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Abstract. The concept of a large margin is central to support vector machines 
and it has recently been adapted and applied for nearest neighbour classifica-
tion. In this paper, we suggest a modification of this method in order to be used 
for regression problems. The learning of a distance metric is performed by 
means of an evolutionary algorithm. Our technique allows the use of a set of 
prototypes with different distance metrics, which can increase the flexibility of 
the method especially for problems with a large number of instances. The pro-
posed method is tested on a real world problem – the prediction of the corrosion 
resistance of some alloys containing titanium and molybdenum – and provides 
very good results. 
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1 Introduction 

Regression analysis includes any technique for modelling different kinds of processes 
with the goal of finding a relationship between a dependent variable and one or more 
independent variables, given a set of training instances or vectors in the form of  
(xi, yi) pairs, where xi are the inputs and yi is the output of a sample. The general  
regression model is [8, 10, 11]: 

  iii efy  x , (1) 

where f is the regression model (the approximating function), yi is the desired output 
value that corresponds to the xi input of the training set and ei is a residual whose 
expected error given the sample point xi is   0| iieE x . 

Presently, there are many methods that can be used for regression. Beside analyti-
cal models, where the task is to find adequate values for the coefficients usually by 
means of differential optimization, we can mention several machine learning tech-
niques such as neural networks, support vector machines (ε-SVR, ν-SVR), decision 
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trees (M5P, Random Forest, REPTree) or rules (M5, Decision Table), etc. k-Nearest 
Neighbour (kNN) [5] is a simple, efficient way to estimate the value of the unknown 
function in a given point using its values in other points. Let  mS xx ,...,1  be the 
set of training points. The kNN estimator can be simply defined as the mean function 
value of the nearest neighbours [13]: 
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where SN )(x  is the set of k nearest points to x in dataset S. 
Another, more elaborate version of the method considers a weighted average, 

where the weight of each neighbour depends on its proximity to the query point: 
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where z is a normalization factor, and the inverse of the squared Euclidian distance is 
usually employed to assess the weights: 
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A comprehensive review of locally weighted regression and classification methods 
is given in [3]. Even if kNN is a very simple method, it usually performs very well for 
a wide range of problems, especially when the number of instances is large enough 
and there is little noise in the data. One of the most important aspects of the method is 
the choice of the distance function. While Euclidian distance is the most commonly 
encountered, other particularisations of the general Minkowski distance can be used, 
e.g. the Manhattan distance. Some experiments in cognitive psychology suggest that 
humans use an exponential negative distance function for certain types of classifica-
tion tasks [1]. However, the classical approach does not take into account any infor-
mation about a particular problem. Beside the common practice of normalizing the 
instance values independently on each dimension, there is little domain knowledge 
incorporated into the method. The present work investigates the use of the concept of 
a large margin (best known in the context of support vector machines) for regression 
problems, by adapting its existing formulation for classification problems. We organize 
our paper as follows. Section 2 presents the large-margin nearest neighbour method 
and some of its extensions. Section 3 describes the proposed method, including the use 
of prototypes and evolutionary algorithms for optimization. Section 4 focuses on a case 
study, and section 5 contains the conclusions. 
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2 Related Work 

Because of the importance of the distance metric, researchers sought to find ways to 
adapt it to the problem at hand in order to yield better performance. This is the issue 
of distance metric learning [15, 14, 4, 6]. The idea of a large margin, one of the fun-
damental ideas of support vector machines, was transferred to the kNN method for 
classification tasks [16-18], resulting in the large margin nearest neighbour method 
(LMNN). In this case, learning involves the optimization of a convex problem using 
semidefinite programming. The LMNN technique was also extended to incorporate 
invariance to multivariate polynomial transformations [9]. Since our regression 
method builds on the LMNN method for classification [18], we will present it with 
more details as follows. 

In general, distance metric learning aims at finding a linear transformation Lxx ' , 
such that the distance between two vectors xi and jx becomes: 

 
2

),( jijiLd xxLxx  . (5) 

Since all the operations in k-nearest neighbour classification or regression can be 
expressed in terms of square distances, an alternative way of stating the transforma-
tion is by means of the square matrix: LLM T , and thus the square distance is: 

   ji
T

jijiMd xxMxxxx ),( . (6) 

For a classification problem, the choice of L, or equivalently M, aims at 
minimizing the distance between a vector ix  and its k target neighbours jx , where a 
target signifies a neighbour that belongs to the same class. At the same time, the 
distance between a vector and the impostors lx , i.e. neighbours that belong to a 
different class, should be maximized. In order to establish a large margin between the 
vectors that belong to different classes, the following relation is imposed: 

),(1),( jiMliM dd xxxx  . (7) 

Here, the value of 1 is arbitrary; the idea is to have some minimum value for the 
margin that separates the classes. However, it was proven that other minimum values 
for the margin would not change the nature of the optimization problem, but will only 
result in the scaling of the matrix M. 

Overall, the optimization problem is defined as follows: 

min  
ij ijl

ijlijlhijij d   

(8) 
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where }1,0{ij  is 1 only when xj is a target neighbour of xi, ijijl    if and only if 

li yy   and 0 otherwise, ijd  is the distance between xi and xj, ijl  is the hinge loss 
[12] and 0h  is a constant. 

The two objectives, of minimizing the distance to targets and maximizing the dis-
tance to impostors, are conflicting. Following an analogy to attraction and repulsion 
forces in physics, Weinberger and Saul [18] introduce two forces, εpull and εpush, whose 
balance is reached by setting the value of λh. In their work, the authors consider the 
importance of these forces to be equal, i.e. λh = 1. 

Other researchers (e.g. [9]) suggest the use of regularization to avoid the overfitting 
caused by large values of the elements of L or M. Regularization can be performed 
for example by minimizing the Frobenius norm of the parameters, and thus adding a 
third term to the optimization problem: 

min   
p q

pqr
ij ijl

ijlijlhijij md 2 , (9) 

where λr ≥ 0 is another constant. 
Although there are several studies concerned with LMNN classification, so far not 

many researchers have addressed the issue of regression. One recent paper that  
presents some modifications of the LMNN metric learning for regression is [2]. 

3 Description of the Proposed Method 

A binary classification problem can be considered as a special case of a regression  
problem where the desired function only takes two values: 0 and 1. In this section, we 
will generalize the concepts of the LMNN method and adapt it for regression. As an 
optimization tool we will consider an evolutionary algorithm, which can provide more 
flexibility in situations when we want to learn not a single distance metric, but several. 

3.1 Distance Metric Learning Using Prototypes 

In our work, we considered L (and thus M) to be diagonal matrices. This increases the 
clarity of the results, because in this case the elements mii can be interpreted as  
the weights of the problem input dimensions, and is also a form of regularization. Given 
the fact that an evolutionary algorithm is used for finding the elements of the matrix, it 
can be easily applied to find a full matrix L. In the unrestricted case, the elements of M 
can be directly found only while satisfying some constraints, because they should com-
ply with the relation LLM T , i.e. M should be symmetric and positive semidefinite. 

By using the M matrix, the relation between the neighbour weights and the  
distance in equation (4) still holds, but now we have: 
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In this formulation, there is a single, global matrix M for all the instances. How-
ever, it is possible to have different distance metrics for the different instances or 
groups of instances. We introduce the use of prototypes, which are special locations in 
the input space of the problem, such that each prototype P has its own matrix M(P). 
When computing the distance weight to a new point, an instance will use the weights 
of its nearest prototype, i.e. mii (P) instead of mii in equation (10). 

3.2 The Evolutionary Algorithm 

The following parameters of the evolutionary algorithm were used in the experiments: 
40 chromosomes in the population, tournament selection with 2 candidates, arithmetic 
crossover with a probability of 95% and mutation with a probability of 5% in which a 
gene value is reinitialized to a random value in its corresponding domain of defini-
tion. Elitism was also used such that the best solution in a generation is never lost. As 
a stopping criterion, a maximum number of generations, 500 in our case, was used. 
The number of genes in a chromosome depends on the number of prototypes and the 
dimensionality of the problem, namely: ipg nnn  , where ng is the number of genes, 
np is the number of prototypes and ni is the number of inputs. 

The domain of the genes, which represent the elements of L, is [10–3, 10]. All the 
operations in the software implementation described later deal with the elements of 
M, i.e. their squares. Thus it can be considered that the corresponding values of the M 
elements lie in the [10–6, 102] domain. 

The fitness function F, which is to be minimized, takes into account 3 criteria: 

332211 FwFwFwF FFF  , (11) 

where the weights of the criteria are normalized: 1321  FFF www . 
In order to simplify the expressions of the Fi functions, let us make the following 

notations, where dM means the weighted square distance function using the weights 
we search for:  jiMij dd xx , ,  kiMik dd xx , , )()( jiij ffg xx   and 

)()( kiik ffg xx  . 
Thus, the first criterion is: 
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where N(i) is the set of the nearest k neighbours of instance i, in our case k = 3. Basi-
cally, this criterion says that the nearest neighbours of i should have similar values to 
the one of i, and more distant ones should have different values. This criterion tries to 
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minimize the distance between an instance i and its neighbours with similar values. If 
a neighbour j has a dissimilar value, the second factor, ijg1 , becomes small and the 
distance is no longer necessary to be minimized. 

The second criterion is expressed as follows: 

      
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2 0,111max . (13) 

It takes into account a pair of neighbours, j and l, by analogy to a target and an im-
postor. However, for our regression problem we do not have these notions because we 
do not have a class which could be the same or different. We can only take into ac-
count the real values of the instance outputs. The reasoning is the same as for the first 
criterion, but now we try to minimize the distance to the neighbours with close values 
(the positive term), while simultaneously trying to maximize the distance to the 
neighbours with distant values (the negative term). By analogy to equation (8), we 
consider that a margin of at least 1 should be present between an instance with a close 
value and another with a distant value. The max function is used by analogy to the 
expression of the hinge loss. If we consider that j has a value close to the value of i 
and l has a distant one, the corresponding hinge loss will be 0 only when dil ≥ 1 + dij. 
The condition j ≠ l is implicit because when the terms are equal they cancel each other out. 

The third criterion is used for regularization, to avoid large values of the weights: 
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However, for our case study presented in section 4, the weights are very small and 
this term is not needed. Overall, we use the following values for the weights of the 
criteria: 5.021  FF ww  and 03 Fw . 

The advantage of using an evolutionary algorithm for optimization is that proto-
types can be used, with different weight values, instead of a single, global set of 
weights. As mentioned above, when computing the distance from a certain training 
instance, the distance is weighted by the values corresponding to the nearest prototype 
of the training instance.  

We compute the positions of the prototypes using k-means, a simple clustering al-
gorithm which tends to favour (hyper)-spherical clusters. This is why it is very appro-
priate for our problem, where distances are computed with variations of the Euclidian 
metric. However, the scope of the evolutionary algorithm can be expanded to also 
find the optimal number of clusters as well as their positions in the input space. 

4 Case Study 

In this section we will present the results of applying the regression method to a prac-
tical problem, namely the prediction of the corrosion of some alloys containing tita-
nium and molybdenum (TiMo). 
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Titanium (Ti) and its alloys are widely used in dental applications due to the excel-
lent corrosion resistance and mechanical properties. However, it has been reported that 
Ti is sensitive to fluoride (F 

–
 ) and lactic acid. Consequently, the samples were examined 

using electrochemical impedance spectroscopy (EIS) in acidic artificial saliva with NaF 
and/or caffeine. The material corrosion was quantified by the polarization resistance 
(Rp) of the TiMo alloys (output of the model) which was modelled depending on the 
immersion time, caffeine concentration, NaF concentration, type of alloy (Ti content), 
and solution pH (inputs of the model). The experimental data covered a large domain, 
corresponding to the following conditions: 12, 20 and 40 wt.% of Mo, 0.1, 0.3 and 0.5 
wt.% NaF, 0, 0.5, 1 and 1.5 mg/mL caffeine and 3-8 for solution pH. 

In order to compare different algorithms and models, we consider 2 separate prob-
lems. The first is to assess the performance on the testing set, after randomizing the 
dataset and selecting 2/3 of the instances as the training set and 1/3 as the testing set. 
The second one is to perform cross-validation with 10 folds. 

We use the coefficient of determination (r2), the squared coefficient of correlation, 
as a metric to compare the performance of different models. Table 1 presents the re-
sults obtained with various algorithms implemented in the popular collection of  
machine learning algorithms Weka [7], for the training-testing split and for cross-
validation. The results are sorted in decreasing order of the cross-validation results. 
On each column, the maximum value is emphasised with bold characters. 

Table 1. Performance of different algorithms implemented in Weka 

Algorithm Training Set Testing Set Cross-validation 
REPTree 0.9789 0.8789 0.8983 
ν-SVR, RBF 0.9109 0.8140 0.8962 

M5 Rules 0.8962 0.8127 0.8953 
Random Forest 0.9833 0.9181 0.8915 

kNN, k = 10 0.9994 0.8974 0.8363 
ε-SVR, RBF 0.7583 0.6726 0.7910 
ν-SVR, P2 0.8187 0.7268 0.7739 
ε-SVR, P2 0.7903 0.7022 0.7533 

NN 1.0000 0.8516 0.6655 
Additive Regression 0.6336 0.5869 0.5895 

 
When using our software implementation for the regression problem, 10 

neighbours are considered when computing the output, because this value gave the 
best results for the kNN method in Weka. Fewer neighbours do not provide enough 
information to compute a precise value. If more neighbours are used, the influence of 
the more distant ones becomes negligible, since the neighbour weights are propor-
tional to the inverse of the square distance. 

In the computation of the fitness function, 3 reference neighbours are used. This 
number should be at least 2, in order to provide some contrast between an instance 
with a close value and another with a distant value (by analogy with the target and 
impostor instances for classification). With 2 reference neighbours, the results are far 
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While cross-validation is a standard way to compare several algorithms, it cannot 
provide a unique set of “good” values for the internal parameters, because it generates 
10 different models. Therefore, the single split into training and testing sets is useful 
in this respect. 

The best performance for the testing set is given by the configuration with 1 proto-
type, i.e. a global set of weights for all the instances of the problem. The actual values 
of the weights are presented in table 3a. 

Figures 1a and 1b present the correlation between the desired values and the values 
provided by the model, for the testing set alone and for the whole dataset. Beside the 
high value of the coefficient of determination, one can also graphically observe the 
good fit of the data. 

Table 3b presents the weights for the best fit on the training-testing problem, corre-
sponding to 2 prototypes. 

Beside the variation in performance between different runs, which is normal espe-
cially since the number of generations (500) and individuals in the population (40) 
may be a little too small for our problem, we hypothesise that there may be another 
reason why 1 prototype provides the best results for the training-testing case and 2 
prototypes provide the best results for cross-validation. In one fold of cross-validation 
90% of the data are used, compared to 67% for training in the first case. Therefore, 
the data diversity is larger and 2 prototypes provide more flexibility. Also the posi-
tions of the prototypes are currently fixed, pre-computed, taking into account the 
whole dataset, and thus the 90% situation better matches the distribution of the full 
data. However, when the number of prototypes increases, the problem space becomes 
too finely partitioned, because the evolutionary algorithm evolves the weights inde-
pendently and it is almost certain that the sets of weights corresponding to different 
prototypes will be different, although the actual topology of the problem may not 
require such distinctions in the distance metric of the instances. 

5 Conclusions 

The results obtained for a rather difficult problem using a large margin nearest 
neighbour regression method are quite promising. The weights are obtained using an 
evolutionary algorithm, which provides simplicity and flexibility and allows the use 
of several distance metrics in different regions of the problem space, corresponding to 
different prototypes. The evolutionary paradigm can be easily applied to also find the 
optimal number of prototypes and their positions, at the expense of a large increase in 
the search space and thus computation time. The presented method allows the user to 
change the number of neighbours that are considered for distance calculation and the 
weights of the criteria of the composite fitness function, in order to adapt these pa-
rameters to the particular characteristics of the problem. The modelling procedure 
applied for the evaluation of the polarization resistance of the TiMo alloys as a func-
tion of process conditions contributes to a better understanding of the process and can 
partially replace a series of experiments that are time, material and energy consuming. 
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