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Abstract. In this study, we present a novel multi-cues active contours
based method for tracking target contours using edge, region, and shape
information. To locate the target position, a contour based meanshift
tracker is designed which combines both color and texture information.
In order to reduce the adverse impact of sophisticated background and
accelerate the curve motion, we extract rough target region from the
coming frame by the proposed target appearance model. What’s more,
both discriminative pre-learning based global layer and voting based
local layer are integrated into our appearance model. For obtaining the
detailed target boundaries, we embed edge, region, and shape informa-
tion into the level sets based multi-cues active contour model (MCAC).
Experiments on seven video sequences demonstrate that the proposed
method performs better than other competitive contour tracking meth-
ods under various tracking environment.

Keywords: Object contour tracking · Active contours · Level sets ·
Segmentation

1 Introduction

Tracking boundaries of moving objects is an important and challenging task
in computer vision. Unlike conventional tracking methods limited to use the
rectangular bounding-box or other stationary shapes [1] to represent the target,
contour tracking aims to extract the detailed target boundary information. In
order to meet this goal, a variety of non-rigid target contour tracking methods
have been proposed during last two decades.

In [2], Paragios et al. firstly use the geodesic active contour model [3] to drive
the curve to target boundaries during the evolution. Zhang et al. [4] introduce a
background mismatching based method for tracking the region of moving target.
Niethammer et al. [5] also propose a region based method for target contour
tracking. However, due to that only simple edge or region information is used,
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Fig. 1. Framework of the proposed contour tracking method.

these methods could not cope with the complex tracking environment, such
as pose variation, occlusion, and sophisticated background. Recently, Bibbly
et al. [6] propose a pixel-based contour tracking method which use generative
model, however, without the edge information, the tracker may lose precise target
boundary information. What’s more, in [7], Vaswani et al. use a particle filter
based mode tracker to track the target boundaries during the tracking. Combing
both region and edge information, Cai et al. [8] propose a contour tracking
framework. In [9], Fan et al. introduce an image matting based method to track
the target region on a scribble trimap. However, these methods could not capture
the various appearance in time, which may result in false segmentation.

In this paper, we propose a novel level sets based framework for tracking
non-rigid target boundaries using edge, region and shape information. Our work
mainly has the following three-fold contributions: (1) We propose a contour
based meanshift target locating algorithm which integrates joint color and tex-
ture cues. (2) We propose a novel superpixel based dynamic appearance model
using both global and local layers to extract the discriminative rough target
region. In our method, a AdaBoost based pre-learning model and a voting algo-
rithm are embedded into the global and local layers, respectively. Besides, for
capturing changes of the target under sophisticated background, we update the
appearance model dynamically during the tracking. (3) We also propose a multi-
cues active contour model (MCAC) which combines edge, discriminative region
and shape information for segmenting the target. To avoid the reinitialization
procedure and reduce the computing time during the curve evolution, a distance
regularization term is added in to the active contour model. With the discrimina-
tive region and shape information, the target could be segmented under various
environment. The framework of our method is shown in Fig. 1.

The rest of the paper is organized as follows: Sect. 2 describe our target
contour tracking framework. We show the qualitative and quantitative results in
Sect. 3. In Sect. 4, we summarize the paper.

2 Proposed Method

2.1 Contour Based Meanshift Target Locating

To reduce the impact of complex background and extract the target more
effectively, firstly we locate the target region before extracting its boundaries.
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Fig. 2. Illustration of our contour based meanshift tracker.

A natural approach to track and locate the target position would be simply use
meanshift, which use the rigid or elliptical region to represent the target. How-
ever, this approach has two drawbacks: (1) important target contour information
may be lost during the tracking; and (2) the tracker may be interfered by the
background in target boundingbox. To cope with these two problems, we use
non-rigid region to represent the target in our meanshift tracker.

Considering that the target shape changes continuously during the tracking,
which means that the shapes of targets between two continuous frame are highly
similar. As shown in Fig. 2, at frame t+1, we use the non-rigid target region IC(t)
in frame I(t) as the target template, which provides precise target information.
To enable our tracker achieve more robust tracking under various environment,
we extract both color and texture information from the target region. For color
information, a histogram is extracted in RGB&HSV color space, while for texture
information, LBP feature is used:

⎧
⎪⎨

⎪⎩

fR = {fcolor, ftexture}
fcolor = fRGB&HSV

ftexture = LBP(IC(t))
(1)

To measure the similarity between template region and candidates, we use
the following distance:

d(fR, f) =
√

1 − ρ[fR, f ] (2)

where ρ[·] is the Bhattacharyya distance between two discrete distributions,
which defined as:

ρ[fR, f ] =
N∑

i

√
fi,R · fi (3)

Then we use meanshift algorithm to find the target position y′
R in frame t + 1

as follows:

y′
R =

Σn
i=1yi,Rwig(·)
Σn

i=1wig(·) (4)

where wi is the candidates weights, and g(·) is the kernel, respectively. After
several iterations, a new non-rigid target position could be obtained in frame
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I(t + 1), as shown in Fig. 2. In our method, this non-rigid target region provides
important information for our appearance model, which will be described more
detailedly in Sect. 2.2.

2.2 Appearance Model Combing Global and Local Layers

Considering that sophisticated background may affect the curve motion dur-
ing the segmentation procedure, so we propose a appearance model to extract
rough target region from the coming frame I(t+1). Some prior works tend to use
pixel-based or sparse-based models to represent the target, however, those mod-
els usually lost the detailed target boundaries information. In our method, we
build a target appearance model based on superpixels, which enables the model
to retain both target region and boundary information simultaneously during
the tracking. Besides, rather than the single-layer target model in traditional
methods, we combine both global and local layers for obtaining the rough region
more robustly.

Discriminative Pre-learning Based Global Layer: In global layer, we use
discriminative method to extract the global rough target region. For every super-
pixel sp, a histogram based feature descriptor s is extracted in RGB and HSV
color space. Those feature descriptors are labeled by +1/ − 1 according to the
following criteria:

s =

{
s+, if (s ∩ Target)/s � η

s−, if (s ∩ Target)/s < η
(5)

To extract the rough target region during the tracking, an online AdaBoost
classifier is trained and updated dynamically based on the labeled samples.

However, the target appearance may change during the tracking, which may
lead to false classification. To avoid this problem, we pre-learning the target
appearance from the coming frame I(t+1) before classifying superpixels. Recall
that in Sect. 2.1, the meanshift tracker locates the non-rigid target region in
frame I(t+1), which enables us to use this information to update the AdaBoost
classifier. In pre-learning procedure, we select some unlabeled superpixels ran-
domly from the region IC(t+1) in next frame as the positive examples to update
the classifier. What’s more, the internal superpixels have higher probability to be
selected than ones closed to the periphery. After pre-learning the target appear-
ance, our model could capture changes of the target. Therefore, in the global
layer, a rough target region Rglobal

t+1 finally obtained, as shown in Fig. 3(e).

Voting Based Local Layer: However, under various tracking conditions, the
global layer may miss some local regions, which would result in false segmenta-
tion. To reduce the adverse impact of noises caused by global layer, we propose
a local voting algorithm to extract the target region. In our model, in order to
retain the local features, every unlabeled superpixel in coming frame I(t + 1) is
voted by the surrounded labeled superpixels in prior frame.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Illustration of our global and local based appearance model: (a) the located
position by our meanshift tracker; (b) superpixel segmentation; (c) the target edge
information; (d) discriminative region of the global layer; (e) result of voting in local
layer; (f) the final rough target regon; (g) final segmentation result on target region.

In local layer, we use the following distance to measure the similarity between
two superpixels:

dsp(si, sj) = exp (−ρ2[si, sj ]
σ

) (6)

where ρ(·) is the Bhattacharyya distance given in Eq. 3. For every superpixel in
I(t+1), the score which voted by the surrounded superpixels in I(t) is computed
by the following formula:

score(spi,t+1) =

∑spj,t∈Ωr

j
χ(dsp(si, sj))

‖χ(dsp(si, sj))‖0
(7)

where Ωr is the region of radius r surrounding the superpixel spi,t+1 in frame
I(t). Besides, the kernel function χ(·) is given by:

χ(dsp(si, sj)) =

{
dsp(si, sj), if dsp(si, sj) � ζ

0, if dsp(si, sj) < ζ
(8)

After the voting procedure, the local target region Rlocal
t+1 is obtained, as shown

in Fig. 3 (f).
For obtaining more stable target region, we combine the global and local

layers as follows: Rt+1 = Rglobal
t+1 ∪ Rlocal

t+1 . This rough target region provides
important region information for our active contour model, which will be dis-
cussed more detailedly in Sect. 2.4. Moreover, in order to reduce the noise cause
by those two layers, open operator is used to the expanded rough target region:

R′
t = (Rt � B1) ⊕ B2 (9)

where B1 and B2 denote the erosion and dilation structuring element, respec-
tively. As shown in Fig. 3 (g) and (h), after integrating both global and local
information into the appearance model, target could be extracted accurately.

2.3 Dynamic Shape Model

During the segmentation, various noise such as illumination and target appear-
ance changes may affect the curve evolution, which would results in the false
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segmentation. What’s more, some false negative regions generated by our appear-
ance model may also cause over-segmentation. In order to handle these problems,
we build a dynamic shape model to guide curve motion during the evolution.

For representing target shape St at time t, a gaussian kernel is applied to
target region: St = G(Ct), where Ct is the target region mask which is labeled
by 1s and 0s. During the tracking, our shape model is updated dynamically as
follows:

St =
t∑

k=1

pt−kG(Ck) = G(Ct) +
t−1∑

k=1

pt−kG(Ck)

= G(Ct) + St−1.

(10)

2.4 Multi-cues Active Contours and Curve Evolution

In this section, we will introduce our multi-cues active contour model for seg-
menting target which combines edge, region, and shape information. Because
conventional active contour models [3,10,11] only consider edge or region infor-
mation, therefore, the curve is vulnerable to be interfered by the complicated
background or obvious boundaries and may stop at the false position after evolu-
tion. To handle these limitations, in our method, we embed our dynamic appear-
ance model and shape model into active contours.

Edge Information: As many works refer, an edge-detector is defined for
extracting the image boundaries: g(|∇I|) = 1/(1 + |∇Î|2). Note that the rough
expanded target region R′

t, which is obtained in our appearance model as
described in Sect. 2.2, could reduce the negative effect of the background. There-
fore, to accelerate the curve evolution, we just let the curve move on the extended
rough target region I ′

R(t), where I ′
R(t) = R′

t · I(t). Then the edge information of
the rough target region could be represented as follows:

gedge =
1

1 + |∇ ̂R′
t · I(t)|2

= R′
t · g(|∇I(t)|) − R′

t + 1. (11)

According to the edge information gedge, we define an edge term in our active
contour model:

F1 �
∫

Ω

gedge · δ(ϕ)|∇ϕ |dx. (12)

Region Information: In many situations, it is hard to extract target bound-
aries due to the blurred edge or sophisticated background, which would affect
the curve motion during the evolution. In order to enable the curve to stop at
the target boundaries correctly, target region information is embedded into our
active contour model.

Recall that in Sect. 2.2, the rough target region Rt provides important infor-
mation of target region for the active contour model. To embed the region
information into our model, we transform the region Rt into homologous edge
information beforehand:
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gregion = g(|∇Rt · I(t)|) + g(|∇Rt|) − 1
= Rt · g(|∇I(t)|) + g(|∇Rt|) − Rt.

(13)

Therefore, we define the following region term in our active contour model:

F2 �
∫

Ω

gregion · δ(ϕ)|∇ϕ |dx. (14)

Shape Information: During the tracking, our appearance model may generate
some false negative regions. Caused by the false negative regions information, the
curve may move across the target boundaries, and stop at the wrong position.
To cope with this problem, we add the target shape information to the active
contour model:

{
g′

edge = St · gedge

g′
region = St · gregion

(15)

where St is the target shape model. Then we use Eq. 15 to update Eqs. 12 and 14,
respectively. After integrating with shape information, our active contour model
could produce more stable results.

Energy Functional and Curve Evolution: Combining the edge, region, and
shape information, we propose a multi-cues active contour model (MCAC):

E(ϕ) = αF1(ϕ) + βF2(ϕ) + μR(ϕ) + τA(ϕ) (16)

where A(ϕ) and R(ϕ) is area accelerate term and non-reinitialization term to
speed up the curve evolution procedure, respectively. These two terms are given
by:

A(ϕ) �
∫

Ω

g(|∇I(t)|)H(−ϕ)dx (17)

R(ϕ) �
∫

Ω

p(|∇ϕ |)dx (18)

where H(·) is the Heaviside function and p(·) is a potential function define in
[11]. By using the finite difference calculation framework, the following gradient
flow is obtained to optimize the energy functional E(ϕ):

∂ ϕ

∂t
= δε(ϕ) [α div (St · gedge · F) + β div (St · gregion · F)]

+ μdiv(dp(|∇ϕ |)∇ϕ) + τ g(|∇I|) δε(ϕ),
(19)

where F = ∇ϕ /|∇ϕ |.
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3 Experimental Results

3.1 Experimental Setup

The proposed method is implemented in MATLAB R2010b under Red Hat
Enterprise Linux platform on a Intel(R) Core(TM)i7 3.4 GHz processor with
3 GB memory.

Parameters Setting: In Sect. 2.2, the radius r of voting region Ωr is set to 20,
and ζ = 0.3. In Eq. 9, the erosion and dilation structuring element are 5 × 5 and
12 × 12, respectively. The updating parameter p in our dynamic shape model is
set to 0.6. Besides, we set α = 1, β = 3, μ = 1, and τ = 2 in our active contour
model. During the evolution, we set number of the inner and outer iteration
steps as 8 and 40, respectively.

Compared Algorithms and Evaluation Criteria: In our experiment, eight
target contour tracking algorithms are compared: (a) our method with distance
regularized level set evolution (DRLSE) [11]; (b) our method with region-based
active contours (G-CV) [10]; (c) our method with edge-based active contours
(GAC) [3]; (d) our method without shape information (w/o shape); (e) Scribble
tracker which based on matting approach (Scribble tracker) [9]; (f) particle filter
based mode tracker (deform PF-MT) [7]; (g) region tracking method based on
background mismatch (Mismatch) [4]; and (h) our proposed method (MCAC).
Moreover, To evaluate the segmentation performance, mis-tracked pixels rate
(MPR) is defined: MPRt = |Rg

t ∪Rt−Rg
t ∩Rt|/|Rg

t |, which indicates the coverage
ratio between result and ground truth.

3.2 Qualitative and Quantitative Analysis

Complex Background: We test the methods on video Lemming, where the
background is sophisticate during target moving, to verify the effectiveness of
our method. As shown in Fig. 4, due to the sophisticated background and lacking
of target shape information in DRLSE based method, the curve stops at the
misplaced boundaries. Because of the accumulated errors during the tracking,
Scribble tracker fails to segment the target correctly, yet. In our method, the
rough target region extracted by the global and local based appearance model
makes the segmentation environment more clear and provides important region
information for the active contour model. By combing the region and shape
information, our active contour model could cope with the interferences caused
by complex background.

Various Appearance: For demonstrating the improvements of our method
under various appearance tracking environment, we running the compared meth-
ods on video Seq sb. During the tracking, as shown in Fig. 5, due to the changes of
target pose and appearance, both deform PF-MT and Mismatch tracker lose the
appearance information and fail to extract the target. On the contrary, profiting
from the pre-learning procedure, our dynamic appearance model could capture



588 P. Lv and Q. Zhao

#56 #116 #144 #165

Fig. 4. Tracking results on Lemming with three methods (from top to bottom): Scribble
tracker [9], ours with DRLSE [11], and the proposed method.

#22 #74 #168 #193

Fig. 5. Tracking results on Seq sb with three methods (from top to bottom): Mismatch
tracker [4], Deform PF-MT [7], and the proposed method.

#83#54#13 #24

Fig. 6. Tracking results on Panda with three methods (from top to bottom): Scribble
tracker [9], ours w/o shape method, and the proposed method.
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Table 1. The mis-tracked pixels rate (MPR) on seven video clips with eight compared
methods (the second best results are labeled with red font).

Sequence w/o shape G-CV [10] GAC [3] DRLSE [11] Mismatch [4] Scribble [9] PF-MT [7] MCAC
Lemming 0.156 1.425 0.873 0.164 0.443 0.330 0.254 0.096
Sufer 0.432 1.995 0.829 0.497 0.664 0.284 0.322 0.262

Pedxing1 0.113 0.333 0.474 0.216 0.460 0.199 0.328 0.121
Seq sb 0.269 2.111 0.911 0.504 0.661 0.656 0.459 0.231
Seq dhb 0.439 1.727 0.603 0.326 0.881 0.490 0.405 0.253
Seq dt 0.183 1.343 0.696 0.436 0.494 0.656 0.491 0.153
Panda 0.226 2.229 1.698 0.463 1.952 1.327 0.874 0.181

the appearance changes promptly, which enables the proposed active contour
model to segment the target correctly.

Occlusion: As shown in Fig. 6, in video Panda, the target is occluded by a
tree and also rotates during its moving. At frame 54, Scribble tracker cannot
extract the target region due to the occlusion. Notice that here we also test our
method without shape information, as shown in Fig. 6, where we can see that
without the shape information, the curve crosses the target boundaries and stops
at internal region of the target. Thanks to the shape information in our active
contour model, our method could deal with the occlusion during the tracking.

Now we quantify our method. As shown in Table 1, the conventional active
contour model based methods (G-CV [10], GAC [3], and DRLSE [11]) usually
lose the target during the tracking. That is mainly because the noises from the
various tracking environment interfere the curve motion during the evolution,
which results in false segmentation. Due to lacking of the dynamic appearance
information, Mismatch tracker [4] could not capture the various appearance, and
fails to segment the target. Both Scribble [9] and deform PF-MT [7] tracker do
better on several tested sequences than conventional tracker, however, these two
methods could not cope with the occlusion, as tested on Panda. Integrating with
edge, region, and shape information, the proposed method performs better than
other state-of-the-art methods under various tracking environment.

4 Conclusion

In this paper, we propose a novel level set based target contour tracking method
based on multi-cues active contours by combing edge, region, and dynamic shape
information for segmenting the target. Qualitative and quantitative results show
that our method performs better than other state-of-the-art methods. Further
work will aim at developing a more powerful appearance model to represent the
target, which may improve the segmentation performance.
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