
Formal Verification of Virtual Network Function
Graphs in an SP-DevOps Context

Serena Spinoso1, Matteo Virgilio1(B), Wolfgang John2, Antonio Manzalini3,
Guido Marchetto1, and Riccardo Sisto1

1 DAUIN - Politecnico di Torino, Turin, Italy
{serena.spinoso,matteo.virgilio,guido.marchetto,Riccardo.sisto}@polito.it

2 Ericsson AB, Stockholm, Sweden
wolfgang.john@ericsson.com

3 Strategy and Innovation - Future Centre, Turin, Italy
antonio.manzalini@telecomitalia.com

Abstract. The role of software and its flexibility is becoming more and
more important in todays networks. New emerging paradigms, such as
Software Defined Networking (SDN) and Network Function Virtualiza-
tion (NFV), are changing the rules of the game, shifting the focus on
dynamicity and programmability. Perfectly aligned with this new spirit,
the FP7 UNIFY European project aims at realizing this appealing vision
by applying DevOps concepts to telecom operator networks and sup-
porting the idea of fast network reconfiguration. However, the increased
range of possibilities offered by the DevOps approach comes at the cost
of designing new processes and toolkits to make SDN and NFV a con-
crete opportunity. In this paper we specifically focus on the verification
process as part of the challenging tasks that must be addressed in this
scenario and its fundamental role of automatically checking some desired
network properties before deploying a particular configuration. Our pre-
liminary results confirm the feasibility of the approach and encourage
future efforts in this direction.

Keywords: DevOps · Formal verification · Service graphs · Network
function forwarding graph

1 Introduction

Ultra broadband diffusion, progresses in Information Technologies (IT), tum-
bling hardware costs and a wider and wider availability of open source software
are shaping the evolution of Telecommunications and ICT infrastructures. In
this context, paradigms such as Software Defined Network (SDN) and Network
Function Virtualization (NFV) can be seen as expressions of a systemic trend
called “Softwarization”. Other expressions of the same trend are Cloud, Edge,
and Fog Computing, Cloud Networking, etc. In essence, the disruptive innova-
tion of “Softwarization” stands in the techno-economic feasibility of virtualizing
most (if not all) network and service functions of Telecommunications and ICT
c© IFIP International Federation for Information Processing 2015
S. Dustdar et al. (Eds.): ESOCC 2015, LNCS 9306, pp. 253–262, 2015.
DOI: 10.1007/978-3-319-24072-5 18



254 S. Spinoso et al.

infrastructures. In this directions, it is argued that future Telecommunications
infrastructures are likely to become highly dynamic, flexible and programmable
production environments of ICT services. A first evaluation of this idea is car-
ried out by the EU FP7 UNIFY1 consortium, which sets out to integrate modern
cloud computing and networking technologies by considering the entire network
as a unified service production environment, spanning the vast networking assets
and data centers of telecom providers. In order to reach a high level of agility
for service innovation, UNIFY has one focus on providing dynamic service pro-
gramming and orchestration, deploying logical service components, namely Vir-
tual Network Functions (VNFs), across multiple network nodes. In particular,
UNIFY architecture follows SDN principles with a logically centralized control
and orchestration plane. Additionally, compute, storage and network abstrac-
tions are combined into a joint programmatic interface referred to as Network
Function Forwarding Graph (NF-FG). An NF-FG defines a selected mapping of
VNFs and their forwarding overlay definition into the virtualized resources pre-
sented by the underlying layer. Current OSS/BSS do not seem to cope with the
requirements posed by this evolution: in fact, the operations of future Telecom-
munications infrastructures will involve the management and control of a myriad
of software processes, rather than closed physical nodes. Thus, another important
goal of UNIFY is the design and development of integrated operations and devel-
opment capabilities under the name of Service Provider-DevOps (SP-DevOps).
In fact, DevOps paradigm, formerly developed for Data Centers (DCs), is getting
momentum as a source of inspiration regarding how to simplify and automate
management processes for future Telecommunications infrastructures.

Among the above challenges, this paper focuses on the UNIFY verification
process (i.e., the definition of methods and techniques to validate a particu-
lar network configuration before deploying it), which can be seen as an essential
task in environments where reconfiguration of services is expected to be triggered
very frequently, both in response to user requests and also in case of management
events. Misconfiguration of dynamic network middleboxes2, violation of speci-
fied network policies, or artificial insertion of malicious network functions are
just examples of cases that a complete solution must properly handle in order to
preserve network integrity and reliability. For this reason, the work presented in
this paper goes in the direction of verifying complex graph of services through an
intense modeling activity, targeted at the specific middleboxes and the network
as a whole. We are motivated by the observation that most existing tools are
“Openflow oriented”, i.e. they mostly consider networks with a controller which
installs <match, action> rules on the switches. Alternatively (and more generi-
cally but with the same fundamental limitations), they consider networks with
devices that only perform forwarding decisions according to the packet header,
i.e. without taking into account any additional traffic history information. Works
as [5,6,9,11] fall in this category and represent a valuable efforts in this research
area. Our contribution is intended to move a step forward and overcome the

1 www.fp7-unify.eu
2 In this paper we use the terms VNF and middlebox interchangeably.

www.fp7-unify.eu


VNF Graphs Formal Verification 255

above mentioned limitations by extending these works. In this sense, one impor-
tant reference is [8], which tackles exactly the same problem and provides a
scalable solution based on an off-the-shelf SMT solver. We experiment with this
approach and further develop it to meet our specific requirements, also enriching
the available VNF models catalog in order to satisfy the demands for more and
more complex service graphs and to validate the approach with different kinds
of VNFs. We specifically consider the UNIFY use cases, but it is worth noticing
how our work is much general and easily applicable to other scenarios since it
involves very common network functions.

The rest of the paper is organized as follows. First, we introduce and clar-
ify how and to which extent the DevOps approach can be applied in a network
operator infrastructure (Section 2). After defining the processes needed to imple-
ment this vision, we move on our current approach to formally verify complex and
rapid deployments of network function chains including a variety of middleboxes,
deployed to augment the set of in-network services the operator is able to offer
to its final customers (Section 3). In order to show our approach is feasible, we
provide some preliminary performance evaluation results based on the extension
of the above mentioned tool (Section 4). Section 5 finally concludes this work by
summarizing our contribution and drawing up some possible near future direc-
tions.

2 The SP-DevOps Concept

In order to cope with the high service velocity and increased dynamicity enabled
by UNIFY and comparable SDN/NFV based environments, we consider a
novel management and operation paradigm for Service Providers, called Ser-
vice Provider DevOps - SP-DevOps. SP-DevOps is based on the same major
underlying principles as identified for DevOps [10]: i) Monitor and validate oper-
ational quality; ii) Develop and test against production-like systems; iii) Deploy
with repeatable, reliable processes; and iv) Amplify feedback loops. While we
acknowledge that DevOps has also a crucial cultural dimension (reflected barely
by the feedback loop principle), our work focuses on technical aspects associated
to these principles, which reflect on processes and associated capabilities for
integrated monitoring, verification, and testing software and programmable
infrastructure. Even if significant parts of the telecommunication networks are
foreseen to be virtualized in the future, we in [3] identified important characteris-
tics of telecommunication networks that differ from traditional data centers, i.e.:
(i) higher spatial distribution, as telecom resources are spread over wide areas
due to coverage requirements; (ii) lower levels of redundancy in access and aggre-
gation networks compared to the massive data centers of typical cloud computing
companies; (iii) stronger requirements on high availability and latency in accord-
ing to standards and customer expectations. These characteristics pose new chal-
lenges for applying DevOps principles in telecommunications environments [4].
SP-DevOps addresses them with a set of technical processes supporting devel-
oper and operator roles in a virtualized telecom network. Figure 1 illustrates the



256 S. Spinoso et al.

Deploy 

Observability 

Troubleshooting 

Verification 

VNF developer 
support 

Service developer 
VNF Developer 

Operator 

Fig. 1. SP-DevOps cycle for UNIFY service creation.

relation between the four SP-DevOps processes and the developer/operator roles
by means of a service creation lifecycle. The four SP-DevOps processes follow
the DevOps principles to meet specific challenges regarding Observability and
Troubleshooting (Principle: Monitor and validate operation quality); Verification
(Principle: Deploy with repeatable, reliable processes); and Development (Prin-
ciple: Develop and test against production-like systems). We also identified three
main roles involved in the processes: two Developer roles, where one is associated
to a classical operator role assembling the service graph for a particular category
of services (the Service Developer), and a second associated to the classical equip-
ment vendor role in actually programming a VNF (the VNF Developer). The role
of the Operator is to ensure that a set of performance indicators associated to a
service are met when the service is deployed on virtual infrastructure within the
domain of a telecom provider. SP-DevOps might not be a new form of DevOps
as such, but it must include solutions that are uniquely tailored for the charac-
teristics of its environment. Consequently, we propose the SP-DevOps Toolkit as
an instantiation of the SP-DevOps concept [7]. The SP-DevOps Toolkit consists
of a set of DevOps solutions that are developed targeting specific research chal-
lenges identified in the UNIFY production environment [3,4]. Besides scalable
and programmable infrastructure monitoring functions, the toolkit will also pro-
vide modules for deploy-time functional verification of various abstraction levels
of service definition, supporting the three SP-DevOps roles. As in any develop-
ment process, identification of problems early in the service or product livecycle
can significantly reduce times and costs spent on complicated debugging and
troubleshooting processes. In this paper, we focus on verification with respect
to the service definitions and configurations initiated by the Service Developer.
Automated verification functions operating during deploy-time on each layer of
the orchestration and control architecture, facilitate verification as part of each
step in the deployment process, allowing identification of problems early in the
service lifecycle.



VNF Graphs Formal Verification 257

3 The Verification Process

The SP-DevOps paradigm represents a significant opportunity for service
providers to implement more complex services in their networks and increase
the agility by which a new function (or a chain of) can be automatically config-
ured and deployed in their infrastructure. However, while the process of insert-
ing and/or modifying functions throughout the network can be automated with
technologies similar to the ones used for the Cloud Computing scenario [2], great
importance has also to be placed on the design and implementation of automatic
tools that can verify a network configuration on the fly, before it is deployed.
For example, an operator may want to ensure that a given traffic flow is per-
mitted (or not permitted, due to a policy constraint) from one node to another.
Concerning this last aspect, our verification process is currently based on a veri-
fication approach recently proposed in [8]. In order to achieve high performance,
this verification approach exploits Z3 [1], a state of the art SMT solver, and
translates network scenarios with multiple middleboxes into sets of First Order
Logic (FOL) formulas that are then analyzed by Z3. This choice is motivated
by the overall verification tool performance and scalability, which would be hard
to achieve with standard model checking based techniques. In fact, the latter
requires time and memory that usually increase exponentially with the system
complexity, while the SAT-based approach proposed in [8] seems to be less prone
to this problem. The FOL formulas given to Z3 represent the network operating
principles along with the functional behavior of all the VNFs involved in the
scenario being considered. While [8] presents the general ideas of the proposed
approach, not all the details are fully developed, and not all the different situ-
ations that may arise when considering different kinds of VNFs are considered.
Here, we present our preliminary work towards integrating the approach pre-
sented in [8] into a SP-DevOps context like the one of UNIFY. A considerable
part of this work has been about developing models for new VNFs that were not
explicitly considered in [8], and making some first experiments with them.
In our design, the formal verification task is split into multiple sub-tasks, so that
the whole process is simpler and faster. More precisely, at NF-FG deploy time, or
when the graphs undergo modifications in response to higher level events (e.g.,
administration events or user requests), the VNF chains composing the graph
are computed and then, for each of them, a formal model is generated, including
the model of all the involved VNFs. Finally, the verification engine processes
the whole VNF chain model to check the satisfiability of a given property. In
particular, this paper focuses on reachability problems in service graphs, leaving
the verification of other network properties as possible future work. Furthermore,
since we are using abstract models of the real middleboxes, we assume that these
models are correctly defined. This means that we verify abstract models of the
real middleboxes, considering them as faithful representations of the real VNFs.
Verification of possible mismatch between a VNF model and its implementation
is out of scope for the current prototype. For further details about the adopted
formal verification theory and other background concepts, please refer to [8].



258 S. Spinoso et al.

(send(cache, n0, p0, t0) ∧ ¬isInternal(n0)) =⇒ ¬isInCache(p0.url, t0)

∧ p0.proto = HTTP REQ ∧ ∃(t1, n1) | (t1 < t0 ∧ isInternalNode(n1)

∧ recv(n1, cache, p0, t1)), ∀n0, p0, t0

(1a)

(send(cache, n0, p0, t0) ∧ isInternal(n0)) =⇒ isInCache(p0.url, t0)

∧ p0.proto = HTTP RESP ∧ p0.ip src = p1.ip dest ∧ p0.ip dest = p1.ip src∧
∧ ∃(p1, t1) | (t1 < t0 ∧ p1.protocol = HTTP REQ ∧ p1.url = p0.url

∧ recv(n0, cache, p1, t1)), ∀n0, p0, t0

(1b)

isInCache(u0, t0) =⇒ ∃(t1, t2, p1, p2, n1, n1) | (t1 < t2 ∧ t1 < t0 ∧ t2 < t0

∧ recv(n1, cache, p1, t1) ∧ recv(n2, cache, p2, t2) ∧ p1.proto = HTTP REQ

∧ p1.url = u0 ∧ p2.proto = HTTP RESP ∧ p2.url = u0 ∧ isInternal(n2))

∀u0, t0

(1c)

Fig. 2. Web cache model.

3.1 VNFs Models

The approach for modeling network function chains proposed in [8] has been
experimented by the authors of [8] with some middlebox types, such as stateless
and stateful firewalls. When modelling scenarios that include VNFs that may
alter packets (e.g. a NAT), it is necessary to also consider the possibility for a
target VNF to receive a packet different from the one originally transmitted.
This kind of situation regards a significant set of middleboxes that is currently
deployed in SP networks and that is envisioned to be included in the NF-FG
within the UNIFY project, e.g. NAT, VPN gateway and so on. We revisited the
network constraints developed by the authors of [8], by introducing the possibil-
ity of verifying reachability properties between two network nodes and interme-
diate VNFs that do modify forwarded packet headers. Finally, we checked that
verification works as expected with these revisited constraints, by experimenting
with the new middlebox models that we developed.

The first VNF we consider is a simple web cache (reported in Figure 2). The
functional model consists of two interfaces connected respectively to the private
network, i.e., the one which contains the clients issuing HTTP requests, and
the external network. Formula 1a states that a packet sent from the cache to a
node belonging to the external network, implies a previous packet, containing
a HTTP request and received from an internal node, which cannot be served
by the cache (otherwise the request would have not been forwarded towards
the external network). Formula 1b states that a packet sent from the cache to
the internal network contains a HTTP RESPONSE for an URL which was in cache
when the request has been received. We also state that the packet received from
the internal network is a HTTP REQUEST and the target URL is the same as the
response. The final formula expresses a constraint that the isInCache() function
must respect. In particular, we state that a given URL (u0) is in cache at time t0
if (and only if) a request packet was received at time t1 (where t1 < t0) for that
URL and a subsequent packet was received at time t2 (where t2 < t0 ∧ t2 > t1)
carrying the corresponding HTTP RESPONSE.



VNF Graphs Formal Verification 259

(send(nat, n0, p0, t0) ∧ ¬isPrivateAddress(p0.ip dest)) =⇒ p0.ip src = ip nat

∧ ∃(n1, p1, t1) | (t1 < t0 ∧ recv(n1, nat, p1, t1) ∧ isPrivateAddress(p1.ip src)

∧ p1.origin = p0.origin ∧ p1.ip dest = p0.ip dest ∧ p1.seq no = p0.seq no

∧ p1.proto = p0.proto ∧ p1.email from = p0.email from ∧ p1.url = p0.url)

∀n0, p0, t0

(2a)

(send(nat, n0, p0, t0) ∧ isPrivateAddress(p0.ipdest)) =⇒ ¬isPrivateAddress(p0.ip src)

∧ ∃(n1, p1, t1) | (t1 < t0 ∧ recv(n1, nat, p1, t1) ∧ ¬isPrivateAddress(p1.ip src)

∧ p1.ip dest = ip nat ∧ p1.ip src = p0.ip src ∧ p1.origin = p0.origin

∧ p1.seq no = p0.seq no ∧ p1.proto = p0.proto ∧ p1.email from = p0.email from

∧ p1.url = p0.url) ∧ ∃(n2, p2, t2) | (t2 < t1 ∧ recv(n2, nat, p2, t2)

∧ isPrivateAddress(p2.ip src) ∧ p2.ip dest = p1.ip src ∧ p2.ip dest = p0.ip src

∧ p2.ip src = p0.ip dest), ∀n0, p0, t0

(2b)

Fig. 3. NAT model.

The second middlebox we modeled is the NAT function. The corresponding
model is reported in Figure 3. In order to model the NAT behaviour, a dis-
tinction between the private and external network is needed. This separation is
modeled by using a boolean function (isPrivateAddress()) that returns true if
a given IP address belongs to the set of internal node addresses. Analyzing the
reported formulas, we start by considering an internal node which initiates a
communication with an external node (Formula 2a). In this case, the NAT sends
a packet (p0) to an external IP address, if and only if it has previously received a
packet (p1) from an internal node. The received and sent packets must be equal
for all fields, except for the ip src, which must be equal to the NAT public IP
address.

On the other hand, the traffic in the opposite direction (from the external
network to the private) is modeled by the Formula 2b. In this case, we state
that if the NAT is sending a packet to an internal address, this packet (p0) must
have an external IP address as its source. Moreover, p0 must be preceded by
another packet (p1 in the formula), which is, in turn, received by the NAT and
it is equal to p0 for all the other fields. It is worth noting that, generally, a
communication between internal and external nodes cannot be started by the
external node in presence of a NAT. As a consequence, this condition is expressed
in the Formula 2b by imposing that p1 must be preceded by another packet p2,
sent to the NAT from an internal node.

4 Preliminary Results

In order to evaluate the new developed models and the overall approach, we
consider the NF-FG3 shown in Figure 4 as a use case. In our reference graph, four
end-hosts (two clients and two servers) can generate either HTTP or POP3 and
also SMTP traffic, which is processed by different middleboxes when traversing
the graph. Moreover, some of those network functions may require a different
3 We do not provide the firewall VNF model as it was presented as use case in [8].



260 S. Spinoso et al.

NAT ACL
firewall

Anti-
spam

Web
Cache

Web
Client

Mail
Client

Web
Server

Mail
Server

NF-FG

Web Client – Web Cache – NAT – ACL firewall – Web Server
Chain A

Mail Client – Anti-spam – NAT – ACL firewall – Mail Server
Chain B

Fig. 4. An example of Network Function-Forwarding Graph.

configuration. Specifically, the NAT must be configured in order to know which
hosts belong to the private network (as the web cache) and which IP address
must be used as masquerading address; the firewall must be provided with a set
of ACL entries that specify which couples of nodes are authorized to exchange
traffic. Additionally, the forwarding is configured such that the web traffic is
forwarded to the web cache, while the email traffic (both POP3 and SMTP) is
routed to an anti-spam function. A first step towards the NF-FG verification is
the VNF chains extraction. In our use case, two chains are extracted from the
NF-FG (Figure 4): the Chain A processes the web traffic, while the Chain B is
traversed by POP3 and SMTP packets.

We perform multiple tests on the two chains to cover different cases and
configuration options: (i) anti-spam and firewall configurations and (ii) traffic
directions (from client to server and vice-versa). Concerning the Chain A, only
the ACL firewall can be configured, hence we setup two tests: one with the fire-
wall configured to allow all the traffic (test A.1) and the other one with the fire-
wall configured to drop all packets exchanged between the web client and server
(test A.2).

Instead the Chain B is tested in three scenarios, obtained by changing the
firewall and anti-spam configurations as follows: (i) test B.1, similarly to test
A.1, is performed without any function configured to drop the received traffic;
(ii) in test B.2, the firewall drops the traffic between the mail client and server
(Figure 5); (iii) test B.3 is such that the anti-spam is configured to drop all the
emails sent by the mail client, while the traffic originated by the server is allowed
(Figure 5). Our evaluation is executed on a workstation with 32GB of RAM and
an Intel i7-3770 CPU running an Ubuntu 14.04.01 with kernel 3.13.0-24-generic.
The results are shown in Figure 5, where the verification time is reported for
each presented scenario.

In test A.1 the reachability problem from the client to the server (the light
grey colored bar in Figure 5) is satisfied as expected. It is worth noting that the
unsatisfiability of the problem in the opposite direction (the dark grey colored
bar in Figure 5) is due to the fact that client and server can exchange traffic
only if the connection is initiated by the client. In test A.2, in both cases the
reachability problems are not satisfied because of the firewall VNF configuration.



VNF Graphs Formal Verification 261

S

U U U

S

U U U U U

Test A.1 Test A.2 Test B.1 Test B.2 Test B.3
0

0.1

0.2
V
er
ifi
ca
ti
o
n
T
im

e
(s
)

Client → Server Server → Client S=satisfied U=unsatisfied

Fig. 5. Test {A, B}.1: firewall and anti-spam configured to accept packets; Test {A,
B}.2: firewall configured to drop server/client packets; Test B.3: anti-spam configured
to drop server/client packets.

In test B.1, the verification problem is satisfiable in case of traffic sent by the
mail client, while the reachability property is not verified for the traffic sent by
the mail server for the above-mentioned reasons.

As it can be seen from the achieved results, performance is promising also
in the worst case scenario, since we are able to solve the reachability problem
in less than 200ms, while the verification time is less than 50ms in most cases.
This is reasonably in line with the UNIFY requirements, especially in terms of
time required by the verification process to authorize a newly asked network
reconfiguration.

5 Conclusion

It is argued that in the future Telecommunications infrastructures are likely
to become highly dynamic, flexible and programmable production environments
capable of providing any ICT services. Future operations will involve the manage-
ment and control of a myriad of software processes, rather than closed physical
nodes.

In fact, today most SPs still have rather complicated and static operational
processes. DevOps, formerly developed for managing Data Centers (DCs), is
attracting a growing interests as a paradigm to be extended to future Telecom-
munications infrastructures. Nevertheless, it is argued that the DevOps will jump
ahead current ossification only if it will be sustainable from a business viewpoint
(CAPEX, OPEX saving are not enough): importantly DevOps criteria of success
depend on how closely the related future infrastructures (e.g. UNIFY) will be
capable of enabling new service paradigms for SP’s (e.g., Immersive Communi-
cations, Anything as a Service, etc). Motivated by these considerations, in this
paper we presented our initial contribution related to the verification process
on service graphs, which is one of the most important pillars in the SP-DevOps
feedback cycle. After generalizing the applicability of a state of the art app-
roach to the verification of complex network graph, we presented and discussed
a couple of models we developed to validate our key ideas. Given the promising



262 S. Spinoso et al.

evaluation results achieved, we plan to address more efforts to some open topics
in the middlebox verification area such as scalability issues in verifying complex
service graphs and significant opportunities to optimize the verification process
when incremental service graph modifications come into play.

Acknowledgments. This work was conducted within the framework of the FP7
UNIFY project, which is partially funded by the Commission of the European Union.
Study sponsors had no role in writing this report. The views expressed do not
necessarily represent the views of the authors’ employers, the UNIFY project, or the
Commission of the European Union.

References

1. de Moura, L., Bjørner, N.S.: Z3: An efficient smt solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

2. Jain, R., Paul, S.: Network virtualization and software defined networking for cloud
computing: A survey. IEEE Communications Magazine 51(11), November 2013

3. John, W., Meirosu, C.: Unify d4.1: Initial requirements for the sp-devops concept,
universal node capabilities and proposed tools (2014). https://www.fp7-unify.eu/
index.php/results.html#Deliverables

4. John, W., Pentikousis, K., Agapiou, G., Jacob, E., Kind, M., Manzalini, A.,
Risso, F., Staessens, D., Steinert, R., Meirosu, C.: Research directions in network
service chaining. In: 2013 IEEE SDN for SDN4FNS, November 2013

5. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: Static checking
for networks. In: NSDI 2012. USENIX, San Jose (2012)

6. Khurshid, A., Zou, X., Zhou, W., Caesar, M., Godfrey, P.B.: Veriflow: Verifying
network-wide invariants in real time. In: NSDI 2013. USENIX, Lombard (2013)

7. Meirosu, C.: m4.1: Sp-devops concept evolution and initial plans for prototyping
(2014). https://www.fp7-unify.eu/index.php/results.html#Deliverables

8. Panda, A., Lahav, O., Argyraki, K.J., Sagiv, M., Shenker, S.: Verifying isolation
properties in the presence of middleboxes. CoRR abs/1409.7687 (2014)

9. Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., Gu, G.: A security
enforcement kernel for openflow networks. In: HotSDN 2012. ACM, New York
(2012)

10. Sharma, S., Coyne, B.: DevOps For Dummies. Limited IBM Edition’ book, October
2013

11. Son, S., Shin, S., Yegneswaran, V., Porras, P.A., Gu, G.: Model checking invariant
security properties in openflow. In: ICC, pp. 1974–1979. IEEE (2013)

https://www.fp7-unify.eu/index.php/results.html#Deliverables
https://www.fp7-unify.eu/index.php/results.html#Deliverables
https://www.fp7-unify.eu/index.php/results.html#Deliverables

	Formal Verification of Virtual Network Function Graphs in an SP-DevOps Context
	1 Introduction
	2 The SP-DevOps Concept
	3 The Verification Process
	3.1 VNFs Models

	4 Preliminary Results
	5 Conclusion
	References


