
A Heterogeneous Approach for Developing
Applications with FIWARE GEs

Simone Di Cola1, Cuong Tran1, Kung-Kiu Lau1, Antonio Celesti2,
and Maria Fazio2(B)

1 School of Computer Science, The University of Manchester,
Manchester M13 9PL, UK

{dicolas,ctran,kung-kiu}@cs.man.ac.uk
2 Facoltá di Ingegneria Contrada di Dio, S. Agata,

Universitá Degli Studi di Messina, 98166 Messina, Italy
{acelesti,mfazio}@unime.it

Abstract. The European Commission funded FIWARE project aims to
support the development of a European cloud, and a rich catalogue of
generic components called Generic Enablers (GEs). However, the lack
of an efficient approach and tool for developing applications using GEs
hinders their adoption. This paper tries to fill this gap by proposing
an approach based on a component model, along with its related tool,
that allows heterogeneous composition of GEs and non-GE components.
The approach is validated with a case study where a content delivery
application is developed.

Keywords: Cloud · FIWARE · Generic enabler · Component model ·
Heterogeneous composition

1 Introduction

FIWARE [3] is an initiative funded by the European Commission whose aim is
to ease the development of smart applications by means of an open cloud-based
infrastructure that offers a catalogue of ready-made components called Generic
Enablers (GEs). Each GE offers a number of general-purpose functions through
public and royalty-free APIs.

Developing an application using FIWARE GEs means constructing a software
system by composing GEs with non-GEs software components [2]. In current
state of the art, GEs can be used in a workflow, or composed in a GE bundle1.

In a workflow, GE instances are orchestrated. Workflow activities invoke
specific services on GE instances which are already deployed on some servers.

C. Tran—Research leading to these results has received funding from the EU
ARTEMIS Joint Undertaking under grant agreement no. 621429 (project EMC2)
and from the Technology Transfer Board (TSB) on behalf of the Department for
Business, Innovation & Skills, UK.

1 http://catalogue.fiware.org/bundles

c© IFIP International Federation for Information Processing 2015
S. Dustdar et al. (Eds.): ESOCC 2015, LNCS 9306, pp. 65–79, 2015.
DOI: 10.1007/978-3-319-24072-5 5

http://catalogue.fiware.org/bundles


66 S. Di Cola et al.

Fig. 1. A workflow using Generic Enablers.

For instance, Fig. 1 depicts a workflow where three activities A, C, and D invoke
respectively GET, POST and PUT methods to GE instances on Server1 and
Server2.

A bundle, in contrast, is a template that dictates a possible composition of
specific GEs directly interacting with one another. Such composition is described
informally as configuration instructions to be manually performed when partici-
pating GEs are deployed. As such, composition is not concrete until deployment
time. Moreover, complex control flows or data transformations usually need to
be developed afresh as services sitting between GEs.

Fig. 2. A GE bundle.eps

Fig. 2 depicts an example of bundle which consists of five GEs. Those GEs
can be configured so that GE1 can call GE2 which can call GE3 and GE4. GE3

calls services in CS1 which then calls GE5.
We argue that both mechanisms are inefficient in developing GE-based appli-

cations. A workflow requires that all participant components expose WSDL or



A Heterogeneous Approach for Developing Applications with FIWARE GEs 67

RESTful services. This represents a heavy-weight solution [6], which is some-
times not even applicable (e.g. for a GUI component). A bundle composes a
set of GEs, but it needs to be customized in order to result in an application.
Furthermore, the composition is informally described, and has to be performed
manually.

In this paper, we present a component model [8], and its related tool [1]
that has been extended for constructing GE-based applications. Our solution
supports heterogeneous systems because it allows composition of GE and non-GE
software components. Such components are hierarchically composed by means
of predefined (exogenous) composition connectors.

To show the effectiveness of our approach, we construct a simple case study
for the provisioning of multimedia contents. It includes three GEs and two non-
GE components, which are composed in a meaningful application.

The paper is organized as follows: Section 2 presents related work in the liter-
ature. Section 3 introduces our component model. Details on how to use our com-
ponent model for heterogeneous composition of GEs and non-GE components
are then presented in Section 4. A content delivery application is presented in
Section 5 as a case study to evaluate our solution. Details of the implementation
of the related workflow in X-MAN are discussed in Section 6. Section 7 sum-
marizes the advantages and limitations of the presented solution, and identifies
future work that we intend to pursue.

2 Related Work

There have been a number of efforts to exploit FIWARE GEs technology. In
the ENVIROFI project [5], domain specific GEs were identified and developed
for six domains. The work reported in [17] presents an interesting utilisation of
FIWARE to handle IoTs, smart environment devices, data and services by using
a semantic approach within the FIWARE core platform. The work described
in [19] illustrates an application for sensor driven FI applications used as a motion
sensor cloud service. A solution for healthcare developed exploiting FIWARE
technologies is presented in [2]. In [20], an application for text mining based on
the BigData GE is developed and presented.

In supporting developing GEs and GE-based applications, a tool set called FI-
CoDE2 was developed. Essentially, it consists of several Eclipse plug-ins for GE-
based software projects. Apart from generic functionalities such as collaborative
development, task management, version control and testing, it provides a Java
code generator to yield GEs clients. There is no support for building GE bundles
or composing GEs with non-GEs components.

In the area of service composition, workflow is the de facto standard app-
roach. A workflow can be defined using a suitable language such as BPEL [21],
BPMN [18], or JOpera Visual Composition Language (JVCL) [16]. A workflow
can be turned into a service by giving it a WSDL, or RESTful interface. One rep-
resentative work is BPEL for REST [14], which offers a heterogeneous mechanism
2 http://catalogue.fiware.org/tools/fi-code-tools

http://catalogue.fiware.org/tools/fi-code-tools


68 S. Di Cola et al.

to compose RESTful and WSDL services. For homogeneous RESTful services
composition, JOpera [15] provides a visual modelling language for workflows. A
JOpera workflow can be compiled into a RESTful service.

Following the same idea, the FIWARE catalogue contains a special GE called
Ericsson Composition Engine (ECE) [13]. It consists of a composition editor
for creating composed service skeletons, and a composition execution engine.
Offering its own graphical language, the editor allows users to model event-
driven service executions and data flows. A configure service skeleton can then
be instantiated into a workflow and executed within the composition execution
engine.

RESTful services can be aggregated in a web application with web widgets
and data sources by means of mashup [11,22]. The mechanism to perform a
mashup is still a workflow. However, mashup cannot be used on non-web software
components and applications.

In component-based development, SCA [12] is a component model that allows
us to create heterogeneous composition of various components which may be
implemented as Java classes, RESTful, and WSDL services. SCA does not explic-
itly define control and data flows in a composition.

3 Our Component Model

Our approach is based on an extended version of the X-MAN component
model [7], with three kinds of first-class entities: components, connectors, and
services.

Components. There are two types of components: atomic, and composite. They
are both fully encapsulated, i.e. they have no external functional dependencies.

An atomic component (Fig. 3a) is a unit of computation. Its computation
unit (CU) contains the implementation of the services (S1, . . . , Sm) it exposes
via the invocation connector (IC).

Its behaviour can be specified in the language of state charts (Fig. 3b): when
a service Si is invoked, a transition occurs from the initial state to the state
in which Si is executed; when Si’s computation ends, the component reaches

Fig. 3. An atomic component and its functional model.



A Heterogeneous Approach for Developing Applications with FIWARE GEs 69

its end state. Data to and from the CU is provided and retrieved via service
parameters. The activity chart in Fig. 3c shows parameters as external activities,
and services as internal ones. The latter are controlled by the control activity A
defined by the state chart in Fig. 3b.

Atomic components are composed into composite components by means of
composition connectors.

Connectors. Composition connectors are (exogenous) control structures that
coordinate the execution of the components they compose. They are Sequencer
(SEQ) and Selector (SEL), which provide sequencing and branching respec-
tively.

The component Q in Fig. 4a is built by sequencing n atomic components
A1 . . . An. Similarly, the same atomic components composed by a selector results
in the composite component B in Fig. 5a. The state chart for Q (Fig. 4b) is

Fig. 4. A composite component with sequencer and its functional model.

composed from the state charts for A1 . . . An by sequencing them in the order
specified in SEQ. Similarly, the state chart for B (Fig. 5b) is composed from the
state charts for A1 . . . An by branching according to the condition in SEL.

Fig. 5. A composite component with selector and its functional model.

The activity charts for Q (Fig. 4c) and B (Fig. 5c) are composed from those
of A1 . . . An. Data flow among activities mirrors the data flow among the cor-
responding services. The control activity B receives a control flow input needed
to perform branching decisions.



70 S. Di Cola et al.

Fig. 6. A composite component with aggregator and its functional model.

Apart from composition connectors, X-MAN also defines an aggregator con-
nector (AGG), which aggregates in a new composite component the services
exposed by its sub-components. An aggregated component effectively provides
a façade to the aggregated services. In Figure 6a, the component G is built by
aggregating the services exposed by components A1 . . . An. Like the composite
component B, the state chart for G is composed by branching among the state
charts for A1 . . . An, but with a condition on the choice of service. Its activity
chart is composed from the activity charts for A1 . . . An.

Single components can be adapted by adapters such as loop (L) and guard.
The former provides looping, while the latter gating (we omit its details for lack
of space). Fig. 7a shows a component A adapted by L into R. The state chart

Fig. 7. A component with loop and its functional model.

for R (Fig. 7b) is composed from the state chart for A by looping the latter
until condition i is verified; failing that, the end state is reached. Finally, in its
activity chart (Fig. 7c), the loop condition is shown as a control flow coming
from the external activity i.

Services. A service represents an operation exposed by a component. It con-
tains two main entities: parameters, and service references. Parameters are
inputs and outputs, while service references specify services in sub-components
that contribute to the provided operation.

As already stated, an atomic component exposes services implemented by its
CU. For example, the atomic component A in Fig. 3a offers m services named
as S1 . . . Sm.

On the other hand, a composite component, or an adapted one, exposes ser-
vices resulting from the coordination of the ones exposed by its sub-components.



A Heterogeneous Approach for Developing Applications with FIWARE GEs 71

For instance, the composite component Q in Fig. 4 exposes m services (S1 . . . Sm)
resulting from sequencing services U1 . . . Uj and V1 . . . Vk from sub-components
A1 . . . An respectively. Moreover, the adapted component R in Fig. 7a has its
services realised by conditionally repeating invocation to S1 . . . Sm services of
the original component A.

Clearly, any architecture in X-MAN is a service-oriented one. Moreover, we
can hierarchically and compositionally build larger service-oriented architectures
from existing ones. This leads to the next section where we detail our composition
of GEs.

4 Heterogenous Composition

Our approach allows heterogeneous composition of GEs and X-MAN components
to construct applications, i.e. composite components. To that end, a suitable
mechanism needs to be devised.

A Generic Enabler (GE) is encapsulated, by definition. Its provided services
are fully implemented and available via a RESTful interface. The interface can
be formally specified in WADL [4], or informally as text.

Taking into account the aforementioned characteristics, it is sound to map
a GE into a X-MAN atomic component, albeit a special one. In Fig.8, a GE
atomic component is depicted as a white cube. The computation unit of a GE
atomic component is always remote. Therefore, a GE atomic component needs
to maintain an URL pointer to a GE instance. This pointer can be specified at
design time or later when an instance of a GE atomic component is instantiated.
Such a pointer is named as Based URI in Fig. 9a.

In addition, the services of a GE need to be mapped to the ones of a GE
atomic component. Usually, GEs expose RESTful services and are thus resource-
oriented. There are four possible CRUD operations namely POST, GET, PUT
and DELETE. As in Fig. 9(a) for each operation, the mapping yields a service-
oriented counterpart in a GE atomic component. For instance, mapping for four
RESTful services GET /res1, PUT /res1, POST /res1, and DELETE /res1 produces
four services called sGetRes1, sPutRes1, sPostRes1, sDeleteRes1 respectively.

Furthermore in our mapping, a RESTful service usually has a dynamic URI
which is constructed from a base URI. The dynamic part is influenced by the
parameters for that service. Parameters can be either in the path or in the query
part of a URI. For any situation, the mapping specifies those parameters in the
resulting service as its inputs. For each input, the name, data type, order and an
attribute indicating whether the parameter is path or query based is specified.
Outputs for a RESTful service include status code and data. The status code
indicates a provisional response of the service call, while the data is the result
of service execution. Our mapping creates two outputs respectively for both of
them.

In Fig. 9b, we give details of an example of our mapping. A RESTful service
offers a GET method to access a resource called res1. From its API documen-
tation, it accepts three mandatory parameters param1, param2 and param3, and



72 S. Di Cola et al.

Fig. 8. Approach overview.

an optional param4. The former two parameters are path-based, separated by
‘/’, while the latter two are query-based, following ‘?’ and delimited by ‘&’. Our
mapping yields a new service which is described in three parts. The core part
specifies the service name, resource location relatively to the base URI and the
method as sGetRes1, /res1 and GET respectively. The input part has four inputs
param1, param2, param3 and param4 matching the ones of the service. The data
types of these inputs are identified from the API. From the same source, the
order, optionality default values of inputs are identified. The output section con-
sists of two outputs which are status code and data. status code is always an
integer while data can be of a type matching one stated in the API.

Once GE atomic components are defined, they can be composed with other
components by means of X-MAN composition connectors to yield a composite X-
MAN component. Such a composite component is in fact a GE-based application.



A Heterogeneous Approach for Developing Applications with FIWARE GEs 73

Fig. 9. Mapping of GE to GE atomic component.

It can be delivered, or stored in our repository (Fig. 8) in order to be further
composed.

5 Case Study: A Content Delivery Application

Figs. 10 and 11 depict a simplified content delivery application. The application
stores multimedia data in an object storage system. Whenever an authorised
client asks for a content, the application stores his information, verifies its avail-
ability and delivers it if found. Moreover, for performance analysis, the response
time is also returned.

To develop this application we compose three GE atomic components
(Cosmos, ObjectStorage and Kurento), with two X-MAN components (Logger,
Adapter):

– Cosmos offers cluster-based data persistence and functionality for processing
vast amounts of data; we use it to store and search content meta-data.

– ObjectStorage provides robust, and scalable object storage functionality;
we use it to store actual media content.

– Kurento implements an abstraction layer for multimedia capabilities; we use
it to stream media contents to clients.



74 S. Di Cola et al.

– Logger logs clients’ credentials, and calculates the response time.
– Adapter analyses Cosmos result to extract relevant content meta-data.

As depicted in the top right corner of Figs. 10 and 11, the application offers
two services: StoreMedia3, which stores a media, along with its meta-data, in
the FIWARE cloud, and PlayMedia, which streams a required media from it.

Fig. 10. A content delivery application (control flow)

To access a content, a client needs an authentication token, the path of the
required media, and the media id. Following the order of the root connector
(SEQ 1) in Fig. 10, the application first invokes the service StartSession, which
logs information about the callee (extracted from the provided authorisation
token), and returns the actual timestamp. The latter will be used by another
instance of Logger to calculate the response time (Fig. 11).

Once the request is logged, the service RetrieveKey of the GE atomic com-
ponent Cosmos is invoked. The mapped API (Fig. 12) requires the resource path
(optional parameters have been omitted for simplicity), and returns its content.
If the resource is found, then the DataToText service parses its content, and
returns two parameters, i.e. container name, and the object name. The former
are used by the service RetrieveObject, which maps to the counterpart API in
Fig. 12, to return the object content in the response body. If the return code is
200, the http response is redirected to the service HttpRecorder. The latter, using
the corresponding API in Fig. 12, uploads the object content to the Kurento
Media Server. Finally, the content ID is passed to the Kurento HTTPPlayer
service (Fig. 11), which returns a JSON object containing the content URL.
3 We omit its details to simplify our discussion. Indeed, other X-MAN components

are needed to upload content to Cosmos, and ObjectStorage.



A Heterogeneous Approach for Developing Applications with FIWARE GEs 75

Fig. 11. A content delivery application (data flow)

Fig. 12. RESTful APIs mapped

6 Implementation

Based on the new X-MAN tool [1], two extensions are developed. The first
extension is to implement GE atomic components while the second one is to
support heterogeneous composition. To that end, the meta-model is extended to
capture the mapping results, i.e. core, inputs and outputs.

Our code generator is then extended to support the new extensions. The
generated code for GE atomic components is essentially to perform invocations
to GEs’ RESTful services. For those invocations implementation, we use the
Jersey library.4

In Fig. 13 we illustrate the design of the ObjectStorage GE atomic com-
ponent in our tool. It offers two services RetrieveObject and StoreObject, each
of which has three input and two output parameters. The base URI is cap-
tured by the data element (circle with letter d), specified at deployment time.

4 https://jersey.java.net/

https://jersey.java.net/


76 S. Di Cola et al.

Fig. 13. A GE atomic component.eps

The generated source code shows how the RESTful service is invoked with the
specified inputs.

Once designed, components are deposited in a repository (bottom Fig. 13),
and later retrieved to be composed into the application as in Figs. 10 and 11.

The source code of the application is then generated by our tool. As part
of code generation, we specify the application to be packaged as a ‘war’ file,
which is then deployed on a Tomcat5 server. In order to test our application,
we developed a simple web page (hosted by the same server) which provides an
interface to take end-users’ requests and pass them to the application. The media
if found and returned from the application is then played via an embedded video
player. The client is depicted in Fig. 14.

7 Discussion and Conclusion

We have defined and implemented an approach to developing GE-based appli-
cations based on an extended version of the X-MAN component model. Our
approach presents novel heterogeneous composition mechanisms that exploit the
power of the FIWARE ecosystem. Unlike heterogeneous composition in BPEL
for REST, we compose software components with RESTful services. In com-
parison with JOpera, our applications are not limited to the middle tier of an
MVC architecture. For instance, we can compose the application in our case
study with an X-MAN component implementing a GUI that replaces the Web
client. On another note, SCA does provide a component model for heterogeneous
composition. However, unlike our approach, it does not provide explicit control
flow. In addition, it requires a “glue” component to be developed afresh to act
as coordinator.

5 http://tomcat.apache.org/

http://tomcat.apache.org/


A Heterogeneous Approach for Developing Applications with FIWARE GEs 77

Fig. 14. A client of the content delivery application.eps

Currently, applications can make use of existing FIWARE bundles which
already composes certain GEs. The composition in these bundles is carried out
by an ‘active’ GE such as Orion which implements the Observer pattern [10].
Orion is called by a ‘publisher’ GE and it then actively notifies ‘subscriber’ GEs.
X-MAN composition connectors are Turing complete. It implies that we can use
them to construct any complex control logics including the Observer pattern.

Our approach however has some limitations. The mapping we presented,
although defined to be applied automatically, requires human effort to be per-
formed. It is because currently GEs’ interfaces are described informally by tex-
tual documentation.Whilst this may be adequate for human consumption, the
lack of a machine processable format such as WADL hinders our mapping. When
this limitation is removed in the future, our approach can be improved accord-
ingly.

GE catalogue currently supports programmatically access through a RESTful
API. However, the results seem to be out of sync with the actual GEs. This poses
a challenge for development tools like ours to integrate the GE catalogue with
our component repository. Such integration when possible will allow seamless
application development.

As future work, we plan to investigate an integration with FIA Project Man-
agement Plugin6 to provide a complete environment for FIWARE users and
developers. Finally, we intend to extend the X-MAN component model to sup-
port concurrency [9].

6 http://catalogue.fiware.org/enablers/fia-project-management-plugin

http://catalogue.fiware.org/enablers/fia-project-management-plugin


78 S. Di Cola et al.

References

1. Di Cola, S., Tran, C.M., Lau, K.K.: A graphical tool for model-driven development
using components and services. In: Proceedings of SEAA 2015 - MOCS Track
(2015)

2. Fazio, M., Celesti, A., Marquez, F.G., Glikson, A., Villari, M.: Exploiting the
fiware cloud platform to develop a remote patient monitoring system. In: IEEE
Symposium on Computers and Communications (ISCC). IEEE Computer Society,
Larnaca, June 2015

3. Glikson, A.: Fi-ware: Core platform for future internet applications. In: Proceedings
of the 4th Annual International Conference on Systems and Storage (2011)

4. Hadley, J.: Wadl (web application description language). GlassFish, WADL (2009)
5. Havlik, D., Soriano, J., Granell, C., Middleton, S.E., van der Schaaf, H., Berre, A.J.,

Pielorz, J.: Future internet enablers for vgi applications. In: Page, B., Fleischer, A.G.,
Göbel, J., Wohlgemuth, V. (eds.) EnviroInfo, pp. 622–630. Berichte aus der Umwelt-
informatik, Shaker (2013)

6. He, K.: Integration and orchestration of heterogeneous services. In: 2009 Joint
Conferences on Pervasive Computing (JCPC), pp. 467–470. IEEE (2009)

7. He, N., Kroening, D., Wahl, T., Lau, K.K., Taweel, F., Tran, C., Rümmer, P.,
Sharma, S.: Component-based design and verification in X-MAN. In: Proc. Embed-
ded Real Time Software and Systems (2012)

8. Lau, K.-K.: Software component models: Past, present and future. In: Proceed-
ings of the 17th International ACM SIGSOFT Symposium on Component-Based
Software Engineering, pp. 185–186. ACM (2014)

9. Lau, K.K., Ntalamagkas, I.: Component-based construction of concurrent systems
with active components. In: Proc. 35th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA 2009), pp. 497–502. IEEE (2009)

10. Lau, K.-K., Ntalamagkas, I., Tran, C.M., Rana, T.: (Behavioural) design patterns
as composition operators. In: Grunske, L., Reussner, R., Plasil, F. (eds.) CBSE
2010. LNCS, vol. 6092, pp. 232–251. Springer, Heidelberg (2010)

11. Liu, X., Hui, Y., Sun, W., Liang, H.: Towards service composition based on mashup.
In: 2007 IEEE Congress on Services, pp. 332–339. IEEE (2007)

12. Marino, J., Rowley, M.: Understanding sca (2009)
13. Niemöller, J., Fikouras, I., de Rooij, F., Klostermann, L., Stringer, U., Olsson, U.:

Ericsson composition engine-next-generation in. Ericsson Review 2, 22–27 (2009)
14. Pautasso, C.: BPEL for REST. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.)

BPM 2008. LNCS, vol. 5240, pp. 278–293. Springer, Heidelberg (2008)
15. Pautasso, C.: Composing RESTful services with JOpera. In: Bergel, A., Fabry, J.

(eds.) SC 2009. LNCS, vol. 5634, pp. 142–159. Springer, Heidelberg (2009)
16. Pautasso, C., Alonso, G.: The jopera visual composition language. J. Vis. Lang.

Comput. 16(1–2), 119–152 (2005). doi:10.1016/j.jvlc.2004.08.004
17. Ramparany, F., Galan Marquez, F., Soriano, J., Elsaleh, T.: Handling smart

environment devices, data and services at the semantic level with the fi-ware
core platform. In: 2014 IEEE International Conference on Big Data (Big Data),
pp. 14–20, October 2014

18. Silver, B.: BPMN method and style, vol. 2. Cody-Cassidy Press Aptos (2009)

http://dx.doi.org/10.1016/j.jvlc.2004.08.004


A Heterogeneous Approach for Developing Applications with FIWARE GEs 79

19. Stravoskoufos, K., Sotiriadis, S., Preventis, A., Petrakis, E.: Motion sensor driven
gesture recognition for future internet application development. In: The 5th Inter-
national Conference on Information, Intelligence, Systems and Applications, IISA
2014, pp. 372–377, July 2014

20. Villaseñor, E., Estrada, H.: Informetric mapping of “big data” in fi-ware. In:
Proceedings of the 15th Annual International Conference on Digital Government
Research, dg.o 2014, pp. 348–349. ACM, New York (2014). http://doi.acm.org/10.
1145/2612733.2619954

21. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web ser-
vices platform architecture: SOAP, WSDL, WS-policy, WS-addressing, WS-BPEL.
WS-reliable messaging and more. Prentice Hall PTR (2005)

22. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding mashup development.
IEEE Internet Computing 12(5), 44–52 (2008)

http://doi.acm.org/10.1145/2612733.2619954
http://doi.acm.org/10.1145/2612733.2619954

	A Heterogeneous Approach for Developing Applications with FIWARE GEs
	1 Introduction
	2 Related Work
	3 Our Component Model
	Components.
	Connectors.
	Services.


	4 Heterogenous Composition
	5 Case Study: A Content Delivery Application
	6 Implementation
	7 Discussion and Conclusion
	References


