
Chapter 2
An Introduction to R for Quality Control

Abstract This chapter introduces R as statistical software and programming
language for quality control. The chapter is organized as a kind of tutorial with
lots of examples ready to be run by the reader. Moreover, the code is available at the
book’s companion website. Even though the RStudio interface is also introduced in
the chapter, any other user interface can be used, including the R default GUI and
code editor.

2.1 Introduction

In this chapter, the essentials of the R statistical software and programming language
[27] are explained. This provides the reader with the basic knowledge to start using
R for quality control. You should try the code by yourself while reading this chapter,
and therefore you need R and RStudio (optionally but recommended) installed
on your computer before continuing reading the chapter. Follow the step-by-step
instructions explained in Sect. 1.6 of Chapter 1, or just go to the R website1 and
to the RStudio website,2 download the installation files, and install them to your
computer. If you are reading the electronic version of this chapter, you can copy and
paste the code in the examples.3 The code is also available at the book’s companion
website.4 In any case, we recommend typing everything, at least at the beginning,
in order to get used to the R mood.

In Chapter 1, we introduced the power of R for quality control, what it is, its
history, etc. This chapter goes into the details of the software to get advantage of that
power. We highlight here some of the R features explained in Sect. 1.4 of Chapter 1:

1http://www.r-project.org.
2http://www.rstudio.com.
3Please note that sometimes what you paste could not be exactly what you see in the book and
some modifications could be needed.
4http://www.qualitycontrolwithr.com.
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• R is the evolution of the S language, developed at Bell Laboratories (then AT&T
and Lucent Technologies) in the 1970s [6]. Note that it is the same company
where Walter Shewhart developed modern statistical quality control 50 years
before [34];

• R is maintained by a foundation, a Core Team, and a huge community of
users and stakeholders, including commercial companies that make their own
developments;

• R is Free and Open Source Software (FOSS). Free as in free beer, and free as in
free speech [14];

• R is also a programming language, and a system for statistical computing and
graphics;

• R is platform independent: it runs in Windows, Mac, and Linux;
• The way of interacting with R is by means of expressions, which are evaluated

in the R Console, or can be stored in R scripts to be run as programs;
• R has Reproducible Research and Literate Programming capabilities, which has

proven quite useful for quality control reports in Sect. 1.6, Chapter 1;
• R base functionality provides a complete set of tools for statistical computing

and plotting, developed by time-honored experts;
• R base functionality is expanded by an increasing number of contributed

packages for a wide range of applications, including some for quality control;
• The software can be customized creating new functions for particular needs.

The toughest part for new R users is to get used to the interactivity with the
system. Having to write the expressions prompts errors which, especially at the
beginning, are not easy to interpret. Nevertheless, those errors are usually caused by
similar patterns. Find below a list of common errors while writing R expressions.
If you get an error when running an R expression, it very likely can be classified into
one of those categories. Please take into account that those types of errors are not
made only by beginners, but it is part of the normal use of R. Practice will reduce
the number of times errors are produced and, more importantly, the time one lasts
realizing where is the problem and fix the expression. This list contains concepts
that you still do not know about. Note the list as a reference and come back here
whenever you get an error while reading the chapter and practicing with the code.
Once you have completed the chapter, read the list again to fix concepts.

• Missing closing character. You need to close all the parentheses, square
brackets, curly brackets, or quotation marks you had opened in an expression.
Otherwise the expression is incomplete, and the console prompt keeps waiting
for you to finish it with the + symbol. If you are running a script, R will try
to continue the expression with the next one, and the error message could be
uninformative. So always check that you do not have a missing closing symbol;

• String characters without quotation marks. String characters must be pro-
vided in quotation marks ("). Everything in an expression that is not in quotation
marks is evaluated in the workspace, and therefore it should exist, either in
the global environment or in other environments. Usually, the error message
indicates that the object does not exist, or something related to the class of the
object;
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• Missing parenthesis in functions. Every function must include parenthesis,
even if it does not need any argument;

• Missing arguments in a function call. Functions accept arguments, which
sometimes can be omitted either because they are optional or because they have
a default value. Otherwise they are mandatory and a message indicates so;

• Wrong arguments in functions. Sometimes it is due to the missing quotation
marks mentioned above. Check the class of the object you are using as argument,
and the class the function expects as argument;

• Incompatible lengths. Data objects have a length that may be critical when using
them. For example, the columns of a data frame must be of the same length;

• Wrong data. If a vector of data is supposed to be, for example, numeric, but
one or more of its components is another thing, for example a character string,
then computations over the vector might result on unexpected results. This is not
always so evident, as it may be a number but the computer might interpret a
character, for example due to spurious blank spaces or the like;

• Other wrong syntax errors. Check the following:

– The arguments in a function are separated by commas (,);
– The conditions in loops and conditions are in parenthesis;
– You do not have wrong blank spaces, for example in the assignment operator;
– Use a period (.) as decimal separator in numbers;
– Expressions are in different lines, or separated by a semicolon.

In the remaining of the chapter you will find an overview of R interfaces in
Sect. 2.2; a description of the main R elements in Sect. 2.4; an introduction to
RStudio in Sect. 2.5; Sects. 2.6 and 2.7 describe how to work with data within R and
with external data sources. This is the starting point for the application of the quality
control tools explained throughout the book; a QualityControl task view is proposed
in Sect. 2.8; finally, some ideas and thoughts about R and Standardization are given
in Sect. 2.9. Note that the specific functions and packages for quality control are
not included in this chapter, as they are explained in detail in the corresponding
chapter. For example, functions for modelling processes are in Chapter 5, and so on.
Appendix C is a complete cheat sheet for quality control with R.

2.2 R Interfaces

The R base installation comes with a Command Line Interface (CLI). This CLI
allows interacting with R using the R Console as outlined above, by means of
expressions and scripts. This is one of the hardest parts for beginners, especially for
those who do not have experience in programming. Luckily, being R open source
software and a programming language at the same time allows developing more
advanced interfaces to work with R. For the Windows and Mac versions of R, an
extremely simple Graphical User Interface (GUI) is also included with the base
installation. It can be started as any other application in the system, Figure 2.1 shows
the GUI for Windows.
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There are a number of projects regarding R interfaces. A list of them can be found
in the R website itself following the “Related Projects” link and then R GUIs, or just
visit http://www.sciviews.org/_rgui. We can find two types of R interfaces:

• Interfaces with menus and dialog boxes (MDB GUIs). Interfaces of this type
provide the user with menus and dialog boxes to perform statistical analysis
in a similar way other commercial software does. However, only a limited
number of options are included in those menus. They are based on a common
framework, where package developers build functionality for their functions.
The most popular frameworks are R Commander (package Rcmdr) [13] and
Deducer (package Deducer) [11], and they can be loaded inside R as any
other package;

• Interfaces for development (Integrated Development Environment, IDE).
Interfaces of this type provide an environment to make the analyst life easier,
but they do not provide an interface where one can enter data or click options
and then run an analysis. Nevertheless, they allow to exploit all the capabilities
of the R system. Most popular environments include RStudio5 [30], Emacs C
ESS6 (Emacs Speaks Statistics), and Eclipse C StatET.7

Fig. 2.1 R GUI for windows. The R GUI allows basic interaction with R through the R console;
scripts can be created using the R Editor; and the R Graphics device opens when invoking a plot.
The menu bar contains access to some basic operations such as installing packages, or save and
load files

5http://www.rstudio.com.
6http://www.ess.r-project.org.
7http://www.walware.de/goto/statet.

http://www.sciviews.org/_rgui
http://www.rstudio.com
http://www.ess.r-project.org
http://www.walware.de/goto/statet
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The approach followed in this book is using an interface of the second type. This
allows to use all the capabilities of R, and the examples provided throughout the
book can be used either in the built-in R GUI, both in the R console and as scripts
in the R Editor, or in other available GUIs. In what follows, we explain one of the
interfaces that has become very popular among a wide range of R users, including
those using R in Industry: RStudio. This choice does not mean that one interface is
better than the others. In fact, we invite the reader to try out more than one and decide
by themselves which one fits better their needs. In fact, we have been using both
RStudio and Eclipse + StatET to write this book using Reproducible Research and
Literate Programming techniques. The good thing is that we can choose between
several alternatives. Moreover, as we remarked above, all the examples in the book
are ready to use in any R interface, or interactively in the console.

2.3 R Expressions

The way to interact with R is through R expressions, sometimes named as
commands. As explained above, R is interactive, in the sense that it responds
to given inputs. Such inputs are R expressions, which can be of several types,
mainly:

• An arithmetic expression;
• A logical expression;
• A call to a function;
• An assignment.

Expressions are evaluated by R when run in the console or through a script. If the
expression is incomplete, the R Console prompt keeps waiting until the expression
is complete. If the expression is complete, R evaluates the expression, producing
a result. This result may show some output to the user, which can be textual or
graphical. Some expressions do not produce any visible output, being the result, for
example, storing data in variables, or writing data to disk.

One of the characteristics of R is that it works with in-memory data. Neverthe-
less, we will need to work with expressions containing files in several ways. Some
of them are:

• Read data files to use in data analysis;
• Write data files to use later on;
• Save plots to be included in reports using other software tools;
• Create R scripts to write sets of expressions containing a complete analysis;
• Create report files with code, results, data, and text suitable to be compiled and

delivered.

In summary, the purpose of using files in R can be either working with data, or
working with code. When files are involved in R expressions, we can provide the
file location using two approaches:
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• Through the absolute path, i.e., the location in the computer from the root file
system;

• Through the relative path, i.e., the location in the computer from the working
directory of the R session (see below).

File paths must be provided as character strings, and therefore quotation marks
must be used. When using Windows, it is important to note that the backward slash
character (“\”) is reserved for escaping8 in R, and Windows paths must be provided
using either a forward slash (“/”) or a double backward slash (“\\”) to separate
folders and file names. For relative paths, the usual symbols for current and parent
directories (“.” and “..” respectively) can be used.

2.4 R Infrastructure

The R infrastructure is composed of the following elements:

• The console
• The editor
• The graphical output
• The history
• The workspace
• The working directory

In the R GUI, the console, the editor, and the graphical output are the three
windows that can be seen in Fig. 2.1. However, the history, the workspace, and
the working directory are hidden and we need to use coding to access them. As
remarked above, interfaces like RStudio allow more options in order to work with
those system-related elements. Moreover, advanced functionality is available to:
easily access to objects and functions; syntax highlighting; contextual menus; access
to help; explore data; etc. Nevertheless, the interface is actually a wrapper for the R
system, and the level of interaction for the statistical analysis is the same: console
and scripts.

2.5 Introduction to RStudio

RStudio is a Java-based application, and therefore having Java installed is a
prerequisite. Make sure you have the latest version of Java9 to avoid possible issues.

8Escaping means to provide a character string with special characters. For example, \n is for the
special character new line.
9http://www.java.com.

http://www.java.com
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The RStudio interface is shown in Fig. 2.2.10 It has a layout of four panes whose
dimensions can be adjusted, and each pane can contain different types of elements
by means of tabs. Most of those elements are basic components of the R system
listed above. The default layout is as follows11:

1. Lower-left pane. This pane is for the R Console. It can also show system-
related elements such as the output of the system console when calling system
commands, for example to compile a report;

2. Upper-left pane. This pane is for the R Source. R Scripts are managed in this
pane. Other types of files can also be opened in this pane, for example text files
containing data, code in other programming languages, or report files. Data sets
are also shown in this pane;

3. Upper-right pane. This pane is mainly for the R History and the R Environment
Other tabs appear when using certain features of RStudio, such as packages
development, or R Presentations;

4. Lower-right pane. This pane is the most populated. It has the following tabs:

• Files. It is a system file explorer with basic functions. It can be linked to the
R working directory;

Fig. 2.2 RStudio layout. The RStudio interface is divided into four panes: the console pane, the
source pane, the workspace and history pane, and the files, plots, packages, and help pane. The
layout can be modified through the global options in the Tools menu

10The version used while writing this book was 0.99.xxx.
11It can be changed through the Tools > Global options menu.
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• Plots. It is the RStudio graphics device. The plots generated in R are shown
here;

• Packages. Shows the packages available in the system, and we can install,
uninstall, or update them easily;

• Help. This tab provides access to all the R Documentation, including the
documentation of the installed contributed packages;

• Viewer. This tab is used to develop web applications with RStudio, which
will not be covered in this book.

The R(Studio) Console

The R console in RStudio is located by default in the lower-left pane, see Fig. 2.3.
Its behavior is the same as in the standard R GUI: there is a prompt identified by
the “>” symbol that is waiting for an expression. The user writes an expression after
the prompt and presses the Intro or return key. R evaluates the expression and
produces a result. An important issue puzzling for newcomers that arises quite often
is that if an expression is incomplete, the prompt changes to the “+” symbol, waiting
for the rest of the expression. Most of the times the user thought that the expression
was complete and does not know what to do. Usually, it is due to a missing closing
parenthesis or the like, and the way to cancel the expression is to press the ESC key.
Some details about the RStudio console:

Fig. 2.3 RStudio console. The RStudio console provides interaction with R
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• We can go to the console prompt using the keyboard shortcut CTRL+2 from
anywhere;

• The title bar of the RStudio console contains a valuable information: the current
working directory (see below);

• The arrow next to the working directory path is to show the working directory in
the files pane;

• When writing an expression, we can press TAB or CTRL+SPACEBAR to see a
contextual menu and select: available objects in the workspace and functions;
arguments of a function (within a function); or files and folders of the working
directory (within quotation marks);

• The ESC key cancels the current expression;
• CTRL+L clears the console;
• The up and down arrow keys navigate through the history.

In what follows, R code is shown in gray background. Input expressions can be
written directly in the RStudio Console or script editor (or copy-pasted if you are
reading the electronic version of this book). The output produced by R is shown in
the book after two hash symbols (“##”) at the beginning of the line. For example,
the simplest expression we can input is a number. Type the number 1 at the console
and press Intro:

1

## [1] 1

We can see that the result of this input expression is a line of text with the number
1 between squared brackets followed by the number 1. The number in square
brackets is an identifier that will be explained later. The result of the expression is
the same number that we wrote. One step beyond would be to ask for a calculation,
for example:

1 + 1

## [1] 2

Now the output is the result of the arithmetic expression. What happens if the
expression is incomplete?

1 +

As you may have realized, the > symbol changes to +, denoting that the expres-
sion is not complete. The system remains in that state until either the expression
is completed or the ESC key is pressed, cancelling the expression. Arithmetic
expressions return the result of the operation. Another type of R expressions are
logical expressions, which return the TRUE or FALSE value:
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5 > 6

## [1] FALSE

An R expression can be a call to a function. In fact, it is the most used
type of expression. The call to a function is always the same: the name of the
function followed (imperatively) by opening and closing parenthesis and, within
the parenthesis, the arguments of the function separated by commas. The function
arguments can be provided in several ways:

• Explicitly by the name of the argument in the form “name = value”. R allows
partial matching of names12

• Implicitly in the same order they were defined in the function.
• Using the default value defined for the function.

We can see the arguments of a function and their default values in the documen-
tation of the function, or by pressing the TAB key after the opening parenthesis. The
function str using a function name as an argument also returns the arguments of
the function. This is a simple example of the use of a function:

log(pi)

## [1] 1.14473

where pi is itself an expression that gets the value of the internal object containing
the value of � = 3,14159. . . .

pi

## [1] 3.141593

The log function gets the logarithm of a number. We can see the possible
arguments of the function through the function str13:

str(log)

## function (x, base = exp(1))

Therefore, log is a function that accepts two arguments: x, that does not have
any default value, and base, whose default value is the expression:

exp(1)

## [1] 2.718282

12This means that only the first letters of the argument name can be provided. We do not
recommend that, though.
13This function returns the structure of any R object.
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i.e., the e constant. Thus, the value that we get with the log function is the natural
logarithm, i.e., with base e, of the number we pass as first argument, or with a
different base if we pass the base argument. For example, the decimal logarithm
would be:

log(1000, base = 10)

## [1] 3

What happens if we pass no arguments to the function?

log()

## Error in eval(expr, envir, enclos): argument "x" is
missing, with no default

What happens is that the expression returns an error because there is no default
value for the first argument (x) and the function needs it. Read carefully the error
messages, they usually have clues to solve the problem.

Some functions do not need any arguments to work. For example, the seq
function generates sequences of numbers.

str(seq)

## function (...)

The dot-dot-dot (. . . ) argument means that the function accepts an undefined
number of arguments. So, will it work without arguments?

seq()

## [1] 1

It works, we get a sequence of numbers form 1 to 1 by steps of 1, i.e., the number
1. We can find out more about the arguments a function accepts using any of the
following expressions14:

help("seq")
?seq

The documentation for the function is then shown in the Help tab, lower-right
pane. As the function does not need any argument to work, could we use it without
parenthesis?

14Pressing the F1 key when the cursor is in a function name also works.
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seq

## function (...)
## UseMethod("seq")
## <bytecode: 0x7faede18c658>
## <environment: namespace:base>

The answer is no, because in R, every symbol is an object. The expression seq
without parenthesis is the symbol of the function seq, and what R returns is the
content of the function, i.e., its code.15

Let us finish this subsection with an explanation of the mysterious [1] at the
beginning of the R console output. It is meaningless when the output is only one
value, but when the output is a set of values that occupy more than one line, it is
useful. The number at the beginning of each line is the index of the first element in
the row. You will learn more about lengths and indices later on, just see the following
example in which a vector with 20 random variates from a normal distribution are
generated. The [19] at the beginning of the last row indicates that the first value in
that line is the 19th value in the vector.

rnorm(20)

## [1] 0.05460517 1.70767743 -1.09437298
## [4] -0.28928182 2.20741296 0.51874901
## [7] -1.40491794 2.01486448 -1.18815834
## [10] 0.19038081 -1.16973591 -0.03808156
## [13] 2.35420426 1.39342626 -0.56033236
## [16] -0.67145938 0.49243855 -1.17939052
## [19] -1.05871745 1.13790261

Note that you might get a different number of elements per row, as the output
width has been set to 50 characters for the generation of the book’s code, you can
set your own preferred output with the options function as follows:

options(width = 50)

The Source Editor

In the source editor we create text files with R expressions. Expressions can be more
than one line length. In fact, when expressions are too long, it is better to split it in
lines in order to make the code more readable. On the other hand, more than one
expression can be placed in the same line if we separate them with a semicolon (;).

15In this case not all the code is shown because seq is a built-in, compiled function.
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Comments can be included in the code using the # character. R scripts files have
.R extension. The reason for using scripts is to reuse the code that we write once
and ordinarily use it afterwards, maybe with slight changes, in quality control data
analysis.

The RStudio source editor, see Fig. 2.4, has the following improvements with
respect to the R editor in the R GUI:

• Code highlighting: functions, objects, numbers, and texts appear with different
colors;

• Automatic indentation of code;
• Automatic closing of opening embracement characters such as parenthesis,

square brackets, curly braces, and quotation marks;
• CTRL+SPACEBAR and TAB keys: Provide some help in the same way that we

described for the console;
• Link to the documentation using the F1 key.

Complex scripts can be run from the console or from other scripts. For example,
if we have a script called dayly.R that performs ordinary tasks that we want to
use in other scripts, e.g., loading packages, import data, etc., we can run such script
with the following expression:

source("dayly.R")

Fig. 2.4 RStudio source editor. The RStudio source editor can manage R scripts, reports, and code
in other programming languages, such as C++ and Python
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The R Graphical Output

One of the R’s strengths is its graphical system. Publication-quality plots can be
easily produced, including mathematical symbols and formulae. The defaults of the
plotting functions have been set for the minor design choices, but the user retains
full control and elaborated plots can be made by tuning the graphical parameters up,
functions’ arguments, and global options.

The R graphical system is based in so-called devices. Plots are sent to devices.
If no device is open, a new one is open when calling a high-level graphics function.
The grDevices package in the R base includes a number of devices, including
the appropriate one for the user’s OS, and file-format devices such as pdf, jpeg, or
png among others.

Devices can be managed by several functions both interactively and through
scripts, thereby controlling the graphical output of our code. A global option gives
the default device, which is initially set as the most appropriate for each platform.
Some R packages provide further graphics devices. This is the case of RStudio,
which includes its own graphics device in the lower-right pane, see Fig. 2.5.

The RStudio graphics device includes a menu bar with several options that makes
life easier with devices management:

• Navigation through the graphics history;
• Zooming;
• Export files to several formats using a dialog box;
• Removing and clearing of graphics history.

Fig. 2.5 RStudio plots tab. Plots generated in RStudio are shown in the plots tab, lower-right pane
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The export menu includes three options for graphics: save as image, save as pdf,
and copy to clipboard. The former two open a dialog box with export options such
as the file extension (in the case of image), file path, and image size, see Fig. 2.6.

The graphics package contains functions for “base” graphics. Those tra-
ditional graphics are enough for most cases. The more recent development of
R graphics relies on the grid package [24]. Both of them are included in the
R base, as well as the lattice package, [32] aimed at elegant plots with a
focus on multivariate representations. Another very popular package for graphics
is the ggplot2 package [36]. In the chapters devoted to specific quality control
modelling and analysis we will see in detail how to make different types of plots
and charts.

The R Commands History

When working in the console, the commands history can be accessed using the up
and down arrow keys, like in the R GUI console. In RStudio, we can also visualize
all the history in the history tab, upper-right pane, see Fig. 2.7. Expressions in the
history can be sent either to the console or to the source editor. Further actions such
as save, open, or clean the history are available in the menu bar of the history tab.

The history can also be accessed via R code, see the documentation of the
functions loadhistory, savehistory, history.

Fig. 2.6 RStudio export graphic dialog box. A preview of the image is shown along with the
export options: image format and dimensions being the most relevant
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Fig. 2.7 RStudio history. The R History can be easily consulted, searched, and used during an R
session through the History tab in the upper-right pane

The R Workspace

The objects that are available in R are stored in the workspace. The workspace is
organized in different environments. The Global Environment is the place in which
the objects we create through assignments are stored. Each loaded package has its
own environment. Environments are also created for calls to functions, and the user
can even create environments. For the scope of this book, just keep track of your
Global Environment tab, upper-right pane, see Fig. 2.8 where you will find useful
information about the objects that are available to use in your session. You can
save, open, search, and clear objects in the workspace through the menu bar of
the Environment tab. To make actions only over selected objects in the workspace,
change the view using the upper-right icon on the menu bar from “List” (default)
to “Grid,” select the objects you want to save or clear, and click the appropriate
button. Remember to change again to the List view in order to be able to explore the
environment. An icon for importing datasets stored in text files is also available (we
will go over this later on).

The R workspace can also be accessed via R code, see the documentation of the
functions ls, str, load, save, save.image, and rm.
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Fig. 2.8 RStudio workspace. The R Workspace contains a list of available objects in the global
environment, which can be used in R expressions during the R Session

The Working Directory

A Working Directory is always associated with an R session. All tasks related to
files would take this directory in the file system as the path where read or write files,
for example, to read data in files, save scripts, or export plots. When an R expression
contains file names, they must be provided in quotation marks ("). Relative paths
from the working directory can be used. A tricky feature of RStudio is that we can
pick folders and files when writing in the source editor or the console just pressing
CTRL+SPACEBAR while the cursor is between quotation marks. The path to the
file or folder is auto-completed as selected in the contextual menu. Furthermore, the
Files tab in the lower-right pane (see Fig. 2.9) is a file explorer which can be linked to
the working directory. To do so, click on the arrow icon in the title bar of the console,
right after the working directory path. The reverse operation is also possible: Click
the “Go to directory” button, that is, the button with the ellipsis on the upper-right
side of the Files Pane; look for the directory you want to be the working directory;
click on the Select button; click on the More. . . menu on the title bar of the Files tab
and select the Set as working directory option; now the title bar of the console shows
the path to your working directory, which is also visualized in the Files pane. The
working directory can also be set through the Session menu, either to the Files pane
location, the active source file location, or to a chosen directory. Basic operations
such as creating a new folder and renaming or deleting items can be done. However,
it is usually better to show the folder in a new window through the More. . . menu
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Fig. 2.9 RStudio files pane. Interaction with the file system is possible through the Files pane,
including the setting and visualization of the R working directory

and work with files from there. Please note that files and folders deleted from the
Files pane are permanently deleted, they do not go to the trash system folder. Finally,
the default working directory can be set in the RStudio global options in the Tools
menu.

The R working directory and the file system can also be accessed via R code, see
the documentation of the functions getwd (returns the working directory), setwd
(sets the working directory), list.files, list.dirs, and dir. Actually, it is
common practice to include at the beginning of the scripts an expression to set the
working directory, for example:

setwd("C:/Rprojects/myProject")

Recall that the backslash character (“\”) has a special meaning in R and
Windows paths must be provided using either a forward slash (“/”) or a double
backward slash (“\\”) to separate folders and file names. This is particularly
important when copying and pasting paths from the address bar of the Windows
file explorer.

## Correct:
setwd("C:/myscripts")
setwd("C:\\myscripts")

## Incorrect:
setwd("C:\myscripts")
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Packages

R functionality is organized by means of packages. The R distribution itself includes
about 30 packages. Some of them are loaded when starting R. In addition, a number
of contributed packages are available, see Sect. 1.4 in Chapter 1. In order to use the
functions of a package, it must be loaded in advance. Obviously, the package must
be installed in the system in order to be loaded. The installation of a package is
done once, while the package must be loaded in the R workspace every time we
want to use it. Both operations can be done through the Packages pane of RStudio,
see Fig. 2.10.

To install a package, click on the Install icon in the Packages tab menu bar. A
dialog box opens where we can select whether to install the package from CRAN or
from a local file. To install a package from CRAN, type the name of the package (or
just the first letters to get a list) and click on the Install button. If you select to install
it from a local file, a dialog box appears to search the file. This is useful for packages
that are not published in official repositories, but are available from other sources.
Similarly to the R software, add-on packages are regularly updated by their authors.
Installed packages can be updated by clicking the Update button in the command
bar of the Packages tab. From the list of installed packages we can also go to the
documentation of the package by clicking on its name, remove the package from
the system clicking on the icon on the right, or load the package in the workspace
by selecting the check-box on the left. Nevertheless, even though the installation

Fig. 2.10 RStudio packages. The Packages tab in the lower-right pane shows a list of installed
packages with links to the documentation and command buttons to manage the packages
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of packages is comfortable through the RStudio interface, it is more convenient to
load the packages in the scripts as they are needed in the code using the library
function. For example, to load the qcc package:

library(qcc)

Packages management can also be performed with the install.packages
and remove.packages functions. Other functions related to packages are
require, detach, search, installed.packages, and available.
packages, check their documentation for details. An example of use could be to
get the number of packages available at CRAN on a given date, try out by yourself
and check how R grows:

Sys.Date()

## [1] "2015-07-09"

nrow(available.packages())

## [1] 6797

R and RStudio Help

The R documentation can be accessed through the Help tab in the lower-right pane
of RStudio, see Fig. 2.11. You can go there (there is even a keyboard shortcut:
CTRL+3) and browse the help documentation: Manuals, packages reference, search
engine and keywords, and miscellaneous material. There are other several ways of
getting help in RStudio:

• The keyboard shortcut CTRL+SPACEBAR inside a function shows the basic
documentation of that function;

• Pressing the F1 key when the cursor is over the name of a function or any other
R object with documentation, for example a dataset;

• Using the search text box in the Help tab toolbar. A list of topics starting with the
text of the search appears. If a topic is selected on this list, the documentation for
the topic is shown. Otherwise, a search over all the documentation is done and
the topics in which the search string appears are listed.

Typically, the documentation of a function contains the following sections:

• Description: a paragraph with a description of the function;
• Usage: The function name and the arguments it expects as they are defined in the

code;
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• Arguments: a detailed description of each argument. This is very important in
order to provide the function with objects of the correct class (see the most
common errors in Sect. 2.1);

• Value: a description of the returned value. Such value can be stored in R objects;
• References;
• See Also: links to related functions or topics;
• Examples: reproducible examples which can be copy-pasted or executed by

calling the example function with the function name as argument.

There is a special type of documentation called vignettes, which can include
examples with output and extended explanations. If a package contains vignettes,
then they are available from the package documentation index page.

R help can also be interactively accessed through R expressions. Some inter-
esting functions to get help in such a way are (check their documentation for
more details): apropos, help, help.search, example, demo, vignette,
browseVignettes.

As for RStudio, there is a “Help” menu in the menu bar. There you can access to
the R help home in the help tab, information about the RStudio version, check for
updates, diagnostics, and a keyboard shortcut quick reference. Regarding help for
RStudio itself, there are links to RStudio Support and to RStudio docs in the RStudio
website. Note that both R and RStudio are continuously evolving, and there may
have been changes with respect to what we are showing in the book, highly likely
improvements for the user benefit. Check the latest documentation.

Fig. 2.11 RStudio help. The R documentation is easily available from the RStudio interface
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2.6 Working with Data in R

Data Structures

In R, data regarding a given variable can be of a specific type, for example numeric
or character. Those variables, in turn, can be included in other data structures. The
simplest form is a vector for the data of a single variable. A matrix is a vector
with more than one dimension. Lists can contain objects of different type and
length. Objects whose class is data.frame are composed by variables which can
be of different type, but with the same length. This is the most common way of
organizing information for data analysis, and also for quality control. Each column
of a data frame is for a variable, and each row represents an observation (item,
individual, etc.) for which all the variables have been measured.

Classes and Data Types

Regarding data objects in R, we can talk about them in two different senses: their
class and their data type. For example, an object whose class is data.frame may have
columns that are of type numeric, logical, or character, for example. The main basic
data types in R are:

• logical: TRUE/FALSE;
• integer: Integer number;
• double: Real number. It can also appear as numeric or real;
• character: String character;

Thus, vectors whose elements are of any of those data types can be created.
There are some other basic types for objects that we do not use in the book, see
the documentation of the typeof function to learn more about them. On the other
hand, those basic data are organized in data structures of different classes. The most
important classes available in R to organize the information are:

• vector: One dimensional variable, all the values of the same type;
• matrix: Vector organized in rows and columns;
• list: List of objects that can be of different types and lengths;
• data.frame: Dataset organized in columns of the same length but may have

different type, and rows;
• factor: One dimensional categorical variable. In addition to values, a factor

contains information about levels and labels;
• POSIXct, Date: Special classes for temporal data.

The classes listed above are enough for the scope of this book, but there are
many more classes in R, and new classes can be created through the programming
capabilities of R. For example, objects of class ts are useful for working with time
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series. And remember that R functions are R objects which class is “function”;
Most of those extended classes are actually containers for objects of other classes,
including the basic classes enumerated above. Regarding quality control, control
charts can be stored in objects of class qcc in order to use the information of the
control chart afterwards for further analysis, for example the points out of control.
Such objects are usually a list of other objects of different classes and types. If in
doubt, you can find out the class of an object through the class function. .

Vectors

Creating Vectors

The most basic classes in R are vectors. They are also very important because more
complex data structures usually are composed by vectors. For example, the columns
of a data frame with the data of a process are actually vectors with the values of
different variables. Therefore, the explanations in this subsection are mostly valid
for working with objects whose class is data.frame or list.

There are several ways of creating vectors. The most basic one is entering the
values interactively in the console using the scan function. If you type on the
console:

x1 <- scan()

then the console prompt changes to “1:” waiting for the first element of the vector.
Type, for example, 10 and press RETURN. Now the prompt changes again to “2:”
and waits for the second element of the vector, and so on. Enter, for example, two
more values: 20 and 30. When you have finished, press INTRO without any value
and the scanning of values finishes. Your output should look like this:

## 1: 10
## 2: 20
## 3: 30
## 4:
Read 3 items

Now you have a vector whose name is “x” on your workspace. This is what the
assignment operator (“<-”) did: to assign the result of the scan function to the “x”
symbol.16 If you are using RStudio, check the Environment tab in the upper-right
pane, and see the information you have at a glance. Under the “Values” group, you
have the object x and some information about it: the data type (num), its length

16The scan function also accepts arguments to scan data from files and text, check the function
documentation.
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(from index 1 to index 3, i.e., 3 elements), and the first values of the vector (in this
case all of them as there are few of them). You can always access this information
from code either in the console or within a script. The following expression gets the
list of objects in your workspace using the ls function17:

ls()

## [1] "x1"

And now you can ask for the structure of the x object with the str function:

str(x1)

## num [1:3] 10 20 30

If you input the variable symbol as a expression, you get its contents as output:

x1

## [1] 10 20 30

When using scripts, creating vectors interactively is not practical. Instead, vectors
are created using the c function, which combines its arguments into a vector. For
example, the following expression is equivalent to the above process:

x1 <- c(10, 20, 30)

We can also create vectors using operators and functions to generate sequences.
For example, the seq function generates sequences of numbers, and the following
expression is also valid to create our vector:

x1 <- seq(from = 10, to = 30, by = 10)

Sequences of integers can also be created using the colon operator (“:”) between
the first and last numbers of the intended sequence. For example, the following
expression creates a vector with the integer numbers from 1 to 10:

x2 <- 1:10; x2

## [1] 1 2 3 4 5 6 7 8 9 10

Notice how in the above code we have typed two expressions in the same line, but
a semicolon was used to separate them. Another useful function to generate vectors
is the rep function, that repeats values. When working with vectors, it is common
practice to combine the different ways of creating vectors:

17Note that the output might have more elements if further objects were created beforehand.
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x3 <- c(rep("pinetree", 3), rep("oaktree", 2)); x3

## [1] "pinetree" "pinetree" "pinetree" "oaktree"
## [5] "oaktree"

x4 <- c(seq(from = 0, to = 1, by = 0.2), 5:9); x4

## [1] 0.0 0.2 0.4 0.6 0.8 1.0 5.0 6.0 7.0 8.0 9.0

The sequence of indices along a vector can also be generated with the
seq_alog function:

x5 <- seq_along(x4); x5

## [1] 1 2 3 4 5 6 7 8 9 10 11

Check that you have all the five new vectors in your workspace. We have created
numeric and character vectors. Logical vectors can also be created:

logicalVector <- 1:6 > 3

Let us study this expression. We are assigning to the “logicalVector” symbol what
we have on the right-hand side of the assignment expression. There, we first have
the vector “1:6”, which is compared to the number “3”. This comparison is done
for all the elements in the vector, and the result is another vector with the results of
those comparisons, and this logical vector is assigned to the “logicalVector” object:

logicalVector

## [1] FALSE FALSE FALSE TRUE TRUE TRUE

The TRUE and FALSE values are coerced to 1 and 0, respectively, when trying
to operate with them. This is useful, for example, to get the number of elements that
are true in a logical vector18:

sum(logicalVector)

## [1] 3

Vectors and Factors

Vectors and factors are different classes in R. But, actually, a factor is a kind
of vector which contains information about the possible values we can find in it
(levels), and the identifying labels for those possible values. For example, we might

18The sum function will be explained later.
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have a variable for the machine that operates a given process, being those machines
identified by letters. This identification is the label.

myFactor <- factor(rep(1:5, 2), labels = letters[1:5])
myFactor

## [1] a b c d e a b c d e
## Levels: a b c d e

In the above expression, we used the internal object letters, which is actually
a vector with the letters of the alphabet. There is also a LETTERS object, guess
the difference and try them in the console. We can also generate factors for a given
number of replications of each level using the gl function:

factorLevels <- gl(n = 5, k = 3, labels = letters[1:5])
factorLevels

## [1] a a a b b b c c c d d d e e e
## Levels: a b c d e

Lengths and Names

Vectors (and factors) lengths can be get using the length function. Moreover, we
can assign names to each element of a vector. For example, the following expression
gets the length of our first vector:

length(x1)

## [1] 3

If we want to label each element of this vector, for example because the numbers
are for different weeks, we can do so using the names function:

names(x1) <- c("week1", "week2", "week3"); x1

## week1 week2 week3
## 10 20 30

Accessing Vector Items

Data objects in R are indexed, and we can access each element of a vector (or factor,
or any other R object as we will see later) either through its index or through its
name, if such name exists. Vector indices are indicated through the square brackets
symbols (“[ ]”). We can access elements of a vector for either extracting or
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replacing their content. For example, the following expression extracts the third
element of the “x1” vector:

x1[3]

## week3
## 30

while the following one replaces the content of the third element by the number 50:

x1[3] <- 50
x1

## week1 week2 week3
## 10 20 50

remaining the rest of the items unchanged. We can include integer vectors as index
to select more than one element. For example the following expression gets the first
and third elements of the x1 vector:

x1[c(1,3)]

## week1 week3
## 10 50

We can also exclude elements from the selection instead of specifying the
included elements. Thus, the previous expression is equivalent to this one:

x1[c(-2)]

## week1 week3
## 10 50

New elements can be added to a vector either creating a new vector with the
original one and the new element(s) or assigning the new element to the index
greater than the last one, for example:

c(x1, 60)

## week1 week2 week3
## 10 20 50 60

x1[4] <- 60
x1

## week1 week2 week3
## 10 20 50 60

To delete a vector item, we re-assign the vector resulting of the exclusion of such
element:
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x1 <- x1[c(-4)]
x1

## week1 week2 week3
## 10 20 50

If the elements of a vector has names, then the selection can also be done through
such names as follows:

x1["week1"]

## week1
## 10

When working with data in R, it is very common to select elements of an object
through logical vectors. Hence, instead of using numerical vectors as indices, we
can use logical vectors of the same length than the vector, and the result will be a
vector with the elements of the original vector whose indices are TRUE in the logical
vector. For example, for the above selection we could make the following selection
using logical indices:

x1[c(TRUE, FALSE, TRUE)]

## week1 week3
## 10 50

The combination of logical expressions and index selection is what makes this
strategy powerful for data analysis. For example, to get the values of the vector that
are greater than 15, we would use the following expression:

x1[x1 > 15]

## week2 week3
## 20 50

First, the expression x1 > 15 is evaluated, returning the logical vector
{FALSE, TRUE, TRUE}. Then, the selection is done returning only the second
and third elements of the vector, which are the ones that fulfill the condition. See
Appendix C for further logical operators.

Ordering Vectors

Two functions are related with the ordering of vectors. Let us create a random vector
to illustrate them. The following expressions are to get a random sample of size 10
from the digits 0 to 9. The set.seed function sets the seed in order to make
the example reproducible, see ?RNG to get help about random numbers generation
with R.
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set.seed(1234)
x6 <- sample(0:9, 10, replace = TRUE); x6

## [1] 1 6 6 6 8 6 0 2 6 5

The sort function returns the values of the vector ordered:

sort(x6)

## [1] 0 1 2 5 6 6 6 6 6 8

The order function returns the indices of the ordered values of the original
vector, i.e., the first element is the index of the minimum value in the original vector,
and so on:

order(x6)

## [1] 7 1 8 10 2 3 4 6 9 5

This function is very useful for sorting datasets as we will see later. Both the
order function and the sort function accept a “decreasing” argument to get the
reverse result. In addition, the rev function reverses the order of any vector, for
example, the following expressions are equivalent:

sort(x6, decreasing = TRUE)

## [1] 8 6 6 6 6 6 5 2 1 0

rev(sort(x6))

## [1] 8 6 6 6 6 6 5 2 1 0

Operating with Vectors

There are two types of operations we can perform over a vector, namely:

• Operations over all elements of a vector as a whole. A function is applied using all
the elements in the vector to produce a given result, which can be a computation,
some other values, a plot, etc. For example, to compute the average of all the
elements in vector x1 we can apply the mean function passing the vector as first
argument:

mean(x1)

## [1] 26.66667
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• Operations over each element of the vector, resulting on a vector of the same
length with a computation over each value of the vector. For example, arithmetic
operations and some mathematical functions work like that:

x1 + 5

## week1 week2 week3
## 15 25 55

At this point, let us introduce one interesting feature of R: recycling. The first
expression in the above chunk of code is a sum of a vector whose length is 3 and
another vector whose length is 1. To do that operation, the vector of length 1, i.e.,
the number 5, is coerced to a vector of length 3 recycling the number 5 twice. If we
add a vector of length 2, recycling is also done, but we get a warning because the
length of the first vector is not a multiple of the second one:

x1 + c(5, 6)

## Warning in x1 + c(5, 6): longer object length is not
a multiple of shorter object length

## week1 week2 week3
## 15 26 55

In this case, the 5 has been recycled once to complete a 3-length vector.
Mathematical functions which require a single value as argument return vectors
with the result of the function over each value of the original vector. For example,
the sqrt function returns the square root of a number:

sqrt(x1)

## week1 week2 week3
## 3.162278 4.472136 7.071068

Matrices

Creating and Accessing Matrices

A matrix is actually a vector organized in rows and columns. All the elements must
be of the same type. The most common way of creating matrices is through the
matrix function, whose main arguments are: (1) the vector with all elements of
the matrix; (2) the number of rows; and (3) the number of columns. The data are
added by columns, unless the byrow argument is set to TRUE:



2.6 Working with Data in R 59

myMatrix <- matrix(c(10, 20, 30, 40, 12, 26, 34, 39),
nrow = 4, ncol = 2); myMatrix

## [,1] [,2]
## [1,] 10 12
## [2,] 20 26
## [3,] 30 34
## [4,] 40 39

We can extract and replace parts of a matrix in the same way as in vectors. The
only difference is that now we have two indices rather than one inside the squared
brackets, separated by a comma. The first one is for the row index, and the second
one is for the column index. We can extract a whole row (column) by leaving the
second (first) index empty:

myMatrix[3, 2]

## [1] 34

myMatrix[1, ]

## [1] 10 12

myMatrix[, 1]

## [1] 10 20 30 40

Notice that in the Environment tab of the upper-right pane of RStudio, the
matrix is under the “Data” group, instead of the “Values” one. As matrices have
two dimensions, i.e., rows and columns, they can be visualized in the RStudio data
viewer by clicking on the icon on the right of the list. The structure of the matrix can
be also get using the str function. See how now the lengths of the two dimensions
are shown, i.e., four rows and two columns:

str(myMatrix)

## num [1:4, 1:2] 10 20 30 40 12 26 34 39

Basic Matrix Operations

We can assign names to rows and/or columns of matrices:

colnames(myMatrix) <- c("variable1", "variable2")
rownames(myMatrix) <- c("case1", "case2",

"case3", "case4")
myMatrix
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## variable1 variable2
## case1 10 12
## case2 20 26
## case3 30 34
## case4 40 39

Marginal sums and means can be computed using the rowSums, colSums,
rowMeans, and colMeans functions, for example:

rowSums(myMatrix)

## case1 case2 case3 case4
## 22 46 64 79

colMeans(myMatrix)

## variable1 variable2
## 25.00 27.75

See Appendix C for more examples of matrix operations. Arrays of higher
dimensions are possible in R through the array function.

Lists

Creating Lists

Lists are data structures that can contain any other R objects of different types and
lengths. Such objects can be created within the own definition of the list, or taken
from the workspace. The elements of a list can also be named, typically this is done
when creating the list. In the following example, we create a list whose name is
“myList,” and has three components.

myList <- list(matrix = myMatrix, vector1 = x1, x2)
myList

## $matrix
## variable1 variable2
## case1 10 12
## case2 20 26
## case3 30 34
## case4 40 39
##
## $vector1
## week1 week2 week3
## 10 20 50
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##
## [[3]]
## [1] 1 2 3 4 5 6 7 8 9 10

See the printing of the list. The first two elements are shown with its name
preceded by a $ symbol. This is because we named them in the list definition. The
third element had no name and it is identified by its index between double square
brackets [[3]].

Accessing Lists

Similarly to vectors, the components of a list are indexed, and we can extract each
element of the list either by its index or by its name. In the latter case, we can use
the $ operator. See the following examples:

myList$vector1

## week1 week2 week3
## 10 20 50

myList[[1]]

## variable1 variable2
## case1 10 12
## case2 20 26
## case3 30 34
## case4 40 39

myList["vector1"]

## $vector1
## week1 week2 week3
## 10 20 50

myList[3]

## [[1]]
## [1] 1 2 3 4 5 6 7 8 9 10

myList$matrix[, 2]

## case1 case2 case3 case4
## 12 26 34 39

The difference between simple and double squared brackets is that when using
double squared brackets, we get the original object that is within the list, of its own
class, e.g., matrix. On the contrary, if we do the extraction using the single squared
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brackets like in vectors, we get an object of class list. This makes possible to select
more than one element in the list, for example:

myList[c(2,3)]

## $vector1
## week1 week2 week3
## 10 20 50
##
## [[2]]
## [1] 1 2 3 4 5 6 7 8 9 10

Notice that we can extract elements from the inner components of a list, for
example a column of the matrix that is the first element of the list. We can also
replace parts of an object as we had done with vectors and matrices:

myList$matrix[, 2, drop = FALSE]

## variable2
## case1 12
## case2 26
## case3 34
## case4 39

myList$matrix[1, 2] <- 120
myList$matrix

## variable1 variable2
## case1 10 120
## case2 20 26
## case3 30 34
## case4 40 39

You can see the structure of a list in the workspace by looking at the Environment
tab in the upper-right pane of RStudio, or using the str function:

str(myList)

## List of 3
## $ matrix : num [1:4, 1:2] 10 20 30 40 120 26 34..
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:4] "case1" "case2" "case3" "c"..
## .. ..$ : chr [1:2] "variable1" "variable2"
## $ vector1: Named num [1:3] 10 20 50
## ..- attr(*, "names")= chr [1:3] "week1" "week"..
## $ : int [1:10] 1 2 3 4 5 6 7 8 9 10
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Notice that the structure of a list shows the structure of each element of the list.
In the Environment tab, RStudio upper-right pane, the number of elements of the
list is shown, and by clicking on the left-side icon next to the name of the list, the
list is expanded to show the structure of each element of the list.

Data Frames

The usual way of working with data is by organizing them in rows and columns.
It is common that we have our data in such a way, either from spreadsheets, text
files, or databases. Columns represent variables, which are measured or observed in
a set of items, represented by rows. The class of R objects with such structure is the
data.frame class. We refer to them as data frames hereon. Recall that matrices
are also organized in rows and columns. The difference is that a matrix can only
contain data of the same type, for example numbers or character strings. However,
the columns of a data frame can be of different types, e.g., a numerical column for
the measurement of a quality characteristic, another one logical stating whether the
item is nonconforming, another one a factor for the machine where the item was
produced, and so on.

Creating Data Frames

Normally, we will import data to data frames from files. Nevertheless, sometimes
we need to create data frames from other R objects or by generating vectors. We
create data frames with the function data.frame

myData <- data.frame(type = c("A", "A", "B",
"C", "C", "C"),

weight = c(10.1, 20.3, 15.2,
13.4, 23.2, 8.1))

myData

## type weight
## 1 A 10.1
## 2 A 20.3
## 3 B 15.2
## 4 C 13.4
## 5 C 23.2
## 6 C 8.1
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Accessing Data Frames

Data frames are actually a sort of combination of lists, matrices, and vectors. Look
at the Environment tab in the upper-right pane of RStudio. Equally to matrices, data
frames are under the “Data” group and can be visualized in the RStudio data viewer:
click on the right icon to show the data as a new tab in the RStudio source pane, see
Fig. 2.12. In that sense, a data frame is a matrix with rows and columns. On the other
hand, the information shown about the data frame is the number of observations
(rows) and the number of variables (columns). Notice that the expand/collapse icon
for list objects explained above is also next to the data frame name. If you click on
it, the structure of each column is shown. Let us see the structure of the data frame
using the str function:

str(myData)

## ’data.frame’: 6 obs. of 2 variables:
## $ type : Factor w/ 3 levels "A","B","C": 1 1 2..
## $ weight: num 10.1 20.3 15.2 13.4 23.2 8.1

Therefore, a data frame is a list of columns, and each column is a vector. Similarly
to lists, we can access data frame columns by names using the $ operator, or by
index:

Fig. 2.12 RStudio data viewer. Matrices and data frames can be visualized in the data viewer. A
new tab is open when clicking the icon right to the object in the Environment tab
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myData$type

## [1] A A B C C C
## Levels: A B C

myData[1]

## type
## 1 A
## 2 A
## 3 B
## 4 C
## 5 C
## 6 C

Notice that the access by name is equivalent to the access using double squared
brackets. The difference is whether the result is a data frame or a vector. As a
two dimensional data object, we can also access data frame elements in the matrix
fashion:

myData[3, ]

## type weight
## 3 B 15.2

myData[myData$weight < 15, ]

## type weight
## 1 A 10.1
## 4 C 13.4
## 6 C 8.1

Sometimes, we need to get the number of rows or the number of columns
of a data frame to be used in expressions. We can get them with the following
expressions:

nrow(myData)

## [1] 6

ncol(myData)

## [1] 2

Data frames rows and columns have always names. Even if they are not available
when creating the data frame, R assign them: for columns, using the letter V
followed by a number (V1, V2, . . . ); for rows, the default names are row indices.
Rows and column names can be consulted and changed afterwards in the same way
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we explained above for factors and vectors, see the following examples19 (we first
create a copy of the data frame):

myEditedData <- myData
colnames(myEditedData)

## [1] "type" "weight"

colnames(myEditedData)[2] <- "itemWeight"
rownames(myEditedData)

## [1] "1" "2" "3" "4" "5" "6"

rownames(myEditedData) <- paste("case",
rownames(myEditedData),
sep = "_")

myEditedData

## type itemWeight
## case_1 A 10.1
## case_2 A 20.3
## case_3 B 15.2
## case_4 C 13.4
## case_5 C 23.2
## case_6 C 8.1

Ordering, Filtering, and Aggregating Data Frames

We already know that data frame columns are vectors. Therefore we can use the
functions explained for vectors in data frames. For example, to sort the data frame
created above by the weight column, we use the extracting strategy by means of the
squared brackets, passing as row indices the result of the order function over the
column (or columns) of interest:

myData[order(myData$weight), ]

## type weight
## 6 C 8.1
## 1 A 10.1
## 4 C 13.4
## 3 B 15.2
## 2 A 20.3
## 5 C 23.2

19We use the paste function to get a sequence of character strings, see Appendix C to see more
functions to work with strings.
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For filtering (subsetting in R jargon) data frames, in addition to the use of
indexing, we can use the subset function, whose use is more intuitive: the first
argument is the data frame to be subset, and the second one a logical expression with
the condition. Further options can be used, see the documentation of the function:

subset(myData, weight > 15)

## type weight
## 2 A 20.3
## 3 B 15.2
## 5 C 23.2

On the other hand, the aggregate function allows us to get subtotals of
numerical variables by categorical variables in a data frame. A special type of
expression is used as the first argument of the function: a formula. A formula is an
expression with two sides, separated by the symbol ~. It is mainly used to specify
models (see Chapter 5) in the form of y ~ model, where y is the response variable
and model can include several independent variables and their relationship. For
aggregating data, the idea is that the y in the formula left-hand side is the variable
that we want to aggregate, and the model are the criteria by which we want to
aggregate the data. For example, if we want to get the sum of weight by type in our
data frame:

aggregate(weight ~ type, data = myData, sum)

## type weight
## 1 A 30.4
## 2 B 15.2
## 3 C 44.7

where the third argument can be any function over a vector, typically aggregation
functions, see Appendix C.

Editing Data Frames

We use assignment expressions to edit, add, or remove elements of a data frame.
Changing values in a data frame is done in the same way as in vectors or matrices.
For example, to change the third observation of the second column:

myData

## type weight
## 1 A 10.1
## 2 A 20.3
## 3 B 15.2
## 4 C 13.4
## 5 C 23.2
## 6 C 8.1
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myData[3, 2] <- 22.2
myData

## type weight
## 1 A 10.1
## 2 A 20.3
## 3 B 22.2
## 4 C 13.4
## 5 C 23.2
## 6 C 8.1

We can add new columns to a data frame as follows. For example, imagine
we want to inspect the items in the data frame at a random order to check the
measurements. Then we add the randomorder column as follows20:

set.seed(1)
myData$randomorder <- sample(1:6)
myData

## type weight randomorder
## 1 A 10.1 2
## 2 A 20.3 6
## 3 B 22.2 3
## 4 C 13.4 4
## 5 C 23.2 1
## 6 C 8.1 5

Note that if we do the assignment over an existing column, it is overwritten.
Sometimes this is what we want to do, but some others we are unexpectedly losing
data. To remove a column, we assign the special value NULL to it:

myData$randomorder <- NULL
myData

## type weight
## 1 A 10.1
## 2 A 20.3
## 3 B 22.2
## 4 C 13.4
## 5 C 23.2
## 6 C 8.1

Computed columns are easy to add to our data frames. The operation is similar
to what we do in spreadsheets with formulas, for example to add values in columns,

20We first fix the seed in order to make the example reproducible.
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or any other operations over data, and then copy the formulas throughout the rows,
and so on. In this case it is more straightforward. Imagine we want to compute
a column with the proportion over the total each item represents. The following
simple expression does that, and it is ready to further work with it:

myData$proportion <- myData$weight/sum(myData$weight)
myData

## type weight proportion
## 1 A 10.1 0.10380267
## 2 A 20.3 0.20863309
## 3 B 22.2 0.22816033
## 4 C 13.4 0.13771840
## 5 C 23.2 0.23843782
## 6 C 8.1 0.08324769

Special Data Values

Missing Values

Missing values treatment is a quite important topic in data analysis in general, and
in quality control in particular, especially in early stages of data cleaning. Missing
values are represented in R by the special value NA (not available). If we try to do
computations over vectors that include NAs, for example the mean, we will get NA
as a result, unless the argument na.rm (remove NAs) is set to TRUE. Such argument
is available in a number of functions and methods, but not always. It may happen
that NA values should actually have a value, but it was not correctly identified when
creating the data object. Then we can assign other values to NAs. For that purpose
(and others) the is.na function is very useful. First, let us create a new column in
our data frame to illustrate NAs. Suppose we measured the content of salt of each
element in the data frame in addition to the weight. Unfortunately, for some reason
the measurements could have not be taken for all of the items. We add this new
information as we learnt above:

myData$salt <- c(2.30, 2.15, 2.25, 2.17, NA, 2.00)
myData

## type weight proportion salt
## 1 A 10.1 0.10380267 2.30
## 2 A 20.3 0.20863309 2.15
## 3 B 22.2 0.22816033 2.25
## 4 C 13.4 0.13771840 2.17
## 5 C 23.2 0.23843782 NA
## 6 C 8.1 0.08324769 2.00
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Let us compute the means of the two numerical variables in the data frame:

mean(myData$weight)

## [1] 16.21667

mean(myData$salt)

## [1] NA

There was no problem to compute the mean weight, as all the observations are
available. However, the mean salt could not be computed because there is a missing
value. To overcome this situation, we must tell the mean function to omit the missing
values:

mean(myData$salt, na.rm = TRUE)

## [1] 2.174

Another possible action over NAs is to assign a value. Let us suppose that the
missing value is due to the fact that the item had no salt at all, i.e., the correct value
should be zero. We can turn all the NAs values into zeros (or any other value) as
follows:

myData$salt[is.na(myData$salt)] <- 0
myData

## type weight proportion salt
## 1 A 10.1 0.10380267 2.30
## 2 A 20.3 0.20863309 2.15
## 3 B 22.2 0.22816033 2.25
## 4 C 13.4 0.13771840 2.17
## 5 C 23.2 0.23843782 0.00
## 6 C 8.1 0.08324769 2.00

Other Special Values in R

In addition to the NA and NULL values we have seen so far, there are other special
values in R. For example, the Inf value represents the infinity:

1/0

## [1] Inf

-1/0

## [1] -Inf
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Sometimes we get NaNs (not a number) when an operation cannot be done:

sqrt(-1)

## Warning in sqrt(-1): NaNs produced

## [1] NaN

The i symbol is used to represent complex numbers:

1i

## [1] 0+1i

as.numeric(1i^2)

## [1] -1

The following built-in constants are also available:

pi

## [1] 3.141593

letters

## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k"
## [12] "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v"
## [23] "w" "x" "y" "z"

LETTERS

## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K"
## [12] "L" "M" "N" "O" "P" "Q" "R" "S" "T" "U" "V"
## [23] "W" "X" "Y" "Z"

month.name

## [1] "January" "February" "March"
## [4] "April" "May" "June"
## [7] "July" "August" "September"
## [10] "October" "November" "December"

month.abb

## [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul"
## [8] "Aug" "Sep" "Oct" "Nov" "Dec"
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Data Types Conversion

When creating objects, sometimes data types can be specified somehow, for example
via the creating function arguments. Thus, the data.frame function accepts the
stringsAsFactors argument to determine whether strings should be created as
factors (default) or as character (setting the argument to FALSE). R tries to figure
out what is the best type for a data set. For example, when creating a vector, if
the input data includes only numbers, it creates a numeric vector; if the input data
includes only character strings, it creates a character vector; if the input data includes
both numbers and character strings, it creates a character vector to preserve all the
information: numbers can be converted to strings, but strings cannot be converted to
numbers. We can see the type of data in the vector using the class function:

vector1 <- c(1, 2, 3)
class(vector1)

## [1] "numeric"

vector2 <- c("one", "two", "trhee")
class(vector2)

## [1] "character"

vector3 <- c(1, 2, "three")
class(vector3)

## [1] "character"

We can also check whether an object is of a given type:

is.numeric(vector3)

## [1] FALSE

In any case, data structures and types can be converted from one type to another.
For example, if we want vector3 to be a numeric vector, we coerce the object to
numeric:

as.numeric(vector3)

## Warning: NAs introduced by coercion

## [1] 1 2 NA

Note that, as the third element cannot be converted to a number, NA is introduced
by coercion. Functions as.xxx and is.xxx are available for a number of types and
classes, type apropos("^as[.]") for a list.
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Working with Dates

Dates and times are important types of data. As was shown in Chapter 1, in quality
control it is important to keep track of the sequential order in which the data
were produced. Dates and times are usually stored in form of character strings,
and they can be expressed in varied formats. For example, suppose we know the
manufacturing date for some of the items in our data frame (DD/MM/YYYY
format):

myData$date <- c("15/01/2015", "16/01/2015",
"17/01/2015", "18/01/2015",
"13/02/2015", "14/02/2015")

myData

## type weight proportion salt date
## 1 A 10.1 0.10380267 2.30 15/01/2015
## 2 A 20.3 0.20863309 2.15 16/01/2015
## 3 B 22.2 0.22816033 2.25 17/01/2015
## 4 C 13.4 0.13771840 2.17 18/01/2015
## 5 C 23.2 0.23843782 0.00 13/02/2015
## 6 C 8.1 0.08324769 2.00 14/02/2015

We have added a character vector with the dates to the data frame. If we had
included the column when creating the data frame, the column would have factor
class. If we keep this variable as is, all the operations we do with it are referred to
characters. For example, try to sort the data frame by date:

myData[order(myData$date), ]

## type weight proportion salt date
## 5 C 23.2 0.23843782 0.00 13/02/2015
## 6 C 8.1 0.08324769 2.00 14/02/2015
## 1 A 10.1 0.10380267 2.30 15/01/2015
## 2 A 20.3 0.20863309 2.15 16/01/2015
## 3 B 22.2 0.22816033 2.25 17/01/2015
## 4 C 13.4 0.13771840 2.17 18/01/2015

It did not work because the string “13/02/2015” is the first one in a by-character
order. To make R understand that a variable is a date, we need to convert the
character string into a date. As you have likely guess, we do that with an as.xxx
function. But in this case we need an important additional argument: the format
in which the date is stored in the character vector. In the case at hand, we have a
day/month/year format, which must be specified as follows (we overwrite the date
variable):



74 2 An Introduction to R for Quality Control

myData$date <- as.Date(myData$date,
format = "%d/%m/%Y")

str(myData)

## ’data.frame’: 6 obs. of 5 variables:
## $ type : Factor w/ 3 levels "A","B","C": 1..
## $ weight : num 10.1 20.3 22.2 13.4 23.2 8.1
## $ proportion: num 0.104 0.209 0.228 0.138 0.23..
## $ salt : num 2.3 2.15 2.25 2.17 0 2
## $ date : Date, format: ...

Note that now the date column is of Date type, and the data is represented
in ISO format, i.e., “YYYY-MM-DD”. The format argument expects a character
string indicating the pattern used in the character strings that store the dates. In our
example, we are specifying that the string is formed by: (1) the day of the month
in decimal format (%d); (2) a forward slash; (3) the month of the year in decimal
format (%m); (4) another forward slash; and (5) the year with century (%Y). Check
the documentation for the strptime topic for more options. Now we can sort the
data frame by date:

myData[order(myData$date), ]

## type weight proportion salt date
## 1 A 10.1 0.10380267 2.30 2015-01-15
## 2 A 20.3 0.20863309 2.15 2015-01-16
## 3 B 22.2 0.22816033 2.25 2015-01-17
## 4 C 13.4 0.13771840 2.17 2015-01-18
## 5 C 23.2 0.23843782 0.00 2015-02-13
## 6 C 8.1 0.08324769 2.00 2015-02-14

It can also be useful to create variables for the year, month, etc. for aggregation,
classification, stratification, or any other purpose. For example, if we store the week
we can plot control charts where the groups are the weeks. We use the format
function in the reverse sense, i.e., we turn dates into character strings, see the
following examples:

myData$year <- format(myData$date, "%Y")
myData$month <- format(myData$date, "%Y")
myData$monthyear <- format(myData$date, "%Y-%m")
myData$week <- format(myData$date, "%Y-W%V")
myData[, c(5:9)]

## date year month monthyear week
## 1 2015-01-15 2015 2015 2015-01 2015-W03
## 2 2015-01-16 2015 2015 2015-01 2015-W03
## 3 2015-01-17 2015 2015 2015-01 2015-W03
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## 4 2015-01-18 2015 2015 2015-01 2015-W03
## 5 2015-02-13 2015 2015 2015-02 2015-W07
## 6 2015-02-14 2015 2015 2015-02 2015-W07

str(myData)

## ’data.frame’: 6 obs. of 9 variables:
## $ type : Factor w/ 3 levels "A","B","C": 1..
## $ weight : num 10.1 20.3 22.2 13.4 23.2 8.1
## $ proportion: num 0.104 0.209 0.228 0.138 0.23..
## $ salt : num 2.3 2.15 2.25 2.17 0 2
## $ date : Date, format: ...
## $ year : chr "2015" "2015" "2015" "2015" ..
## $ month : chr "2015" "2015" "2015" "2015" ..
## $ monthyear : chr "2015-01" "2015-01" "2015-0"..
## $ week : chr "2015-W03" "2015-W03" "2015"..

2.7 Data Import and Export with R

In the previous section we have created all data from scratch. There are many
situations in which we will use such strategy. However, raw data usually comes
from external sources, either because they are automatically recorded during the
process, or stored in databases, or manually entered in spreadsheets. The easiest way
to import data in R is using .csv files. CSV stands for Comma Separated Values,
and .csv files are text files in which each line corresponds to an observation of a
dataset, and the values for each column are separated by a comma. Actually, the
comma can be substituted by another value, for example when the comma is used
as decimal point, then semicolons are used instead of commas to separate columns.
The main advantage of using .csv files is that they can be generated by most of
the applications that storage data, such as spreadsheets, databases, etc. Furthermore,
.csv files can be opened and edited in spreadsheets applications such as Microsoft
Office or LibreOffice, for which most of the users are already trained.

In the following, we will explain how to get data into R from .csv files. At the
end of the section, some directions are provided to import data from other sources.
A .csv file is available for downloading from the book’s companion website.

Importing .csv Files

In manufacturing it is common that PLCs (Programmable Logic Controllers) record
data regarding product quality features. Quite often such recording machines can
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automatically generate data in .csv files. In such a case the files are ready to work
with them in R. However, if we are exporting data from spreadsheets, we must take
into account that the resulting file will only contain text, and what we see on the
screen may be different than what we get on the file. If the data on the file does not
correspond with what we want, then formats, formulas, or other application-specific
options might be the cause. Remove all the formats in numbers and characters. It
is also recommended to do the computations in R rather than using formulas in the
spreadsheet. Make sure the data in each column are consistent, for example you
do not use different data types in the same columns (text and numbers). Once you
have your data ready for exporting, select the “Save as . . . ” menu option of your
spreadsheet application and select the .csv format in the “File type” list. Search the
location where you want to save the file, for example your R working directory,
choose a name, and save the file. Depending on your system locale configuration,
the software usually decides the decimal point symbol and the separator for values.
For example, if your system is in English, the decimal point symbol will be the
period, and the separator, the comma; but if your system is, for example, in Spanish,
then the decimal point symbol will be the comma, and the separator, the semicolon.
These two formats are the most common ones.

For the examples below, you need to download the file http://www.
qualitycontrolwithr.com/lab.csv to your working directory. You can go to your
browser and download it as any other file. Alternatively, you can use the
download.file function21:

download.file(
url = "http://emilio.lcano.com/qcrbook/lab.csv",
destfile = "lab.csv")

Now that you have a .csv file on your working directory, you can explore it. If
you click the file in the Files pane of RStudio, the text file is opened in the source
pane. This format is difficult to manage from a text editor, so take a look just to see
how it looks like, and close it. Before importing the data into R, open the .csv file
with your spreadsheet application, for example Microsoft Excel. Double-clicking
the file in a files explorer window should work, but if it does not, use the “File /
Open . . . ” menu of your spreadsheet application and search the file. It is possible
that the spreadsheet application asks for the format of your data. If so, just select
the period as decimal symbol and the comma as values separator. See how the data
inside the .csv file looks like your usual spreadsheets, without formats, though. Now
you can close the file, from now on we will work with the data in R.

21We use a different URL within the download.file function as it fails in redirecting URLs.

http://www.qualitycontrolwithr.com/lab.csv
http://www.qualitycontrolwithr.com/lab.csv
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Importing Data from Text Files

RStudio includes a functionality to import data from files. In the Environment tab,
upper-right pane (see Fig. 2.8), the “Import Dataset” menu has two options: “From
Text File . . . ” and “From Web URL . . . ”. The former opens a dialog box to search a
text file. Select the lab.csv file that you downloaded and click on Open. A dialog
box appears, see Fig. 2.13. In this dialog box, we can see on the right how the text
input file looks like (top), and a preview of the data frame that is to be created when
clicking on the Import button. On the left side we can tune the import options, which
are automatically detected:

• The name of the data frame in your workspace;
• Whether the file contains headings, i.e., the first row contains the variables’

names;
• The characters that define the separator, the decimal point symbol, and the text

quotes;
• The value for empty strings, NA by default;
• Whether importing strings as factors (default). Unchecking the box, string

columns are imported as character vectors.

Accept the default settings and click on the Open button. Several things happen
after importing data. Check your workspace in the Environment tab, upper-right
pane. Now you have a data frame named lab in your workspace, under the “Data”
group. Expand the structure using the left icon to see the variables data types.

Fig. 2.13 RStudio import dataset dialog box. From the Environment tab we can import data in
text files through the Import Dataset menu
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Moreover, RStudio opens automatically the data viewer to visualize the data frame
in the source pane. On the other hand, take a look to your console. After importing
the data, you should have something similar to this:

> lab <- read.csv("<your_path>/lab.csv")
> View(lab)

where <your_path> is the path where you downloaded the .csv file, i.e., your
working directory if you used the previous code. The second expression is the one
that opened the data frame in the data viewer. It is just what RStudio does when
clicking on the icon to the right of a data frame or matrix in the Environment tab.
The first expression is the interesting one. Importing files from the import dataset
menu is useful to explore data files, or to import a static data file once and then save
the data processing as specific R data files (extension .RData). However, the usual
way of working is that data files are regularly updated, either adding rows to the files
or adding files to folders. Thus, it is more efficient to automate the data import in
the scripts, and we do that with the read.csv function above. Note that the only
argument that was included was the file path, as the rest of the default options are
valid for standard .csv files as it is the case. The read.csv function is actually a
wrapper of the read.table function, check the documentation for more details
and options.

Data Cleaning

Now we have the data available in our system, but raw data is likely to contain
errors. Before applying the methods described in the following chapters, make sure
that your data are ready for quality control. An exploratory data analysis should
be made to detect possible errors, find outliers, and identify missing values. Some
examples are given below. The first thing we must do is to verify if the data frame
is what we expect to be. Check the number of rows, number of columns and their
type, either in the RStudio environment tab or in the console:

str(lab)

## ’data.frame’: 1259 obs. of 7 variables:
## $ date : Factor w/ 250 levels "","01/02/2012"..
## $ fat : num 14 13 13 13 13.5 12.5 13 12.5 1..
## $ salt : num NA NA 1.2 NA NA NA NA NA 1.14 N..
## $ ph : num 6.64 6.65 6.66 6.6 6.6 6.63 6.6..
## $ analyst: Factor w/ 5 levels "analyst_1","ana"..
## $ nc : logi FALSE FALSE FALSE FALSE FALSE ..
## $ type : Factor w/ 3 levels "TYPE_1","TYPE_2"..
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Exploratory Data Analysis

Exploratory data analysis should include descriptive statistics, which is described in
Chapter 5. This exploratory data analysis should also include techniques to detect
errors like the ones presented hereon. Once the data has been cleaned, exploratory
data analysis would continue with statistics, probability, and plotting techniques.
Let us illustrate the data cleaning part of exploratory data analysis using the data
we have imported from the .csv file. For the purpose of this illustration, we will
use the summary function, which will be further explained in Chapter 5. This
function produces result summaries of a given R object. Applied over a numeric
vector, summary statistics are shown: the minimum, first quartile, median, mean,
third quartile, and the maximum. This is enough for the moment.

Missing Values

Let us get a summary of the ph variable of the lab data frame.

summary(lab$ph)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.360 6.610 6.650 6.691 6.680 66.300
## NA’s
## 1

Notice that in addition to the summary statistics mentioned above, we are also
informed about the number of mission values (NA’s). It is strange that in a dataset
of 1259 observations there is one and only one NA. We can look for that value using
the extraction techniques learned in this chapter:

lab[is.na(lab$ph), ]

## date fat salt ph analyst nc type
## 22 10/01/2012 13 NA NA analyst_2 FALSE TYPE_3

Let us suppose that we do some research and find out that the measurement was
taken but the operator forgave to record it. We know that the value is 6.6. Again,
using objects’ assignment and replacement we can fix that (note that we know from
the previous output that row number 22 was the wrong one):

lab$ph[22] <- 6.6
summary(lab$ph)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.360 6.610 6.650 6.691 6.680 66.300

and now we have no missing values for the ph variable. It is not always necessary to
assign missing values. For example, for the other two numerical variables of the data
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set, there are missing values, but we know from the own process that ph is always
measured, but fat and salt are only measured for some items. Thus, it is normal
having NAs in those columns. We just must be aware and take that into account
when making computations:

summary(lab$salt)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6500 0.7600 0.8800 0.8797 0.9850 1.2000
## NA’s
## 1044

mean(lab$salt)

## [1] NA

summary(lab$fat)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11.50 13.40 13.80 13.73 14.00 15.75
## NA’s
## 87

mean(lab$fat, na.rm = TRUE)

## [1] 13.72922

In addition to the is.na function, the functions any.na and complete.
cases functions are useful to manage missing values. The former returns TRUE
if at least one of the values of the first argument is NA. The latter gets the row
indices of a data frame whose columns are all not NAs. This can be useful to get
only the rows of a data frame that are complete.

anyNA(lab$ph)

## [1] FALSE

anyNA(lab$salt)

## [1] TRUE

sum(complete.cases(lab))

## [1] 207
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Outliers

Outliers are another type of particular data that must be examined before applying
statistics to quality control. An outlier of a data set is, as defined in [18], “a member
of a small subset of observations that appears to be inconsistent with the remainder
of a given sample.” Outliers or outlying observations can be typically attributed to
one or more of the following causes:

• Measurement or recording error;
• Contamination;
• Incorrect distributional assumption;
• Rare observations.

Similarly to missing values, sometimes outliers are correct, or we just cannot
remove them or assign a different value. In such cases, robust techniques should be
applied, see [18]. But in some other cases, the value is either impossible or extremely
unlikely to occur, and it should be corrected or removed. In a dataset with more
variables, this removal means assigning the NA value.

To illustrate outliers, let us go back to the ph variable of our lab data frame. You
have probably already realized that there is a strange number in the summary:

summary(lab$ph)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.360 6.610 6.650 6.691 6.680 66.300

As you might have guessed, the median and mean are close to 6.6, the
minimum is 6.63, but the maximum is ten times those values. It looks like there
is something inconsistent. There is obviously something wrong with that value. We
can descendently sort the dataset and check the first values to see if there are more
extreme values:

head(lab[order(lab$ph, decreasing = TRUE), 1:5])

## date fat salt ph analyst
## 16 09/01/2012 13.0 NA 66.30 analyst_2
## 392 10/06/2012 12.5 NA 6.84 analyst_1
## 394 10/06/2012 15.0 NA 6.84 analyst_1
## 153 04/03/2012 13.2 NA 6.83 analyst_2
## 195 22/03/2012 13.6 0.71 6.83 analyst_4
## 393 10/06/2012 12.5 NA 6.83 analyst_1

We see that it is just row number 16 who has the maximum value. After some
investigation, it was detected a wrong recording of the value, the value should have
been 6.63. Note that this is a very common error when recording data. Again, we
can fix the problem as follows:
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lab$ph[16] <- 6.63
summary(lab$ph)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.360 6.610 6.650 6.644 6.680 6.840

In addition to the statistics summary, a powerful tool to identify outliers is the
box plot. It will be described in Chapter 5, and a thorough explanation can also be
found in [18]. It is basically the representation of the numbers in the summary, but
all the possible outliers are also identified.

Wrong Values

Finally, other wrong values may arise in the data. It is not always easy to detect
wrong values. For categorical variables, a frequency table is a good way to find
possible errors. Let us get a frequency table for the analyst variable using the
function table. The result is the count of rows for each possible value of the
variable used as argument:

table(lab$analyst)

##
## analyst_1 analyst_2 analyst_3 analyst4 analyst_4
## 319 288 355 1 296

Notice that there is an “analyst4” and an “analyst_4”. The former has only one
count, and the rest are 288 or above. Apparently, “analyst4” and “analyst_4” are
the same person, and we have again a recording error. Unfortunately, these types of
errors are quite common when manually recording data in spreadsheets.

A more difficult to detect error is the one we have in the date column. There is
no value for row 24, but it is not detected as missing value because it was imported
as an empty string rather than a missing value:

anyNA(lab$date)

## [1] FALSE

which(lab$date == "")

## [1] 24

The which function returns the TRUE indices of a logical vector, very useful to
use for data extraction. In this case, we should have created a column of type Date in
advance, and then look for missing data over that column, because the empty string
is coerced to NA:
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lab$date2 <- as.Date(lab$date, format = "%d/%m/%Y")
anyNA(lab$date2)

## [1] TRUE

Let us fix it, supposing the correct date is 2012-01-10:

lab$date2[24] <- as.Date("2012-01-10")
anyNA(lab$date2)

## [1] FALSE

Exporting Data from R

So far in this section, we have imported data from text files, and clean the data to
get it ready for quality control. From here, we could follow two approaches:

• Save the import and data cleaning code and run it again at the beginning of the
quality control data analysis;

• Save the clean data in a data file and import the data at the beginning of the
quality control data analysis.

For the first approach, the expressions corresponding to the data import and
replacement are to be saved in a script and then include an expression in the
quality control analysis script to run the script via the source function as
explained in Sect. 2.5. For the second approach, we can save the clean data in
a file and then include an expression in the quality control analysis script to
import the clean data. For that purpose, the counterpart function of the read.csv
function is write.csv. The following expression saves our clean data in the file
lab_clean.csv:

write.csv(lab,
file = "lab_clean.csv",
row.names = FALSE)

The first argument of the function is the object in the workspace that contains
the data to be exported, preferably a matrix or data frame; The second argument is
the path to the output file; and the third argument avoids to create a column with
the row names, typically the row index unless row names have been set. Thus, the
lab_clean.csv has the same structure as lab.csv but with the wrong data
fixed. In fact, it is the same result as if we had edited the .csv file with a spreadsheet
application such as Microsoft Excel to correct the data and then saved the file with
a new name.
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A strategy mixing both approaches is however the most efficient. The following
step-by-step procedure can be followed as a guide when planning quality control
data analysis:

1. Create folders structure for your quality control data analysis project. The
following could be a general proposal which should be adapted to the project
specifics, if any:

• data: This folder shall contain the data files. It could contain sub-folders such
as “rawdata” and “cleandata”, “yyyy_mm_dd” (one folder per day), etc.;

• code: This folder shall contain the scripts;
• reports: This folder shall contain the .Rmd files and their counterpart compiled

reports as shown in Sect. 1.6, Chapter 1;
• plots: This folder could contain the exported plots to be used by other

programs;
• other. . . : Any other folder useful for the purpose of the quality control data

analysis.

2. Save the raw data file;
3. Create a script for data cleaning. This allows to keep track of the changes made,

even including comments in the code for further reference and lessons learned;
4. Export the clean data in a data file with a new name (included in the data cleaning

script);
5. Create scripts for the quality control data analysis. There might be several

different scripts, for example for exploratory data analysis, control charts,
capability analysis, etc.;

6. Create report files with the relevant results.

In addition to .csv files, data can be exported to many other formats. For example,
one or more objects in the workspace can be saved in a .RData file using the save
function. The following expression saves the lab data frame in the lab.RData
file:

save(lab, file = "lab.RData" )

Later on, the data in a .RData file can be imported to the workspace with the
load function:

load(file = "lab.RData")

It is up to the user which data and file formats to choose for their quality control
data analysis. All of them have advantages and disadvantages. Depending on the use
that will be done over the data, it could be better to use .csv files, e.g., when the data
are bound to be used by other applications, or .RData files, if only R will make use
of them. In addition to .csv and .RData, many other formats can be used in R for
data import and export, see the following subsection.



2.8 R Task View for Quality Control (Unofficial) 85

Importing Data from Other Sources

Importing files from .RData or text files is the easiest and less prone-error way
of getting data into R. Nevertheless, there are many more ways of importing data
from different sources. Check the “R Data Import/Export” manual enclosed in the
R documentation or at the R project website. The following is a list of the functions
and packages that deal with importing data from common sources, check their
documentation for details if you need to import data from the sources they manage:

• The foreign package [26] can read data coming from the main statistical
packages, such as Minitab, S, SAS, SPSS, Stata, or Systat, among others;

• The RODBC package [28] deals with Open Database Connectivity (ODBC)
sources. It originated on Windows but is also implemented on Linux / Unix /
OS X. The supported databases include Microsoft SQL Server, Access, MySQL,
PostgreSQL, Oracle, and IBM DB2;

• RMySQL [25], RSQLite [37], and RPostgreSQL [9] are the appropriate
packages for their counterpart FOSS database management systems;

• ROracle [23] and RJDBC [35] work with Oracle and Java databases, respec-
tively;

• The XML package [21] can make many operations with XML files;
• The XLConnect package [22] can read and write Microsoft Excel files

directly22;
• Unstructured and distributed databases are also accessible, for example via the
RMongo [7] and h5 [2] packages.

More and more institutions are making their data available on the Internet.
A general approach to deal with those data is to download the source file to disk
as explained above to download the “lab.csv” file and then import the data into R.

2.8 R Task View for Quality Control (Unofficial)

If there were a Task View for Quality Control at CRAN, it should include the
following resources.

This Task View collects information on R packages for Statistical Quality
Control. Statistical Quality Control applies statistics to process control and improve-
ment. The main tools used in statistical quality control are control charts, capability
analysis, and acceptance sampling. All statistical tools may be useful at some point
in a quality control planning.

22There are more packages able to deal with Excel files, check http://www.thertrader.com/2014/
02/11/a-million-ways-to-connect-r-and-excel/.

http://www.thertrader.com/2014/02/11/a-million-ways-to-connect-r-and-excel/
http://www.thertrader.com/2014/02/11/a-million-ways-to-connect-r-and-excel/
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Modeling Quality

The packages in this paragraph are installed with the base installation of R.

• The base package contains basic functions to describe the process variability.
The summary function gets a numerical summary of a variable. The function
table returns frequency tables. The functions mean, median, var, and sd
compute the mean, median, variance, and standard deviation of a sample, respec-
tively. For two variables, we can compute the covariance and the correlation with
the functions cov and cor, respectively.

• The stats package includes functions to work with probability distributions.
The functions for the density/mass function, cumulative distribution function,
quantile function, and random variate generation are named in the form dxxx,
pxxx, qxxx, and rxxx respectively, where xxx represents a given theoretic
distribution, including norm (normal), binom (binomial), beta, geom (geometric),
and so on, see ?Distributions for a complete list. Linear models can be
adjusted using the lm function. Analysis of Variance (ANOVA) can be done with
the anova function. The ts and arima functions are available for time series
analysis.

Visualizing Quality

Standard plots can be easily made with the graphics package. It basically
works as a painter canvas: you can start plotting a simple plot and then add more
details. The graphics, grid, and lattice packages are included in the R base
installation. The grid and lattice packages must be loaded before use, though.

• The graphics package allows to build standard plots using the plot (scat-
ter plots), hist (histograms), barplot (bar plots), boxplot (box plots)
functions. Low-level graphics can also be drawn using the functions: points,
lines, rect (rectangles), text, and polygon. Those functions can also be
used to annotate standard plots. Functions of x can be drawn with the curve
function.

• The grid package implements a different way to create and modify plots in run
time, including support for interaction.

• The lattice package [32] can plot a number of elegant plots with an emphasis
on multivariate data. It is based in Trellis plots.

• ggplot2 is another package [36] providing elegant plots through the grammar
of graphics.

• Cause-and-effect diagrams can be drawn with the cause.and.effect (qcc
package [33]) and the ss.ceDiag (SixSigma package [5]) functions.

• To make Pareto charts the functions pareto.chart (qcc package),
paretoChart (qualityTools package [29]) and paretochart

(qicharts package [1]) can be used.
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Control Charts

• The qcc package [33] can perform several types of control charts, including:
xbar (mean), R (range), S (standard deviation), xbar.one (individual values), p
(proportion), np, c, u (nonconformities), and g (number of non-events between
events). The function qcc plots a control chart of the type specified in the type
argument for the data specified in the data argument. For charts expecting data
in groups, i.e., xbar, R, and S charts, the input data must be prepared with the
function qcc.groups, whose arguments are the vector with the measurements
and the vector with the groups identifiers. For attribute charts where the size of
groups is needed, e.g., p, np, and u, the sizes argument is mandatory.

• The qcc package allows to implement customized control charts, see
demo("p.std.chart").

• The functions ewma, cusum, and mqcc in the qcc package are for exponen-
tially weighted moving average control charts, cumulative sums control charts,
and multivariate control charts, respectively.

• The SixSigma package can plot moving range control charts with the ss.cc
function.

• The qicharts package provides the qic to plot control charts and run charts .
It has also the trc function for multivariate data run charts.

• The IQCC package [3] implements qcc control charts with a focus on Phase I
and Phase II analysis.

• The qcr package [12] provides quality control charts and numerical results.
• The MSQC package [31] is a toolkit for multivariate process monitoring.
• Control Charts Operating Characteristic (OC) curves. The qcc package
oc.curves function draws operating characteristic curves which provide
information about the probability of not detecting a shift in the process.

Capability Analysis

• The qcc package process.capability function performs a capability
analysis over a qcc object previously created.

• The qualityTools package cp function returns capability indices and charts.
• The SixSigma package contains functions to individually get the indices

(ss.ca.cp, ss.ca.cpk, ss.ca.z). A complete capability analysis includ-
ing plots can be done with the ss.ca.study function.

• The mpcv package [8] performs multivariate process capability analysis using
the multivariate process capability vector.

• The tolerance package [41] contains functions for calculating tolerance
intervals, useful to set specifications.
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Acceptance Sampling

• The AcceptanceSampling package [20] provides functionality for creating
and evaluating single, double, and multiple acceptance sampling plans. A single
sampling plan can be obtained with the find.plan function

• The acc.samp function in the tolerance package provides an upper bound
on the number of acceptable rejects or nonconformities in a process.

• The Dodge package [15] contains functions for acceptance sampling ideas
originated by Dodge [10].

Design of Experiments

• Please visit the ExperimentalDesign Task View to see all resources regarding this
topic.

Quality Control Reports

• The Sweave function can produce .pdf files from .Rnw files, which can contain
LATEX and R code.

• The knitr package [38–40] can produce .pdf, .html, and .docx files from .Rmd
files, which can contain markdown text and R code.

CRAN Packages

• AcceptanceSampling
• base
• Dodge
• edcc
• ggplot2
• graphics
• grid
• IQCC
• knitr
• lattice
• mpcv
• MSQC
• qcc
• qcr
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• qicharts
• qualityTools
• SixSigma
• spc
• spcadjust
• stats
• tolerance

Books

• Cano, E.L., Moguerza, J.M., Redchuk, A.: Six Sigma with R. Statistical Engi-
neering for Process Improvement, Use R!, vol. 36. Springer, New York (2012).

• Cano, E.L., Moguerza, J.M., Prieto, M.: Quality Control with R. An ISO
Standards Approach, Use R!. Springer, New York (2015).

• Dodge, H., Romig, H.: Sampling Inspection Tables, Single and Double Sam-
pling. John Wiley and Sons (1959)

• Montgomery, D.C. Statistical Quality Control, Wiley (2012)

Links

• http://www.qualitycontrolwithr.com
• http://www.sixsigmawithr.com
• http://www.r-qualitytools.org

2.9 ISO Standards and R

This book follows an ISO Standards approach for quality control using R. The
process of creating international standards is explained in Chapter 4. The aim of
this approach is to present the standards relevant to the quality control topics, such
as statistics, control charts, capability analysis, and acceptance sampling. In this
section we reference some ISO Standards related to software and data, as well as
the Certification issue.

ISO Standards and Data

In Sect. 2.6 it was shown how R represents dates in ISO format. In particular,
according to the strptime topic documentation:

http://www.qualitycontrolwithr.com
http://www.sixsigmawithr.com
http://www.r-qualitytools.org
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The default formats follow the rules of the ISO 8601 international standard which expresses
a day as “2001-02-28” and a time as “14:01:02” using leading zeroes as here. (The ISO form
uses no space to separate dates and times: R does by default.)

Check ISO 8601 international standard [17] for more details on date and time data
representation. As explained in Sect. 2.6, using the format function and the %
operator, any format can be obtained. The ISOweek package [4] could be useful if
you are in trouble to get weeks in ISO format when using Windows.

As referenced in Sect. 2.7, part 4 of ISO 16269, Statistical interpretation of
data—Part 4: Detection and treatment of outliers [18], “provides detailed descrip-
tions of sound statistical testing procedures and graphical data analysis methods
for detecting outliers in data obtained from measurement processes. It recommends
sound robust estimation and testing procedures to accommodate the presence of
outliers.”

Some examples in this chapter generated random numbers. ISO 28640 [19],
“Random variate generation methods,” specifies methods for this technique.

Regarding data management and interchange, there are a number of international
standards developed by the ISO/IEC JTC 1/SC 32, check the available standards in
the subcommittee web page23 for further details.

Data is becoming a relevant topic in standardization. Recently, a Big Data
Study Group has been created within the ISO/IEC JTC 1 Technical Committee
(Information Technology).24 Keep updated on this standardization topic if your
quality control data is big.

R Certification

Even though there is not a specific reference to ISO Standards in the R project
documentation regarding the software, we can find in the R website homepage
a link to “R Certification.” There we can find “A Guidance Document for the
Use of R in Regulated Clinical Trial Environments,” a document devoted to
“Regulatory Compliance and Validation Issues.” Even though the document focuses
on the United States Federal Drug Administration (FDA) regulations, many of
the topics covered can be applied to or adopted for other fields. In particular, the
Software Development Life Cycle (SDLC) section, which is also available in the R
Certification web page as a standalone document, represents “A Description of R’s
Development, Testing, Release and Maintenance Processes,” which can be used for
certification processes if needed, for example, in relation to ISO/IEC 12207 [16],
Systems and software engineering—Software life cycle processes.

23http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=45342.
24http://www.jtc1bigdatasg.nist.gov.

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=45342
http://www.jtc1bigdatasg.nist.gov
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