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Preface

Service-oriented computing – together with web services as its major implementation
platform – has become the most important paradigm for distributed software devel-
opment and application for a number of years now. The former ECOWS (European
Conference on Web Services) conference series addressed key issues of
service-oriented computing, in particular web services, in nine successful conferences
until 2011. In the meantime, as services are increasingly used remotely, i.e., in the
“cloud”, the focus of the conference series has shifted slightly. Accordingly, ECOWS
was re-launched in 2012 as the “European Conference on Service-Oriented and Cloud
Computing” (ESOCC) in Bertinoro, Italy, addressing the state of the art and practice of
service-oriented computing and cloud computing. The second European Conference on
Service-Oriented and Cloud Computing, ESOCC 2013, was held in Málaga, Spain,
in September 2013. Following the third conference of the series in Manchester, UK, on
September 2–4, 2014, this fourth iteration took place in Taormina (Messina), Italy, on
September 15–17, 2015.

This volume contains the technical papers presented at the conference. The con-
ference consisted of multiple tracks: Research Track, Industrial Track, and
Work-in-Progress (WIP) Track. There were a total of 48 submissions from which 13
papers were selected for the research track (yielding an acceptance rate of 27 %),
together with 2 short papers for the WIP track, and 3 papers accepted for the industrial
track. The review and selection process was performed rigorously, with each paper
being reviewed by at least three PC members (sometimes with the help of additional
reviewers).

There were 2 excellent invited talks at the conference, given by Marco Aiello
(Professor of Distributed Systems at the University of Groningen) and Eliot Salant
(Manager, Virtualization and Systems Management at IBM Haifa Research).

Six workshops were co-located with the conference: the 3rd International Workshop
on CLoud for IoT (CLIoT 2015), the 5th International Workshop on Adaptive Services
for the Future Internet (WAS4FI 2015), the 2nd Workshop on Seamless Adaptive
Multi-cloud Management of Service-based Applications (SeaClouds), the 1st Interna-
tional Workshop on Cloud Adoption and Migration (CloudWay 2015), the 1st
Workshop on Federated Cloud Networking (FedCloudNet), and the 1st International
Workshop on Digital Enterprise Architecture and Engineering (IDEA). A PhD sym-
posium was held on the same day as the workshops.

All in all, ESOCC 2015 was a successful conference, and we owe its success to many
people: all the authors who submitted papers, and those who presented papers at the
conference; all the PC members who took part in the review and selection process, as
well as the additional reviewers they called on for help; all the invited speakers; the
members of the Organizing Committee who chaired the industrial track, work-in-
progress track, EU-projects track, workshops, and the PhD symposium, as well as the



people who helped organize these events. Last but not least, we are grateful to the Local
Organizing Committee for their efficient organization and warm hospitality. To all of
you: we say a heart-felt ‘Thank you’!

July 2015 Schahram Dustdar
Frank Leymann
Massimo Villari
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Coordinating the Internet of Things
by Service Composition

Marco Aiello

Abstract. Since its emergence, one of the most advertised opportunities offered
by service oriented computing has been the possibility of composing loosely
coupled services on a per need basis. Services, like Lego pieces, act as modular
building blocks which are assembled when a given articulated user request
comes and are ready to be reused for other requests. Over the years, the promise
has been of reducing recoding and refactoring efforts while achieving scalability,
run-time adaptability, and infinite reuse. After reviewing 12 years of personal
experiences and research in dynamic service composition, going from initial
work on composing trips based on a number of independent travel service
operations to the more recent research in home and building automation where
services often represent interconnected things in a defined physical space, I will
introduce our current efforts in building dynamic service composition frame-
works. In particular, I will present the RuG-planner which is able to defer
composition decisions to run-time and to seamlessly make revisions in response
to a constantly evolving execution environments.



Challenges in Developing an Efficient Cloud
Management Framework

Eliot Salant

Abstract. Cloud Computing has developed rapidly over the last ten years with
world-wide spending on public and private cloud hosting passing the $32bn.
mark this year, and savings to businesses using the cloud are typically stated as
better than 30 % due to the clouds ability to better take advantage of economies
of scale. Yet, in actuality, in commercial data centres the utilization of resources
still remain low. In this talk we will introduce the challenges in managing both
the cloud infrastructure and the application more effectively to obtain better
utilization of cloud ecosystem, including the challenges involved in
multi-tenancy issues in placement of an application, sizing an application,
adaptation of the infrastructure to improve workload performance and moni-
toring analytics of the ecosystem.
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Decentralized Stream Processing Over
Web-Enabled Devices

Masiar Babazadeh(B), Andrea Gallidabino, and Cesare Pautasso

Faculty of Informatics, University of Lugano (USI), Lugano, Switzerland
{masiar.babazadeh,andrea.gallidabino,cesare.pautasso}@usi.ch

Abstract. Thanks to the recent introduction of peer-to-peer communi-
cation between browsers with WebRTC, real time processing of streams
can now be deployed on browsers in addition to traditional server-
side execution environments. In this paper we present the Web Liquid
Streams framework for building and executing stream processing topolo-
gies capable of gathering data from Web-enabled sensors and process it
through JavaScript operators scattered across a peer-to-peer Cloud of
computing peers. i) support for arbitrary topologies and data streams,
ii) deployment on heterogeneous Web-enabled devices, iii) transparent
stream delivery across the WebRTC, WebSockets and ZeroMQ proto-
cols, iv) stateful and stateless operators. WLS takes care of the deploy-
ment of the topology on the available resources, while users are only
required to implement the operators and describe the topology graph
using JSON. The structure of the topology can be dynamically adapted
without stopping the stream flowing through it. We present the platform
and its programming interface, showing a first evaluation of the system.

1 Introduction

As more and more sensors and smart devices are getting connected to the Inter-
net, an interest has grown in exploring the use of the World Wide Web as plat-
form for such devices. We have witnessed frameworks (i.e., EVRYTHNG [9]) and
protocols (i.e., CoAP [13]) proposed to bridge the gap between the real-world
and the Web. Some streaming applications have also started to appear [12], but
there is still a lack of abstraction and flexibility for building complex stream
processing pipelines [8] connecting smart devices to the Web.

To further raise the abstraction level at which stream processing and complex
event processing topologies can be built across the Web of Things, in this paper
we present a novel peer-to-peer streaming system that makes use of WebRTC
and WebSockets to spread stream processing on both Web servers and Web
browsers. The Web Liquid Streams (WLS) framework lets developers imple-
ment distributed stream processing topologies composed of operators written in
JavaScript, the lingua franca of the Web. Thus, it becomes possible to deploy and
run stream processing pipelines on any Web-enabled device, from small embed-
ded microprocessors, or mobile smartphones, all the way to large virtualized
Cloud computing clusters. The framework can be seen as a way to aggregate
c© IFIP International Federation for Information Processing 2015
S. Dustdar et al. (Eds.): ESOCC 2015, LNCS 9306, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-24072-5 1



4 M. Babazadeh et al.

volunteer computing resources and delivering them as a Platform as a Service
(PaaS) Cloud, where stream processing applications built using JavaScript oper-
ators can be deployed and executed.

Exploiting such heterogeneous and dynamic execution environment intro-
duces challenges in implementing and organizing the deployment of the stream
processing operators. While differences in hardware platforms can be abstracted
thanks to JavaScript used to implement the operators, dealing with the deploy-
ment constraints of streaming topologies, dynamic changes in the execution envi-
ronment and fluctuations in the load of the streaming application can become
difficult without a solid infrastructure. The WLS framework is able to guaran-
tee the deployment of Topologies taking into account placement constraints on
their operators. It also automatically deals with temporary and permanent dis-
connection errors by performing operator migration and recovery. Additionally,
WLS also offers the possibility to alter the structure of the Topology without the
need to stop it by offering an interface to add or remove streaming operators or
modify their bindings at run time. This helps to adapt the topology semantics
to, for example, new sensor/actuator devices that become available.

In [7] we described the RESTful API of the first version of WLS, which sup-
ported distributed stream processing only over Web server clusters, while in [6]
we have shown a preliminary implementation of a controller infrastructure for
the system which deals with the churn of connecting and disconnection Web
browsers. In this paper we present the architecture and interface of the second
version of WLS, which makes the following novel contributions: First, we show
how WLS integrates heterogeneous devices and execution environments (such
as Web browsers and Web servers, which may run on Web-enabled microcon-
trollers, mobile devices and Cloud virtual machines) in a homogeneous environ-
ment thanks to the choice of JavaScript as the operator programming language.
Second, we discuss how the abstract streaming topology model is mapped to
a deployment configuration taking into account multiple types of deployment
constraints. Third, we demonstrate the feasibility and expressiveness of the app-
roach through a preliminary set of experiments and case study applications.

The rest of this paper is structured as follows. Section 2 introduces the WLS
framework from the developer’s perspective, Section 3 is focused on its runtime
operation and internal architecture. Section 4 discusses the evaluation of the
system. Section 5 presents related work while Section 6 draws our conclusions
and illustrates our plans for future work.

2 The WLS Stream Processing Framework

The Web Liquid Streams framework helps developers create stream process-
ing topologies and run them across a peer-to-peer Cloud of connected devices,
where they share and make use of shared resources. Developers must install
the framework on their servers or microcontrollers and run a server instance of
WLS, or they can connect with browsers to an existing WLS instance running
to deploy operators and run them on their browsers. This Section describes the
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Fig. 1. Example stream deployed across Web servers and Web browsers.

main abstractions provided by WLS and how they can be used to set up arbi-
trary Topologies of stream Operators written in JavaScript. The basic building
blocks to set up and execute a Topology are Peers and Operators.

– Peers are physical hosts where the computation happens. Any Web-enabled
device that can run a Web server or a Web browser can become a Peer in the Web
Liquid Streams. A Peer can host more than one Operator and stateless Operators
can be redundantly deployed on multiple Peers for increased scalability and
reliability.

– Operators receive incoming data stream, process its elements one at a time,
and forward the results downstream. Each Operator is associated to a JavaScript
file, which contains the stream element processing logic.

– The Topology describes how Operators are interconnected in the data
stream. It defines an arbitrary graph of operators (nodes) using data flow bind-
ings (edges). The structure of the topology can dynamically change while the
stream is running.

The example of figure 1 shows three Peers being running data producer
Operators, gathering measurements through sensors. They forward the data to
an Operator running on a Web server (Peer 3), which stores the temperature
fluctuations over time and forwards them to another Operator running on Peer
4, which decides which actuators have to be started (Peer 5 or Peer 6) and
notifies the Operator in Peer 3 about its decision. The data is also forwarded to
a visualization Operator (Peer 7) which graphically shows the current status of
the running actuators.

Communication links use different protocols (WebSockets, ZeroMQ,
WebRTC) which are used to transfer the data stream elements. The developer
of the Operators does not need to worry about the actual protocol. Based on the
Topology description, it is the Web Liquid Streams runtime’s task to physically
deploy it on the available resources and take care of abstracting the complexity
and heterogeneity of the communication channels.
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2.1 System Model

We consider our system model to be composed by a large set of networked
Peers owned by users of the system. Each Peer can have a different nature:
from big Web servers with a lot of storage and RAM, to Web browsers running
on personal computers or smartphones, down to microcontrollers and smart
devices. Like Web servers are used to host one or more Web applications, Peers
are responsible for their topologies, which can be deployed to be managed on
different Peers.

Users of the system share their own resources (i.e., CPU, memory, sensors)
in a cooperative way by either joining a Topology (i.e., connecting to a Web
address) or connecting to the system from a Web server running on a smart
device. WLS takes care of handling the churn of Peers by informing other Peers
of new arrivals [10]. In the same way, if a Peer has to leave the network, it will
notify all the Peers it knows. If a Topology is making use of the Peer about
to leave, the operators running on it are automatically migrated on another
available Peer.

Users of the system can take advantage of shared resources by deploying
and executing their Topologies on the set of available Peers. By uploading the
description of the Topology or manually creating it through the user interface
(both command line and graphical interactive monitoring tool), users can start
a data stream Topology execution on the shared resources. The system checks
if the request to run a Topology can be satisfied with the known resources. If
that is the case, it will allocate Operators on the available Peers. More than one
Topology can coexist within the peer-to-peer Cloud at the same time, even at
the Peer level: a Peer may host different Operators that are part of different
Topologies. These slices are dynamic as they can grow or shrink depending on
user needs without the need to stop the data stream. Topologies may also be
modified at runtime by, for example, adding/removing one or more Operators,
resulting in a structural change of semantics of the Topology itself, which will
thus affect its end result.

Operators are implemented and managed by the users themselves, thus no
QoS guarantee is provided. Application failures resulting from Operators crash-
ing during the execution of the Topology should be handled by the users running
the Topology. What WLS ensures is cohesion among the heterogeneous set of
resources that become a stream processing platform. As a liquid adapts its shape
to the one of its container, the WLS adapts the stream computation to the pool
of available resources. When the stream rate or in general the stream resource
demand increases, new resources are allocated. These will be de-allocated and
consolidated once the stream resource demand decreases.

2.2 Topology Description

The topology structure can be built on the fly by adding or removing Operators
to an already executing stream. For convenience, it is possible to capture the
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configuration of a topology and represent it using JSON. The Topology descrip-
tion includes information about all Operators and how they are bound together.
Operators can be associated with optional deployment constraints, which are
used by the runtime to select a suitable Peer for running them.

Topologies must have an id that identifies them, a list of operators and a
list of bindings. The Operators must have an id attribute and a link with the
URL of the corresponding implementation script, and an optional deploy field
which imposes deployment constraints. For example, it can specify a Peer where
the Operator has to be deployed or a list of sensors that a Peer must have in
order to host the Operator. If the deploy field is not specified, the Operator can
run in any available Peer.

The list of bindings instead describes how operators are connected and which
sending algorithm (Round Robin vs. Broadcast) is used when multiple operators
are bound to the same upstream producer. Round Robin is used for sharding the
stream across multiple operators, while Broadcast is intended to be used with
multiple consumer operators that receive their copy of the stream.

2.3 Operator Script API

Operators are written in plain JavaScript and define the data processing logic.
In the following example we demonstrate how to use the WLS API to write
scripts which are then executed by the Operators in a simple home automation
system application. The streaming application is composed by four Operators:
the first one runs on microcontrollers that have access to a temperature sensor,
the second one runs on servers, the third one Web browsers, while the fourth
one runs on actuators that can modify the temperature in the house.

var k = require(’wls.js’);

setInterval(function (){

getTemperature(function(temp , sensor_id){

k.send({

"temperature" : temp ,

"id" : sensor_id ,

"timestamp" : new Date()

});

});

}, 1000);

Listing 1.1. Example producer script

Listing 1.1 shows a producer script that forwards every second temperature
sensor readings from the getTemperature function. The function reads the last
measured temperature from the sensor API. The callback of the function wraps
the data received into an object carrying the current timestamp and the sensor
identifier and forwards it downstream using the k.send() function.
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var k = require(’wls.js’);

// initialize operator state

k.createOperator(function(temp_data) {

//store the received data: temperature , id , timestamp

k.db_store("temperatures", temp_data);

//get the last 1000 temperatures stored for that sensor

id

var average_temperature = avg( k.db_get("temperatures",

temp_data.id, 1000) );

// forwards the average

k.send({

"average" : average_temperature ,

"room_id" : temp_data.id

});

}).start ();

Listing 1.2. Example filter script

Listing 1.2 shows what the Web server does upon receiving the data from
the sensors. First, it stores the observed temperature, computes an average over
the last seen data for the room and forwards the average and the room id to the
following Operator.

var k = require(’wls.js’);

k.createOperator(function(variation) {

//get the temperature setpoint for a given room

var setpoint = k.db_get("setpoint", temp_data.id);

var threshold = k.db_get("threshold", temp_data.id);

//if the temperature has to be changed , forward commands

downstream

if(abs(variation.average - setpoint) > threshold){

k.send({

"start" : true ,

"room_id" : temp_data.id

});

}

else //[...]

}).start ();

Listing 1.3. Decision making Operator

Listing 1.3 shows a simple decision making Operator that receives objects
containing an average of the last measured temperatures for a given room id.
The Operator compares the received average to the setpoint and forwards a
message to the actuator, which will either start or stop to reach the desired
temperature.
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The example can be further extended by adding sensors that notify human
presence and describing new setpoints for rooms with or without people at which
time of the day or night. Moreover, operators featuring machine learning could be
used to detect and predict inhabitants behavior patterns (e.g., heat the bathroom
before a shower event).

There is no constraint on the data structure of the messages exchanged along
a Topology, as long as they can be serialized into JSON strings. The callback
function and the send function handle deserialization and serialization auto-
matically, allowing the developer of the Operator script to work directly with
JavaScript objects.

3 The WLS Runtime: Usage and Architecture

3.1 Starting and Handling a Topology

Before starting a Topology, the user has to upload the Topology description
file and the corresponding Operator scripts to the runtime using its API. The
Web Liquid Streams framework runtime is able to spread the Operators across
the available Peers following the instructions of the JSON topology description
file. From the command line interface, it is sufficient to type exec topology.js
where topology.js is the Topology description file. This will deploy and initial-
ize each Operator and start the flow of the data stream.

A Topology may also be built on the fly by running operators with the
command run script.js peer_id that runs a script on an appointed Peer
(if no Peer is specified, it will be run on the most suited one [6]). To bind
the Operators it is sufficient to write bind op_from op_to where op_from and
op_to are the IDs of the two Operators to be bound.

Operations that can be executed on the Topology through the command line
interface include stopping an Operator (stop op_id), unbind two Operators
(unbind op_from op_to) and migrate an Operator on another Peer (migrate
op_id peer_id).

Fig. 2. Web Liquid Streams Runtime Architecture
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3.2 Runtime Architecture

The WLS architecture presents two main components: one runs on servers (i.e.,
smart devices), while the other runs on Web browsers (i.e., smart mobile phones).

Node.JS Peer Architecture. Operators on the Node.JS Peer architecture
spawn Node.JS processes to handle the incoming work. This process helps par-
allelizing the execution of the Operator’s work, by spreading it on child pro-
cesses. These child process are provided with an address and a port, thus they
are directly connected to each other through ZeroMQ sockets according to the
Topology bindings. The Operator takes care of adding or removing child pro-
cesses in order to solve bottlenecks or free resources when possible. If the Peer
hosting the Operator reaches a full CPU usage, the Peer will find another one
to run an extra parallel instance of the Operator, thus solving the bottleneck.

Figure 2 (left) describes the Node.JS Peer. The grey arrows represent incom-
ing and outgoing data streams. The Peer may host more than one Operator, for
which multiple parallel instances can be started as needed. Hosted Operators
may belong to different Topologies. Each parallel operator runs in its indepen-
dent Node.JS process and is directly connected through the appropriate stream
channel to the upstream and downstream operators. For what concerns commu-
nication to or from a Web browser, we use an adapter that can transparently
perform the WebSocket-ZeroMQ (and vice-versa) protocol conversion.

Browser Peer Architecture. The architecture of the client-side WLS has
been implemented using plain JavaScript with WebSockets and WebRTC. The
Peer and Operator code had to be adapted to run in Web browsers. To run an
Operator, a Web browser has to connect to a specific path (that is, performs a
GET request) in a Web server which is running an instance of WLS. The Web
server Peer updates the list of known Peers and updates the known Peers in
the network, making the Web browser a new available Peer in the peer-to-peer
Cloud. The path to which the Web browser has to connect is defined on the
Topology description file. This path is also associated with a given Operator,
thus depending on the connection path, the Web browser will execute differ-
ent Operators. The Web browser can also connect to a generic Operator page,
which accepts idle Web browser Peers. During the deployment or when more
computational power is needed, a streaming application can integrate those idle
Peers.

The Operators in the Web browser delegate the actual execution of the script
to a dedicated Web Worker thread through a proxy component. The proxy com-
ponent dispatches the incoming stream elements, the Web Worker threads exe-
cute the function to process it, and send the result back to the proxy which
is in charge of forwarding it downstream. The number of active Web Workers
can increase or decrease depending on the load fluctuations of the data stream.
Figure 2 (right) graphically shows the process including the receiver and the
sender components, which are WebRTC sockets that handle communication.



Decentralized Stream Processing Over Web-Enabled Devices 11

0 10 20 30 40 50

0

10

20

30

Webcam Framerate (fps)

C
o
n
su
m
er

T
h
ro
u
g
h
p
u
t
(f
p
s)

Webcam resolution
320x240
640x480
1280x960

Fig. 3. Webcam resolution and framerate

Some Web browsers do not implement WebRTC yet, thus they would not
be able to run an instance of the WLS Operator on them. We implemented a
fallback system which is able to switch protocol to WebSockets and make the
communication pass through the Web server in order to still being able to use
the connected Web browser.

4 Evaluation

We executed many experiments with WLS with different use case scenarios and
deployment configurations. The current status of the implementation supports
Google Chrome and Mozilla Firefox as Web browsers and Raspberry Pi as micro-
controller. We also tested a deployment on Arduino through Noduino. A more
lightweight version for the Tessel.IO microcontroller is being developed as we are
writing this paper. In this section, we first present the results of an experiment
involving Web browsers, sensors and servers in two different deployment with
a variable workload scenario. The experiment shows the throughput achieved
by the Topology in terms of messages per second. Then, we compare the perfor-
mance of a Topology when executed on a centralized deployment on a multi-core
server vs. a decentralized deployment on Web Browsers running on laptops.

4.1 Variable Workload Use Case Scenario

In this use case scenario we show how the system performs when the data
throughput of the stream changes. In the first example, by increasing the
throughput at the producer Operator, we increase the computational effort on
the Topology and show how the system performs by parallelising on a set of finite
resources. On the second example, we increase and decrease the throughput of
the produces to stress the Topology constantly.

The first experiment features a linear Topology composed by three Operators.
The first Operator has a deployment constraint and has to be run on a machine
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with a webcam. It forwards the webcam feed to a filter Operator, which applies
a negative filter on the video feed and forwards the result to the final Operator
which has a Web browser deployment constraint and shows the aggregated feeds
of the Webcams. For simplicity, we run the Topology on three machines only, one
for each Operator. The first Operator runs on a Raspberry Pi with a webcam
connected. The second Operator runs on MacBook Pros i7 (2.3GHz, 4 cores) with
16GB RAM on Google Chrome (OSX) version 37, while the last one on an iPhone
5S running Chrome (iOS) version 40. Data passes through WiFi with 30mb/s
of maximum bandwidth. The WiFi is public, so external interference may be
present. To increase the effort on the Topology, we increase the framerate of the
webcam feed, thus increasing the workload on the filter Operator. We performed
this evaluation with three different Webcam resolutions: 320x240, 640x480 and
1280x960 pixels.

The results (Figure 3) show that for a small webcam feed (320x240) we can
reach a throughput of around 35 to 40 frames per seconds. By further increasing
the frame rate, the system saturates the filter Operator (that is, Web Workers
spawned to parallelise the execution saturated the CPU of the MacBook Pro).
By doubling the resolution of the images, as expected, we see that the maximum
performance that can be reached degrades in both cases (640x480 and 1280x960).
It is important to notice that the parallelisation is executed only on the filter
Operator, the system considers the Raspberry Pi and the smartphone too thin
to be able to sustain the filter execution as well.

In the second experiment, the Topology again makes use CPU-intensive Oper-
ators that can be parallelized to process an incoming data stream with a vari-
able data rate. This will require to use more or less of the available computing
resources, depending on the actual workload. More concretely, the Topology
takes as input a stream of tweets (producer), encrypts them using triple DES,
and stores the encrypted result on a server (consumer). The deployment is as
follows: the producer runs on the MacBook Pro i7, running the server (Node.JS)
version of WLS, the encryption operator runs on a single server with twenty-
four Intel Xeon 2 GHz cores running Ubuntu 12.04 with Node.JS version 0.10.15,
while the consumer runs on a machine with four Intel Core 2 Quad 3GHz pro-
cessors, running the same versions of Ubuntu and Node.JS.

We focused on two different workloads: the slow workload sending 40 mes-
sages per second and the fast workload sending 500 messages per second. These
two workloads are alternated in a transition frequency passing from the slow
workload to the fast workload every 5000 messages.We expect to see the Topol-
ogy throughput to follow the fluctuating input rate of the tweets by parallelizing
the work on the big machine where the bottleneck is (encryption operator).

Figure 4 shows the topology throughput of the experiment.We can see (top
graph) that the fluctuating input rate (Producer) is well sustained by the system,
which adapts the operator deployment configuration to deal with the increasing
rate of messages. We can see in the bottom graph, how WLS parallelised the
execution by allocating more Node.JS processes on the machine and de-allocating
them as the load decreased.
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load transition experiment.

4.2 Centralized vs. Peer-to-Peer

In this evaluation we show two different deployments of the same Topology,
one on a single, big machine, and one distributed on different smaller machines
(Web browsers). This evaluation shows that even deploying a Topology on a
very powerful machine, by using enough weak machines we can achieve a better
performance. This claim turns out to be useful when trying to minimize the
costs of deployment over Cloud servers (lower CPU usage means lower costs) in
favour of a sub-Cloud of volunteer machines.

In this experiment we assess the overall throughput of the stream, i.e., the
time taken to exchange a fixed number of stream items sent through the same
Topology, deployed in two configurations. We have chosen to analyse the simplest
Topology with a toy example in order to reduce complexity and obtain repeatable
results about the deployment differences of a single Operator.

The Topology is a very simple pipeline composed by three Operators. The
first Producer Operator generates a finite list of numbers which are sent one at
a time downstream with a fixed data rate of 10 messages per second. The second
Operator (CPU-bound filter) computes the number of prime numbers between 0
and the received number, then forwards the result to the third Consumer Opera-
tor which stores the result together with some performance metrics. The amount
of data exchanged along the stream is minimal (one integer) thus reducing the
impact of the network communication. The number sent by the Producer deter-
mines the time taken by the filter in computing the solution, a CPU-intensive
operation. The stream begins with a relatively small number (easy work for the
filter) and then switches it progressively to a bigger number (hard work for the
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Fig. 5. Centralized vs. Peer-to-Peer Deployment Configurations

filter). This will force the elastic parallelisation of the execution of the filter
Operator up to the limit of the server machine or the peer-to-peer Cloud of
available machines. We keep track of the time taken to complete the processing
of the entire stream of messages as well as of the delay incurred when processing
each message through the entire pipeline.

Figure 5 shows the two deployment approaches compared in this evaluation.
The centralized approach is deployed on a single server with twenty-four Intel
Xeon 2 GHz cores running Ubuntu 12.04 with Node.JS version 0.10.15. The
peer-to-peer approach instead is deployed only on Web browsers: we used Google
Chrome v37 on MacBook Pros i7 (2.3GHz, 8 cores) with 16GB RAM.

Figure 6b shows the average delay of 10000 messages passing through the
Topology. We compare the performance of the Node.JS server-side deployment
on a single server-class machine vs. the behavior of the Browser only config-
uration on the Mac Book Pros. We can see that by increasing the number of
Peers the system can increase the number of parallel filter operators and further
reduce the message processing delay. This shows that the WLS framework can
effectively take advantage of additional resources as they appear to improve the
performance of the pipeline, whose workload can be shared among multiple peers
according to their processing power.

Figure 6a shows a comparison of the throughput of the two deployments
(Web browser and Node.JS) for a different number of parallel filter operators,
that are distributed on all available machines. The throughput is measured at the
consumer and is shown relative to the throughput of the producer operator, to
indicate how well can the Topology keep up with the incoming stream data rate.
The results indicate that given the same degree of parallelism, the deployment
on Web browsers obtains a slightly better performance by almost reaching the
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same throughput of the producer. The best result was obtained for 56 parallel
filters, where the Topology was deployed on both browsers and Node.JS servers.
This gives a good indication of the value of the peer-to-peer Cloud concept,
whereby the WLS framework can scale out a stream processing computation
using opportunistic resources provided through Web browsers as well as relying
on more stable foundation of server-side resources. Given an adequate amount of
resources, deployment can happen on browsers only without performance loss,
thus avoiding incurring in related costs of renting the corresponding amount of
Cloud computing infrastructure to run the Web servers.

5 Related Work

Since the introduction of WebRTC, many browser-to-browser streaming applica-
tions have emerged. It has become possible to videoconference without the need
of a central server [14], share content as in a peer-to-peer application [15] while
interacting with a Web server by the means of WebSocket [16]. Still, there is a
gap between the low-level messaging abstraction provided by WebSockets, the
data channel of WebRTC and what is needed to conveniently build peer-to-peer
streaming applications that can be deployed on a Cloud of Web-enabled devices.

Peer-to-peer, decentralized Cloud architectures have recently been recog-
nized as an effective alternative to centralized Cloud computing infrastructures.
In [4,5], the authors proposed the design and implementation of a general-
purpose framework to support distributed applications running over a very large
and unreliable set of networked computing devices. We also adopted the con-
cepts of application suite description and slicing. Like our Topologies and their
constraints, the application suite describes the constraints a subcloud must have
in order to be spread across the peer-to-peer Cloud. The slicing idea is embed-
ded in the middleware component responsible for assigning the right portion of
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the available Cloud to the application, taking care of satisfying its requirements
without using too many unnecessary resources.

A streaming processing system for the Cloud making use of sensors is Cur-
racurrong Cloud [12] which was developed on top of Curracurrong [11], a stream-
ing platform for Wireless Sensor Networks. Curracurrong Cloud is designed to
be deployed in large distributed clusters hosted using Cloud computing infras-
tructure, while maintaining the WSN deployment offered by the core platform.

Storm [1] (2011), an open source distributed real-time computational envi-
ronment originally developed by Twitter. Storm’s basic building blocks are called
spouts (producing a data stream) and bolts (receiving streamed elements). They
are used to produce and manipulate streaming data much like the concept of
Operator in WLS. They can be seen as MapReduce jobs which can theoretically
run forever. Spouts and bolts are executed inside Workers, physical JVMs exe-
cuting a subset of the topology. Another similar approach is Discretized Streams
(D-Streams) [17] (2012), a stream programming model that provides a set of
transformations which treat the stream as a series of batch computations of
small time intervals (reducing the latency of the jobs as much as possible).

MillWheel [2] (2013) is a Google framework that helps user build low-latency
data-processing applications at large-scale without the need to think about how
to deploy it in a distributed execution environment. The WLS runtime works at
the same level of abstraction, but targets a more diverse, volunteer computing-
style set of execution resources.

6 Conclusions

Stream processing is an important technology that is found in many real-time
data processing scenarios. Its importance is likely to grow with the rise of the
Web of Things, making it easy to process a wide variety of sensor data streams.
These are typically uploaded to the Cloud for processing and storage, while the
results are then downloaded to Web browsers for visualization that need to be
updated in real-time.

In this paper we presented the Web Liquid Streams (WLS) framework. Devel-
opers can use it to create Topologies of connected Operators through which a
data stream passes, going from data producers to data consumers. Thanks to the
widespread adoption of the lingua franca of the Web, JavaScript, WLS is able
to deploy operators across many heterogeneous devices, abstracting the com-
plexity of implementing Operators and connecting them as they are deployed on
Web-enabled execution environments (Web servers and Web browsers). These
range from small devices (such as Arduino and Raspberry Pi), mobile phones and
tablets (which run powerful mobile Web browsers), as well as traditional desktop
and server class machines (which run both Web browsers and Web servers).

In this way, on the one hand we contribute an stream-centric abstraction for
Web developers, while on the other we offer the capability of running a stream
processing application on almost any kind of Web-enabled device without the
need of installing additional software on them and without depending on a cen-
tralized Cloud infrastructure. We showed through a preliminary evaluation how
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the throughput of WLS Operators deals with increasing stream rate and message
size. We also demonstrated that WLS can use the most appropriate communi-
cation protocol to stream data between peers and compared the corresponding
overhead.

We are currently working at improving the parallelism of Operators and inte-
grating more types of Web-enabled smart devices in the framework. We are also
studying how to optimize the decision whether Operators should be deployed on
Web browsers vs. Web servers and how to take into account the network latency
between different Peers to determine the best possible location for an Operator.
We plan to further studying the robustness, scalability and performance of WLS
by porting some stream processing benchmarks to JavaScript [3], and by using
WLS to build more complex Topologies in real-world use case scenarios.
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Abstract. Managing complex applications over heterogeneous clouds
is one of the emerging problems in the cloud era. The OASIS Topology
and Orchestration Specification for Cloud Applications (TOSCA) aims
at solving this problem by providing a language to describe and man-
age complex cloud applications in a portable and vendor-agnostic way.
TOSCA permits to define an application as an orchestration of com-
ponents, whose types can specify states, requirements, capabilities and
management operations — but not how they interact with each other.

In this paper we propose a simple extension of TOSCA that permits to
specify the behaviour of management operations and their relations with
states, requirements, and capabilities. We show how such an extension
permits to automate various useful analyses, like determining the validity
of a management plan, which are its effects, or which plans reach certain
system configurations. Finally, we illustrate a proof-of-concept graphi-
cal interface that permits to edit and analyse management protocols in
TOSCA applications.

1 Introduction

Cloud computing has revolutionized IT, by allowing to run on-demand dis-
tributed software systems at a fraction of the cost of just a few years ago.
However, due to the lack of standardization, how to flexibly manage applica-
tions over heterogeneous clouds is still an open issue.

In this scenario, OASIS released TOSCA (Topology and Orchestration
Specification for Cloud Applications [15,17]), a standard to support the automated
management of complex cloud-based applications. TOSCA provides a modelling
language to describe, in a portable and vendor-agnostic way, a cloud application
and its management. An application is defined by instantiating component types,
and by connecting a component’s requirements to the capabilities of other compo-
nents. Its management can then be described by orchestrating the operations of
its components (like configure, install, start, etc.) into workflow plans.

Unfortunately, the current version of TOSCA [15] does not permit to specify
the behaviour of a cloud application’s management operations. More precisely,
it is not possible to describe the order in which the management operations of
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a component must be invoked, nor how those operations depend on the require-
ments or how they affect the capabilities of that component (and hence the
requirements of other components they are connected to). This implies that
the verification of whether a management plan is valid can only be performed
manually, with a time-consuming and error-prone process.

In this paper we first propose a simple extension of TOSCA that permits to
specify the behaviour of management operations and their relations with states,
requirements, and capabilities. We define how to describe the management pro-
tocols of TOSCA components by means of finite state machines whose states and
transitions are associated with conditions on the component’s requirements and
capabilities. Intuitively speaking, the objective of those conditions is to define
the consistency of component’s states and to constrain the executability of com-
ponent’s operations to the satisfaction of their requirements.

We then show how to the proposed extension of TOSCA permits to auto-
mate various analyses of management protocols, like determining whether man-
agement plans are valid, which are their effects, or which plans permit to reach
certain system configurations.

Finally, we illustrate the feasibility of our approach by describing a proof-of-
concept web-based application that permits to edit the management protocols
of TOSCA application components, and to analyse plans describing the man-
agement of a whole application.

The rest of the paper is organized as follows. Sect. 2 introduces TOSCA,
while Sect. 3 illustrates a scenario motivating the need for an explicit, machine-
readable representation of management protocols. Sect. 4 describes how TOSCA
can be extended to model the behaviour of management operations, and how
the proposed modelling permits to automate different types of analysis. Sect. 5
illustrates our proof-of-concept. Related work is discussed in Sect. 6, while some
concluding remarks are drawn in Sect. 7.

2 Background: TOSCA

TOSCA [15] is an emerging standard aimed at enabling the specification of
portable cloud applications and the automation of their management. To do
so, TOSCA provides a modelling language to describe the structure of a cloud
application as a typed topology graph, and its tasks as plans. More precisely,
each cloud application is represented as a ServiceTemplate (Fig. 1), consisting
of a mandatory TopologyTemplate and of optional management Plans. Generic
type definitions are also contained in the document defining the ServiceTem-
plate as they are referred to by the elements in its topology.

The TopologyTemplate is a typed directed graph describing the structure
of the composite cloud application. Its nodes (NodeTemplates) model the appli-
cation components, while its edges (RelationshipTemplates) model the rela-
tions among those components. NodeTemplates and RelationshipTemplates
are typed by means of NodeTypes and RelationshipTypes, respectively. A No-
deType defines (i) the observable properties of an application component, (ii)
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Fig. 1. TOSCA ServiceTemplate.

the possible states of its instances, (iii) its requirements, (iv) the capabilities it
offers to satisfy other components’ requirements, and (v) its management oper-
ations. RelationshipTypes describe the properties of relationships occurring
among components. Syntactically, properties are described by PropertiesDefi-
nition, states by InstanceStates, requirements by RequirementDefinitions
(of certain RequirementTypes), capabilities by CapabilityDefinitions (of cer-
tain CapabilityTypes), and operations by Interfaces and Operations.

Plans instead allow to describe the management aspects of a ServiceTem-
plate. More precisely, each Plan is a workflow orchestrating the management
Operations offered by the application components to address (part of) the man-
agement of the whole cloud application1.

3 Motivating Scenario

Consider two utility web services, Translator and Convertor, and suppose that we
want to manage them on a TOSCA-compliant cloud platform. After describing
the services in TOSCA, we have to specify the third-party application compo-
nents needed to properly host them. For instance, we may indicate that they have
to run on an Apache server installed on a Debian operating system, which in turn
runs on an VMWare virtual machine. Fig. 2 illustrates the resulting Topology-
Template, according to the graphical notation introduced by Winery [14]. For
the sake of readability, we focus only on the lifecycle interfaces [8] of each Node-
Type instantiated in the topology (i.e., the interfaces containing the operations
to install, configure, start, stop, and uninstall a component).

Suppose now that we want to specify the deployment of the Translator and
Convertor services by writing a TOSCA Plan. It is worth noting that, since
TOSCA does not include any representation of the management protocols of
(third-party) NodeTypes, one may produce invalid Plans. For instance, while
Fig. 3 illustrates three seemingly valid BPMN Plans, only (c) is a valid Plan.

1 A more detailed and self-contained introduction to TOSCA can be found in [8].
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Fig. 2. Motivating scenario.

(a)

(b)

(c)

Fig. 3. Examples of deployment Plans.

Plan (a) is not valid since Apache’s Configure operation cannot be executed
before Apache itself is running, while Plan (b) is not valid since Apache cannot
be installed if the Debian operating system is not running.

While the validity of Plans can be manually verified, this is a time-consuming
and error-prone process. In order to enable the automated verification of the
validity of Plans, TOSCA needs to be extended with an explicit, machine-
readable representation of NodeTypes’ management protocols.

4 Management Protocols for Cloud Applications

TOSCA NodeTypes can be described by means of their states, requirements,
capabilities, and management operations, but there is currently no way to specify
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how management operations affect states, how operations or states depend on
requirements, or which capabilities are concretely provided in a certain state.

In this section we propose an extension of TOSCA that permits to specify
the behaviour of management operations and their relations with states, require-
ments, and capabilities.

4.1 Definition of Management Protocols

Let N be a TOSCA NodeType, and let us denote its states, requirements, capa-
bilities, and management operations with SN , RN , CN , and ON , respectively.

We want to describe whether and how the management operations of N
depend on (i) other operations of the same node and/or on (ii) operations of
other nodes providing the capabilities that satisfy the requirements of N .

(i) The first kind of dependencies can be easily described by specifying the rela-
tionship between states and management operations of N . More precisely,
to describe the order with which the operations of N can be executed, we
introduce a transition relation τ specifying whether an operation o can be
executed in a state s, and which state is reached by executing o in s.

(ii) The second kind of dependencies can be described by associating transi-
tions and states with (possibly empty) sets of requirements to indicate that
the corresponding capabilities are assumed to be provided. More precisely,
the requirements associated with a transition t specify which are the capa-
bilities that must be offered to allow the execution of t. The requirements
associated with a state of a NodeType N specify which are the capabili-
ties that must (continue to) be offered by other nodes in order for N to
(continue to) work properly.

To complete the description, we also associate to each state s of a NodeType N
the capabilities provided by N in s.

Definition 1. Let N = 〈SN , RN , CN , ON ,MN 〉 be a NodeType, where SN , RN ,
CN , and ON are the finite sets of its states, requirements, capabilities, and man-
agement operations. MN = 〈sN , ρN , χN , τN 〉 is the management protocol of N ,
where

– sN ∈ SN is the initial state,
– ρN is a function indicating, for each state s ∈ SN , which conditions on

requirements must hold (i.e., ρN (s) ⊆ RN ),
– χN is a function indicating which capabilities of N are concretely offered in

a state s ∈ SN (i.e., χN (s) ⊆ CN ), and
– τN ⊆ SN × 2RN × ON × SN is a set of quadruples modelling the transition

relation (i.e., 〈s,H, o, s′〉 ∈ τN means that in state s, and if condition H
holds, o is executable and leads to state s′).

Syntactically, to represent MN we slightly extend the syntax2 for describing
a TOSCA NodeType. First, we enrich the description of InstanceStates by
2 A more detailed syntax for extended NodeTypes can be found in [5].
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introducing the nested elements ReliesOn and Offers. ReliesOn defines ρN by
enabling the association between states and conditions on requirements, while
Offers defines χN by indicating the capabilities offered in a state. Furthermore,
we introduce the element ManagementProtocol, to specify the InitialState s
of a protocol, as well as the Transitions defining its transition relation τN .

The management protocols of the NodeTypes in our motivating scenario
(Sect. 3) are shown in Fig. 4, where MWS is the management protocol for Web-
Services, MS for Server, MOS for OperatingSystem, and MVM for Virtual-
Machine. Consider for instance the management protocol MS of the Server No-

MWS MOS

MS MVM

Fig. 4. Management protocols of the NodeTypes in our motivating scenario.

deType, typing a Tomcat server. Its states SS are Unavailable (initial), Stop-
ped, and Working, the only requirement in RS is ServerContainer, the only
capability in CS is WebAppRuntime, its management operations OS are Setup,
Uninstall, Run, Stop, and Configure. States Unavailable and Stopped are
not associated with any requirement or capability. State Working instead speci-
fies that the capability corresponding to the ServerContainer requirement must
be provided in order for Server to (continue to) work properly. State Working
also specifies that Server provides the WebAppRuntime capability when in such
state. Finally, all transitions (but those involving operations Stop and Confi-
gure) bind their executability to the availability of the capability that satisfies
the ServerContainer requirement.

Management protocols (as per Def. 1) allow operations to have non-determi-
nistic effects (e.g., a state may have two outgoing transitions corresponding to the
same operation and leading to different states3). This form of non-determinism
is not acceptable when managing TOSCA applications [8]. We will thus focus
3 Note that the conditions of the two transitions may both hold even if the sets of

requirements they refer to are disjoint. Hence the state obtained by performing the
operation would be non-deterministic.



Modelling and Analysing Cloud Application Management 25

on deterministic management protocols (i.e., protocols ensuring deterministic
effects when performing an operation in a state).

Definition 2. Let N = 〈SN , RN , CN , ON ,MN 〉 be a NodeType. The manage-
ment protocol MN = 〈sN , ρN , χN , τN 〉 is deterministic if and only if

∀〈s1,H1, o1, s
′
1〉, 〈s2,H2, o2, s

′
2〉 ∈ τN : (s1 = s2 ∧ o1 = o2) ⇒ s′

1 = s′
2

4.2 Analysis of Management Protocols

In this section we describe different analyses that can be performed on the man-
agement protocol of a TOSCA application, such as checking the validity of a
Plan, determining its effects, or discovering Plans that allow to reach certain
system configurations.

We first define an intensional operational semantics of the management pro-
tocol of a single component (viz., a TOSCA NodeType), which models all possible
sequences of management operations that could be performed on a component
if the conditions on the needed requirements were satisfied by the environment.
Formally, the intensional semantics of the management protocol of a NodeType
N can be defined by a labelled transition system over configurations that are
the states of N .

Definition 3. Let N = 〈SN , RN , CN , ON ,MN 〉 be a NodeType. The intensional
semantics of the management protocol MN of N is modelled by a labelled tran-
sition system whose set of configurations is SN and where the transition relation
is defined by the following inference rule:

N = 〈SN , RN , CN , ON , MN 〉 MN = 〈sN , ρN , χN , τN 〉 〈s, H, o, s′〉 ∈ τN

s
〈H,o〉−−−−→N s′

Intuitively, a transition s
〈H,o〉−−−→N s′ denotes that operation o can be executed

on N when N is in state s, and under the hypothesis that condition H holds,
making N evolve into state s′.

The intensional semantics of the management protocol of a single
NodeType permits to determine the conditions that must hold in the environment
for sequences of management operations such as

s0
〈H1,o1〉−−−−−→N s1

〈H2,o2〉−−−−−→N · · · 〈Hh,oh〉−−−−−→N sh

to be effectively executable on a NodeTemplate of such NodeType.
We can now define the semantics of the management protocol of a whole

application (viz., a TOSCA ServiceTemplate) by suitably composing the inten-
sional semantics of the management protocols of the components (NodeTempla-
tes) that form such application. Formally, the semantics of the management
protocol of a ServiceTemplate S can be defined by a labelled transition system
over configurations that denote the states of the NodeTemplates of S. Intuitively,
a transition

G
〈o,Ni〉−−−−→S G′
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denotes that operation o can be executed on NodeTemplate Ni when the “global”
state of S is G, making S evolve into the new global state G′.

We first formally define the notion of global state of a ServiceTemplate
and introduce a shorthand notation to denote the capability connected to a
requirement in a ServiceTemplate (e.g., to denote Container as the capability
connected to the OSContainer requirement in our motivating scenario — Fig. 2).

Definition 4. A global state of ServiceTemplate S is denoted by a set

{(N1, s1), . . . , (Nm, sm)}
where N1, . . . , Nm is the set of NodeTemplates in S, and where si is a state of
Ni. We denote by G the initial global state S in which each NodeTemplate is in
its initial state (viz., G = {(N1, s1), . . . , (Nm, sm)}).
We also denote by capS(r) the (partial) function associating a requirement r
with the capability connected to r in S by means of a RelationshipTemplate.

We can now formally define the semantics of the management protocols in a
ServiceTemplate S. Intuitively, a management operation o can be executed on
a NodeTemplate Ni only if all the requirements needed by Ni to perform o are
satisfied by the capabilities provided by (other) NodeTemplates in S.

Definition 5. The semantics of the management protocols in a ServiceTem-
plate S is modelled by a labelled transition system whose configurations are the
global states of S, and where the transition relation is defined by the following
inference rule:

G = {(N1, s1), . . . , (Ni, si), . . . , (Nm, sm)}
G′ = {(N1, s1), . . . , (Ni, s

′
i), . . . , (Nm, sm)}

si
〈H,o〉−−−→Ni

s′
i ∀r ∈ H : capS(r) is defined ∧ capS(r) ∈

m⋃

j=1

χNj
(sj)

G
〈o,Ni〉−−−−→S G′

Definition 5 permits to model the evolution of a ServiceTemplate when a
sequence of management operations is executed:

G0

〈o1,Ni1 〉−−−−−→S G1

〈o2,Ni2 〉−−−−−→S · · · 〈oh,Nih
〉−−−−−−→S Gh.

It is worth observing that while Definition 5 checks that the requirements needed
by a NodeTemplate Ni to perform an operation o are satisfied by the capabilities
provided by the (other) NodeTemplates in S, it does not check whether after
performing o the requirements assumed by (the states of) all NodeTemplates
will continue to be satisfied. We hence introduce the notion of consistent global
state of a ServiceTemplate.

Definition 6. A global state {(N1, s1), . . . , (Nm, sm)} of a ServiceTemplate S
is consistent if and only if

∀i ∈ {1..m},∀r ∈ ρNi
(si) : capS(r) is defined ∧ capS(r) ∈

m⋃

j=1

χNj
(sj).
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Definitions 5 and 6 allow us to formally characterize the validity of a sequence
of management operations.

Definition 7. A sequence o1o2 . . . on of management operations is valid from a
global state G0 of a ServiceTemplate S if and only if:

G0

〈o1,Ni1 〉−−−−−→S G1

〈o2,Ni2 〉−−−−−→S · · · 〈on,Nin 〉−−−−−−→S Gn

and each Gi is a consistent global state.

The validity of a TOSCA Plan descends immediately from Def. 7.

Definition 8. Let G be a global state of a ServiceTemplate S. A Plan P for
S is valid from G if and only if all its sequential traces are valid in G.

It is easy to see now that the deployment plan (c) of Fig. 3 is valid since, by
starting from the initial global state, all its sequential traces are valid (and reach
the same global state). Conversely, Plans (a) and (b) in Fig. 3 are not valid as
their traces are not valid. More precisely, Plan (a) is not valid since all its
sequential traces produce the derivation shown in Fig. 5, and Apache:Configure

Fig. 5. Initial evolution according to Plan (a) in Fig. 3.

cannot be executed in the reached global state (because it requires Apache to
be in state Working, instead of Stopped). On the other hand, Plan (b) is not
valid since all its traces start as shown in Fig. 6, and Apache:Setup cannot be
executed in the reached global state. It indeed requires the capability satisfying
Apache’s ServerContainer to be provided, but that capability is not provided
when Debian is not in state Running.

The introduced modelling can be exploited for various other purposes besides
checking Plans validity. For instance, valid Plans may not be enough, as their
sequential traces may reach different global states. It is thus interesting to char-
acterize deterministic Plans.



28 A. Brogi et al.

Fig. 6. Initial evolution according to Plan (b) in Fig. 3.

Definition 9. Let G be a global state of a ServiceTemplate S. A valid Plan
P for S is deterministic from G if and only if all its sequential traces reach the
same global state G′.

It is also interesting to compute the effects of a valid Plan P on the states of the
components of a TOSCA ServiceTemplate, as well as on the requirements that
are satisfied and the capabilities that are available. Such effects can be directly
determined from the global state(s) reached by performing the sequential traces
of P . Moreover, the problem of finding whether there is a deployment Plan
which starts from the initial global state G and achieves a specific goal (e.g.,
bringing some components of an application to specific states or making some
capabilities available) can be solved with a breadth-first search of the reachable
global states. The same approach also works in the case of generic management
plans (i.e., plans starting from a generic global state G), and it permits to find the
sequential Plans (if any) allowing to reach a certain goal from whatever starting
G. It also allows to characterize an interesting property that a ServiceTemplate
may exhibit: if it is possible to reach the intial global state G from any G that
is reachable from G itself, then it is always possible to generate a plan for any
(reachable) goal from any (reachable) global state. This ensures reversibility of
actions, meaning that whatever G we reach from G, we can always get back to
G, thus always permitting a (soft) reset of the application.

5 Proof-of-Concept Implementation

We now illustrate the feasibility of our approach by introducing Barrel, a web-
based application4 that permits to edit and analyse management protocols in
TOSCA applications. In the following, we shall not deepen into implementation
details, but rather focus on how Barrel can be used to edit and analyse existing
TOSCA applications.

4 Barrel’s interface is written in HTML5, while its back-end is written in JavaScript.
The application can be accessed at http://ranma42.github.io/MProt/ with any mod-
ern web-browser, like Google Chrome or Mozilla Firefox. The source code is publicly
available at https://github.com/ranma42/MProt.

http://ranma42.github.io/MProt/
https://github.com/ranma42/MProt
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The very first step is to import a CSAR package5 containing a ServiceTem-
plate, as well as the NodeTypes instantiated in its TopologyTemplate. Once
the CSAR is loaded, the NodeTypes’ names appear in the left hand pane of
Barrel’s interface (Available NodeTypes), and by selecting one of them the user
can start editing its management protocol (Fig. 7). The management protocol

Fig. 7. Screenshot of Barrel: Editing mode.

is visualized in the central pane, by displaying the selected NodeType’ states
and the transitions among these states (if any). By clicking on a state s, a
dedicated TOOLBOX opens in the right pane. This TOOLBOX permits editing
the current values of ρ(s), χ(s), and τ(s), by allowing the user to update the
set of requirements on which the selected state s relies, the set of capabilities it
offers, and its outgoing transitions. Such updates can also be viewed directly in
the XML source of the current NodeType, by clicking on the Show XML button in
the left pane. Once the NodeTypes’ management protocols have been edited, the
updated CSAR can be downloaded through the EXPORT CSAR functionality.

Users can also analyse the behaviour of the management operations appear-
ing in the imported ServiceTemplate by selecting the ANALYZE option in the
top menu. As a result, Barrel pops out a window showing the current global
state of the application topology (Fig. 8). More precisely, the window lists all the
NodeTemplates in the TopologyTemplate, each associated with its current state,
the requirements it relies on, the capabilities it offers and the operation actually
available. Each operation is highlighted in green if all the capabilities connected
5 A CSAR (Cloud Service ARchive) is a compressed zip file containing the TOSCA

definitions describing the cloud application, along with the concrete artefacts imple-
menting its components [15].
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Fig. 8. Screenshot of Barrel: Analysis mode.

to the requirements needed to execute it are currently available, otherwise it
is highlighted in yellow. By clicking on a (green) operation users can simulate
its execution, thus updating the current global state and then the ANALYZER
window. If the reached state is inconsistent, a warning banner is displayed.

With the simple, interactive ANALYZER of Barrel, users can perform the
analyses described in Sect. 4.2. For instance, to check whether a Plan is valid,
they just need to simulate its sequential traces and check that no inconsistent
state is traversed. They can also compute the effects of a valid Plan on states,
capabilities and requirements by looking at the initial and final configurations
displayed by the ANALYZER window. In this first version of Barrel, developers
can only perform these analyses interactively, by manually clicking on the (green)
operations and by looking at how they affect the global state6.

It is worth noting that Barrel is already partially integrated with the Open-
TOSCA open source ecosystem [3,14]. Barrel is indeed able to process CSARs
developed with the visual editor Winery [14], and it produces CSARs that can
be imported in Winery7.

6 As part of our future work, we intend to extend Barrel in a working prototype
capable of automatically performing all the aforementioned analyses.

7 While Winery imports the CSARs generated by Barrel, it does not properly process
the information concerning management protocols. This is obviously because the
extension to TOSCA we propose is not yet part of the TOSCA standard, and hence
not (yet) supported in the OpenTOSCA open source environment.
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6 Related Work

The problem of automating application management is well-known in computer
science. In the cloud era, it has become even more prominent because of the
complexity of both applications and platforms [9]. This is witnessed by the pro-
liferation of so-called “configuration management systems”, like Chef [10] or
Puppet [18]. These management systems provide domain-specific languages to
model the desired configuration for a software solution, and employ a client-
server model to ensure that such configuration is met. However, the lack of a
machine-readable representation of how to effectively manage cloud application
components inhibits the possibility of performing automated analyses on com-
ponents’ configurations and dependencies.

A first attempt to model the deployment of cloud-based applications was the
Aeolus component model [11]. The Aeolus model shares our objective of describ-
ing various characteristics of cloud applications’ components, including the possi-
bility that component interfaces may vary depending on the internal component
state. However, the Aeolus model only permits specifying what is offered and
required in a state. Our approach instead allows developers to distinguish the
requirements ensuring the consistency of a state from those constraining the
applicability of a management operation. This permits to express transitions
whose requirements concerns only the applicability of an operation and not the
consistency of a state (e.g., the transition 〈Unavailable, {ServerContainer},
Setup, Stopped〉 of the protocol MS in Fig. 4). Such kind of transitions can-
not be directly modelled in Aelous (without introducing dummy intermediate
states). Furthermore, Aelous and other emerging solutions, like Juju [13] or
Engage [12], differ from our approach since so far they focus on the deployment
of a cloud application, rather than on its whole management. Aelous, Juju, and
Engage also differ from our approach since they are currently not integrated
with any cloud interoperability standard.

TOSCA’s rich type system has been exploited to devise various techniques
that facilitate the the reuse of available services, like [4,7,19]. Those techniques
permit to match and adapt (fragments of) existing ServiceTemplates to imple-
ment a desired NodeType by checking that the features of the latter are all pro-
vided by the former. While those techniques are capable of overcoming various
syntactical differences, they do not take into account the behaviour of man-
agement operations. Namely, they do not check whether the behaviour of a
(fragment of) ServiceTemplate is compatible with the desired behaviour of
a NodeType. As our proposal extends TOSCA’s type system, it can be natu-
rally exploited to extend the reuse techniques based on TOSCA, like [4,7,19], to
account for management behaviour.

Finally, we have investigated the possibility of employing composition-ori-
ented automata (like interface automata [1]) to model valid plans directly as
the language accepted by the automaton obtained by composing the automata
modelling the management protocols of the components of an application. The
main drawbacks of such an approach are the size of the obtained automaton
(which grows exponentially with the number of application components and
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hence makes the automaton scarcely readable even for simple applications), and
the need of recomputing the automaton whenever a new component is added or
its management protocol is modified.

7 Conclusions

In this paper we have proposed an extension of TOSCA to model the behaviour
of management operations and their relations with states, requirements, and
capabilities. We have then illustrated how such modelling permits to automate
different analyses, such as determining whether a management Plan is valid,
which are its effects, or which Plans allow to reach certain system configura-
tions. To illustrate the feasibility of the proposed approach, we have developed
a proof-of-concept graphical interface that permits to edit NodeTypes’ manage-
ment protocols and to analyze ServiceTemplates’ Plans.

It is worth noting that, even if some of the behaviour-aware analyses dis-
cussed in Sect. 4.2 have exponential time complexity in the worst case, they
still constitute a significant improvement with respect to the state-of-the-art, as
currently the development and validation of Plans is performed manually, after
delving through the documentation of the application’s components.

It is also worth observing that our approach builds on top of, but is not
limited to, TOSCA. It can indeed be adapted to other languages for specifying
cloud applications (e.g., like CAMP [16] or GENTL [2]), and more in general
to any stateful behaviour model of systems that describe states, requirements,
capabilities, and operations.

We are currently investigating the possibility of modelling management pro-
tocols for cloud-based applications with Petri nets [6], with the objective of
expressing some of the analyses described in Sect. 4.2 in terms of well-known
Petri net notions (e.g., expressing Plan’s validity in terms of firing sequences,
or reducing Plan determination to coverability) and hence to possibly exploit
some of the many available tools supporting the analyses of Petri nets. We see
two other directions for immediate future work. On the one hand, we intend
to extend our proof-of-concept Barrel into a working prototype supporting
all the analyses described in Sect. 4.2, and to fully integrate it with the Open-
TOSCA open source environment [3,14]. On the other hand, as we anticipated
in Sect. 6, another interesting direction for future work is to extend the matching
and adaptation reuse techniques based on TOSCA [4,7,19] to take into account
the management behaviour of cloud-based applications.
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Abstract. Dynamic service composition represents a key feature for
service-based applications operating in dynamic and large scale network
environments, as it allows leveraging the variety of offered services, and
to cope with their volatility. However, the high number of services and
the lack of central control pose a significant challenge for the scalabil-
ity and effectiveness of the composition process. We address this prob-
lem by proposing a fully decentralized approach to service composition,
based on the use of a gossip protocol to support information dissemina-
tion and decision making. The proposed system builds and maintains a
composition of services that fulfills both functional and non functional
requirements. For the latter, we focus in particular on requirements con-
cerning the composite service completion time, taking into account both
the response time and the impact of network latency. Simulation experi-
ments show that our solution converges quickly to a feasible composition
and can self-adapt to dynamic changes concerning both service availabil-
ity and network latency.

Keywords: Peer to peer systems · Service composition

1 Introduction

In this paper we address the problem of discovering and selecting the services
needed to dynamically compose a given application developed according to the
service-oriented paradigm and deployed in large scale networked systems. We
assume that the application is architected as a set of required services logi-
cally connected through a workflow that specifies control and data dependencies
among them. Such a workflow could be the result of a manual design process,
or automatically created by planning approaches. Besides functional require-
ments concerning the desired service types, we also assume that the resulting
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composition must fulfill non-functional quality of service (QoS) requirements; in
particular, we focus on the overall completion time for the service delivered by
the composition. Given the large scale environment we are considering, network
latency may have a relevant impact on this performance goal.

The composition process must face uncertainty and complexity issues to fulfill
both its functional and QoS requirements. Uncertainty is caused by the lack
of stable and globally available information about available services, because
of reachability problems and service autonomy. Complexity is caused by the
potentially high number of required services in an application, spanning from
tens up to hundreds or thousands [20], and corresponding candidate functionally
equivalent services in the network.

Centralized approaches to service composition can hardly tackle these issues.
Rather, they motivate the need of decentralized and self-adaptive approaches to
achieve an adequate degree of robustness, resiliency and scalability. Approaches
of this kind have already been proposed [9,19], mostly based on the assumption
of a decentralized orchestration of the application workflow, using structured or
unstructured P2P network architectures.

However, as we argue in Sect. 2, composite services workflows could be orches-
trated in a decentralized or centralized way, and network latency affects their
overall QoS differently, depending on which orchestration model is used. Hence,
a comprehensive QoS-aware approach to service composition should take into
account workflows orchestrated according to both models.

In this respect, the main contribution of this paper is a QoS-aware fully
decentralized and self-adaptive approach to service composition, whose main
features are: (i) the ability to deal with composite services workflows orches-
trated according to both centralized and decentralized model; (ii) the adoption
of an unstructured P2P approach to resource discovery and selection, based
on the use of a gossip protocol that guarantees resilience to dynamic changes
concerning service availability and network latency, and scalability with respect
to the system size, thanks to the bounded amount of information maintained
and exchanged among nodes. Simulation experiments show that our approach is
able to quickly complete the composition process, and to quickly self-adapt to
dynamic changes concerning both service availability and network latency.

The paper is organized as follows. We present in Sect. 2 the system model and
in Sect. 3 the architecture of the decentralized P2P system and the algorithms for
the self-adaptive dynamic service composition. In Sect. 4 we discuss simulation
results that assess the system performance. Related works are briefly discussed
in Sect. 5. Finally, we conclude and present directions for future work in Sect. 6.

2 System Model

We consider a large scale distributed system consisting of a dynamic set N of
nodes, collectively offering a set S of concrete services. We denote by node(s) the
node hosting service s ∈ S. Both the services in S and the latency among host-
ing nodes may dynamically change, because of events such as service providers
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disabling/enabling services, reachability problems of hosting nodes, or variations
in the network topology. We assume that a descriptor is associated with each
concrete service, providing information about its functional and non functional
characteristics. For the latter, we assume in particular that the descriptor of a
service s includes the specification of resptime(s), the estimated completion time
of a service request addressed to s. We also assume the availability of function
dist : N × N → � that returns the round-trip latency between a pair of nodes.
We discuss in Sect. 3 how it can be implemented in a scalable way, integrated
in the overall architecture of the solution we propose.

This system is intended to support the execution of service-based distributed
applications dynamically composed according to a workflow that defines control
and data dependencies among different services. A workflow W is modeled as a
directed acyclic graph (DAG) W = (ΣW , EW ), where:

– ΣW is a set of nodes. Each node σ ∈ ΣW represents a required service for
W , labeled with a specification of its functional requirements.

– EW is a set of edges modeling data and control flow between services. Mul-
tiple edges exiting from or entering a node may model XOR, OR, or AND
control logic; however, for the purpose of the problem addressed in this paper,
we do not need to explicitly specify it.

Given a workflow W , each abstract service σ ∈ ΣW must be bound to a
suitable concrete service s ∈ S for the workflow to be executed. To this end,
we assume that there exists a function matches : ΣW × S → [0, 1] such that
matches(σ, s) = 0 if the concrete service s does not match the functional require-
ments of the abstract service σ, and matches(σ, s) > 0 if some matching exists
according to some matching criterion [18,22]. Function res : ΣW → (S

⋃{null})
specifies the concrete service bound to an abstract service σ, where res(σ) = s
if σ is bound to s ∈ S, res(s) = null otherwise.

When the composition process for a workflow W starts, W has no matching
concrete service bound to an abstract one, and can be considered as the template
that drives the dynamic composition of the application. Workflow W becomes
fully resolved when each σ ∈ ΣW is bound to a suitable concrete service, i.e.,
res(σ) �= null and matches(σ, res(σ)) > 0. Otherwise, W is partially resolved.

Centralized and Decentralized Orchestration. Once a workflow has been fully
resolved, it may be orchestrated either according to a Centralized Orchestra-
tion (CO) or Decentralized Orchestration (DO) model [4]. In the DO model
each service receives control and data directly from its immediate predecessors
and, once it terminates its task, directly transfers them to its immediate suc-
cessors. On the other hand, in the CO model interactions among services are
mediated by a centralized coordinator, which receives control and data from
each service and then transfers them to the suitable successor(s). The CO model
simplifies the workflow management, but introduces additional delays caused by
the indirect interaction between consecutive services, and may suffer from the
typical problems of a centralized solution (bottleneck node, single point of fail-
ure). The DO model overcomes these problems, but requires the instantiation
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of workflow control logic at each node hosting a workflow resource [2,4]. This
can be problematic, as such nodes could not be willing to host this logic, or
could have limited capabilities that make them not capable of coordinating the
workflow operations (as could be the case of nodes involved in Internet-of-Things
scenarios). As a consequence, a comprehensive solution for QoS-aware decentral-
ized service composition should consider both CO and DO models, taking into
account their different impact on the global QoS. In this respect, an important
QoS attribute for a fully resolved workflow is the time required to complete its
operations. In the following we precisely define the worst case completion time
of a fully resolved workflow W , denoted by wcct(W ), as a QoS metric based
on this attribute, and provide expressions for calculating it in case of workflows
orchestrated according to the CO or DO model.

Worst Case Completion Time. We define wcct(W ) as the maximum elapsed
time from the arrival of a service request to W and the delivery of the final
result. Roughly speaking, it corresponds to the length of the longest path in
a fully resolved instance of W . For a more precise definition, we introduce the
following notation.

Given an abstract service σ ∈ ΣW , functions Pred(σ) and Succ(σ) return
the set of predecessors and successors of σ in W respectively, i.e., Pred(σ) =
{ζ ∈ ΣW | (ζ, σ) ∈ EW }, and Succ(σ) = {τ ∈ ΣW | (σ, τ) ∈ EW }. A path π in
W is a sequence of abstract services π = (σ0, σ1, . . . , σk) such that there exists
a dependency between each service and its successor, i.e., (σi, σi+1) ∈ EW for
each i ∈ {0, 1, . . . , k − 1}. π is a fully resolved path if each service in it is bound
to a concrete service matching its functional requirements, i.e., res(σi) �= null
and matches(σi, res(σi)) > 0 for each i ∈ {0, 1, . . . , k}.

The length len(π) of a fully resolved path π = (σ0, σ1, . . . , σk) in a workflow
W is defined as:

len(π) =

k∑

i=0

resptime(res(σi)) +

k−1∑

i=0

del (node(res(σi)),node(res(σi+1))) (1)

where del (node(res(σi)),node(res(σi+1))) denotes the network delay for trans-
ferring control and data from the node hosting res(σi) to the node hosting
res(σi+1). This delay depends on the adopted orchestration model and can be
expressed as follows for the CO and DO models, respectively:

delCO (node(Ri),node(Ri+1)) = 2 · dist(node(Ri),node(coordW )) (2)
delDO (node(Ri),node(Ri+1)) = dist (node(Ri),node(Ri+1)) (3)

where Rk := res(σk) and coordW denotes a resource acting as coordinator of W
in the CO case.

From (1) and (2) we see that the path length (and hence the value of
wcct(W )) in the CO case is the sum of uncorrelated terms: changing the concrete
service bound to an abstract service σ has only a local impact, as it does not
affect the contribution to the overall path length of concrete services bound to
other abstract services in the path. On the other hand, from (1) and (3) we see
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that the path length in the DO case is the sum of correlated terms: changing the
concrete service bound to an abstract service σi does affect the contribution to
the overall path length of concrete services bound to abstract services σi−1 and
σi+1, since the delay for data and control transfer to/from σi could change.

Problem Statement. Given the system model described above, the problem
addressed in this paper is how to devise a fully decentralized protocol that,
given a workflow template W , is able to fully resolve W through a suitable
composition of services offered by nodes in N, and fulfill a QoS requirement
on wcct(W ), that can be threshold-based (e.g., wcct(W ) < T for some suitable
threshold T ), or min-based, requiring the minimization of wcct(W ). Given the
intrinsic dynamism of the system, the protocol must be able to adapt to modi-
fications of the set of available resources and nodes topology.

3 System Architecture

Figure 1 shows the fundamental components of the architecture that allows
achieving the goals stated in the previous section. Each node n ∈ N hosts
three macro components: Network Latency Estimator (NLE), Workflow Manager
(WM), and Gossip Manager (GM). The cooperation among instances of these
three components hosted at each node produces the overall self-adaptive service
composition process. In particular, NLE estimates the network delay among pairs
of nodes in order to instantiate workflows satisfying the required QoS require-
ment, as discussed at the end of this section. WM is responsible for starting
the composition of a new workflow according to the template received from
the application layer, or the repair of an already composed workflow in case of
modifications in the available resources. GM implements the decentralized infor-
mation dissemination and decision-making, leading to the dynamic composition
and self-adaptation of workflows according to their functional and QoS require-
ments. GM instances hosted by different nodes cooperate to this end using a gos-
sip communication model, which leverages epidemic protocols to achieve reliable

Fig. 1. System architecture.
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information exchange among large sets of interconnected peers, also in presence
of network instability (e.g., peers join/leave the system suddenly). Although it is
in general not possible to analytically estimate the convergence speed of gossip
algorithms, it is known that in most cases the number of iterations required to
reach a “sufficiently good” solution is proportional to the logarithm of the net-
work size [12]. Indeed, in Sect. 4 we will show that our gossip-based procedure
achieves its goal very quickly. The WM and GM components hosted by a node
n share a common state made of: (i) the set Sn of concrete services offered by
n, (ii) the set workn of workflows node n is aware of and whose composition is
underway, and, (iii) for each W ∈ workn, the set CW = {CW (σ) | σ ∈ ΣW },
where CW (σ) is a set of currently known concrete services that could be bound
to the required service σ.

The Workflow Manager Component. The WM instance hosted by a node
n starts its operations by receiving a fully unresolved or partially resolved work-
flow W , the former in case of a newly entering workflow, the latter for a workflow
under repair. In both cases, WM adds W to the set workn of workflows under
construction. This action triggers a composition phase for W (see Alg. 1). WM
also associates W with a globally unique identifier denoted by id(W ), which
remains associated with all the different instances of W resulting from the decen-
tralized composition process. Hence, given two workflow instances W ′ and W ′′,
id(W ′) = id(W ′′) indicates that they both originate from the same template.

After that, WM enters a stage where it is ready to receive fully resolved
instances of W as effect of the operations of the GM components (described
below). This stage ends when either a maximum allowed number of candidates
has been collected, or a timer expires. Then, WM selects the “best” realization of
W from the set of candidates; the selection is based on some criterion that takes
into account the requirement on wcct(W ) and, possibly, other quality factors
(e.g., cost or reliability). Finally, WM sends a commit message to each concrete
service bound to an abstract service in the selected W instance, and starts its
execution and monitoring.

When the WM monitoring activity detects relevant changes for a workflow
W in execution (e.g., the failure of a node hosting one of its services, a change
in the actual latency for the interactions with a node), an adaptation action
is triggered. It consists in reactivating the workflow composition procedure by
inserting a partially resolved instance of W into the set workn. This instance is
built differently, depending on the orchestration model adopted for W :

– in the CO case, the instance is built by setting as unbound the abstract ser-
vices originally bound to concrete services whose parameters (response time,
latency) changed, while abstract services bound to unaffected concrete ser-
vices can retain their bindings, because of the uncorrelation among different
services.

– in the DO case, the partially resolved instance of W is built by setting as
unbound the abstract service originally bound to a concrete service whose
parameters (response time, latency) changed and, recursively, all services
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having at least one of their immediate predecessors set as unbound are also
set as unbound. The rationale is that, as we will see in Alg. 3, binding a
concrete service to an abstract service in the DO case depends on the selec-
tion performed for its immediate predecessors. Hence, invalidating a service
invalidates all its successors.

The Gossip Manager Component. Algorithm 1 describes the core of the
gossip algorithm for workflow composition, cooperatively executed by the GM
components hosted by peer nodes. The goal of this algorithm is to determine
a binding between the unbound abstract services in W , and matching concrete
services in S. To achieve this, all nodes iteratively exchange and merge their local
state information concerning the workflow(s) whose composition is underway
(i.e., the content of set workn and, for each W ∈ workn, the corresponding set
CW ). The algorithm is parametric with respect to function Merge() used to
this end, since its actual definition depends on the type of orchestration model
(centralized or decentralized) that has been adopted to coordinate the workflow
operations, as detailed below. Algorithm 1 includes an initialization phase and
two concurrent threads: an active thread that starts an interaction by sending
a message to a randomly selected node, and a passive thread that responds to
messages received from other nodes. In the active thread, node n sends a message
to the randomly selected peer p every Δt time units, where the message payload
is the content of workn. p is provided by the SelectRandomNode() function
implemented in a underlying layer (e.g., based on the Newscast service [11]).
The passive thread listens for messages coming from other nodes. Upon receiving
a message containing the set workq from some node q, the passive threads merges
workn and workq (line 10). After that, it checks whether some workflow becomes
fully resolved by effect of the merging procedure. If so, the fully resolved workflow
is sent to the node that initiated its composition. In the next two subsections
we complete the definition of the gossip-based service composition procedure by
specifying the Merge() function passed as input to Alg. 1, for the CO and DO
scenario, respectively.

State Merging Under the CO Model. Algorithm 2 implements the
Merge() function for the CO scenario where wcct(W ) is computed based on (2).
Merge() treats the resolution of each σ ∈ ΣW separately, aiming at the min-
imization of its completion time independently of the other services in ΣW .
Thanks to the uncorrelation among different services, as remarked in Sect. 2,
this local minimization eventually leads also to the minimization of the over-
all value of wcct(W ). As a consequence, the gossip-based procedure will make
the system eventually able to deliver one or more fully resolved instances of W
that fulfill the min-based requirement on wcct(W ). For the same reason, the
threshold-based requirement can be eventually fulfilled, provided that resources
suitable to this purpose exist in the system (i.e. if the achievable minimum value
for wcct(W ) is less than the required threshold).
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Algorithm 1. GM algorithm executed by node n

1: workn ← ∅
2: procedure ActiveThread
3: loop
4: Wait Δt
5: p ← SelectRandomNode()
6: Send 〈workn〉 to p

7: procedure PassiveThread
8: loop
9: Receive 〈workq〉 from q

10: workn ← Merge(workn,workq)
11: for all W ∈ workn s.t. W is fully resolved do
12: Send 〈W 〉 to the initiator

Algorithm 2. Merge state information of n and q under a CO scenario

1: procedure Merge(workp,workq)
2: workn ← workn ∪ workq

3: for all W ∈ workn do
4: W ′ ← {w ∈ workn — id(w) = id(W )}
5: for all σ ∈ ΣW do
6: CW (σ) ← CW (σ) ∪ CW ′(σ) ∪ {s ∈ Sn s.t. matches(σ, s) > 0}
7: if CW (s) �= ∅ then
8: sbest ← arg mins∈CW (σ){resptime(s) + dist(node(s),node(coordW ))}
9: CW (σ) ← {sbest}

10: bind sbest to σ

11: workn ← workn \ {W ′}

State Merging Under the DO Model. Algorithm 3 implements the
Merge() function for the DO scenario where wcct(W ) is computed accord-
ing to (3). Differently from the centralized case, minimizing wcct(W ) cannot be
decomposed into the local problems of minimizing the completion time of each
abstract service σ ∈ ΣW . This makes finding the optimal solution computa-
tionally infeasible [14]. Therefore, Alg. 3 adopts a heuristic procedure that tries
to determine a “good enough” composition, without a strict guarantee that an
optimal solution will be found. The procedure is based on a greedy approach
similar to the ones proposed in [9,19], which resolves services in ΣW on a step-
by-step basis, starting from the initial node of W : indeed, a required service σ
is bound to a matching concrete service only if all preceding services in Pred(σ)
have already been resolved (line 7). The rationale for this mechanism is that only
when Pred(σ) is fully resolved, it is possible to know the worst case increment
to the path length caused by resources in the set of known candidates for σ, and
to select the one causing the minimal increment (lines 7–9). Once σ has been
resolved, the algorithm no longer tries to modify its binding (line 5), even if some
better resource could be discovered in next rounds of the algorithm. This avoids
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Algorithm 3. Merge state information of n and q under a DO scenario

1: procedure Merge(workn,workq)
2: workn ← workn ∪ workq

3: for all W ∈ workn do
4: W ′ ← {w ∈ workn — id(w) = id(W )}
5: for all σ ∈ ΣW s.t. σ is not resolved do
6: CW (σ) ← CW (σ) ∪ CW ′(σ) ∪ {s ∈ Sn s.t. matches(σ, s) > 0}
7: if resolved(Pred(σ)) then
8: sbest ← arg mins∈CW (σ){resptime(s) +

maxσ′∈Pred(σ){dist(node(s),node(res(σ′)))}}
9: bind sbest to σ

10: else
11: keep in CW (σ) at most Kmax concrete services s with smallest

resptime(s)

12: for all W ∈ workn do
13: W ′ ← w ∈ workn such that id(w) = id(W )
14: Wworst ← arg maxw∈{W,W ′}{maxπ∈Πw (lenDO(π)}

// ΠW is the set of all resolved paths in W
15: workp ← workp \ {Wworst}

cascading effects on successors of σ, which could lead to combinatorial explosion
of the number of possible alternatives. However, it could prevent the discovery of
a better solution. Hence, this greedy approach ensures that the system progresses
towards the fulfillment of its functional requirement (i.e., the full resolution of
W ), but without a strict guarantee of eventually achieving the minimum value
for wcct(W ), differently from the CO case.

As a final note, we point out that both merging algorithms guarantee that at
each round of the gossip algorithm the total amount of exchanged information
for the composition of a workflow W is upper bounded by N · |W |, where N
is the number of peer nodes and |W | is the size of the W representation. This
makes the composition procedure scalable, as its complexity at each round grows
at most linearly with the number of nodes and workflow size.

Network Delay Estimation. Estimating the network delay between pairs
of peer nodes plays a crucial role for the selected QoS metric (wcct) driving
the QoS-aware composition process. Indeed, in this context, the communication
delay for the interactions with services located at different nodes could have a
non-negligible impact, as some services could be offered by distant cloud servers.
However, estimating the latency among services located at different nodes would
in principle require probing all pairwise link distances, which would not scale
with high numbers of concrete services and hosting nodes. For this reason the
NLE components (see Fig. 1) collectively implement a network coordinates (NC)
system that provides an accurate estimate of the round-trip latency between
any two network locations, without the need of an exhaustive probing. The NLE
components maintain the NC system through a decentralized algorithm [6] with
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linear complexity with respect to the number of network locations, thus ensuring
scalability. Moreover, as this NC algorithm adopts a gossip-based information
dissemination scheme, the NLE components operations are easily integrated with
the overall approach to service composition described above.

4 System Assessment

In this section we present a set of simulation experiments to assess the perfor-
mance of the algorithms implementing the decentralized service composition. We
evaluate the proposed approaches for the CO and DO scenarios over a large P2P
network by exploiting the event-driven engine of PeerSim [16], a widely used dis-
crete event simulator for P2P systems. We implemented the overlay network and
the system architecture described in Sect. 3 on top of PeerSim. We initialized the
P2P network topology with a specific number of nodes (by default 1000), mod-
eled according to the scale-free Barabasi-Albert graph with power-law degree
γ = 3. We set the replication degree of each resource to 5. For each concrete
service s, value resptime(s) is linearly distributed in the range [100, 140] ms.
We randomly select the nodes that host concrete services, without placing any
concrete service on the workflow initiator; moreover, each node hosts a single
concrete service. Such a service placement allows us to evaluate the performance
of the algorithms in a worst case scenario.

For the workflow, we considered a layered structure, where each layer has
one or more activities. We experimented with various alternatives, ranging from
a “long” workflow with n layers and characterized by a sequence of n activities
and 1 activity per layer, to a “short” workflow, characterized by having a single
service in the first and last layers and n − 2 parallel services in the middle layer,
to a line workflow, where all services are in parallel on a single layer. For space
reason, we report the results only for the long workflow, which represents a worst
case scenario for the decentralized orchestration. If not otherwise specified, the
sequential workflow has 10 distinct activities.

We modeled the network latency as a uniform random variable in the range
[10, 130] ms, which is consistent with Internet latency values. The NC system
described in Sect. 3 is maintained by means of the Vivaldi algorithm [6]. With
the described setting, each gossip round requires about 1 s.

For each experimental scenario, we run a set of 1000 experiments, each cor-
responding to a different network topology and a different random allocation
of the services to the network nodes. Most of the experiments assume a single
workflow to be resolved within 30s, which, in our setting, represents a reasonable
timeout for the resolution time (in the experiments that terminate with a fully
resolved workflow, the resolution time is almost always less than 10s).

In the discussed experiments, we mainly focus on the average resolution time
as performance index, which is the time required for the initiator to receive a fully
resolved workflow averaged out the 1000 experiments. Specifically, we consider
both the threshold resolution time and the first resolution time. The first is the
time to receive a fully resolved instance of the workflow W that satisfies its
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Fig. 2. Base scenario. (a) Resolution time vs. wcct(W ) threshold. (b) Recall vs.
wcct(W ) threshold.

wcct(W ) threshold requirement, while the latter is the time to receive the first
fully resolved workflow. As additional performance index we consider the recall,
which measures the system’s ability to timely provide a fully resolved workflow.
It is computed as the ratio of the number of experiments where the workflow is
fully resolved within the timeout to the total number of experiments.

In the first set of experiments, we consider the base scenario, with 1000
network nodes and a long workflow with 10 activities. Figs. 2a and 2b show
the threshold resolution time and the recall for the CO and DO models, when
the wcct(W ) threshold varies. For the DO case, the peer can retain at most
Kmax candidate resources with the smallest execution time (see Alg. 3). We
observe that the system gets more quickly and with a higher success probability
a fully resolved workflow matching the threshold-based requirement in the DO
case than in the CO case, because it is advantaged by the intrinsic greater
efficiency of DO workflows, which makes more likely to match that requirement.
For example, when the wcct(W ) threshold is set to 1.7 s, DO with Kmax = 1
finds the solution in less than 8 gossip rounds (8 s) and with a 99.5% probability,
while CO requires almost 9 rounds (8.85 s) but with a low success probability
equal to 29%. The DO curves show that the Kmax parameter does not impact
significantly on the performance; therefore, in the remaining experiments, we set
Kmax = 1, thus saving storage space on the peer and network bandwidth.

We now analyze with Fig. 3 the scalability of the CO and DO models with
respect to the number of nodes in the network, the length of the sequential work-
flow, and the resource replication degree. In these experiments, we consider the
first resolution time as performance metric. We observe that under such a metric
the performance achieved by the two orchestration models is quite similar: keep-
ing in CW (s) the matching resources as soon as they are discovered alleviates the
performance penalty the DO model could suffer by the step-by-step composition.
As expected, when the number of network nodes increases (see Fig. 3a), the reso-
lution time augments as well, since the resources are more spread in the network
and a large number of peers needs to be contacted. However, increasing by one
order of magnitude the size of the network just requires two additional gossip
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rounds to fully resolve the workflow. In the remaining experiments, we set again
the number of network nodes equal to the default value (1000). When the work-
flow length increases (see Fig. 3b), the resolution time grows as well, because a
larger number of services needs to be resolved, but such increase is quite limited:
changing the number of activities from 10 to 60 increases the resolution time only
by 11.2% and 11.5% for CO and DO, respectively. Figure 3c shows that keeping
the workflow length set to 10 sequential activities and increasing the replication
degree of resources available for each service in the same response time range
[100, 140] ms, the first resolution time quickly decreases, because finding a good
resource requires less message exchange.
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Fig. 3. Scalability analysis: first resolution time vs. (a) number of network nodes; (b)
workflow length; (c) replication degree of resources.

Finally, we examine in Fig. 4 the ability of the proposed approach to quickly
self-adapt to dynamic changes concerning both service availability and network
latency. Differently from the previous sets of experiments, we now consider 30
concurrent long workflows to resolve, and inject the failure of either 10% of net-
work nodes (Fig. 4a) or 10% of network links (Fig. 4b) at 10 and 20 s simulation
times. Each long workflow is randomly composed by choosing 10 distinct activ-
ities between 20 available ones; all the other parameters take the default value.
As performance metric, we consider the percentage of fully resolved workflows
as the time flows and set the wcct threshold requirement to 1.9 s. As explained
in Sect. 3, the WM component that detects the failure reactivates the work-
flow composition procedure. We see from Fig. 4 that the repair of workflows
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orchestrated according to the DO model is faster and more extensive than that
achieved by the CO model, whose repair is slower and limited to less than 70%
of the workflows. The reason is that even if CO needs to repair only the failed
nodes or links, it is penalized by the higher communication latency between
consecutive services which makes harder to stay below the required threshold.

5 Related Work

The dynamic service composition problem in pervasive computing systems has
different challenging aspects, mainly related to possible changes in the envi-
ronment and types of available resources. Many approaches dealing with these
issues have been proposed in the literature (e.g., [5,7–9,17]). Existing solutions
can be broadly divided into centralized or decentralized service composition.
Considering centralized composition environments, surveys on the topic can be
found in [3] and [10], the latter for reliability aspects. Centralized approaches are
based on a single broker that determines the service selection and coordinates
the service orchestration. This broker may represent a processing and communi-
cation bottleneck, and a single point of failure. Therefore, traditional centralized
techniques are not sufficient to address the application needs in dynamic and het-
erogeneous decentralized environments, and various recent works have focused
on decentralized approaches to service composition on top of P2P overlay net-
works. Broadly speaking, there are two main families of P2P overlay networks:
structured and unstructured overlays.

Structured Overlay Networks are tightly controlled and are generally
based on a Distributed Hash Table (DHT) for resource and data management.
Groba and Clarke [9] propose a service composition protocol that invokes service
providers in ad hoc networks with the goal of minimizing the impact of topology
changes and reducing failures. The proposed approach supports parallel service
flows, but presents some limits with respect to composite complexity, network
density, and service demand. Repantis et al. [19] focus on stream processing
applications and propose a service composition approach where the component
discovery phase exploits a structured P2P network and precedes the probe-based
composition phase. We also mention the work in [15], that proposes DANS, a
decentralized multimedia workflow processing system. DANS exploits a DHT
and deals with scalability considering redundancy in the system, in terms of
availability of multiple nodes able to perform the same task.

Unstructured Overlays do not impose any constraint on the structure
of the network, and allow peers to join and leave freely. A gossip-based decen-
tralized technique for service composition in unstructured P2P networks has
been exploited by Furno and Zimeo [7]. However, they focus on cooperative
semantic discovery and composition using each peer’s local service repository by
means of semantic matchmaking capabilities, rather than on QoS-aware compo-
sition; therefore, their proposal can complement our own. The works in [8,21]
propose QoS-driven gossip-based approaches to resolve hierarchies of compo-
nent dependencies. However, they do not consider issues concerning workflow
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orchestration and impact of network delays on the overall system QoS. Other
decentralized service composition methods include nature-inspired approaches.
Mostafa et al. [17] propose a decentralized composition mechanism based on the
notion of stigmergy, taking inspiration from the interactions exhibited by social
insects to coordinate their activities. However, they focus on trust measures as
a criterion for service selection, without considering the latency issue, and leave
open the question of how the decentralized mechanism could be architected.
A physics-inspired approach based on the friction concept is presented in [1],
with the goal of minimizing the waiting time of service requests. However, only
sequential workflows are supported and latencies between services are not taken
into account. Multi-agent techniques have also been investigated to deal with
service composition in mobile ad hoc and pervasive environments, e.g., [5].

6 Conclusions

In this paper we have presented a decentralized approach to network-aware ser-
vice composition, based on the use of an epidemic protocol for information dis-
semination. Differently from most previous works that only focus on service
composites with decentralized orchestration, we explicitly consider the case of
centrally orchestrated service composites, and the different impact these two
orchestration models have on a decentralized network-aware procedure for ser-
vice composition. Simulation experiments show that our approach can quickly
build a service composite fulfilling given functional and QoS requirements, and
can self-adapt to changes concerning resource availability and network latency.
Moreover, the proposed gossip-based procedure requires a bounded amount of
information to be exchanged and maintained at each peer for each composite
service, independently of the overall number of peers in the system, thus guar-
anteeing scalability.

We plan to extend our approach along several directions: (i) consider multi-
ple QoS attributes; (ii) explicitly take into account resources offered at different
levels (e.g., IaaS, PaaS, SaaS) and investigate whether this would require a refine-
ment of our approach; (iii) assess whether hierarchical gossiping protocols [13]
can improve the scalability of our approach; (iv) extend the present work to
workflow graphs with cycles (observe that, in case an upper bound can be given
to the number of times a cycle is executed, the extension is straightforward).

Acknowledgments. V. Cardellini acknowledges the support of ICT COST Action
IC1304 ACROSS.
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Abstract. In modern software systems, deployment is an integral and
critical part of application development (see, e.g., the DevOps approach
to software development). Nevertheless, deployment is usually overlooked
at the modeling level, thus losing the possibility to perform deployment
conscious decisions during the early stages of development. In this paper,
we address the problem of promoting deployment as an integral part of
modeling, by focusing on the Abstract Behavioral Specification (ABS)
language used for the specification of models of systems composed of
concurrent objects consuming resources provided by deployment com-
ponents. We extend ABS with class annotations expressing the resource
requirements of the objects of that class. Then we define a tool that,
starting from a high-level declaration of the desired system, computes
a model instance of such system that optimally distributes objects over
available deployment components.

1 Introduction

Nowadays it is more and more frequent to observe an integration among the
application development and deployment phases. The most popular approach in
this specific context, is the one promoted by the DevOps community that aims at
the automation of deployment starting from application-dependent deployment
information. Modeling languages for deployment have been already proposed
[9,13,19]. In this paper we take a complementary approach: we intend to inves-
tigate the integration of deployment within an existing modeling language, thus
allowing for the reasoning about deployment at the application modeling level
in a declarative way. Driven by a use-case considered in the ENVISAGE FP7
European Project, we integrate automatic deployment in the ABS (Abstract
Behavioural Specification) language [1]. ABS has a formal semantics [15] and
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is used to model systems based on asynchronously communicating concurrent
objects distributed over deployment components that can be seen as containers
offering to objects the resources they need to run.

The considered use case is given by the Fredhopper Cloud Services, which
offer search and targeting facilities on a large product database to e-Commerce
companies. Depending on the specific profile of an e-Commerce company Fred-
hopper has to decide the most appropriate customized deployment of the ser-
vice. Currently, such decisions are taken manually by an operation team which
decides customized, hopefully optimal, service configurations taking into account
the tension among several aspects like the level of replications of critical parts
of the service to ensure high availability, the costs of the virtual computing
resources to acquire, and the necessity of some clients to keep their data private.
These relevant aspects are considered only at deployment time and not during
the application modeling and development.

We envisage several advantages from the anticipation at the modeling level
of aspects related with deployment. On the one hand, this allows for an early
analysis of different alternative deployments, thus providing the operation team
with a valuable decisions support. On the other hand, it is possible to detect
the need for additional iterations in the system design in case the results of
the deployment analysis are not satisfactory. In this way, it is not necessary to
test real installations of the system in order to detect design decisions having a
negative impact on the system deployment.

Within the ENVISAGE project, the Fredhopper Cloud Services have been
already modeled with the ABS language. This language is therefore the suitable
candidate to lift for taking into account also deployment aspects. The approach
that we present for integrating deployment into ABS is based on three main
pillars: (i) software artifacts are enriched with the indication of their functional
dependencies and the quantification of the resources they require in order to
be properly executed, (ii) a high-level language for the declarative specifica-
tion of the desired deployment allowing to express the minimal requirements
for the desired system (e.g., the basic components that must be present or the
number of replica of a given service to guarantee high availability), (iii) an auto-
matic engine that, taking as input the local requirements of the single soft-
ware artifacts and the global expectations on the desired system, computes a
fully specified deployment that satisfies both kinds of constraints and minimize
the total deployment costs. Summarizing, the first main contributions of the
paper is the extension of ABS with the possibility to annotate class definitions
with deployment information. Several deployment scenarios can be considered
and, for each of them, it is possible to indicate specific functional and resource-
dependent requirements. The second contribution is the definition of DDLang, a
domain specific language allowing for the high-level declarative specification of
the desired deployment. Moreover, we also provide an implementation of Model-
Driven Deployment Engine (MODDE), a tool that given the set of available ABS
classes (annotated with their deployment information) and the declarative spec-
ification in DDLang of the desired system, computes an ABS main program that
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creates the needed deployment components and deploys on them the required
objects. The deployment components are taken from a description of the avail-
able computing resources (each one with an associated cost) given to MODDE
as an additional input.

It is worth to mention that in the implementation of MODDE we have taken
advantage of two already available tools: the configuration engine Zephyrus [4]
to support the computation of the optimal allocation of objects over deployment
components, and the Metis planner [17] for the generation of the sequence of
actions to be executed by the generated ABS main program. We have decided
to leverage on already available tools that are not tailored to a specific modeling
language, to realize an easily portable and adaptable framework for model-driven
deployment. In fact, if an alternative modeling language is considered instead of
ABS, it will be possible to adapt our approach simply by extending that mod-
eling language with the deployment annotations, and by modifying only those
(limited) parts of MODDE that depend on ABS. Our declarative deployment
language DDLang can be indeed applied to any other object-oriented modeling
language as it has no particular dependencies on the specific aspects of ABS.

The paper structured as follows. In Section 2 we present the extension to
the ABS modeling language for the definition of models extended with deploy-
ment information. The declarative deployment language DDLang is presented in
Section 3 while Section 4 discusses the implementation of MODDE. Section 5 dis-
cuss the test of our approach on the Fredhopper Cloud Services use case. Before
some concluding presented in Section 7, Section 6 discuss the related literature.

2 Annotated ABS

In this section we will briefly describe the ABS language focusing only on those
aspects that are concerned with deployment: namely classes, objects instantia-
tion, interfaces, and deployment components. Moreover, we present our extension
of ABS with class annotations expressing the deployment requirements of the
objects obtained as instances of such classes.

2.1 ABS

The ABS language is designed to develop executable models. It targets dis-
tributed and concurrent systems by means of concurrent object groups and asyn-
chronous method calls. Here, we will recap just the specific linguistic features of
ABS to support the modeling of the deployment; for more details we refer the
interested reader to the ABS project website [1].

The basic element to capture the deployment in ABS is the deployment com-
ponent, which is a container for objects/services.

DeploymentComponent small = new DeploymentComponent ("m1",

map[Pair(Memory,500), Pair(CPU,1)]);

DeploymentComponent large = new DeploymentComponent ("m2",

map[Pair(Memory,1500), Pair(CPU,4)]);
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[DC: large] Service s1 = new Service ();

[DC: large] Service s2 = new Service ();

[DC: small] Balancer b = new Balancer(list[s1,s2 ]);

In the ABS code above, the two deployment components small and large are
initially created. Every deployment component has an associated identification
string and a set of provided resources. Next, three objects are created: the first
two are services that are located on the large deployment component, while
the last one is a balancer located on the small deployment component. Notice
that the balancer receives as initialization parameters a list with the references
to the two service objects. In ABS it is possible to declare interface hierarchies
and define classes implementing them.

interface EndPoint { }

interface ReverseProxy extends EndPoint { }

class Balancer(List <Service > services) implements

ReverseProxy { ... }

In the excerpt of ABS above, the ReverseProxy service is declared as an interface
that extends EndPoint, and the class Balancer is defined as an implementation
of this interface. Notice that the initialization parameters required at object
instantiation are indicated as parameters in the corresponding class definition.

2.2 ABS Annotations

Ideally, we would like to have a measure of the resource consumption associated
to every object that can be created. In this way we can have a precise estima-
tion of the resources needed by the overall system and take deployment decisions
accordingly. We do not focus on pre-defined resources. In our context a resource
is simply a measurable quantity that can be consumed by the ABS program.
Common resources that a service can consume are memory or CPU clock cycles.
We require an annotation for every relevant class that can be involved in the
automatic generation of the main program that deploys the system. Intuitively,
an annotation for the class C describes: (i) the maximal resource consumption of
an object obj of the class C, (ii) the requirements on the initialization parameters
for class C (for instance, at least two services should be present in the initializa-
tion list of a load balancer), and (iii) how many other objects in the deployed
system can use the functionalities provided by obj.

An example of an annotated ABS (i.e., the specification of the Query API
service of the Fredhopper Cloud Services) is shown in Listing 1.1.

In general, as can be seen from the grammar of the ABS annotations reported
in Table 1, given a class C, an annotation ann is simply a list of comma separated
expressions expr where the expressions are of the following types.

– Name(X): associates a name X to the annotation. The name, also called sce-
nario name or simply scenario, identifies unequivocally the annotation in
case of different annotations for the same class C, each one representing a
different way for deploying objects of that class. This expression can be left
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Table 1. Grammar of ABS annotations.

1 ann

2 : ’[Deploy: scenario[’ expr (’,’ expr)* ’]]’;

3 expr

4 : ’Name(’ STRING ’)’

5 | ’MaxUse(’ INT ’)’

6 | ’Cost(’ STRING ’,’ INT ’)’

7 | ’Param(’ STRING ’,’ paramKind ’)’;

8 paramKind

9 : User

10 | ’Default(’ STRING ’)’

11 | Req

12 | ’List(’ INT ’)’;

1 interface IQueryService extends Service {

2 List <Item > doQuery(String q); }

3 [Deploy: scenario[

4 MaxUse (1),

5 Cost("CPU", 1), Cost("Memory", 400),

6 Param("c", Default("CustomerX"),

7 Param("ds", Req)]]

8 class QueryServiceImpl (DeploymentService ds , Customer c)

9 implements IQueryService { ... }

Listing 1.1. Fredhopper Query API

unspecified in at most one of the annotations of a class: in this case the name
is set to the default value Def.

– MaxUse(X): indicates that an object obj of class C can be used in the creation
of at most X other objects. This parameter expresses the constraint that in
the specified deployment scenario, obj can provide its functionalities only to
a limited number of other client objects. By default, if this field is absent,
an unlimited number of client objects is considered.

– Cost( r, X ): indicates that an object obj of class C consumes at most X
units of the resource r.

– Param( param, kind ): indicates how the initialization parameters param
for class C must be instantiated when an object obj of class C is deployed.
There are four different cases:

1. User: the user has to enter the parameter name. This happens when
only the user knows how to specify the parameter value. In this case, the
automatic deployer leaves the parameter unspecified and the user will
have to manually instantiate it.

2. Default( X ): the parameter must be set to the default value X.
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3. Req: the parameter is required to be defined by MODDE: here, MODDE
is responsible to first create an appropriate object and then pass it as
parameter when obj is instantiated.

4. List(X): the parameter requires a list of at least X objects (where X is
a natural number) that should be defined by MODDE. Similar to what
happens with the Req parameter, X objects should be created and their
list passed as parameter when obj is instantiated.

Let us now consider the annotated ABS code of Listing 1.1. Abstracting away
the implementation details, the Query API has been modeled as a QuerySer-
viceImpl class implementing the interface IQueryService. The interface and
the class QueryServiceImpl are defined in ABS at Lines 2 and 8. The annota-
tion for the class QueryServiceImpl is introduced before the class definition, at
Line 3. The annotation at Line 4 specifies that an object of QueryServiceImpl
may be used as parameter only once during the creation of other objects. Line 5
associates some resource costs to an object of QueryServiceImpl. In particular,
in this case an object of class QueryServiceImpl can consume up to 4GB of
memory and 1 CPU. Lines 6 and 7 annotate the single initialization parameters
of the class. QueryServiceImpl has two parameters: ds, an object implement-
ing the DeploymentService interface, and the customer c. The ds parameter is
set as a required parameter. This means that before deploying an object obj of
QueryServiceImpl, it is necessary to deploy an object implementing Deploy-
mentService and pass this object as initialization parameter to obj. The cus-
tomer parameter is instead set to a default value, in this case CustomerX.

Multiple annotations are possible for the same class to identify different ways
to deploy the same type of object. For instance, consider the possibility that
the object of class QueryServiceImpl for a different customer requires 2GB of
memory instead of 4GB and 2 CPUs. To capture this we can add before the
class definition the following annotation.

[Deploy: scenario[ Name( "NewCustomer ")

MaxUse (1),

Cost("CPU", 2), Cost(" Memory", 200),

Param ("c", Default (" NewCustomer "),

Param ("ds", Req) ]]

This annotation represents a deployment scenario identified by NewCustomer
(Line 1) that consumes a different amount of resources and considers a different
default value for the c parameter.1

3 DDLang

When a system deployment is automatically computed, a user expects to reach
specific goals and could have some desiderata. For instance, in the considered

1 Please note the annotation in Listing 1.1 represents the default scenario (Def) since
the Name annotation is not defined.
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Table 2. DDLang grammar.

1 spec

2 : expr comparisonOP expr | spec boolOP spec | ’true’ |

3 | ’not’ spec | ’(’ spec ’)’ ;

4 expr

5 : ’DC[’ resourceFilter ’|’ simpleExpr ’]’

6 | ’DC[’ simpleExpr ’]’

7 | expr arithmeticOP expr | simpleExpr ;

8 resourceFilter

9 : STRING comparisonOP INT

10 | resourceFilter ’;’ resourceFilter ;

11 simpleExpr

12 : exprNoDC comparisonOP exprNoDC

13 | simpleExpr boolOP simpleExpr |

14 | ’true’ | ’not’ spec | ’(’ spec ’)’ ;

15 exprNoDC :

16 INT | ’INTERFACE[’ STRING ’]’

17 | ’CLASS[’ STRING ’]’ | ’CLASS[’ STRING ’:’ STRING ’]’

18 | exprNoDC arithmeticOP exprNoDC ;

19 comparisonOP : ’<=’ | ’<’ | ’=’ | ’>=’ | ’>’ ;

20 arithmeticOP : ’+’ | ’-’ | ’*’ ;

21 boolOP : ’and’ | ’or’ | ’impl’ | ’iff’ ;

Fredhopper Cloud Services use case, the goal is to deploy a given number of
Query Services and a Platform Service, possibly located on different machines
(e.g., to improve fault tolerance).

All these goals and desiderata can be expressed in the Declarative Deploy-
ment Language (DDLang): a language for stating the constraints that the final
configuration should satisfy. As shown in Table 2 that reports the DDLang gram-
mar defined using the ANTLR tool,2 a constraint is a specification spec of basic
constraints expr comparisonOP expr (Line 2) combined using the usual logical
connectives. These basic constraints specify how many elements (e.g., classes,
interfaces, or deployment components) the user desires to create. An expression
expr could identify different kinds of basic quantities: (i) an integer value, (ii)
the number of objects implementing an interface I (denoted INTERFACE[I] -
Line 16), (iii) the number of objects of a class C (denoted CLASS[C] - Line 17).
In this last case, it is also possible to indicate the number of objects of a class C
deployed following a given scenario S (CLASS[C : S] - Line 17).

With this expressiveness it is possible to add constraints that abstract away
from the deployment components. For instance, one might require the deploy-
ment of at least 2 objects implementing the interface IQueryService and exactly
1 object of class PlatformServiceImpl by using the following expression.

2 ANTLR (ANother Tool for Language Recognition) - http://www.antlr.org/

http://www.antlr.org/
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INTERFACE[IQueryService] >= 2 and CLASS[PlatformServiceImpl ]

= 1

More complex quantities are concerned with deployment components. These are
expressed (Line 5) with the notation DC[ filter | simpleExpr ] where filter
is a sequence of constraints on the resources provided by the deployment compo-
nent and simpleExpr is an expression. DC[ filter | simpleExpr ] denotes the
number of deployment components that satisfy the resource constraints of fil-
ter and that contain objects satisfying the expression simpleExpr. For instance,
we can specify that no deployment component having less than 2 CPUs should
contain more than one object of class QueryServiceImpl as follows.

DC[ CPU <= 2 | CLASS[QueryServiceImpl ] >= 2 ] = 0

It is interesting to notice that using such constraints it is also possible to express
co-location or distribution requests. For instance, for efficiency reasons it could
be convenient to co-locate highly interacting objects or, for security or fault
tolerance reasons, two objects should be required to be deployed separately.
For instance, in the considered case study, we require that an object of class
QueryServiceImpl must be always co-installed together with an object of class
DeploymentServiceImpl. This can be achieved as follows.

DC[CLASS[QueryServiceImpl ] > 0 and CLASS[

DeploymentServiceImpl] = 0 ] = 0

4 Deployment Engine

MODDE is the tool that we have implemented to generate an ABS main program
realizing a deployment of objects, obtained as instantiations from a set of anno-
tated classes, which satisfies constraints expressed in DDLang. The tool relies on
scripts that integrate Zephyrus and Metis. Zephyrus [4] is a tool that generates,
starting from a description of the target application, a fully detailed architecture
indicating which components are needed and how to distributed them. Metis [17]
is a planner that generates a deployment plan to bring the current state of a
deployed application to the new, desired one. These tools are used following
the workflow depicted in Figure 1. More precisely, MODDE takes three distinct
inputs: the ABS program annotated as discussed in Section 2, the user desider-
ata formalized as constraints in the language DDLang defined in Section 3, and
the list of available deployment components expressed as described below.

The list of components is given as a JSON object having two properties:
DC description, which describes the different types of deployment components,
and DC availability, that specifies the number of available instances for each
of these types. A deployment component type is identified by a name, the list of
the resources it provides and a cost that the user has to pay in order to use it. For
instance the following JSON object defines the possibility of using 5 c3.large
and 3 c3.xlarge Amazon AWS instances as deployment components.
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Fig. 1. MODDE execution flow

{ "DC_description": [

{ "name" : "c3.large", "cost" : 105,

"provide_resources" : {"CPU" : 2, "Memory" : 375} },

{ "name" : "c3.xlarge", "cost" : 210

"provide_resources" : {"CPU" : 4, "Memory" : 750} } ],

"DC_availability": {

"c3.large" : 5, "c3.xlarge" : 3 } }

The c3.large AWS machine is identified as a deployment component type
that provides 2 CPUs and 3.75 GB of RAM. When used, this type of deployment
component cost 105 credits per hour.

When MODDE is executed, the first step builds an abstract syntax tree of
the annotated ABS program, retrieving all the annotations and the class sig-
natures. This step (step 1 in Figure 1) is performed by a Java program that
outputs a JSON file. In the second step, the output of the annotation extraction
is processed to generate the universe file of components required by Zephyrus [4].
Zephyrus requires as input a representation of the components to deploy follow-
ing the Aeolus model specification [5].3 Moreover, to compute the optimal alloca-
tion of these components, Zephyrus requires two additional inputs: a description
of all locations where components can be installed and the requirements imposed
on the final configuration. These two additional inputs are computed in steps 3
and 4 (see Figure 1) from the description of the deployment components and the
user desiderata. In particular, in step 3, every deployment component available
is translated as a Zephyrus location, associated with the resource capacities it
3 For space reasons, the details of the encoding of ABS objects into the Aeolus model

are presented in the companion technical report [6].
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provides. In step 4, the constraints in the DDLang input are translated into the
specification request language of Zephyrus.

When all the inputs for Zephyrus are collected the solver is launched (step 5).
The execution of Zephyrus is the most computation intensive task. Indeed,
Zephyrus needs to solve the problem of finding the optimal allocation of the
components that satisfy the user desiderata which can be seen as a general-
ization of the bin packing problem, a well known NP-hard problem [11]. Even
though this theoretical complexity is quite high, in practice in our tested sce-
narios Zephyrus was able to successfully compute the optimal solution in few
seconds.

Since Zephyrus can be used to minimize different quantities we use it to min-
imize the total cost of all the deployment components. The output of Zephyrus
lists the objects that need to be deployed, where they are deployed, and their
dependencies. For the generation of the ABS main program, the only remaining
missing information is the deployment order of the objects creation. To get this
information, in step 6, we launch Metis [17]. This planner takes in input the final
configuration produced by Zephyrus and the universe file obtained at step 2 and
computes the actions to be performed in order to reach the final configuration.

After the generation of the Metis plan we have all the information to gener-
ate the ABS main program. The deployment components to be used are created
as computed by Zephyrus. Then, following the order of the state changes com-
puted by Metis, the new objects are created and located in the corresponding
deployment components. In case an object requires other objects as initialization
parameters, the required objects are passed based on the bindings among the
components as defined by Zephyrus.

MODDE is written in Python (∼1k lines of code) with the exception of the
annotation extractor which is written for convenience in Java (∼500 lines of
code). MODDE is publicly available from https://github.com/jacopoMauro/abs
deployer.

5 Use Case

To demonstrate the feasibility of our approach, we use as a case study the deploy-
ment of the Fredhopper Cloud Services that drives over 350 global retailers with
more than 16 billion in online sales every year. A typical customer of Fredhopper
is a web shop, and an end-user is a visitor of the web shop.

The services offered by Fredhopper are exposed at endpoints. In practice,
these services are implemented to be RESTful and accept connections over
HTTP. Typically, software services are deployed as service instances. Each
instance offers the same service and is exposed via the Load Balancing Service,
which in turn offers a service endpoint. Requests through the endpoint are then
distributed over the instances. Depending on the expected number of requests
from end-users or the expected service throughput, more or less instances may
be deployed and be exposed through the same endpoint. This calls for specific
customized deployments of the Fredhopper Cloud Services.

https://github.com/jacopoMauro/abs_deployer
https://github.com/jacopoMauro/abs_deployer
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Table 3. Code metrics of the Fredhopper Cloud Services ABS model

Metric Value

Lines of Code 1282
Classes 13

Interfaces 16
Data Types 8
Functions 31

All the services are modeled in ABS. Table 3 summarizes the main code
metrics of the Fredhopper Cloud Services ABS implementation.

To test our approach we first collected the resource consumption of instances
of the most relevant classes in the ABS model. The numbers are based on real-
world log files of customers of the in-production Java version of the Fredhopper
Cloud Services system. CPU usage was inferred from business logs, and garbage
collection logs were used to determine the memory consumption. We then asso-
ciated cost annotations to the involved classes with the calculated figures. In
our context, a deployment component can be considered to be an Amazon AWS
instance. We defined the capacity of each resource for several AWS instance types
in the locations file.4 The price used in the cost attribute of each AWS instance
type concerns on-demand instances in the US East region running Linux.5

We created several deployment scenarios based on the varying requirements
of different customers. For instance, web shops with a large number of visitors
require more Query Service instances than smaller web shops. In general, this
requires a scalable, and fault tolerant system with a proportionate number of
Query Service instances to handle computational tasks and network traffic and
return the query results sufficiently quickly.

The deployment configuration also has to satisfy certain requirements. For
instance, for security reasons, services that operate on sensitive customer data
should not be deployed on machines shared by multiple customers. On the other
hand, some services should be co-located with other services, for example, deploy-
ing an instance of the Query Service to a machine requires the presence of the
Deployment Service on that same machine. A user can install the framework on
AWS instances, exploiting the elasticity of the cloud to dynamically adapt the
number of the Query Services. In the modeling of the framework, the API to
control the cloud resources is defined as a class that implements the Infras-
tructureService interface. Since this interface in reality is provided by Amazon
itself, there is no need to deploy also an object implementing it on the customer
AWS instances. To model this, we define a deployment component called ama-
zon internals that has no cost (the Amazon API is available to all its customers
for free).

4 A full list of AWS instance types, with associated capacity for each resource, can be
found at http://aws.amazon.com/ec2/instance-types/

5 http://aws.amazon.com/ec2/pricing/

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/pricing/
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We have automatically generated ABS deployments for several scenarios. We
report only the result obtained by MODDE when 2 instances of the Query service
are required for a customer,6 which is a simple but illustrative and common case.

DeploymentComponent m1.large_1 =

new DeploymentComponent ("m1.large_1", map[Pair(Memory,750),

Pair(CPU,2)]);

DeploymentComponent m1.large_2 =

new DeploymentComponent ("m1.large_2", map[Pair(Memory,750),

Pair(CPU,2)]);

DeploymentComponent m1.xlarge_1 =

new DeploymentComponent ("m1.xlarge_1", map[Pair(Memory,1500

), Pair(CPU,4)]);

DeploymentComponent m1.xlarge_2 =

new DeploymentComponent ("m1.xlarge_2", map[Pair(Memory,1500

), Pair(CPU,4)]);

DeploymentComponent amazon_internals =

new DeploymentComponent (" amazon_internals ", map []);

[DC: amazon_internals ] InfrastructureService

o1 = new InfrastructureServiceImpl ();

[DC: m1.xlarge_1] LoadBalancerService o2 = new

LoadBalancerServiceImpl ();

[DC: m1.large_1] DeploymentService o3 = new

DeploymentServiceImpl(o1);

[DC: m1.large_2] DeploymentService o4 = new

DeploymentServiceImpl(o1);

[DC: m1.xlarge_2] MonitorPlatformService

o5 = new PlatformServiceImpl (list[o3,o4], o2);

[DC: m1.large_2] IQueryService o6 = new QueryServiceImpl (o4,

CustomerX);

[DC: m1.large_1] IQueryService o7 = new QueryServiceImpl (o3,

CustomerX);

[DC: m1.xlarge_2] ServiceProvider o8 = new

ServiceProviderImpl (o5, o2);

A graphical representation of the deployment generated by this ABS main can
be seen in Figure 2. Deployment components are depicted as boxes containing
the objects and arrows between an object a towards and object b represents the
use of b as a parameter for the creation of a.

At a first sight, the deployment configuration suggested by MODDE differs
from the one used in-production which uses only instances of type c3.xlarge
(one for the Platform Service and the Service Provider, one for the Load Bal-
ancer, two for the two Query and Deployment Service pairs).

6 The input files for MODDE implementing this use case can be found at https://
github.com/jacopoMauro/abs deployer/tree/master/test. Please note that MODDE
generates long names for objects and components. Here, for the sake of brevity, we
renamed these identifiers with shorter strings.

https://github.com/jacopoMauro/abs_deployer/tree/master/test
https://github.com/jacopoMauro/abs_deployer/tree/master/test
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Fig. 2. Example of automatic objects allocation to deployment components.

This discrepancy is due to the fact that we allowed MODDE to use all the
possible AWS instances. However, Amazon is continuously updating its instances
with new, better, and possibly cheaper ones. Currently, the machines of type m1
have been deprecated and new m1 machines could not be acquired any more. The
optimal solution computed by MODDE can therefore be only used by customers
that have already m1 running machines. New customers have to rely instead on
machines of type m3 and c3.

If MODDE is executed taking into account just the new m3 and c3 AWS
instances, the computed configuration obtained is exactly the one currently
adopted by the operations team, thus proving its optimality.

As can be seen from this example, tool support is extremely helpful to
understand what the optimal deployment scenario is in the presence of external
changes, such as the appearance of new machines. With a proper estimation of
the cost, using MODDE, the computation of the optimal deployment scenario
is trivial and does not require a deep knowledge of the external environment
conditions. This is of crucial importance because it facilitates computing the
price of the final product that may vary due to external conditions such as the
possibility of using (or not using) a virtual machine.

6 Related Work

The deployment of applications and services has been extensively studied in
the literature. Many popular system management tools exist to that end:
CFEngine [3], Puppet [16], MCollective [21], and Chef [20] are just a few among
the most popular ones. Despite their differences, such tools allow to declare the
components that should be installed on each machine, together with their con-
figuration files. The burden of specifying where components should be deployed,
and how to interconnect them is left to the system administrator or cloud engi-
neers, let alone in solving the difficult problem of optimal resource allocation.

As of today, most of the industrial products, offered by big companies, such
as Amazon, HP and IBM, rely on the holistic approach where a complete model
for the entire application is defined and the deployment plan is then derived
in a top-down manner. In this context, one prominent work is represented by
the TOSCA (Topology and Orchestration Specification for Cloud Applications)
standard [19], promoted by the OASIS consortium for open standards. TOSCA
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proposes an XML-like rich language (or YAML) to describe an application.
Deployment plans are usually specified using the BPMN or BPEL notations,
i.e., workflow languages defined in the context of business process modeling.
TOSCA specifications, however, still lack proper tooling and technology sup-
port for large-scale industry cases. Following similar philosophies, but focusing
more on cloud aspects, are Terraform [14], Apache Brooklyn [2], and other tools
supporting the Cloud Application Management for Platforms protocol [18].

To the best of our knowledge there are no works that deal with deployment
at the modeling level, providing a tool that automatically computes optimal tar-
get configurations from a declarative specification. Two recent efforts, Feinerer’s
work on UML [8] and Engage [10], are more similar to our approach as they both
rely on a solver to plan deployments. Feinerer’s work is based on the UML com-
ponent model, which includes conflicts and dependencies, but lacks the aspects
concerning virtual machines and deployment. Engage, on the other hand, offers
no support for conflicts in the specification language. Neither Feinerer’s work
nor Engage allows to find a deployment that uses resources in an optimal way,
minimizing the number and cost of needed (virtual) machines.

Other domain specific languages for the deployment of applications in the
clouds have been proposed, e.g., the component based application model of [7],
CloudML [13], and CloudMF [9]. All these approaches mainly aim at modeling
the entities involved in the cloud and effective and efficient deployment engines
are still to be developed for them.

7 Conclusions

In this paper we have proposed a new way to tackle and unify the modeling of
a distributed system together with its deployment. We followed a model-driven
approach that allows the user to specify the deployment aspects in a declarative
way, without requiring in-depth knowledge of the system to be deployed. We
focused and used our approach on the ABS modeling language, but we are not
restricted to it: other languages such as SmartFrog [12] that have primitives to
handle the deployment aspects can be used as well, provided that annotations
related to the execution costs of the system are used.

We tested our approach on an industrial case study from the e-Commerce
company Fredhopper. The results are encouraging since the deployment solu-
tions resemble those (manually) devised by the operations team proving their
optimality. Clearly, any automated tool that can give quicker and better eval-
uations of the deployment configuration based on a rigorous formal approach
is a big step forward compared to the current practice since devising the best
deployment setting is a complex, time consuming process that requires in-depth
domain specific knowledge.

Based on the feedback from the operations team at Fredhopper, as future
work, we will improve MODDE further addressing some of its limitations. For
instance, we would like to find the best deployment configuration given a user-
specified maximal cost and a maximal resource consumption. We also intend
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to add support for annotations with parametric costs that depend on the class
parameters. Moreover, we would also like to tackle the computational aspects
involved in the process of finding the optimal configuration allowing users to
exploit heuristics such as local search techniques to quickly get good but possibly
sub-optimal solutions.
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Abstract. The European Commission funded FIWARE project aims to
support the development of a European cloud, and a rich catalogue of
generic components called Generic Enablers (GEs). However, the lack
of an efficient approach and tool for developing applications using GEs
hinders their adoption. This paper tries to fill this gap by proposing
an approach based on a component model, along with its related tool,
that allows heterogeneous composition of GEs and non-GE components.
The approach is validated with a case study where a content delivery
application is developed.
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1 Introduction

FIWARE [3] is an initiative funded by the European Commission whose aim is
to ease the development of smart applications by means of an open cloud-based
infrastructure that offers a catalogue of ready-made components called Generic
Enablers (GEs). Each GE offers a number of general-purpose functions through
public and royalty-free APIs.

Developing an application using FIWARE GEs means constructing a software
system by composing GEs with non-GEs software components [2]. In current
state of the art, GEs can be used in a workflow, or composed in a GE bundle1.

In a workflow, GE instances are orchestrated. Workflow activities invoke
specific services on GE instances which are already deployed on some servers.
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Fig. 1. A workflow using Generic Enablers.

For instance, Fig. 1 depicts a workflow where three activities A, C, and D invoke
respectively GET, POST and PUT methods to GE instances on Server1 and
Server2.

A bundle, in contrast, is a template that dictates a possible composition of
specific GEs directly interacting with one another. Such composition is described
informally as configuration instructions to be manually performed when partici-
pating GEs are deployed. As such, composition is not concrete until deployment
time. Moreover, complex control flows or data transformations usually need to
be developed afresh as services sitting between GEs.

Fig. 2. A GE bundle.eps

Fig. 2 depicts an example of bundle which consists of five GEs. Those GEs
can be configured so that GE1 can call GE2 which can call GE3 and GE4. GE3

calls services in CS1 which then calls GE5.
We argue that both mechanisms are inefficient in developing GE-based appli-

cations. A workflow requires that all participant components expose WSDL or
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RESTful services. This represents a heavy-weight solution [6], which is some-
times not even applicable (e.g. for a GUI component). A bundle composes a
set of GEs, but it needs to be customized in order to result in an application.
Furthermore, the composition is informally described, and has to be performed
manually.

In this paper, we present a component model [8], and its related tool [1]
that has been extended for constructing GE-based applications. Our solution
supports heterogeneous systems because it allows composition of GE and non-GE
software components. Such components are hierarchically composed by means
of predefined (exogenous) composition connectors.

To show the effectiveness of our approach, we construct a simple case study
for the provisioning of multimedia contents. It includes three GEs and two non-
GE components, which are composed in a meaningful application.

The paper is organized as follows: Section 2 presents related work in the liter-
ature. Section 3 introduces our component model. Details on how to use our com-
ponent model for heterogeneous composition of GEs and non-GE components
are then presented in Section 4. A content delivery application is presented in
Section 5 as a case study to evaluate our solution. Details of the implementation
of the related workflow in X-MAN are discussed in Section 6. Section 7 sum-
marizes the advantages and limitations of the presented solution, and identifies
future work that we intend to pursue.

2 Related Work

There have been a number of efforts to exploit FIWARE GEs technology. In
the ENVIROFI project [5], domain specific GEs were identified and developed
for six domains. The work reported in [17] presents an interesting utilisation of
FIWARE to handle IoTs, smart environment devices, data and services by using
a semantic approach within the FIWARE core platform. The work described
in [19] illustrates an application for sensor driven FI applications used as a motion
sensor cloud service. A solution for healthcare developed exploiting FIWARE
technologies is presented in [2]. In [20], an application for text mining based on
the BigData GE is developed and presented.

In supporting developing GEs and GE-based applications, a tool set called FI-
CoDE2 was developed. Essentially, it consists of several Eclipse plug-ins for GE-
based software projects. Apart from generic functionalities such as collaborative
development, task management, version control and testing, it provides a Java
code generator to yield GEs clients. There is no support for building GE bundles
or composing GEs with non-GEs components.

In the area of service composition, workflow is the de facto standard app-
roach. A workflow can be defined using a suitable language such as BPEL [21],
BPMN [18], or JOpera Visual Composition Language (JVCL) [16]. A workflow
can be turned into a service by giving it a WSDL, or RESTful interface. One rep-
resentative work is BPEL for REST [14], which offers a heterogeneous mechanism
2 http://catalogue.fiware.org/tools/fi-code-tools

http://catalogue.fiware.org/tools/fi-code-tools
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to compose RESTful and WSDL services. For homogeneous RESTful services
composition, JOpera [15] provides a visual modelling language for workflows. A
JOpera workflow can be compiled into a RESTful service.

Following the same idea, the FIWARE catalogue contains a special GE called
Ericsson Composition Engine (ECE) [13]. It consists of a composition editor
for creating composed service skeletons, and a composition execution engine.
Offering its own graphical language, the editor allows users to model event-
driven service executions and data flows. A configure service skeleton can then
be instantiated into a workflow and executed within the composition execution
engine.

RESTful services can be aggregated in a web application with web widgets
and data sources by means of mashup [11,22]. The mechanism to perform a
mashup is still a workflow. However, mashup cannot be used on non-web software
components and applications.

In component-based development, SCA [12] is a component model that allows
us to create heterogeneous composition of various components which may be
implemented as Java classes, RESTful, and WSDL services. SCA does not explic-
itly define control and data flows in a composition.

3 Our Component Model

Our approach is based on an extended version of the X-MAN component
model [7], with three kinds of first-class entities: components, connectors, and
services.

Components. There are two types of components: atomic, and composite. They
are both fully encapsulated, i.e. they have no external functional dependencies.

An atomic component (Fig. 3a) is a unit of computation. Its computation
unit (CU) contains the implementation of the services (S1, . . . , Sm) it exposes
via the invocation connector (IC).

Its behaviour can be specified in the language of state charts (Fig. 3b): when
a service Si is invoked, a transition occurs from the initial state to the state
in which Si is executed; when Si’s computation ends, the component reaches

Fig. 3. An atomic component and its functional model.
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its end state. Data to and from the CU is provided and retrieved via service
parameters. The activity chart in Fig. 3c shows parameters as external activities,
and services as internal ones. The latter are controlled by the control activity A
defined by the state chart in Fig. 3b.

Atomic components are composed into composite components by means of
composition connectors.

Connectors. Composition connectors are (exogenous) control structures that
coordinate the execution of the components they compose. They are Sequencer
(SEQ) and Selector (SEL), which provide sequencing and branching respec-
tively.

The component Q in Fig. 4a is built by sequencing n atomic components
A1 . . . An. Similarly, the same atomic components composed by a selector results
in the composite component B in Fig. 5a. The state chart for Q (Fig. 4b) is

Fig. 4. A composite component with sequencer and its functional model.

composed from the state charts for A1 . . . An by sequencing them in the order
specified in SEQ. Similarly, the state chart for B (Fig. 5b) is composed from the
state charts for A1 . . . An by branching according to the condition in SEL.

Fig. 5. A composite component with selector and its functional model.

The activity charts for Q (Fig. 4c) and B (Fig. 5c) are composed from those
of A1 . . . An. Data flow among activities mirrors the data flow among the cor-
responding services. The control activity B receives a control flow input needed
to perform branching decisions.



70 S. Di Cola et al.

Fig. 6. A composite component with aggregator and its functional model.

Apart from composition connectors, X-MAN also defines an aggregator con-
nector (AGG), which aggregates in a new composite component the services
exposed by its sub-components. An aggregated component effectively provides
a façade to the aggregated services. In Figure 6a, the component G is built by
aggregating the services exposed by components A1 . . . An. Like the composite
component B, the state chart for G is composed by branching among the state
charts for A1 . . . An, but with a condition on the choice of service. Its activity
chart is composed from the activity charts for A1 . . . An.

Single components can be adapted by adapters such as loop (L) and guard.
The former provides looping, while the latter gating (we omit its details for lack
of space). Fig. 7a shows a component A adapted by L into R. The state chart

Fig. 7. A component with loop and its functional model.

for R (Fig. 7b) is composed from the state chart for A by looping the latter
until condition i is verified; failing that, the end state is reached. Finally, in its
activity chart (Fig. 7c), the loop condition is shown as a control flow coming
from the external activity i.

Services. A service represents an operation exposed by a component. It con-
tains two main entities: parameters, and service references. Parameters are
inputs and outputs, while service references specify services in sub-components
that contribute to the provided operation.

As already stated, an atomic component exposes services implemented by its
CU. For example, the atomic component A in Fig. 3a offers m services named
as S1 . . . Sm.

On the other hand, a composite component, or an adapted one, exposes ser-
vices resulting from the coordination of the ones exposed by its sub-components.
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For instance, the composite component Q in Fig. 4 exposes m services (S1 . . . Sm)
resulting from sequencing services U1 . . . Uj and V1 . . . Vk from sub-components
A1 . . . An respectively. Moreover, the adapted component R in Fig. 7a has its
services realised by conditionally repeating invocation to S1 . . . Sm services of
the original component A.

Clearly, any architecture in X-MAN is a service-oriented one. Moreover, we
can hierarchically and compositionally build larger service-oriented architectures
from existing ones. This leads to the next section where we detail our composition
of GEs.

4 Heterogenous Composition

Our approach allows heterogeneous composition of GEs and X-MAN components
to construct applications, i.e. composite components. To that end, a suitable
mechanism needs to be devised.

A Generic Enabler (GE) is encapsulated, by definition. Its provided services
are fully implemented and available via a RESTful interface. The interface can
be formally specified in WADL [4], or informally as text.

Taking into account the aforementioned characteristics, it is sound to map
a GE into a X-MAN atomic component, albeit a special one. In Fig.8, a GE
atomic component is depicted as a white cube. The computation unit of a GE
atomic component is always remote. Therefore, a GE atomic component needs
to maintain an URL pointer to a GE instance. This pointer can be specified at
design time or later when an instance of a GE atomic component is instantiated.
Such a pointer is named as Based URI in Fig. 9a.

In addition, the services of a GE need to be mapped to the ones of a GE
atomic component. Usually, GEs expose RESTful services and are thus resource-
oriented. There are four possible CRUD operations namely POST, GET, PUT
and DELETE. As in Fig. 9(a) for each operation, the mapping yields a service-
oriented counterpart in a GE atomic component. For instance, mapping for four
RESTful services GET /res1, PUT /res1, POST /res1, and DELETE /res1 produces
four services called sGetRes1, sPutRes1, sPostRes1, sDeleteRes1 respectively.

Furthermore in our mapping, a RESTful service usually has a dynamic URI
which is constructed from a base URI. The dynamic part is influenced by the
parameters for that service. Parameters can be either in the path or in the query
part of a URI. For any situation, the mapping specifies those parameters in the
resulting service as its inputs. For each input, the name, data type, order and an
attribute indicating whether the parameter is path or query based is specified.
Outputs for a RESTful service include status code and data. The status code
indicates a provisional response of the service call, while the data is the result
of service execution. Our mapping creates two outputs respectively for both of
them.

In Fig. 9b, we give details of an example of our mapping. A RESTful service
offers a GET method to access a resource called res1. From its API documen-
tation, it accepts three mandatory parameters param1, param2 and param3, and
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Fig. 8. Approach overview.

an optional param4. The former two parameters are path-based, separated by
‘/’, while the latter two are query-based, following ‘?’ and delimited by ‘&’. Our
mapping yields a new service which is described in three parts. The core part
specifies the service name, resource location relatively to the base URI and the
method as sGetRes1, /res1 and GET respectively. The input part has four inputs
param1, param2, param3 and param4 matching the ones of the service. The data
types of these inputs are identified from the API. From the same source, the
order, optionality default values of inputs are identified. The output section con-
sists of two outputs which are status code and data. status code is always an
integer while data can be of a type matching one stated in the API.

Once GE atomic components are defined, they can be composed with other
components by means of X-MAN composition connectors to yield a composite X-
MAN component. Such a composite component is in fact a GE-based application.
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Fig. 9. Mapping of GE to GE atomic component.

It can be delivered, or stored in our repository (Fig. 8) in order to be further
composed.

5 Case Study: A Content Delivery Application

Figs. 10 and 11 depict a simplified content delivery application. The application
stores multimedia data in an object storage system. Whenever an authorised
client asks for a content, the application stores his information, verifies its avail-
ability and delivers it if found. Moreover, for performance analysis, the response
time is also returned.

To develop this application we compose three GE atomic components
(Cosmos, ObjectStorage and Kurento), with two X-MAN components (Logger,
Adapter):

– Cosmos offers cluster-based data persistence and functionality for processing
vast amounts of data; we use it to store and search content meta-data.

– ObjectStorage provides robust, and scalable object storage functionality;
we use it to store actual media content.

– Kurento implements an abstraction layer for multimedia capabilities; we use
it to stream media contents to clients.
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– Logger logs clients’ credentials, and calculates the response time.
– Adapter analyses Cosmos result to extract relevant content meta-data.

As depicted in the top right corner of Figs. 10 and 11, the application offers
two services: StoreMedia3, which stores a media, along with its meta-data, in
the FIWARE cloud, and PlayMedia, which streams a required media from it.

Fig. 10. A content delivery application (control flow)

To access a content, a client needs an authentication token, the path of the
required media, and the media id. Following the order of the root connector
(SEQ 1) in Fig. 10, the application first invokes the service StartSession, which
logs information about the callee (extracted from the provided authorisation
token), and returns the actual timestamp. The latter will be used by another
instance of Logger to calculate the response time (Fig. 11).

Once the request is logged, the service RetrieveKey of the GE atomic com-
ponent Cosmos is invoked. The mapped API (Fig. 12) requires the resource path
(optional parameters have been omitted for simplicity), and returns its content.
If the resource is found, then the DataToText service parses its content, and
returns two parameters, i.e. container name, and the object name. The former
are used by the service RetrieveObject, which maps to the counterpart API in
Fig. 12, to return the object content in the response body. If the return code is
200, the http response is redirected to the service HttpRecorder. The latter, using
the corresponding API in Fig. 12, uploads the object content to the Kurento
Media Server. Finally, the content ID is passed to the Kurento HTTPPlayer
service (Fig. 11), which returns a JSON object containing the content URL.
3 We omit its details to simplify our discussion. Indeed, other X-MAN components

are needed to upload content to Cosmos, and ObjectStorage.
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Fig. 11. A content delivery application (data flow)

Fig. 12. RESTful APIs mapped

6 Implementation

Based on the new X-MAN tool [1], two extensions are developed. The first
extension is to implement GE atomic components while the second one is to
support heterogeneous composition. To that end, the meta-model is extended to
capture the mapping results, i.e. core, inputs and outputs.

Our code generator is then extended to support the new extensions. The
generated code for GE atomic components is essentially to perform invocations
to GEs’ RESTful services. For those invocations implementation, we use the
Jersey library.4

In Fig. 13 we illustrate the design of the ObjectStorage GE atomic com-
ponent in our tool. It offers two services RetrieveObject and StoreObject, each
of which has three input and two output parameters. The base URI is cap-
tured by the data element (circle with letter d), specified at deployment time.

4 https://jersey.java.net/

https://jersey.java.net/
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Fig. 13. A GE atomic component.eps

The generated source code shows how the RESTful service is invoked with the
specified inputs.

Once designed, components are deposited in a repository (bottom Fig. 13),
and later retrieved to be composed into the application as in Figs. 10 and 11.

The source code of the application is then generated by our tool. As part
of code generation, we specify the application to be packaged as a ‘war’ file,
which is then deployed on a Tomcat5 server. In order to test our application,
we developed a simple web page (hosted by the same server) which provides an
interface to take end-users’ requests and pass them to the application. The media
if found and returned from the application is then played via an embedded video
player. The client is depicted in Fig. 14.

7 Discussion and Conclusion

We have defined and implemented an approach to developing GE-based appli-
cations based on an extended version of the X-MAN component model. Our
approach presents novel heterogeneous composition mechanisms that exploit the
power of the FIWARE ecosystem. Unlike heterogeneous composition in BPEL
for REST, we compose software components with RESTful services. In com-
parison with JOpera, our applications are not limited to the middle tier of an
MVC architecture. For instance, we can compose the application in our case
study with an X-MAN component implementing a GUI that replaces the Web
client. On another note, SCA does provide a component model for heterogeneous
composition. However, unlike our approach, it does not provide explicit control
flow. In addition, it requires a “glue” component to be developed afresh to act
as coordinator.

5 http://tomcat.apache.org/

http://tomcat.apache.org/
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Fig. 14. A client of the content delivery application.eps

Currently, applications can make use of existing FIWARE bundles which
already composes certain GEs. The composition in these bundles is carried out
by an ‘active’ GE such as Orion which implements the Observer pattern [10].
Orion is called by a ‘publisher’ GE and it then actively notifies ‘subscriber’ GEs.
X-MAN composition connectors are Turing complete. It implies that we can use
them to construct any complex control logics including the Observer pattern.

Our approach however has some limitations. The mapping we presented,
although defined to be applied automatically, requires human effort to be per-
formed. It is because currently GEs’ interfaces are described informally by tex-
tual documentation.Whilst this may be adequate for human consumption, the
lack of a machine processable format such as WADL hinders our mapping. When
this limitation is removed in the future, our approach can be improved accord-
ingly.

GE catalogue currently supports programmatically access through a RESTful
API. However, the results seem to be out of sync with the actual GEs. This poses
a challenge for development tools like ours to integrate the GE catalogue with
our component repository. Such integration when possible will allow seamless
application development.

As future work, we plan to investigate an integration with FIA Project Man-
agement Plugin6 to provide a complete environment for FIWARE users and
developers. Finally, we intend to extend the X-MAN component model to sup-
port concurrency [9].

6 http://catalogue.fiware.org/enablers/fia-project-management-plugin

http://catalogue.fiware.org/enablers/fia-project-management-plugin
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Abstract. Application-level monitoring provides valuable, detailed
insights into running applications. However, many approaches often
only employ a single analysis application. This analysis application may
become a performance bottleneck when monitoring several programs
resulting in reduced monitoring quality or violated service level agree-
ments of the monitored applications.

We present an approach for elastic, distributed application-level mon-
itoring for large software landscapes consisting of several hundreds of
applications by utilizing cloud computing. Our approach dynamically
inserts and removes worker levels to circumvent overloading the anal-
ysis master application without interrupting or pausing the actual live
analysis of the monitored data. To evaluate our approach, we conduct
an experiment in which we generate load – following a real workload
pattern – on web applications in a 24 hour experiment.

In our experiment, 160 monitored JPetStore instances generate
roughly 20 million analyzed method calls per second in the peak. Fur-
thermore, two worker levels are dynamically started and removed in line
with the imposed workload on the monitored applications. The exper-
iment shows that our monitoring approach is capable of live analyzing
several millions of monitored method calls per second without overload-
ing the analysis master application.

Keywords: Application-level monitoring · Elasticity · Cloud computing

1 Introduction

Enterprises often run and administer large and complex software landscapes
featuring hundreds of running applications [12]. Since most of them evolve over
decades, the comprehension of those landscapes often gets lost due to miss-
ing documentation, changing business requirements, or employees, for example.
Application-level monitoring can support in the comprehension process such
large software landscapes [6]. However, most approaches only feature one anal-
ysis node for the monitored data which provides poor scalability – especially
in cloud environments where the monitored applications adapt to the imposed
workload.
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In this paper, we present an elastic, distributed application-level monitoring
approach to circumvent this overuse of a single analysis node. Our approach
dynamically inserts and removes preprocessing worker levels depending on the
actual utilization of the analysis master. The change of the system takes place
without interrupting the actual analysis of the monitored data.

Furthermore, we present a thorough evaluation of the described approach in
which our monitoring solution monitors 160 elastically scaled web applications
and analyzes several millions of method calls per second. To facilitate the verifia-
bility and reproducibility of our results, we provide a data package [4] containing
all our experimental results and source code.
In summary, our main contributions are:

– an elastic, distributed application-level monitoring approach which dynam-
ically inserts and removes worker levels, and

– a thorough evaluation of the approach incorporating 160 scaled web appli-
cations and several millions of analyzed method calls per second.

The remainder of this paper is organized as follows. Section 2 states the addressed
problem. Afterwards, our approach for elastic, distributed application-level mon-
itoring is described. A 24 hour experiment for applying the concept is presented
in Section 4 as evaluation. Related work is discussed in Section 5. Finally, we
draw the conclusions and illustrate future work in Section 6.

2 Problem Statement

Employing only a single analysis node for live processing the monitoring data can
easily become a bottleneck. For example, in our evaluation described in Section 4,
the analysis would operate at full capacity after receiving load from only four
monitored applications. In general, this number is determined by the amount of
monitoring and the hardware for the analysis node. However, eventually every
node will be fully utilized if the workload rises to some point. Cloud computing
aims to provide – perceived – infinite scalability for the monitored applications
and therefore, this should also apply to the monitoring solution.

Application-level monitoring tools, e.g., Kieker [9], typically offer three con-
figurable strategies, what should be done when the analysis cannot process the
current monitoring data. The first strategy simply terminates the monitoring.
Since this requires a manual restart of the application to start monitoring again,
this behavior is undesirable for a high monitoring quality. However, this typically
does not affect the service-level agreements (SLAs) of the monitored applications.

The second strategy discards new monitoring records until a space in the
monitoring queue is available. Therefore, this behavior is similar to sampling
which only monitors method calls on a defined interval, e.g., every 10th request.
This strategy typically imposes no SLA violations at the expense of a reduced
monitoring quality. However, it can automatically recover when the workload
drops and thus is typically preferable over the first strategy and therefore, often
employed in practice.
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The third strategy uses blocking until a free space in the monitoring queue
becomes available. While this behavior seems appealing on first sight, it can
violate the SLAs when the analysis node takes a long time to recover from its
high workload. The SLA violations are caused by the waiting of the application
for finishing the writing of the monitored data. Therefore, it is not processing
user requests often leading to loss in revenue due to annoyed customers.

This situation can become even more expensive, if the capacity manager
utilizes the waiting user requests for its upscaling condition for the applications.
Since only one analysis node is employed, the newly started application would
also wait for the analysis node to finish. Therefore, the capacity manager might
keep starting new instances until some node limit is reached and the service
provider has to pay for application nodes that are waiting for the analysis of the
monitoring data.

Based on the chosen strategy, either the quality of the SLAs or the monitoring
quality is reduced in the circumstance of a fully utilized analysis node. One way
to postpone this problem is an analysis node with a high number of CPU cores
and a high amount of RAM. However, the analysis must be designed to utilize
an infinite number of CPU cores and if the workload rises, the number of CPU
cores must be increased according to the peeks in the workload. Hence, they
become superfluous during low workload.

3 Elastic, Distributed Application-Level Monitoring

In this section, we describe how we employ an elastic, scalable monitoring app-
roach to circumvent the overutilization of a single analysis node by dynamically
adding or removing preproccesing levels.

We start by outlining our basic idea. Then, our general scalable architecture is
described. Afterwards, the analysis component, which enables the connection of
multiple analysis workers in series, is explained. Then, we illustrate the scaling
process for multiple worker levels. Lastly, assumptions and limitations of our
approach are discussed.

3.1 Idea

Fig. 1 illustrates the basic idea of our elastic, distributed application-level moni-
toring. When the analysis master impends to become overutilized, a new worker
level is dynamically added in front of it. Similar to the MapReduce pattern [3],
each worker on the new level analyzes one part of the monitoring data. To cir-
cumvent an overutilization of the workers, the associated worker applications
are scaled within their worker level. With this preprocessing step, the Master is
only required to combine the analysis results. Eventually with rising workload,
the merging of the results impends to overload the Master again. Then, a second
level is dynamically inserted between the first level and the Master. In theory,
this behavior can continue infinitely.
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Fig. 1. Basic idea of dynamic worker levels

3.2 Scalable Architecture

Next, we show our general scalable architecture. Fig. 2 displays this architecture
including our capacity manager CapMan and one master node. Therefore, it rep-
resents the initial state when only a small amount of monitoring data has to be
analyzed. In our architecture, the capacity manager includes the workload gen-
eration and its load balancing for our experiment due to convenience reasons.
Therefore, the applications are accessed by CapMan to simulate user requests.
A System Monitor records the CPU utilization of the application nodes and
sends this utilization to CapMan. CapMan uses these values, in addition to the
outstanding request count from the workload generation, for scaling the appli-
cations. This cycle forms the employed load generation on the applications and
their automatic elastic scaling.

Every application contains a Monitoring component. At its start, it requests
an IP address from the Monitoring LoadBalancer. This request contains a
loadbalancing group property to determine the kind of application which
the Monitoring component wants to access. For example, the applications use
analysis to reflect their wish to write monitoring data on an analysis node. In
Fig. 2, the shown state only exists of one analysis node, i.e., the master node.
Therefore, the Monitoring component receives the IP address of the master
node and sends its monitoring data to the master analysis application. After a
defined interval, the Monitoring component again fetches an IP address from
the Monitoring LoadBalancer and if necessary connects to the newly received
IP address. Therefore, the monitoring data is distributed to different nodes when
multiple nodes (e.g., on a worker level) are available. This results in an approxi-
mate equal utilization of the target nodes. Similar to the application nodes, the
CPU utilization of the analysis nodes is sent by a System Monitor to CapMan
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Fig. 2. Our scalable monitoring architecture

which uses these values for scaling the analysis nodes. If a new analysis node is
started by CapMan, the IP address of the newly started node is registered in the
Monitoring LoadBalancer under a defined loadbalancing group property.

3.3 Analysis Component

To enable a series connection of the different worker levels, the analysis com-
ponent follows the activities shown in Fig. 3. The monitoring data is received
via a TCP connection and a record reconstruction step creates record objects.
A record object can contain, for example, a monitored method call (and its data
like the method duration), an ID-to-String-mapping, or general meta data. ID-
to-String-mappings are an important concept for reducing the transferred data
by replacing Strings with an integer representation before sending. The record
objects are passed to the trace reconstruction step which links the loose method
call records to an execution trace representing the full execution path of one
user request. Afterwards, the traces are passed to a trace reduction activity. The
chance of same traces typically increases when multiple user requests are con-
ducted. For example, most of the users will access the main page of a website
which will often generate the same execution trace in an application. To save
network bandwidth and CPU cycles on the next analysis node in the chain, sim-
ilar traces are reduced to one trace class. For monitoring how many times the
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Fig. 3. Activities in the analysis component (worker and master)

trace class was called, it contains an attribute called times and runtime statistics
(e.g., minimum and maximum duration) for the monitored method calls. To be
able to determine which host might behave differently, the runtime statistics are
formed on a per host basis.

If an analysis node is started as a worker node, the trace classes are sent
to the next analysis node in line via a TCP connector which sends these trace
classes as serialized single record objects again. If the analysis node is running as
the master node, it simply counts the processed monitored method calls in our
example. However, these trace classes can also be used for, e.g., creating a model
of the monitored applications as we do it for our ExplorViz [6] visualization.

3.4 Scaling Process

In Fig. 4, the state from Fig. 2 is visualized in a simplified form. The boxes with
dashed lines represent one scaling group, i.e., a group of applications which is
scaled independently by a capacity manager. The name of each scaling group
is displayed at the top. There are two scaling groups: Application and Master.
Arrows illustrate accesses to the target scaling group. The label of an arrow is the
loadbalancing group name used to request an IP address from the Monitoring
LoadBalancer. In the initial state, the applications access the Master scaling

Fig. 4. Initial state before scaling
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group by using the loadbalancing group name analysis. Decoupling the scaling
group name and the loadbalancing group name enables the worker levels to get
dynamically inserted or removed between each processing level.

Upscaling. Fig. 5 illustrates the process of dynamically adding one worker
level. After the CPU utilization of the Master rises over a defined threshold,
this process is triggered. At first, a new loadbalancing group is created which
is named worker-1 and contains the Master. Then, two new worker nodes are
started. We assume the same configuration on each analysis node. Therefore,
starting only one worker node would result in the same high CPU utilization
encountered on the Master. The new worker nodes send their data to the scaling
group which is resolved by the loadbalancing group name worker-1. This state
is visualized in Fig. 5a. After the worker application on the nodes are started,
the two workers are added to the loadbalancing group analysis and the Master
is removed from it. The final state is illustrated in Fig. 5b. Notably, the order
of adding and removing loadbalancing groups is important because the analysis
should not be paused during the scaling process.

Downscaling. The downscaling process follows the upscaling process in reverse
order. However, we employ a different scaling condition. Our first approach was

Fig. 5. Activities forming the upscaling process
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using the analogous CPU utilization of the Master when it falls below a defined
threshold. However, this condition is independent from the amount of nodes in
the previous worker level. Therefore, it would also trigger when the previous
worker level contains, e.g., 10 nodes and shutting down all of them would typ-
ically result in an overutilization of the Master. This could be lifted by only
downscaling when there are exactly two nodes of the previous worker level left.
However, this still contains no statement about the utilization of the previous
worker level. For example, both workers might be heavily utilized. Hence, we use
the CPU utilization of the previous worker level as downscaling condition. When
only two nodes are left in the previous worker level and the average CPU uti-
lization falls below a defined threshold in this scaling group, it is shut down and
removed by following the upscaling process in analogous reverse order. Therefore,
downscaling is not delaying or pausing the analysis either.

3.5 Assumptions and Limitations

For being able to reduce the traces on one worker, similar execution traces have to
be generated by the applications in one processing interval (e.g., 5 seconds). From
our observations, web applications often impose similar traces if the behavior is
not user-specific. However, if every trace is different from another, our worker
concept will not work.

A further limitation is imposed by the round-robin connection of the worker
nodes. Each worker connects to a new node on a regular basis. Therefore, a
common state between the worker and its target node has to be reestablished
each time. For instance, the ID-to-String-mapping is shared between both nodes.
Therefore, for each new connection this mapping must be communicated to the
target node. If this exchange takes too much processing time, our approach may
not work. This limitation could probably be lifted by proper caching techniques
which stays as future work.

4 Experimental Evaluation

In this section, we present an experiment for evaluating our elastic, distributed
application-level monitoring approach. We start by describing the used work-
load curve and the experimental setup. Then, the results of the experiment are
discussed and a summary is presented. At last, we identify threats to validity.

4.1 Workload

Our employed workload curve can be seen in Fig. 6. The access pattern of our
object system was modeled after a real web application access pattern which is
detailed in [11].

The workload curve represents a day-night-cycle workload pattern which can
be considered typical for regional websites. It starts with a rising workload until
six o’clock when about 1,000 requests per second are conducted. Then, the load
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Fig. 6. Employed workload curve

peaks at nine o’clock with about 8,000 requests per second. Afterwards, it slightly
decreases to about 7,000 requests per second. In the evening at around eight
o’clock p.m., the request count peaks with about 14,000 requests per seconds.
Then, it falls to about 1,000 requests per second at midnight and shortly behind
this point in time, it drops to no requests for our experiment.

4.2 Experimental Setup

We utilize our private cloud running OpenStack1 containing seven servers. Each
server has two Intel Xeon E5-2650 (2.8 GHz, 8 cores) CPUs, 128 GB of RAM,
and a 400 GB SSD. Therefore, the total amount of resources are 112 CPU cores,
896 GB of RAM, and 2.8 TB of disc space. Since every core also features Hyper-
threading, we configured our cloud to have a maximum of 224 virtual cores.

As object system, we utilize the web application JPetStore2 written in Java.
As the name suggests, it is a software for setting up a small web shop for pets. We
monitor all method calls in the com.ibatis package which contains source code
written by the authors of JPetStore and all method calls in the org.apache.struts
package which significantly contributes to the generation time of one web page.

Two flavors – resource configurations in OpenStack terms – are used in our
experiment. The first one is a small flavor which is used by every dynamically
1 https://www.openstack.org
2 http://ibatisjpetstore.sf.net

https://www.openstack.org
http://ibatisjpetstore.sf.net
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started instance (Master, Worker, and JPetStore nodes). It consists of one virtual
CPU (VCPU), 3 GB of RAM, and 10 GB disc space. With this configuration,
we are able to start a total count of 224 possible instances. The second flavor
is only used by the capacity manager node. Since this node also contains the
Monitoring LoadBalancer and generates the workload, it should be guaranteed
to have sufficient resources for its tasks. Therefore, the capacity manager node
runs with 8 VCPUs, 16 GB of RAM, and 80 GB disc space which reduces the
maximum count of dynamically started instances of the small flavor to 216.

A large setup cost for this experiment was imposed by tuning the operat-
ing system of the physical server (Debian Sid) to process the large amount of
requests per second. In the default configuration, this request amount is detected
as potential denial of service attack and thus the requests are dropped. For exam-
ple, we had to tune the number of usable TCP ports, TCP state timeouts, the
maximum open files, and the NAT connection tracking tables. For potential
replications, our experimental package contains the relevant configuration files.
Furthermore, we provide the virtual machine image used for all our instances to
reduce the setup costs.

The configuration of our capacity manager CapMan contains three scaling
groups, i.e., for the Master, the workers (as prototype for dynamically started
levels), and the JPetStores. The Master scaling group uses a threshold of 40 %
average CPU utilization to trigger the insertion of a new worker level. CapMan
always calculates the average CPU utilization over a time window of 120 seconds
to reduce the impact of short utilization spikes. The prototype of a worker scaling
group is configured with a downscaling condition of a value below 15 % average
CPU utilization. A new instance is started if the average CPU utilization is above
45 %. In the JPetStore scaling group, an instance is shut down when the average
CPU utilization falls below 27 %. For upscaling, the outstanding requests are
counted and when these are above 200, a new instance is started. In contrast
to the other scaling groups, the start time of a new instance is not negligible.
Therefore, 16 seconds are waited during booting since Jetty must be started and
JPetStore must be deployed.

4.3 Results and Discussion

Fig. 7 shows the resulting JPetStore instance count and the average CPU uti-
lization of the Master node in our experiment. In general, the count of the JPet-
Store instances follows the workload curve and peaks at 160 instances. The only
exception is the instance count not reducing after the first peak in the workload
at hour nine. This is caused by the 27 % average CPU utilization downscaling
condition which could be further reduced to also scale down in this situation.

Notably, since the workload curve is reflected in the JPetStore instances, the
general scaling in accordance to the imposed workload is functioning. We now
take a closer look at the CPU utilization of the Master, the started worker levels,
and the monitored method calls per second.

With the constantly rising workload, the CPU utilization of the Master also
constantly increases until approximately hour three. At this time, a new worker
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Fig. 7. JPetStore instance count and average CPU utilization of Master node

level is started since the average CPU utilization of the Master rises above 40 %.
The started analysis nodes are visualized in Fig. 8 where this circumstance can
also be seen. After the successful insertion of the worker level, the CPU utiliza-
tion of the Master drops to about 3 %. Notably, at this point in time only two
JPetStore instances are started. This is reasonable since about 400,000 method
calls per seconds need to be analyzed.

After hour three, the CPU utilization of the Master node only rises slightly
to 11 % while the JPetStore instance count drastically increases to about
40 instances in hour ten. The work induced by the analysis of the monitor-
ing data is distributed to the workers in the first worker level where the instance
count increases to 20 instances till hour ten.

In hour 15, a short peak of about 62 % in the Master CPU utilization can be
seen. Since it only occurred for about one minute and has a difference of about
50 % to the previous and afterwards values, this peak is an anomaly. During
other runs on our private cloud, we often observed this behavior when another
instance is started on the same physical host. Therefore, we implemented an
anomaly detection algorithm in our capacity manager for this circumstance and
thus no new worker level is started in hour 15.

The JPetStore instance count is rising again from hour 15 till hour 20 peak-
ing in 160 instances. Therefore, the instance count of the workers in the first
worker level is also increasing which peaks at about 50 instances in hour 20.
Since the Master has to receive and merge the traces from those instances,
its CPU utilization also rises until hour 19. Then, the CPU utilization is once
again above the 40 % threshold which results in a newly inserted worker level.
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Fig. 8. Analysis nodes and number of instances in each level

Afterwards, the Master CPU utilization drops to about 17 %. This drop is not
as large as the previous one but still it circumvents the overutilization of the
Master node.

In hour 20, the workload approximately decreases until hour 24. This leads
to a reduction of the JPetStore instances and therefore, also the analysis nodes
are reduced. At first, the second worker level is completely removed in hour 22
resulting in an increase of the CPU utilization on the Master node. The worker
instances in the first worker level are also reduced until hour 24 is reached. Then,
also the first worker level is removed resulting in the initial configuration where
only the Master node is analyzing the monitored data.

Fig. 9 visualizes the monitored and analyzed method calls per second. In
general, it follows the requests per second of the workload and peaks in about
20 million analyzed calls per second. The only exception is a short spike in
hour 22. This resulted from a too fast shutdown of one analysis node in the
second worker level which can be circumvented by increasing the shutdown delay
of analysis nodes in higher worker levels.

4.4 Summary

Summarizing the results, our elastic, distributed application-level monitoring
approach shows feasible to circumvent the overutilization of the Master node
in spite of a rising workload. Furthermore, the Master node employs only a



92 F. Fittkau and W. Hasselbring

Fig. 9. Average monitored and analyzed method calls per second

single VCPU. Therefore, during low workload on the monitored applications,
the minimum costs for monitoring incur.

4.5 Threats to Validity

We conducted our experiment on our private cloud with scaling of JPetStore
instances. For external validity, it should also be evaluated in other environments
and with other applications. The same applies to the employed workload curve
and the amount of conducted monitoring.

Our experiment involved two worker levels due to having only 216 VCPUs
available. The results for a third worker level might be different. Further experi-
ments are required to show if the third worker level still circumvents the overuti-
lization of the Master node.

Furthermore, similar traces are generated by accessing JPetStore. We assume
that our monitoring approach will behave differently if this assumption is not
satisfied. This should be also investigated in further experiments.

5 Related Work

Brunst and Nagel [2] present a parallel analysis infrastructure. They focus on
massive parallel systems with thousands of processor cores. In contrast, we focus



Elastic Application-Level Monitoring for Large Software 93

on the monitoring and analysis of applications running on typical business servers
or in cloud environments.

Meng et al. [10] propose a Monitoring-as-a-Service solution for monitoring
cloud infrastructures. To monitor the complex infrastructure of Cloud data cen-
ters, they developed a scalable and flexible monitoring topology consisting of
different services. Compared to our approach, they focus on monitoring the vir-
tualized data center environment.

Hilbrich and Muller-Pfefferkorn [7] describe a concept of a scalable job cen-
tric monitoring infrastructure. Their approach features multiple layers of short
and long time storage of the monitored data. Contrary, we directly analyze the
monitored data after gathering it without a persistent storage.

The ECoWare Infrastructure [1] consists of three types of components, i.e.,
the execution environment, processors, and a dashboard. In contrast to our app-
roach, they use a message bus for their analysis and do not provide multiple
analysis levels.

In [5], we presented a first idea of utilizing multiple worker levels. However,
at this time, the count of worker levels was statically determined at the start
of the system, i.e., not adapting to the actual workload. Furthermore, we only
presented the idea without evaluating the concept of worker levels.

In general, our approach exhibits similarities to the MapReduce pattern [3].
However, in contrast to our approach, it does not dynamically insert or remove
preprocessing levels according to the actual workload.

Capacity management approaches utilizing the monitored data for their scal-
ing decisions, e.g., SLAstic [8], are also related to our approach, since they must
analyze the monitored data just after it was observed. To the best of our knowl-
edge, none of these approaches utilizes dynamically inserted or removed worker
levels as presented here.

6 Conclusions

In this paper, we presented our elastic, distributed application-level monitoring
approach to circumvent the overuse of a single analysis master application. We
dynamically insert and remove preprocessing worker levels depending on the
actual utilization of the analysis master without interrupting the analysis of the
monitored data. In our presented 24 hour experiment, 160 monitored JPetStore
instances generated roughly 20 million analyzed method calls per second in the
peak. It showed that our approach is feasible and is capable of live analyzing
several millions of monitored method calls.

For replications of our experiment and extensions of our approach, we provide
an experimental package [4] containing the used programs as executables, written
source code under the Apache 2.0 License, server settings, virtual machine image,
and raw experimental results.

Future work includes implementing and evaluating caching techniques for
enhancing the state exchange between the analysis node. Furthermore, since our
experiment only involved two worker levels, we aim to conduct an even larger
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experiment with more worker levels to investigate the applicability to thousands
of monitored applications. In addition, our approach should be evaluated with
different cloud environments and different monitored applications, e.g., RUBiS,
to investigate the effect of these variables.
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Abstract. Service functionality can be provided by more than one ser-
vice consumer. In order to choose the service with the highest benefit, a
selection based on previously measured experiences by other consumers
is beneficial. In this paper, we present the results of our evaluation of two
machine learning approaches in combination with several learning strate-
gies to predict the best service within this selection problem. The first
approach focuses on the prediction of the best-performing service, while
the second approach focuses on the prediction of service performances
which can then be used for the determination of the best-performing
service. We assessed both approaches w. r. t. the overall optimization
achievement relative to the worst- and the best-performing service. Our
evaluation is based on data measured on real Web services as well as
on simulated data. The latter is needed for a more profound analysis
of the strengths and weaknesses of each approach and learning strategy
when it gets harder to distinguish the performance profile of the service
candidates. The simulated data focuses on different aspects of a service
performance profile. For the real-world measurement data, 97 % overall
optimization achievement and over 82 % best service selection could be
achieved within the evaluation.

1 Introduction

Service-Oriented Computing (SOC), Software as a Service (SaaS), Cloud Com-
puting, and Mobile Computing indicate the development of the Internet into a
market of services. With little to no knowledge about the service implementa-
tion or the system environment, service consumers can dynamically and ubiq-
uitously consume service functionality. Besides the actual functionality, service
consumers are interested in the service performance, which is expressed in its
non-functional properties (NFPs) such as response time, availability, or monetary
costs. In such a service market, the same service functionality may be provided by
several competing service providers. Among these similar services, service con-
sumers are interested in the service which fits best to their (NFP) preferences.
In particular, consumers are interested in the actual experienced performance.
c© IFIP International Federation for Information Processing 2015
S. Dustdar et al. (Eds.): ESOCC 2015, LNCS 9306, pp. 95–109, 2015.
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One of the major characteristics of a service market such as the Internet is per-
petual change. Entering and leaving service providers as well as the complexity
of service dependencies and environments make service selection and recommen-
dation a challenge. Our service recommendation framework uses a collaborative
knowledge base of consumption experiences of similar consumers in the past to
predict the performance of a service in a certain consumer-based call context.
This is used to recommend the best-fit service candidate to a consumer, consid-
ering his/her preferences [1,2]. Since the experienced performance at consumer
side is influenced by a consumer’s call context, e. g., calling time and location,
the performance has to be predicted based on this context. Furthermore, per-
formance is different for different consumers who value the NFPs of a service
differently. For instance, some consumers are more interested in a fast response
time and rather neglect higher monetary charges than others who want to have
a service for free and rather experience higher response times. Therefore, service
value is individual and it has to be determined individually whether a service is
actually best-fit in a specific context. Considering these aspects, we analyzed two
machine learning approaches which are based on classification and regression in
combination with learning strategies for an optimal employment within service
recommendation. Our practical assessment is based on real-world measurement
data as well as profile-guided simulation data which addresses certain aspects of
changes in the performance behavior of services for a more fine-grained analysis.

2 Recommendation Background and Framework

As written above, perpetual change is one of the major characteristics of the
Internet as a service market. Among similar functional services, the selection of
a service instance is based on one or more NFPs. NFPs have different scales of
measurement with different optimization functions. For example, response time
is a ratio scale with an optimization towards the minimum. The availability
of a service at a specific time is nominal: a service is either available or not.
In such a case, the optimization focus is to select a service instance which has
the highest (maximum) probability of being available. When the selection of a
service instance is based on more than one NFP, NFP data has to be normalized
in order to be comparable and calculable. In such a case, not all NFPs are equally
important, so their importance has to be weighted and taken into account [2].
In [1], we introduced our framework which optimizes service selection based on
consumer experience, call context, and preferences (utility). Within this paper,
the focus is set on the machine learning approaches which can be employed for
service recommendation in general, and which can be implemented within our
framework. Figure 1 depicts how the broker component in our framework works
and where machine learning methods are employed. Constantly collecting the
measurement data of service calls, the data is then pre-processed for the learning
of each NFP of a service instance considering the contexts of the service calls
from where the data derives. The NFPs/performance of each service instance are
learned and constitute a background model. For each utility function and each
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Fig. 1. Foreground and Background Model within our Framework [2]

context, this model contains the utility value of each service instance. Within
each utility function and call context, the instance with the highest utility value is
considered to be the best-fit service instance among functionally similar services.
This best-fit service is saved in a foreground model to provide good performance
within the time-critical recommendation process. It is updated with relearned
background model information within intervals and on detected change. Once
again, since preferences vary among all service consumers, the best-fit service
instance is individual for each utility function.

3 Employment of Machine Learning Approaches

Initially introduced in [2,3], for the employment within our framework, we follow
two machine learning approaches for service recommendation.

3.1 Regression

In machine learning, regression aims at the prediction of numerical values based
on attribute values. Within our focus, regression can be used to predict each
NFP value (e. g., the expected response time) based on call context values (e. g.,
calling time and weekday). The drawback is that learning has to be conducted for
each NFP individually and the actual utility value for the best-fit determination
has to be calculated. These higher efforts, however, have several benefits at
the same time. For each NFP and call context combination, the NFP value
has only to be predicted once, while the best-fit service can be calculated for
each preference (utility function) individually. Furthermore, since each service’s
utility value is calculated (based on the expected NFP values) and considered,
the ranking of second, third, etc. best-fit services can be used to achieve a higher
overall performance gain. Note that utility optimization does not require a high
accuracy of selecting the best-fit if the second best-fit achieves an almost as high
utility gain. Also, underdog and quick starter strategies can also be implemented,
since the performance data of services of calls of the past still remain.
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3.2 Classification

Classification focuses on the determination of the affiliation to a certain class
based on attribute values. In the recommendation scenario, consumers are ulti-
mately interested in the selection of the best-fit service. So for a call context,
the services could be classified into best-fit and non-best-fit. With this approach,
the learning method focuses directly on the best-fit determination. For this, the
training set has to be pre-processed: the champion has to be determined based on
the measurement data. As a result, classification directly determines the best-
fit service within a call context and utility function combination. The benefit
using classification is to omit the calculation steps after prediction. Disadvanta-
geously, however, the best-fit service has to be learned for each call context and
each utility function; whereas having the NFPs predicted for a call context as
an intermediate step, the best-fit service can be calculated for other utility func-
tions without new learning. Furthermore, old service instances are automatically
not further considered and, hence, sorted out. Disadvantageously, underdogs can
never prove themselves since the approach is only focused on best-fit service rec-
ommendation and non-best-fit are neglected or not invoked at all. Also, there
is no differentiation among non-best-fit services, which is important in a non-
accurate prediction in order to still create a high utility gain.

4 Research Question

In [2,3], we showed that in general a classification- and regression-based app-
roach can be employed for service recommendation. Additionally to these initial
analyses, the present paper focuses on the research question regarding optimal
learning strategies for the employment of machine learning approaches in service
recommendation within a real-world scenario and focusing on certain perfor-
mance behavior profiles. Within this, the following sub-questions address differ-
ent aspects which need to be analyzed: What is the optimal size for the training
dataset of a learning model in this context? How long is a trained model reliable
for good service recommendation? Which learning strategy is better: incremen-
tal learning or sliding windows? Based on that, is drift detection implemented
by a learning method better to cope with change? Is there a difference in the
accuracy of service recommendation for different learning approaches when the
services’ performance profile becomes more and more similar?

5 Analysis of the Learning Approaches

For the conduction of the analysis, we developed a Java-based software that uses
Weka1 and MOA2 as machine learning frameworks. Both were chosen because
of their extensive collection of classical and state of the art methods and their

1 http://www.cs.waikato.ac.nz/ml/weka/
2 http://moa.cms.waikato.ac.nz/

http://www.cs.waikato.ac.nz/ml/weka/
http://moa.cms.waikato.ac.nz/
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Table 1. Evaluation Indicators

Overall Achievement
It indicates the optimization degree in per cent between
the response time of the worst service towards the
response time of the best service for each prediction case:(
1 − RTPrediction−RTBest

RTWorst−RTBest

)
· 100

Best Choice
It expresses the amount in per cent of the prediction of the
actual best(-fit) service candidates.

high automation degree. Based on good initial results in regression [2], we chose
the Fast Incremental Model Tree with Drift Detection (FIMT-DD) algorithm
for regression. FIMT-DD focuses on time-changing data streams with explicit
drift detection [4]. For classification, we chose DecisionStump3, which showed
the highest accuracy in initial experiments.

There are several aspects relevant for the evaluation of machine learning
methods such as speed, accuracy, scalability, robustness, and interpretability
[2,5,6]. Since service consumers are interested in the improvement of the perfor-
mance they experience, we chose accuracy and performance as key indicators.
As our focus is not set on the complexity of multi-target NFP optimizations, we
reduce utility to the (arguably) most important NFP which is response time. The
performance gain is therefore not based on a utility value, which is the weighted
sum of different NPFs, but an overall performance achievement between the
response time of the worst-performing service and the best-performing service.
Second indicator is best choice to reflect the top-selection accuracy. The defi-
nitions of both indicators are listed in Table 1. Recall, service recommendation
is an optimization problem. Hence, performance gain is more important than a
high accuracy of selecting the best-performing service, since a slightly worse sec-
ond best might still create a high performance gain which would not be reflected
in best choice.

Regression is able to exploit continuous (date)time values. For classification,
additional enhanced time attributes were added. Furthermore, in addition to
the basic attributes date, time, and response time, we added further attributes
to each measurement entry in order to provide statistically enhanced data with
focus on natural periods. The additional attributes were added to all datasets.
Note that these additional attributes (Table 2) only consider attribute values of
previous records, since the current response time value of each record is part of
the actual learning.

Due to different prerequisites of the two machine learning approaches, addi-
tional approach-specific pre-processing had to be conducted. Using regression,
each NFP of each service instance has to be learned individually. Hence, the
datasets had to be filtered into sub-datasets for each service. Classification is
only interested in the best service at each moment in time. Therefore, the dataset
had to be filtered so that only the records of the fastest services remained.

3 http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/DecisionStump.html

http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/DecisionStump.html
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Table 2. Statistical Enhancement of Attributes

DayOfMonth Extracted day of month from date
Hour Extracted hour from time
Weekday Determined nominal day of week from date (class. only)
Workingday True is weelday is Monday to Friday (class. only)
RT Xmin AVG
X = {61, 121, 181, 361, 721,
1441, 2881, 7201, 10081}

Response time mean of all records (chronologically)
within the last 1, 2, 3, 6, 12 hours, and 1, 2, 5, 7 days

RT X AVG
X = {40, 80, 160, 240}

Response time mean of the previous x records (chrono-
logically; without consideration of any other attribute)

RT X AVG Hour
X = {4, 12, 20, 28}

Response time mean of the previous x records within the
same hour value (1, 3, 5, 7 days of the same nominal hour)

RT X AVG Weekday
X = {4, 8, 16}

Resp. time mean of the prev. x records within the same
weekday value (1, 2, 4 weeks of the same nom. day of w.)

Furthermore, the response time attribute is not directly used in classification,
only indirectly for determining the best-fit service in the training set. Therefore,
we removed the response time attribute for learning. After pre-processing, each
dataset had to be divided into a training and a validation sub-set. Because of
chronological aspects, the dataset could only be split into training and validation
sets. N -fold cross validation could not be applied for that reason. In contrast to
initial analyses, we conducted a sliding split point evaluation. For each analysis
of an aspect, the split point between training set and validation set was iterated
day by day. Depending on the period (and window sizes), it could result in a
statistical mean of up to n

24m −1 iterations (for the measurement input 170 iter-
ations per scenario), for n data entries and m data records per hour (one record
for each service).

5.1 Learning Strategies

In order to address the research questions related to the optimal learning strate-
gies, we conducted the following scenarios. For both scenarios, we applied a
prediction window of various sizes in order to determine the optimal train-
ing/prediction interval ratio for the updates of the foreground model (Figure 1).

Incremental Learning. This scenario continuously updates the learning
model. Any strategies on changes and their impact on the model have to
be dealt by the learning method such as drift detection.

Sliding Window Learning. This learning scenario applies a fixed window of
previous measurements for the training of the learning model.

5.2 Measurement Data

The measurement data was gained from four real-world stock quote Web ser-
vices [1]. The services are functionally similar, so they can be substituted.
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The measurement period for this dataset was 185 days and contained 16,441 mea-
surement entries. Each entry contained the date, time, the consumed service, and
the measured response time. Within this period, each Web service was called on
an hourly basis and its response time during this call was measured; hence, four
data entries per hour. If a service was not available or timed out (30,000 ms), its
entry was not added to the set.

5.3 Simulation Scenarios

The simulation of measurement data enabled to challenge machine learning
approaches and to analyze their performance in certain scenarios. Within the
measured real-world Web services, the statistical characteristics showed easily
distinguishable performance profiles of the services. In order to compare the
strengths and weaknesses of the machine learning approaches in more challeng-
ing scenarios, where the service profiles are harder to distinguish, we step by
step approximated these profiles. For each profile, learning approach, and learn-
ing strategy combination, we conducted approximation iterations in 10 % steps
until their profiles were fully identical (up to random noise).

Normal Distribution Profiled Data. As a baseline of every service profile,
we assumed normally distributed response times of Web services around a
mean value (with a certain standard deviation and variance). We created4

normally distributed response time data for four services with a similar initial
mean (vertical shift), standard deviation, and variance as the four measured
Web services. This mean response time gets approximated step by step. Fully
approximated, their statistical mean is identical.

Cyclic Spikes Up/Down. We generated two profiles with response times nor-
mally distributed around the same mean but with cyclic/periodic spikes
which go in one profile up and in the other profile down. Spikes going up sim-
ulate services that have suddenly longer response times, while spikes going
down simulate sudden response time improvements. For their creation, we
used a saw tooth generator5 in combination with an iceberg filter which are
added to the basic normal distribution line. Again, all created services are
similar. They are distinguished only in their horizontal shift. Fully approxi-
mated, their horizontal shift is identical.

Acyclic Spikes Up/Down. This profile has several acyclic spikes and differ-
ent levels shifts in combination with an iceberg filter. Using several cyclic
spikes in spikes generations with very long periods in combination with pulse
train shifts6 and the iceberg filter, a complete acyclic/aperiodic behavior
could be simulated. Again, all services have the same mean response time
and in a fully approximated case, their spikes are overlapping.

4 Java implementation based on http://info.michael-simons.eu/2013/02/21/
java-implementation-of-excels-statistical-functions-norminv/.

5 Cf. Saw tooth generation using Fourier series http://mathworld.wolfram.com/
FourierSeriesTriangleWave.html

6 Fourier series expansion was used; cf. http://en.wikipedia.org/wiki/Pulse wave

http://info.michael-simons.eu/2013/02/21/java-implementation-of-excels-statistical-functions-norminv/
http://info.michael-simons.eu/2013/02/21/java-implementation-of-excels-statistical-functions-norminv/
http://mathworld.wolfram.com/FourierSeriesTriangleWave.html
http://mathworld.wolfram.com/FourierSeriesTriangleWave.html
http://en.wikipedia.org/wiki/Pulse_wave
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6 Results

The results presented in this section are mean values. For each input dataset,
each evaluation scenario was conducted on a sliding iteration with sliding start,
split, and end points in order to get statistically profound results.

6.1 Measurement Data

Based on the initially analyzed Web Services [3], we used an extended measure-
ment dataset of over six months of four functionally substitutable real-world
Web services. In contrast to the initial analysis, we conducted sliding iterations
with sliding start, split, and end points. The purpose of these sliding iterations
is to statistically equalize any start, split, or end point, so that the results are
not influenced by any selected point. Within the evaluation of the two learning
approaches, we used two general learning scenarios. The first scenario trains the
learning model on an incremental basis, while the second uses a sliding window
for training. For the window scenarios, we evaluated different window sizes.

Addressing the question whether increment or window learning is better,
Table 3 shows the results of the incremental learning scenarios with predic-
tion windows of 1 and 28 days. Within the overall optimization achievement of
response time as well as the best choice indicator, there is not much deteriora-
tion of the predictions of the upcoming day to four weeks. However, the standard
deviation of the results decreases for the wider prediction window; especially, in
the case of the FIMT-DD, which we presume already due to its drift detection.

Analyzing optimal sliding training window sizes and the reliability within
increasing prediction window sizes, we conducted sliding iterations with differ-
ent window sizes for training and prediction. Table 4 reveals the statistical mean
values for the analyzed training window sizes, while Table 5 for the analyzed
prediction window sizes. Again, the analysis data revealed not much difference
between the different window sizes in the overall achievement indicator, while
there is a difference in the best choice indicator (Table 5). For the classification
approach using DecisionStump, small prediction windows achieve better best
choice indicator values than wider ones. Regression-based FIMT-DD remains
more or less steady regardless of the window size. In direct comparison, the
classification-based determination of the best-fit service is in general slightly
better (in the case of a prediction window size of one day). In Figure 2(b), it
seems that for the DecisionStump approach, a smaller prediction window results
in a better best choice indicator, while for FIMT-DD a wider prediction win-
dow leads to a steadier best choice prediction (similar best choice mean, but a
smaller standard deviation). Recall, the indicators introduced in Table 1 focus
on different aspects. While the best choice indicator focuses on the accuracy in
the overall prediction of the actual best-fit service (employing machine learning
methods as well a calculation steps), the overall achievement indicator expresses
the degree of optimization. Although it is desirable to always predict the best ser-
vice candidate, for an optimization it is not necessary if the second-best creates
a similarly high optimization benefit.
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Table 3. Different Prediction Windows within Incremental Learning

DecisionStump FIMT-DD
Win. Size Achievement Best Choice Achievement Best Choice
Prediction mean σ mean σ mean σ mean σ

1 97.10 % 6.10 % 82.26 % 22.89 % 97.04 % 3.89 % 73.35 % 21.47 %
28 96.34 % 2.23 % 72.77 % 22.94 % 97.02 % 1.60 % 72.78 % 13.59 %

Table 4. Sliding Window Scenario with Different Training Windows

DecisionStump FIMT-DD
Win. Size Achievement Best Choice Achievement Best Choice
Training mean σ mean σ mean σ mean σ

1 96.50 % 3.93 % 74.76 % 22.74 % 97.13 % 2.35 % 73.52 % 16.67 %
10 97.29 % 3.21 % 80.85 % 20.83 % 97.23 % 2.36 % 73.94 % 16.89 %
20 97.37 % 3.18 % 79.90 % 22.51 % 97.38 % 2.29 % 74.74 % 16.87 %
40 97.70 % 2.97 % 81.31 % 25.42 % 97.93 % 1.66 % 78.86 % 14.50 %
60 98.32 % 2.53 % 89.72 % 12.70 % 98.16 % 1.63 % 81.89 % 13.20 %
120 97.45 % 4.36 % 89.79 % 4.25 % 97.48 % 2.00 % 72.97 % 13.87 %

Table 5. Sliding Window Scenario with Different Prediction Windows

DecisionStump FIMT-DD
Win. Size Achievement Best Choice Achievement Best Choice
Prediction mean σ mean σ mean σ mean σ

1 97.86 % 4.81 % 85.61 % 17.27 % 97.48 % 3.55 % 75.76 % 21.43 %
7 97.42 % 3.52 % 83.48 % 17.33 % 97.54 % 1.95 % 75.87 % 16.27 %
14 97.31 % 2.91 % 82.06 % 18.18 % 97.56 % 1.53 % 75.87 % 12.92 %
28 97.16 % 2.22 % 79.73 % 19.52 % 97.63 % 1.16 % 76.44 % 10.71 %

(a) Training Window Sizes (b) Prediction Window Sizes

Fig. 2. Best Choice Means of Different Window Sizes with Measurement Data
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6.2 Simulated Scenarios

Based on the very good results of the measurement data and the results regard-
ing the optimal window sizes for training and prediction, we now challenged
both learning approaches with generated data. In contrast to the measured Web
services with their quite distinctive characteristics, we generated the behavior of
services with the simulation scenarios (profiles) introduced in Section 5.3. The
services within a scenario have similar profiles but distinguish themselves in iso-
lated focused aspects. Like the measurement data, the training on the generated
datasets is also conducted on a sliding iteration basis. Additionally, we approx-
imated each profile in 10 % steps until they were identical (disregarding some
random noise) in order to address the last research sub-question. Presumably, the
results of the machine learning approaches are supposed to get worse during the
approximation. Still, the results of each approximation step reveal how good the
learning approaches can cope with the challenge which the respective scenario
focused on. The mean values in the illustrations were gained from the sliding
window approach with a training window size of seven days and a prediction
window of one day. This was the overall optimal combination for the measured
real-world scenario. The generated input provided data for a period of six weeks
in total. Since the simulated data followed a profile-guided generation, a longer
period would not lead to different results in this case. Figure 3 depicts the best
choice results for each machine learning approach. Figure 4 shows the corre-
spondent overall achievement figures. Since the achievement is defined relatively
between the best and worst service performances and since these performances
are approximated step by step, there is not much difference between both figures
with their different accuracy criteria “best choice” and “overall achievement”,
resp.; especially, when the approximation approaches 100 %. For the cyclic and
acyclic profiles, the non-best services perform equally since there is no vertical
shift. Hence, the overall achievement depends only on whether finding the best
choice or not. Therefore, for these profiles, there is not much difference between
the best choice and the overall achievement indicators.

Before we focus on the differences between both learning approaches, we com-
pare the differences between the different scenarios. Both approaches cope well
with the normal distribution scenario. This is the only scenario approximating
a vertical shift (response time mean), and both methods and their approaches
get worse when the response time means are approximated. All other scenar-
ios approximate a horizontal shift. That means that their normal distribution
component is and remains similar. They only distinguish themselves in their per-
formance spikes (response time up for worse performance; response time down
for improvements). In the acyclic spike scenarios, both approaches are not able
to cope with these spikes. No matter whether the spikes go up or down, both
approaches remain on a best choice rate of around 25 % which is not much bet-
ter than random selection [3]. However, the DecisionStump approach achieves
slightly better results. Comparing the remaining cyclic scenarios, the FIMT-DD
can show its strengths (see CyclDown and CyclUp in Figure 3(b)). Compared
to the classification-based approach illustrated in Figure 3(a), the FIMT-DD
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(a) DecisionStump (b) FIMT-DD

Fig. 3. Best Choice Mean using Sliding Windows within the Scenarios

achieves much higher best choice (and overall achievement) figures. The profiles
of each service are taken into account, while this information is lost using the
classification approach, which is illustrated in the charts in Figures 3 and 4.
Our question, whether it makes any difference if the spikes go up (a service gets
suddenly worse) or the spikes go down (a service gets suddenly better), could
be answered. According to the results, illustrated in the figures, it does make a
difference whether the spikes go up or down. FIMT-DD is in both cases signifi-
cantly better. However, if a service gets suddenly worse among similar services
(spikes down), it can be learned better than the other way around. It seems to
be easier to learn an outstanding service whereas it seems to be more difficult
to recognize a service getting worse within the optimization focus of similar well
performing services. The presumed reason for that could be that spikes down
(improvement of a single service) are changes within the optimization focus.

Having a closer look at the cyclic up illustration in Figure 3(b) and
Figure 4(b), the indicator values get better with a higher approximation degree.
This seems to be odd. One explanation could be that the regression-based app-
roach focuses on the prediction of the performance behavior of each service as a
pre-step for the actual best service determination, while the classification-based
approach only focuses on the direct learning of the best fit service. However, the
spikes up scenario simulates the opposite. Furthermore, considering the genera-
tion of the cyclic down and up scenario, their profiles are inverted on a higher
level. The differences between the results in the figures also appear to be inverted.
Still, the results for this scenario require further analysis, since a total approxi-
mation of this profile and its normal distribution part should develop similarly
to the fully approximated normal distribution scenario.
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(a) DecisionStump (b) FIMT-DD

Fig. 4. Overall Achievement Mean using Sliding Windows within the Scenarios

6.3 Overall Results Conclusion

Both learning approaches achieved high overall optimization achievement results
within the validation using real-world measurement data. Considering the best
choice indicator, the classification-based approach could achieve higher values,
however, with a higher standard deviation. Since real world-measured Web ser-
vices have different profiles, which are easy to distinguish, challenging simulation
scenarios showed the strengths and weaknesses of each approach. The regression-
based approach for the prediction of the actual performance of each service can-
didate could prove its strengths in a cyclic behavior scenario. The consideration
of a ranked determination of best services is especially beneficial since second-
best service candidates can also still create an almost high optimization benefit.
The normal distribution scenario showed that if the competitive service can-
didates mainly distinguish themselves vertically within the optimization focus,
both machine learning approaches achieve equally good results.

6.4 Threats to Validity

The analysis is based on measured and generated data. Addressing an emerging
future market, it is difficult to find freely consumable and functionally similar
services. Therefore, the measurement data bases only on four Web services. The
NFP behavior of Web services are diverse, therefore, the characteristics of other
services may show different results. Nonetheless, with generated data of various
scenarios as well as their approximation, we could analyze the strengths and
weaknesses in detail. This would not be possible if the analysis is only based on
measurement data.
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7 Related Work

In [2], we introduced our service recommendation framework with an ini-
tial implementation using machine learning. We also determined appropriate
machine learning frameworks which can be employed for service recommen-
dation in general. First evaluations of the classification- and regression-based
approaches were described in [3]. In these evaluations, we only had measure-
ment input for 34 days. Furthermore, we did not conduct a sliding window
approach. However, using different start, split, and end points can lead to differ-
ent evaluation results. A sliding-conduction-based evaluation, which we used for
the evaluation of the results of this paper, leads to more statistically profound
results. In contrast to relative indicators (comparison to random selection), we
used absolute indicators in this paper. Furthermore, in this paper, the generated
simulation data focused specifically on general, presumable aspects of the per-
formance behavior of services, which is beneficial for general evaluation of both
approaches focusing on performance-behavior-based changes within a service
market. Approaches using collaborative filtering (CF) for service recommenda-
tion also focus on the exploitation of shared knowledge about services in order
to recommend services to similar consumers before the actual consumption on
an automated basis (cf. [7–10]). Machine learning, in general, can also be used in
CF. In contrast to the filtering of external decision results in CF, our approach
determines the individual best-fit service based on previously measured perfor-
mance data, individual preferences, and calculated utility values. With the call
context and utility function approach, in our framework, new consumers can
already benefit from existing knowledge. CF approaches also do not take into
account that consumers can have different optimization goals or preferences and
only some approaches [8,9] consider differences between consumers regarding
their context. In [11], the authors tackle the lack of consideration of a con-
sumer’s preferences and interests; however, they do not take consumer context
into account. The authors of [12,13] describe approaches to tackle the mentioned
cold-start problem within CF. In [14], the authors used data mining methods for
the service discovery. For the recommendation of services, trust and reputation
are also important aspects. They can be understood in the security meaning,
but also in a reliability context. For the latter, there are approaches which focus
on a trust/reputation-based service recommendation [15–19]. Timelines within
contexts are an important aspect. We leave this information to be handled by
machine learning methods (apart from initial preparations). For detailed learning
aspects on this context detail, we refer to the field of time series analysis.

8 Conclusion

With the sliding iterations of the input set, we conducted a statistically profound
analysis of a classification- and regression-based machine learning approach for
service recommendation. Both learning approaches achieved very high overall
optimization achievement results within the validation using real-world measure-
ment data. In contrast to the best choice indicator, for which both approaches
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also achieved high values, the overall achievement figure also takes into account
the optimization achievement when recommending non-best-fit service candi-
dates. The overall optimization achievement is more significant than the best
choice indicator since it considers the actual utility/performance gain.

Considering the various training windows, the overall achievement figures
remain similar when processing the measurement data. However, with an
increasing training window size of up to 60 days, the best choice indicator
improves for both approaches. For both approaches, the sliding window training
strategy achieved better results than incremental learning. Although the clas-
sification approach achieved better best choice figures than the regression-
based approach, both have similar overall achievements. So, the strength of the
regression-based approach is the indirect ranking within the non-best services.
Although the FIMT-DD regression method focuses on drift detection, a sliding
training window achieved better results than the incremental learning approach.

In order to challenge both approaches and analyze their strengths and weak-
nesses in detail, we created profile-guided simulation data and re-conducted the
analysis. Additionally, we approximated each generation scenario and re-run each
analysis on each approximation step. For a normal distribution scenario, both
approaches achieved similar good results. As expected, an increasing approx-
imation degree resulted in less optimization achievement. In the acyclic case,
both approaches did not achieve good results. However, the classification-based
approach was slightly better. The regression-based approach achieved very good
results within the cyclic profile scenario. Focusing on the best choice indicator,
the approaches cope better with the scenarios with sudden performance improve-
ments (spikes down) than with sudden performance decreases (spikes up). The
unexpected improvements in the cyclic up scenario within the approximation
steps require further analysis.

This work raised further future work questions: So far we have focused on
a classification- and regression-based approach. Other approaches such as cyclic
regression methods should be also evaluated. Also, other presumable behavior
scenarios such as sudden death or continuously de-/increasing performance of
services can be used for the analysis of the machine learning approaches. Fur-
thermore, service recommendation also has an impact on the actual NFPs (e. g.,
NFP values of best-fit services might become worse due to over-consumption
because of service recommendation), which also needs to be analyzed. In case
of considerable negative effects, new strategies have to be found. Last but not
least, strategies which aim at giving underdogs a chance to improve and quick
starter strategies have to be found.
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Abstract. Modern service-oriented software applications, like those
envisioned in cloud computing scenarios, operate in highly dynamic and
often unpredictable environments that can degrade their quality of ser-
vice. Therefore, it is increasingly important to efficiently and effectively
manage the adaptation of such service compositions while guarantee-
ing quality attributes, such as availability, performance or cost. Within
this context, software metrics to quantify the adaptability of a business
process in orchestrating distributed services are highly demanded in con-
junction with techniques for evaluating other system quality attributes.
This paper proposes a set of software metrics to quantify the adaptability
of a service-oriented application when services are composed dynamically
trough a business process. The paper also proposes an approach for ana-
lyzing tradeoffs between the application adaptability and a quality of
service such as availability. The feasibility of the approach is illustrated
through a case study carried out with a tool we have developed.

1 Introduction

The SOA promise of agility and flexibility is recognized in the ability to change
the business processes as market changes. To this end, it introduces a separate
layer in the architecture, the Business Process Layer, for business processes and
flows. This layer covers process representation and composition, and provides
building blocks for orchestrating or choreographing the set of required atomic
or composite services from the underlying Service Component Layer. Loosely-
coupled services are aggregated to constitute a business process aligned with
business goals and able to rapidly change as the market condition changes [5].

Modern service-oriented software applications, like those envisioned in cloud
computing scenarios, are increasingly reliant on business processes built from
multiple distributed software services that must be suitably composed to
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meet some specified functional and non functional requirements. These service-
oriented applications are often embedded in dynamic contexts, where require-
ments, environment assumptions, and usage profiles continuously change. Ergo,
a key requirement for software is becoming the capability to adapt its behavior
dynamically, in order to keep providing the required quality of service (QoS).
Without adaptation, an application is prone to degrade performance because of
faulty components, messages lost between services or delays due to an increas-
ing number of users. Using adaptation, the application can change, for example,
some of the services it uses or its overall service composition [2,3,9]. However,
guaranteeing software adaptability can influence other quality attributes such
as performance, reliability or maintainability and in the worst case, improving
the adaptability of the system could decrease other quality attributes. A key
challenge for the software engineering community is therefore how to efficiently
and effectively manage such dynamic service compositions while guaranteeing
QoS. Within this context, software metrics to quantify the adaptability of a
business process1 in orchestrating distributed services are needed in conjunction
with techniques for evaluating other system quality attributes, like availability,
reliability, performance, cost, etc. In [11], a set of software adaptability metrics
are defined at the architectural level of a service-oriented software application
to quantify the adaptability of a static assembly (or architecture) of service-
oriented components. An approach for evaluating tradeoffs between the system
adaptability and other system quality attributes, is also presented to fulfill also
global QoS.

This paper introduces a new set of metrics that complement the previous ones
defined in [11] in order to quantify the adaptability of a service-oriented applica-
tion when services are composed dynamically trough a business process. Besides
the metrics that enable comparison of process-based service compositions, we
also studied a possible relationship between the business process adaptability
and the satisfiability of a given quality requirement. If such relationship exists,
then service compositions offering best trade-off, between adaptability and the
target requirement, can be chosen. This approach allow us to evaluate different
concrete business processes in order to select the one that best fits the quality
requirements. In this paper, we present the results of such a study by considering
availability as target quality. The architecture of a supporting tool and a case
study are also presented to exemplify the overall approach.

The remainder of this paper is organized as follows. Section 2 proposes a
set of metrics for quantifying SaaS adaptability at the business process level.
Section 3 presents our approach for relating adaptability and a single quality
attribute. Section 4 presents an example of service-oriented application used
to exemplify the proposed approach. Section 5 describes a a tool to automate
metrics calculation. Section 6 reviews the works related to our approach. Finally,
Section 7 concludes the paper.

1 Hereafter, we use the term “process adaptability” to denote the variability degree
of a process in selecting concrete services. This vision is different from the broader
concept of process adaptability in the context of self-adaptive systems [4,6,13].
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2 Business Process Adaptability Quantification

This section defines a set of metrics to quantify the adaptability of a business
process and its constituents. We adopt the OASIS BPEL (Business Process Exe-
cution Language)2 as the de facto standard to specify business processes and
realize them concretely. We assume the reader is familiar with BPEL constructs.

2.1 Process Activity Tree

For defining and computing metrics, we first introduce a tree-structure repre-
senting a BPEL process. Let p be the business process for a compound ser-
vice. We define the Process Activity Tree of p as the structure Tp = (Vp, Ep)
where Vp is the set of nodes representing the BPEL activities of p and Ep is the
set of edges representing the nesting relationships among the BPEL activities.
Specifically, an internal node represents a BPEL structured activity in the set
{sequence, switch, while, flow, pick}. Similarly, a leaf node is associated to a
BPEL atomic action in the set {invoke, assignment, receive, reply}.

Let n be the number of different elementary services si|i = 1, ..., n orches-
trated by a process p. For each invocation of an elementary service si (i.e., an
invoke leaf node), either in an asynchronous or synchronous manner, several
concrete services (or service instances) that have been defined as partners may
exist that match the description of si. We assume that all the instances available
for a service si are functionally compliant with it, i.e., each instance provides at
least all the capabilities provided by si and require at most all the capabilities
required by si. Instances of the same service may differ for QoS values (such as
cost and availability characteristics).

Fig. 1. Example of a BPEL activity tree

Figure 1 shows an example of BPEL tree for a compound service realized by
the orchestration of four elementary software services (n = 4). The activity tree

2 http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
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also shows the service instances available for each service invoked. We assume the
existence of n sets of “used” service instances UCi in the process p, where service
instances in each set UCi are the ones that provide si (UC1 = {C11, C12},
UC2 = {C21, C23}, UC3 = {C31, C32, C34} and UC4 = {C41}, in Fig. 1);
the existence of n sets of service instances Ci, each Ci includes the instances
that can provide si (C1 = UC1 , C2 = UC2 ∪ {C22}, C3 = UC3 ∪ {C32} and
C4 = UC4 ∪ {C42} in Fig. 1).

2.2 Process Adaptability Index

The proposed metric measures the adaptability of a business process in terms
of the average number of service choices made per each activity. We make the
assumption that the services orchestrated by the process are stateless. We post-
pone as future work the extension of such a metric for stateful services.

Process Adaptability Index (PAI). is a metric that quantifies the degree
of adaptability of a BPEL process definition. It measures the adaptability of a
process by relating the number of service instances used to make up the process
with the number of service instances that the most adaptable process would use:

PAI ∈ Q{0..1} | PAIp =
EAIroot(Tp)

EAIroot(Tmap)

where EAIroot(Tp) and EAIroot(Tmap) are, respectively, the Element Adapt-
ability Index (EAI) for the root of Tp and the one for the root of the activity
tree Tmap of the most adaptable process map.

The value of the metric PAI ranges between zero and one. A value of one
means that the process is using all existing instances for each service, and then
its adaptability is already to the maximum. A value close to zero means that
the market offers few choices to increase the process adaptability.

To complete the definition of the metric PAI, we define the adaptability index
for the nodes of the process activity tree. Starting from the root node of a process
activity tree, a recursive traversal calculates the EAI of every node depending
on the node type and handles a leaf node (at the bottom) as the base case.

Node invoke. The EAI index of a leaf node invoke for a service si can be
expressed mathematically as follow:

EAI ∈ IN | EAIinvoke si = |UCi|
where |UCi| denotes the number of concrete service instances used to provide
the service si. This index corresponds to the metric Absolute adaptability of
a service (AAS) defined in [11] that uses a natural number to quantify how
much adaptable a service is by counting the different alternatives to execute
the service (1 no adaptable, >1 adaptable), where the service adaptability
grows according to the number of concrete service instances able to provide
it. Referring to the example in Fig. 1, we observe that EAIinvoke s1 = 2,
EAIinvoke s2 = 3, EAIinvoke s3 = 2, and EAIinvoke s4 = 1.
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Node n in {assignment, receive, reply}. EAIn = 0
These node types are neutral w.r.t. the adaptability quantification. Referring
to the example in Fig. 1: EAIreceive = 0, EAIreply = 0, and EAIassign = 0.

Node flow. The flow construct provides a kind of parallelism of interaction
activities. The EAI index of a node flow can be expressed mathematically
as follow:

EAI ∈ Q+ | EAIflow =
Σm

j=1 EAIaj

m

where m is the number of child nodes and aj |j = 1, ...,m denotes the j-th
child activity within the scope of the flow node. Referring to the example in
Fig. 1:

EAIflow = EAIassign+EAIinvoke s2+EAIinvoke s3
3 = 0+2+3

3 = 1.67.

Node switch. The switch construct expresses conditional behavior. The EAI
index of a node switch can be expressed as:

EAI ∈ Q+ | EAIswitch =
m

Σ
j=1

pj · EAIaj

where m is the number of child nodes, aj |j = 1, ...,m denotes the j-th activity
in a conditional branch of the switch construct, and pj is the probability of
executing the activity aj . In our view, adaptability of interaction within
a switch construct is related to the probability of the occurrence of each
of its conditions. Thus, the EAI of a switch construct is calculated as the
summation of the probability of each condition occurrence multiplied with
the EAI of the interaction activity within that condition. At design time, we
assume that the probability of execution for branches is equivalent: pj = 1

m .
It must hold: pj ≥ 0 for all j = 1 . . . m and

∑m
j=1 pj = 1. At runtime, the

probability of execution for every single conditional branch may differ from
the other branches. These probabilities can be estimated from the operational
profile3 [10].
A node if -else is considered equivalent to a node switch with two conditional
branches. Referring to the example in Fig. 1, we observe at design time:

EAIif−else = 0.5 · EAIreply + 0.5 · EAIinvoke s4 = 0.5 · 0 + 0.5 · 1 = 0.5

Node pick. The construct pick is used to wait for the occurrence of one of a
set of events (message events or alarm events) and then perform an activity
associated with the event. The semantics of a pick construct is similar to
that of a switch. The EAI index of a node pick is therefore:

EAI ∈ Q+ | EAIpick =
m

Σ
j=1

pj · EAIaj

3 Environmental data about the business process collected from domain experts.
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where m is the number of child nodes, aj |j = 1, ...,m denotes the j-th activity
associated with an event ej (a message event or an alarm event), and pj is
the probability that event ej occurs. Also in this case, at design time, we
assume pj = 1

m as for a switch construct.

Node while. The EAI index of a node while is:

EAI ∈ Q+ | EAIwhile =
N · Σm

j=1 EAIaj

m

where m is the number of child nodes, aj |j = 1, ...,m denotes the j-th child
activity, and N is the number of loop iterations. At design time, we are not
able to calculate N exactly, however, it can be estimated with the aid of an
operational profile.

Node sequence. The sequence construct is used to define activities that need
to be performed in a sequential order. The EAI index of a node sequence is:

EAI ∈ Q+ | EAIsequence =
Σm

j=1 EAIaj

m

where m is the number of child nodes, aj |j = 1, ...,m denotes the j-th child
activity executed sequentially within the sequence node.
Referring to the example in Fig. 1:

EAIsequence = EAIreceive·EAIflow·EAIinvoke s3·EAIif−else

4 = 0+1.67+2+0.5
4 =

1.04.

Note that the sequence node in Fig. 1 is also the root of Tp. Therefore, it
results: EAIroot(Tp) = EAIsequence = 1.04. The EAI of the root of Tmap is
calculated in the same way by considering for each service si all available service
instances |Ci|. Referring to Fig. 1, EAIroot(Tmap) = 1, 33, and therefore:

PAIp =
EAIroot(Tp)

EAIroot(Tmap)
=

1.04
1.33

= 0.78

3 Relating Adaptability with a Quality of Service
Attribute

Software quality attributes can rarely be achieved in isolation. Most often, the
achievement of a quality attribute has an effect, positive or negative, on the
achievement of others [1]. Process adaptability is not an exception, and it can
influence quality attributes such as performance, reliability or maintainability.
Therefore, an increment in the process adaptability can cause an improvement
in some of them, but also a damage.

For example, given a performance response time requirement, it may happen
that more adaptability produces better performance, since the expected fastest
service instance can be chosen at each invocation moment. However, it can also
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happen that all service instances are always fast, and then the time necessary
to compute decision of which service instance to use creates a delay that results
in a lower performance than a non-adaptive system.

The same happens for the probability of an execution of the business process
to succeed. Although at first sight it may seem that having more alternative
service instances to execute a concrete service will always improve its probability
to succeed, we can also argue that the implementation of the required adaptation
manager adds a complexity in the software, then it creates an additional point
of failure and can damage the overall process quality.

From these examples, as in [11], we cannot assume that a certain quality
attribute is always in the same type of relationship with the adaptability, hence
it is needed a system analysis to identify their type of relation.

Quality Computation: In this work we focus on the quality attribute of “prob-
ability of a process execution to succeed its execution”, called Qual in the fol-
lowing. For computing Qual value in a given process, we use basic formula of
availability evaluation.

We assume that leaf nodes in the process activity tree of type assignment,
receive, reply never fail their execution, then their Qual is 1. We assume as
known the Qual value of service instances Cij, called QualCij .

Then, the Qual of a leaf node invoke is the probability of any of the service
instances that receive such invocation to succeed an execution, whose formula
is: Qualinvoke si = 1 − ∏j=EAIinvoke si

j=1 (1 − QualCij)
The quality of nodes switch, pick, is calculated as:

Qualn =
m∑

j=1

pj · Qualj ∀n ∈ {switch, pick}

while, the quality of nodes flow, sequence and while is calculated as:

Qualn =
m∏

j=1

Qual
Nj

j ∀n ∈ {flow, sequence, while}

where m is the number of child nodes and aj |j = 1, ...,m denotes the j -th
child activity within the scope of the node; pj is the probability of executing
child node j; and Nj is the number of times that child node j is executed in
iteration (it is straightforward to see that this value is higher than 1 for nodes
of type while and equal to 1 for the rest of types).

Therefore, system Qual is recursively computed in the process activity tree
and it is equivalent to the quality value calculated for its root node Qualroot.

4 A Case Study: The University Student Enrollment

This section presents a more realistic example to illustrate the proposed metrics.
The example is a web service application used by students to register for an
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Fig. 2. Student enrollment BPEL process

academic year in the University. Figure 2 sketches the BPEL process for student
enrollment as modeled through the Eclipse BPEL Designer plug-in4.

At first, a student registers and introduces his/her proposal (a list of courses
to take) in the web system. Then, the proposal is sent to a web service (an
application logic layer) to check if it fulfills the University rules. In case of reject,
the registration process interacts with a mail web service to send an email to the
student with information about the registration failure. If, instead, the proposal
fulfills the University rules, the process interacts with two bank web services
(known at design time) to proceed with the payment. To this purpose, the process
asynchronously calls back the student with the bank transaction costs, thus

4 Eclipse BPEL Designer Plug-in: http://www.eclipse.org/bpel/

http://www.eclipse.org/bpel/
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allowing the student to choose the bank service with the lowest costs. Once
the bank has been selected by the student, and the bank payment has been
predisposed, the process invokes a web mail service (not known at design time) to
send an email to the student with the information of the successful registration.
For both proposals approve or reject cases, a presentation layer with a web-GUI
and mechanisms to interact with the student sends a message back to student
with information about the registration outcome.

For the student enrollment BPEL process, Table 1 relates the abstract ser-
vices (ID and description) invoked by the process with the corresponding con-
crete service instances (ID and description) available as internal or external ser-
vice components. Figure 3 shows a possible process activity tree for the student
enrollment process. This process configuration has been obtained by selecting
some concrete service instances. The activity tree of the corresponding most
adaptable process for the student enrollment example is similar and takes into
account all the service instances reported in Table 1. Note that labels nk in
Fig. 3 enumerate the internal nodes.

Table 1. Abstract and concrete services for the student enrollment process

Service Concrete service

s1 Check student requirements
C11 Application Logic 1
C12 Application Logic 2

s2 Retrieve payment cost
C21 Mobile cost provider
C22 Email cost provider

s3 Select preferred bank C31 Bank selection (callback handler)

s4 Pay for selected bank

C41 PayPal payment provider
C42 NFC payment provider
C43 Mobile payment provider
C44 Credit card payment provider

s5 Send email
C51 Local email provider
C52 Email provider 1
C53 Email provider 2

Table 2 shows the value of the metrics (the EAI values for the internal nodes
and the final PAI) for the process configuration in Fig. 3. The given process con-
figuration exhibits a good adaptability since it differs from the most adaptable
one by 7%.

Adaptability and Quality Measures at Work. At present, the student
enrollment process invokes service instance C11 for s1. With the information
returned it has been observed that only 2.5% of students do not satisfy the
University requirements and an email rejection is sent by C51. The interaction
with s2 of the two different banking web services is done by invoking service
instance C21. The interaction with the bank payment process is done by the
invocation of one of the service instances C41, C42, C43 or C44. The final
interaction with email service is carried out again by C51. The observed quality
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Fig. 3. A process activity tree for the student enrollment process

Table 2. The metrics values for the given process configuration

Activity tree Tp Activity tree Tmap

EAIn7 = 0+2
2

= 1 EAIn7 = 0+2
2

= 1

EAIn8 = 0+2
2

= 1 EAIn8 = 0+2
2

= 1

EAIn5 = 1+1
2

= 1 EAIn5 = 1+1
2

= 1

EAIn6 = 0.5 · 3 + 0.5 · 3 = 3 EAIn6 = 0.5 · 4 + 0.5 · 4 = 4

EAIn3 = 1+0+1+3+2+0
6

= 1.17 EAIn3 = 1+0+1+4+3+0
6

= 1.5

EAIn4 = 0+2+0
3

= 0.67 EAIn4 = 0+3+0
3

= 1

EAIn2 = 0.5 · 1.17 + 0.5 · 0.67 = 0.92 EAIn2 = 0.5 · 1.5 + 0.5 · 1 = 1.25

EAIn1 = 0+0+2+0.92+0
5

= 0.58 EAIn1 = 0+0+2+1.25+0
5

= 0.65

PAIp =
EAIroot(Tp)

EAIroot(Tmap)
= 0.58

0.65
= 0.89

of these service instances in terms of the probability of executing a request to
their offered service without errors is shown in the higher part of Table 3. We
assume that the rest of nodes in the process activity tree that are not of invoke
type can never fail. Therefore, the calculated quality of this process in terms
of the probability of executing a complete request for enrollment without errors
(Qual) is computed according to formulas presented in Section 3 and is 0.86377.
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Table 3. Quality of service instance

Instance prob. fail Instance prob. fail Instance prob. fail Instance prob. fail

C11 0.975 C21 0.95 C31 0.999 C41 0.9

C42 0.8 C43 0.7 C44 0.99 C51 0.98

C12 0.99 C22 0.98 C52 0.98 C53 0.99

Table 4. Processes adaptability and expected quality values

Adjusted Qual
Service instances Qual EAI PAI Qual · f(EAI, 0.01)

Initial process 0.8637 1.0303 0.7066 0.8635

ALL ten service instances 0.9967 1.4582 1 0.9921

all instances but C12 0.9721 1.2582 0.8628 0.9695

all instances but C52 0.9965 1.4443 0.9904 0.9921

all instances but C53 0.9963 1.4443 0.9904 0.9919

all instances but C52 and C53 0.9768 1.4303 0.9808 0.9726

all instances but C22 0.9037 1.2442 0.8532 0.9015

When a request for enrollment fails its execution, the student has to go to the
secretariat to personally request his/her enrollment.

The University wants to improve the application, since it has 30,000 students
but the secretary service can manually manage 200 of them without saturating.
Then, it is required a Qual ≥ 29700/30000 = 0.99. The IT service has considered
the local deployment of a new service instance (called C12) that has been recently
developed and offers an alternative for the execution of the application logic.
For s2, it would be possible to use a service instance C22. Regarding the email
service, the University considers the utilization of two other relays (called C52
and C53) to use in the moment when the local relay is not working properly
(e.g., unreachable or saturated being rejecting connections). The quality of these
existing service instances is shown in the lower part of Table 3.

Therefore, the current business process can use service instances C11, C21,
C31, C41, C42, C43, C44 and C51; while the most adaptable process would
be able to use also services C12, C22, C52 and C53. The implementation of
an adaptive service-oriented application through composition of heterogeneous
services – even if they provide the same functionality – will require some pro-
gramming effort from the IT department to make interoperable their interfaces;
i.e., the service invocation is not completely seamless in this case. For this rea-
son, the IT department would like to know the business process that provides
enough Qual and uses the lowest level of adaptation. For calculating Qual we use
the formulae in Section 3 while the proposed EAI metrics are used for calculat-
ing the quantity of adaptability of each candidate business process. Using EAI
metric and an estimation of the bug inclusion rate when implementing auto-
nomic manager of adaptive processes, we can estimate the expected quality of
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the resulting adaptive process. The more adaptive a node in the BPEL process
is, the higher its likelihood to include a bug created during its implementation.
The estimated bug inclusion rate is 0.01, meaning that for each service instance
that adds adaptability, the probability of failure during instance decision process
increases by 1%. We do not go in detail calculation of the success rate of the
autonomic manager execution and we call it f(EAI, 0.01), just assuming that it
is a non increasing function for EAI. By calculating the PAI of each candidate
process, we can give an evaluation of the mean adaptability of each element
in the process with respect to the most adaptable one and, in consequence, an
insight of the relative implementation effort that the IT department saves by
not deciding directly in favor of the most adaptable business process.

Table 4 shows the results of the metrics EAI, PAI, Qual and Adjusted Qual for
some of the evaluated processes. Among the processes that satisfy the execution
success requirement, the one composed by all service instances but C53 is the
one that showed highest Ajusted Qual lowest EAI value.

5 Implementation and Tool Support

To automatically calculate the proposed metrics, we adopted SOLAR [14] (SOft-
ware quaLities and Adaptability Relationships), a tool developed in [11] for
adaptability quantification of a software architecture. We extended SOLAR to
include the new metrics defined at the business process level and validate it on
the case study presented previously. The implementation units of this SOLAR
extension, called B-SOLAR (Business SOLAR) are shown in Fig. 4.

First (phase 1 in Fig. 4), the user must provide manually an input file
settings.xml containing the names of two XML input files used by SOLAR.
One input XML file is the conventional input read by SOLAR through the soft-
ware module Components and services Parser (see phase 2 in Fig. 4). This
input file contains the description of the software architecture comprising com-
ponents and connectors. This same input is also used by B-SOLAR (see phase
3 in Fig. 4) to determine the relation between abstract services and concrete
service instances. This information is stored in an hash table for a faster access
during the metric computation.

The second input file is read by B-SOLAR trough the Business Process
Parser (see phase 4 in Fig. 4). This file is the BPEL XML file containing (among
other things) the description of the considered business process. From this file
a process activity tree is created (phase 5 in Fig. 4). Through a combinatorial
algorithm, the various combinations that can be taken of the service concrete
instances of a particular service type are generated (phase 6 in Fig. 4). Each
combination generated is then associated with the process activity tree and the
metrics PAI and EAI are then computed according to the approach presented
in Sect. 2 (phase 7 in Fig. 4). The results of such evaluation are finally saved
(phase 8 in Fig. 4) in an output XML file through the module Output writer.

In order to enable the B-SOLAR tool in a cloud context, we added to B-
SOLAR a further parser (phase 2′ in Fig. 4) that is able to accept as input



122 R. Mirandola et al.

a TOSCA-based5 description of a cloud-based software application (the SaaS
layer only) and transforms it into the internal C&C view description used by
SOLAR for representing software architectures. For the dynamic aspects, namely
the TOSCA plans defined as process models, TOSCA specification relies on
existing languages like BPMN or BPEL. We assume, therefore, TOSCA plans
are provided using BPEL as supported by B-SOLAR.

Fig. 4. B-SOLAR tool architecture

6 Related Work

In the following we briefly review papers dealing with metrics and approaches
for adaptability and evolution of business processes. An extensive related work
about metrics for system adaptability applicable at architectural level can be
found in [11].

In software engineering, many approaches have been proposed to support
the adaptability and evolution of business processes (such as [12], [7], to name a
few). In these approaches process adaptability is conceived differently from the
vision we take in this paper. Indeed, we quantify the variability degree of BPEL
processes to adapt their bindings to concrete service instances during their life
cycles. Instead, in the works mentioned above, process adaptability is intended in
the broadest sense of self-adaptive systems [4,6,13]. They assume that business

5 The OASIS Topology and Orchestration Specification for Cloud Applications.
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
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process specification languages are extended with special constructs and self-
adaptation plug-ins (e.g., for monitoring or diagnosis so that the plug-in can
decide if the adaptation is needed though a feedback adaptation control loop)
that allow the business process specification to change at runtime without the
need to redeploy it and lose the ongoing transactions.

In [8], the authors propose an approach for quantifying the degree of struc-
tural adaptability of BPMN business processes using software metrics. They
aim at quantifying how easily a process can be adapted to a different form by
replacing combinations of BPMN constructs with other ones having the same
runtime semantics. Such a degree can be helpful for quality assessment during
development or decision support during migration. In such a work, yet process
adaptability is conceived differently from our vision. The author considers adapt-
ability as sub-characteristic of the portability quality, i.e. the degree to which a
process can be adapted in order to be executed in a different execution platform.

7 Conclusions and Future Work

BPEL processes are workflow-oriented service compositions for creating service-
oriented applications. Rapidly changing environmental and market conditions
require flexible BPEL processes that adapt their bindings to concrete services
during their life cycles.

In this paper, we have extended the set of metrics presented in [11] that
quantify the software adaptability at architectural level with metrics that quan-
tify the software adaptability at the business process level. These metrics allow
us to quantitatively evaluate and compare different service-oriented applications
in terms of architectural and behavioral adaptability and quality requirements.
The approach can help software architects to find architectures and business
processes satisfying all system quality requirements. The software architect may
applies the approach when changes in the execution context force to change the
service instances of the business process for satisfying quality requirements. To
automate the analysis we have extended the SOLAR tool.

At present we are working on testing the B-SOLAR tool by designing several
experiments from with real-size service-oriented applications. In particular, we
are looking for a test-bed in a cloud computing scenario. We are also working to
overcome some limitations. One limitation is that it is not possible to list and
program all variability of service instances at design time. The generation of all
possible process activity trees (or process configurations) for an input business
process should, instead, carried out at run-time through a web service discovery
mechanism.
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Abstract. In this paper, we introduce a formal model of the availabil-
ity, budget compliance and sustainability of istributed services, where
service sustainability is a new concept which arises as the composition
of service availability and budget compliance. The model formalizes a
distributed platform for monitoring the above service characteristics in
terms of a parallel composition of task automata, where dynamically gen-
erated tasks model asynchronous events with deadlines. The main result
of this paper is a formal model to optimize and reason about service
characteristics through monitoring. In particular, we use schedulability
analysis of the underlying timed automata to optimize and guarantee
service sustainability.

Keywords: Runtime monitoring · Service availability · Budget compli-
ance · Service sustainability · Distributed architecture · Cloud comput-
ing · Service Level Agreement

1 Introduction

Cloud computing provides the elastic technologies for virtualization. Through
virtualization, software itself can be offered as a service (Software as a Service,
SaaS). One of the aims of SaaS is to allow service providers to offer reliable
software services while scaling up and down allocated resources based on their
availability, budget, service throughput and the Service Level Agreements (SLA).
Thus, it becomes essential that virtualization technologies facilitate elasticity in
a way that enables business owners to rapidly evolve their systems to meet their
customer requirements and expectations.

The fundamental technical challenge to a SaaS offering is maintaining the
quality of service (QoS) promised by its SLA. In SaaS, providers must ensure a
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consistent QoS in a dynamic virtualized environment with variable usage pat-
terns. Specifically, virtualized environments such as the cloud provide elasticity
in resource allocation, but they often do not offer an SLA that can guarantee
constant resource availability. As a result, SaaS providers are required to react
to resource availability at runtime. Furthermore, by offering a 24/7 software ser-
vice, SaaS providers must be able to react to certain service usage patterns, such
as an increase in throughput to ensure the SLA is maintained.

Runtime monitoring [4,20] is a dynamic analysis approach based on extract-
ing relevant information about the execution. Runtime monitoring may be
employed to collect statistics about the service usage over time, and to detect
and react to service behavior. This latter ability is fundamental in the SaaS
approach to guarantee the SLA of a service and is the focus of this paper.

The monitoring model that is presented in this paper is designed to observe
in real-time certain service characteristics and react to them to ensure the evolu-
tion of the system towards its SLA. Asynchronous communication is an essential
feature of a monitoring model in a distributed context. Asynchronous communi-
cation accomplishes non-intrusive observations of the service runtime. Further,
the monitoring model is expected to operate according to certain real-time con-
straints specified by the SLA of the service. Satisfying the real-time constraints
is the main challenge in a distributed monitoring model.

In this paper, we formalize service availability and budget compliance in a
distributed deployment environment. This formalization is based on high-level
task automata models [1,9,13]. The automata capture the real-time evolution
of the resources provided by a distributed deployment platform and the above
two main service characteristics. These task automata represent the real-time
generation of the asynchronous events extended with deadlines [3,22] by the
monitoring platform for managing resources (i.e. allocation or deallocation). The
main result of this paper is a formal model to optimize and reason about the
above service characteristics through monitoring. In particular, the schedulabil-
ity of the underlying timed automata implies service availability and budget
compliance. Furthermore, we introduce a composition of service availability and
budget compliance which captures service sustainability. We show that service
sustainability presents a multi-objective optimization problem.

2 Related Work

Vast research work present different aspects of runtime monitoring. We focus on
those that present a line of research for distributed deployment of services.

MONINA [12] is a DSL with a monitoring architecture which supports certain
mathematical optimization techniques. A prototype implementation is available.
Accurately capturing the behavior of an in-production legacy system coded in a
conventional language seems challenging: it requires developing MONINA com-
ponents, which generate events at a specified fixed rate, there are no control
structures (if-else, loops), the data types that can be used in events are pre-
defined, and there are no OO-features. We use ABS [15], an executable mod-
eling language that supports all of these features and offers a wide range of
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tool-supported analyses [5,25]. The mapping from ABS to timed automata [1]
allows to exploit the state-of-the-art tools for timed automata, in particular for
reasoning about real-time properties (and, as we show, SLAs using schedulabil-
ity analysis [9]). MONINA offers two pre-defined parameters that can be used
in monitoring to adapt the system: cost and capacity. Our service metric func-
tion generalizes this to arbitrary user-defined parameters, including cost and
capacity.

Hogben and Pannetrat examine in [11] the challenges of defining and measur-
ing availability to support real-world service comparison and dispute resolution
through SLAs. They show how two examples of real-world SLAs would lead one
service provider to report 0% availability while another would report 100% for
the same system state history but using a different period of time. The trans-
parency that the authors attempt to reach is addressed in our work by the
concept of monitoring window and expectation tolerance in Section 4. Addition-
ally, the authors take a continuous time approach contrasted with ours that uses
discrete time advancements. Similarly, they model the property of availability
using a two-state model.

The following research works provide a language or a framework that allows
to formalize service level agreements (SLA). However, they do not study how
such SLAs can be used to monitor the service and evolve it as necessary.
WSLA [18] introduces a framework to define and break down customer agree-
ments into a technical description of SLAs and terms to be monitored. In [21], a
method is proposed to translate the specification of SLA into a technical domain
directed in SLA@SOI EU project. In the same project, [8] defines terms such
as availability, accessibility and throughput as notions of SLA, however, the for-
mal semantics and properties of the notions are not investigated. In [6], authors
describe how they introduce a function how to decompose SLA terms into mea-
surable factors and how to profile them. Timed automata is used in [24] to detect
violations of SLA and formalize them.

Johnsen [16] introduce “deployment components” using Real-Time ABS [3].
A deployment component enables an application to acquire and release resources
on-demand based on a QoS specification of the application. A deployment com-
ponent is a high level abstraction of a resource that promotes an application to a
resource-aware level of programming. Our work is distinguished by the fact that
we separate the monitors from the application (service) themselves. We argue
that we aim to design the monitoring model to be as non-intrusive as possible
to the service runtime. Thus, we do not deploy the monitors inside the service
runtime.

In Quanticol EU project1, authors in [7] and [10] use statistical approaches
to observe and guarantee service level agreements for public transportation. We
also present that service characteristics can be composed together. This means
that evolving a system based on SLAs turns into a multi-object optimization
problem. In addition, in COMPASS EU project2, CML [26] defines a formal

1 Quanticol EU project with no. 600708: http://quanticol.eu/
2 COMPASS EU project with no. 287829: http://www.compass-research.eu/

http://quanticol.eu/
http://www.compass-research.eu/
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language to model systems of systems and the contracts between them. CML
studies certain properties of the model and their applications. CML is used in
the context of a Robotics technology to model and ensure how emergency sensors
should react and behave according to the SLAs defined for them. Our approach is
similar to provide a generic model for service characteristics definition, however,
we utilize timed and task automata.

3 SDL Fredhopper Cloud Services

In this section, we introduce a running example in the context of SDL Fred-
hopper. We use the example in different parts of the paper and also in the
experiments.

SDL Fredhopper develops the Fredhopper Cloud Services to offer search and
targeting facilities on a large product database to e-Commerce companies as ser-
vices (SaaS) over the cloud computing infrastructure (IaaS). Fredhopper Cloud
Services provides several SaaS offerings on the cloud. These services are exposed
at endpoints. In practice these endpoints typically are implemented to accept
connections over HTTP. For example, one of the services offered by these end-
points is the Fredhopper Query API, which allows users to query over their
product catalog via full text search3 and faceted navigation4.

A customer of SDL Fredhopper using Query API owns a single HTTP end-
point to use for search and other operations. However, internally, a number of
resources (virtual machines) are used to deliver Query API for the customer. The
resources used for a customer are managed by a load balancer. In this model of
deployment, each resource is launched to serve one instance of Query API; i.e.
resources are not shared among customers.

When a customer signs a contract with SDL Fredhopper, there is a clause
in the contract that describes the minimal QoS levels of the Query API. For
example, we have a notion of query per second (QPS) that defines the number
of completed queries per second for a customer. An agreement is a bound on the
expected QPS and forms the basis of many decisions (technical or legal) there-
after. The agreement is used by the operations team to set up an environment
for the customer which includes the necessary resources described above. The
agreement is additionally used by the support team to manage communications
with the customer during the lifetime of the service for the customer.

Maintaining the services for more than 250 customers on more than 1000
servers is not an easy operation task5. Thus, to ensure the agreements in a
customer’s contract:

– The operation team maintains a monitoring platform to get notifications on
the current metrics.

3 http://en.wikipedia.org/wiki/Full text search
4 http://en.wikipedia.org/wiki/Faceted navigation
5 Figures are indication of complexity and scale. Detailed confidential information may

be shared upon official request.

http://en.wikipedia.org/wiki/Full_text_search
http://en.wikipedia.org/wiki/Faceted_navigation
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– The operation team performs manual intervention to ensure that sufficient
resources are available for a customer (launching or terminating).

– The monitoring platform depends on human reaction.
– The cost that is spent for a customer on the basis of safety can be optimized.

In this paper, we use the notion of QPS as an example in the concepts
that are presented in this research. We use the example here to demonstrate
how the model that is proposed in this research can address the issues above
and alleviate the manual work with automation. The manual life cycle depends
on the domain-specific and contextual knowledge of the operations team for
every customer service that is maintained in the deployment environment. This
is labor-intensive as the operations team stands by 24 × 7. In such a manual
approach, the business is forced to over-spend to ensure service level agreements
for customers.

4 Distributed Monitoring Model

We introduce a distributed monitoring platform and its components and discuss
some underlying assumptions and definitions. Further, we define the notion of
service availability and service budget compliance. In the deployment environ-
ment (e.g., “the cloud”), every server from the IaaS provider is used for a single
service of a customer, such as the Query Service API for a customer of SDL
Fredhopper (c.f. Section 3). Typically, multiple servers are allocated to a single
customer. The number of servers allocated for a customer is not visible to the
customer. The customer uses a single endpoint - in the load balancer layer - to
access all their services.

The ultimate goal is to maintain the environment in such a way that cus-
tomers and their end users experience the delivered services up to their expec-
tations while minimizing the cost of the system. The first objective can be
addressed by adding resources; however, this conflicts with the second goal since
it increases the cost of the environment for the customer. In this section, we
formalize the above intuitive notions as service availability and service budget
compliance.

We then develop a distributed monitoring platform that aims to optimize
these service characteristics in a deployment environment. The monitoring plat-
form works in two cyclic phases: observation and reaction. The observation phase
takes measurements on services in the deployment environment. Subsequently,
the corresponding levels of the service characteristics are calculated. In the reac-
tion phase, if needed, a platform API is utilized to make the necessary changes
to the deployment environment (e.g. adjust the number of allocated resources)
to optimize the service characteristics. The monitoring platform builds on top
of a real-time extension of the actor-based language ABS [15]. To ensure non-
intrusiveness of the monitor with the running service, each monitor is an active
object (actor) running on a separate resource from that which runs the service
itself, and the components of the monitoring platform communicate through
asynchronous messages with deadlines [16].
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Below, we discuss assumptions and basic oncepts that will be used in the
analysis of the formal properties of the monitoring platform and corresponding
theorems. We assume that the external infrastructure provider has an unlimited
number of resources. Further, we assume that all resources are of the same type;
i.e. they have the same computing power, memory, and IO capacity. Finally, we
assume that every resource is initialized within at most ti amount of time.

In our framework time T is a universally shared clock based on the NTP6

that is used by all elements of the system in the same way. T is discrete. We fix
that the unit of time is milliseconds. This level of granularity of time unit means
that between two consecutive milliseconds, the system is not observable. For
example, we use the UTC time standard for all services, monitors and platform
API. We refer to the current time by tc.

We denote by r a resource which provides computational power and stor-
age and by s a general abstraction of a service in the deployment environment.
A service exposes an API that is accessible through a delivery layer, such as
HTTP. In our example, a service is the Query API (c.f. Section 3) that is acces-
sible through a single HTTP endpoint.

In our framework, monitoring
platform P is responsible for
(de-)allocation of resources for com-
putation or storage. We abstract from
a specific implementation of the mon-
itoring platform P through an API in
Listing 1.There is only one instance
of P available. In this paper, P inter-
nally uses an external infrastructure
provisioning API to provide resources
(e.g. AWS EC2). The term “platform” is interchangeably used for monitoring in
this paper. The platform provides a method getState(Service s) which returns the
number of resources allocated to the given service s at time tc.

We use monitoring to observe the external behavior of a service. We formal-
ize the external behavior of a service with its service-level agreement (SLA).
An SLA is a contract between the customer (service consumer) and the ser-
vice provider which defines (among other things) the minimal quality of the
offered service, and the compensation if this minimal level is not reached. To for-
mally analyze an SLA, we introduce the notion of a service metric function. We
make basic measurements of the service externally in a given monitoring window
(a duration). The service metric function aggregates the basic measurements
into a single number that indicates the quality of a certain service characteristic
(higher numbers are better).

Basic measurement μ(s, r, t) is a function that produces a real number of a
single monitoring check on a resource r allocated to service s at some time t.

6 https://tools.ietf.org/html/rfc1305

https://tools.ietf.org/html/rfc1305
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For example, for SDL Fredhopper cloud services, a basic measurement is the
number of completed queries at the current time.

Service Metric fs is a function that aggregates a sequence of basic non-
negative measurements to a single non-negative real value: fs :

⋃
n Rn → R.

For example, for SDL Fredhopper cloud services, the service metric function fs

calculates the average number of queries per second (QPS) given a list of basic
measurements.

Monitoring Window is a duration of time τ throughout which basic measure-
ments for a service are taken.

Monitoring Measurement is a function that aggregates the basic measure-
ments for a service over its resources in the last monitoring window. The last
monitoring window is defined as [tc − τ, tc]. To produce the monitoring measure-
ment, fs is applied. Formally:

μ(s, r, τ) = fs

(〈μi(s, r, t)〉∞
i=0

)
where t ∈ [tc − τ, tc]

in which μi(s, r, t) is the i-th basic measurement of services s on resource r at
time t where t ∈ [tc − τ, tc].

Definition 1 (Service Availability α(s, τ, tc)). First, we need a few auxiliary
definitions before we can define service availability.

Service Capacity κσ(s, τ) =
∑

r∈σ(s) μ(s, r, τ) denotes the capability of ser-
vice s that is the aggregated monitoring measurements of its resources over the
monitoring window τ and σ(s) is the number of allocated resources to service s.

Agreement Expectation E(s, τ, tc) is the minimum number of requests that a
customer expects to complete in a monitoring window τ . The agreement expec-
tation depends on the current time tc because the expectation may change over
time. For example, SDL Fredhopper customers expect a different QPS during
Christmas.

We define the availability of a service α(s, τ, tc) in every monitoring window
τ as:

α(s, τ, tc) =
κσ(s, τ)

E(s, τ, tc)

Capacity Tolerance εα(s, τ)) ∈ [0, 1] defines how much κσ(s, τ) can deviate
from E(s, τ, tc) in every time span of duration τ .

Service Guarantee Time tG is the duration within which a customer expects
service availability reaches an acceptable value after a violation. Typically, tG is
an input parameter from the customer’s contract.

Example 1. Intuitively, α(s, τ, tc) presents the actual capability of a service
s over a time period τ compared to the expectation on the service E(s, τ). For
values α(s, τ, tc) � 1−εα(s, τ)), the resource for service s are at “under-capacity”
while for values α(s, τ, tc) � 1 + εα(s, τ)), there is “over-capacity”. The goal is
optimize α(s, τ, tc) towards a value of 1.

For example, we expect a query service to be able to complete 10 queries
per second. We define the monitoring window τ = 5 minutes; thus, E(s, τ, tc) =
10×60×5 = 3000. Suppose we allocate only one resource to the service, measure
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the service during a single monitoring window τ and find μ(s, r, τ) = 2900. Then
α(s, τ, tc) = 2900

3000 = 0.966. If we have εα(s, τ)) = 0.03, this means that service s
is under-capacity because α(s, τ, tc) < 1 − εα.

Definition 2 (Budget Compliance β(s, τ)). We first provide a few auxiliary
definitions.

Resource Cost AC(r, τ) ∈ R+ is the cost of resource r in a monitoring window
τ which is determined by a fixed resource cost per time unit.

Service Cost ACσ(s, τ) ∈ R+ is the cost of a service s in a monitoring window
τ and defined as ACσ(s, τ) =

∑
r∈σ(s) AC(r, τ).

Service Budget B(s, τ) specifies an upper bound of the expected cost of a
service in the time span τ . Intuitively B(s, τ) is the allowed budget that can be
spent for service s over the time span τ . The service budget is typically chosen
to be fixed over any time span τ .

We are now ready to define service budget compliance β(s, τ) that, intuitively,
represents how a service complies with its allocated budget:

β(s, τ) =
ACσ(s, τ)
B(s, τ)

Budget Tolerance εβ(s, τ) ∈ [0, 1] specifies how much the service cost AC(s, τ)
can deviate from B(s, τ) in every time span of duration τ .

Service Guarantee Time tG is similar to that defined for service availability.

Example 2. Assume every resource on the environment costs 1 (e.g. AC) per
hour. Suppose we set a budget of 1.5 per hour for every service, allocate one
resource to the service and define a monitoring window of τ = 5 minutes. Every
hour has 12 monitoring windows. This means that each resource costs AC(r, τ) =
1
12 ≈ 0.08 per monitoring window. Since there is only one resource, the service
cost is AC(s, τ) =

∑
r∈σ(s) AC(s, τ) ≈ 0.08 per monitoring window. On the other

hand, if we calculate the budget for one monitoring window, we have B(s, τ) =
1.5
12 = 0.125 per monitoring window. This yields budget compliance as β(s, τ) =
0.08
0.125 = 0.64.

The formal definitions of service availability and budget compliance pro-
vide a rigorous basis for automatic deployment of resource-aware services with
an appropriate quality of service, taking costs into account. This in particular
includes automated scaling up or down of the service with the help of moni-
toring checks that are installed for the service. The fundamental challenge in
ensuring service availability and budget compliance is that they have conflicting
objectives:

α(s, τ, tc) ↑ ⇐⇒ β(s, τ) ↓
Intuitively, if more resources are used to ensure the availability of a service;
then α(s, τ, tc) increases. However, at the same time, the service costs more; i.e.
budget compliance β(s, τ) decreases.
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5 Service Characteristics Verification

In this section, we use timed automata and task automata to model the behavior
of a monitoring platform P , the deployment environment E, and the monitoring
components for service availability α(s, τ, tc) and budget compliance β(s, τ). [13]
defines a task automata as an extension of timed automata in which each task
is a piece of executable program with (b, w, d): best/worst time and deadline of
the task. A task automata uses a scheduler for the tasks to schedule each task
with a location on a queue.

Modeling the elements of the monitoring platform is necessary to be able to
study certain properties of the system. The most important goal of a monitoring
platform is to enable the autonomous operation of a set of services according
to their SLA. Thus, it is essential how to analyze that the monitoring plat-
form can provide certain guarantees about the service and its SLA. In addi-
tion, it is important be able to verify the monitoring platform through model
checking and schedulability analysis. Using timed automata and task automata
facilitates model checking and verification through formal method tools such as
UPPAAL [2] supporting advanced methods such as state-space reduction [19].

We use task automata as defined in [9,13,14]. Task automata are an extension
of timed automata [1]. In addition, we design the automata for the monitoring
platform using the real-time extension of task automata presented in [13] p. 92 in
which the author presents a mapping from Real-Time ABS [16] to the equivalent
task automata.

A task type is a piece of executable program/code represented by a tuple
(b, w, d), where b and w respectively are the best-case and worst-case execution
times and d is the deadline. In a task automata, there are two types of transitions:
delay and discrete. A delay transition models the execution of a running task
by idling for other tasks. A discrete transition corresponds to the arrival of a
new task. When a new task is triggered, it is placed into a certain position in
the queue based on a scheduling policy [22,23]. Examples of a scheduling policy
are FIFO or EDF (earliest deadline first). The scheduling policy is modeled as
a timed automaton Sch. Every task has its own stop watch. The scheduler also
maintains a separate stop watch for each task to determine if a task misses its
deadline. All stop watches work at the same clock speed specified by T .

We design separate automata for each service s characteristic: service avail-
ability α(s, τ, tc) by an automata Mαs

and service budget compliance β(s, τ),
by an automata Mβs

. Each automaton is responsible for one goal: to optimize
the service characteristic. Mαs

aims to improve α(s, τ, tc) whereas Mβs
aims to

improve β(s, τ). Mαs
uses allocate to launch a new resource in the environment

and improve the service s. In contrast, Mβs
uses deallocate to terminate a resource

to decrease the cost of the service.
We use task automata to design Mαs

. Periodically, Mαs
checks whether the

service availability is within the thresholds, taking tolerance into account (Def-
inition 1). If the condition fails, Mαs

generates a task for monitoring platform
P to allocate a new resource to service s with a deadline of τ . We define the
period to be τ . We use the semantics of a task automata in [13] p. 92 in the
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transitions of the task automata. Figure Fig. 1a and Fig. 1b present Mαs
and Mβs

.
Both Mαs

and Mβs
share state with the monitoring platform P . The state keeps

the current number of resources for a service s that is denoted by σ(s). All timed
automata and task automata in the monitoring platform have shared access to
σ(s). In the automata, we use a conditional statement to check the service char-
acteristics α(s, τ, tc) or β(s, τ). If the condition fails, Mαs

requests P to allocate

a new resource to s and Mβs
requests P to deallocate a resource. In addition, Mαs

triggers a new task verifyα with deadline tG. Intuitively, this means the service
characteristic α(s, τ, tc) is verified to be within the expected thresholds after at
most tG time.

Fig. 1a: Mαs task automata for α(s, τ, tc) Fig. 1b: Mβs task automata for β(s, τ)

We use a separate task automaton for each service characteristic to verify the
SLA of the service after tG time. Respectively, Mα

V and Mβ
V execute tasks verifyα

and verifyβ (Figures Fig. 2a and Fig. 2b). Mα
V uses await to ensure the condition of

the SLA. In addition, the task is controlled by the scheduler using a deadline
that is specified as tG in the generated task verifyα(s, tG) in Mαs

. If tG passes
before the guard statement in await statement holds, it leads to a missed deadline.

Fig. 2a: Mα
V to execute verifyα Fig. 2b: Mβ

V to execute verifyβ

Both Mαs
and Mβs

are specific to one particular service s. A generalized
automaton for all services is obtained as their parallel composition:Mα = (‖s

Mαs
) and Mβ = (‖s Mβs

). The tasks generated by Mα and Mβ (triggered by
the calls to allocate and deallocate) are executed by the task automata for platform
MP .

We model monitoring platform P by a task automata MP . The task types
are {A(allocate), D(deallocate)}. For task type A in MP , we use (b, w, d) = (ti, τ, τ);
i.e. the best-case execution time of a task is the resource initialization time, the
worst-case is the length of the monitoring window, and the deadline is the length
of the monitoring window. For task type D in MP , we use (b, w, d) = (0, τ, τ). We
do not fix the scheduling policy Sch. The error state qerr in MP is defined when
either a deadline is missed or when the platform fails to provision a resource.
Thus the monitoring platform P contains the following ingredients:

MP = 〈MA ‖ MD ‖ Mα
V ‖ Mβ

V ,Sch, τ〉
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Fig. 3. MAs : Timed Automaton to execute task type allocate in MP

We define MAs as the timed automata to execute the tasks of type allocate in
MP . We use the model semantics presented in [13] p. 92 to design MAs . The
resulting automata is presented in Figure 3.

Then, we define MA in MP as: MA = ‖s MAs ; i.e. the composition of all timed
automata to execute a task allocate for some service s. Similarly, we design MDs

to execute task type deallocate in Figure 4. Therefore, we also have MD in MP as:
MD = ‖s MDs .

Fig. 4. MDs : Timed Automaton to execute task type deallocate in MP

For a particular service s, its automaton Mαs
regularly measures the service

characteristics and calculates α(s, τ, tc). When s is under-capacity, Mαs
requests

to allocate a new resource for s through monitoring platform P . This generates a
new task in MP that is executed by MAs . When the task completes, the state of
the service σ(s) is updated; strictly increased. Thus, in isolation, the combination
of Mαs

and MAs increase the value of service availability α(s, τ, tc) for service s
over time. Similarly, in isolation, the combination of Mβs

and MDs increase the
value of service budget compliance β(s, τ) for service s over time. Because in the
latter, deallocate is used to decrease the cost of the service and as such increases
β(s, τ).

In reality, resources might fail in the environment. The failure of a resource is
not and cannot be controlled by the monitoring platform P . However, the failure
of a resource affects the state of a service and its characteristics. Thus, we model
the environment, including failures, as an additional timed automata, ME . In
ME , in every monitoring window, there is a probability that some resources fail.
For example, we present a particular instance of ME in Figure 5. In this envi-
ronment, in every monitoring, an unspecified constant (c) number of resources
fail.

Fig. 5. An example behavior for ME

We define system automata [13] (p. 33, Definition 3.2.7) for each service
characteristic; Sα for α(s, τ, tc) and Sβ for β(s, τ):

Sα = Mα ‖ ME ‖ MP and Sβ = Mβ ‖ ME ‖ MP
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With the above automata that we designed for α(s, τ, tc) and β(s, τ), we are
now ready to present the main results.

Theorem 1. If the SLA for service s on α(s, τ, tc) is violated, either:

– Sα re-establishes the condition α(s, τ, tc) ≥ 1 − εα(s, τ) (thereby satisfying
the SLA) within tG time, or,

– there exists at least one task verifyα in Mα
V with a missed deadline.

Proof. At any given time in T :

– If α(s, τ, tc) ≥ 1−εα(s, τ), then the SLA for service availability α is satisfied.
– If the above condition does not hold, on every monitoring window τ , Mα

generates a new task allocate in MA. In addition, a new task verifyα is gener-
ated with a deadline tG. After a duration of tG, the await statement allows
Mα

V to complete the task verifyα only if the condition α(s, τ, tc) ≥ 1−εα(s, τ)
holds. If this is not the case, since tG has passed, the scheduler generates a
missed deadline (moving to its error state).

Theorem 2. If the SLA for service s on β(s, τ) is violated, either:

– Sβ re-establishes the condition β(s, τ) ≥ 1 − εβ(s, τ) (thereby satisfying the
SLA) within tG time, or,

– there exists at least one task verifyβ in Mβ
V with a missed deadline.

Proof. Similar to the proof of Theorem 1.

In practice, the guarantee of Sα and Sβ in isolation to eventually evolve the
system to satisfy the SLA is not enough. In reality, a service provider tries ensure
both simultaneously to reduce their cost of service delivery while ensuring the
delivered service is of the expectations agreed upon with the customer. However,
these goals conflict. When α(s, τ, tc) increases because of adding a new resource,
it means that service s costs more, hence β(s, τ) decreases. The same applies in
the other direction: increasing β(s, τ) negatively affects α(s, τ, tc).

To capture the combined behavior of service availability and budget compli-
ance, we compose them. We define service sustainability γ(s, τ) as the composi-
tion of α(s, τ, tc) and β(s, τ). We present the composition by system automata
Sγ as:

Sγ = Sα ‖ Sβ

Authors in [9] define that a task automata is schedulable if there exists no task
on the queue that misses its deadline. The next theorem presents the relationship
between schedulability analysis of service sustainability and satisfying its SLA.

Theorem 3. If Sγ is schedulable given input parameters (τ, ti, tG), then the
SLA for both service characteristics α(s, τ, tc) and β(s, τ) is satisfied within tG
time after a violation.
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Proof. When a violation of the SLA occurs in Sγ , either Sα or Sβ (or both) start
to evolve the service based on Theorems 1 and 2. Therefore, there exists at least
one task of verifyα or verifyβ with a deadline tG. Hence, if Sγ is schedulable, then
neither verifyα nor verifyβ miss their deadline. Thus, both Sα and Sβ are schedu-
lable. This means that both verifyα and verifyβ complete successfully. Therefore,
the SLA of the service is guaranteed within tG after a violation in Sγ .

Using the algorithm presented in Chapter 6 [13], we translate the above
task automata into traditional timed automata. This allows to leverage well-
established model checking techniques such as UPPAAL [2] to determine the
schedulability of Sγ . Moreover, the results of the schedulability analysis serves
as a method to optimize the input parameters of the monitoring model including
τ and tG.

6 Evaluation of the Monitoring Model

In this section, we evaluate the implementation of the monitoring model.
We set up an environment to evaluate how the monitoring evolves a service

according to its SLA. In the environment, a single instance of monitoring plat-
form is present to provide new resources as necessary. Every resource hosts only
one service. We define two customers in the environment. For both customers, we
deploy the same service, Fredhopper Query API. For every resource that hosts a
service, we set up a monitor that measures QPS and reports it to the platform.
Both customers run with the same SLA: the QPS expectation is E(s, τ, tc) = 10
and εα(s, τ, tc) = 0.1. We launch every customer service with only one resource.
Monitors observe the customer service and calculate the service availability of
every customer service α(s, τ, tc).

We run the environment setup for different monitoring windows τ ∈ {1, 5, 10}
(seconds). We fix the initialization time of a resource to ti = 2.5 seconds. We set
tG = 300 seconds; i.e. we verify the service after this time and evaluate if the
service is guaranteed based on its SLA.

Figure 6 plots the service availability α(s, τ, tc) over time with the different
monitoring windows. The following summarizes the behavior:

– As the monitoring window τ increases, the system converges with a slower
pace towards the expected α(s, τ, tc).

– When the monitoring window is chosen such that τ < ti, the evolution of
the system becomes non-deterministic.

– The setting τ < ti causes a missed deadline in verifyα because after a duration
of tG the service availability has not yet reached the expected value.
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Fig. 6. Evolving α(s, τ, tc) with different τ

Every monitoring measur-
ement is performed in a mon-
itoring window τ . Monitoring
measurements are aggregated
and calculated in every win-
dow and form the basis of
reactions necessary to evolve
the service to meet their
SLA. Thus, selection of an
appropriate monitoring win-
dow length τ is crucial, as we
also discussed how schedula-
bility analysis can be used to
optimize it. The authors in
[11] present that for the same
setup and deployment of services, measurements using different monitoring win-
dows yield to very different understanding of service properties such as service
availability. Therefore, it is essential to choose the value of τ such that monitor-
ing measurements do not lead to unrealistic understanding and inappropriate
reactions.

If τ < ti, Theorem 1 does not hold because every task allocate in MA misses
its deadline. Thus, it is essential that τ ≥ ti. Analogously, choosing monitoring
window as τ � 2 × ti also has a counter-productive effect on the service deploy-
ments. In a real setting, different services may use different types of resources.
In such a setting, the monitoring window should be chosen as the largest ti of
any resource type that is available in the platform: τ ≥ max(ti) ∀r ∈ P .

7 Future work

We continue to generalize the notion of the distributed service characteristics and
investigate how the composition of an arbitrary number of such properties can be
formalized and reasoned about. In the context of the ENVISAGE project, indus-
try partners define their service characteristics in this framework and monitor
the service evolution. Moreover, the work will be extended to generate parts of
the monitoring platform based on an input of different SLA formalizations such
as SLA	 [17]. Currently, we are integrating our automated monitoring infras-
tructure into the in-production SDL Fredhopper cloud services (cf. Section 3).

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)



Formal Verification of SLA via Distributed Monitoring 139

3. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tarifa, S.L.T.: User-defined
schedulers for real-time concurrent objects. Innovations in Systems and Software
Engineering 9(1), 29–43 (2013)

4. Bratanis, K., Dranidis, D., Simons, A.J.H.: Towards run-time monitoring of web
services conformance to business-level agreements. In: Bottaci, L., Fraser, G. (eds.)
TAIC PART 2010. LNCS, vol. 6303, pp. 203–206. Springer, Heidelberg (2010)
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Abstract. Heterogeneous search engines differ in the algorithms they
use and the domains they cover, thus there is no single search engine that
performs best in every circumstance. In order to obtain optimal search
results, it often makes sense to use more than one search engine. However,
appropriately merging results from different engines is challenging, i.e.
combining results in such a way that they reflect the ranking of results the
user would choose. In this paper, we propose an effective way to achieve
this for web services search which can be extended to cloud services and
be applied to big data. In contrast to “classical” search processed by con-
ventional text-based search engines, a more elaborated search request is
needed here. In addition to the result merging, we therefore present a
method to create a structured request for this specific task. The evalua-
tion of our proposed solution shows that it is satisfying in terms of both
result quality and performance.

1 Introduction

Search engines have been around for a few decades and not only provide access
to textual information, in other words digitalized data, but also to other types
of information sources and to functionality offered online, e.g. smart objects,
sensors and actuators around us. Moreover, the discoverable information can be
presented either in plain text formats (like contents on web pages or text files)
or in structured formats such as XML or RDF.

There is a plethora of search engines which differ in specialties and algo-
rithms. Each search engine has its own benefits and drawbacks. Therefore, if a
user wants to be sure to obtain the optimal result, he or she has to make multiple
queries on several search engines and integrate the results manually. Addition-
ally, the quality of the search results of a specific engine depends on keywords
and their structures provided by the user.

As an example, consider the search for web services. We compared the quality
of results from different search engines as depicted in Table 1. First, we prepared
three different search queries (i.e. “camera price”, “book price” and “city country
hotel”). Secondly, we employed three different search engines specialized in web
service searching (i.e., two variants of iSEM [10] and SeMa2 [18]) and one text-
based search engine (i.e. ElasticSearch [1]). Thirdly, we measured the precision,
c© IFIP International Federation for Information Processing 2015
S. Dustdar et al. (Eds.): ESOCC 2015, LNCS 9306, pp. 141–155, 2015.
DOI: 10.1007/978-3-319-24072-5 10
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Table 1. Service matchers’ performance depends on queries.

Query camera price book price city country hotel
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Precision 0.50 0.60 0.40 0.40 0.80 0.80 0.40 0.90 0.30 0.30 1.00 1.00
Recall 0.71 0.86 0.57 0.57 0.80 0.80 0.40 0.64 1.00 1.00 1.00 0.59
F-measure 0.59 0.71 0.47 0.47 0.80 0.80 0.40 0.75 0.46 0.46 1.00 0.74
nDCG 0.91 0.90 0.82 0.73 0.94 0.87 0.74 0.83 1.00 1.00 1.00 0.62

recall, F-measure and nDCG (normalized Discounted Cumulative Gain) rates to
compare the quality of search results of the search engines. Though “iSem text
similarity (Cos, structured)” search engine performed best with the “camera
price” query, the other search engines yielded better quality of results when
we used other queries. Moreover, the overall quality of semantic search engines
surpasses the text-based search engine. This advocates the need to use several
search engines relying not only on a conventional text-based search.

There are several researches, e.g. [16] and [7], trying to take advantage of
multiple search engines to improve the quality of search results. This way, one
can always select the best result from all of them. One challenge in this approach
is how to properly rank the results from search engines into one list. Assume
that the search engines return match values between 0 and 1 for the individual
services, where 1 means the services matches perfectly and 0 means the service
does not match at all. In such a setting, for instance, results from a search engine
A could be S1(0.9), S2(0.8), S3(0.75), and results from a search engine B could
be S4(0.95), S1(0.8), S2(0.9); where Sn means an item of results, and a number
in brackets is a similarity score between that item and the query. What would be
the best way to integrate these results? Is S4 with 0.95 score from search engine
B better than S1 with 0.9 score from search engine A?

Another challenge is how to convert a user’s simple text input into a struc-
tured request, which is varied by different search engines. For example, the user
is looking for a data in which containing “pricing” with in an attribute name
“service”, not in any other attribute. Search engine A may be able to search the
data in XML format, while search engine B can search only for JSON format
data. In order to use both search engines, this user needs to create two types of
requests. This can take a great effort for the user to learn how to construct a
request that conformed to different search engines. Therefore, we need to create
a tool to help the user for these conversions.

Together with semantic technology, it is possible to improve the search pro-
cess, where the search engine understands the meaning of keywords and can
search not only “literally” but also “semantically”.
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As a tangible use case, we can apply the approaches of using multiple search
engines and creating a structural request message to service discovery as pro-
posed by [22]. Imagine that Brian needs to check whether a light in his study
room is turned on or off. Since the light switch in this room is connected to the
local network, he can check its status via a web service. But he does not know
which one is belong to his study room. Fortunately, these devices are provided
with standardized and machine-interpretable service descriptions which can be
optionally extended by semantic annotations. Thus, instead of remembering all
names of sensors in his house, he can input a simple keyword to the service
discovery engine to look for the right sensor.

According to [3], there is currently no single global set of standards for the
service descriptions, and in all likelihood never will be. This is also true for the
service description language and service matching algorithm, since numerous of
them have been developed and been widely in use for a while. They all have
their own pros and cons; consequently, it is not deducible which one is the best
for every circumstance. One optimal solution is to apply all prominent descrip-
tion languages and service matching algorithms together in one single discovery
process as proposed in [22]. To realize such an approach, we need to compose
a request which can be interpreted by service matching engines. Afterwards, a
meaningful strategy to merge all outcomes is needed to create a single set of
search results.

This paper is structured as follows: the technical background and related
work will be reviewed in the next section. This also raises research questions
which became requirements for our approach. Consequently, the solutions section
will elaborate in technical detail how we fulfill the requirements. The evaluation
section advocates the solutions we proposed, and finally, we conclude our work
in this paper and plan for further development.

2 Literature Review

In this section, we provide an overview of existing techniques for result merging
and discuss their respective advantages and drawbacks. We then focus on the
specific type of search engine used for this evaluation, namely (semantic) web
service search engines and the underlying service descriptions.

2.1 Result Merging

[16] and [7] discussed different methods of merging multiple search engines’
results. These techniques can be categorized into three types: score-based, rank-
based and content-based.

The score-based method is the simplest technique. Assuming all search engines
have comparable similarity scores, then all the results can be merged by linear
combination methods discussed in [25], which accumulate each item’s normalised
score from all search engines and reorder them to a final ranked list. However,
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this approach does not take into account that different search engines differ in
their reliability. Thus, this does not work well in practice.

Content-based approaches like Search Result Records (SRRs), Top Document
(TopD) and their successors are claimed to be the most effective [16]. However,
they are rather heavy-weight since they need to download documents for analysis.
Besides, the content-based algorithms are already used by search engines. Thus,
there is no need to repeat the algorithm again in our approach.

The Rank-based method, which assigns each item a score corresponding to
the rank in which it appears within each search result, is simple and versatile. It
neglects the original scores from the search engines, on the other hand, assigns a
new score to each item. This does not require document analysis, so it can save
time and memory consumption. The simplest rank-based method is to consider
the best rank from all search engines directly using voting systems as discussed
in [23], like Borda’s Positional method. Moreover, when taking the reliability of
search engines into account, we can use an approach like weighted Borda-Fuse.

Borda count [23], a voting-based data fusion method, is also simple and
effective in terms of quality and time consumption. In Borda count, each search
engine represents a voter. Each voter ranks a fixed set of candidates according
to preference. The top rank will gain the highest score. Consecutive ranks will
get fewer scores. Finally, all scores of each candidate will be collected from all
voters. The item which gets the highest sum of scores will be placed in the first
rank and so on. In this work, Borda count is used for assigning scores to each
item from search engines’ results. Total scores will be arranged to provide the
final result and also be used to calculate a weight value for each search engine.
These technical details will be elaborated in the solution section.

2.2 Service Description

The service description plays a key role in the service discovery engine since we
assume that all devices are available as web services which must be supplemented
with basic information in WSDL (Web Services Description Language) [2], a
recommendation by the World Wide Web Consortium.

For an automatic service discovery, the WSDL description alone is inadequate
unless this description is enhanced with a semantic annotation. This problem is
addressed by SAWSDL (Semantic Annotations for WSDL) [6], which allows
the extension of WSDL descriptions with semantic annotations from arbitrary
ontologies. As one example for a more heavy-weight semantic description lan-
guage, we also cover OWL-S (Web Ontology Language for Web Services) [17] in
our evaluation.

Based on these service descriptions, there are several promising matchmakers
as reviewed by [21] and [29]. In order to evaluate all the techniques based on
different description formalisms, there are competitions, e.g. the Semantic Web
Services Challenge [5] and the S3 Contest [9]. According to the results of these
contests, we collected some auspicious approaches like SAWSDL-iMatcher [30],
iSEM, OWLS-MX [11–13], etc., and used those in our evaluation.
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3 Our Solution

To assist a user in finding appropriate devices in dynamic situations, an
environment-adaptive service discovery engine has been developed. This service
discovery engine appears to users as a search engine. Consider that a request
from a non-tech-savvy user would be simple keywords, e.g. ‘my location’, ‘heart
rate’, etc.

Our first challenge is to construct a query with a specific format in order
to be comparable with service descriptions. Secondly, when service descriptions
contain synonyms instead of an exact term the user is looking for, we can apply
semantic annotations to the query so search engines can discover them. Thirdly,
to cope with different standards of description, we need a request converter.
When the request is ready, then we deploy service matchers, which can be
replaced by any matcher that complies with description standards.

Each service matcher can have their own algorithm in assigning a similarity
score to each ranked result, thus we cannot compare similarity value between
two ranks from different matchers directly. However, we need several matchers
to boost the result quality. So a ranks merger, in other words, a result integrator
must be able to calculate and formulate the final ranking with the best quality.

Therefore, our proposed service discovery engine is separated into four mod-
ules: a request constructor, a request converter, a service matcher and a result
integrator as shown in Fig. 1.

Fig. 1. A building block diagram for the service discovery.

3.1 Request Constructor

This module is responsible for constructing a meaningful query message out of
the user inputs in free-text format. By using a semantic search engine, we can
retrieve synonyms or relevant terms to enhance the search result. Afterwards,
these terms will be separated into input, output and operational descriptions to
be mapped with the predefined description format, which is WSDL in this work.

The number of irrelevant services is typically larger than the number of rele-
vant services, therefore the keyword and synonyms are used to filter out irrelevant
descriptions. This will save more time in the service matching process.

Additionally, service descriptions are either in XML or RDF structures, thus
making them accessible to an attribute or value of node level. For example, if a
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user wants a service that provides him a price of a specific model of a camera, he
will look for a service which contains “camera model” in input, “price” in output,
and “find” in an operation description. It is more tangible to process this query
by a structural search rather than a conventional text-based search, i.e. accessing
the input, output, and operational attributes in each service description and
comparing them with the user’s query as exemplified in Fig. 2.

Furthermore, the user does not need to know how to construct these struc-
tural descriptions. The request constructor requires at least one simple keyword
to create a structural request automatically.

3.2 Request Converter

As several service description languages exist, in order to find all relevant ser-
vices, the request needs to be converted into appropriate input formats for search
engines supporting these different languages. Therefore, the request converter is
responsible for translating the previously constructed description into other for-
mats such as OWL-S or SAWSDL. By using a mapping schema, we can convert
a request from a user into different formats and this can be extended for other
prominent formats, e.g. JSON, tagged-based description when they are available.

Fig. 2 shows the common placeholders where we can insert mandatory infor-
mation in order to create a description in various formats. Please note that this
only works because current search engines do not take advantage of the full
power of semantic descriptions; therefore, it is possible to automatically create
appropriate queries with rather little effort. More powerful search engines would
require more effort in query generation. Semantic annotations, which are optional
here, can be filled in with information from user preference or user context if
they are available.

Fig. 2. A user request and the resulting structured descriptions.
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3.3 Service Matcher

For this part we rely on existing work. We use SAWSDL and OWL-S service
matchers for a proof of concept. The different approaches and description for-
malisms of each matcher assure that all suitable services will be discovered. Each
matcher operates independently, thus the time consumption in this process can
be reduced by using multithreading. Still, since we need results from all of the
matchers, the runtime of the slowest matcher determines the overall runtime.

3.4 Result Integrator

This work proposes a technique on how to retrieve the best quality result from
multiple service matchers dynamically. First of all, results from search engines
will be assigned scores based on their ranks by using Borda count as described in
Section 2.1. With these scores, we can sort all search results into a list which will
be compared with the original results from the search engines. Thereupon, the
distance between the search results and the combined result will be calculated.
The higher the distance value is, the less reliable that search engine will be. This
reliability, i.e. weight, will be multiplied to the score computed by Borda count.
Then, the merged list will be regenerated. This process will be iterated until
there is no change in weight value between two consecutive iterations.

Consider that each matcher will return a set of results per query, which can
be presented as an array, i.e. [r1, r2, r3, ...]. Each element represents the unique
ID of a service such as URI, and the similarity value of each result compared
to the request. In our calculation, we apply several queries to measure average
qualities. Therefore, each array from each query becomes a row of a matrix (Rk).
Given that n = number of ranks, m = number of queries and k = number of
matchers/search engines, the pseudo code depicted in Fig. 3 explains the result
integrator’s computation:

Result matrices (Rk) will be merged into a combined result matrix,

RC =

( rq1,1 ··· rq1,n

...
. . .

...
rqm,1 ··· rqm,n

)

, by the getCombinedResult function (line 13).

Since not every matcher provides similarity scores, we estimate these scores
from the result ranks. An element in the upper rank will get a higher score and
vice versa. The formula for calculating the score, as shown in function getScore
(line 32), is according to the normalized Discounted Cumulative Gain (nDCG).
In addition, each matcher gets a reliability score, which is used as a multiplier
to normalize the score with the other matchers. If there is no assigned weight,
the integrator treats each matcher equally.

In function getWeight (line 38), a result matrix from each matcher, Rk, is
compared with the combined result matrix RC using the Euclidean distance
method.

For testing the iteration condition, an isWeightStable function (line 50) com-
pares weights between two consecutive rounds. When the difference converges to 0,
indicating the stability of weight, the iteration will cease and the result from this
round is supposed to yield the best quality.
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1 FUNCTION resultIntegrator (ResultMatrices[k]):
2 SET weight[k] to [1/k, ... , 1/k]
3 SET CombinedMatrix to getCombinedResult(ResultMatrices, weight)
4 SET newWeight[k] to getWeight(CombinedMatrix, ResultMatrices)
5 WHILE ( !isWeightStable(weight, newWeight) ) DO
6 SET weight to newWeight
7 SET CombinedMatrix to getCombinedResult(ResultMatrices,weight)
8 SET newWeight to getWeight(CombinedMatrix, ResultMatrices)
9 END WHILE

10 RETURN CombinedMatrix
11 END.
12
13 FUNCTION getCombinedResult(ResultMatrices, weight):
14 DEFINE combinedResult[m][n]
15 FOR each i in queries
16 DEFINE rowResult[]
17 FOR each j in ranks
18 FOR each l in matchers
19 SET URI to ResultMatrices[i][j][l].URI
20 SET score to getScore(j, weight[l])
21 IF rowResult has URI THEN
22 add score to rowResult[URI].score
23 ELSE add URI and score to the rowResult as a new element
24 END FOR
25 END FOR
26 SET sortedRowResult[n] to n elements of the rowResult with the

highest score sort
27 SET combinedResult[m] to sortedRowResult
28 END FOR
29 RETURN combinedResult
30 END.
31
32 FUNCTION getScore(a, b):
33 IF a = 1 THEN RETURN 1
34 ELSE RETURN b/log2(a)
35 END IF
36 END:
37
38 FUNCTION getWeight(combinedResult, ResultMatrices):
39 DEFINE distance[k]
40 DEFINE weight[k]
41 FOR each l in matchers
42 FOR each i in queries
43 increase distance[l] with Euclidean distance value

between the combined matrix and the result matrices
44 END FOR
45 SET weight[l] to 1-(distance[l]/m)
46 END FOR
47 RETURN weight/sum(weight)
48 END.
49
50 FUNCTION isWeightStable(weight, newWeight):
51 SET i to index of maximum element in newWeight[]
52 IF (weight[i] - newWeight[i])/weight[i] < 0.05 THEN
53 RETURN true
54 ELSE RETURN false
55 END IF
56 END.

Fig. 3. The Result Integrator Algorithm
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To exemplify the process flow, assume that we use three matchers (k1, k2
and k3) and two queries on a set of services (S1 to Sn) and consider the top five
ranks of the result. Then, we will have 3 matrices with dimension [2 x 5]. The
three matchers might return: Rk1 = ( S2 S4 S3 S7 S1

S6 S9 S1 S2 S5 ), Rk2 = ( S2 S4 S3 S7 S1
S6 S9 S1 S2 S5 ),

Rk3 = ( S2 S3 S4 S8 S6
S9 S6 S1 S7 S3 ). Next, the following steps will be executed:

1. Accumulating scores from each rank in each matcher (each element in Rk),
e.g. service “S4” is ranked in the second place by matcher k1 and k2, while
k3 ranks the service in the 3rd place, the total score for service “S4” is

1
log2 2 + 1

log2 2 + 1
log2 3 .

2. After finishing scoring all services for each query, the scores are sorted
descending and the top 5 ranks are added to a row of the combined result

matrix, i.e. Rc =

(
S2 S4 S3 S7 S1
(3) (2.63) (2.26) (1) (0.86)
S6 S9 S1 S2 S5
(3) (3) (1.89) (1) (0.86)

)

.

3. The result matrices from the three matchers are compared with the com-
bined result matrix to calculate the distances and the weights. The (average)
Euclidean distances of the matchers are 0, 0, and 0.235. These figures will
be used to calculate normalized weights, which become 0.34, 0.34 and 0.32.

4. The weight value of each matcher is multiplied to the original result matrix
and the combined result matrix, RC , is calculated again. From the previous
step, the third matcher performs worse than the other matchers, thus the
result from this matcher has fewer score than the rest.

5. The step 1-4 are iterated until the quality of returned results changes insignif-
icantly, then the best combined result is completed.

From our previous experiment, a poor performance matcher weakened the
overall quality of the final result. Thus, in Step 1 of each iteration, the matcher
with the lowest weight below a threshold, mean− 0.2(standardvariation) of all
matchers, is removed. The number 0.2 in the formula is adjustable; however, we
chose this value based on results of our previous evaluation. When this number
is too high, there is more possibility that no matcher will be removed, but if this
number is too low, it is more likely that an average performance matcher will be
eliminated.

4 Evaluation

To evaluate the idea proposed in the previous section, we adopted service descrip-
tions from the S3 Contest [9]. As it provides pre-defined solution sets, we can
measure the quality of the result from our work. The binary quality measurement
is calculated by precision, recall and F-measure rates. Meanwhile, to measure the
quality of rank, the nDCG is used.

4.1 Test Collections

The S3 Contest provides a sample set of service descriptions equally in SAWSDL
and OWL-S formalisms. The total number of descriptions (for each formalism) is
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1080. The contest also provides 42 service requests together with the ideal solu-
tion of the matching task. There are 2 types of solutions; a binary relevance and
a grading relevance. The former states only “relevant” or “irrelevant”. While a
graded relevance provides more detail of relevancy level, i.e., highly relevant, rel-
evant, partially relevant, and irrelevant.

4.2 Service Matchers

According to the test collections, we also adopted service matchers from S3
Contest for the evaluation. The two categories of service matchers we are using
are OWL-S-based and SAWSDL-based which handle different description for-
malisms.

The OWL-S matchers used in this evaluation are: EMMA [4], iSeM, SeMa2,
SPARQLent [26], OWLS-iMatcher [8], OWLS-SLR Lite [20], OWLS-MX1 [12],
OWLS-MX2 [11], OWLS-MX3 [13].

The SAWSDL matchers used in this evaluation are: iSeM-SAWSDL [10],
SAWSDL-MX1 [14], SAWSDL-MX2 [15], URBE [24], LOG4SWS.KOM [27],
COV4SWS.KOM [28], SAWSDL-iMatcher.

To simplify the evaluation process, which is getting more complicated towards
the end of the building block diagram, some matchers that have unsatisfactory
performances are neglected.

4.3 Evaluation Results

The objective is to test whether the proposed technique can improve the qual-
ity of the service discovery process. The request construction and the request
converter must be integrated to the whole process so that we can measure the
quality of the result. It is unnecessary to evaluate the service matcher part since
this was successfully done by efforts like [5] and [9]. Nevertheless, outcomes from
the service matcher module are merged in a result integrator module.

Therefore, we focused in evaluating the result integrator in terms of result
quality compared to an individual result of a single service matcher. Eventually,
the overall time performance was measured and discussed in order to find a gap
of improvement.

Result Integrator: By applying all descriptions from the test collections
together with service matchers mentioned previously, the quality of a result inte-
grator was compared with individual service matchers. Fig. 4 depicts a compar-
ison in precision, recall, F-measure and nDCG between each SAWSDL matcher,
a text-based search engine (Elasticsearch) and the outcome of the service inte-
grator in each round. The weights of all matchers were calculated and illustrated
in Fig. 6 (a).

In this experiment, the criteria to select a round that yield the best result
was met in the fourth round. However, when we had a solution to compare
with, the actual best result was from the third round. Since we cannot have the
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Fig. 4. Result integrator’s quality in each iteration compare to each SAWSDL matcher.

Table 2. Evaluation result from the result integrator module

Precision Recall F-measure nDCG

Best SAWSDL Matcher 0.8377 0.7500 0.7638 0.7837
Average SAWSDL Matcher 0.7228 0.6444 0.6569 0.6624
This work on SAWSDL 0.8421 0.7452 0.7613 0.7789

Best OWL-S Matcher 0.9262 0.8167 0.8361 0.8539
Average OWL-S Matcher 0.6560 0.5762 0.5903 0.6101
This work on OWL-S 0.9238 0.8143 0.8337 0.8673

ground truth in the practical usage, plus, the difference between the third and
fourth round were negligible, we can conclude that this technique produces a
satisfactory result.

The same evaluation was applied to OWL-S matchers, see Fig. 5. From the
weight measurement in Fig. 6 (b), the iteration stopped at round 7, which pro-
vided the best result.

From Table 2, our approach with SAWSDL matchers improved the recall rate
compared to the best performing matcher by 0.5% while precision, F-measure
and nDCG rates dropped by less than 0.7%. With OWL-S matchers, our app-
roach boosted the nDCG by 1.57% whereas the other measurement declined
by less than 0.3%. Nevertheless, comparing to the average performance of all
matchers, our proposed solution outperformed them notably.
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Fig. 5. Result integrator’s quality in each iteration compare to each OWL-S matcher.

Fig. 6. Weight value of (a) SAWSDL and (b) OWL-S matchers calculated from each
iteration.

Overall Performance: Up to now, we discussed how each component of a ser-
vice discovery engine performs. Now we exhibit the overall run-time performance
when everything is put together.

First, we set three different factors; type of query, number of service matchers
and number of processing thread. There are two types of query for the service
discovery engine; a simple keyword that has no structure and a user’s request
containing input, output and operational keywords. The second type is called a
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Fig. 7. Timing evaluation of a semantic search and service matcher modules.

multiple query since we need to query three times for semantic meanings. The
more service matchers are used, the more time are consumed respectively. Thus,
we deployed the multithreaded processing to the semantic search (in the query
construction) and the service matcher modules, which consumed 95% of total
time in service discovery.

According to Fig. 7, the time consumption for each semantic query were
accumulated when using a single thread processing. The multithreading can
dramatically reduce the query construction time though the multiple query gen-
erally takes more time than the simple query. This is due to waiting for the
slowest query to finish.

On average, the number of queries has a small effect on the service matching’s
runtime. Multithreading can reduce the time usage significantly though not by
4 folds as expected due to waiting for all matchers to complete their tasks.

5 Conclusion and Future Plan

The evaluation in this paper proved that our proposed technique can dynamically
retrieve the best set of results from multiple search engines. The outcome of the
request constructor and converter is a service description that is compatible with
prominent service matchers in OWL-S and SAWSDL standards. The bottleneck
of the total time performance occurred in the semantic search process is caused
by an HTTP request to a remote server.

The result integrator produces a single set of results from multiple search
engines with conceivable ranks. Additionally, from automatically calculated
weights, we can rate the reliability of each search engine. This value can be
recorded and used for statistical analysis further on. The time performance of
this module is negligible compared to the semantic search and service matcher
modules.

Our ultimate goal is to implement a user-friendly tool to efficiently utilize
the benefits of the Internet of Things (IOT) [19] and to support big data. In
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the near future, we aim to integrate this work as the service discovery engine
in MERCURY [22], a platform for user-centric integration, and management of
heterogeneous devices and services via a web-based interface. Since MERCURY
offers a great interface, it is practical to evaluate a usability test there. Moreover,
we can extend the use case from local services to cloud services. We also consider
supporting JSON and XML descriptions in the future development as well.
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Abstract. One of the current challenges of Service Oriented Engineer-
ing is to provide instruments for dealing with dynamic and unpredictable
user requirements and environment. Traditional approaches based on
workflow for orchestrating services provide little support for configuring
at run-time the flow of activities.

This paper presents a general approach for composing and orches-
trating services in a self-organization fashion. User requirements are
made explicit in the system by a goal specification language. These
can be injected into the running orchestration system that is able to
autonomously and contextually reason on them. Therefore, the system
dynamically organizes its structure for addressing the result. A prototype
of the system has been implemented in JASON, a language for program-
ming multi agent systems. Some aggregate statistics of execution are
reported and discussed.

Keywords: Service orchestration · Self-organization · Holonic system

1 Introduction

In the last years there has been an increasing interest on composing and orches-
trating heterogeneous services from many parties. To date, BPEL is the de facto
standard for implementing the orchestration of services. Even if greatly sup-
ported by industry and research, the classic workflow approach is not easy to
extend for supporting some advanced features: 1) integrating user’s preference
into the flow of activities complicates much the model; 2) there is no a simple
way to change the flow of activities as consequence of a change of the execu-
tion context; 3) introducing new services requires to revise the whole workflow
model; 4) service failures may be included in the design but any unexpected sit-
uations make the process fails. It is a fact that researchers are also investigating
on dynamic workflows and on techniques for generating a highly configurable
system behavior, potentially adaptable to unexpected events [5,9].

The assumptions of this work are that: i) services are delivered over the
internet by service providers; as usual, these are accessible through standards
protocols (i.e. WSDL and SOAP); (ii) the orchestration system is a distributed
and decentralized software, made of a number of autonomous agents, each able
c© IFIP International Federation for Information Processing 2015
S. Dustdar et al. (Eds.): ESOCC 2015, LNCS 9306, pp. 156–170, 2015.
DOI: 10.1007/978-3-319-24072-5 11



Holonic Self-Adaptive Orchestration of Services 157

to perceive the environment and act as broker for web-services (of which it knows
address, end points and business logic); and (iii) holons are temporary assembly
of agents generated ad-hoc for aggregating services.

In this paper we propose a middleware for conciliating goal-orientation [24]
with holonic systems [11] with the aim of creating a highly customizable orches-
tration of web-services. Goal orientation is used for decoupling the specification
of what the system has to do from how it will be done. The request for a service
is based on a technique we called goal-injection: a goal is the high level specifi-
cation of the kind of service desired by the user. Once it has been specified, the
goal may be injected into the system at run-time, thus becoming a stimulus for
the holons of the system that try to self-organize in an ad-hoc architecture for
fulfilling the request.

On the other side, holons provide an elegant and scalable method to design
and develop a distributed software system with a natural inclination for knowl-
edge sharing, coordination of activities and robustness. The goal specification
language is enough flexible to create complex requests that any available service
may satisfy alone. However the developer has to code only simple interactions
with basic services: service compositions must not be programmed. It is respon-
sibility of the system that of aggregating basic services thus to obtain composed
ones.

The paper is organized as follows: Section 2 provides an overview of the pro-
posed middleware. Section 3 presents some preliminary definition by introducing
the holonic approach. Section 4 provides details on how services are aggregated
and orchestrated for addressing a set of user-goals. Section 5 illustrates the state
of the art in service composition and orchestration, whereas Section 6 presents a
critical analysis of the approach. Finally, Section 7 briefly summarizes the impact
of the work.

2 Overview: The MUSA Approach

This paper presents MUSA (Middleware for User-driven Service Adaptation) 1,
a holonic multi-agent system for the composition and the orchestration of ser-
vices in a distributed and open environment. The middleware aims at providing
run-time modification of the flow of events, dynamic hierarchies of services and
integration of user preferences together with a self-adaptive system for execution
activities that is also able to monitor unexpected failures and to reschedule in
order to optimize the flow.

The main feature of the system is to break the static constraints of a classic
workflow model by decoupling the two dimensions: ‘what to address’ and ‘how
to address it’ [21]. The core element of the approach is the use of Goals for
explicitly representing user-preferences into the system (what to address). The
injection of goals trigger for the re-organization of the agents of the system in
hierarchical groups called holons. These self-adaptive structures allow for dealing
with dynamic composition and orchestration of services.
1 Website: http://aose.pa.icar.cnr.it/MUSA/

http://aose.pa.icar.cnr.it/MUSA/
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Fig. 1. An example of workflow for booking a set of related services for a travel The
capability approach consists in identifying sub-parts to decompose for obtaining self-
contained pieces of behavior of the system.

The Capability is the key for addressing the injected goals coming from the
decomposing of standard workflow into a set of atomic and self-contained parts
to connect in many different ways. An illustrative example is reported in Figure 1
that shows a portion of the BPEL for a travel reservation workflow. Tasks related
to the flight reservation (search, booking, canceling) as well as those related to
hotel reservation are highlighted.

As a running example we refer to the smart travel system, able to act as
touristic tour operator in a geographical area. A scenario will help in clarifying
variability and flexibility required in a service composition context.

Scenario: Herbert from Munich wants to organize a vacation in Sicily for
a week with his family. In seven days, Herbert desires: 1) to visit the city of
Palermo; 2) to visit Agrigento and 3) to visit Syracuse and to attend the Greek
tragedy performance. The smart travel service suggests to flight to Palermo, stay
there 3 days, than to visit Agrigento for 2 days, then to move to Syracuse (for the
Greek tragedy) and finally to depart from the Catania airport. Herbert confirms
the travel plan, and the smart travel reserves flights and hotels and buys tickets
for the trip.

The MUSA middleware offers a suitable infrastructure for implementing the
smart travel system. Figure 2 provides an overview of the customization of
MUSA for the specific domain. The user will interact with the smart travel
through a web page for specifying her preferences (dates, places to visit, events
to assist, and other interests). The web page converts user-data into a set of goals
in an ad-hoc language called GoalSPEC [22]. Goals are injected into the MUSA
running system that interprets them and uses them as directives for a planning
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Fig. 2. An example of the MUSA approach to the case study of the smart travel.

phase. This algorithm, called automatic means-end reasoning [20], is responsible
of discovering 0..n solutions for addressing the user-goals. A solution represents a
collection of web-services and a semantic layer working as instructions for orches-
trating them. Selecting one of these solutions triggers the organization of holonic
architecture for orchestrating services and monitoring the state of interest. The
system is able of identifying is some of the selected services fails. If this happens
the self-adaptation mechanism calls again the planning algorithm for re-organize
the architecture.

3 Preliminary Definitions

Holons provide an elegant and scalable method to guarantee knowledge sharing,
distributed coordination and robustness.

3.1 A Brief Introduction to Holons

Holon is a Greek word for indicating something that is simultaneously a whole
and a part [16]:

A holon is a system (or phenomenon) that is an evolving self-organizing
structure, consisting of other holons [15]. A holon has its own individu-
ality, but at the same time, it is embedded in larger wholes (principle of
duality or Janus effect).

Many concrete things in nature are organized as a holarchy (the recursive
structure generated by holons and sub-holons). An example of concrete holon is
an organ that is a part of an organism, but a whole with regard to the cells of
which it is comprised. The human mind uses holarchies for organizing abstract
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concepts too. An example is a word that is part of a sentence, but a whole with
regard to the letters that compose it.

A holon has not necessarily the same properties of its parts, as well as if a
bird can fly, its cells can not. Holon is therefore a general term for indicating a
concrete or abstract entity that has its own individuality, but at the same time,
it is embedded in larger wholes.

In computer science the holon has been recently employed [8] to represent
software as dynamic groups of autonomous software entities. A holonic multi
agent system is a software system made of autonomous agents who organize
themselves in holons.

Definition 1 (Holon). A holon is a triple h = 〈Head,Body,Commitments〉
where Body = {h1, h2, . . . hn} and ∀i, hi is a holon and sub-holon of h. The
Head ⊆ Body is the entity in charge of representing and coordinating the
actions inside h and, finally, Commitments are relationships inside the holon
that aggregate the parts hi towards common objectives. The base for the recur-
sion is the agent which represents a sort of atomic holon of the system (a holon
that can not be further decomposed in sub-holons): if a is an agent of the system,
ha = ({a}, {a}, ∅) is the corresponding atomic holon.

In our approach we map 1) the distributed nature of services to agents of the
system and 2) the composability of services to holons. Therefore each atomic
holon is in charge of dealing with a single service, whereas higher level holons
can handle compositions of services. Holons are not defined according design-
time schema. They are able to generate super-holons for dealing with complex
problems on demand.

3.2 Knowledge, Goals and Capabilities

Each holon of the system maintains a knowledge of the context of execution.
We adopt a frame-based first order logic model of knowledge: (Bel h ϕ) specifies
that the holon h believes ϕ is true, where ϕ is a first order fact.

In a holon, knowledge is maintained by the head adopting a structure called
State of World and it is shared on request to sub-holons.

Definition 2 (State of the World). A subjective state of the world, in a given
time t, is a set W t ⊂ S where S is the set of all the (non-contradictory and non-
negated) facts (s1, s2 . . . sn) that can be asserted to describe a given domain.

W t describes a closed-world in which everything that is not explicitly declared
is assumed to be false.

The peculiarity of this holonic system is that the commitment relationship
(e.g. the glue that puts together a holon) is a run-time property called User-Goal.
A goal is a specification of the expected behavior of the whole system.

Definition 3 (Goal). A goal is a pair: 〈tc, fs〉 where tc and fs are logical
formula indicating, respectively the trigger condition (i.e. when the goal may
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be actively pursued) and the final state (i.e. when the goal may be considered
addressed). The truth table of these conditions is evaluated (by unification)
through facts of the current state of the world.

Goals can be used to specify the business logic of the desired service compo-
sition in terms of which outcome the user will receive. In MUSA the goal may be
injected at run-time by using GoalSPEC see [22], a goal specification language
that integrates a subset of natural language and first-order predicates. Examples
of goals for the smart travel agency:

– G0: WHEN date IS BETWEEN dt(2014,07,16) AND dt(2014,07,23) THE
SYSTEM SHALL PRODUCE visiting(sicily)

– G1: WHEN date IS dt(2014,07,23) THE SYSTEM SHALL PRODUCE day-
of-visit(palermo,2)

– G2: WHEN date IS dt(2014,07,21) THE SYSTEM SHALL PRODUCE
being-at(syracuse)

– G3: WHEN date IS dt(2014,07,21) THE SYSTEM SHALL PRODUCE
enjoyed(greek-tragedy)

The WHEN reserved word is used for specifying an external event (in the
example it introduces the goal triggering condition clause), whereas the SHALL
PRODUCE reserved words specifies the final state of the world that is desired
by the user. More details about this specification language are given in [22].

In the following we focus on illustrating that when the user defines and injects
a set of goals, then the system generates a holonic architecture as response.

To this aim we need to introduce the concept of Capability as an atomic
and self-contained action the agent knows to have and how to use it. A capability
is a run-time property that holons may intentionally use to interact with a web-
service.

In MUSA, a capability is concretely realized by two macro-components: (i)
the abstract description that is a sort of ‘manual’ about the usage of the service,
in a self-aware fashion, and (ii) the concrete implementation is the machine-code
for invoking a specific web-service.

For what concerns the abstract description, the most significant properties
are pre and post (conditions) to be uses in the orchestration phase, and the
params and evolution to be used in the self-configuration phase for composing
services thus to address complex problems that single services cannot afford.

The “pre-condition” must be true, when tested in the current state of the
world (pre(W t) = true), in order to execute the capability. The “post-condition”
must be true, after the execution of the capability (post(W t+1) = true), for
assessing its correct execution. On the other side the “params” describes points
of variability of the service for allowing self-configuration (see 4.1), whereas the
“evolution” describes the endogenous effect of a capability in terms of changes of
state of world (W t → W t+1). Figure 3 shows an example of abstract description
of the flight booking capability.

On the other side, the concrete implementation encapsulates the code for
interacting with the real service by using SOAP and WSDL through the
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Fig. 3. An example of abstract description of a capability for dealing with flight booking
web-service.

HTTP/ HTTPS protocol. The implementation of a capability is different for
internal capability and webservice-capability. In particular the implementation
of a web-services includes three parts: the customize helper, the dispose service
and the compensate service. Figure 4 shows the three protocols used in the flight
booking activity. They are detailed in the next section.

Fig. 4. The concrete implementation of a capability for dealing with flight booking
activity.

4 Adaptive Composition and Orchestration of Services

This section assumes that MUSA has been instrumented with a set of capabilities
for working in a specific problem domain. For instance, in the case of the smart
travel, the capabilities may reserve flights, book hotels, buy ticket for a local
event and so on.

When a user introduces a set of goals into MUSA for requesting the personal-
ized execution of services, then the system will firstly discover i) how to compose
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its capabilities for addressing all the goals, and subsequently ii) it orchestrate
the agents of the system thus to allow them properly using their capabilities.

4.1 Self-Configuration Phase

The Self-Configuration phase starts soon after that a set of goals is injected
into the system. It aims at discovering a set of capabilities (among the available
ones) which composition potentially leads to the achievement of all the goals. In
particular, the problem is: given the current state of the world, a set of Goals and
a set of Capabilities to produce a plan for addressing the goals. The procedure
is called Proactive Means-End Reasoning [20].

A complete description of the algorithm is out of the scope of this paper.
Conversely, an exemplar scenario of execution is reported for providing an intu-
ition of the approach used for composing the capabilities. Supposing the current
state of the world is:
WI = [at(palermo), it is(morning)]:

1. simulate the use of the capability Visit City HalfDay:
[at(Place), visited(Place,X)] → [at(Place), visited(Place,X + 0.5)]
for producing the new world:
W1 = [at(palermo), it is(afternoon), visited(palermo, 0.5)]

2. compare the previous result with the state of the world due to the use of a
different capability: Book Train:
[at(palermo), it is(morning)] → [at(catania), it is(afternoon)]
that generates:
W2 = [at(catania), it is(afternoon), visited(palermo, 0.5)]

3. given that first path is more promising (with respect of the goal to visit
Palermo for two days) then discard the second and proceeds from W1

4. concatenate Visit City HalfDay with Reserve Hotel:
[at(Place), it is(afternoon)] → [at(Place), it is(morning)]
for obtaining
W3 = [at(palermo), it is(morning), visited(palermo, 0.5)].

5. . . .

In this context, the customize helper protocol of the involved capabilities is
employed for exploring the range of possible impact that each individual capabil-
ity may have towards the evolution of the state of the world. Indeed a capability
may include, in its description, some parameters to configure for obtaining dif-
ferent results. For instance, the flight booking capability may be customized
by assigning a value to the flight id param: flight booking[flight id ←
“AZ243”]. A different configuration for this parameter leads to different effects
(departure/destination places, timetable, flight company and costs may be sen-
sibly different).

During the Self-Configuration phase, the customize helper considers many
parameters for a capability, in order to configure it for the specific context. This
generally requires interacting with real web-services for querying the range of
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possible values for the parameters. For instance, the customize helper for the
flight booking searches for available flights that may be useful in the context of
user’s travel (existing flight from a destination to a target city, in a given date
with available seats). It returns a list of possible Flight IDs that satisfy the input
conditions: each item corresponds to a possible variant of the capability.

For a detailed description of the procedure, please refer to [20].

4.2 Service Orchestration Phase

The selection of a solution (for addressing a set of goals) triggers for a holon
formation and it promotes the corresponding holon to become operative and to
orchestrate all the embedded services for producing the compounded result. For
instance, let us suppose the holon represented in Figure 5. It is made of four
sub-holons: (HPA able to address the goal G1, HSY able to address the goals
G2/G3 and HAG, HCT created for completing the travel).

Fig. 5. In the topside: an instance of Holon (HHERBERT ) formed for addressing Her-
bert’s travel specifications. It is composed of four sub-holons (HPA, HAG, HSY and
HCT ). Finally, atomic holons for simplicity are shown as the capability they offer (in
bold text), followed by their params. Below: the corresponding travel plan showing the
schedule and highlighting where Herbert’s goals are satisfied.

When a holon becomes active, then (recursively) all its sub-holons become
active. From the point of view of the atomic holon, this corresponds to
execute the dispose protocols of service capabilities, as soon as the capabil-
ity pre-conditions hold. It is worth noting that since agents are autonomous
and distributed, all the dispose protocols will be executed by parallel threads.
Figure 6 represents the corresponding flow of activities resulting from the holon
orchestration of capabilities. In the case of the smart travel, the holon will book
all necessary flights, hotels, ticket for the travel plan. In particular, the dispose
protocol for the flight booking service actually book the specified flight and pro-
duces a ticket for the user.
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Fig. 6. The corresponding flow of activities resulting from the composition of three
capabilities for addressing a goal.

In addition, when possible, holons will activate their monitoring capabilities
for checking the real service execution. This detail is out of the scope of this
paper. Just to provide an example, by interacting with Herbert’s mobile appli-
cations the monitor agent may know his position, and interact with him for
warning about delays or allowing to change details of the travel.

4.3 Self-Adaptation

The main purpose of monitoring the services is to look for failures or new goals
that may affect the running holon. When something unexpected happens at
run-time, it could be the case that some services that have been disposed are no
more useful in the new plan. The proper way to proceed is to use the compensate
service protocol in order to terminate the contract with a service. For instance,
the compensate service for the flight booking tries to cancel the user booking
for a specified flight.

The holon in charge of addressing a goal is continuously updated about the
state of the services and it is able to discover when something is going wrong by
comparing perceptions with expected states of the world. When a service fails,
or when a goal cannot be addressed then the head role of the corresponding
sub-holon raises an event of failure (see Figure 6), which is the cause of an
adaptation.

Let us consider the following variability scenario, concerning the smart travel
system described in Section 3: Herbert and his family are enjoying their vacation
in Sicily. They are visiting Palermo and communicate to the smart travel service
their new desire to stay one day more in the city.

In this example the user who modified her goals triggers the adaptation
(by informing the system to change the travel plan). The adaptation is treated
by the system as a reorganization of the holonic architecture. The reorganiza-
tion produces a temporary disassembly of the holon and the re-execution of
the Self-Configuration phase but considering the new situation (current state of
the world, failures, service availability or new user goals) for generating a new
solution.
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Continuing the example, the smart travel system reacts to the new goal con-
sidering the current state of the trip, and that theater tickets (of the sixth day)
are not reimbursable. Therefore the system proposes: 1) to stay 1 day more in
Palermo, 2) to stay one day only at Agrigento, then 3) to move to Syracuse and
continue the vacation without further variations. If Herbert confirms the new
travel plan then the smart travel will change train booking and hotel reserva-
tions.

Before starting the new solution, each holon coordinates with its head for
deciding if executing the compensate protocols of capabilities associated to the
services that are no more useful in the new solution. After that, the orchestration
phase starts again.

5 Related Work

In last decade, researchers have been looking for alternative approaches to clas-
sic workflow models for describing service compositions. For instance, Laukka-
nen and Helin [17] illustrate a semantic type matching approach for creating
or updating a workflow. Traverso et al. [6] show that an instance of the ser-
vice choreography problem can be viewed as a STRIPS-style planning problem
in which state descriptions are ambiguous and operator definitions are incom-
plete. Whereas approaches based on planning are NP-Complete, Doshi et al. [10]
propose using Markov decision processes and Bayesian model learning to model
workflow composition with a polynomial complexity. Buhler and Vidal [4] present
an introductory work on adaptive workflow composition based on a multi-agent
perspective. They suggest the utilization of standard workflow languages for
multi-agent coordination.

SAPERE [25] (Self-Aware Pervasive Service Ecosystems), is a general frame-
work for self-organizing distributed service ecosystems. Components of the sys-
tem can inject Live Semantic Annotations that propagate to other components,
while EcoLaws define how they interact in the ecosystem.

A-3 [1] is self-organizing distributed middleware aiming at dealing with high-
volume and highly volatile distributed systems. It focuses on the coordination
needs of complex systems, yet it also provides designers with a clear view of
where they can include control loops, and how they can coordinate them for
global management.

Blanchet et al. [2] view service orchestration as a conversation among intel-
ligent agents, each one responsible for delivering the services of a participating
organization. An agent also recognizes mismatches between own workflow model
and the models of other agents.

Gomaa and Hashimoto, in the context of the SASSY research project [12],
look into software adaptation patterns for Service-Oriented Applications. The
goal is to dynamically adapt distributed transactions at run-time, separating the
concerns of individual components of the architecture from concerns of dynamic
adaptation, using a connector adaptation state-machine.
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OSIRIS [23] is an Open Service Infrastructure for Reliable and Integrated
process Support that consists of a peer-to-peer decentralized service execution
engine and organizes services into a self-organizing ring topology.

Grassi et al. [13] propose a QoS-aware decentralized service assembly based
on the 3 architectural layers. They concentrate their contributions on the mid-
dle layer (change management). A dynamic set of agents may enter/leave the
system, each offering a specific service. In this context, producing fully resolved
assemblies is complicated by dependencies among service. Plus, non-functional
requirements and only the currently available services should be considered. Even
further, all of this should be done using decentralized self-assembly (no external
control, dynamic operation, no central control).

Hahn and Fischer, in [14] illustrate how a choreography model can easily
be conceptually implemented through holons. Their approach is a design-to-
code technique based on model-driven transformations which result is a holonic
multi-agent system.

6 Discussion and Evaluation

The system2 has been implemented by using JASON [3], an agent oriented plat-
form based on AgentSpeak [18]. AgentSpeak is a programming language based
on events and actions. The state of an agent together with its environment and
eventual other agents represent its belief base. Desires are states that the agent
wants to attain based on its perceptions and beliefs. When an agent adopts a
plan it transforms a desire to an intention to be pursued. In JASON, the agent’s
knowledge is expressed by a symbolic representation by using beliefs, which are
simple predicates that state what the agent thinks to be true.

Completeness and Complexity of the Approach. The current algorithm
used for implementing the means-end reasoning is a variation of the depth-first
search strategy. Indeed, at the worst case, it takes an exponential time to visit
all the possible states.

We accepted this complexity because we observed that in a real situation
rarely, given a state of the world, there are too much competing services that may
solve a goal. Therefore we assumed to explore only a limited space of solutions 1)
by filtering in advance capabilities that are impossible to compose (according to
a preliminary evaluation of preconditions) and 2) by employing domain-specific
utility functions to measure, step by step, the quality of the partial solutions.

We conducted an experiment in which we requested the smart travel system
to organize available services for a 7 days vacation in Sicily. The algorithm has
been executed 50 times with five different sets of user-goals in order to evaluate
the number of steps necessary for discovering (at most) 5 travel plans; in all the
cases the execution returned 5 solutions by exploring, in average, 73 states of
world.

2 Available at https://github.com/icar-aose/MUSA/archive/v0.2.zip (Jason 1.3.8 or
higher is required).

https://github.com/icar-aose/MUSA/archive/v0.2.zip
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We also compared the average branch factor with respect to a simple depth-
first algorithm in which the number of capabilities (6 in the experiment) is equal
to the branch factor. The resulting average branching factor is 2.65, therefore
at each step more than 70% of the capabilities are discarded, thus reducing the
space to explore.

Table 1. Aggregated statistics for the execution of the self-configuration phase for the
smart travel. The algorithm has been executed 50 times with a range of 5 different
configurations (changing the number and the type of user-goals from a minimum of 2
to a maximum of 5) but with a constant number of capabilities, set to 6.

First Solution 44,00 states

Total States of World 73,25 states

Max Depth 17,25 capabilities

Average Branch Factor 2,65 states

Max Number of Partial Solutions 76,75 part. solutions

Ontology Commitment and System Evolution. Another point of discussion
concerns the degree of decoupling between Capabilities and Goals. These are
specified in two independent languages, and injected into the system at run-
time. In addition they can evolve during the time, thus making the whole system
able to encapsulate new functionality on the fly. However the use of ontology is
required for enabling a semantic compatibility between Capabilities and Goals.
An ontology is the specification of a conceptualization made for the purpose of
enabling knowledge sharing and reuse.

The Problem Ontology Diagram (POD) [8] may be used to provide a deno-
tation to significant states of the world thus giving a precise semantics to goals
and capabilities. A POD is a conceptual model [19] to create an ontological com-
mitment between developers of capabilities and users who inject goals, i.e. the
agreement to use a thesaurus of words in a way that is consistent with respect
to the theory specified by ontology.

This artifact aims at producing a set of concepts, predicates and actions
and at creating a semantic network in which these elements are related to one
another. The representation is mainly human-oriented but it is particularly suit-
able for developing cognitive system that are able of storing, manipulating, rea-
soning on, and transferring knowledge data directly in first-order predicates [19].

Grounding goals and capability abstract description on the same ontology is
fundamental to allow the system to adopt a proactive means-end reasoning to
compose plans. By committing to the same ontology, capabilities and goals can
be implemented and delivered by different development teams and at the same
time enabling a semantic compatibility between them.

More details on the POD are in [8], whereas the link between goals and ontol-
ogy is detailed in [19]. Finally we also provide GIMT (Goal Identification and
Modeling Tool) a tool for supporting ontology building and goal modeling [7].
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7 Conclusions

Holonic multi-agent systems provide a flexible and reconfigurable architecture
to accommodate environment changes and user customization. This paper has
presented a dynamic (re-) organization of the system by an autonomous and
proactive collaboration of autonomous agents. The novelty of the proposed app-
roach, with respect to the state of the art, is to encapsulate the desired service
composition in run-time goal-models. Goals are injected into the system thus
allowing holarchy to spontaneously emerge for orchestrating services that will
address them.
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Abstract. With rapid uptake of various types of cloud services many organiza-
tions are facing issues arising from their dependence on externally provided 
cloud services. In order to enable operation in this rapidly evolving environ-
ment, end user organizations need new methods and tools that support entire 
life-cycle of cloud services from the perspective of service consumers. Service 
repositories play a key role in supporting service consumer SDLC (Systems 
Development Life-Cycle) maintaining information that is used during the vari-
ous life-cycle phases. In this paper we briefly describe service consumer SDLC 
and propose a design of service repository that supports information require-
ments throughout the service life-cycle. 

Keywords: Service repository · Cloud services · Service life-cycle 

1 Introduction 

Cloud computing is a novel approach for implementing enterprise IT (Information 
Technology) solutions that has the promise of increased agility, flexibility, elasticity 
and cost savings. Rapid growth in the availability of various types of cloud services 
provides opportunities for the implementation of innovative enterprise applications, 
and organizations are increasingly relying on external cloud providers to deliver a 
significant part of their enterprise infrastructure and applications. Unlike in on-
premise situations, in cloud computing environments service consumers and service 
providers are typically separate entities with different roles and responsibilities during 
the service life-cycle. Consequently, the traditional service life-cycle used in on-
premise development is not suitable in situation where cloud services are imple-
mented by external cloud service providers and deployed by service consumers in 
their enterprise applications [1]. More specifically, the primary role of cloud service 
consumers has changed from implementation of on-premise enterprise applications to 
integration and management of cloud services [2], with cloud service providers taking 
responsibility for IT infrastructure and a significant part of the application portfolio.  
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The Programmable Web directory [4] currently lists almost fourteen thousand APIs 
(Application Programing Interfaces) for various types of services, making the identi-
fication of suitable services challenging for service consumers. In many cases, similar 
services are available from various cloud providers with different interfaces, protocols 
and Quality of Service (QoS) attributes [3]. The integration of such disparate cloud 
services with on-premise enterprise applications requires a significant effort. This 
emerging situation where enterprise applications utilize a large number of cloud ser-
vices requires a new approach to service life-cycle management. A key architecture 
component needed to address these issues is the service repository that stores infor-
mation about available services and related QoS attributes, providing a database of 
cloud services that are certified for use within the enterprise and can be shared among 
different projects.     

In our earlier work [5], we have described the SDLC (Systems Development Life-
Cycle) for cloud services as viewed from a service consumer perspective, and we 
have specified SDLC phases and described architectural components required to sup-
port life-cycle activities. This paper focuses on defining the structure and properties of 
the service repository.  In the next section (section 2) we review research literature on 
service life-cycle management and service repositories. The following section (sec-
tion 3) is a description of the proposed service repository structure for cloud service 
consumer life-cycle management, and section 4 contains our conclusions and propos-
als for future work. 

2 Related Work 

The life-cycle of a cloud services involves different stakeholders that include service 
providers and service consumers that participate in delivering cloud-based enterprise 
applications and ensuring runtime management of cloud services. Generally, service 
life-cycle management includes three types of activities: design time, runtime and 
change time activities. Although cloud service life-cycle is still a subject of extensive 
investigation, there is a general agreement in the literature about the individual life-
cycle phases and the need for a service repository to support life-cycle activities. 

In early research, Yelmo, et al. [6] describe user-centric service life-cycle manage-
ment for telecom services. The authors focus on Service Lifecycle Manager and the 
Service Execution Environment modules of the OPUCE platform (Open Platform for 
User-centric service Creation and Execution). In OPUCE, a service repository is used to 
store service description including all related attributes e.g. service type, descriptions, 
and the terms and conditions of use. Services are specified using three sets of facets  
(i.e. description of a specific aspect of a service): Functional facets, Non-functional 
facets and Management facets. Vitharana and Jain [7] introduce a Knowledge Based 
Component Repository (KBCR) for enabling requirements analysis. The repository 
includes basic information about services (name, version, functionalities, and QoS  
attributes), facet information, business process templates, relationships among compo-
nents, and provides support for a search capability. Yu, et al. [8] propose a semantically 
enhanced service repository for user-centric service discovery and management.  
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The repository consists of two main components: a service registry for storing and man-
aging service metadata (i.e. service name, service version, provider and service descrip-
tions) and a service discovery component that allows discovery of services. Lakshmi 
and Mohanty [9] describe the design of a scalable service repository implemented using 
a relational database supporting algebraic operators for service composition using Com-
position Search Trees. The database service includes five tables: Providers, Services, 
Parameters, Service Input and Service Output. Service providers are categorized by 
reputation (using categories Best, Good, Average and Below Average), and services are 
classified using QoS attributes. This information is used to search for services in the 
registry and to compose business process based on identified services.  

Shetty and D'Mello [3] review service repository strategies and service discovery 
techniques with the aim to support diversity of cloud services. The cloud service  
discovery feature supports search and browsing of services based on functional and 
non-functional properties. Authors classify discovery methods according to different 
architectures of the cloud service repository into centralized architectures and distrib-
uted architectures. They also describe the various service discovery algorithms used 
in the literature for cloud service discovery such as functional description based 
methods: keyword (syntactic) based discovery, semantic based discovery and hybrid 
matching.  Non-functional description method that includes static and dynamic QoS 
based methods. A method for managing integrated life-cycle of cloud services was 
proposed by Joshi, et al. [10]. The authors have identified performance metrics asso-
ciated with each life-cycle phase that include data quality, cost, and security metrics 
based on SLA (Service Level Agreement) and consumer satisfaction, and they have 
proposed a service repository with a discovery capability for managing cloud services 
life-cycle [1]. The authors divide cloud services life-cycle into five phases: require-
ments specification, discovery, negotiation, composition, and consumption. During 
the service discovery phase, service consumers search for services using service de-
scription and provider policies in a simple services database. Service information is 
stored as a Request for Service (RFS) that contains functional specifications, technical 
specifications, human agent policy, security policy, and data quality policy. 

Field, et al. [11] present a European Middleware Initiative (EMI) Registry that uses a 
decentralised architecture to support service discovery for both hierarchical and peering 
topologies. The objective of the EMI Registry is to provide robust and scalable service 
discovery that contains two components: Domain Service Registry (DSR) and Global 
Service Registry (GSR). Service discovery is based on service information stored in 
service records that contain mandatory attributes such as service name, type of service, 
service endpoint, service interface, and service expiry date. Vukojevic-Haupt, et al. [12] 
proposed a service selection method for on-demand provisioned services. Services are 
provided by a third party provider and service consumers have no knowledge about the 
implementation and the underlying infrastructure that supports the delivery of services. 
Authors develop an entity relationship diagram of the service registry that contains  
service information and metadata, including functional and non-functional properties, 
service configuration parameters, service provider information, functional description  
of the service, and QoS attributes. In a recent publication Bauer, et al. [13] present  
the design of an advanced SOA repository enriched with analysis capabilities.  
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The repository contains various types of services and their relationships. Authors  
propose a meta-model for repositories to analyse service dependency and the impact of 
changes.  

Most of the research publications reviewed in this section focus on service selec-
tion and discovery. Our service repository design aims to cover the entire life-cycle of 
cloud services from the perspective of service consumers, and includes the phases: 
requirements specification, service identification, service integration, service monitor-
ing and service optimization. 

3 Repository Support for Service Consumer SDLC  

As noted in our previous work [5], traditional SOA systems development methodolo-
gies do not explicitly differentiate between service provider and service consumer 
SDLC cycles. In the context of cloud computing, service providers and service con-
sumers are separate entities that perform different tasks throughout their SDLC cy-
cles. Service providers are responsible for the implementation and delivery of cloud 
services and service consumers are primarily involved in the selection and integration 

of suitable cloud services into their enterprise applications.  As illustrated in Figure 1, 
we identify five SDLC phases of the service consumer life-cycle: requirements speci-
fication, service identification, service integration, service monitoring and service 
optimization. These phases can be classified into design-time activities that include 
requirements specification, service identification and service integration, and run-time 
activities that involve service monitoring, and service optimization. The information 

Fig. 1. Cloud service consumer life-cycle 
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held in the service repository is used to manage services and to define service compo-
sitions that are executed by the workflow engine at runtime. In the following sections 
we consider information requirements for the individual life-cycle phases and define 
the structure and properties of the service repository.  

3.1 Requirements Specification 

The service requirements specification phase involves description of functional and 
non-functional requirements that a given service needs to fulfil. Functional specifica-
tions of the service describe what functions the service should provide. While there 
are differences in the specification according to the type of service (e.g. application 
service, infrastructure service, etc.), typically the specification includes technical  
details of the service interface (e.g. WSDL interface) and may also include details of 
the technological environment (e.g. specific hardware platforms, programming lan-
guages, etc. in the case of infrastructure and platform services). The non-functional 
attributes include service availability, response time, and security requirements, and 
may also include requirements regarding data location, security certification and the 
maximum cost of the service. Once the service is fully described and classified, the 
service consumer creates a Request for Service (RFS) and records the information in 
the service repository [10]. 

Fig. 2. UML diagram of the Service Repository  
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Table 1. List of repository attributes  

Attribute Description 
Service  
 ServiceName The unique identifier of the service 
 ServiceDescription Description of the service 
 SLA Service level agreement 
 SupportUrl URL of the support page of the service 
 ServiceCost Cost usage plan of service 
 ServiceSecurity Security characteristics of the service 
 ServiceStatus Service status, e.g. online, offline or retired 
 ServiceType The type of service (on-premise, cloud or composite) 

Service version  
 EnpointUrl Network location of the service 
 Version Service version number 
 WSDL WSDL specification of the service 
 Availability Service availability (estimated) 
 ResponseTime Service response time (estimated) 
 AdaptorUrl Network location of the service adaptor 

Operation  
 OperationName Service method name 
 ServiceParamater Service method parameters   

EnterpriseApplication  
 ApplicationName Name of application 
 Specifications Application specification requirements 
 UsingServices List of services are using in this application 

ServiceLog  
 ExecutionStartTime The start time of service execution 
 ExecutionEndTime The end time of service execution 
 LogMessage Log message (e.g. error message) 
 AuditStatus Service outcome (i.e. success or failure)  

ServiceCategory  
 CategoryName Service Category Name 

ServiceProvider  
 ProviderName Service provider name 
 Website Service home page or customer support page 
 Phone Customer service hotline 
 SupportEmail Customer support email 

 
Figure 2 show the initial version of service repository UML (Unified Modelling 

Language) diagram, and Table 1 is a list of repository attributes derived from the 
UML diagram. Service is a central entity of service repository and includes attributes 
that describe registered services including service identification, a range of functional, 
non-functional attributes, and SLA description. In order to manage service evolution 
and keep track of changes of service functionality, information about Service Versions 
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is stored in the repository. Operation is associated with service versions as it is possi-
ble for different versions of the service to have different operations when the service 
evolves. Service Category is used to categorize services according to service type 
resulting in a service type hierarchy illustrated in Figure 3. The concept of service 
substitution is represented by the replaces relationship that identifies services with 
same functionality (e.g. two payment services with identical functionality) that pro-
vide alternatives that can be used to improve service availability, or to replace ser-
vices to reduce the cost and improve performance. Service substitution information is 
used at design time to support load balancing and failover features. Service Provider 
represents service providers and contains service provider attributes listed in Table 1. 
Service Log records runtime information that includes response time, results of ser-
vice invocation, and other non-functional attributes collected at run-time and used for 
analysis of service performance. Each service can be used in a number of Enterprise 
Applications, and each enterprise application can use a number of registered services.  

3.2 Service Identification 

Service identification is constrained by the functional and non-functional require-
ments documented in the previous phase (requirements specification phase). Service 
identification phase uses service category hierarchy (Figure 3), and functional and 
non-functional attributes of the service identified during the service requirements 
phase. Service repository has a web-based user interface which allows consumers to 

search for services based on their category and QoS information. Service identifica-
tion phase begins by searching the service repository, attempting to match the  
requirements specified in the previous phase with services that are already registered 
in the repository and certified for use. If no existing service matches the requirements, 
the service consumer will need to search for the candidate services available from 
cloud service providers, or contact a preferred service provider directly to locate  
a suitable cloud service. In addition to selecting a suitable the service, the identifica-
tion phase involves service testing and approval. Service approval is an internal  

Fig. 3. Partial service category hierarchy 
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certification process that certifies cloud services for use in enterprise applications 
within the organization. Given the large number of available cloud services, the selec-
tion of suitable services can be time consuming, in particular if this task is performed 
multiple times in the context of different projects that require similar services. Using 
the consumer service repository to store information about approved cloud services 
ensures that services are shared among different projects, and that service selection 
and approval process is not unnecessarily repeated. In some instances, the consumer 
may be able to negotiate details of the SLA with the service provider, although this 
will depend on the type and volume of services involved. 

3.3 Service Integration 

Following the service identification phase, cloud services need to be integrated into 
consumer enterprise applications. Following the registration of the enterprise applica-
tion, relevant services are identified and composed to implement the desired business 
functionality using services that have been already certified and are recorded in the 
repository. The service substitution information is used to compose services. The design 
of a composite service involves searching for atomic services that match the require 
ments of enterprise applications and composing these services to define a suitable run-
time execution sequence. For example, the online shopping process illustrated in Figure 
4 includes a composite payment service composed of three different (atomic) payment 
services: PayPal, SecurePay and eWay. This composite payment service is used to load-
balance the payment services, and at the same time provides a failover function that 
handles situations when a particular service becomes unavailable. This improves both 
the availability and the reliability of the enterprise application.   

Fig. 4. Composite payment service for online shopping process 
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3.4 Service Monitoring 

The service monitoring phase involves monitoring activities that take place at runtime 
and includes the management of service utilization. Typically, both the service pro-
vider and service consumer perform service monitoring independently, and both par-
ties are responsible for resolving service quality issues that may arise. The service 
repository includes information that records runtime performance of services (i.e. 
response time, availability information, and various type of error messages) generated 
by the Notification Centre that records service status of cloud services in the runtime 
service log. This information is used by application administrators to monitor service 
utilization, plan maintenance activities, and to perform statistical analysis of response 
time and throughput for individual cloud services. Maintaining accurate QoS statistics 
in the service repository enables to compare the values of QoS attributes defined in 
the SLA against the actual (measured) QoS values. 

3.5 Service Optimization 

Service optimization phase is concerned with continuous service improvement. This 
can be done by replacing existing services with new versions when these become 
available, or by identifying substitute services from a different provider that have the 
same functionality. For example, the payment service PayPal could be replaced by the 
SecurePay service, based on information stored in the repository during the monitor-
ing phase. Service repository supports the process of service optimization allowing 
service replacement without impacting on existing enterprise applications. In addition 
to optimizing individual services, entire business processes can be optimized by re-
designing the constituent composite services.  

4 Conclusion 

The main difference between service provider SDLC (i.e. traditional service lifecycle as 
described in the literature) and service consumer SDLC is the focus on service integra-
tion and runtime management of services. Cloud service integration is a design-time 
activity that relies on accurate description of service interfaces and associated QoS at-
tributes to allow service composition and definition of service execution sequences to 
implement specific business functions. Run-time activities include failover management 
and ensuring satisfactory levels of service quality to maintain continuity of operation. 
To achieve these objectives, designers must be able to match desired QoS attributes 
values against information stored in the repository and to define processing rules that 
determine the sequence of service execution at run-time [14].   

Well-designed service repository is critical for the support the various activities 
throughout the consumer service life-cycle. In this paper, we have described the de-
sign of service repository that supports the information requirements of the life-cycle 
phases: requirement specifications, service identification, service integration, service 
monitoring and service optimization. Service repository structure includes both func-
tional and non-functional attributes allowing a full description of the service for the 



180 H.T. Tran and G. Feuerlicht 

purpose of creating RFS (Request for Service). Structuring service specification using 
service category hierarchy allows accurate matching of services based on service type 
and QoS attributes. During the service integration phase, service designers use this 
information to implement composite services with desired run-time properties (i.e. 
failover capability and load balancing).  

In conclusion, our service repository design supports both design time and runtime 
activities throughout the service consumer SDLC. We are currently in the process of 
implementing the service repository using Microsoft SQL Server database and further 
enhancing the design of the repository. 
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Abstract. A major challenge facing cloud migration is the need to
change a legacy (on-premise) application’s source code so that it can
better benefit from the inherit cloud computing characteristics, such as
resource elasticity and high scalability. When performed manually, those
changes are error-prone and may require a great effort from application
developers. This paper presents a novel approach to support organiza-
tions in automatically adapting their existing software applications to
the cloud. The approach is based on the loosely-coupled implementation
of non-intrusive code transformations, called cloud detours, which enable
the automatic replacement of local services used by an application with
similar or functionally-related services available in the cloud. To illus-
trate the approach, the paper reports on how an initial set of cloud
detours, implemented using aspect-oriented programming and a generic
cloud library, was used to seamlessly adapt an existing file-based Java
application to save application data in a cloud-based storage service.

1 Introduction

Despite the several advantages commonly associated with the cloud comput-
ing paradigm, e.g, greater control over operational costs, the illusion of infi-
nite resources, high scalability, and self-service on demand [3], in practice many
organizations have found it difficult to use cloud-based solutions, particularly
when faced with the need to migrate existing legacy applications to public cloud
providers [14]. As opposed to cloud adoption, which means that an organization
will use cloud resources and technologies to develop new cloud-native applica-
tions, the term cloud migration implies that the organization already has existing
software that must somehow be adapted to better suit (or to better benefit from)
the target cloud platform [11].

Cloud migration decisions are inherently complex since they are influenced
by multiple, possibly conflicting factors, such as cost, performance, security and
legal concerns [4]. In addition, applications developers must carefully consider
possible technical restrictions that may hinder (or even prevent) the migration
c© IFIP International Federation for Information Processing 2015
S. Dustdar et al. (Eds.): ESOCC 2015, LNCS 9306, pp. 181–195, 2015.
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process, such as when the legacy application relies on implementation technolo-
gies that violate environmental constraints imposed by the target cloud plat-
form [7]. Another challenge consists of modifying or adapting the legacy appli-
cation such that it can take advantage of available cloud services and resources,
for instance, by replacing an on-premise relational database by a cloud-based
NoSQL storage service, a form of adaptation commonly referred to as cloudifi-
cation [2,13].

Although some recent work on automatic cloud conformance-checking [7] and
the systematic classification of cloud migration types [10] and patterns [2,13]
have started to partially address those challenges, there is still a lack of (semi)
automated tools to support the cloud migration process [11]. This limitation
implies in a more complex and error-prone migration effort, since the necessary
source code changes have to be performed manually by the developer, requir-
ing both a deep understanding of the software’s internal structure as well as a
detailed knowledge of the target cloud’s libraries and APIs. Even in the cases in
which the necessary software adaptations can be fully or partially automated,
such as in the work described in [12], those are usually performed intrusively,
by directly changing the legacy application’s source code. As a consequence,
the adaptation code becomes tightly coupled to the specific cloud resources and
libraries used when performing the changes, making it harder for the developer
to reuse the adaption code across different applications as well as to evolve the
adapted application to use different cloud services and providers.

This paper presents a novel approach to support the automatic adaptation of
legacy (on-premise) applications to the cloud. The proposed approach is based
on the modular specification, implementation and reuse of non-intrusive code
transformations, called cloud detours, which enable existing legacy applications
to use existing cloud resources and services seamlessly, without the need to
change their original source code directly. The approach is implemented by an
event-based framework that decouples the adaptation mechanism that is non-
intrusively injected into the application source code, from the cloud-specific
libraries and APIs used to invoke the target cloud services. In this way, the
chosen adaptation mechanism and cloud libraries can evolve independently, giv-
ing the developer more freedom to reuse the adaption code in other applications
sharing the same development or execution environment as well as to experi-
ment with different cloud technologies. This approach can be particularly useful
during the early stages of the migration process, when comparing the services
offered by different cloud providers may play a key role in helping individual and
organizations in making informed cloud adoption decisions [4].

The remainder of the paper is organized as follows. Section 2 compares our
approach with related work. Section 3 presents the main concepts behind the
proposed approach, while Section 4 describes its supporting event-based frame-
work. Section 5 illustrates the feasibility of the approach by reporting on the
successful use of our framework to seamlessly adapt an existing file-based Java
application to save application data in a cloud-based storage service. Finally,
Section 6 provides some conclusions and directions for future work.
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2 Related work

Jamshidi et al. have recently presented a systematic literature review where they
discuss and compare several cloud migration strategies and techniques [10]. To
this end, the authors introduce the Cloud Reference Migration Model (Cloud-
RMM), which provides a conceptual basis to classify existing cloud migration
approaches according to three main migration tasks, namely planning, execution,
and evaluation. In addition, the authors consider complimentary approaches that
address managerial issues, such as governance, effort estimation and risk analy-
sis, as crosscutting concerns of the model. Our adaptation approach fits within
the execution task of Cloud-RMM and addresses one of the main challenges iden-
tified by that study, which is to offer automated support for the cloud migration
process [10].

Early works on cloud migration have focused on automatically detecting
potential incompatibilities between the legacy application and the target cloud
environment [6], on model-based transformation of legacy applications in to
cloud services [14], and on providing high-level process support for cloud migra-
tion [4]. Another related work in this direction is an architecture-centric migra-
tion framework which includes pre-migration tasks and decisions, such as the
development of a migration plan [1]. Our work on cloud detours can be seen
as complementary to those works, as it provides a flexible, non-intrusive way
to implement the necessary adaptations in the source code of the applications
being migrated.

In another related research line, Andrikopoulos et al. have identified four
migration types, namely, replace, partial migration, migrate the whole execution
stack, and cloudify, according to the different application layers and adaptation
levels required to make the migration possible [2]. In a similar fashion, Mendonça
has identified two main migration strategies, namely cloud hosting and cloudifi-
cation, with the former representing the case in which some (possibly modified)
application components are hosted in the cloud and the latter the case in which
those components are replaced by functionally-related cloud-based services [13].
In the context of those works, our adaptation approach follows the cloudification
strategy, based on the replace migration type, since it non-intrusively transforms
the original application source code to replace some of its original components
with equivalente services in the cloud.

Finally, Kwon and Tilevich have propose the concept of cloud refactor-
ings [12], which are code transformations used to automatically integrate
on-premise applications to cloud-enabled services. The proposed code transfor-
mations are implemented by means of an IDE plugin and a recommendation
tool based on static analysis and runtime monitoring of the application being
migrated. Differently from our work, cloud refactorings follow a fully intrusive
adaptation approach, since the refactoring tool changes the original application
source code directly. As we have discussed previously, this approach makes it
harder for the developer to experiment with different adaption mechanisms and
cloud technologies, as those are hardcoded in the implementation of the cloud
refactoring plugin.
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3 Cloud Detours

Our cloud adaptation approach is based on the assumption that the change sets
required to implement the desired software adaptions should be grouped into
reusable assets called cloud detours. The idea is that developers could reuse these
assets across different applications and execution environments, thus reducing
the overall time and effort involved in the migration of existing (on-premise)
applications to the cloud.

More specifically, a cloud detour is a non-intrusive reusable artifact contain-
ing source code change sets necessary to adapt applications to be hosted in a
cloud environment or to use available cloud services. Developers may use cloud
detours to automatically adapt on-premise applications, thus avoiding the risks
and drawbacks involved when modifying the source code directly. Besides accel-
erating the migration process itself, cloud detours also can be useful to gradually
adapt different parts of the application before fully migrating the whole appli-
cation to the cloud.

Due to its non-intrusive design, a cloud detour needs to be aligned with the
architecture and technologies of the local and target environments. In our work,
we focus on cloud detours that are designed to adapt multi-layered software
applications, by replacing services at a certain application layer with equivalent
services in the cloud.

In a multi-layered application, each layer provides a set of services for the
upper layers. This increases modularity and reduces the coupling between appli-
cation components. Cloud detours benefit from this design by overriding local
application services with services provided by the target cloud environment at
execution time.

Cloud detours also can be defined in terms of elements that are external to the
application. For instance, in a web application that is hosted by an application
server that provides transaction control and persistence services, a cloud detour
can be used to replace those services by similar ones in the cloud. In our work,
we call such basic services and elements as operating services.

Figure 1 depicts the cloud detour architectural model. The dashed arrows
highlight the different architectural levels at which a cloud detour can be used
to adapt an application. Note that, depending on the chosen level, a cloud detour
can be used to replace services that are either internal or external to the appli-
cation being adapted. Choosing a proper adaptation level is important since
each level restricts the suit of adaptation technologies as well as the context
information available for implementing detours.

At the application level, a detour’s adaptation logic can be implemented in
terms of the components, patterns and technologies being used by the application
itself. When defined at that level, a detour can access source code elements like
units, classes, methods and parameters, and can be implemented using source
or binary code instrumentation mechanisms, such as aspect oriented program-
ming and meta-programming. As an example, we can cite a detour to adapt a
Java application that initially accesses data through a certain (internal) local
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Fig. 1. Application architectural model and detour opportunities.

data service and, after adaption, replaces that service with a similar cloud-based
storage service.

At the operating level, a detour’s adaptation logic can be implemented in
terms of elements belonging to the underlying execution environment or oper-
ating system (e.g., virtual machine or sandboxes APIs, low-level libraries). The
context information available are system calls, libraries and environment vari-
ables. Implementing cloud detours at that level requires non-code based inter-
ception mechanisms like library overloading and function interposition.

Cloud detours are usually much easier to implement at the application level
than at the operating level. This is because application level detours can be
defined in terms of syntactic elements that are clearly visible in the application
source code, while operating level detours require external system knowledge of
the underlying execution platform that are not easily accessible to most appli-
cation developers. On the other hand, application level detours tend to be less
reusable as they rely on structural and contextual information that may be too
specific to a given application.

Considering the same adaptation scenario described above, adapting a new
Java application to use the same cloud-based storage service would require a
new detour, as the implementation of the original detour would be too tightly
coupled to the source code elements of the original Java application.

4 Cloud Detours Framework

The Cloud Detours Framework (CDF) provides a library of detours as well as
the needed backbone to deploy them as part of the execution flow of existing
legacy applications. This section describes the CDF design and its current imple-
mentation as a proof-of-concept for our cloud adaptation approach.

4.1 Domain Model

Figure 2 depicts the DCF’s domain model.
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Fig. 2. Cloud Detours domain model

Detour, as described in the previous section, is the key entity that comprises
the necessary change sets to adapt an application to interact with a cloud service.
It can be extended according the category of services it replaces (e.g., I/O detour,
database detour, messaging detour). Each detour defines a set of hot spots called
interception points that describe the execution points where interceptors are
expected to be injected into the application flow. Interceptors are responsible
for catching the application execution flow and forwarding configured actions
as events. Together, detours, interception points and interceptors comprise the
code instrumentation mechanism provided by the CDF.

Event is the main entity responsible for interchanging data among the frame-
work’s front-end and back-end components. It can be extended according to
the action types it encapsulates (e.g, I/O operation, database access). Chan-
nels interconnect interceptors and adapters and provide a safe path to send and
receive events. Adapters connect the framework’s back-end components to the
target cloud and map the actions triggered in the application to available cloud
service operations. Finally, Dispatchers manage the life cycle of adapters and dis-
tribute incoming events according to the tuple <event, channel, adapter>.

4.2 Architecture Overview

When adapting the system to interact with the cloud, the developer must con-
sider different abstraction levels of services and features, such as modifying
application source code, exception handling, resource allocation and bindings
to external services. Although performing all those adaptations in a single ele-
ment is possible, this would make it a into a high complex and poor maintainable
software artifact. The CDF design addresses this issue by separating the concerns
regarding application interception from those related with cloud interaction. To
this end, the CDF relies on an event-based layered architecture to decouple those
concerns and to allow different levels of abstraction to be softly handled.

Architectural Layers. The CDF architecture is organized in multiple layers
to promote low coupling and high cohesion amongst its components, as well as
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to allow components of different levels of abstraction to evolve independently.
The framework layers are described below:

Interception. The Interception layer interfaces with the on-premise application
or the local environment to capture actions defined as interception points
so that the application’s original execution flow is detoured. Detours are
“first-class citizens” of this layer and are implemented through instrumenta-
tion techniques like aspect-oriented programming and function interposition.
Regarding the abstraction level, detours can be classified as (i) abstract, when
they are generic and not bound to any particular application; or (ii) con-
crete, when they are tailored to specific applications or configured to catch
particular actions. Besides instrumentation, detours also handle other con-
cerns, such as binding code and exception handling, which are implemented
through plain classes, units or other resources available in the local environ-
ment;

Transmission. This layer works as the central hub that connects the Intercep-
tion and Adaptation layers. It provides event distribution, component medi-
ation, location transparency, and mux/demux services. It also is responsible
for physical and logical decoupling among the other layers such that they
could be implemented and evolved using patterns and technologies that best
suit their respective needs. Events and channels are key elements of this
layer;

Adaptation. This layer provides access to cloud resources and services. Dis-
patchers and adapters, its main elements, are responsible for handling incom-
ing events, mapping actions, and integrating with the target cloud. Adapters
are components that execute incoming events as actions. They also col-
laborate with channels to provide a service abstraction to the Interception
layer. Actually, this layer provides a service descriptor by supplying location
(channels), data typing (events) and operation (adapters) to possible clients.
A dispatcher accounts for components coordination in the Adaptation layer.
It manages adapter life cycle, identifies incoming events and associates chan-
nels with respective adapters.

Build and Assembly. The elements of this layer cooperate with elements of
the other layers to accelerate the configuration, building and deployment
of the CDF components in the (local) application environment. The main
elements of this layer are build tools, shell scripts and configuration files.

Event-Reactor Pattern. The Event-Reactor pattern is used in the CDF as a
decoupled way to process events triggered by interceptors while preserving the
latency and synchronism required by the adapted application [15]. This pattern
is implemented through components of the Transmission and Adaptation layers.

4.3 Implementation Details

The CDF design enables the development of its internal components using pro-
gramming languages and technologies that best suit their purpose. In its current
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version, interception components, detours and helper classes are implemented in
AspectJ and Java. Transformation and building mechanisms are realized through
Groovy and Gradle1. Cloud Detours back-end elements, adapters, dispatch-
ers and execution infrastructure are implemented in Python. In the following
we detail some CDF implementation decisions. The CDF source code, includ-
ing its documentation, is publicly available at https://github.com/michelav/
cloud-detours.

Abstract and Concrete Detours. Under the development perspective,
detours are coarse-grained components that comprise aspects, helper classes
(interceptors), general scripts and configuration files. Detours weave intercep-
tors, implemented as plain Java classes, into the application through aspects.
Each detour declares its own building and usage rules, therefore making them
highly cohesive. This reduces the effort needed to extend the framework.

One important flexibility point of Cloud Detour resides on the relation of
abstract and concrete detours. Abstract detours determine life cycle, interface
usage and general behavior for all of its concrete detours. However, they cannot
be instrumented alone since they lack interception points. Concrete detours coop-
erate with abstract ones by providing application-specific interception points and
complementary behavior. Consequently, one must provide a suitable concrete
detour in order to address a different on-premise application.

When instrumenting an application, the detours behave simultaneously as
factories [8], by instantiating interceptors, and as a dependency injection mech-
anism [5], by injecting interceptors in the application seamlessly.

Figure 3 shows the source code for an excerpt of the IO detour provided by the
framework. The abstract pointcut outputStreamAP defines the hotspot develop-
ers should configure in concrete detours. For instance, if someone needs to deviate
all output actions incoming from foo.bar package, she should create a concrete
detour and set it up as pointcut outputStreamAP():within(foo.bar.*).

Cloud Detours Back-End. Events, channels and adapters are packaged
together with the framework back-end. Events are implemented as plain Java
classes and Python dictionaries.

Channels are developed as plain classes that provide send and receive prim-
itives with the purpose of interconnect detours and adapters. Detours chan-
nels delegate low-level transmission procedures to ZMQ communication library.
ZMQ provides asynchronous communication, concurrency control and several
communication patterns (point-to-point, multipoint, pub/sub, broker, etc.) to
its clients [9]. Each channel contains a ZMQ Socket that physically connects the
application to the framework back-end.

Cloud Detours back-end may be deployed in a single remote area, accessible
through local network and serving multiple applications at the same time, or
in local one, executing in the operating system that hosts the application. The

1 http://gradle.org

https://github.com/michelav/cloud-detours
https://github.com/michelav/cloud-detours
http://gradle.org
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public abstract aspect AbstractIODetour {

pointcut fileOutput(File f):

call(public FileOutputStream.new(File)) && args(f);

abstract pointcut outputStreamAP();

FileOutputStream around(File f):

outputStreamAP() && fileOutput(f) {

DetFileOutputStream dfos = new DetFileOutputStream(f);

dfos.configureChannel(channel);

// Injecting new service

return dfos;

}

}

Fig. 3. Abstract IO Detour (code excerpt)

system architect must evaluate variables like quantity of application to be enable
to cloud, solution complexity, event payload size and network latency in order
to define the best deployment method to be used.

4.4 Adaptation Process

Cloud Detours adaptation process comprises stages that demand local system
and target cloud evaluation, selection and extension of detours and reconstruc-
tion of previous application as a new binary artifact. Figure 4 draws the process
that is described as the following steps:

(1) Evaluation. Adaptation scope is defined during this activity. Develop-
ment team collects architectural information of the system, its logical (packages,
components and classes) and physical organization (tiers, protocols, etc). Con-
sidering this information and the target cloud, developers select cloud services
to be used and identify possible restrictions. The team defines which events
will be intercepted and maps them to the available services. In case there is
not a detour capable of intercepting an event, the developers may implement a
new one. Finally, the development team decides the interception points and the
application level of the detours.

(2) Extension. In this step, Cloud Detours is extended to instrument the on-
premise application. Abstract detours are extended according to the category of
events and interception points defined in previous activity. Detours building and
assembly scripts are configured to execute in the local environment. At the end
of this step, concrete detours are created and ready to be applied.
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Fig. 4. CDF adaptation process

(3) Transformation. This step provides a new application binary to be
deployed. One must use the building and assembly mechanism, configured earlier,
to generate a new deployment asset corresponding to the on-premise application
weaved by selected concrete detours.

(4) Configuration. Cloud Detours infrastructure is configured and loaded. At
this moment, developers define the channels distribution and back-end deploy-
ment method as described in section 4.3. Channels must be created and assigned
prior to deployment. At last, the adapters are configured (e.g.: endpoints defi-
nition, authentication and authorization issues, service addresses, etc) to work
correctly with the target cloud.

(5) Deployment. The instrumented application is installed in the environment.
The developers follow the normal directives to install the application in local
environment.

The next section illustrates this process and shows an example of use describ-
ing how CDF can be applied in a third-party application.

5 Example of Use

In this example of use, we evaluate the Cloud Detours in a practical scenario
of adaptation. During the process, we have also investigated the effects of the
framework in the adapted application. For this, we have selected the IO detour
available in the Cloud Detours framework and have measured its performance
by comparing the time for executing IO operations before and after using the
framework.

The remainder of this section details the tasks performed in the evaluation
process and discuss the found results.
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5.1 Tools Selection

The following tools have been selected to this example of use: JSpider2 as the
local application (the one that will be migrated), and Google Storage3 as the
cloud storage service.

JSpider: JSpider is a Java configurable engine to download and store web sites.
It is commonly used to find errors and to perform structural analysis in web sites.
Its architecture is designed as a set of plugins organized in layers that allow the
creation of new tasks. Finally, JSpider makes available a embedded command
line tool. In this example, we address the application components that save the
web site files in the local storage area.

Google Storage: It provides an object-based storage area via Internet that
offers high availability, data replication and protection using OAuth4, an open
authorization standard, as access control. The service users can organize their
objects in containers, called buckets. An object is an data agglomerate submitted
to Google Storage.

In our experiment, each file downloaded by JSpider is submitted as an object
to the Google Storage. Although JSpider organizes its information as files and
directories, Google Storage does not provide a file system abstraction. Hence,
the framework adapter has to map the concepts.

5.2 Evaluation Method

To evaluate the performance of the solution, we have measured the necessary
time for JSpider downloading two web sites that were locally hosted in order
to eliminate the effects of the external network latency. The first one ([S1]) is
formed by several HTML pages containing links for internal and external pages,
all of them summing up 55KB. The second one ([S2]) is bigger (5MB) and has few
HTML pages, but several text and binary files, varying from 500KB to 1000KB.

We can describe the scenarios evaluated in the experiment as:

- Local application ([C1]): the selected application runs with no detours and
stores all of its data in the local file system. This first scenario establishes a
base line to be compared by the other tests;

- Detoured application ([C2]): a new version of the application is generated
after applying the Cloud Detours framework. However, we have used a special
adapter that continues saving the application data in the local file system
instead of sending them to the service in the cloud. This situation allows us
to assess the cost of using Cloud Detours;

2 available at http://j-spider.sourceforge.net
3 available at https://cloud.google.com/storage
4 available at http://oauth.net

http://j-spider.sourceforge.net
https://cloud.google.com/storage
http://oauth.net
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- Adapted application ([C3]): a new version of the application is integrated
to an adapter that uses the cloud storage services. This scenario allows us
to assess how the application behaves after being adapted to the cloud.

The following measurements have been performed in the experiment:

– Tmi, average scenario execution time [Ci] for all iterations (excluding fail-
ures);

– Cdi, detour cost for the web site [Si] calculated by Tm2 − Tm1; and
– Li, cloud latency for the web site [Si] calculated by Tm3 − Tm2.

5.3 Experiment Details

Following the process described in the previous section, we have inspected JSpi-
der’s code and identified that the DiskWriter plugin is responsible by perform-
ing the application’s local disk writing operations. It is implemented in the
DiskWriterPlugin class and is based on the classic file-related classes File
and FileOutputStream of the java.io package to store the files. This way, the
DiskWriterPlugin.writeFile(File, InputStream) method has been defined
as the interception point to be configured in the concrete cloud detour.

After the inspection, we use the IO abstract detour, contained in the Cloud
Detours library, as the interception base element and generate a new concrete
detour defining its coverage area according to the desired package, class and
method. In the implementation of the concrete detour, we have chosen to use
a buffer so the data of each file is sent only after its last update. This strategy
aims at reducing (i) the complexity involved in syncing the memory-stored file
and its respective cloud object; and (ii) the cost of sending the file data.

We have set up the cloud detour process to be executed locally and to be
accessible via interprocess calls (ZMQ sockets). Thus, we not only reduced the
solution complexity, but also eliminated the local network latency while the
events were forwarded to the adapters.

To execute the tests, we have created a Python script that iterates for each
test scenario and register its execution time in a CSV file.

5.4 Results

Figure 5a exhibits the experiment average execution time as the result of 30 iter-
ations for each scenario. We can see that the average execution time of scenarios
1 and 2 were greater for web site 1 than web site 2, event though web site 1 is
smaller. This happened due to the different configurations of each scenario. S2

contains only a single HTML page to be processed, while S1 has several ones.
Therefore, this difference in time is caused by JSpider’s own page processing
mechanism.

The cloud latency for the second web site (L1) was very small and the maxi-
mum value reached by one of the samples was 1,2 seconds. On the other hand, L2
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Fig. 5. Experimental results

grows considerably due to the submission of S2 bigger files. In both situations,
the web sites integrity was preserved.

By assessing the detour costs (Cdi), it was negligible for for C1 and C2 (both
less than 1s). We have also observed that in S2 the average execution time of the
detoured application is less than the one of the original application (Cd2 < 0).
By analysing the values for each sample, we have verified that the ones in the
set (C1, S2) had their execution time greater than (C2, S2), which means that
the detoured application run faster than the original one. Regarding the second
web site, we had (C2, S1) faster than (C1, S1) in 46% of the samples.

To figure this out, we performed a comparison among the writing operations
of the Java IO (java.io and java.nio) and Python APIs . For this, we used
those APIs to write both a binary and a text file in 30 iterations. The writing
average time of the java.io API was 1,48 seconds for the text file and 1,47
seconds for the binary file. Both java.nio and Python I/O API performed
significantly better than java.io as shown by Figure 5b.
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Therefore, we conclude that, due to the low performance of the java.io API,
the adaptation of the application using Cloud Detours improved the execution
time of JSpider during the experiment.

6 Conclusion and Future work

This work proposes a new approach for adapting legacy applications to the cloud,
called Cloud Detours, that is based on non-intrusive software transformations. It
uses the concept of Cloud Detours to intercept the normal application flow and
replace the its provided services by cloud-based equivalent services. A framework
that implements the proposed approach is also shown. Its architecture uses the
Layers and Reactor patterns to make the adaption independent of interception
technology and cloud environment.

Through an example of use in which the framework was used to adapt an
application that uses local storage service to a cloud-based one, it was possible
to observe that Cloud Detours did not affect the correct execution of the appli-
cation. Furthermore, it even improved the application execution time, since the
adaptation mechanism used a file writing library more efficient than the original
one.

As future work we plan to extend the available detours provided by the
framework including new event categories, such as database services. In addition,
we plan to conduct new experiments to assess the necessary effort to set up and
use the framework and to perform new performance measures.
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Abstract. Enterprises use the cloud for unlimited resource, scalability and elas-
tic provisioning along with being able to use state of the art commodity or spe-
cialized solutions available in the cloud. The challenge of this vision is the 
proper and safe integration of on-premise IT-Landscapes with data and applica-
tions in the cloud. To find solutions for integration of classical and cloud envi-
ronments two approaches, top-down and bottom-up, were used. In the top-down 
approach cloud integration patterns were specified based on scenarios. In the 
bottom-up approach cloud integration patterns were based on case study appli-
cation requirements. Results of this paper are novel cloud integration patterns 
for various cloud integration scenarios. 

Keywords: Cloud computing · SOA · Integration · Topology · Patterns · SaaS · 
Public cloud · Private cloud · Multi-cloud 

1 Introduction 

Cloud computing has emerged as one of the key technologies that are or will be 
heavily used by companies. According to a study of IDG Enterprises, 42% of the IT 
decision makers are planning to increase spending on cloud computing in 2015, mak-
ing cloud computing projects the most important IT initiatives [2]. Enterprises with 
large application landscapes benefit from the availability of (potentially) unlimited 
resources and the elastic provisioning of cloud resources. The different service mod-
els are: Infrastructure as a Service (IaaS), Platform as a Service (PaaS); Software as a 
Service (SaaS). Together with the different deployment options (Public Cloud, Private 
Cloud and Hybrid Cloud) these allow for various integration options to optimize 
communication and deal with sensitive data. The hybrid cloud is one of the major 
areas where cloud integration is required and practiced with various levels of success. 
The question is: how to migrate existing enterprise application landscapes to a cloud 
computing environment? Existing enterprise application landscapes are usually based 
on heterogeneous technologies deployed on-premise with a high degree of tight 
coupling between applications in the form of point-to-point integration and sensitive 
data flows unconstrained within the application landscape. This makes the adoption of 
cloud computing challenging. 
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Contribution: This paper examines how on-premise enterprise application land-
scapes can be integrated with private and multiple public clouds and with SaaS avoid-
ing point-to-point integration. Various cloud integration scenarios and topologies are 
described and cloud integration patterns with required middleware are identified. 
Furthermore, we examine how cloud integration contributes to financial benefits. 

This paper is organized as follows: Section 1 gives an overview on existing  
integration patterns; section 3 focuses on the integration problem in more detail; in 
section 4 we introduce the approach we used to find suitable integration patterns; 
section 5 shows our results. The last section concludes our work and discusses future 
research. 

2 Integration Patterns and Related Work 

Patterns represent the collective experience of software experts and allow for the cost 
effective implementation of software’s non-functional requirements reducing devel-
opment cost from 10%-35%, improving time to market up to 20%, and reducing 
maintenance costs by 15%-20% [5]. Proven message exchange patterns (MEP) pat-
terns are used similarly in enterprise landscapes to integrate services and applications 
without harming system runtime (e.g. performance) and maintenance requirements. 
Services can communicate synchronously, or asynchronously and may consume bulk 
data asynchronously. The commonly accepted standard for MEPs is defined by the 
Web Service standard [9]. Baros, Dumas and Hofstede discuss interaction patterns for 
orchestrated web services with BPEL [1]. Hophe and Woolf describe general Enter-
prise Integration Patterns [3] like Message Routing, Message Transformations and 
error handling.  

There is extensive literature on how to build a SOA and clouds using design  
patterns. T. Erl examines commonly applied SOA patterns [4], such as Enterprise 
Service Bus (ESB) including service broker, asynchronous messaging, etc., and  
Service Design Patterns for security, messaging, service implementation, etc. Cope, 
Erl et al. identified Cloud Computing Design Patterns to support scalability, reliabili-
ty, or monitoring of cloud environments and applications deployed in a cloud [6], 
[17]. Fehling et-al introduce patterns for cloud offerings and design and management 
of cloud applications [14]. We observe that middleware patterns related to SOA are 
applicable to the cloud. We identified the following categories of patterns applicable 
in SOA and cloud architectures: 

1. Patterns related to the Service Loose Coupling principle. These are implemented 
by the middleware messaging at the communication layer between services. Com-
mon implementations include the components of an Enterprise Service Bus. 

2. Patterns related to the Service Autonomy principle. These involve storage and data 
replication and resource redundancy. 

3. Patterns related to the Statelessness principle, which allows for a state repository 
for improving the availability and reliability of services.  

Cloud usage in an existing enterprise landscape requires more topology-oriented 
patterns to integrate cloud capabilities with existing applications. Such topology  
patterns are not covered by the existing approaches. 
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3 Problem Statement 

Enterprises invested vast amounts of money and resources in the last 40 years in 
building their own IT infrastructure, services and applications. With the advancement 
of the software industry many of these solutions are nowadays implemented by 3rd 
party providers in clouds and are available for reuse. The locally implemented CRM 
system or payments infrastructure that evolved over time and cost millions, no longer 
bring any competitive advantage and may become a cost factor that does not allow for 
prompt satisfaction of new business requirements. Using applications in the cloud is a 
way to increase organizational agility and reduce operational costs. 

Multi-Cloud 
Access to cloud implementations is constrained by regulations, company policies and 
billing policies. National laws may prescribe encryption for storage of data and disal-
low the replication of sensitive data to other countries. Other laws may prescribe that 
the operational data of a company related to a country lie within the borders of the 
country, even if the server hubs are in another country. SaaS offerings do not always 
guarantee confidentiality or controlled access for the data and where and how tempo-
rary state data is stored. Further, there are limitations in the products and policies of 
cloud providers, in particular billing. 

Enterprises have the choice to use multiple cloud providers. The sensitive data may 
be hosted in one cloud (potentially private), the CRM system may be supported by a 
public (3rd-party) cloud provider, the payments by another public cloud provider and 
the archives may be hosted in a third cloud that has better prices for storage of large 
amounts of data, provides discovery and encryption, and guarantees storage within 
national borders. A fourth provider may provide data warehouse services with big 
data analysis for marketing purposes. Further, a provider may charge only for retriev-
al of data and not for the amount of data stored, while another provider charges only 
for storage of data but not for CPU consumption or file download. Assuming that 
everything else is equal, it is financially beneficial for an organization to use the for-
mer to store huge amounts of data and to use the latter to process data. In order to 
maintain decent operational costs and take advantage of the modern implementations 
of applications in the cloud, an international enterprise will decide to use different 
cloud providers for different applications. 

 

Fig. 1. Potential Architecture 

This distributed solution (Figure 1) is not an extreme scenario. Financial institu-
tions, pharmaceutical companies, big travel agencies, almost all companies in devel-
oped countries face this dilemma. If they do not use technologies on the cloud they 
are confronted with high IT development and operational costs, while usage of these 
technologies from a single cloud provider will most probably result in legal issues, 

SaaS DWH SaaS CRM Public Cloud Archive Private Cloud Sensitive Data
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non-optimal operational costs and vendor locking costs. Statistical results are pro-
vided in [15]: the majority of the companies in the UK that use cloud purchased offer-
ings from three vendors, although they prefer to use only one vendor. 

Coupling in Enterprise Landscapes 
Traditionally, the main implementations in the cloud involved single isolated applica-
tions with minimal dependencies to other applications; provisioning of market data; 
exchange rate calculations; auction systems; real estate databases; time plans; etc. 
Such systems are typically isolated from other applications, can be managed online, 
or fed asynchronously with data. Their migration to the cloud (or reuse of a SaaS 
offering) requires mainstream technologies and affordable effort.  

But what happens if a single application is already integrated with several other 
applications that require a number of mandatory components to function properly? 
Migration of all dependent applications at once is associated with high risks and lack 
of any ROI (Return of Investment) in the first years after the project starts. A step-by-
step migration reduces the risk and may show ROI shortly after each application has 
been migrated. This is however architecturally challenging.  

The first step is the migration of internally hosted applications to a single cloud  
environment. This results in Single-Cloud Integration. Compared to Simple SaaS 
Integration, the integration effort is substantially higher. Due to dependencies, the 
externally hosted applications cannot operate without the depending internal systems. 
If more parts of this application ecosystem are deployed externally, reliable intra-
cloud communication is necessary. 

Multi-Cloud Integration 
Services deployed and integrated in different clouds must be orchestrated so that they 
provide support for end-to-end business processes or for support of different kinds of 
processing. Credit applications may be created in a CRM system in one cloud; rated 
by experts in an in-house application with proprietary rating models; sent back to the 
CRM application; formalities and other documents are collected and archived in a 
third cloud; and the account opens in the private cloud. 

These activities involve separate systems where each system does not know about 
the other. The CRM does not know the rating models, and the archive is agnostic to 
either of them. A separate orchestration mechanism must be available that allows for 
the flow of data and consistent state transition in the objects across the clouds. Notice 
that this orchestration manages long running transactions that tend to accumulate 
substantial state during their execution, including confidential data. 

Access Control, Integrity, Confidentiality 
Public access to the clouds and exchange of data across geographic locations intro-
duce difficulties that must be resolved. The communication between CRM and an 
electronic archive of customer documents, or between CRM and payments systems, 
must have confidential customer info either stripped or encrypted, otherwise confi-
dentiality may be compromised. Customer or transactional data can be patient data, 
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the subjects of a medical experiment, the composition of a new substance, the client 
of a bank, etc. 

Cross border constraints may further impose constraints on solutions. In several in-
dustries in the EU and the US, there are restrictions on the storage of customer data in 
other countries. For example medical data or certain formalities in the financial indus-
try may not even leave the country from where they have been created.  

Many organizations check security constraints only in the simple context of the ap-
plications that need to exchange data. Most organizations do not check security in solu-
tions involving different applications in different clouds. In the cloud however, security 
requirements like authentication and authorization have to be implemented for the 
whole business process, i.e. over several clouds with different technical infrastructure. 

4 Methodology 

In this section we describe the process for identifying cloud integration patterns. The 
landscape is within Credit Suisse AG, a large organization in the financial services. 
The variety, variance and criticality of the requirements across domains in this indus-
try allow us to examine a lot of useful and challenging use-cases involving the cloud. 
The analysis is done in three steps: 

1. current state analysis 
2. top-down analysis  
3. bottom-up analysis 

Each analysis step includes the results of the previous step to improve the evaluation 
results. The following sections describe these steps in detail. 

4.1 Current State Analysis 

The current state analysis identifies the progress in cloud adoption in the enterprise. 
Internal information was collected by interviewing subject matter experts at Credit 
Suisse and combined with statistical data from a Federated Identity provider. Further, 
the current integration architecture of these solutions was analyzed.  

The results are used to define suitable integration challenges in the top down anal-
ysis. The current state analysis reuses the results of different initiatives in the bank. 
Some of these analyze the potential of integrating applications in the private cloud, 
public cloud and multi-cloud to align these concepts with the IT strategy.  

4.2 Top-Down Analysis 

In the top-down analysis significant cloud integration challenges are identified and 
analyzed from a bird’s eye view. The service and deployment models from the NIST 
[12] are used within the study. From the possible integration scenarios we selected 
those that clarify major aspects of multi-cloud integration.  
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The selected scenarios are: SaaS Integration, Public Cloud Integration and the Cen-
tralized and Decentralized Multi-Cloud Integration within Hybrid Clouds. The varia-
tions for PaaS or IaaS integration are not significant for the integration architecture at 
this level of abstraction. For simplicity in the presentation, without loss of accuracy, 
the private cloud is considered as a special case of the public cloud.  

The common problem examined in all scenarios is how service integration  
challenges can be solved by integration patterns. Well-known integration patterns  
(see [3], [4]) are reused and combined together. Different combinations of patterns 
have different advantages and disadvantages and can solve an integration challenge in 
different ways. It is important that we select combinations that have a high score with 
respect to the quality requirements of the overall solution, including financial benefits. 
How do we rate such combinations? Each combined pattern (called a topology pat-
tern) is rated by standardized evaluation criteria. As evaluation criteria we consider 
the system qualities [16], that are, non-functional such as Performance, Latency, 
Availability, Reliability, Extensibility, Maintainability, Security, Integrity, Scalability, 
and Portability across clouds. The SOA principles [4] contribute to the overall success 
of the architecture within an organization. It is imperative that the application of inte-
gration patterns respects these principles.  

4.3 Bottom-Up Analysis: Two Applications 

Different architectures are typically applied in different business domains or applica-
tion areas. The one size fits all is associated with increased risks, high complexity and 
difficulty to obtain results in big organizations. In the bottom-up analysis the impact 
of different, real-life application types and architectures is analyzed. In our study we 
selected two application types that are as diverse as possible in order to identify the 
disparities in integrating cloud architectures in different contexts. One scenario focus-
es on a data intensive application and another on a computation intensive application.  

As data intensive applications we consider applications that handle hundreds of te-
rabytes of data, require data integrity and consistency and allow for discovery of in-
formation in very tight time constraints. As an example of a data intensive application 
we consider a large archive system in the ECM (Enterprise Content Management) 
domain, subject to tight regulatory conditions and able to satisfy requirements for 
investigations and litigation. 

Computationally intensive applications must satisfy real time performance re-
quirements, thousands of transactions per second and with very high availability and 
reliability. Business criticality of such applications increases the importance of these 
requirements. An example application that is also business critical for a financial in-
stitution is a trading system in the Securities domain. 

The applications in these two distinct domains (ECM and Securities) help us to 
identify suitable patterns and combine them in an enterprise cloud architecture. The 
differences in these architectures are then compared against each other. New patterns 
are listed and put into context. Further, we examine the applications in these two do-
mains in an orchestrated environment for providing end-to-end business processes.  
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5 Results 

In this section we describe the patterns that have been identified in our three-step 
analysis. The results are obtained in the order defined in the methodology section, in 
several iterations within our big organization. It is not necessary to complete the state 
analysis in order to continue with the top-down and bottom-up analysis. We proceed 
to the next step with partial analysis results from the previous step.  

5.1 Results from Current State Analysis 

The internal research in the current state analysis indicated an ongoing and growing 
use of cloud service offerings even in a risk averse industry.  

SaaS Integration 
The SaaS integration has been the first integration challenge for our enterprise. The 
initial use of cloud services started with isolated mainstream SaaS applications for 
currency converters, legislation documentation (for the Legal and Compliance de-
partments), registries of companies and business at national level (for checking the 
status of clients), intranet repositories, payments applications, Lombard credit rating 
models, price comparison data, financial instrument databases, etc. SaaS applications 
can be easily used and don’t require long and expensive internal software provision-
ing processes. SaaS is often used for less critical software demands.  

Initially, a SaaS application is designed to provide application functionality iso-
lated from the enterprise network; we call this Simple SaaS Integration. The main 
concern for integrating the cloud applications with the applications of the internal 
environment was the accessibility and usability of the systems using strong authenti-
cation. Thus the integration effort was limited to SSO (Single Sign On) and PKI (Pub-
lic Key Infrastructure) integration to enable implicit but secure login. In these cases, 
further integration into an existing application landscape was neither possible nor 
necessary. No major data flows were required from the applications in the private 
environment to the isolated SaaS in the public clouds. Data could be imported from 
the public SaaS, but there was no confidential out-going traffic, except for user cre-
dentials and certificates. This result is very intuitive and supports the problem state-
ment of section 3. 

As the functionality of this SaaS application is extended the integration effort in-
creases. SaaS market leader Salesforce indicates this through several available service 
interfaces for their application [8]. We call Advanced SaaS Integration any SaaS inte-
gration that goes beyond isolated applications and targets the integration of a web of 
applications across organizations or across clouds. To enable usage of the entire func-
tionality, these applications must be integrated with the services that are currently 
provided by the private enterprise landscape. 
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Complexity of Integration 
Our current state analysis exposed the hard reality that integration in the SaaS context 
is almost always direct Point-to-Point Integration. This covers SaaS to SaaS integra-
tion as well as SaaS to enterprise environment integration. The Point-to-Point Integra-
tion is beneficial only if it is limited to a small number of nodes. In this case it may 
have a straightforward implementation and results in higher efficiency and availabili-
ty due to the direct communication between the nodes. On the other hand, this pattern 
has disadvantages in SaaS service management and maintainability. Each node of the 
service communication is typically proprietary and involves transformations that are 
implemented redundantly in other nodes. The amount of transformations for each 
node has polynomial complexity. Without direct support from a centralized cloud 
infrastructure the result is increased management and maintenance effort (Figure 2). 

 

Fig. 2. Point-To-Point complexity for 3 and 6 Nodes 

Overall, the current state analysis counted 23 simple and 2 Advanced SaaS Integra-
tion nodes. However, we expect that there are nodes hidden behind undocumented or 
external workflows and thus the number of integration nodes is higher in each catego-
ry. A concept for standardizing the integration is needed at an architecture level in 
order to manage the high complexity of point-to-point integration. 

5.2 Results from Top-Down Analysis 

After concluding the current state analysis, a three step top-down analysis was per-
formed. Each step examines the problem: How can the services communicate with 
each other and how do the solution topologies look like? During the analysis, we 
identified different patterns for each scenario. Due to space restrictions we present 
only selected patterns in more detail. These are SaaS Integration, Single-Cloud Inte-
gration, Centralized Multi-Cloud Integration and Decentralized Multi-Cloud Integra-
tion. The full description can be found in [13] along with information on the method 
we used for assessing the benefit of the patterns. In the following we examine each of 
these steps separately. 

SaaS Integration 
Problem: The integration of SaaS applications with applications in the private cloud 
results in Point-To-Point integrations with tight coupling and growing complexity. 

 
Solution: With the SaaS Broker Integration (Figure 3) we introduce an intermediate 
layer in a cloud environment layer by applying the ESB (Enterprise Service Bus) 
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pattern [10]. In this pattern the ESB is deployed to a public cloud. The ESB operates 
as a broker between the SaaS applications and the enterprise environment. It controls 
the communication between the applications in the different SaaS environments. No 
direct communication between the SaaS applications is allowed. 

 

Fig. 3. SaaS Broker Integration Pattern 

Consequences: The SaaS Broker Integration pattern enables centralized control of all 
SaaS communication and scales better compared to Point-to-Point integration. All 
service calls to the internal environment can be filtered or transformed to company 
standards. The single point of failure has negative impact on the availability, even 
though load balancing and failover may cover this risk. A drawback, especially for 
time critical services, is additional latency through transmission of the ESB. This 
effect can be significant if SaaS solutions are distributed in datacenters worldwide. If 
latency in transmission is critical, then direct communication should be preferred. 

A similar solution using intermediate layers for integration among clouds is offered 
by several providers as Integration Platform as a Service (IPaaS) [7]. The difference 
between an IPaaS and the SaaS Broker Integration pattern is the self-hosted ESB in 
the Public Cloud versus a standardized IPaaS platform. 

Single-Cloud Integration (Simple Hybrid Cloud) 
Problem: A single public cloud is integrated with the private cloud. Services are 
deployed to both clouds and need to communicate with each other. 

Solution: By applying the Distributed ESB pattern (Figure 4) we introduce two ESBs, 
one in each cloud. The intra-cloud communication is handled by the corresponding 
cloud ESB. Cross-cloud communication is steered over both ESBs. 

 

Fig. 4. Distributed ESB Pattern 

Consequence: This pattern enables direct intra-cloud communication for each of the 
environments which has positive effects on the latency and availability of the overall 
topology compared to a single ESB in one of the environments This pattern shows 
advantages through the distribution of the ESB infrastructure which enables intra-
cloud and cross-cloud communication. Further, this pattern allows for nodes to oper-
ate independently of the availability of other nodes. A disadvantage is the additional 
management effort for the ESB in the cloud.  
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Centralized Multi-Cloud Integration 
Problem: Multiple Clouds need to be integrated in an enterprise network. Services 
are deployed to all environments and need to communicate with each other. 

Solution: The Internal Cross-Cloud ESB is applied (Figure 5) resulting in an architec-
ture where each of the multiple clouds has its own ESB. All cross-cloud communica-
tion is routed over the internal ESB. The intra-cloud communication is managed by 
each ESB separately.  
 

 

Fig. 5. Internal Cross-Cloud ESB 

Consequence: This pattern supports integration of different platforms across cloud 
providers and decoupling within each cloud. Each cloud provider can select the ap-
propriate brokerage and messaging platform that is available for all the services dep-
loyed within the cloud. The integration with the ESBs of each cloud provider is done 
by the organization’s ESB in the private cloud, which manages the internal, private 
applications storing confidential data. This approach scales very well for different 
cloud providers; big organizations that take advantage of the platforms of each cloud 
provider. Another advantage of this topology is that is allows for centralized cross-
cloud service communication management. The Internal Cross-Cloud ESB pattern is 
useful when the cross-cloud communication needs to be centrally controlled and re-
stricted. Disadvantages are introduced through the additional transaction time through 
the cross-cloud communication. 

Decentralized Multi-Cloud Integration 
Problem: Same problem as in Centralized Multi-Cloud Integration where a centra-
lized ESB is not possible or is not desired. 

Solution: The Peer to Peer Multi-Cloud Integration Pattern (Figure 6) is applied, 
resulting in an architecture where each cloud has its own ESB. The ESB of each cloud 
is able to communicate directly with the ESBs of the other peer clouds. The intra-
cloud communication is managed by each ESB separately. The direct communication 
between each cloud has positive impact on the latency of cross-cloud service commu-
nication in time critical cross-cloud communication and avoids the single point of 
failure in integration. 
 

 

Fig. 6. Peer to Peer (P2P) Multi-Cloud Integration  
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Consequence: A disadvantage of this approach is that cloud providers with different 
platforms must implement broker functionality supporting all the format and protocol 
transformations required for the communication with other cloud providers. This in-
troduces development and integration overhead. Further, it is very unlikely that cloud 
providers are able to support data model transformations required for the exchange of 
data across applications in different clouds. Additionally, high effort is necessary to 
manage this environment centrally. Monitoring of the communication requires addi-
tional components; this increases the complexity and results in additional develop-
ment and maintenance effort. 

This pattern can be implemented through a separate ESB management component. 
Alternatively an existing ESB is the master ESB and collects monitoring information 
from other ESBs. 

5.3 Results from Bottom-Up Analysis 

As mentioned in the Methodology section (4), the patterns identified by the top-down 
analysis have been applied in the bottom-up approach in the two domains. Nonfunc-
tional requirements influence the architectural decisions; e.g. direct communication 
for increased performance vs. hub communication for reduction of costs and in-
creased maintainability. Further enhancements include the support of mission critical 
integration aspects like authentication and authorization, monitoring (including load 
balancing, and usage monitoring) as well as reporting (including billing). 

Topology Description 
In all scenarios the topology consists of three environments. The private environment 
and two public clouds. The internal environment is necessary, because several appli-
cations cannot move to the public cloud. Two different public cloud environments are 
used to ensure the availability of the financial transaction system and to prevent any 
possible data loss and integrity issues in the archive system. Each important applica-
tion layer is redundantly implemented. In the archive system (Figure 7) only the data 
layer is replicated over the clouds. The public cloud B runs as a secondary backup 
solution of the data layer in standby mode. Since business does not require very high 
availability for the online access of documents, the other layers are not replicated. 

 

Fig. 7. Topology View Financial Transaction System 
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The financial transaction system must be fully replicated in two fully operational 
clouds for high availability (Figure 8). Eventual unavailability of one cloud solution is 
recognized by the cloud balancer which routes all service calls to the other cloud. 

 

Fig. 8. Topology Archive System 

Cloud Balancing and Cloud Data Distribution 
We used the Distributed ESB pattern together with the Cloud Balancing pattern [6] 
for integrating different clouds with potentially different loads. Cloud balancing al-
lows for IT resources to be load-balanced across multiple clouds and must not be 
confused with the cloud load balancing which distributes load in a cluster of servers 
within a single cloud. Cloud balancing requires all the mechanisms of the load balanc-
ing and workload distribution, along with the existence of redundant storage and serv-
ers in another cloud. Services can be cloud balanced if they have been provisioned in 
different clouds and user and service provisioning are supported across clouds. 

In our implementation we are using clusters of servers (and hypervisors) within 
each cloud, but we are not clustering across clouds. When a service is load balanced 
to another cloud, then the temporary state of the service persists and can be migrated 
to the other cloud. Additionally, we are using Cloud Data Distribution to distribute 
queries on data across clouds. Data is distributed and replicated across clouds accord-
ing to legal constraints along with requirements for performance and availability.  

In the financial transaction system, the cloud balancer decides whether to use the 
service capabilities in public cloud A or public cloud B. The internal environment 
controls the cloud balancer and is not affected by the unavailability of either cloud.  

In the archiving solution, all document searches and retrievals are balanced by the 
cloud balancer. Along with availability requirements, the documents of different cus-
tomers may be located in different clouds due to legal and regulatory reasons. Appro-
priate mechanisms based on business and technical logic decide which cloud to access 
for different documents. Further, the archives require replication and integrity of the 
data layer in another location. Therefore Cloud Data Distribution mechanisms syn-
chronize the data between different cloud environments.  

Notice that the data distribution across clouds for the archiving solution must satis-
fy the data integrity requirements of the archive. A typical backup solution may pe-
riodically copy data from primary storage to secondary storage at binary level without 
knowledge of the objects represented by these bytes. But, if a document has been 
imported to the primary storage of the archive, and after that has been accidentally 
deleted, the backup to the secondary storage may not notice this import and deletion. 
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The cloud data replication includes checks and business rules that guarantee the inte-
grity of the archive in all environments. 

Security Topology Related Patterns 
In order to establish the trust relation to externally hosted environments in a multi-
cloud topology, we introduced authentication and authorization components in the 
top-down analysis. In the two applications analyzed in the bottom-up approach, all 
nodes use the same authentication and authorization mechanisms. In all clouds we had 
similar LDAP directories and PKI infrastructure and compatible authorization rule 
engines. The authentication and authorization data is synchronized across the external 
environments. This approach centralizes the management and control over the authen-
tication and authorization system and improves the governance of security data.  
However, the synchronization requires some implementation effort. In the financial 
transaction system an identity and service provider is deployed to each cloud. In the 
archive system an identity and service provider is only deployed to the pubic cloud A. 

The authentication and authorization system in each node must be connected with 
the internal master system and the synchronization jobs need to be configured and 
kept up to date. This cost is, negligible compared to the costs of maintaining different 
security mechanisms in each cloud and provisioning users separately in each cloud. 

5.4 Important Insights from Bottom-Up and Top-Down Analysis 

The examination of two real-life business scenarios in the bottom-up analysis gave us 
an interesting insight: Even with significant differences in the requirements, the re-
sulting cloud architectures appeared to be very similar. The important layers were 
redundantly implemented; in the data archive the data layer and in the financial man-
agement system all layers were replicated. In both cases the Distributed ESB, Cloud 
Balancing and Cloud Data Distribution patterns have been applied. Both cases profit 
from the Cross-Cloud Monitoring and Cross-Cloud Security patterns. The former 
allows for performance and load control of the cloud services and the latter enables 
end-to-end security over different clouds. Currently, cross-cloud monitoring requires 
self-developed infrastructure because the monitoring capabilities of the different 
clouds are not (yet) standardized and the clouds use proprietary implementations.  

6 Future Work 

Our paper scratched the surface of cloud integration. Several aspects of cloud integra-
tion need further elaboration. 

Security: Public clouds require significant effort in security measures. Beyond au-
thentication and authorization topology patterns there are numerous other ways to 
secure public clouds like content encryption, key management, homomorphic encryp-
tion, data splitting, computing with encrypted functions, anonymization, data mask-
ing, encrypted virtual machines, etc. Future work may define combinations of security 
patterns to secure a public cloud for targeted trust level. 
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Cloud Middleware: Cloud middleware is emerging (Amazon, RedHat, Mule, etc.). 
To provide cloud elasticity there are slight shifts in cloud middleware. Our analysis 
showed that there is emphasis on asynchronous integration: push asynchronous inte-
gration is replaced with pull asynchronous integration, and there is higher emphasis 
on replication patterns. Further we saw emergence of completely new cloud middle-
ware elements like Cross-Cloud Balancer, Cross-Cloud Data Distributor, etc.  

To facilitate migration of existing IT landscapes to the cloud, a mapping of “old” 
on-premise integration patterns to “new” cloud integration patterns has to be worked 
out along with the definition of standards in balancing, distribution and monitoring. 

Cross-Cloud Monitoring: Today, monitoring capabilities of clouds are limited to a 
single cloud. In a redundant implementation over different clouds, a cloud monitoring 
mechanism is necessary to control the load and performance of cloud services. As 
usual, the main challenge is the lack of standardization of monitoring capabilities, 
formats, and protocols, but also the lack of standard tools for this activity. A monitor-
ing pattern requires a centralized management component which is linked with the 
surrounding environments. The monitoring must deliver reliable and agreed service 
quality during changing demands and be as cost effective as possible. Negative peaks 
and load throughputs must be addressed for checking cost savings. Scaling strategies 
are necessary based on application types (e.g., data intensive: transaction time minor 
relevance, computationally intensive: transaction time highly important).  

Cloud Management: Cross-cloud management solutions enable the possibility of 
optimizing cloud usage and reduce the total cost for the multi-cloud environment 
based on billing information provided by the cloud providers. In combination with the 
service SLAs the service provisioning can be optimized to an optimal cost/value ratio. 
Currently, the cost models of the different cloud providers are not standardized and 
the prediction of the actual cost is hard and complex. Tools for cross-cloud monitor-
ing and billing do not exist, but will be developed in the context of cross-cloud mar-
ketplaces, e.g. provided by Deutsche Börse Cloud Exchange [11]. 

Cloud Adoption: An adoption of cloud solutions into the enterprise landscape is 
driven by the offers of cloud providers and software companies. These offerings, 
especially in the SaaS market, enable the providers to highly standardize their soft-
ware solution on the one hand and limit customization possibilities on the other. What 
cloud solutions can replace existing in-house solutions? What tangible steps are 
needed to migrate existing large-scale application landscapes to cloud based environ-
ments? We expect to see more work examining the degree to which Service Orienta-
tion and other methodologies need to be applied in order to migrate to the cloud and 
new patterns that combine SOA with cloud integration. 

Multi-Cloud Offers: Enterprise cloud users won’t limit their scope to a single cloud 
scenario. Our research indicated that vendors nowadays still focus on secure intra-
cloud solution and don’t offer capabilities for the cross-cloud integration. Reasons for 
the unavailability of cross-cloud support include the lack of advantage for the cloud 
provider and the fact that the cloud adoption process needs to progress further so that 
demands for such functionalities grow.  
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Very high availability requirements, which may not be supported by a single cloud 
provider, can be covered through redundant implementations over several clouds. 
Enabling this scenario through cloud middleware components will address new user 
groups whose cloud requirements aren’t addressed with the existing cloud offerings. 
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Abstract. Acute stroke is the leading cause of disabilities and the fourth cause 
of death worldwide. The treatment of stroke patients often requires fast collabo-
ration between medical experts and fast analysis and sharing of large amounts 
of medical data, especially image data. In this situation, cloud technologies pro-
vide a potentially cost-effective way to optimize management of stroke patients 
and, consequently, improve patient outcome. This paper presents a cloud-based 
platform for Medical Distributed Utilization of Services & Applications 
(MEDUSA). This platform aims at improving current acute care settings by al-
lowing fast medical data exchange, advanced processing of medical image data, 
automated decision support, and remote collaboration between physicians in a 
secure and responsive virtual space. We describe a prototype implemented in 
the MEDUSA platform for supporting the treatment of acute stroke patients. As 
the initial evaluation illustrates, this prototype improves several aspects of cur-
rent stroke care and has the potential to play an important role in the care man-
agement of acute stroke patients. 

Keywords: Acute care · Cloud computing · Decision support · High perfor-
mance computing · Medical image analysis · Remote collaboration · Stroke · 
Telemedicine 

1 Introduction 

Acute ischemic stroke is the leading cause of disability and fourth cause of death [1]. 
In acute ischemic stroke, a blood clot obstructs blood flow in the brain causing part of 
the brain to die due to the lack of blood supply. The amount of brain damage and the 
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patient outcome is highly related to the duration of the lack of blood flow (“time is 
brain”). Therefore, fast diagnosis, decision making, and treatment are crucial in acute 
stroke management. 

Medical data of a stroke patient is collected during the transport by ambulance to 
the hospital (e.g. vital signs, patient history, and medication). At arrival, various types 
of image data are acquired following protocols that involve opinions and decisions 
from various medical experts. Sometimes, a patient needs to be transferred to a spe-
cialized hospital and, in this case, it is important that all the data collected in the am-
bulance and at the referring hospital is available to the caregivers that will continue 
the treatment. Often, various medical specialists need to collaborate based on availa-
ble information for determining the correct diagnosis and choosing the best treatment. 
Usually, this collaboration is based on tools that are not connected to each other and, 
because of that, they may not deliver the necessary information rapidly enough. 

In addition to these challenges, the amount of patient medical data is growing fast [2]. 
This fast increase is especially observed in radiological image data, which is also a conse-
quence of new medical imaging technologies [3, 4]. The management, sharing, and 
processing of medical image data is a great challenge for healthcare providers [3, 4] and 
they can be greatly improved by the usage of cloud technologies [5]. Cloud technologies 
also enable collaboration and data exchange between medical experts in a scalable, fast, 
and cost-effective way [5]. Mobile devices, remote collaboration tools, and on-demand 
computing models and data analysis tools supported by cloud technologies may play an 
important role to help in optimizing stroke treatment and, consequently, improve outcome 
of patients suffering from stroke. 

In this paper, we present a cloud-based platform for Medical Distributed Utiliza-
tion of Services & Applications (MEDUSA). This platform aims at improving current 
acute care settings by allowing fast medical data exchange, advanced processing of 
medical image data, automated decision support, and remote collaboration between 
physicians through a secure responsive virtual space. We discuss a case study imple-
mented using the MEDUSA platform for supporting the treatment of acute stroke 
patients, presenting the technical details of the prototype implementation and com-
menting on its initial evaluation. 

2 Related Work 

The development of cloud-based platforms for collaboration and processing of medi-
cal data is a challenging task. Many authors [4, 5, 6, 7] put forward that these plat-
forms hold the potential to define the future of healthcare services. Also, the analysis 
of medical data can be an important way to improve quality and efficiency in health-
care [8, 9]. 

The work presented in [10, 11] focuses on the development of a cloud-based solution 
aimed at only the storage and sharing of medical data. In other words, they propose 
solutions based on cloud infrastructures to facilitate medical image data exchange be-
tween hospitals, imaging centers, and physicians. A similar solution is presented in [12], 
however focusing on medical data sharing during emergency situations. A cloud-based 
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system is presented in [13] for storage of medical data with an additional functionality 
that enables content-based retrieval of medical images. Still focusing on cloud-based 
data storage and sharing, [14] presents a solution to help managing medical resources 
for the prevention and treatment of chronic stroke patients. 

In addition to storage and sharing, some studies also include the possibility of us-
ing the cloud infrastructure for processing of medical data. A simple cloud-based 
application is presented in [15] to monitor oxygenated hemoglobin and deoxygenated 
hemoglobin concentration changes in different tissues. Cloud computing is also used 
in [16] not only to support data storage and sharing, but also to visualize and render 
medical image data. In [17] the authors also propose a cloud application for rendering 
of 3D medical imaging data. This application additionally manages the cloud dep-
loyment by considering scalability, operational cost, and network quality. 

Complete cloud-based systems for medical image analysis are presented in [18, 19, 20]. 
However, in these systems, image upload and download is manually performed by the 
user, while the system focuses on the remote processing, storage, and sharing of medical 
image data. The MEDUSA platform not only provides cloud-based storage, sharing, and 
processing of medical image data, but also real-time communication between medical 
experts, real-time collaborative interaction of the medical experts with the medical data, 
and a real-time decision support system that continuously processes patient data and  
displays relevant notifications about the patient condition. 

The MEDUSA platform also includes a cloud management layer that coordinates 
the use of resources in the cloud infrastructure. Other studies also present some cloud 
management features. In [21] the authors propose a cloud architecture that reserves 
network and computing resources to avoid problems regarding load-balancing me-
chanisms of cloud infrastructures and to reduce the processing delays for the medical 
applications. Also, [2] proposes an algorithm to optimize the organization of medical 
image data and associated processing algorithms in cloud computing nodes to in-
crease the computing performance. Finally, [3] presents a cloud-based multi-agent 
system for scalable management of large collections of medical image data. 

The project presented in [22] tries to speed up current stroke care by integrating 
and sharing data from stroke patients using mobile networks. In this scenario, a hos-
pital can, for instance, be prepared with the right resources before the arrival of the 
patient. This project also includes decision support, which suggests a predefined path 
through the emergency procedures according to the structure of mandatory and other 
supplementary healthcare protocols. However, differently from MEDUSA, this 
project does not include any image processing based feature. 

3 Acute Stroke Care 

Currently, treatment decision of stroke patients is increasingly driven by advanced 
imaging techniques. These imaging techniques consist of non-contrast computed to-
mography (ncCT), computed tomography angiography (CTA), and computed tomo-
graphy perfusion (CTP). Because of the extensive usage of imaging techniques, it is 
common to produce gigabytes of image data per patient. 
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The primary treatment for patients with acute ischemic stroke is intravenous ad-
ministration of alteplase (thrombolysis). Patients who are not eligible for treatment 
with alteplase or do not respond to the treatment can be treated by mechanical remov-
al of the blood clot via the artery (thrombectomy). Thrombectomy is only available in 
specialized hospitals and often a patient must be transferred for treatment. 

This transfer is arranged via telephone and imaging data created in the initial hos-
pital is not available for the caregivers in the specialized hospital until the patient and 
imaging data arrive via the ambulance. On a regular basis it happens that the imaging 
data was wrongly interpreted in the initial hospital and that the patient is not eligible 
for thrombectomy. Also, often new imaging acquisitions have to be redone due to 
broken DVDs, wrong data, or insufficient quality. These problems result in futile 
transfers and loss of valuable time.  

4 MEDUSA Platform 

The MEDUSA platform was designed to support remote collaboration and high per-
formance processing of medical data for multiple healthcare scenarios. The platform 
is accessible to final users through the MEDUSA Collaboration Framework (MCF), 
which is a web application that is compatible with any web browser that supports 
HTML5. The MCF is a special type of MEDUSA application that provides to the 
users an entry point to access other MEDUSA applications. A cloud management 
layer controls the deployment and execution of all MEDUSA applications in one or 
more cloud providers. Figure 1 illustrates the architectural design of the MEDUSA 
platform. 
 

 

Fig. 1. The MEDUSA platform architecture. 

4.1 MEDUSA Cloud Applications 

The MEDUSA platform has a number of cloud applications that are available in all 
healthcare scenarios: Audit Trail, which reports the events generated by the other 
MEDUSA applications; User Manager, which allows assigning roles to users and 

Cloud Management Layer 

MEDUSA Cloud Applications 

MEDUSA Collaboration Framework 

User Manager Video Call Audit Trail … 

Cloud Provider 
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defining which MEDUSA applications they can use; and Video Call, which allows 
communication between users of the MEDUSA platform. 

The MEDUSA applications are started as part of a MEDUSA session. Multiple us-
ers in a session can interact with these applications, and these interactions are visible 
to all the users in the session. The handling of multiple user interactions is done by 
each MEDUSA application. The applications in the MEDUSA platform can be web 
applications or regular desktop applications. The desktop applications are integrated 
in the MEDUSA platform through a virtualization server that uses the technologies 
described in [23] and [24]. The multi-user interaction of the desktop applications is 
handled by the virtualization server. 

4.2 Cloud Provider 

The MEDUSA applications can be deployed in different cloud providers. Currently, 
these applications are being deployed in the High Performance Real-time Cloud for 
Computing (HiPeRT-Cloud) of Bull. The HiPeRT-Cloud is mainly designed for real-
time computationally-intensive workloads. This solution is fully compatible with the 
Cloud Computing Reference Architecture of the National Institute of Standards and 
Technology (NIST) and provides infrastructure services under any cloud broker solu-
tion. The HiPeRT-Cloud is used in the MEDUSA platform because it provides solu-
tions for handling complex applications in the field of real-time computational and 
data-intensive tasks in the cloud. 

4.3 Cloud Management Layer 

In order to take advantage of the on-demand, flexible, high-performance, and cost-
effective options that cloud providers can offer, the cloud management layer, imple-
mented by Prologue, manages the cloud deployment in the MEDUSA platform. This 
layer orchestrates the allocation and release of resources on the cloud provider’s in-
frastructure. It also oversees the lifecycle of the deployed resources, ensures their 
availability and scalability, and links the desktop applications from the virtualization 
server back to the MCF. The cloud management layer is designed according to the 
Service-Oriented Architecture model and its functionalities are accessible through a 
Representational State Transfer Application Programming Interface (REST API). The 
cloud management layer also incorporates a monitoring service that operates by ac-
cessing directly the deployed virtual machines (VMs). The technology behind the 
cloud management layer is aligned with the NIST architecture and based on the Open 
Cloud Computing Interface specifications. 

In the MEDUSA context, technical requirements for computing, storage, network, 
and security resources have been identified for each MEDUSA application to be dep-
loyed. All requirements are then translated into machine-readable code that is used to 
provision the cloud resources. 

The components of the MEDUSA platform are hosted on the cloud through a secu-
rity-aware, need-based provisioning process. By supporting on-demand hybrid and 
multi-cloud deployments, as well as monitoring, load balancing, and auto-scaling 
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services through an agent embedded in each VM, the cloud management layer thus 
ensures a high resilience of the MEDUSA platform. 

4.4 Security 

The security of the MEDUSA platform is currently mainly based in the use of digital 
certificates, which are used to authenticate MEDUSA applications (VMs), to secure 
the data exchanges through the network, and to provide strong authentication of 
MEDUSA users. 

The VMs containing the applications are deployed dynamically, and thus server 
certificates need to be created dynamically, during the deployment. A web service 
was developed to provide dynamic generation of server certificates for the different 
VMs in the MEDUSA platform. These server certificates must be created during the 
deployment of the VMs and there must be one certificate per application and VM 
(identified by the IP address). 

Regarding the user authentication, an authentication module is called when a user 
opens a MEDUSA session. This module authenticates a user by checking the pro-
vided credentials against the user management component, which has access to a 
special internal directory containing the certificates used for strong authentication of 
MEDUSA users. 

The MEDUSA platform also uses robust image watermarking and fingerprinting 
methods to prevent and detect unauthorized modification and leaking of medical im-
ages by authorized users by. However, due to legal regulations, an important require-
ment when dealing with medical images is the capability reconstructing the original 
image data. Because of this, reversible or semantic-sensitive techniques for water-
marking and fingerprinting can be used in the MEDUSA platform. These techniques 
enable to completely recover the original image data or at least the recovery of the 
regions of these images that are relevant for the user or application. 

5 MEDUSA Stroke Prototype 

The MEDUSA platform was designed to support various medical scenarios. Here, we 
focus on a prototype for supporting acute stroke care. The MEDUSA Stroke Prototype 
(MSP) is built by combining the default MEDUSA applications with three applications 
specifically configured to support the treatment of stroke patients: Advanced Medical 
Image Processing, Decision Support System, and 3D Segmentation Renderer. All the 
applications of the MSP are executed in VMs running on the HiPeRT-Cloud. The cloud 
management layer is in charge of the deployment of these VMs. 

5.1 Advanced Medical Image Processing 

For supporting the assessment of the severity of a stroke, several medical image 
processing algorithms (MIPAs) have been developed. These algorithms perform 
quantitative analysis of the medical image data and the result of these analyses can be 
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used to support the treatment decisions. The output of these algorithms are, for exam-
ple, the segmentation of a hemorrhage in the brain [25], the segmentation of a blood 
clot [26], and the segmentation of the infarcted brain tissue [27]. The MIPAs are 
linked together into processing pipelines with well-defined input, output, and policies 
that control their execution. The execution of these pipelines is automatically orches-
trated to deliver the lowest execution time based on a set of optimization strategies 
(e.g. task parallelism, data parallelism, and GPU computing). 

The MIPAs are implemented as plugins for the IntelliSpace Discovery (ISD) plat-
form, an enterprise solution for research, developed by Philips Healthcare. Figure 2 
shows the output of the plugin for infarct volume calculation in the ISD. The collec-
tion of MIPAs specially developed to support acute stroke care that are included in 
the ISD constitutes the Advanced Medical Image Processing application of the MSP. 
 

 

Fig. 2. Plugin for automated measurement of the cerebral infarct volume in the ISD. 

The ISD is a Windows desktop application developed by using the .NET Frame-
work. The development of the MIPAs is also based in the .NET Framework. For 
GPU-based computations, OpenCL 1.1 was used. OpenCL is a framework for the 
development and execution of programs across platforms consisting of different types 
of processors such as CPUs, GPUs, etc. OpenCL.NET was used to integrate OpenCL 
with the .NET. Framework. 

The data generated by the MIPAs are exported to the DSS by using JavaScript Object 
Notation (JSON) files through WebSockets. (Anonymized) Patient information is sent 
to the MIPAs by using the tags of the medical image data used as input. The informa-
tion about the current session is directly sent to the ISD and forwarded to the MIPAs. 
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5.2 Decision Support System 

The Decision Support System (DSS) by Sopheon provides real-time process support 
to medical professionals collaborating on the stroke case. The DSS is rule-based: the 
rules specify the conditions under which actions are to be advised (delivered as notifi-
cations). The Decision Support rules are part of a medical protocol and thus defined 
and approved by medical professionals. 

In the MSP, the DSS runs a set of rules specifically designed for dealing with 
stroke patients. It gathers real-time input from vital sign sensors and MIPAs. For in-
stance, a rule could state that an infarct volume larger than 70 milliliters is associated 
with a poor outcome for the patient. When the DSS detects an infarct volume value of 
e.g. 80 milliliters, it will display the notification associated with this condition. The 
DSS also selects relevant information from the data generated by the MIPAs and for-
wards it to the audit trail and to the 3D Segmentation Renderer. 

The DSS runs on Node.js, which is a platform built on Google Chrome's JavaScript 
runtime. The DSS is deployed on Fedora, which is an operating system based on the 
Linux kernel. 

5.3 3D Segmentation Renderer 

The 3D Segmentation Renderer by Sopheon is responsible for displaying 3D segmenta-
tions generated by the MIPAs. This application was developed by using the WebGL 
library, which enables to render 3D graphics in the browser without installing additional 
software. Figure 3 shows the GUI of this application rendering the segmentation of 
brain tissue (in green and blue) and the segmentation of the infarcted region (in red). 
 

 

Fig. 3. 3D segmentation renderer showing the segmentation of brain tissue (green and blue) and 
the infarction in the brain (red). 



222 R.S. Barros et al. 

6 Initial Evaluation 

As this is an on-going project, the discussion presented below is based upon an evalu-
ation of the first fully-integrated prototype. 

The MSP integrates very heterogeneous applications, which run on different opera-
tional systems (Windows, Linux) and use different development technologies (Java, 
OpenCL, C#, C++). These applications are seamlessly available for the user from a 
single interface. Also, the deployment of the applications is transparently handled by 
the platform. This solution is provided in a smooth and transparent manner, hiding the 
complex details from the user. 

In the MEDUSA platform, the data and user input need to cross several software 
layers, which might introduce overheads and decrease performance. However, such 
poor performance was not noticed in the initial MSP prototype. For instance, the Ad-
vanced Medical Image Processing application, which requires data exchange between 
different architectural components, was almost instantaneously ready for use without 
noticeable interaction delays. 

The MSP implements a complete acute stroke use case, which has been demon-
strated live in various occasions. Impressions have been collected informally to assess 
the potential value of this prototype system. Table 1 compares the current stroke care 
situation in the Netherlands versus the stroke care that could be supported by the 
MEDUSA platform based on the functionalities currently present in the MSP.  

Because of its complexity, a detailed and quantitative evaluation of the MEDUSA 
platform involves several software components and requires a careful planning. The 
design of this evaluation was already defined in the first year of the project. It is sche-
duled to take place during the last 6 months of the MEDUSA project (end of 2015). 

Table 1. Current stroke care vs. stroke care with MEDUSA. 

 current with MEDUSA 
Data availability images are not available images are available online 
Time to access 
data 

transport by car of physical media 
(minutes to hours) 

online data transfer (few seconds) 

Potential value for 
decision 

automated quantitative analysis not 
used yet for clinical decision 

results of MIPAs readily available as 
decision parameters 

Infrastructure static, proprietary, fixed scale 
pay-per-use, scalable, and portable to 
different cloud providers 

Remote 
collaboration 

by phone 
by video-conference with access to the 
patient data 

 
Concerning the image processing functionality, most of the MIPAs included in the 

MSP are too computationally expensive to be executed on a local machine according 
to the time constraints of an acute stroke patient. HPC capabilities delivered by cloud 
computing were crucial to improve the processing of these algorithms from hours to 
minutes, making them suitable for acute stroke care. For instance, the time to run the 
method used to reduce noise in CTP data was reduced from more than half an hour to 
less than 2 minutes [28]. 
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7 Discussion and Conclusion 

The development of the MEDUSA platform started in 2013. Back then, this kind of 
cloud-based solutions was not common. Today, however, there is a clear trend in the 
healthcare industry towards the usage of cloud computing, collaboration, and auto-
mated analyses of medical data. In addition, when dealing with processing of medical 
data constrained by the requirements of acute care situations, a lot of benefits can be 
derived from the use of cloud computing: scalability, pay-per-use model, high per-
formance computing capabilities, remote access, etc.  

There are innumerous technical challenges for enabling the execution and commu-
nication of software components in a platform like MEDUSA. Regarding stroke care, 
the software components execute in different computing devices (CPUs, GPUs, etc.) 
and based on different software platforms (web, Linux, Windows, etc.). In the 
MEDUSA platform these challenges are tackled using SOA approach and a virtua-
lized infrastructure. Because of the variety of application types, a uniform way of 
establishing communication between the MEDUSA applications has not been devel-
oped yet. Nevertheless, the direct communication between applications based on the 
exchange of well-defined file formats through WebSockets was demonstrated to be 
effective, without a negative impact in the development and integration of these ap-
plications. The current functionalities present in the MSP have the potential to im-
prove several aspects of current stroke care. 

The MEDUSA platform is still under development. Thus, most of the components 
to implement security are still not completely integrated in the platform yet. Defining 
and developing the security aspects of a platform like MEDUSA is also a very chal-
lenging task, since it is necessary to cope with different legal constraints, in particular 
across countries. The development process of the MEDUSA platform includes the 
implementation and validation of the platform in three different hospitals. This  
validation is currently being carried out in one hospital. Preliminary evaluation of the 
platform indicates that the solution is promising and has potential large value for  
improving treatment of these patients. 
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Abstract. In organizations’ efforts to achieve process efficiency and agility, dis-
ciplines like business process management and case management have been used 
widely. While the former is a process-driven discipline which routes processes 
through specific activities, the latter advances through events based on the case 
data, characterizing it as event-driven and data-driven. However, these two appar-
ently dissimilar approaches can be combined with the common goal to offer flexi-
ble service compositions in a service-dominant context. This paper proposes a 
way to do so through a business-engineering framework for service-dominant 
business. The structured approach for business design and the subsequent pro-
posed implementation with IT systems will enable organizations, for instance in 
financial services sector, to leverage service automation. A working prototype for 
service management is developed as a proof-of-concept demonstrating that the 
realization of such a mixed approach is practically feasible. 

Keywords: Service management · Service compositions · Service-dominance · 
Business process management · Dynamic Case Management 

1 Introduction 

Many business domains are currently transitioning towards a service-oriented busi-
ness setting. Before the transition, the business value used to be in owning assets 
while in the new setting the business value is in using the services offered by these 
assets. Representative examples can be found in the goods logistics domain, in the 
entertainment industry and in the IT industry. In the personal mobility domain, a fo-
cus on providing cars (e.g. in lease constructs) is replaced by mobility services (for 
instance public transport card, flex offices, etc.) that enable users to arrive at the right 
place at the right time. This transition creates service-dominant business markets 
where their not-so-physical characteristics create a high level of dynamism. This 
places high demands on the agility of service providers operating in these markets. 

A way to deal with this high level of dynamism is to not see the services delivered 
as monoliths that are completely produced in-house, but as flexible compositions of 
sub-services, part of which are produced in-house and part of which are produced by 
third parties in the market (which become partners for this reason). In other words, 
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players in service-dominant markets typically engage into dynamic business networks 
in which parts of offered services can be delivered by business partners.  

However, these providers find their agility heavily constrained by the IT platforms 
they use to deliver their services. This especially is problematic, as increasing dynam-
ism in a market typically requires higher levels of efficiency in dealing with changes. 
These higher levels of efficiency require higher level of automation, which obviously 
are strongly dependent on the capabilities of the automated platforms available. Such 
automated platforms can be service management systems that facilitate the provision-
ing of services with the aim to achieve application and operational flexibility in a 
service-dominant world. 

In this paper, we introduce a framework for service-dominant business design and 
focus mainly on service compositions as an agile way to cope with dynamism. The 
realization of these service compositions, depending on their characteristics, is done 
with the disciplines of Business Process Management (BPM) and Dynamic Case 
Management (DCM). While these two are different in their approach to compositions, 
their combination facilitates the implementation of a hybrid type of service composi-
tions. Mainly, this combination is based on the fact that internal complexity requires 
structured business processes while customer-facing services require ad-hoc ones. 
The BPM and DCM disciplines together can support both complexity and customer 
orientation. 

Regarding the related work, the essence of service compositions from a business 
point of view has already been identified in terms of service touch points and custom-
er journeys [1], service encounters [2] and value constellation experiences [3]. Their 
support can be achieved with the business process management discipline, however, 
most of the approaches have been focused on how extensions [4], [5] or alternatives 
[6], [7] of WS-BPEL can provide automation of service compositions. 

The lack of flexibility of workflow technologies has been addressed in [8] but 
does not refer to service compositions. The same goes for [9], where adaptive case 
management is presented as an extension to BPM 2.0 without discussing whether 
these two disciplines can work together. 

We see therefore a need of an approach to support the business side of service com-
positions with both BPM and DCM characteristics. Our approach addresses this need by 
contributing a structured framework for hybrid BPM/DCM-oriented service composi-
tion. To show the feasibility of such a hybrid type of composition, we also present a 
prototype of a service management application in the financial services sector. 

The rest of this paper is structured as follows. In Section 2, we briefly introduce 
BASE/X1, a business engineering framework for service-dominant business, focusing 
on service compositions. In Section 3, we discuss the operationalization of service 
compositions, while in Section 4 we describe how BPM and DCM can provide auto-
mated support. Then, in Section 5, we present the prototype for service management 
and finally, we conclude the work in Section 6. 

                                                           
1  BASE/X is the acronym for Business Agility through Service Engineering in a Cross-

Organizational Setting. 
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2 The Three Faces of Service Compositions Through BASE/X 

In the introduction, we have discussed the move from an asset-orientation to a ser-
vice-orientation: customers recognize that business value is not in owning assets, but 
in using the services offered by assets (which they do not need to own). Before this 
transition, business settings used to be centered on the delivery of products or stand-
alone services [10]. After the transition, they will be centered on the provisioning of 
solution-oriented, integrated services to customers (either business organizations or 
individual consumers) [11]. Services may require the deployment of products, but 
these products become part of the delivery channel of services, not the focal point 
themselves. The emphasis shifts from the value of the individual product or service to 
the value of the use of the product or service in an integrated context – the so-called 
value-in-use [12]. 

This transition though has consequences for the very basic characteristics of doing 
business [13]. First, customers expect coherent solutions, not stand-alone solution 
fragments. Second, customer-driven requirements to solution-oriented services will 
evolve much faster than requirements to the underlying products. Thus, managing 
agility in service delivery will be a key factor in the market position of a service pro-
vider. Third, managing service complexity and business agility requires a tight inte-
gration between the structure of business strategy and models on the one hand and the 
structure of business operation and information management on the other hand. 

Performing the transition to service-dominant business and managing its conse-
quences is a formidable task for any non-trivial business organization. Taking a tradi-
tional top-down, business-strategy-to-operations approach will be too slow in the 
current fast pace of market developments. Taking a quick-win, opportunity-driven, 
bottom-up approach will result in isolated implementations and chaos in integration 
efforts. A visionary, industry-strength approach is required that is completely tuned to 
the service-dominant transition and that has the very basics of service business at its 
core. BASE/X is such an approach, extending the well-known traditional pyramid 
which has been used for decades to distinguish the levels strategy, tactics, operations 
in business decision making. 

BASE/X is a business engineering framework, a well-structured way to address 
the analysis and design of service-dominant business, i.e., business that puts service 
management at the forefront of its design and operation [13]. It covers the entire  
spectrum from high-level business strategy definition to business information system 
architecture design, including elements like business model conception, business  
service specification and business process modelling. We present here the main  
components of the framework, while more information can be found in the full docu-
mentation in [13]. 

2.1 Business Design in BASE/X 

Business design in BASE/X is based on the observation that we need the distinction 
between business goals (the ‘what’ of business) and business operations (the ‘how’  
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of business) on the one hand and the distinction between the stable essence of an  
organization and its agile market offerings on the other hand. This leads to a model 
with four layers, as shown in Fig. 1. 

 

Fig. 1. BASE/X Business Pyramids 

As shown in the left side of the figure, the top half of the pyramid covers business 
goal engineering. As shown in the right side of the figure, the top layer contains the 
service-dominant business strategy. This strategy describes the identity of an organiza-
tion in a service-dominant market and is relatively stable over time. The second layer 
contains service-dominant business models. Each business model describes a market 
offering in the form of an integrated, solution-oriented complex service: they describe a 
concrete value-in-use. Business models follow fluid market dynamics and are agile. 

The bottom half of the pyramid covers business operations engineering. The bot-
tom layer contains business services, each of which contains a core service capability 
of the organization. These capabilities are related to the resources of the organization 
(covering both personnel and large-scale technical infrastructures). The third layer of 
the pyramid contains the service compositions. Each composition is a combination of 
business services to realize the service functionality required by a business model: 
they implement a concrete value-in-use. The combination includes business services 
from the organization’s own set, but also business services of partner organizations in 
a business network. As service combinations follow business models, they are agile, 
meaning they revolve with their associated business models. 

2.2 Organization and IT Platform Design in BASE/X 

Organization design in BASE/X provides the organizational operationalization of the 
elements in the business pyramid discussed above. Organization design covers both 
automated organizational processes and manual processes. To obtain proper align-
ment between business and organization design, organization design follows the same 
four layers as business design. Proper co-engineering is achieved by mapping changes 
in a layer of the business pyramid to changes in the corresponding layer in the organi-
zation pyramid. 

The design of the information technology platform in BASE/X provides the blue-
print for the IT platforms that are required for the execution of the elements identified 
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business functionalities should be standardized within an organization (or even across 
its boundaries) as business services, such that these functionalities can be reused. 

Service compositions exist in two basic types: the process type and the mash-up 
type. Hybrid types also exist, by combining the characteristics of both basic types. In 
this section we present the characteristics of the basic types of service compositions 
which will be later mixed for a hybrid type. 

3.1 Service-Based Business Processes 

The process type of service compositions is typically used for strictly sequenced busi-
ness interactions in which the activities of multiple actors (business organizations and 
customers) need to be synchronized in time and information needs to be passed be-
tween these activities. Actors go through a well-defined sequence of steps: an explicit 
business process. A business process definition is required to make sure the individual 
actors remain well-synchronized in the execution of the composition. A definition is 
preferably described in a well-accepted business process specification language, such 
as BPMN.  

In the process type, there is an explicitly managed (and possibly complex) state of 
a service delivery, where the management of the state is the responsibility (or even the 
added value) of the service orchestrator. Each defined service composition corres-
ponds to a business process type. Each invocation of a service composition corres-
ponds to a business process instance. The state of an individual service composition 
invocation is the state of that business process instance, which is typically managed 
automatically by a business process management system (third pyramid of BASE/X 
of Fig. 2), as we describe in Section 4. 

Business processes are used to specify both customer-facing business processes, i.e. 
those who have meaning for a customer and change the state of the value-in-use defined 
by the business model and internal business processes, i.e. those who are encapsulated 
by a single customer-facing service and hence is invisible for the customer. 

3.2 Service Mash-ups 

The mash-up type is typically used for free-form business interactions in which a single 
actor invokes the functionalities of a number of other actors. Individual services of a 
composition are invoked at a single actor’s own will, i.e., without a sequence predefined 
by the service provider. The composition execution is terminated when the actor uses a 
termination service. 

In the mash-up type, there is an implicitly managed (and usually simple) state of a 
service delivery, where the management of the state is the responsibility of the service 
consumer. Comparable to the situation with process-based service compositions, each 
defined service composition corresponds to a mash-up type. Each invocation of a 
service composition corresponds to a mash-up instance. A mash-up instance is very 
light-weight from a provider point of view, as there is no state management by the 
provider (but the provider may want to be aware that a mash-up instance is active, e.g. 
for CRM purposes). 
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We consider service mash-ups as a suitable form of customer-facing business 
processes: those who have meaning for a customer and change the state of the value-
in-use defined by the business model. 

4 Realization of Service Compositions 

According to the BASE/X framework, the Service Composition layer is supported by 
service orchestration platforms like business process management systems (BPMS) or 
service mash-up platforms in order to support the two kinds of business service com-
position that we have discussed in Section 1. In this section, we present the main cha-
racteristics of two disciplines, namely Business Process Management (BPM) and 
Dynamic Case Management (DCM), in order to show how they can be mixed and 
serve the role of realization of service compositions. 

4.1 BPM 

Business Process Management (BPM) is a field continuously growing, starting a few 
decades ago as a result of people’s and organizations’ efforts to redesign/reengineer 
boundary-crossing processes with the use of IT, aiming to improve customer services. 
Over these years, many definitions have been given for BPM. Examples are: “A cus-
tomer-focused approach to the systematic management, measurement and improve-
ment of all company processes through cross-functional teamwork and employee 
empowerment” [14], “Supporting business processes using methods, techniques, and 
software to design, enact, control, and analyze operational processes involving hu-
mans, organizations, applications, documents and other sources of information” [15]. 
From all these definitions, key observations can be made concluding in the following: 
BPM can be seen as a discipline that intersects knowledge from management and 
information technology and applies this to operational business processes. It covers 
all phases of these processes, from identification to discovery, diagnosis, planning, 
design, deployment, execution and control. Applying BPM in practice leads to consis-
tency, lower operating costs, faster processes, enhanced flexibility and improved cus-
tomer satisfaction translating into improved enterprise performance [16]. 

In this paper, we focus on BPM as a discipline to realize the concept of the Ser-
vice Composition layer of the business pyramid of the BASE/X framework. This can 
be done by implementing a Business Process Management System (BPMS) which is 
an information system that coordinates automated business processes in such a way 
that all work is done at the right time by the right resource. 

4.2 DCM 

Case Management (or Case handling) is a paradigm for supporting flexible and know-
ledge-intensive business processes. Unlike workflow management, which uses prede-
fined process control structures to determine what should be done during a workflow 
process, case management focuses on what can be done to achieve a business goal [17]. 



 Hybrid Service Compositions: When BPM Meets Dynamic Case Management 233 

Case is the central notion, which can be seen as the coordination of multiple tasks 
(planned and unplanned) and associate content, towards a concrete objective. In case 
management, the knowledge worker in charge of a particular case is a cognitive worker 
who actively decides on how the goal of that case is reached, and the role of a case 
management system is assisting rather than guiding and restricting him in doing so. 

The core features of case management are [17], [18]: 

- avoid context tunneling by providing all information available (i.e., present 
the case as a whole rather than showing just bits and pieces), 

- decide which activities are enabled on the basis of the information available 
rather than the activities already executed, 

- separate work distribution from authorization and allow for additional types 
of roles, not just the execute role, 

- allow workers to view and add/modify data before or after the corresponding 
activities have been executed (e.g., information can be registered the moment 
it becomes available). 

In case management, the term “dynamic” refers to highly variable, unpredictable, 
loosely structured and subject to change cases and processes. It is related to flexibility 
and adaptability and the basic idea is to allow for changes at run-time, i.e. while work 
is being performed processes may be adapted [19]. 

A platform for service management with case management capabilities supports 
case workers to combine required knowledge, information and content in such a way 
that they either can solve the case or initiate the corresponding service(s), in com-
pliance with rules, constraints and objectives. 

4.3 BPM and DCM into a Hybrid System 

Traditional workflow management focus on the complete definition and control of 
structured, repeated processes while case management works on an ad hoc basis to 
manage dynamic, unstructured processes. BPM is a process-driven discipline which 
routes processes through specific activities. On the other hand, DCM advances 
through events based on the case data, characterizing it as event-driven and data-
driven. Also, DCM is better used in processes where many exceptions and deviations 
appear, since attempting to capture all of these scenarios with traditional BPM [20], 
results in complex models that are hard to manage and maintain. 

Based on the Mintzberg’s Five Organizational Structures [21], we can say that 
BPM is best applied in Machine bureaucracy structures, where the standardization of 
work processes is the prime coordinating mechanism, while DCM is most suitable for 
Professional bureaucracy organizations where standardization of skills is the domi-
nant mechanism. 

The approach we suggest in this paper is to combine these two disciplines into a 
hybrid service management platform in order to exploit all possible capabilities of 
both approaches. BPM can be used for the automation of the existing standardized 
and optimized business processes of an organization, while DCM can be used for the 
whole handling of cases that are associated to services. 
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With respect to the differentiation of business processes into customer-facing and 
internal ones, we consider BPM suitable for the orchestration of internal business 
processes, while DCM can be applied for the customer-facing business processes.  

The hybrid type of service management can be achieved with a single suite where 
on the one hand services which are visible to the customer are handled with case 
management features and on the other hand internal workflows handle the execution 
and automation of building block services. Such a single platform is developed in a 
prototype of service management in the financial services sector, more specifically in 
the car leasing domain. The prototype is presented in the next section. 

5 Service Management Prototype 

A working prototype for service management was implemented to provide insight on 
how a hybrid service composition is realized. From a technical point of view, Service 
Oriented Architecture (SOA) techniques were applied in order to integrate services 
(mainly web services) from different information systems (internal or external to an 
organization).  However, the interesting part is to show how a technical solution that 
combines both BPM and DCM capabilities is able to bridge business and technology 
in an agile way. 

In the frames of a master thesis project [22], we applied our approach in an asset-
based financial services company, and more specifically in its car leasing subsidiary. 
In this paper, we refer to this company using the fictitious name LeaseCar. After de-
scribing the service composition use case, its functionality and the underlying busi-
ness process models, we present a few screenshots of the user interface. 

5.1 Driver Desk use Case 

LeaseCar offers a single point of contact for all questions regarding lease vehicles, 
called Driver Desk. Drivers can turn to the Driver Desk, with literally any type of 
request, from the moment that their vehicle is on the road, up and until it is being 
returned. Through several communication channels such as telephone, e-mail or in-
ternet portal, they communicate with LeaseCar in order to ask a service or a combina-
tion of them. Driver Desk supports drivers on topics like Fines / Fuel cards / Fuel 
management / Repair, maintenance, tires (RMT) / Damages / Returning vehicles / 
Replacement cars / Ordering progress (occasionally) / General complaints handling. 

These services can be presented in a mash-up form where the driver is free to opt, 
adhering though to any constraints related to these services. When a driver contacts 
Driver Desk, he can have an inquiry for one or more of the offered services. This 
inquiry is handled as a case with the help of a Dynamic Case Management dashboard. 
The actual execution of each service is implemented as a traditional workflow with 
BPM techniques. An overview of the Driver Desk use case is shown in Fig. 4. 
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Fig. 4. Driver Desk overview 

5.2 Business Processes Definition 

The platform that facilitates our hybrid type of service compositions is based on the 
commercial Pega 72 tool, which combines both BPM and DCM capabilities. A cloud 
environment was used in order not to jeopardize information systems of LeaseCar 
company. 

Pega 7 uses a stage-based approach to first define a high-level overview of the 
whole process. For each stage, steps are defined which in turn need to be specified 
into more detailed business process model. 

Below, we present the internal business process (as a structured workflow) related 
to a corresponding service, the re-issue of a fuel card. The flow is rather straight-
forward. We first have to cancel the existing fuel card and then issue a new one. Note 
here the existence of the “Cancel” sub-process which can be used also independently 
to run a card cancellation case. This flow is presented in Fig. 5. 

                                                           
2 http://www.pega.com/products/pega-7, retrieved July 12th, 2015. 



236 K. Traganos and P. Grefen 

 

Fig. 5. Re-Issue Fuel Card process flow 

The Case Management features of the prototype include the creation of cases (based 
on customers’ inquiries), the association to them of any related documents or information 
that is necessary for the case worker to handle the cases and also statistics and metrics of 
cases and objectives. Moreover, task management features, like for instance who initiated 
a case and who is now working on it (through a complete case history), are present. 

5.3 User Interface  

The main screens of the implemented prototype are presented here. More information 
can be found in [22]. 

The prototype is used by Driver Desk officers and the Driver Desk team leader 
who has more privileges (for instance, extra features for managing his team, review-
ing statistics and reports, changing business rules). In case of an incoming call, they 
look up the driver based on his license plate. After retrieving his contact, all the right 
information for the selected driver is presented in the screen below. This is the main 
dashboard which is the DCM part as presented in the overview of Fig. 4. 

 

 

Fig. 6. Main screen for serving a driver 
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Information about driver’s details, company’s details in which he belongs, vehicle 
details and contract information are presented. A list with open cases for that specific 
driver and a list with past interactions are also available in order to allow the Driver 
Desk officer to serve the driver as efficiently as possible. After reviewing driver’s 
data and getting his inquiry, a list of actions are available, corresponding to the ser-
vices that Driver Desk can offer. This is available on the up left part of the dashboard 
and can be seen in Fig. 7. 
 

 

Fig. 7. List of supported actions – services 

Assuming for instance that the driver requests a list of fuel transactions on a prede-
fined period, the corresponding service is executed as a number of workflow steps 
(not visible to the driver). As this is a service provided by an external partner, a web 
service is invoked to fetch the results as can been seen in Fig. 8. 
 

 

Fig. 8. Fuel Transactions results 
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6 Conclusion 

Transitioning to a service-dominant world requires a major effort. Organizations need 
to engage into dynamic business networks with the aim to provide agile and flexible 
service compositions, as complete solutions to customer’s problems. A well-
structured framework for managing the complexity of service-dominant business is 
required. BASE/X is such an approach, consisting both of a conceptual and a tooling 
aspect for analysis and design. 

The part of the BASE/X that we focus on our paper is the realization of service 
compositions, which is supported by automated service management systems. Busi-
ness Process Management and Dynamic Case Management concepts and tooling, are 
already available to support the offering of service compositions. But since these two 
disciplines have inherently different characteristics, our approach is to combine them 
in such a way that capabilities of both are exploited. Thus, our contribution is both 
how to mix the two disciplines and also how to design such a mix based on a busi-
ness-engineering framework. 

However, this paper does not touch upon all aspects of BPM and DCM cycles. For 
instance, further research is needed on notations that can facilitate the modeling of the 
mixed service compositions. 

To demonstrate the feasibility and usability of our approach, a prototype applica-
tion for service management was built for the car leasing domain. A dashboard that 
handles drivers’ inquiries on their lease cars is used for DCM purposes. On the other 
hand, BPM techniques are used for the invocation of services that are not visible to 
the customer. The combination of these two approaches offers the realization of ser-
vice compositions, in accordance to BASE/X third layer of Fig. 3. 

The prototype received positive feedback from professionals (enterprise architects 
and team managers who were involved in the project and could use such a tool) 
through discussions, as being suitable to facilitate flexible service compositions. 
Business people perceived it as an agile way to integrate various services as part of 
service compositions and make easily changes on business rules. To demonstrate 
more general applicability of our approach though, it has to be applied in other do-
mains, like for example in healthcare, where the separation of business process types 
may not be so clear to allow for a hybrid type of service compositions. 

Acknowledgements. Thanks go to the professionals of LeaseCar company who provided the 
right support to apply our approach and to the Pega experts for undertaking the implementation 
part while we focused on the design and requirement analysis of the case study. 
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Abstract. Managing data produced in the Internet of Things accord-
ing to the traditional data-center based approach is becoming no longer
appropriate. Devices are improving their computational power as the
processors installed on them are more and more powerful and diverse.
Moreover, devices cannot guarantee a continuous connection due their
mobility and limitation of battery life.

Goal of this paper is to tackle this issue focusing on data movement
to eliminate the unnecessary storage, transfer and processing of datasets
by concentrating only the data subsets that are relevant. A cross-layered
framework is proposed to give to both applications and developers the
abstracted ability to choose which aspect to optimize, based on their
goals and requirements and to data providers an environment that facil-
itates data provisioning according to users’ needs.

Keywords: Data movement optimization · Internet of Things ·
Information and data quality

1 Introduction

Customised and Low Power Computing is a disruptive innovation which, while
immediately of benefit to the established datacentre-centric model of the current
IT world, opens the gate to many fields where datacentre-based computing is
simply not appropriate. Predictions abound for the IoT, the Smart Everything
Anywhere initiative and cyber-physical systems. In this scenario, applications
must deal with the data deluge produced by this increasing amount of devices.
To properly manage these big amounts of data, their quality needs to be certified,
so the performance of mechanisms to access them must satisfy the developer
requirements.

The goal of this paper is to propose a conceptual framework that tackles
these issues as a basis to support the data movement optimization: how to select
c© IFIP International Federation for Information Processing 2015
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what data to transfer, when and to where, in order to reduce the requirement for
storage capacity and data processing capacity (reducing hardware requirements)
and increasing the speed of producing meaningful output (performance), while
guaranteeing data preservation where required. The approach is based on a cross-
layer optimization framework enabling the data movement by introducing data
curators as responsible for storing and managing data coming from the devices
according to models able to match the data consumer requirements and the
data providers capabilities. A programming abstraction is also proposed to ease
the customization of devices and to hide the underlying mechanisms needed to
access and to move the data in order to satisfy requirements on performances,
data quality, energy, and security.

The rest of the paper is structured as follows. Section 2 motivates the need for
data movement in IoT scenario. In Section 3 the envisioned cross-layer optimiza-
tion framework is presented. Section 4 discusses a possible solution for manag-
ing the data movement optimization, while Section 5 introduces the metamodel
supporting the programming abstraction that is at the basis of the framework.
Finally, after a discussion on related work in Section 6, Section 7 concludes the
paper outlining future extensions.

2 Motivation

IDC estimates that the digital universe will reach the size of 40ZettaBytes in
2020 [4] and IoT holds a significant role in this information deluge. It is now
crucial to find methods and tools for making accessible these big data to the
right users, at the right time, with the right quality, and easily. At the same
time, customized and low-power computing devices will constitute the majority
of these things, and their ever-increasing computational power opens the pos-
sibility to access to a potentially unlimited set of processors. Data movement
optimization can take advantage of this situation by pushing part of the compu-
tation for optimization directly to the device in order to reduce the unnecessary
storage, transfer and processing of datasets.

In a typical situation, data producers are responsible of managing and config-
uring devices, e.g., wearables, sensors, smartphones, single board computers, that
produce data and that can be seen as data sources. Each of them has its own
characteristics in terms of energy autonomy, storage size, and communication
interface. On the other side, data consumers are responsible for developing and
maintaining applications that need the data produced by devices. As the com-
putational power of devices is continuously increasing, this approach does not
really exploit all the potential at data sourcing layer, as the processors installed
on the devices are not fully used. At the same time, due to the limitation in terms
of storage and autonomy of energy, computation to be executed on the device
needs to be properly balanced with respect to such limitations. Moreover, device
storage limitation requires that data should move from more volatile storage
systems (at device level) to more persistent ones, if data must be available for
a longer period, for instance, for analysis purposes or for satisfying preservation
requirements.
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Data movement optimization is thus required to move data from devices that
own fresh data - but limited in size - to more capable storage systems affordable
only at data consumption layer, leaving the possibility for the devices to process
data exploiting their computational power in order to reduce the amount of data
transmitted to what is really useful for the user.

Deciding when, where, and how to move data between data sourcing layer
and data consumption layer is not an easy task as it depends on several aspects.
First of all, latency strictly depends on the usage: for some users, (e.g., real
time applications) having timely data is crucial, for some other users (e.g., data
analytics) even not so up-to-date data are considered sufficient. Data granular-
ity depends on the user needs and the device should support the possibility of
being configured to sample with different frequencies. Devices could not natively
support data encryption, but users could request for an encrypted transmission,
so it should be possible to install and run encryption modules on the device
exploiting the processors on board. Last but not least, battery autonomy may
influence the duration of the transmission and the proper amount of data to be
transmitted should be calculated.

3 The Cross-Layer Optimization Framework

To be able to support data movement, taking into account the open issues dis-
cussed above, the presented approach enriches the data movement eco-system
(see Figure 1) introducing data curators as key-players that mediate between the
capabilities offered by the devices and the requirements posed by the consumer.
Moreover, thanks to the metamodel supporting programming abstraction, the
proposed approach eases the distribution of data processing among the layers to
exploit the computational power now available at device layer also considering
devices’ limited resources.

Fig. 1. Enriched data movement eco-system.
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The data provisioning layer improves what the data sourcing layer offers with
the possibility of additional computing power and storage, improving the quality
of data provided in terms of accuracy, precision, and timeliness [11]. The higher
the quality, the higher the value of the data provided and, at the same time, the
higher the quality, the higher the amount of resources required, as well as costs.
It is worth noting that although the role of the data curator is fundamental for
having ready-to-use data with certified level of quality, with the proposed eco-
system data consumers can keep accessing directly the data producers to obtain
data, but without the possibility to have access to the services provided by the
data curator. Moreover, the data movement can occur not only between layers,
but also among peers referring to the same layer. For instance, data movement
between embedded systems can be considered as a possible scenario, as well the
migration of data between storage nodes living on two different platforms.

Figure 2 shows the envisioned cross-layer optimization framework support-
ing the enriched data movement eco-system. Each layer offers the possibility to
access to the data specifying the data needed and the goals corresponding to
the non-functional requirements (e.g., high accuracy, low energy consumption).
Goals can be hard (must be satisfied) and soft (should be satisfied). To satisfy
the request, each layer enables the data access according to one or more modes,
each of them having different impacts in terms of performance, data quality,
energy, and security [8]. For instance, compressed data involve more computa-
tion than uncompressed one, but it reduces the time for transmission. Secured
data transmission ensures the integrity and confidentiality, but introduces an
overhead before transmitting and after receiving data.

Fig. 2. Overall architecture
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Data movement optimization is achieved at each layer by finding the best
match between goals and modes considering that different users access the same
data with different goals and according to different modes. Finding this match is
the main task of the local optimization strategy selector, that identifies the best
mode according to the user request and the current resource usage and exploiting
the available data movement actions : layer-specific actions whose objective is to
move data inside a layer or across layers to better support the data offering.
For instance, at data sourcing layer, data movement actions concern the device
configuration to support the transmission of compressed data or the aggregation
of samples to reduce the amount of data to be transmitted.

As the data movement optimization may require some computation inside a
layer to enable the execution of a mode, the proposed approach aims to exploit
the full computing potential that devices installed can provide. At data sourcing
layer, computing power of devices is continuously increasing and, usually, all
the potential that the on-board processors can provide is not fully exploited.
At data provisioning layer, servers install Advanced Processing Units (APU),
such as GPUs, that can be used to execute the processing required by the data
movement actions. For instance, if a device is not capable to compress data but
compression is required, capabilities of the device can be extended by deploying
code compliant to frameworks such as OpenACC or OpenCL, to ensure code
portability. Such an extension can be directly done by the device owner when it
has the skill to develop it, or even by the data curator that deploys the code to
the device using the programming abstraction.

Data movement actions can also occur inside the same layer involving differ-
ent peers exchanging data to better support the user request. Parameters as data
proximity and data locality can be defined to move the relevant data set closer
to the place in which the data will be used. For instance, at data provisioning
layer, a data curator can decide to replicate a data set on different geographically
distributed storage nodes to better support worldwide access. In this case, the
data movement action does not have a correspondent mode, but its enactment
will have an impact on the data access performance.

4 Optimizing Data Movement

To make explicit the relationship among the data movement actions, the modes
and the goals are correlated through a data-movement/effects relationship map.
This map defines the dependencies among the quality associated to data that a
source can offer with respect to the effort required to provide those data. This
map will include different types of indicators such as: (i) performance indicators
that measure the efficiency of data manipulation (e.g., response time); (ii) data
quality indicators that measure the effectiveness of applications (e.g., data accu-
racy); (iii) energy indicators that measure the resource impact of data accessing
and storing (e.g., energy consumption per unit of work or per Kbyte); (iv) secu-
rity indicators that define the level of trust, confidentiality, and integrity of the
data. Dependencies between the goals and modes with the indicators will be
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defined to identify the effects on enacting a mode or requesting a goal in terms
of data quality, energy, efficiency and security.

The indicators map constitutes the basis for this goal-based model, as it
provides a way to specify the as-is and to-be scenarios of the system before and
after the enactment of the data movement actions in terms of performance, data
quality, energy, and security aspects. To pursue a data movement optimization
all these variables need to be managed in a coherent way and their mutual
dependencies need to be properly mapped. To this aim, goal-based models can
be adopted to evaluate the impact of the data movement actions enacted [1].

Since it is difficult in the general case to design at run time all the possi-
ble relationships between indicators, learning tools, such as Bayesian Networks,
can be used to derive the relations among the indicators and the goals, and to
evaluate the effect of selecting a mode to provide data on these indicators [14].

A possible approach for performing dynamic correlations in service-based
environments is discussed in [7]. In our case the models would be adapted as
it appears in Figure 3. Available modes can be numerically encoded and intro-
duced as inputs, along with device IDs, to indicate the used hardware. Inputs
can also be considered any operation specific aspects that may affect e.g. the
workload of the operation, like data size to be moved etc. The outputs should
be the observed (in the case of training) or predicted effects on the defined indi-
cators for the various goals (e.g., energy levels, performance timings etc.). Such
observations may also be acquired at run-time through relevant annotations in
the implemented modes, that may inject code to monitor the specific metrics.
Through training with historical data the effect analysis models may be created
and used a priori for optimized management and mode selection.

Fig. 3. Annotation correlation model

The role of the data-movement/effect relationship map is crucial in the data
movement optimization at both local and global level. At local level, the map
supports the data provider to identify the best mode to be proposed to satisfy
the user goals and the possible effects of a data movement action on the goal
satisfaction. At global level, the map provides a shared view for all the local
decision-makers to understand the cross-layer effects of their local data move-
ment actions. Furthermore, the effect of a specific mode (e.g., speed up factor
following a parallelization pattern) may be quantified.
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5 Metamodel Supporting the Programming Abstraction

To reduce the complexity for data curators and data consumers when accessing
and manipulating data, a programming abstraction is offered. Data access pro-
vided by each layer will be offered through a single abstracted interface based
on modes and goals: modes correspond to how data may be offered (e.g., com-
pressed, aggregated), whereas goals correspond to the non-functional require-
ments (e.g., high accuracy, low energy consumption).

The programming abstraction is based on a metamodel to represent data
sources characteristics, data consumer’s requests, and related requirements. The
metamodel is composed of the following elements, illustrated with some exem-
plifications:

– data sources : capabilities (for security, compression); resources (power usage,
available storage, available main memory); layer (sourcing/provisioning)

– data elements description; characteristics:
• data modes: compressed, aggregated (with parameters);
• data properties: freshness/time span, update rate, locality, quality (accu-

racy)
– data requests: data elements with requested data modes and data proper-

ties; transmission mode (compressed/not compressed; secured/not secured;
streamed/bulk); goals (energy efficiency, time constraints, ...)

Developers, when coding applications consuming the data, decorate with
annotations the methods that access to the data with the goals (e.g., energy
efficiency) to be satisfied. The local optimization strategy selector implements
the logic that is able to identify the best source and the best mode to be invoked
to satisfy the goal. In the example shown in Figure 4 , two possible sources could
satisfy the request: one directly connected to the devices (for more recent data),
another managed by a data curator that periodically collects the data (e.g., once
a day, not shown in the figure) from the device and stores them into a permanent
storage system to guarantee a longer persistence, but not providing up-to-date
information. When the application requires for today’s data, the abstract request
is automatically instantiated to invoke the getUncompressedData offered by the
data producer abstract API. If requested data are less recent, then two pos-
sibilities are open, i.e., with or without compression and the selection will be
performed to satisfy the consumers goal.

To cope with additional requirements, the programming abstraction also sup-
ports the extension of capabilities provided by the devices. For instance, the
developer explicitly asks for today’s positions in a compressed format and with
specific performance requirements in terms of data acquisition delay. As the
device is the only source for this data, the possibilities for the selection are
three: reading all the data uncompressed and compress them locally, deploy a
standard compression module on the device to augment the available modes so
that data can be sent already compressed or deploy an OpenCL implementation
exploiting potential multicores (e.g. in a mobile device). Also in this case, the
decision will depend on the trade-off analysis of the impact in choosing the best



250 F. D’Andria et al.

Fig. 4. Data movement strategy selection.

option considering that: initially, the more computation done at device layer, the
more energy will be consumed with the risk of running out of power, secondly
the use of OpenCL may guarantee performance requirements in terms of task
completion or finally that the less data transmitted, the less energy consumed.

6 Related Work

The interest around the data movement topic is gaining more and more atten-
tion in the research community especially because of the diffusion of sensors and
smart objects and the potentially unlimited computational power provided by
Cloud solutions increased the amount of available data. As a consequence, data
consumers have the possibility to access an enormous data set and proper mech-
anisms to optimize this access are required. Data movement techniques aim to
achieve this goal especially focusing on moving data at the right time to the right
place, where time and place refers to the user that needs the data. Bulk data
transfer protocols [12] are usually adopted to quickly transfer massive amounts
of data between storage systems geographically distributed but they do not solve
the problem, as the applications that need these data are highly dynamic and
data movement could be required frequently and with different properties. Live
data migration aims to cover this space, and the work done in [13] goes in this
direction although it focuses on an environment managed by a single entity. Data
replication is another possible technique involved in the data management. Usu-
ally adopted in cloud computing domain to bring data closer to the user, data
replication may have impact on the energy consumption: the more the replicas
the higher the energy consumed. In this direction,[2] proposes an approach able
to balance these two needs, i.e., replicas and low energy, relying on a specific
power consumption model. At the same time, the gap between the I/O capacity
and the computational power of the systems requires solutions for deciding which
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data needs to be moved and if pre-processing is required before the transmis-
sion. Data compression and data reduction mechanisms are adopted to reduce
the amount of data to be transmitted without compromising the data quality,
but requiring a computational effort before and after the transmission occurs.
Another solution that is more focused on the device level is proposed in [3] where
data collected by a sensor network are pre-processed before sending them to the
storage node to reduce the energy consumption of the sensor networks without
affecting the data quality requirements.

The cross-layered framework proposed in this work is based on a program-
ming abstraction approach, to offer tools that will enable developers to limit
their knowledge of the underlying layers, while achieving increased functional-
ity levels. Especially using annotations, several work papers demonstrated the
possibility to require and enforce optimization at code-level. In [5] annotations
are used in software libraries as an effort for enforcing domain specific opti-
mizations applied on them. The whole task is enabled via an annotation engine
implemented as a compiler for translating the annotation semantics into code
optimization. Following the same path, in [10] annotations are used for passing
high-level semantic information to the compiler, in order to overcome perfor-
mance issues resulting from the use of abstractions. From a slightly different
point of view, [9] uses annotations via a source-to-source translation system
aiming at optimizing MPI applications while [6] utilizes annotations (and an
implemented annotation engine) in order to increase the speed of collaborative
web applications development.

7 Concluding Remarks

The amount of smart devices is significantly increasing and, although they have
an important role in causing the so called data deluge, they are also an opportu-
nity to better manage the produced data. In this paper, we have focused on this
perspective on Big Data, proposing a cross-layer framework whose main goal is
to optimize the data movement.

The proposed framework enriches the usual approach by introducing the
data curator as the actor in charge of mediating between the capabilities offered
by the devices and the requirements posed by data consumers. Moreover, the
framework supports the data movement optimization providing a programming
abstraction that eases the interaction with the devices enabling the data access
and their configuration to better exploit the devices’ computational power.

As the proposed framework constitutes a first attempt to exploit the devices’
capabilities inside the Big Data domain, future work will better investigate
the impact on data movement optimization at local (inside a layer) and global
(among layers) level. Validation on a real scenario is also planned to quantify
the efficiency and the effectiveness of the proposed approach.
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Abstract. The role of software and its flexibility is becoming more and
more important in todays networks. New emerging paradigms, such as
Software Defined Networking (SDN) and Network Function Virtualiza-
tion (NFV), are changing the rules of the game, shifting the focus on
dynamicity and programmability. Perfectly aligned with this new spirit,
the FP7 UNIFY European project aims at realizing this appealing vision
by applying DevOps concepts to telecom operator networks and sup-
porting the idea of fast network reconfiguration. However, the increased
range of possibilities offered by the DevOps approach comes at the cost
of designing new processes and toolkits to make SDN and NFV a con-
crete opportunity. In this paper we specifically focus on the verification
process as part of the challenging tasks that must be addressed in this
scenario and its fundamental role of automatically checking some desired
network properties before deploying a particular configuration. Our pre-
liminary results confirm the feasibility of the approach and encourage
future efforts in this direction.

Keywords: DevOps · Formal verification · Service graphs · Network
function forwarding graph

1 Introduction

Ultra broadband diffusion, progresses in Information Technologies (IT), tum-
bling hardware costs and a wider and wider availability of open source software
are shaping the evolution of Telecommunications and ICT infrastructures. In
this context, paradigms such as Software Defined Network (SDN) and Network
Function Virtualization (NFV) can be seen as expressions of a systemic trend
called “Softwarization”. Other expressions of the same trend are Cloud, Edge,
and Fog Computing, Cloud Networking, etc. In essence, the disruptive innova-
tion of “Softwarization” stands in the techno-economic feasibility of virtualizing
most (if not all) network and service functions of Telecommunications and ICT
c© IFIP International Federation for Information Processing 2015
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infrastructures. In this directions, it is argued that future Telecommunications
infrastructures are likely to become highly dynamic, flexible and programmable
production environments of ICT services. A first evaluation of this idea is car-
ried out by the EU FP7 UNIFY1 consortium, which sets out to integrate modern
cloud computing and networking technologies by considering the entire network
as a unified service production environment, spanning the vast networking assets
and data centers of telecom providers. In order to reach a high level of agility
for service innovation, UNIFY has one focus on providing dynamic service pro-
gramming and orchestration, deploying logical service components, namely Vir-
tual Network Functions (VNFs), across multiple network nodes. In particular,
UNIFY architecture follows SDN principles with a logically centralized control
and orchestration plane. Additionally, compute, storage and network abstrac-
tions are combined into a joint programmatic interface referred to as Network
Function Forwarding Graph (NF-FG). An NF-FG defines a selected mapping of
VNFs and their forwarding overlay definition into the virtualized resources pre-
sented by the underlying layer. Current OSS/BSS do not seem to cope with the
requirements posed by this evolution: in fact, the operations of future Telecom-
munications infrastructures will involve the management and control of a myriad
of software processes, rather than closed physical nodes. Thus, another important
goal of UNIFY is the design and development of integrated operations and devel-
opment capabilities under the name of Service Provider-DevOps (SP-DevOps).
In fact, DevOps paradigm, formerly developed for Data Centers (DCs), is getting
momentum as a source of inspiration regarding how to simplify and automate
management processes for future Telecommunications infrastructures.

Among the above challenges, this paper focuses on the UNIFY verification
process (i.e., the definition of methods and techniques to validate a particu-
lar network configuration before deploying it), which can be seen as an essential
task in environments where reconfiguration of services is expected to be triggered
very frequently, both in response to user requests and also in case of management
events. Misconfiguration of dynamic network middleboxes2, violation of speci-
fied network policies, or artificial insertion of malicious network functions are
just examples of cases that a complete solution must properly handle in order to
preserve network integrity and reliability. For this reason, the work presented in
this paper goes in the direction of verifying complex graph of services through an
intense modeling activity, targeted at the specific middleboxes and the network
as a whole. We are motivated by the observation that most existing tools are
“Openflow oriented”, i.e. they mostly consider networks with a controller which
installs <match, action> rules on the switches. Alternatively (and more generi-
cally but with the same fundamental limitations), they consider networks with
devices that only perform forwarding decisions according to the packet header,
i.e. without taking into account any additional traffic history information. Works
as [5,6,9,11] fall in this category and represent a valuable efforts in this research
area. Our contribution is intended to move a step forward and overcome the

1 www.fp7-unify.eu
2 In this paper we use the terms VNF and middlebox interchangeably.

www.fp7-unify.eu
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above mentioned limitations by extending these works. In this sense, one impor-
tant reference is [8], which tackles exactly the same problem and provides a
scalable solution based on an off-the-shelf SMT solver. We experiment with this
approach and further develop it to meet our specific requirements, also enriching
the available VNF models catalog in order to satisfy the demands for more and
more complex service graphs and to validate the approach with different kinds
of VNFs. We specifically consider the UNIFY use cases, but it is worth noticing
how our work is much general and easily applicable to other scenarios since it
involves very common network functions.

The rest of the paper is organized as follows. First, we introduce and clar-
ify how and to which extent the DevOps approach can be applied in a network
operator infrastructure (Section 2). After defining the processes needed to imple-
ment this vision, we move on our current approach to formally verify complex and
rapid deployments of network function chains including a variety of middleboxes,
deployed to augment the set of in-network services the operator is able to offer
to its final customers (Section 3). In order to show our approach is feasible, we
provide some preliminary performance evaluation results based on the extension
of the above mentioned tool (Section 4). Section 5 finally concludes this work by
summarizing our contribution and drawing up some possible near future direc-
tions.

2 The SP-DevOps Concept

In order to cope with the high service velocity and increased dynamicity enabled
by UNIFY and comparable SDN/NFV based environments, we consider a
novel management and operation paradigm for Service Providers, called Ser-
vice Provider DevOps - SP-DevOps. SP-DevOps is based on the same major
underlying principles as identified for DevOps [10]: i) Monitor and validate oper-
ational quality; ii) Develop and test against production-like systems; iii) Deploy
with repeatable, reliable processes; and iv) Amplify feedback loops. While we
acknowledge that DevOps has also a crucial cultural dimension (reflected barely
by the feedback loop principle), our work focuses on technical aspects associated
to these principles, which reflect on processes and associated capabilities for
integrated monitoring, verification, and testing software and programmable
infrastructure. Even if significant parts of the telecommunication networks are
foreseen to be virtualized in the future, we in [3] identified important characteris-
tics of telecommunication networks that differ from traditional data centers, i.e.:
(i) higher spatial distribution, as telecom resources are spread over wide areas
due to coverage requirements; (ii) lower levels of redundancy in access and aggre-
gation networks compared to the massive data centers of typical cloud computing
companies; (iii) stronger requirements on high availability and latency in accord-
ing to standards and customer expectations. These characteristics pose new chal-
lenges for applying DevOps principles in telecommunications environments [4].
SP-DevOps addresses them with a set of technical processes supporting devel-
oper and operator roles in a virtualized telecom network. Figure 1 illustrates the
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Fig. 1. SP-DevOps cycle for UNIFY service creation.

relation between the four SP-DevOps processes and the developer/operator roles
by means of a service creation lifecycle. The four SP-DevOps processes follow
the DevOps principles to meet specific challenges regarding Observability and
Troubleshooting (Principle: Monitor and validate operation quality); Verification
(Principle: Deploy with repeatable, reliable processes); and Development (Prin-
ciple: Develop and test against production-like systems). We also identified three
main roles involved in the processes: two Developer roles, where one is associated
to a classical operator role assembling the service graph for a particular category
of services (the Service Developer), and a second associated to the classical equip-
ment vendor role in actually programming a VNF (the VNF Developer). The role
of the Operator is to ensure that a set of performance indicators associated to a
service are met when the service is deployed on virtual infrastructure within the
domain of a telecom provider. SP-DevOps might not be a new form of DevOps
as such, but it must include solutions that are uniquely tailored for the charac-
teristics of its environment. Consequently, we propose the SP-DevOps Toolkit as
an instantiation of the SP-DevOps concept [7]. The SP-DevOps Toolkit consists
of a set of DevOps solutions that are developed targeting specific research chal-
lenges identified in the UNIFY production environment [3,4]. Besides scalable
and programmable infrastructure monitoring functions, the toolkit will also pro-
vide modules for deploy-time functional verification of various abstraction levels
of service definition, supporting the three SP-DevOps roles. As in any develop-
ment process, identification of problems early in the service or product livecycle
can significantly reduce times and costs spent on complicated debugging and
troubleshooting processes. In this paper, we focus on verification with respect
to the service definitions and configurations initiated by the Service Developer.
Automated verification functions operating during deploy-time on each layer of
the orchestration and control architecture, facilitate verification as part of each
step in the deployment process, allowing identification of problems early in the
service lifecycle.
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3 The Verification Process

The SP-DevOps paradigm represents a significant opportunity for service
providers to implement more complex services in their networks and increase
the agility by which a new function (or a chain of) can be automatically config-
ured and deployed in their infrastructure. However, while the process of insert-
ing and/or modifying functions throughout the network can be automated with
technologies similar to the ones used for the Cloud Computing scenario [2], great
importance has also to be placed on the design and implementation of automatic
tools that can verify a network configuration on the fly, before it is deployed.
For example, an operator may want to ensure that a given traffic flow is per-
mitted (or not permitted, due to a policy constraint) from one node to another.
Concerning this last aspect, our verification process is currently based on a veri-
fication approach recently proposed in [8]. In order to achieve high performance,
this verification approach exploits Z3 [1], a state of the art SMT solver, and
translates network scenarios with multiple middleboxes into sets of First Order
Logic (FOL) formulas that are then analyzed by Z3. This choice is motivated
by the overall verification tool performance and scalability, which would be hard
to achieve with standard model checking based techniques. In fact, the latter
requires time and memory that usually increase exponentially with the system
complexity, while the SAT-based approach proposed in [8] seems to be less prone
to this problem. The FOL formulas given to Z3 represent the network operating
principles along with the functional behavior of all the VNFs involved in the
scenario being considered. While [8] presents the general ideas of the proposed
approach, not all the details are fully developed, and not all the different situ-
ations that may arise when considering different kinds of VNFs are considered.
Here, we present our preliminary work towards integrating the approach pre-
sented in [8] into a SP-DevOps context like the one of UNIFY. A considerable
part of this work has been about developing models for new VNFs that were not
explicitly considered in [8], and making some first experiments with them.
In our design, the formal verification task is split into multiple sub-tasks, so that
the whole process is simpler and faster. More precisely, at NF-FG deploy time, or
when the graphs undergo modifications in response to higher level events (e.g.,
administration events or user requests), the VNF chains composing the graph
are computed and then, for each of them, a formal model is generated, including
the model of all the involved VNFs. Finally, the verification engine processes
the whole VNF chain model to check the satisfiability of a given property. In
particular, this paper focuses on reachability problems in service graphs, leaving
the verification of other network properties as possible future work. Furthermore,
since we are using abstract models of the real middleboxes, we assume that these
models are correctly defined. This means that we verify abstract models of the
real middleboxes, considering them as faithful representations of the real VNFs.
Verification of possible mismatch between a VNF model and its implementation
is out of scope for the current prototype. For further details about the adopted
formal verification theory and other background concepts, please refer to [8].
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(send(cache, n0, p0, t0) ∧ ¬isInternal(n0)) =⇒ ¬isInCache(p0.url, t0)

∧ p0.proto = HTTP REQ ∧ ∃(t1, n1) | (t1 < t0 ∧ isInternalNode(n1)

∧ recv(n1, cache, p0, t1)), ∀n0, p0, t0

(1a)

(send(cache, n0, p0, t0) ∧ isInternal(n0)) =⇒ isInCache(p0.url, t0)

∧ p0.proto = HTTP RESP ∧ p0.ip src = p1.ip dest ∧ p0.ip dest = p1.ip src∧
∧ ∃(p1, t1) | (t1 < t0 ∧ p1.protocol = HTTP REQ ∧ p1.url = p0.url

∧ recv(n0, cache, p1, t1)), ∀n0, p0, t0

(1b)

isInCache(u0, t0) =⇒ ∃(t1, t2, p1, p2, n1, n1) | (t1 < t2 ∧ t1 < t0 ∧ t2 < t0

∧ recv(n1, cache, p1, t1) ∧ recv(n2, cache, p2, t2) ∧ p1.proto = HTTP REQ

∧ p1.url = u0 ∧ p2.proto = HTTP RESP ∧ p2.url = u0 ∧ isInternal(n2))

∀u0, t0

(1c)

Fig. 2. Web cache model.

3.1 VNFs Models

The approach for modeling network function chains proposed in [8] has been
experimented by the authors of [8] with some middlebox types, such as stateless
and stateful firewalls. When modelling scenarios that include VNFs that may
alter packets (e.g. a NAT), it is necessary to also consider the possibility for a
target VNF to receive a packet different from the one originally transmitted.
This kind of situation regards a significant set of middleboxes that is currently
deployed in SP networks and that is envisioned to be included in the NF-FG
within the UNIFY project, e.g. NAT, VPN gateway and so on. We revisited the
network constraints developed by the authors of [8], by introducing the possibil-
ity of verifying reachability properties between two network nodes and interme-
diate VNFs that do modify forwarded packet headers. Finally, we checked that
verification works as expected with these revisited constraints, by experimenting
with the new middlebox models that we developed.

The first VNF we consider is a simple web cache (reported in Figure 2). The
functional model consists of two interfaces connected respectively to the private
network, i.e., the one which contains the clients issuing HTTP requests, and
the external network. Formula 1a states that a packet sent from the cache to a
node belonging to the external network, implies a previous packet, containing
a HTTP request and received from an internal node, which cannot be served
by the cache (otherwise the request would have not been forwarded towards
the external network). Formula 1b states that a packet sent from the cache to
the internal network contains a HTTP RESPONSE for an URL which was in cache
when the request has been received. We also state that the packet received from
the internal network is a HTTP REQUEST and the target URL is the same as the
response. The final formula expresses a constraint that the isInCache() function
must respect. In particular, we state that a given URL (u0) is in cache at time t0
if (and only if) a request packet was received at time t1 (where t1 < t0) for that
URL and a subsequent packet was received at time t2 (where t2 < t0 ∧ t2 > t1)
carrying the corresponding HTTP RESPONSE.
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(send(nat, n0, p0, t0) ∧ ¬isPrivateAddress(p0.ip dest)) =⇒ p0.ip src = ip nat

∧ ∃(n1, p1, t1) | (t1 < t0 ∧ recv(n1, nat, p1, t1) ∧ isPrivateAddress(p1.ip src)

∧ p1.origin = p0.origin ∧ p1.ip dest = p0.ip dest ∧ p1.seq no = p0.seq no

∧ p1.proto = p0.proto ∧ p1.email from = p0.email from ∧ p1.url = p0.url)

∀n0, p0, t0

(2a)

(send(nat, n0, p0, t0) ∧ isPrivateAddress(p0.ipdest)) =⇒ ¬isPrivateAddress(p0.ip src)

∧ ∃(n1, p1, t1) | (t1 < t0 ∧ recv(n1, nat, p1, t1) ∧ ¬isPrivateAddress(p1.ip src)

∧ p1.ip dest = ip nat ∧ p1.ip src = p0.ip src ∧ p1.origin = p0.origin

∧ p1.seq no = p0.seq no ∧ p1.proto = p0.proto ∧ p1.email from = p0.email from

∧ p1.url = p0.url) ∧ ∃(n2, p2, t2) | (t2 < t1 ∧ recv(n2, nat, p2, t2)

∧ isPrivateAddress(p2.ip src) ∧ p2.ip dest = p1.ip src ∧ p2.ip dest = p0.ip src

∧ p2.ip src = p0.ip dest), ∀n0, p0, t0

(2b)

Fig. 3. NAT model.

The second middlebox we modeled is the NAT function. The corresponding
model is reported in Figure 3. In order to model the NAT behaviour, a dis-
tinction between the private and external network is needed. This separation is
modeled by using a boolean function (isPrivateAddress()) that returns true if
a given IP address belongs to the set of internal node addresses. Analyzing the
reported formulas, we start by considering an internal node which initiates a
communication with an external node (Formula 2a). In this case, the NAT sends
a packet (p0) to an external IP address, if and only if it has previously received a
packet (p1) from an internal node. The received and sent packets must be equal
for all fields, except for the ip src, which must be equal to the NAT public IP
address.

On the other hand, the traffic in the opposite direction (from the external
network to the private) is modeled by the Formula 2b. In this case, we state
that if the NAT is sending a packet to an internal address, this packet (p0) must
have an external IP address as its source. Moreover, p0 must be preceded by
another packet (p1 in the formula), which is, in turn, received by the NAT and
it is equal to p0 for all the other fields. It is worth noting that, generally, a
communication between internal and external nodes cannot be started by the
external node in presence of a NAT. As a consequence, this condition is expressed
in the Formula 2b by imposing that p1 must be preceded by another packet p2,
sent to the NAT from an internal node.

4 Preliminary Results

In order to evaluate the new developed models and the overall approach, we
consider the NF-FG3 shown in Figure 4 as a use case. In our reference graph, four
end-hosts (two clients and two servers) can generate either HTTP or POP3 and
also SMTP traffic, which is processed by different middleboxes when traversing
the graph. Moreover, some of those network functions may require a different
3 We do not provide the firewall VNF model as it was presented as use case in [8].
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NAT ACL
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spam

Web
Cache

Web
Client

Mail
Client

Web
Server

Mail
Server

NF-FG

Web Client – Web Cache – NAT – ACL firewall – Web Server
Chain A

Mail Client – Anti-spam – NAT – ACL firewall – Mail Server
Chain B

Fig. 4. An example of Network Function-Forwarding Graph.

configuration. Specifically, the NAT must be configured in order to know which
hosts belong to the private network (as the web cache) and which IP address
must be used as masquerading address; the firewall must be provided with a set
of ACL entries that specify which couples of nodes are authorized to exchange
traffic. Additionally, the forwarding is configured such that the web traffic is
forwarded to the web cache, while the email traffic (both POP3 and SMTP) is
routed to an anti-spam function. A first step towards the NF-FG verification is
the VNF chains extraction. In our use case, two chains are extracted from the
NF-FG (Figure 4): the Chain A processes the web traffic, while the Chain B is
traversed by POP3 and SMTP packets.

We perform multiple tests on the two chains to cover different cases and
configuration options: (i) anti-spam and firewall configurations and (ii) traffic
directions (from client to server and vice-versa). Concerning the Chain A, only
the ACL firewall can be configured, hence we setup two tests: one with the fire-
wall configured to allow all the traffic (test A.1) and the other one with the fire-
wall configured to drop all packets exchanged between the web client and server
(test A.2).

Instead the Chain B is tested in three scenarios, obtained by changing the
firewall and anti-spam configurations as follows: (i) test B.1, similarly to test
A.1, is performed without any function configured to drop the received traffic;
(ii) in test B.2, the firewall drops the traffic between the mail client and server
(Figure 5); (iii) test B.3 is such that the anti-spam is configured to drop all the
emails sent by the mail client, while the traffic originated by the server is allowed
(Figure 5). Our evaluation is executed on a workstation with 32GB of RAM and
an Intel i7-3770 CPU running an Ubuntu 14.04.01 with kernel 3.13.0-24-generic.
The results are shown in Figure 5, where the verification time is reported for
each presented scenario.

In test A.1 the reachability problem from the client to the server (the light
grey colored bar in Figure 5) is satisfied as expected. It is worth noting that the
unsatisfiability of the problem in the opposite direction (the dark grey colored
bar in Figure 5) is due to the fact that client and server can exchange traffic
only if the connection is initiated by the client. In test A.2, in both cases the
reachability problems are not satisfied because of the firewall VNF configuration.
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Fig. 5. Test {A, B}.1: firewall and anti-spam configured to accept packets; Test {A,
B}.2: firewall configured to drop server/client packets; Test B.3: anti-spam configured
to drop server/client packets.

In test B.1, the verification problem is satisfiable in case of traffic sent by the
mail client, while the reachability property is not verified for the traffic sent by
the mail server for the above-mentioned reasons.

As it can be seen from the achieved results, performance is promising also
in the worst case scenario, since we are able to solve the reachability problem
in less than 200ms, while the verification time is less than 50ms in most cases.
This is reasonably in line with the UNIFY requirements, especially in terms of
time required by the verification process to authorize a newly asked network
reconfiguration.

5 Conclusion

It is argued that in the future Telecommunications infrastructures are likely
to become highly dynamic, flexible and programmable production environments
capable of providing any ICT services. Future operations will involve the manage-
ment and control of a myriad of software processes, rather than closed physical
nodes.

In fact, today most SPs still have rather complicated and static operational
processes. DevOps, formerly developed for managing Data Centers (DCs), is
attracting a growing interests as a paradigm to be extended to future Telecom-
munications infrastructures. Nevertheless, it is argued that the DevOps will jump
ahead current ossification only if it will be sustainable from a business viewpoint
(CAPEX, OPEX saving are not enough): importantly DevOps criteria of success
depend on how closely the related future infrastructures (e.g. UNIFY) will be
capable of enabling new service paradigms for SP’s (e.g., Immersive Communi-
cations, Anything as a Service, etc). Motivated by these considerations, in this
paper we presented our initial contribution related to the verification process
on service graphs, which is one of the most important pillars in the SP-DevOps
feedback cycle. After generalizing the applicability of a state of the art app-
roach to the verification of complex network graph, we presented and discussed
a couple of models we developed to validate our key ideas. Given the promising



262 S. Spinoso et al.

evaluation results achieved, we plan to address more efforts to some open topics
in the middlebox verification area such as scalability issues in verifying complex
service graphs and significant opportunities to optimize the verification process
when incremental service graph modifications come into play.
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