
A Scalable Distributed Architecture
for Web-Based Software Agents

Dejan Mitrović1(B), Mirjana Ivanović1, Milan Vidaković2,
and Zoran Budimac1

1 Department of Mathematics and Informatics, Faculty of Sciences,
University of Novi Sad, Novi Sad, Serbia

{dejan,mira,zjb}@dmi.uns.ac.rs
2 Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia

minja@uns.ac.rs

Abstract. In recent years, the web has become an important software
platform, with more and more applications becoming purely web-based.
The agent technology needs to embrace these trends in order to remain
relevant in the new era. In this paper, we present recent developments of
our web-based multiagent middleware named Siebog. Siebog employs
enterprise technologies on the server side in order to provide auto-
matic agent load-balancing and fault-tolerance. On the client, it relies
on HTML5 and related standards in order to run on a wide variety of
hardware and software platforms. Now, with automatic clustering and
state persistence, Siebog can support thousands of external devices host-
ing tens of thousands of client-side agents.

1 Introduction

During the last decade, there has been an obvious paradigm shift in software
development. The web has evolved into an environment capable of providing
functionalities not so long ago available only in desktop applications. One of the
main reasons for the increasing popularity of web-only applications is their cross-
platform nature, which allows the end-users to access their favorite applications
in a wide variety of ways. As the overall result, the desktop-only technologies
are becoming less and less relevant.

Computer clusters play an important role in modern web and enterprise
applications. They provide high-availability of deployed applications [18]. This
feature is concerned with continuous, uninterrupted delivery of services, regard-
less of hardware and software failures, or numbers of incoming requests. The
high-availability is achieved through the so-called horizontal scaling, which is
the processing of adding more nodes to the cluster as the demands for process-
ing power increase.

Siebog is our multiagent middleware designed to provides support for intelli-
gent software agents in this new setting [24]. It efficiently combines the HTML5
and related web standards on the client side [20,22], and the Enterprise edition

c© Springer International Publishing Switzerland 2015
M. Núñez et al. (Eds.): ICCCI 2015, Part I, LNAI 9329, pp. 67–76, 2015.
DOI: 10.1007/978-3-319-24069-5 7



68 D. Mitrović et al.

of Java (Java EE) on the server side [21,23,29], in an effort to bridge the gap
between the agent technology and industry applications.

By utilizing the standards and technologies readily-available in Java EE,
Siebog offers “native” support for computer clusters on the server. The purpose
of this paper is to discuss how this support is extended to the client side of
Siebog as well. The goal is to provide the support for clusters that consist of
arbitrary client devices, such as personal computers, smartphones, and tablets.

The motivation for this approach is straightforward. There can be an order
of magnitude more external client devices than there can be server-side comput-
ers. Siebog could be used to distribute agents among connected clients and to
support applications that require launching large populations of agents. Since
the state-of-the-art smartphones have more processing powers that many laptop
or desktop machines, they represent a significant computational resource.

This approach, however, does pose some technical challenges. Client-side clus-
ters are highly dynamic, in the sense that clients are able to join and leave at
any time. In order to deal with this situation, we added a highly-scalable infras-
tructure for agent state persistence which allows the agents to “rise above” the
interruptions, and to operate regardless of their physical locations.

The rest of the paper is organized as follows. Section 2 discusses the overall
motivation behind this paper, and presents relevant existing work. Section 3
shows how the support for dynamic and heterogeneous client-side clusters was
added to Siebog. The overall performance evaluation is presented in Section 4.
The final conclusions and future research directions are given in Section 5.

2 Background

Web application play an increasingly important role in the modern-day comput-
ing. They offer a number of advantages over traditional desktop application, such
as the lack of need for installations, configurations, or upgrades. The importance
of web applications is emphasized by the continuously increasing sales of mobile
devices and the ability of web applications to run as native applications on these
devices [30].

In order to maintain its relevance in this new era, the agent technology not
only needs to move to the web, but it needs to do so in accordance to the
modern standards and the end-users’ expectations. Agent-based applications
need to seamlessly be integrated into web and enterprise applications in order to
reach the end-users more easily, and to stay relevant in this new state of affairs.

Currently, there exists a large number of both open-source and commer-
cial agent middlewares [3,4]. However, almost none of these systems has fully
exploited the advantages of web environments. Some efforts aimed at extending
existing systems with web support have been made, but usually in a inefficient
manner. For example, in many Java-based middlewares, such as JADE [2] or
JaCa-Web [19], the extensions are based on Java applets. But, Java applets
require a browser plug-in to run, which is unavailable on some platforms (e.g.
iOS and Smart TVs). With some desktop-based browsers also starting to disable



A Scalable Distributed Architecture for Web-Based Software Agents 69

Java support1, the applicability of Java-based web solutions becomes limited to
a narrower set of hardware and software platforms.

One of the prominent ways of migrating the agent technology to the web is
to use the expanding HTML5 and related set of standards [12]. HTML5 cov-
ers various aspects of web and enterprise applications, from audio and video
playbacks, to offline application support, to more advanced features, such as
multi-threaded execution and push-based communication. In addition, since web
browser vendors keep investing significant resources into improving the over-
all performance of their respective JavaScript virtual machines, the HTML5 is
expected to become “a mainstream enterprise application development environ-
ment” [11].

2.1 Related Work

Over the years, many practical applications of agents on the web have been pro-
posed. One domain that appears to be the most interesting to agent researchers
and practitioners is content personalization and various recommender sys-
tems [17,26]. Another possible thriving area is to use the so-called pedagogical
agents in web-based e-learning systems [6,15], as well as in knowledge manage-
ment [9].

Along with the more recent trends, there have been several proposals of using
mobile agents within the so-called Internet of Things (IoT) concept [27], in smart
objects [1,10] and in smart cities [28].

The role of Siebog in these practical applications would be in providing a
standards-compliant, platform-independent, and efficient [22] multiagent mid-
dleware. In addition, with the work presented in this paper, we intend to bring
the more traditional agent applications to the web. As discussed later, Siebog
is suitable for distributed systems with large populations of agents. A concrete
example of its possible practical application would be in the area of swarm intel-
ligence, such as [14].

As we discussed previously in [20,22], many traditional (i.e. desktop- or
server-based) multiagent middlewares have exposed their functionalities to the
web through Java applets. This approach does provide many important ben-
efits, such as the immediate availability of complex reasoning agents in web
browsers [19]. However, with the lack of Java support in many popular modern
platforms, this approach is no longer sufficient.

To the best of our knowledge, currently there exists one additional HTML5-
based multiagent middleware [16,27]. The middleware is focused on using (pri-
marily) mobile agents to support the IoT requirements. On the technical view-
point, the client side of their system does not utilize the full range of HTML5 and
related standards (such as Web Workers [22]). It is also not clear how multiple
agents could be started within the same host, and how would they interact with
each other without the server. The backend is conveniently based on Node.js2,

1 https://java.com/en/download/faq/chrome.xml, retrieved on March 12, 2015.
2 https://nodejs.org/, retrieved on March 12, 2015.

https://java.com/en/download/faq/chrome.xml
https://nodejs.org/


70 D. Mitrović et al.

which simplifies certain development aspects (such as mobility), but lacks sev-
eral advanced features found in Siebog, namely automated agent load-balancing
and fault-tolerance.

3 Clustering Client-Side Siebog Agents

In this section we describe how Siebog is extended to support automatic cluster-
ing and load-balancing of its client-side agents. More concretely, we discuss how a
possibly large set of heterogeneous client-side devices can be observed as a coher-
ent cluster. The cluster can then be used to execute resource-demanding and
computationally-expensive tasks, such as launching large populations of agents.

3.1 The Existing Architecture

The overall existing architecture of Siebog is shown graphically in Fig. 1. On
the server side, Siebog includes the following three main modules [21,23,24,
29]: Agent Manager, which acts as an agent directory and controls the agents’
life-cycles, Message Manger, in charge of inter-agent communication, and the
WebClient Manager, which acts as an intermediary for server-to-client (i.e. push)
messaging, and also handles state persistence for client-side agents.

Fig. 1. The overall architecture of Siebog (adapted from [24]).

Client-side agents are executed inside web browsers [20,22,24] or possibly
in dedicated JavaScript runtimes of external devices. Inside a device, agents
rely on the Siebog client library for execution support and for communicating
with the server. For example, the client library offers proxy implementations
of server-side components. In order to send a message to the server-side agent,
the client-side agent simply invokes the proxy implementation of the Message
Manager. Underneath, the proxy then turns this invocation into a corresponding
AJAX call to the server.



A Scalable Distributed Architecture for Web-Based Software Agents 71

Another important feature of Siebog is that its server can (if configured)
hold a proxy representation of each client-side agent. This representation sim-
ply forwards all incoming messages to the corresponding client-side counterpart
(and through the WebClient Manager). This feature opens-up the possibility for
transparent agent communication across different devices. An example is shown
in Fig. 2. Let there be two agents, AgA and AgB, hosted by two different devices,
Device A and Device B, respectively. When the AgA decides to send a message
to AgB, the message will be delivered in the following way:

– AgA makes the appropriate call to the Message Manager Proxy.
– This call is transformed into an AJAX call to the server-side Message Man-

ager.
– The Message Manager delivers the message to the AgB proxy.
– Since this is a proxy representation, it forwards the message to the WebClient

Manager.
– The WebClient Manager, which is aware of all external clients, finally pushes

the message to the target agent.

Fig. 2. Transparent communication of client-side agents across different devices.

Due to limitations imposed by certain web browsers [22], each client device
can run up to a few dozens of agents. But, there can be large numbers of physical
devices active simultaneously. The main idea here is to exploit this possibility in
order to distribute portions of a large population of agents. This is conceptually
similar to, for example, the famous SETI@home scientific experiment3. As an
important advantage, the Siebog does not require any software installation: all
the end-user needs to do is to visit the corresponding web page.

The main issue here is how to efficiently support these large numbers of
external devices, and to deal with their inherently dynamic availability.

3.2 Managing Heterogeneous and Dynamic Clusters

A central component in a computer cluster is a load-balancer with the task of
distributing the work across available machines. In the context of Siebog, the
load-balancer continuously accepts tasks that need to be solved. For example, it

3 http://setiathome.berkeley.edu/, retrieved on March 12, 2015.

http://setiathome.berkeley.edu/


72 D. Mitrović et al.

can accept large maps for the Traveling Salesman Problem4 and then partition
each map [13] and send it (along with the corresponding set of ants) to a subset
of available devices.

In the majority of existing non agent-based distributed architectures, the
load-balancer selects the target device randomly. In this way, the workload is
distributed “for free” and, in the longer run, equally among all available devices.
However, the clusters that consist of Siebog clients are heterogeneous, in the
sense that they can include devices with very different processing capabilities.
Therefore, the load-balancing process is a bit more complex.

When it comes to load-balancing in heterogeneous systems, the agent-
oriented research has proposed some rather complex approaches (e.g. [5,25,31]).
In case of Siebog, however, we decided to follow the industry norms of keep-
ing things as simple as possible. Once a device joins the cluster for the first
time, a performance benchmark is executed. The results of this benchmark are
used to assign a number of compute units (CUs) to the device. Now, during
the load-balancing phase, the target device is selected with the probability that
corresponds to its number of CUs.

From the end-user’s point of view, joining the Siebog cluster is fairly simple:
he/she only needs to visit the appropriate web page that hosts the worker agents.
Unfortunately, it is also very easy to leave the cluster; once the end-user closes the
web browser or switches off the device, the hosted agents are lost. For meaningful
practical applications, however, the agents need to be able to run regardless of
these interruptions.

In order to support possibly large numbers of agents, Siebog needs a scal-
able datastore, one capable of serving multitudes of requests per second. The
datastore should also be fault-tolerant – capable of surviving server crashes.
More formally, these requirements can be described as principles of the so-called
Dynamo systems [8]. Currently, there exist several concrete Dynamo realizations.
After a careful evaluation of these solutions, we determined that the open-source
Apache Cassandra5 datastore fulfills the needs of the Siebog client-side clusters.
The client-side Siebog library has been extended to allow the agents the interact
with the datastore directly, and over the WebSocket protocol [20,22]. The per-
formance evaluation of the new architecture is discussed in the following section.

4 Performance Evaluation

The newly proposed architecture of Siebog needs to be able to serve large num-
bers of running agents, which are concurrently, and at high frequencies, storing
and retrieving their respective internal states. In order to evaluate this feature,
we used the open-source Yahoo! Cloud Serving Benchmark (YCSB) [7] tool.
YCSB is designed for load-testing of (primarily) NoSQL databases, and can be

4 http://www.math.uwaterloo.ca/tsp/data/, retrieved on March 12, 2015.
5 http://cassandra.apache.org/, retrieved on March 12, 2015.

http://www.math.uwaterloo.ca/tsp/data/
http://cassandra.apache.org/


A Scalable Distributed Architecture for Web-Based Software Agents 73

configured through a range of parameters, including the desired number of oper-
ations per second (throughput), the number of concurrent threads, maximum
execution time, etc.

The experiments were performed using two machines, each with 8 virtual
CPUs and 28 GB of RAM, running 64-bit version of Ubuntu 14.04 LTS. One
machine was hosting the Apache Cassandra datastore and the Siebog server,
while the other one was used to launch YCSB-simulated external devices. Each
external device was represented by a separate WebSocket that the server needed
to maintain.

In a realistic use-case, there will be many more writes to the store than reads.
That is, the internal state of an agent will usually be read only once: when the
web page is loaded and the agent is started. On the other hand, the state can
be stored multiple times during the agent’s execution, e.g. after each processed
message or after each computational sub-step. Therefore, the YCSB workload
was set up as write-heavy, so that 90% of all operations are writes.

The goal of the experiment was to determine the maximum number of exter-
nal devices as well as client-side agents that our system can support. For this
goal, a number of test-cases was executed. With each successive test-case, the
total number of connected devices was increased. Then we would try to find the
maximum throughput (i.e. the number of operations per second) that the Siebog
server can support. A test-case was executed for one hour, and the maximum
throughput value that was stable during this period was taken as the end-result.

We started with 100 external devices, increased the number for each test-
cased, and finally reached the limit of approximately 16,000 devices. This number
actually represents the maximum number of open connections that the operating
system could support. Nonetheless, being able to support 16,000 external devices
using a single-node Siebog cluster is an excellent result, given the fact that the
cluster can easily be extended with more nodes as the demands grow. The results
of this test-case are shown in Fig. 3. More concretely, the figure shows average
read and write latencies during the one hour period, calculated at one minute
intervals. The latencies are very low (expressed in microseconds), due to the
WebSocket protocol’s support for asynchronous I/O.

For each test-case, through trial-and-error, we determined that the value of
approximately 6,000 operations per second is the maximum throughput that
remained stable during the one hour period. Our systems is capable of serving
much larger numbers than this (i.e. up to 100,000 operations per second), but
only in “short bursts,” after which the backend datastore needed some time to
manage all the write operations.

Although the 6,000 operations per second might not seem as a large number
at first, it is worth noting that an agent is not supposed to store its internal
state at every second. So even if agents store their respective states at every
10 seconds, we reach the conclusion that our Siebog multiagent middleware can
manage 60,000 agents distributed across 16,000 devices, using only one server-
side node.



74 D. Mitrović et al.

Execution time, in minutes

60

Fig. 3. Average read and write latencies of the test-case simulating 16,000 external
devices and 6,000 operations per second, during the one hour period. The latencies are
calculated at one minute intervals.

5 Conclusions and Future Work

Siebog is a web-based, enterprise-scale multiagent middleware. It combines
the enterprise technologies on the server with HTML5 and related standards
on the client in order to support multiagent solutions whose functionalities meet
the expectations of modern software systems.

In this paper, we have presented how Siebog was recently updated to support
dynamic clusters of heterogeneous client-side devices. The two new components
of our system are the load-balancer, which is in charge of distributing agents
across the connected devices, and a highly-scalable backend datastore used for
persisting the internal states of client-side agents.

For any meaningful application of Siebog, its client-side agents need to
become “detached” from their host environments (e.g. web pages). As shown
in the paper, thanks to the use of a Dynamo architecture and the WebSocket
protocol, on just one server node the state persistence system in Siebog can
support thousands of external devices hosting tens of thousands of client-side
agents, which is an excellent result.

Future developments of Siebog will be focused on an even tighter integration
of client-side and server-side agents. Also, the system will be extended with
an interoperability module, allowing it to interact with third-party multiagent
solutions. Although Siebog already supports BDI agents on the server, the work
is underway to develop a unique architecture for intelligent agents.

Acknowledgments. This work was partially supported by the Ministry of Education,
Science and Technological Development of the Republic of Serbia, Grant III-44010,
Title: Intelligent Systems for Software Product Development and Business Support
based on Models.



A Scalable Distributed Architecture for Web-Based Software Agents 75

References

1. Aiello, F., Fortino, G., Gravina, R., Guerrieri, A.: A java-based agent platform for
programming wireless sensor networks. Computer Journal 54(3) (2011)

2. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. John Wiley & Sons (2007)

3. Bordini, R.H., Braubach, L., Dastani, M., El, A., Seghrouchni, F., Gomez-sanz,
J.J., Leite, J., Pokahr, A., Ricci, A.: A survey of programming languages and
platforms for multi-agent systems. Informatica 30, 33–44 (2006)

4. Bădică, C., Budimac, Z., Burkhard, H.D., Ivanović, M.: Software agents: languages,
tools, platforms. Computer Science and Information Systems, ComSIS 8(2),
255–298 (2011)

5. Cao, J., Spooner, D.P., Jarvis, S.A., Nudd, G.R.: Grid load balancing using intel-
ligent agents. Future Generation Computer Systems 21(1), 135–149 (2005)

6. Cheng, Y.M., Chen, L.S., Huang, H.C., Weng, S.F., Chen, Y.G., Lin, C.H.: Building
a general purpose pedagogical agent in a web-based multimedia clinical simulation
system for medical education. IEEE Transactions on Learning Technologies 2(3),
216–225 (2009)

7. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC 2010, pp. 143–154. ACM, New York (2010)

8. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: Proceedings of Twenty-First ACM SIGOPS Symposium
on Operating Systems Principles, SOSP 2007, pp. 205–220 (2007)

9. Dignum, V.: An overview of agents in knowledge management. In: Umeda, M.,
Wolf, A., Bartenstein, O., Geske, U., Seipel, D., Takata, O. (eds.) INAP 2005.
LNCS (LNAI), vol. 4369, pp. 175–189. Springer, Heidelberg (2006)

10. Fortino, G., Guerrieri, A., Russo, W.: Agent-oriented smart objects development.
In: 16th International Conference on Computer Supported Cooperative Work in
Design (CSCWD), pp. 907–912, May 2012

11. Gartner identifies the top 10 strategic technology trends for 2014, October 2013.
http://www.gartner.com/newsroom/id/2603623 (retrieved on March 12, 2015)

12. HTML5: a vocabulary and associated APIs for HTML and XHTML, October 2014.
http://www.w3.org/TR/html5/ (retrieved on March 12, 2015)

13. Ilie, S., Bădică, A., Bădică, C.: Distributed agent-based ant colony optimization
for solving traveling salesman problem on a partitioned map. In: Proceedings of
the International Conference on Web Intelligence, Mining and Semantics, WIMS
2011, pp. 23:1–23:9. ACM (2011)

14. Ilie, S., Bădică, C.: Multi-agent approach to distributed ant colony optimization.
Science of Computer Programming 78(6), 762–774 (2013)

15. Ivanović, M., Mitrović, D., Budimac, Z., Jerinić, L., Bădică, C.: HAPA: Har-
vester and pedagogical agents in e-learning environments. International Journal of
Computers Communications and Control 10(2), 200–210 (2015)

16. Jarvenpaa, L., Lintinen, M., Mattila, A.L., Mikkonen, T., Systa, K., Voutilainen,
J.P.: Mobile agents for the internet of things. In: 17th International Conference on
System Theory, Control and Computing (ICSTCC), pp. 763–767, October 2013

17. Lops, P., Gemmis, M., Semeraro, G.: Content-based recommender systems: state
of the art and trends. In: Recommender Systems Handbook, pp. 73–105 (2011)

http://www.gartner.com/newsroom/id/2603623
http://www.w3.org/TR/html5/


76 D. Mitrović et al.

18. Michael, M., Moreira, J.E., Shiloach, D., Wisniewski, R.W.: Scale-up x scale-out:
a case study using Nutch/Lucene. In: IEEE International Parallel and Distributed
Processing Symposium, pp. 1–8, March 2007

19. Minotti, M., Santi, A., Ricci, A.: Developing web client applications with
JaCa-Web. In: Omicini, A., Viroli, M. (eds.) Proceedings of the 11th WOA 2010
Workshop, Dagli Oggetti Agli Agenti, Rimini, Italy, September 5–7, 2010. CEUR
Workshop Proceedings, vol. 621. CEUR-WS.org (2010)

20. Mitrović, D., Ivanović, M., Bădică, C.: Delivering the multiagent technology to
end-users through the web. In: Proceedings of the 4th International Conference on
Web Intelligence, Mining and Semantics, WIMS 2014, pp. 54:1–54:6. ACM (2014)

21. Mitrović, D., Ivanović, M., Budimac, Z., Vidaković, M.: Supporting heterogeneous
agent mobility with ALAS. Computer Science and Information Systems 9(3),
1203–1229 (2012)

22. Mitrović, D., Ivanović, M., Budimac, Z., Vidaković, M.: Radigost: Interoperable
web-based multi-agent platform. Journal of Systems and Software 90, 167–178
(2014)

23. Mitrović, D., Ivanović, M., Vidaković, M., Budimac, Z.: Extensible Java EE-based
agent framework in clustered environments. In: Müller, J.P., Weyrich, M., Bazzan,
A.L.C. (eds.) MATES 2014. LNCS, vol. 8732, pp. 202–215. Springer, Heidelberg
(2014)

24. Mitrović, D., Ivanović, M., Vidaković, M., Budimac, Z., Bădică, C.: An enterprise-
scale multiagent middleware based on HTML5 and Java EE technologies. Advances
in Electrical and Computer Engineering (in print)

25. Nehra, N., Patel, R.: Towards dynamic load balancing in heterogeneous cluster
using mobile agent. In: International Conference on Conference on Computational
Intelligence and Multimedia Applications, vol. 1, pp. 15–21, December 2007

26. Swezey, R.M.E., Shiramatsu, S., Ozono, T., Shintani, T.: Intelligent page recom-
mender agents: real-time content delivery for articles and pages related to similar
topics. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds.)
IEA/AIE 2011, Part II. LNCS, vol. 6704, pp. 173–182. Springer, Heidelberg (2011)

27. Systä, K., Mikkonen, T., Järvenpää, L.: HTML5 agents: mobile agents for the web.
In: Krempels, K.-H., Stocker, A. (eds.) WEBIST 2013. LNBIP, vol. 189, pp. 53–67.
Springer, Heidelberg (2014)

28. Verma, P., Gupta, M., Bhattacharya, T., Das, P.K.: Improving services using
mobile agents-based iot in a smart city. In: International Conference on Contem-
porary Computing and Informatics (IC3I), pp. 107–111 (2014)

29. Vidaković, M., Ivanović, M., Mitrović, D., Budimac, Z.: Extensible Java EE-
based agent framework – past, present, future. In: Ganzha, M., Jain, L.C. (eds.)
Multiagent Systems and Applications. Intelligent Systems Reference Library,
vol. 45, pp. 55–88. Springer, Heidelberg (2013)

30. Xanthopoulos, S., Xinogalos, S.: A comparative analysis of cross-platform devel-
opment approaches for mobile applications. In: Proceedings of the 6th Balkan
Conference in Informatics, BCI 2013, pp. 213–220. ACM, New York (2013)

31. Zhang, Z., Zhang, X.: A load balancing mechanism based on ant colony and
complex network theory in open cloud computing federation. In: 2nd Interna-
tional Conference on Industrial Mechatronics and Automation (ICIMA), vol. 2,
pp. 240–243, May 2010


	A Scalable Distributed Architecture for Web-Based Software Agents
	1 Introduction
	2 Background
	2.1 Related Work

	3 Clustering Client-Side Siebog Agents
	3.1 The Existing Architecture
	3.2 Managing Heterogeneous and Dynamic Clusters

	4 Performance Evaluation
	5 Conclusions and Future Work
	References


