properties dominate calculation of distance measure. The first two distributions
(obtained based on the first two schemes) are similar to the last two distributions
(obtained based on last two schemes). This means the common distance metric cannot
reliably describe that photos from the same landmark are similar, while photos from
different landmarks are relatively distinct even when they were captured under the same
weather condition.

3.2 Weather-Adaptive Distance Metric

The characteristics shown in Fig. 2 motivate us to propose a weather-adaptive distance
metric for measuring landmark photos. The idea is to adjust weightings for combining
individual distances in a systematic manner. Let us model whether two photos Ip and Iq
belong to the same landmark based on the integrated distances like this:

y ¼
XN

i¼1
widiðpi; qiÞ ¼ dTw; ð2Þ

where w ¼ ½w1; . . .;wN �T and d ¼ ½d1ðp1; q1Þ; . . .; dNðpN ; qNÞ�. The indicator y ¼ 0 if Ip
and Iq are from the same landmark (no matter whether they were under the same
weather condition or not), and y ¼ 1 otherwise.

We wish to find the values of weights w1, …, wN such that the estimated indication
value is as close as the ground truth. Given a training dataset fðd1; y1Þ; . . .; ðdM ; yMÞg
constituted by randomly selecting M photo pairs from the collected landmark photo
collection, the training problem is formulated as the following optimization problem:

minimize
XM

j¼1
ðyj � dTj wÞ2; ð3Þ
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Fig. 2. Distributions of integrated distances calculated based on four settings. ET stands for
Eiffel Tower, and BB stands for Big Ben.
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where the minimization is taken over all w ¼ ½w1; . . .;wN �T 2 RN . The term dTj w is the
estimated indication value, and the objective function represents the sum of squared
errors between the desired output yj and the estimated result dTj w. We can write the
optimization problem in matrix form:

minimize y� DTw
�� ��2; ð4Þ

where D ¼ ½d1 � � � dM � and y ¼ ½y1; . . .; yM �T .
We have more training points than the number of weights. Assuming that rank of

DT is N, the objective function is simply a strictly convex quadratic function of w. In
this work, we utilize a fixed-step-size gradient algorithm [3] that iteratively updates the
weighting vector w in the following form:

wðkþ1Þ ¼ wðkÞ þ aDeðkÞ; ð5Þ

where a is the predefined step size, and eðkÞ¼ y� DTwðkÞ is the estimation error at the
kth iteration.

Through the process mentioned above, we learn the optimal weighting vector
w ¼ ½w1; . . .;wN �T that causes the minimum estimation error.

4 Experiments

4.1 Experimental Settings

The collected dataset consists of sunny and cloudy photos of five famous landmarks,
including Big Ben, Eiffel Tower, Notre Dame, Sacre Coeur and Winsor Castle. Table 1
shows information of the collected dataset. The numbers of sunny and cloudy photos
are roughly balanced, and there are totally 1,210 photos in the dataset.

Features. We use Gabor texture features [2], haze features [1], bag of feature points
[11], and CNN features [15] to describe an image. For Gabor texture features, image
pixels’ intensity are transformed into the frequency domain, which is then decomposed
into 16 ranges by the Gabor Wavelet functions with four scales and four orientations.
Mean and standard deviation of the magnitude of the transform coefficients in each

Table 1. Information of the evaluation dataset.

Landmark Sunny Cloudy

Big Ben 100 100
Eiffel Tower 138 143
Notre Dame 105 104
Sacre Coeur 168 101
Winsor Castle 141 110
Sum 652 558
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range are used to represent each frequency band, and are then concatenated to form a
32-D texture feature vector.

For haze features, dark channel prior [4] is first calculated for each pixel. An image
is partitioned by a spatial pyramid scheme, i.e., uniformly partitioned into 22, 42, and 82

non-overlapping regions to obtain 84 sub-regions. The median values of dark channel
intensities in these sub-regions are concatenated as an 84-D haze feature vector [1].

Following the single image classification process proposed in [11], we describe an
image by a bag of visual words (BoW) model. We utilize the visual vocabulary (with
10,000 visual words) built in Top-SURF [16] to construct an image’s 10,000-D BoW
representation.

Currently using convolutional neural network (CNN) features largely surpasses
hand-crafted features. To extract CNN features, we utilize the MatConvNet package
[17] with the pre-trained model obtained based on ImageNet ILSVRC-2012. There are
five convolutional layers and three fully-connected layers in the CNN model. The first
convolutional layer filters the input image with 64 kernels of size 11� 11� 3 with a
stride of 4 pixels. The second convolutional layer makes filtering with 256 kernels of
size 5� 5� 64. The third, fourth, and fifth convolutional layers are connected to one
another without any intervening pooling or normalization layers. The third and fourth
convolutional layer have 256 kernels of size 3� 3� 256, respectively, and the fifth
convolutional layer has 4096 kernels of size 6� 6� 256. The fully-connected layers
have 4096 neurons each. We try to take output of the fifth, sixth, and seventh layers to
be CNN features, and found that features from the sixth layer yield the best perfor-
mance through our preliminary experiments.

Experimental Settings. Based on the dataset, we adaptively adjust weights for
measuring distances between photos captured in the same weather condition or in
different weather conditions. Particularly, we randomly select pairs of sunny photos to

form the training pool SS ¼ fIðsÞ1 ; . . .; IðsÞM g. For each pair in SS, if the two photos Ip and
Iq belong to the same landmark, the indicator y is set as 0, and set as 1 otherwise. Initial
weighted distances between selected pairs, as defined in Eq. (1), and the associated
indicators, are treated as the training data, and the updated procedure described in
Eq. (5) is used to adjust weightings specifically for measuring distance between sunny

photos. We denote the adjusted weightings as wSS ¼ fwðsÞ
1 ; . . .;wðsÞ

4 g. Similarly, we

randomly select pairs of cloudy photos to form the set CC ¼ fIðcÞ1 ; . . .; IðcÞM g, and

determine the adjusted weightings wCC ¼ fwðcÞ
1 ; . . .;wðcÞ

4 g. To appropriately measure
distance between two photos that were captured in different weather conditions, we also
randomly select M photo pairs, where for each pair one photo is sunny and another is
cloudy. Based on the corresponding initial weighted distances and associated indica-

tors, the adjusted weightings wSC ¼ fwðtÞ
1 ; . . .;wðtÞ

4 g are determined.
Because the captured time and geographical information are available for each

photo in our database, we can use this information to obtain weather type through the
API provided by the Weather Underground website1. Overall, given a pair of photos

1 Weather Underground, http://www.wunderground.com/.
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(one may be query, and another may be from the landmark database), we first select
appropriate weights from wSS, wCC, or wSC, according to their weather types, and then
calculate the weighted distance between them as the foundation for landmark classi-
fication or other applications.

4.2 Distributions of Distances

Figure 2 shows that integrated distance distributions are similar no matter photos in the
same landmark or in different landmarks are compared. Through the proposed
adjustment, we verify that through the adjusted weightings distances between photos
can be more appropriately captured.

Figure 3 shows distributions of integrated distances between (a) sunny photos,
(b) cloudy photos, and (c) one sunny photo and one cloudy photo, in the same land-
mark (blue curves) or in different landmarks (red curves). From all these three sub-
figures, we see that before weighting adjustment (solid curves), distance distributions
between photos in the same or different landmarks are similar. After adjustment, dis-
tance distributions coming from photos at the same landmark move apart from that for
different landmarks.

To quantitatively show the effect of weighting adjustment, we calculate the sym-
metric KL divergence between distance distributions respectively derived for same
landmark and different landmarks. Table 2 shows detailed information. We can
quantitatively observe that the KL divergence between distance distributions largely
increases after weighting adjustment.
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Fig. 3. Distributions of integrated distances before and after weighting adjustment. From left to
right: distributions of sunny vs. sunny photos; distributions of cloudy vs. cloudy photos;
distributions of sunny vs. cloudy photos.

Table 2. KL divergences of distance distributions.

Type Before adjustment After adjustment

Sunny-Sunny 0.0830 0.4034
Cloudy-Cloudy 0.2251 0.5134
Sunny-Cloudy 0.0383 0.3717
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Figure 4 shows absolute values of learnt weights for the three different schemes.
We especially notice the relative values of these weights, and observe that BoW and
CNN features are consistently more important than the other two features. This con-
forms to recent studies on image classification, and also shows that the proposed
method can effectively learn weights.

4.3 Performance of Landmark Classification

We adopt a simple classification method, i.e., K-nearest neighbor classifier, to more
clearly show the effectiveness of weighting adjustment in landmark classification.
Given a query photo, we find its K-nearest neighbors based on integrated distance, and
classify the query photo as one of the landmark according to majority voting. We
compare classification performance obtained based on initial integrated distances
(Eq. (1)) with that obtained based on adjusted integrated distances (according to
weather types). Figure 5 shows accuracy of landmark classification with different
settings of the number of nearest neighbors (K). From this figure we clearly see the
significant improvement given by appropriately adjusting weightings.
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5 Conclusion

We have presented a weather-adaptive distance metric that is verified to yield better
landmark photo classification based on a pilot database. By considering multiple fea-
tures, distance between photos is usually calculated by combining individual distance
derived from each feature. In this work we advocate that, by further considering
weather type of the two compared photos, weightings that can better combine indi-
vidual features can be learnt. We formulate it as an optimization problem and find the
best weighting setting by a gradient algorithm. The reported evaluation verifies that the
learnt weightings yield more effective distances between photos and thus improve
performance of landmark photo classification increases with adjusted weightings. In the
future, a larger-scale evaluation will be conducted, and more elegant methods to
combine individual features and the corresponding learning problems will be studied.
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