
Chapter 6
Data Sampling for Quality Control with R

Abstract Statistical Quality Control tries to predict the behavior of a given process
through the collection of a subset of data coming from the performance of the
process. This chapter showcases the importance of sampling and describes the most
important techniques used to draw representative samples. An example using R on
how to plot Operating Characteristic (OC) curves and its application to determine
the sample size of groups within a sampling process is shown. Finally, the ISO
Standards related to sampling are summarized.

6.1 The Importance of Sampling

Process’ owner main responsibility is to assure that their process remains under
control, thus leading to products that comply with design specifications. Among
the several tasks required to fulfill this responsibility, one of the most important
consists in the observation of the process. By “observing the process” we understand
measuring it. There are different things that can be measured in a process: finished
product, product in an intermediate production stage, process parameters, etc.
Although all these things are very different to each other, all of them have something
in common: it is rarely possible to gather all the information that is generated in the
process. There are several reasons why this is the case in general. In some cases,
the cost of measuring an item is very high or it takes a long time, in other cases
the population is very large thus making it impractical to measure thousands of
items (no matter if the individual cost of measuring were very low). Finally, in
other situations, the measuring process is destructive, which obviously forces the
reduction in the number of observations. Therefore, process’ owner have to take
decisions based on limited pieces of information obtained from the process. This
is what we call a sample. A first broad distinction can be made with regard to
the purpose of sampling. Samples can be taken to: (a) make a decision (normally
accept/reject) about a lot of items; or (b) make a decision about the state of control
of a process. The first case will be dealt in detail in Chapter 7, while the second one
will be dealt in Chapter 9 in the context of control charts.

Typically, lot populations are finite (composed of a limited number of items)
while process populations are infinite (very large number of items or even theo-
retically infinite). The previous paragraph depicts the situation to which process’
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188 6 Data Sampling for Quality Control with R

owner have to face every day; in order to make decisions about a certain population
of items, sampling is an inevitable tool they have to be aware of. Sampling has a
number of advantages over a complete—if possible— measuring of the population:
lower cost, quicker reaction time, etc. But sampling has one major weakness; there
is always an inherent error of such an observation strategy. It could be understood
as the price to be paid in order to get the aforementioned advantages. Fortunately,
this error can be estimated and bounds can be set on it.

6.2 Different Kinds of Sampling

Depending on the nature of the population to be measured by means of a sampling
procedure, there may be a number of difficulties. An example will illustrate this idea.

Example 6.1. Pool Liquid Density.
Let us suppose we have to determine the average density of the liquid contained

in a large pool. Let us also suppose this liquid contains a certain solid compound
dissolved in the base liquid; as long as the solid material will slowly tend to fall
downwards forced by gravity, density will not be uniform at different depths in
the pool.

If, based on ease of collection, we took samples from the surface of the pool, the
resulting average density so calculated would underestimate the real density in the
entire pool. In this case we can say that these samples do not adequately represent
the population parameter. ut

The key element in a sampling procedure is to guarantee that the sample is
representative of the population. Then, any previous available information about the
population’s nature should be taken into account to develop the sampling procedure.

In Example 6.1, the total number of observations should be distributed at
different depths in the pool. If there is no information about the population’s nature,
a simple random sampling procedure would proceed. Let us see this and other
sampling procedures and learn when to use all them.

6.2.1 Simple Random Sampling

In this kind of sampling every item in the population has the same probability
of being chosen for the sample. In order to select the sample items from the
population, random numbers are commonly used. In Chapter 5 we saw how to
generate random values for a random variable given its probability distribution, e.g.
normal, Poisson, etc. In general, uniform random numbers can be generated between
0 and 1. In this way, the probability of an interval only depends on its width. Taking
the appropriate number of digits, random numbers in a given range can be easily
obtained. In practice, software packages select random samples of a set using this
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Table 6.1 Complex bills population

Bill no Clerk Errors Bill no Clerk Errors Bill no Clerk Errors

1 Mary 2 9 John 0 17 John 1

2 Mary 2 10 John 1 18 John 0

3 John 0 11 John 2 19 John 0

4 John 1 12 Mary 1 20 John 0

5 John 2 13 Mary 1 21 John 0

6 John 0 14 Mary 1 22 John 0

7 John 0 15 John 0 23 Mary 1

8 John 0 16 John 1 24 Mary 1

strategy transparently for the user. Actually, random variate generation is based on
the fact that a uniform random variate is a sample of a probability, and thus it can
be used to sample values of a random variable just looking for the quantile where
the distribution function equals a uniform random variate. The following simple
example will illustrate how R will help determine the sample.

Example 6.2. Complex Bills.
A transactional process generates complex bills, consisting of many data fields

that have to be filled by the clerks. Thirty-two bills were produced yesterday, and
the supervisor wishes to check eight of them in detail. Which ones should he
choose? Table 6.1 shows all the population of bills. The data in Table 6.1 is in the
ss.data.bills data frame of the SixSigma package and it is available when
loading the package:

library(SixSigma)
str(ss.data.bills)

## ’data.frame’: 32 obs. of 3 variables:
## $ nbill : int 1 2 3 4 5 6 7 8 9 10 ...
## $ clerk : chr "Mary" "Mary" "John" "John" ...
## $ errors: int 2 2 0 1 2 0 0 0 0 1 ...

Thus, we have a data frame with 32 observation and three variables: nbill for
the bill identification; clerk for the clerk name and errors for the count of errors
in the bill.

We have to select eight random numbers between 1 and 32 and choose the bills
with the selected identifiers as sample elements. In other words, we need to take
a random sample of the nbill variable in the ss.data.bills data frame.
To do that with R, we use the sample function. It has three important arguments:
the vector that contains the population to be sampled, the sample size, and whether
the sample is with or without replacement. Replacement means that a member of the
population can be selected more than once. In this case, the population is formed by
the bill’s identifiers, the size is equal to eight, and the sample is without replacement.
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set.seed(18)
billsRandom <- sample(ss.data.bills$nbill,

size = 8,
replace = FALSE)

billsRandom

## [1] 27 23 29 3 2 16 11 13

Note that in the above code we fix the seed using the set.seed function for
the sake of reproducibility of the example. In this way, anyone who runs the code
will get the same results. This is due to the fact that random numbers generated with
computers are actually pseudo-random because they are based on an initial seed. In
a production environment, the seed is rarely set, except in specific conditions such
as simulation experiments that should be verified by a third party. Find out more
about Random Number Generation (RNG) with R in the documentation for the RNG
topic (type ?RNG in the R console). ISO 28640 Standard deals with random variate
generation methods, see [8].

The result is that the supervisor has to select bills No. 27, 23, 29, 3, 2, 16, 11,
and 13. We can save the sample in a new data frame as a subset of the population as
follows:

billsSample <- subset(ss.data.bills,
nbill %in% billsRandom)

billsSample

## nbill clerk errors
## 2 2 Mary 2
## 3 3 John 0
## 11 11 John 2
## 13 13 Mary 1
## 16 16 John 1
## 23 23 Mary 1
## 27 27 Mary 1
## 29 29 John 0

Based on this sample, the average number of defects in the population should be
estimated (see Chapter 5) as 1 defect per bill:

mean(billsSample$errors)

## [1] 1

ut
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6.2.2 Stratified Sampling

If we analyze the sample that resulted from the simple random procedure followed
in Example 6.2 we see that bills No 2, 13, 23, and 27 correspond to clerk Mary
(50 % of the sample) while the four others correspond to clerk John (the remaining
50 %). But in the total population of bills clerk Mary only produced 8 bills out of
32 (25 %) while John produced 24 of 32 (75 %). If the probability of introducing an
error in a bill depended on the clerk, then the sampling approach followed would be
misleading. This a priori information—or suspicion—could be made a part of the
sampling procedure in the form of a stratified strategy.

In this strategy, the population is divided into a number of strata and items
are selected from each stratum in the corresponding proportion. Note that we are
actually applying one of the seven quality control tools, see Chapter 3.

Example 6.3. Complex Bills (Cont.) Stratified sampling.
We can get in R the proportions of each clerk both in the population and in the

sample with the following code:

## Population proportion
table(ss.data.bills$clerk)/length(ss.data.bills$clerk)

##
## John Mary
## 0.75 0.25

## Simple sample proportion
table(billsSample$clerk)/length(billsSample$clerk)

##
## John Mary
## 0.5 0.5

Thus, in order to stratify the sample, a 25 % of the sample, namely 2 bills, will
be taken from Mary’s production and a 75 % of the sample, namely 6 bills, will be
taken from John’s production. In R, we can first extract the bills from each stratum:

billsMary <- ss.data.bills$nbill[
ss.data.bills$clerk == "Mary"]

billsJohn <- ss.data.bills$nbill[
ss.data.bills$clerk == "John"]

and then draw a sample from each stratum of the appropriate size:

set.seed(18)
billsRandomMary <- sample(billsMary, 2)
billsRandomJohn <- sample(billsJohn, 6)
billsRandomStrat <- c(billsRandomMary,

billsRandomJohn)
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and finally save the sample into a new data frame:

billsSampleStrat <- subset(ss.data.bills,
nbill %in% billsRandomStrat)

billsSampleStrat

## nbill clerk errors
## 4 4 John 1
## 10 10 John 1
## 14 14 Mary 1
## 15 15 John 0
## 18 18 John 0
## 24 24 Mary 1
## 31 31 John 1
## 32 32 John 0

Thus, with the aid of R, we have selected two random items from Mary’s stratum
(1, 2, 12, 13, 14, 23, 24, and 27). The result is that the supervisor has to select bills
No. 24 and 14. Similarly, we have selected six random items from John’s stratum
(3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 28, 29, 30, 31, and
32). The result is that the supervisor has to select bills No. 32, 4, 31, 18, 10, and 15.
Therefore, the number of errors in this sample of bills is:

eSampleMary <- subset(billsSampleStrat,
clerk == "Mary",
errors,
drop = TRUE)

eSampleMary

## [1] 1 1

eSampleJohn <- subset(billsSampleStrat,
clerk == "John",
errors,
drop = TRUE)

eSampleJohn

## [1] 1 1 0 0 1 0

Based on this sample, the average number of defects in the population should be
estimated as a weighted mean:

1 C 1

2
� 0:25 C 1 C 1 C 0 C 0 C 1 C 0

6
� 0:75 D 0:625 defects/bills

This can be computed in R using the weighted.mean function, which accepts
the values to be averaged as first argument, and the weights as the second argument.
In this case, the means and proportions for each clerk:
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weighted.mean(x = c(mean(eSampleMary),mean(eSampleJohn)),
w = c(0.25, 0.75))

## [1] 0.625

This estimation is closer to population’s real average value (0.719). This result is
the expected one as long as the means are clearly different between the two strata
and the final weighting takes into account this difference in the final sample value
calculation. ut

6.2.3 Cluster Sampling

In occasions, population data are grouped in clusters whose variability is represen-
tative of the whole population variability. Then, it will only be necessary to sample
some of these clusters to get a reasonable idea of the population.

Example 6.4. Complex Bills (Cont.) Cluster sampling.
Going back to the example of the bills, the clusters could be the different

customers to whom bills are made for. Measuring the number of defects for the
bills corresponding to one or two customers a good result could be obtained at a
much lower cost. ut

6.2.4 Systematic Sampling

Sometimes it is easier to choose sample items at a constant interval period. This is
especially common in production lines where a stream of items are processed.

Example 6.5. Complex Bills (Cont.) Systematic sampling.
In our example of the bills it was decided to take a sample of 8 items, so an item

must be selected every 32/8=4 bills. We only have to decide, at random, which of
the four first bills will be selected as the first one in the sample (let this number be n)
and then continue selecting (n C 4), (n C 8), etc. ut

6.3 Sample Size, Test Power, and OC Curves with R

A control chart is, in its essence, nothing but a hypothesis test that is performed
online, sample after sample. See the foundations of hypothesis testing as inference
tool in Chapter 5. In any hypothesis test there exist two possibilities of error:
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1. The null hypothesis is true and is rejected (Error type I);
2. The null hypothesis is false and is not rejected (Error type II).

Fig. 6.1 illustrates these two possibilities for a typical control chart that keeps
track of sample average value, i.e., the X-bar chart, see Chapter 9. In this chart, the
null and alternative hypotheses are, respectively

H0 W � D �0;

H1 W � D �0 C ı:

If H0 were true (left part of the figure), a sample A could fall outside of the
control limits thus leading us to reject H0. On the other hand, if H0 were false (right
part of the figure), a sample B could fall within the control limits thus leading us to
accept H0.

The maximum probabilities for these situations to occur are denoted as ˛ for
error type I and ˇ for error type II, and they are set up in the design stage of any
hypothesis test. In particular, in Chapter 5 we showed that usually ˛ is typically set
to 0.01, 0.05, or 0.1. It can be proved that there exists a specific relationship among
˛, ˇ, ı, and n (sample size) for every hypothesis test.

For the case of control charts it is very important to know what the capability of
the chart will be for detecting a certain change in the process, e.g., in the process
mean. This capability of detecting a change of a certain magnitude is called the
“power” of the chart. It can be shown that

Power D 1 � ˇ:

It is common practice to plot ˇ as a function of ı for different sample sizes. This
plot is called the “operating characteristic (OC) curve.” Let’s show how to construct

Fig. 6.1 Error types.
Different error types for an
x-bar chart
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these OC curves for the case of the X-bar control chart. Going back to Fig. 6.1, ˇ

is the probability of a sample mean to fall within the control limits in the case the
population mean has shifted ı units from the original value. Mathematically:

ˇ D NCD.UCL=� D �0 C ı/ � NCD.LCL=� D �0 C ı/;

where NCD stands for “normal cumulative distribution.” Since X-bar approaches
a normal distribution with mean �0 and variance �2=n1, and the control limits are
UCL = �0 C 3�=

p
n and LCL = �0 � 3�=

p
n, we have:

ˇ D NCD

�
UCL � .�0 C ı/

�=
p

n

�
� NCD

�
LCL � .�0 C ı/

�=
p

n

�
!

ˇ D NCD

 
�0 C 3 �p

n
� .�0 C ı/
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!
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!
:

If we express ı in terms of � , e.g., ı D �� we finally arrive at

ˇ D NCD
�
3 � �

p
n
� � NCD

��3 � �
p

n
�

We can easily plot OC curves for quality control with R. The function
oc.curves in the qcc package plots the operating characteristic curves for
a ‘qcc’ object. We explain in detail objects whose class is qcc in Chapter 9.
To illustrate OC curves in this chapter, let us consider the example in Chapter 1.

Example 6.6. Pellets Density.
In this example, a set of 24 measurements for the density of a given material are

available, see Table 6.2. In order to plot OC curves for an X-bar chart, we need the
data organized in rational subgroups. Let us assume that every four measurements
make up a group. Therefore, there are six samples whose size is four. With this
information, we can create a qcc object as mentioned above. First, we need to
create the data and the qcc.groups object as follows:

Table 6.2 Pellets
density data

10.6817 10.6040 10.5709 10.7858 10.7668 10.8101

10.6905 10.6079 10.5724 10.7736 11.0921 11.1023

11.0934 10.8530 10.6774 10.6712 10.6935 10.5669

10.8002 10.7607 10.5470 10.5555 10.5705 10.7723

1See the concept of sampling distribution in Chapter 5.
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pdensity <- c(10.6817, 10.6040, 10.5709, 10.7858,
10.7668, 10.8101, 10.6905, 10.6079,
10.5724, 10.7736, 11.0921, 11.1023,
11.0934, 10.8530, 10.6774, 10.6712,
10.6935, 10.5669, 10.8002, 10.7607,
10.5470, 10.5555, 10.5705, 10.7723)

gdensity <- rep(1:6, each = 4)
library(qcc)
myGroups <- qcc.groups(data = pdensity,

sample = gdensity)

Now we can create the qcc object, and plot the OC curves for that specific control
chart (see Fig. 6.2):

myqcc <- qcc(myGroups, type = "xbar", plot = FALSE)
mybeta <- oc.curves(myqcc)

Fig 6.2 shows the representation of ˇ for different sample sizes. This figure is
very useful as it is the basis for determining the sample size required for detecting a
given process shift with a desired probability. Furthermore, if we save the result of
the oc.curves function in an R object, we can explore the complete set of data
and look for the best sampling strategy. The first rows of the matrix created are as
follows:

Fig. 6.2 OC curves. Each
curve represents a function of
the error type II probability as
a function of the deviation
from the process mean that
the control chart will be able
to detect for different sample
sizes
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head(mybeta)

## sample size
## shift (std.dev) n=4 n=1 n=5
## 0 0.9973002 0.9973002 0.9973002
## 0.05 0.9971666 0.9972669 0.9971330
## 0.1 0.9967577 0.9971666 0.9966188
## 0.15 0.9960496 0.9969977 0.9957200
## 0.2 0.9950019 0.9967577 0.9943735
## 0.25 0.9935577 0.9964432 0.9924902
## sample size
## shift (std.dev) n=10 n=15 n=20
## 0 0.9973002 0.9973002 0.9973002
## 0.05 0.9969637 0.9967923 0.9966188
## 0.1 0.9959040 0.9951556 0.9943735
## 0.15 0.9939699 0.9920483 0.9899543
## 0.2 0.9909063 0.9868928 0.9823300
## 0.25 0.9863525 0.9788745 0.9700606

and we can check the type II error for each sample size for a given deviation from
the current process mean. For example, if we want to detect a 1.5 standard deviations
depart from the mean:

mybeta["1.5",]

## n=4 n=1 n=5 n=10
## 0.4999999990 0.9331894011 0.3616312342 0.0406304449
## n=15 n=20
## 0.0024811185 0.0001043673

With the current sample size (n D 4), the probability of false negatives ˇ, i.e.,
being the process out of control the chart does not show a signal, is near 50 %. We
need groups of 10 to have this value around 0.04, i.e., a power of at least 95 %.
Note that we can choose the samples sizes to plot through the n argument of the
oc.curves function. On the other hand, the function also provides OC curves for
attributes control charts (see Chapter 9). ut

6.4 ISO Standards for Sampling with R

These are the most relevant ISO Standards in relation to the topic addressed in this
chapter:

• ISO 24153:2009 Random sampling and randomization procedures [7]. This
International Standard defines procedures for random sampling and random-
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ization. Several methods are provided, including older approaches based on
mechanical devices, random numbers, etc. as well as more modern ones based
on algorithms for random numbers generations. Different sampling strategies
included random, stratified and cluster sampling are described.

• ISO 28640:2010 Random variate generation methods [8]. This International
Standard specifies typical algorithms by which it is possible to generate numeri-
cal sequences as if they were real random variates. Two annexes contain relevant
information regarding random numbers tables and several algorithms that can be
used to generate pseudo-random numbers with the aid of a computer.

• ISO 3534-4:2014 Statistics—Vocabulary and symbols—Part 4: Survey sam-
pling [4]. This standard defines the terms used in the field of survey sampling,
but it is not constrained to surveys to the use of questionnaires.

Other standards related to the topics covered in this chapter are ISO 11462-2 [5]
(SPC, Statistical Process Control), ISO 7870-2 [6] (Shewhart control charts), and
parts 1 and 2 of ISO 3534 (Vocabulary and symbols) [2, 3].

There are also some books worth to reading, or just having them as reference.
Cochran [1] is a classic on sampling techniques; a more recent book is the one by
Lohr [9]; Montgomery [10] is cited in ISO 11462-2 [5] for sample sizes calculation.
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