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Foreword

Although it started almost two decades ago as a purely academic project, the R
software has established itself as the leading language for statistical data analysis
in many areas. The New York Times highlighted, in a 2009 article, this transition
and pointed out how important companies, such as IBM, Google, and Pfizer, have
embraced R for many of their data analysis tasks.

It is known that R is becoming ubiquitous in many other commercial areas,
well beyond IT and big pharma companies. This is well described in this book,
which focuses on many of the tools available for quality control (QC) in R and how
they can be of use to the applied statistician working in an industrial environment.
All products that we consume nowadays go through a strict quality protocol that
requires a tight integration with data obtained from the production line.

The authors have put together a manual that makes Springer’s use R! series
become even more comprehensive as this topic has not been covered before. QC
is an important field because it requires a specific set of statistical methodology
that is often neglected in these times of the Big Data revolution. This volume could
well serve as an accompanying textbook for a course on QC at different levels, as it
provides a description of the main methods in QC and then illustrates their use by
means of examples on real data sets with R.

But this book is not only about teaching QC. In fact, the authors combine an
outstanding academic background with extensive expertise in the industry, including
professional in-company training and an active involvement with the Spanish
Association for Quality (AEC) and with the Spanish Association for Standardization
(AENOR, member of ISO). Thus, the book will also be of use to researchers on QC
and engineers who are willing to take R as their primary programming language.
What makes QC different is that it is at the core of production and manufacturing.
In this context, R provides a suitable environment for data analysis directly at the
production lines. R has evolved in a way that it can be integrated with other software
and tools to provide solutions and analysis as data (and goods) flow in the lines.

Furthermore, the authors have reviewed ISO standards on QC and how they have
been implemented in R. This is important because it has serious implications in
practice as production is often constrained to fulfill certain ISO standards. For this
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reason, I believe that this book will play an important role to take R even further
into the industrial sector.

Finally, I congratulate the authors for continuing the work that they started in
their book on Six Sigma with R. These two books could well be used together not
only to control for the quality of the products but also to improve the quality of the
industrial production processes themselves. With R!

Albacete, Spain Virgilio Gómez-Rubio
July 2015



Preface

Why Quality Control with R?

Statistical quality control is a time-honored methodology extensively implemented
in companies and organizations all over the world. This methodology allows
to monitor processes so as to detect change and anticipate emerging problems.
Moreover, it needs statistical methods as the building blocks of a successful quality
control planning.

On the other hand, R is a software system that includes a programming language
widely used in academic and research departments. It is currently becoming a real
alternative within corporate environments. With R being a statistical software and a
programming language at the same time, it provides a level of flexibility that allows
to customize the statistical tools up to the sophistication that every company needs.
At the same time, the software is designed to work with easy-to-use expressions,
whose complexity can be scaled by users as they advance in learning.

Finally, the authors wanted to provide the book with a new flavor, including
the ISO Standards Approach in the subtitle. Standards are crucial in quality and
are becoming more and more important also in academia. Moreover, statistical
methods’ standards are usually less known by practitioners, who will find in this
book a nice starting point to get familiar with them.

Who Is This Book For?

This book is not intended as a very advanced or technical reading. It is aimed at
covering the interest of a wide range of readers, providing something interesting
to everybody. To achieve this objective, we have tried to write the least possible
mathematical equations and formulas. When necessary, we have used formulas
followed by simple numerical examples in order to make them understandable.

ix



x Preface

The examples clarify the tools explained, using simple language and trying to
transmit the principal ideas of quality control.

As far as the software is concerned, we have not used complicated programming
structures. Most examples follow the structure function(arguments) !
results. In this regard, the book is self-contained as it comprises all the necessary
background. Nevertheless, we reference all the packages used and encourage the
reader to consult their documentation. Furthermore, references both to generic and
specific R books are also provided.

Quality control practitioners without previous experience in R will find useful the
chapter with an introduction to the R system and the cheat sheet in the Appendix.
Once the user has grasped the logic of the software, the results are increasingly
satisfactory. For quality control beginners, the introductory chapter is an easy way
to start through the comprehensive intuitive example.

Statistical software users and programmers working in organizations using
quality control and related methodologies will find in this book a useful alternative
way of doing things. Similarly, analysts and advisers of consulting firms will get
new approaches for their businesses beyond the commercial software approach.

Statistics teachers have in a single book the essentials of both disciplines (quality
control and R). Thus, the book can be used as a textbook or reference book for
intermediate courses in engineering statistics, quality control, or related topics.

Finally, business managers who want to understand and get the background to
encourage their teams to improve their business through quality control can read
selected chapters or sections of the book, focusing on the examples.

How to Read This Book

In this book, we present the main tools and methodologies used for quality control
and how to implement them using R. Even though a sequential reading would help
in understanding the whole thing, the chapters are written to be self-contained and
to be read in any order. Thus, the reader might find parts of the contents repeated in
more than one chapter, precisely to allow this self-contained feature. On the other
hand, sometimes this repetition is avoided for the sake of clarity, but we provide
a number of cross-references to other chapters. Finally, in some parts of the book,
concepts that will be defined in subsequent chapters are intuitively used in advance,
with a forward cross-reference.

We provide three indices for the book. In addition to the typical subject index,
we include a functions and packages index and an ISO standards index. Thus, the
reader can easily find examples of R code, and references to specific standards.

The book is organized in four parts. Part I contains four chapters with the
fundamentals of the topics addressed in the book, namely: quality control (Chap-
ters 1 and 3), R (Chapter 2), and ISO standards (Chapter 4). Part II contains
two chapters devoted to the statistical background applied in quality control, i.e.,
descriptive statistics, probability, and inference (Chapter 5) and sampling (Chap-
ter 6). Part III tackles the important task of assessing quality from two different
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approaches: acceptance sampling (Chapter 7) and capability analysis (Chapter 8).
Finally, Part IV covers the monitoring of processes via control charts: Chapter 9
for monitoring variables and attributes quality characteristics and Chapter 10 for
monitoring so-called nonlinear profiles.

Three appendices complete the book. Appendix A provides the classical She-
whart constants used to compute control chart limits and the code to get them
interactively with R; Appendix B provides the complete list of ISO standards
published by the ISO Technical Committee ISO-TC 69 (Statistical Methods); and
Appendix C is a cheat sheet for quality control with R, containing short examples
of the most common tasks to be performed while applying quality control with R.

The chapters have a common structure with an introduction to the incumbent
topic, followed by an explanation illustrated with straightforward and reproducible
examples. The material used in these examples (data and code) and the results (out-
put and graphics) are included sequentially as the concepts are explained. All figures
include a brief explanation to enhance the understanding of the interpretation. The
last section of each chapter includes a summary and references of the ISO standards
relevant for the topics covered in the chapter.1

We are aware that the book does not cover all the topics concerning quality
control. That was not the intention of the authors. The book paves the way to
encourage readers to go into quality control and R in depth and maybe make them
as enthusiastic as the authors in both topics. The reader can follow the references
provided in each chapter to go into deeper detail on the methods, especially through
the ISO standards.

Finally, if you read the Use R! series book entitled Six Sigma with R, co-authored
by two of this book’s authors, you may find very similar content in some topics.
This is natural, as some techniques in quality control are shared with Six Sigma
methodologies. In any case, we tried to provide a different approach, with different
examples and the ISO standards extent.

Conventions

We use a homogeneous typeset throughout the book so that elements can be easily
identified by the reader. Text in Sans-Serif font is for software (e.g., R, Minitab).
Text in teletype font within paragraphs is used for R components (packages,
functions, arguments, objects, commands, variables, etc.).

The commands and scripts are formatted in blocks, using teletype font
with gray background. Moreover, the syntax is highlighted, so the function names,
character strings, and function arguments are colored (in the electronic version) or

1ISO Standards are continuously evolving. All references to standards throughout the book are
specific for a given point in time. In particular, this point in time is end of June 2015.
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with different grayscales (printed version). Thus, an input block of code will look
like this:

#This is an input code example
my.var <- rnorm(n = 10, mean = 2, sd = 0.5)
summary(my.var)

The text output appears just below the command that produces it, and with a gray
background. Each line of the output is preceded by two hashes (##):

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.262 1.806 2.040 2.063 2.527 2.642

There are quite a lot of examples in the book. They are numbered and start with
the string Example (Brief title for the example) and finish with a square (�) at the
end of the example. In the subsequent evolution of the example within the chapter,
the string (cont.) is added to the example title.

Throughout the book, when we talk about products, it will be very often suitable
for services. Likewise, we use in a general manner the term customer when referring
to customers and/or clients.

The Production

The book has been written in .Rnw files. Both Eclipse + StatET IDE and RStudio
have been used as both editor and interface with R. Notice that if you have a different
version of R or updated version of the packages, you may not get exactly the same
outputs. The session info of the machine where the code has been run is:

• R version 3.2.1 (2015-06-18), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=es_ES.UTF-8, LC_NUMERIC=C,
LC_TIME=es_ES.UTF-8, LC_COLLATE=es_ES.UTF-8,
LC_MONETARY=es_ES.UTF-8, LC_MESSAGES=es_ES.UTF-8,
LC_PAPER=es_ES.UTF-8, LC_NAME=es_ES.UTF-8,
LC_ADDRESS=es_ES.UTF-8, LC_TELEPHONE=es_ES.UTF-8,
LC_MEASUREMENT=es_ES.UTF-8,
LC_IDENTIFICATION=es_ES.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils
• Other packages: AcceptanceSampling 1.0-3, car 2.0-25, ctv 0.8-1,

downloader 0.3, e1071 1.6-4, Formula 1.2-1, ggplot2 1.0.1, Hmisc 3.16-0,
ISOweek 0.6-2, knitr 1.10.5, lattice 0.20-31, MASS 7.3-42, nortest 1.0-3,
qcc 2.6, qicharts 0.2.0, qualityTools 1.54, rj 2.0.3-1, rvest 0.2.0, scales 0.2.5,
SixSigma 0.8-1, spc 0.5.1, survival 2.38-3, XML 3.98-1.3, xtable 1.7-4
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• Loaded via a namespace (and not attached): acepack 1.3-3.3, class 7.3-13,
cluster 2.0.2, colorspace 1.2-6, crayon 1.3.0, curl 0.9.1, digest 0.6.8,
evaluate 0.7, foreign 0.8-64, formatR 1.2, gridExtra 0.9.1, gtable 0.1.2,
highr 0.5, httr 1.0.0, labeling 0.3, latticeExtra 0.6-26, lme4 1.1-8, magrittr 1.5,
Matrix 1.2-0, memoise 0.2.1, mgcv 1.8-6, minqa 1.2.4, munsell 0.4.2,
nlme 3.1-121, nloptr 1.0.4, nnet 7.3-10, parallel 3.2.1, pbkrtest 0.4-2, plyr 1.8.3,
proto 0.3-10, quantreg 5.11, R6 2.1.0, RColorBrewer 1.1-2, Rcpp 0.11.6,
reshape2 1.4.1, rj.gd 2.0.0-1, rpart 4.1-10, selectr 0.2-3, SparseM 1.6,
splines 3.2.1, stringi 0.5-5, stringr 1.0.0, tcltk 3.2.1, testthat 0.10.0, tools 3.2.1

Resources

The code and the figures included in this book are available at the book companion
website: http://www.qualitycontrolwithr.com. The data sets used in the examples
are available in the SixSigma package. Links and materials will be updated in a
regular basis.
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Part I
Fundamentals

This part includes four chapters with the fundamentals of the three topics covered
by the book, namely: Quality Control, R, and ISO Standards. Chapter 1 introduces
the problem through an intuitive example, which is also solved using the R software.
Chapter 2 comprises a description of the R ecosystem and a complete set of
explanations and examples regarding the use of R. In Chapter 3, the seven basic
quality tools are explored from the R and ISO perspectives. Those straightforward
tools will smoothly allow the reader to get used to both Quality Control and R.
Finally, the importance of standards and how they are made can be found in
Chapter 4.



Chapter 1
An Intuitive Introduction to Quality
Control with R

Abstract This chapter introduces Quality Control by means of an intuitive
example. Furthermore, that example is used to illustrate how to use the R statistical
software and programming language for Quality Control. A description of R
outlining its advantages is also included in this chapter, all in all paving the way to
further investigation throughout the book.

1.1 Introduction

This chapter provides the necessary background to understand the fundamental
ideas behind quality control from a statistical perspective. It provides a review of
the history of quality control in Sect. 1.2. The nature of variability and the different
kinds of causes responsible for it within a process are described in Sect. 1.3; this
section also introduces the control chart, which is the fundamental tool used in
statistical quality control. Sect. 1.4 introduces the advantages of using R for quality
control. Sect. 1.5 develops an intuitive example of a control chart. Finally, Sect. 1.6
provides a roadmap to getting started with R while reproducing the example
in Sect. 1.5.

1.2 A Brief History of Quality Control

Back in 1924, while working for the Bell Telephone Co. in solving certain problems
related to the quality of some electrical components, Walter Shewhart set up the
foundations of modern statistical quality control [16]. Until that time the concept
of quality was limited to check that a product characteristic was within its design
limits. Shewhart’s revolutionary contribution was the concept of “process control.”
From this new perspective, a product’s characteristic within its design limits is only
a necessary—but not a sufficient—condition to allow the producer to be satisfied
with the process. The idea behind this concept is that the inherent and inevitable
variability of every process can be tracked by means of simple and straightforward
statistical tools that permit the producer to detect the moment when abnormal
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4 1 An Intuitive Introduction to Quality Control with R

variation appears in the process. This is the moment when the process can be labeled
as “out of control,” and some action should be put in place to correct the situation.

A simple example will help us understand this concept. Let’s suppose a factory is
producing metal plate whose thickness is a critical attribute of the product according
to customer needs. The producer will carefully control the thickness of successive
lots of product, and will make a graphical representation of this variable with respect
to time, see Fig. 1.1. Between points A and B the process exhibits a small variability
around the center of the acceptable range of values. But something happens after
point C, because the fluctuation of values is much more evident, together with a
shift in the average values in the direction of the Upper Specification Limit (USL).
This is the point when it is said that the process has gone out of control. After this
period, the operator makes some kind of adjustments in the process (point E) that
allows the process to come back to the original controlled state.

It is worth noting that none of the points represented in this example are out of the
specification limits, which means that all the production is defect-free. Although one
could think that, after all, what really matters is the distinction between defects and
non-defects, an out-of-control situation of a process is highly undesirable as long
as it is evident that the producer no longer controls the process and is at the mercy
of chance. These ideas of statistical quality control were quickly assimilated by
industry and even today, almost one century after the pioneering work of Shewhart,
constitute one of the basic pillars of modern quality.

UPPER SPECIFICATION LIMIT

LOWER SPECIFICATION LIMIT
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B
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D
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UPPER SPECIF

LOWER SPECIF
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E

ICATION LIMIT
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D

Process Process Process
Under Control Out of Control Under Control

Time

Thickness
(in)

Fig. 1.1 Out of control. Example of an out-of-control process
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1.3 What Is Quality Control

Production processes are random in nature. This means that no matter how much
care one could place in the process, its response will somewhat vary with time. It is
possible to classify process variability into two main categories: chance variation
and assignable variation. When the variability present in a process is the result
of many causes, having each of them a very small contribution of total variation,
being these causes inherent to the process (i.e., impossible to be eliminated or even
identified in some cases), we say that the process shows a random normal noise. This
comes from the definition of a normal distribution of random values. In a normal
distribution the values tend to be grouped around the average value, the farther from
the average the less probable that a value may occur. When variability comes only
from chance causes (also called common causes) the behavior of the process is more
predictable; no trends or patterns are present in the data (Fig. 1.2). In this case the
process is said to be under control.

But in certain circumstances processes deviate from this kind of behavior, some
of the causes responsible for the variation become strong enough as to introduce
recognizable patterns in the evolution of data, i.e. step changes in the mean,
tendencies, increase in the standard deviation, etc. This kind of variation is much
more unpredictable than in the previous situation. This special behavior of the
process is the result of a few causes, having each of them a significant contribution of
total variation. These causes are not inherent to the process and are called assignable
causes (also called special causes). Fig. 1.3 shows a case where a tendency is clearly
observed in the data after point A. In this case the process is said to be out of control.

From both previous examples it becomes evident that a graphical representation
of the evolution of process data with time is a powerful means of getting a first idea
of the possible state of control of the process. But in order to give a final judgment
over a process’ state of control, something more is needed. If we suppose that the
process is free of assignable causes, thus assuming that the process is under control,

Mean (μ)

(Average Value)

Time

Process
Response

Standard deviation (σ)
(Variability)

Fig. 1.2 Chance causes. Variability resulting from chance causes. The process is under control
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then we would expect a behavior of the process that could be reasonably described
by a normal distribution. A detailed description of the normal distribution can be
consulted in Chapter 5. Under this assumption, process results become less and
less probable as they get farther from the process mean (�). If, as it is common
practice, we state this distance from the process mean in terms of the magnitude of
the standard deviation (� ) the probabilities of obtaining a data point in the different
regions of the normal distribution are given in Fig. 1.4. From this figure it comes
out that the probability of obtaining a data point from the process whose distance to
the process mean is larger than 3� is as small as 0.27 %. This probability is, indeed,
very small and should lead us to question if the process really is under control. If we
combine this idea with the graphical representation of the process data with time,
we will have developed the first and simplest of the control charts.

Fig. 1.3 Assignable causes.
Variability resulting from
assignable causes. The
process is out of control

A

Time

Process
Response

Upwards

Tendency

Process Process
Under Control Out of Control

Fig. 1.4 Normal distribution.
Probability of a result in
different regions of the
normal distribution

− 3σ − 2σ − 1σ μ 1σ 2σ 3σ

68.27%

95.45%

99.73%
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The control chart is the main tool that is used in the statistical processes control.
A control chart is a time series plot of process data to which three lines are
superposed; the mean, the Upper Control Limit (UCL), and the Lower Control
Limit (LCL). As a first approach, upper and lower control limits are separated
from the process mean by a magnitude equal to three standard deviations (3� ), thus
setting up a clear boundary between those values that could be reasonably expected
and those that should be the result of assignable causes. Figure 1.5 shows all the
different parts of a typical control chart: the center line, calculated as the average
value (�) of the data points, the UCL, calculated as the sum of the average plus
three standard deviations of the data points (� C 3� ), and the LCL calculated as
the subtraction of the average minus three standard deviations of the data points
(� � 3� ). A chart constructed in this way is at the same time a powerful and simple
tool that can be used to determine the moment in which a process gets out of control.
The reasoning behind the control chart is that any time a data point falls outside of
the region comprised by both control limits, there exist a very high probability that
an assignable cause has appeared in the process.

Although the criterion of one data point falling farther than three standard
deviations from the mean is the simplest one to understand based on the nature
of a normal process, some others also exist. For example:

• Two of three consecutive data points farther than two standard deviations from
the mean;

• Four of five consecutive data points farther than one standard deviation from the
mean;

• Eight consecutive data points falling at the same side of the mean;
• Six consecutive data points steadily increasing or decreasing;
• Etc.

UPPER CONTROL LIMIT

LOWER CONTROL LIMIT

CENTER LINE

Time

Process
Response

Fig. 1.5 A typical control chart. Data points are plotted sequentially along with the control limits
and the center line
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What have all these patterns in common? The answer is simple in statistical terms;
all of them correspond to situations of very low probability if chance variation
were the only one present in the process. Then, it should be concluded that some
assignable cause is in place and the process is out of control.

1.4 The Power of R for Quality Control

Software for Quality Control

The techniques we apply for quality control are based on the data about our
processes. The data acquisition and treatment strategy should be an important part
of the quality control planning, as all the subsequent activities will be based on such
data. Once we have the data available, we need the appropriate computing tools to
analyze them. The application of statistical methods to Quality Control requires the
use of specialized software. Of course we can use spreadsheets for some tasks, but
as we get more and more involved in serious data analysis for quality control, we
need more advanced tools. Spreadsheets can be still useful for entering the raw data,
correct errors, or export results for further uses.

There exist a wide range of software packages for Statistics in general. Most of
them include specific options for quality control, such as control charts or capability
analysis. Even some of them are focused on quality tools. A thorough survey of
statistical software would be cumbersome, and it is out of the scope of this book. The
reader can find quite a complete list at the Wikipedia entry for Six Sigma.1 We can
see that almost all the available software packages are proprietary and commercial.
This means that one needs to buy a licence to use them. Nowadays, however, there
are more and more Free and Open Source Software (FOSS) options for any purpose.
In particular, for the scope of this book, the R statistical software [15] is available.

Before going into the details of R, we would like to make some remarks about
the use of FOSS. Even though reluctance remains for its use within companies, it is
a fact that some FOSS projects are widely used throughout the World. For example,
the use of the Linux Operating System (OS) is not restricted to computer geeks
anymore thanks to distributions like Ubuntu. Not to mention Internet software such
as php and Apache, or the MySQL database management system (DBMS).

As for the R software and programming language, it is widely spread that it has
become the de-facto standard for data analysis, see, for example, [1]. In fact, many
large companies such as Google, The New York Times, and many others are already
using R as analytic software. Moreover, during the last years some commercial
options have appeared for those companies who need a commercial licence for any

1http://en.Wikipedia.org/wiki/Six_Sigma.

http://en.Wikipedia.org/wiki/Six_Sigma
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reason, and professional support is also provided by such companies. Another signal
for this trend is the amount of job positions that include R skills as a requirement.
A simple search on the web or professional social networks is enlightening.

The Free part of FOSS typically implies the following four essential free-
doms [3]2:

• The freedom to run the program as you wish, for any purpose (freedom 0);
• The freedom to study how the program works, and change it so it does your

computing as you wish (freedom 1);
• The freedom to redistribute copies so you can help your neighbor (freedom 2);
• The freedom to distribute copies of your modified versions to others (freedom 3).

Note that the access to source code, i.e., the OS part of FOSS, is mandatory for
freedom 1 and 3. It is usually said that FOSS means free as in beer and free as
in speech. Therefore, it is apparent that the use of FOSS is a competitive choice
for all kinds of companies, but especially for Small and Medium-sized Enterprises
(SMEs). One step beyond, we would say that it is a textbook Lean measure.3

What Is R?

R is the evolution of the S language created in the Bell laboratories in the 1970s by
a group of researchers led by John Chambers and Rick Becker [2]. Note that, in this
sense, quality control and R are siblings, see Sect. 1.2. Later on, in the 1990s Ross
Ihaka and Robert Gentleman designed R as FOSS largely compatible with S [5].
Definitely, the open source choice encouraged the scientific community to further
develop R, and the R-core was created afterwards. At the beginning, R was mainly
used in academia and research. Nevertheless, as R evolved it was more and more
used in other environments, such as private companies and public administrations.
Nowadays it is one of the most popular software packages for analytics.4

R is platform-independent, it is available for Linux, Mac, and Windows.
It is FOSS and can be downloaded from the Comprehensive R Archive Network
(CRAN)5 repository. We can find in [4] the following definition of R:

R is a system for statistical computation and graphics. It consists of a language plus a run-
time environment with graphics, a debugger, access to certain system functions, and the
ability to run programs stored in script files.

2See more about free software at http://gnu.org/philosophy/free-sw.en.html.
3Lean, or Lean Manufacturing, is a quality methodology based on the reduction of waste.
4r4stats.com/articles/popularity.
5http://cran.r-project.org.

http://gnu.org/philosophy/free-sw.en.html
r4stats.com/articles/popularity
http://cran.r-project.org


10 1 An Intuitive Introduction to Quality Control with R

Let us go into some interesting details of R from its own definition:

• It is a system for statistical computation and graphics. So, we can do statistics
and graphics, but it is more than a statistical package: it is a system;

• It is also a programming language. This means that it can be extended with new,
tailored functionality. Advanced programming features as debugging or system
interaction are available, but just for those users who need them;

• The run-time environment allows to use the software in an interactive way;
• Writing script files to be run afterwards either in a regular periodic basis or for

an ad-hoc need is the natural way to use R.

From the above definition, we can realize that there are two ways to use R:
interaction and scripting. Surprisingly for the newcomer, interaction means the use
of a console where expressions are entered by the user, resulting on a response by
the system. By creating scripts, expressions can be arranged in an organized way
and stored in files to be edited and/or run afterwards. Interaction is useful for testing
things, learning about the software, or exploring intermediate results. Nevertheless,
the collection of expressions that lead to a given set of results should be organized
by means of scripts. An R script is a text file containing R expressions that can be
run individually or globally.

In addition to a system, R can also be considered a community. Apart from the
formal structure through the R foundation (see below), R Users organize themselves
all over the World to create local R User’s Groups (RUGs). There is an updated list6

on the blog of Revolution Analytics,7 which is a company specialized in analytics
with R. They have developed their own interface for R, and a number of packages to
deal with Big Data. Revolution is a usual sponsor of R events and local groups, and
provide commercial support to organizations using R. Other commercial companies
providing R services and support are RStudio,8 Open Analytics,9 or TIBCO,10 for
example. The R community is very active in the R mailing lists. You can find a
relation of the available lists from the R website. One can subscribe to the suitable
list of their interest, place a question and wait for the solution. However, most of
the times the question has already been posted anywhere and answered by several
people. A simple web search with the question (including “R” on it) will likely
return links to Stackoverflow11 not only with answers, but also with discussions on
different approaches to tackle the problem.

Being R an Open Source project, it is not strange that people ask themselves who
is behind the project, and how it is maintained. We can find out that in the R website
itself (see the following section). Visit the following links in the left side menu at
the home page:

6http://blog.revolutionanalytics.com/local-r-groups.html.
7http://www.revolutionanalytics.com.
8http://www.rstudio.com.
9http://www.openanalytics.eu.
10http://www.tibco.com.
11http://stackoverflow.com/tags/r.

http://blog.revolutionanalytics.com/local-r-groups.html
http://www.revolutionanalytics.com
http://www.rstudio.com
http://www.openanalytics.eu
http://www.tibco.com
http://stackoverflow.com/tags/r
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• Contributors. The R Development Core Team have write access to the R source.
They are in charge of updating the code. More people contribute by donating
code, bug fixes, and documentation;

• The R Foundation for Statistical Computing. The statutes can be downloaded
from the R website;

• Members and Donors. A number of people and institutions support the
project as benefactors, supporting institutions, donors, supporting members, and
ordinary members. We can find relevant companies in the list, such as AT&T and
Google, among others;

• The Institute for Statistics and Mathematics of WU (Wirtschaftsuniversität Wien,
Vienna University of Economics and Business) hosts the foundation and the
servers.

Why R?

The ways of using R described above may sound old-fashioned. However, this
is a systematic way of work which, once is appropriately learned, it is far more
effective than the usual point, click, drag, and drop features of a software based
on windows and menus. More often than not, such user-friendly Graphical User
Interfaces (GUIs) avoid the user to think on what they are actually doing, just
because there is a mechanical sequence of clicks that do the work for them. When
users have to write what they want the machine to do, they must know what they
want the software to do. Still, extra motivation is needed to start using R. The
learning curve for R is very slow at the beginning, and it takes a lot of time to
learn things, see Fig. 1.6. This is discouraging for learners, especially when you
are stressed by the need of getting results quickly in a competitive environment.
However, this initial effort is rewarding. Once one grasps the basics of the language
and the new way of doing things, i.e., writing rather than clicking, impressive

Fig. 1.6 R learning curve.
It takes a lot of time to learn
something about R, but then
you create new things very
quickly. The time units vary
depending on the user’s
previous skills. Note that the
curve is asymptotic: you
never become an expert, but
are always learning
something new
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results are get easily. Moreover, the flexibility of having unlimited possibilities
both through the implemented functionality and one’s own developments fosters
the user creativity and allows asking questions and looking for answers, creating
new knowledge for their organization.

In addition to the cost-free motivation, there are many reasons for choosing R as
the statistical software for quality control. We outline here some of the strengths of
the R project, which are further developed in the subsequent sections:

• It is Free and Open Source;
• The system runs in almost any system and configuration and the installation is

easy;
• There is a base functionality for a wide range of statistical computation and

graphics, such as descriptive statistics, statistical inference, time series, data
mining, multivariate plotting, advanced graphics, optimization, mathematics, etc;

• The base installation can be enriched by installing contributed packages devoted
to particular topics, for example for quality control;

• It has Reproducible Research and Literate Programming capabilities [14];
• New functionality can be added to fulfill any user or company requirements;
• Interfacing with other languages such as Python, C, or Fortran is possible, as

well as wrapping other programs within R scripts;
• There is a wide range of options to get support on R, including the extensive

R documentation, the R community, and commercial support.

We provide enough evidence about those advantages of using R throughout the
book. In Sect. 2.8, chapter 2 an overview of the available functions and packages for
quality control are provided. Once the initial barriers have been overcome, creating
quality control reports is a piece of cake as shown in Sect. 1.6.

How to Obtain R

The official R project website12 is the main source of information to start with R.
Even though the website design is quite austere, it contains a lot of resources, see
Fig. 1.7.

In the central part of the homepage we can find two blocks of information:

• Getting Started: Provides links to the download pages and to the answers to the
frequently asked questions;

• News: Feed with the recent news about R: new releases, conferences, and issues
of the R Journal.

12http://www.r-project.org.

http://www.r-project.org
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In addition, the following sections are available from the left side menu:

• About R: Basic information about R and the latest news;
• Download, packages: A link to the CRAN repository;
• R Project: Varied information about the R Project, its foundation, donors,

conferences, and some tools;
• Documentation: It is one of the strengths of R. The Frequently Asked Questions

(FAQs) is a good starting point. It is a short document with general answers
about the system, and also to very common questions arising when starting to
use R. The Manuals are quite complete and updated with each release. There are
different manuals for different levels;

• Misc: This miscellaneous section provides links to other resources.

The links to download the R software and the link to CRAN lead to the selection
of a mirror. The R project is hosted at the Institute for Statistics and Mathematics of
WU (Wirtschaftsuniversität Wien, Vienna University of Economics and Business).
Mirrors are replicated servers throughout the world maintained by private and public
organizations that kindly contribute to the R ecosystem. It is recommended to select
a mirror near your location when downloading CRAN files. The main server can be
directly accessed without a mirror selection at the URL: http://cran.r-project.org.

The CRAN web page, see Fig. 1.8, has links to download and install the software
for Linux, Windows, and Mac. For Linux Users, the repository of the selected
mirror can be added to the sources list and then install and get updates in the
usual way using the package management system. For Windows and Mac users,
installation files can be downloaded and installed by double-clicking them. In any
case, the installation is straightforward and the default settings are recommended
for most users.

Some other interesting resources are available in the CRAN web page. The
source code can be also downloaded, not only for the last release, but also for

Fig. 1.7 R project website
homepage. The left menu bar
provides access to basic R
information, the CRAN, and
documentation

http://cran.r-project.org
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the current development of R, and for older versions. From the left side menu,
we can access further resources. The most impressive one is the Packages section.
Add-on packages are optional software that extend the R software with more code,
data, and documentation. The R distribution itself includes about 30 packages.
Nevertheless, the number of contributed packages is astonishing. At the time this
is written,13 more than 6500 packages are available at CRAN for a number of
different applications. Each contributed package has a web page at CRAN with links
to download the package (binary or source code), manuals, and other resources.
Moreover, CRAN is not the only repository for R packages. Other R repositories
are Bioconductor14 and Omegahat,15 and more and more developers are using
generic software repositories such as GitHub16 to publish their packages. In total,
the rdocumentation.org17 website records 7393 packages. The installation of add-on
packages is straightforward in R, especially for those available at CRAN, as will be
shown in Chapter 2.

Another great resource at CRAN are the Task Views. A Task View is a collection
of resources related to a given topic that bring together R functions, packages,
documentation, links, and other materials, classified and commented by the Task
View maintainer. The task views are maintained by contributors to the R Project
who are experts on the subject. The Task Views available at CRAN are listed in
Table 1.1. Currently, there is not a Task View for Quality Control. Nevertheless, we
include in Chapter 2 a sort of proposal for it.

Fig. 1.8 CRAN web page.
Access to the R software,
including the sources,
documentation, and other
information

13April 2015.
14http://bioconductor.org.
15http://omegahat.org.
16http://github.org.
17http://rdocumentation.org.

http://bioconductor.org
http://omegahat.org
http://github.org
http://rdocumentation.org
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Table 1.1 CRAN task views

Name Topic

Bayesian Bayesian inference

ChemPhys Chemometrics and computational physics

ClinicalTrials Clinical trial design, monitoring, and analysis

Cluster Cluster analysis and finite mixture models

DifferentialEquations Differential equations

Distributions Probability distributions

Econometrics Econometrics

Environmetrics Analysis of ecological and environmental data

ExperimentalDesign Design of experiments (DoE) and analysis of experimental
data

Finance Empirical finance

Genetics Statistical genetics

Graphics Graphic displays and dynamic graphics and graphic
devices and visualization

HighPerformanceComputing High-performance and parallel computing with R

MachineLearning Machine learning and statistical learning

MedicalImaging Medical image analysis

MetaAnalysis Meta-analysis

Multivariate Multivariate statistics

NaturalLanguageProcessing Natural language processing

NumericalMathematics Numerical mathematics

OfficialStatistics Official statistics and survey methodology

Optimization Optimization and mathematical programming

Pharmacokinetics Analysis of pharmacokinetic data

Phylogenetics Phylogenetics, especially comparative methods

Psychometrics Psychometric models and methods

ReproducibleResearch Reproducible research

Robust Robust statistical methods

SocialSciences Statistics for the social sciences

Spatial Analysis of spatial data

SpatioTemporal Handling and analyzing spatio-temporal data

Survival Survival analysis

TimeSeries Time series analysis

WebTechnologies Web technologies and services

gR gRaphical models in R

1.5 An Intuitive Example

We will illustrate quality control and R with an intuitive and comprehensive
example, covering from raw data to reporting using R. The example is also used
in other chapters.
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Table 1.2 Pellets density data (g/cm3)

10.6817 10:6040 10:5709 10:7858 10:7668 10:8101

10.6905 10:6079 10:5724 10:7736 11:0921 11:1023

11.0934 10:8530 10:6774 10:6712 10:6935 10:5669

10.8002 10:7607 10:5470 10:5555 10:5705 10:7723

Example 1.1. Pellets density.
A certain ceramic process produces pellets whose density is a critical quality

characteristic according to customer needs. Current technical specification states
that the density of a pellet is considered acceptable if it is greater than 10.5 g/cm3.
A sample of one pellet is taken and measured, following a standardized inspection
process, after each hour of continuous operation. The complete set of inspection
data for a one-day period is in Table 1.2 (left-to-right ordered).

What could be said about product quality and process control? A quick check of
data indicates that all the product is according to specifications; as long as there is
no single data point below 10.5 g/cm3. To determine the control limits, the following
approach should be followed:

UCL D � C .3 � �/

LCL D � � .3 � �/

In this particular case, � is estimated by the sample mean Nx and � is calculated
as MR=d2, where MR is the so-called average moving range of the values, and d2

is a tabulated constant, see Chapter 9 and Appendix A for details. In this case, Nx =
10.7342 g/cm3; MR = 0.1064 ; and d2 = 1.1284. Therefore:

UCL D 10:7342 C
�

3 � 0:1064

1:1284

�
D 11:0171;

LCL D 10:7342 �
�

3 � 0:1064

1:1284

�
D 10:4512:

The simple observation of the resulting control chart in Fig. 1.9 leads us to
conclude that points 11, 12, and 13 are beyond the upper control limit; therefore, the
process is out of control in that time and some kind of investigation and corrective
action should be implemented. In the following section we will see how to plot this
control chart with R. ut



1.6 A Roadmap to Getting Started with R for Quality Control 17

1.6 A Roadmap to Getting Started with R
for Quality Control

In this section, a step-by-step process is described in order to get ready for using
R for Quality Control. The process starts with the installation of R and RStudio
and ends with the plotting of the quality control chart in the previous section.
For the sake of simplicity, the procedure is described for Windows users. Most
of the explanations are valid for all platforms, but Linux and Mac users might
need to translate some things to their specific system jargon, for example regarding
installation and execution of applications. Please note that the pointers to the links
on the websites might have slightly changed when you are reading this book.

Download R

1. Go to http://www.r-project.org;
2. Click on the Download R link;
3. Select a mirror close to your location, or the 0-Cloud first one to get automat-

ically redirected. Any of the links should work, though the downloading time
could vary;

xbar.one Chart
for Density of pellets
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Fig. 1.9 Intuitive example control chart. Even though all the points are within the technical
specification, the process is out of control for points 11–13. Further investigation is needed to
detect and correct assignable causes

http://www.r-project.org
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4. Click on the Download R for Windows link;
5. Click on the base link;
6. Click on the Download R 3.x.x for Windows link;
7. Save the .exe file in a folder of your choice, for example the Downloads folder

within your Users folder.

Install R

1. Open the folder where you saved the .exe file;
2. Double-click the R-X.x.x-win.exe file;
3. Accept the default options in the installation wizard.

Download RStudio

1. Go to http://www.rstudio.com;
2. Click on the Powerful IDE for R link;
3. Click on the Desktop link;
4. Click on the DOWNLOAD RSTUDIO DESKTOP button;
5. Click on the RStudio X.xx.xxx - Windows XP/Vista/7/8 link;
6. Save the .exe file in a folder of your choice, for example the Downloads folder

within your Users folder.

Install RStudio

1. Make sure you have the last version of Java18 installed on your system;
2. Open the folder where you saved the .exe file;
3. Double-click the RStudio-X.xx.xxx.exe file;
4. Accept the default options in the installation wizard.

Start RStudio

After the installation of R and RStudio, you will have on your desktop an icon for
RStudio. As for R, if your system is a 64-bit one, you will have two new icons: one
for R for 32 bits and another for R for 64 bits. In general, it is recommended to run

18Check at http://www.java.com.

http://www.rstudio.com
http://www.java.com
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the version that matches your OS architecture. Double click the RStudio icon and
you should see something similar to the screen capture in Fig. 1.10. More details
about R and RStudio are provided in Chapter 2.

Install the qcc Package

1. Go to the Packages tab on the lower-right pane;
2. Click on the Install button. A dialog box appears;
3. Type “qcc” on the Packages text box;
4. Click on Install. You will see some messages in the RStudio console. Packages

only need to be installed once, but they need to be loaded in the workspace in
every session that uses functions of the package (see next steps).

Select and Set Your Working Directory (Optional)

By default, the R working directory is your home directory, e.g., My Documents.
This working directory is shown in the Files tab (lower-right pane) when opening
RStudio. The working directory can be changed following these steps, even though
it is not needed for the purpose of this example:

Fig. 1.10 RStudio application. This is what we see when starting RStudio
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• Select the Files tab in the lower-right pane;
• Click the . . . button on the upper-right side of the Files Pane (see Fig. 1.10);
• Look for the directory you want to be the working directory. For example, create

a folder on your home directory called qcrbook;
• Click on the Select button;
• Click on the More. . . menu on the title bar of the files tab and select the Set as

working directory option;
• Check that the title bar of the console pane (left-down) shows now the path to

your working directory.

Create Your First Script

To reproduce the illustrative example in this chapter you need: (1) the data on your
workspace; (2) the qcc package loaded; and (3) the expression that generates the
plot. Let us write a script with the expressions needed to get the result.

1. Create a new R Script. You can use the File menu and select New File/R Script,
or click the New File command button (first icon on the toolbar) and select R
Script. A blank file is created and opened in your source editor pane.

2. Save your file. Even though it is empty, it is good practice to save the file at
the beginning and then save changes regularly while editing. By default, the
Save File dialog box goes to the current working directory. You can save the
file there, or create a folder for your scripts. Choose a name for your file, for
example “roadmap” or “roadmap.R”. If you do not write any extension, RStudio
does it for you.

3. Write the expressions you need to get the control chart in the script file:

• Create a vector with the pellets data. The following expression creates a vector
with the values in Table 1.2 using the function c, and assigns (through the
operator <-) the vector to the symbol pdensity.

pdensity <- c(10.6817, 10.6040, 10.5709, 10.7858,
10.7668, 10.8101, 10.6905, 10.6079,
10.5724, 10.7736, 11.0921, 11.1023,
11.0934, 10.8530, 10.6774, 10.6712,
10.6935, 10.5669, 10.8002, 10.7607,
10.5470, 10.5555, 10.5705, 10.7723)

If you are reading the electronic version of this chapter, you can copy and paste
the code. The code is also available at the book’s companion website19 in plain
text. Please note that when copying and pasting from a pdf file, sometimes you

19http://www.qualitycontrolwithr.com.

http://www.qualitycontrolwithr.com
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can get non-ascii characters, spurious text, or other inconsistencies. If you
get an error or a different result when running a pasted expression, please
check that the expression is exactly what you see in the book. In any case, we
recommend typing everything, at least at the beginning, in order to get used
to the R mood.

• Load the qcc package. This is done with the function library as follows:

library(qcc)

• Use the function qcc to create a control chart for individual values of the
pellets density data:

qcc(data = pdensity, type = "xbar.one")

• Remember to save your script. If you did not do that earlier, put a name to
the file.

Run Your Script

Now you have a script with three expressions. To run the whole script, click on
the Source icon in the tool bar above your script. And that is it! You should get
the control chart and output text in Fig. 1.11 in the Plots pane and in the console,
respectively. As you may have noticed, it is not exactly the control chart in Fig. 1.9.
Now we have provided the qcc function with the minimum amount of information
it needs to produce the control chart. Further arguments can be provided to the
function, and we can also add things such as lines and text to the plot. The following
code is the one that produced Fig. 1.9:

library(qcc)
qcc(pdensity,

type = "xbar.one",
restore.par = FALSE,
data.name = "Density of pellets",
xlab = "Hour",
ylab = expression("Density gr/"*m^3),
axes.las = 1)

abline(h = 10.5,
col = "red",
lwd = 2)

text(x = 12,
y = 10.5,
labels = "Tech. Spec. Limit = 10.5",
pos = 3)
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After loading the qcc package, the first expression produces the plot; the second
one draws a horizontal line at the specification limit; and the third one puts a text
explaining the line. Do not worry for the moment about these details, just keep in
mind that we can go from simple expressions to complex programs as needed. As
for the text output in Figure 1.11, it is the structure of the object returned by the qcc
function. You will learn more about R objects and output results in Chapter 2.
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Fig. 1.11 Example control chart. Your first control chart with R following the steps of the roadmap
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Make a Reproducible Report (Optional)

One of the strengths of R remarked above was that it has Reproducible Research and
Literate Programming Capabilities. In short, this means that we can include the data
analysis within our reports, so that they can be reproduced later on by ourselves,
or by other collaborators, or by third parties, and so on. Usually, this is done by
including so-called chunks of code within report files. This can be done with the base
installation of R using the LATEX typesetting system. However, LATEX is a complex
language that requires practice and, again, a tough learning time. Fortunately, thanks
to some contributed packages such as knitr and the inclusion of the pandoc
software with the RStudio installation, quality control reports can be easily created.
The key point is that instead of using the complex LATEX language, RStudio relies
on the markdown language, which is very easy to use for simple formatted text.
Furthermore, the output report can be a .html, .pdf, or .docx file. To generate .pdf
files it is needed to have installed a LATEX distribution20, even though the report
is written in markdown. Reports with .docx extension can be open with several
software packages, such as Microsoft Office and LibreOffice. Follow these steps
to get a Microsoft Word report of the intuitive example in Sect. 1.5:

1. Create a new R Markdown file. You can use the File menu and select New File/R
Markdown . . . , or click the New File command button (first icon on the toolbar)
and select R Markdown. A dialog box appears to select the format of your report,
see Fig. 1.12. Type a title and author for your report, select the option Word and
click OK21;

Fig. 1.12 RStudio new R
markdown dialog box

20Visit http://www.miktex.com for a LATEX distribution for Windows.
21If there are missing or outdated packages, RStudio will ask for permission to install or update
them. Just answer yes.

http://www.miktex.com
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2. A new file is shown in the source editor, but this time it is not empty. By default,
RStudio creates a new report based on a template;

3. Keep the first six lines as they are. They are the meta data to create the report,
i.e.: title, author, date, and output format;

4. Take a look at the next two paragraphs. Then delete this text and write something
suitable for your quality control report;

5. The chunks of code are embraced between the lines ‘‘‘{r} and ‘‘‘. Change
the expression in the first chunk of the template by the first two expressions of
the script you created above;

6. Change the expression in the second chunk of the template by the third
expression of the script you created above;

7. Read the last paragraph of the template to realize what is the difference between
the two chunks of code. Change this paragraph by something you want to say in
your report.

8. You should have something similar to this in your R Markdown file:

---
title: "Quality Control with R: Intuitive Example"
author: "Emilio L. Cano"
date: "31/01/2015"
output: word_document
---

This is my first report of quality control using R.
First, I will create the data I need from the
example in the Book *Quality Control with R*. I
also need to load the ‘qcc‘ library:

‘‘‘{r}
pdensity <- c(10.6817, 10.6040, 10.5709, 10.7858,

10.7668, 10.8101, 10.6905, 10.6079,
10.5724, 10.7736, 11.0921, 11.1023,
11.0934, 10.8530, 10.6774, 10.6712,
10.6935, 10.5669, 10.8002, 10.7607,
10.5470, 10.5555, 10.5705, 10.7723)

library(qcc)
‘‘‘

And this is my first control chart using R:

‘‘‘{r, echo=FALSE}
qcc(data = pdensity, type = "xbar.one")
‘‘‘

It worked! Using R for quality control is great :)
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9. Knit the report. Once the R Markdown is ready and saved, click on the knit Word
icon on the source editor toolbar. The resulting report is in Figs. 1.13 and 1.14.
Note that everything needed for the report is in the R Markdown file: the data,

Fig. 1.13 Markdown word report. Page 1
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the analysis, and the text of the report. Imagine there is an error in some of the
data points of the first expression. All you need to get an updated report is to
change the bad data and knit the report again. This is a simple example, but when
reports get longer, changing things using the typical copy-paste approach is far
less efficient. Another example of a Lean measure we are applying.

Fig. 1.14 Markdown word report. Page 2
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1.7 Conclusions and Further Steps

In this chapter we have intuitively introduced quality control by means of a simple
example and straightforward R code. Next chapters will develop different statistical
techniques to deal with different quality control scenarios. These techniques include
further types of control charts in order to deal with continuous and discrete
manufacturing, as well as acceptance sampling or process capability analysis.

On the other hand, every chapter contains a section devoted to the Interna-
tional Standards Organization (ISO) standards that are relevant to the chapter
contents. Moreover, Appendix B comprises the full list of standards published by
the Application of Statistical Methods ISO Technical Committee (TC), i.e., ISO
TC/69. Relevant ISO standards for this introductory chapter are those pertaining to
vocabulary and symbols, as well as the more general ones describing methodologies.
Even though we will see them in more specific chapters, these are the more
representative generic standards of ISO/TC 69:

ISO 3534-1:2006 Statistics—Vocabulary and symbols—Part 1: General statisti-
cal terms and terms used in probability [6].

ISO 3534-2:2006 Statistics—Vocabulary and symbols—Part 2: Applied statis-
tics [7].

ISO 11462-1:2001 Guidelines for implementation of statistical process control
(SPC)—Part 1: Elements of SPC [8].

ISO 7870-1:2014 Control charts—Part 1: General guidelines [11].
ISO 7870-2:2013 Control charts—Part 2: Shewhart control charts [9].
ISO 22514-1:2014 Statistical methods in process management—Capability and

performance—Part 1: General principles and concepts [10].
ISO 10576-1:2003 Statistical methods—Guidelines for the evaluation of confor-

mity with specified requirements—Part 1: General principles [13].
ISO 5725-1:1994 Accuracy (trueness and precision) of measurement methods

and results—Part 1: General principles and definitions [12].

The use of Standards provides benefits to companies, and therefore they should
embrace standards in their quality control strategies. Chapter 4 provides an overview
of ISO Standards, their development process, and committees structure.
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Chapter 2
An Introduction to R for Quality Control

Abstract This chapter introduces R as statistical software and programming
language for quality control. The chapter is organized as a kind of tutorial with
lots of examples ready to be run by the reader. Moreover, the code is available at the
book’s companion website. Even though the RStudio interface is also introduced in
the chapter, any other user interface can be used, including the R default GUI and
code editor.

2.1 Introduction

In this chapter, the essentials of the R statistical software and programming language
[27] are explained. This provides the reader with the basic knowledge to start using
R for quality control. You should try the code by yourself while reading this chapter,
and therefore you need R and RStudio (optionally but recommended) installed
on your computer before continuing reading the chapter. Follow the step-by-step
instructions explained in Sect. 1.6 of Chapter 1, or just go to the R website1 and
to the RStudio website,2 download the installation files, and install them to your
computer. If you are reading the electronic version of this chapter, you can copy and
paste the code in the examples.3 The code is also available at the book’s companion
website.4 In any case, we recommend typing everything, at least at the beginning,
in order to get used to the R mood.

In Chapter 1, we introduced the power of R for quality control, what it is, its
history, etc. This chapter goes into the details of the software to get advantage of that
power. We highlight here some of the R features explained in Sect. 1.4 of Chapter 1:

1http://www.r-project.org.
2http://www.rstudio.com.
3Please note that sometimes what you paste could not be exactly what you see in the book and
some modifications could be needed.
4http://www.qualitycontrolwithr.com.
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• R is the evolution of the S language, developed at Bell Laboratories (then AT&T
and Lucent Technologies) in the 1970s [6]. Note that it is the same company
where Walter Shewhart developed modern statistical quality control 50 years
before [34];

• R is maintained by a foundation, a Core Team, and a huge community of
users and stakeholders, including commercial companies that make their own
developments;

• R is Free and Open Source Software (FOSS). Free as in free beer, and free as in
free speech [14];

• R is also a programming language, and a system for statistical computing and
graphics;

• R is platform independent: it runs in Windows, Mac, and Linux;
• The way of interacting with R is by means of expressions, which are evaluated

in the R Console, or can be stored in R scripts to be run as programs;
• R has Reproducible Research and Literate Programming capabilities, which has

proven quite useful for quality control reports in Sect. 1.6, Chapter 1;
• R base functionality provides a complete set of tools for statistical computing

and plotting, developed by time-honored experts;
• R base functionality is expanded by an increasing number of contributed

packages for a wide range of applications, including some for quality control;
• The software can be customized creating new functions for particular needs.

The toughest part for new R users is to get used to the interactivity with the
system. Having to write the expressions prompts errors which, especially at the
beginning, are not easy to interpret. Nevertheless, those errors are usually caused by
similar patterns. Find below a list of common errors while writing R expressions.
If you get an error when running an R expression, it very likely can be classified into
one of those categories. Please take into account that those types of errors are not
made only by beginners, but it is part of the normal use of R. Practice will reduce
the number of times errors are produced and, more importantly, the time one lasts
realizing where is the problem and fix the expression. This list contains concepts
that you still do not know about. Note the list as a reference and come back here
whenever you get an error while reading the chapter and practicing with the code.
Once you have completed the chapter, read the list again to fix concepts.

• Missing closing character. You need to close all the parentheses, square
brackets, curly brackets, or quotation marks you had opened in an expression.
Otherwise the expression is incomplete, and the console prompt keeps waiting
for you to finish it with the + symbol. If you are running a script, R will try
to continue the expression with the next one, and the error message could be
uninformative. So always check that you do not have a missing closing symbol;

• String characters without quotation marks. String characters must be pro-
vided in quotation marks ("). Everything in an expression that is not in quotation
marks is evaluated in the workspace, and therefore it should exist, either in
the global environment or in other environments. Usually, the error message
indicates that the object does not exist, or something related to the class of the
object;
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• Missing parenthesis in functions. Every function must include parenthesis,
even if it does not need any argument;

• Missing arguments in a function call. Functions accept arguments, which
sometimes can be omitted either because they are optional or because they have
a default value. Otherwise they are mandatory and a message indicates so;

• Wrong arguments in functions. Sometimes it is due to the missing quotation
marks mentioned above. Check the class of the object you are using as argument,
and the class the function expects as argument;

• Incompatible lengths. Data objects have a length that may be critical when using
them. For example, the columns of a data frame must be of the same length;

• Wrong data. If a vector of data is supposed to be, for example, numeric, but
one or more of its components is another thing, for example a character string,
then computations over the vector might result on unexpected results. This is not
always so evident, as it may be a number but the computer might interpret a
character, for example due to spurious blank spaces or the like;

• Other wrong syntax errors. Check the following:

– The arguments in a function are separated by commas (,);
– The conditions in loops and conditions are in parenthesis;
– You do not have wrong blank spaces, for example in the assignment operator;
– Use a period (.) as decimal separator in numbers;
– Expressions are in different lines, or separated by a semicolon.

In the remaining of the chapter you will find an overview of R interfaces in
Sect. 2.2; a description of the main R elements in Sect. 2.4; an introduction to
RStudio in Sect. 2.5; Sects. 2.6 and 2.7 describe how to work with data within R and
with external data sources. This is the starting point for the application of the quality
control tools explained throughout the book; a QualityControl task view is proposed
in Sect. 2.8; finally, some ideas and thoughts about R and Standardization are given
in Sect. 2.9. Note that the specific functions and packages for quality control are
not included in this chapter, as they are explained in detail in the corresponding
chapter. For example, functions for modelling processes are in Chapter 5, and so on.
Appendix C is a complete cheat sheet for quality control with R.

2.2 R Interfaces

The R base installation comes with a Command Line Interface (CLI). This CLI
allows interacting with R using the R Console as outlined above, by means of
expressions and scripts. This is one of the hardest parts for beginners, especially for
those who do not have experience in programming. Luckily, being R open source
software and a programming language at the same time allows developing more
advanced interfaces to work with R. For the Windows and Mac versions of R, an
extremely simple Graphical User Interface (GUI) is also included with the base
installation. It can be started as any other application in the system, Figure 2.1 shows
the GUI for Windows.
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There are a number of projects regarding R interfaces. A list of them can be found
in the R website itself following the “Related Projects” link and then R GUIs, or just
visit http://www.sciviews.org/_rgui. We can find two types of R interfaces:

• Interfaces with menus and dialog boxes (MDB GUIs). Interfaces of this type
provide the user with menus and dialog boxes to perform statistical analysis
in a similar way other commercial software does. However, only a limited
number of options are included in those menus. They are based on a common
framework, where package developers build functionality for their functions.
The most popular frameworks are R Commander (package Rcmdr) [13] and
Deducer (package Deducer) [11], and they can be loaded inside R as any
other package;

• Interfaces for development (Integrated Development Environment, IDE).
Interfaces of this type provide an environment to make the analyst life easier,
but they do not provide an interface where one can enter data or click options
and then run an analysis. Nevertheless, they allow to exploit all the capabilities
of the R system. Most popular environments include RStudio5 [30], Emacs C
ESS6 (Emacs Speaks Statistics), and Eclipse C StatET.7

Fig. 2.1 R GUI for windows. The R GUI allows basic interaction with R through the R console;
scripts can be created using the R Editor; and the R Graphics device opens when invoking a plot.
The menu bar contains access to some basic operations such as installing packages, or save and
load files

5http://www.rstudio.com.
6http://www.ess.r-project.org.
7http://www.walware.de/goto/statet.

http://www.sciviews.org/_rgui
http://www.rstudio.com
http://www.ess.r-project.org
http://www.walware.de/goto/statet
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The approach followed in this book is using an interface of the second type. This
allows to use all the capabilities of R, and the examples provided throughout the
book can be used either in the built-in R GUI, both in the R console and as scripts
in the R Editor, or in other available GUIs. In what follows, we explain one of the
interfaces that has become very popular among a wide range of R users, including
those using R in Industry: RStudio. This choice does not mean that one interface is
better than the others. In fact, we invite the reader to try out more than one and decide
by themselves which one fits better their needs. In fact, we have been using both
RStudio and Eclipse + StatET to write this book using Reproducible Research and
Literate Programming techniques. The good thing is that we can choose between
several alternatives. Moreover, as we remarked above, all the examples in the book
are ready to use in any R interface, or interactively in the console.

2.3 R Expressions

The way to interact with R is through R expressions, sometimes named as
commands. As explained above, R is interactive, in the sense that it responds
to given inputs. Such inputs are R expressions, which can be of several types,
mainly:

• An arithmetic expression;
• A logical expression;
• A call to a function;
• An assignment.

Expressions are evaluated by R when run in the console or through a script. If the
expression is incomplete, the R Console prompt keeps waiting until the expression
is complete. If the expression is complete, R evaluates the expression, producing
a result. This result may show some output to the user, which can be textual or
graphical. Some expressions do not produce any visible output, being the result, for
example, storing data in variables, or writing data to disk.

One of the characteristics of R is that it works with in-memory data. Neverthe-
less, we will need to work with expressions containing files in several ways. Some
of them are:

• Read data files to use in data analysis;
• Write data files to use later on;
• Save plots to be included in reports using other software tools;
• Create R scripts to write sets of expressions containing a complete analysis;
• Create report files with code, results, data, and text suitable to be compiled and

delivered.

In summary, the purpose of using files in R can be either working with data, or
working with code. When files are involved in R expressions, we can provide the
file location using two approaches:
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• Through the absolute path, i.e., the location in the computer from the root file
system;

• Through the relative path, i.e., the location in the computer from the working
directory of the R session (see below).

File paths must be provided as character strings, and therefore quotation marks
must be used. When using Windows, it is important to note that the backward slash
character (“\”) is reserved for escaping8 in R, and Windows paths must be provided
using either a forward slash (“/”) or a double backward slash (“\\”) to separate
folders and file names. For relative paths, the usual symbols for current and parent
directories (“.” and “..” respectively) can be used.

2.4 R Infrastructure

The R infrastructure is composed of the following elements:

• The console
• The editor
• The graphical output
• The history
• The workspace
• The working directory

In the R GUI, the console, the editor, and the graphical output are the three
windows that can be seen in Fig. 2.1. However, the history, the workspace, and
the working directory are hidden and we need to use coding to access them. As
remarked above, interfaces like RStudio allow more options in order to work with
those system-related elements. Moreover, advanced functionality is available to:
easily access to objects and functions; syntax highlighting; contextual menus; access
to help; explore data; etc. Nevertheless, the interface is actually a wrapper for the R
system, and the level of interaction for the statistical analysis is the same: console
and scripts.

2.5 Introduction to RStudio

RStudio is a Java-based application, and therefore having Java installed is a
prerequisite. Make sure you have the latest version of Java9 to avoid possible issues.

8Escaping means to provide a character string with special characters. For example, \n is for the
special character new line.
9http://www.java.com.

http://www.java.com
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The RStudio interface is shown in Fig. 2.2.10 It has a layout of four panes whose
dimensions can be adjusted, and each pane can contain different types of elements
by means of tabs. Most of those elements are basic components of the R system
listed above. The default layout is as follows11:

1. Lower-left pane. This pane is for the R Console. It can also show system-
related elements such as the output of the system console when calling system
commands, for example to compile a report;

2. Upper-left pane. This pane is for the R Source. R Scripts are managed in this
pane. Other types of files can also be opened in this pane, for example text files
containing data, code in other programming languages, or report files. Data sets
are also shown in this pane;

3. Upper-right pane. This pane is mainly for the R History and the R Environment
Other tabs appear when using certain features of RStudio, such as packages
development, or R Presentations;

4. Lower-right pane. This pane is the most populated. It has the following tabs:

• Files. It is a system file explorer with basic functions. It can be linked to the
R working directory;

Fig. 2.2 RStudio layout. The RStudio interface is divided into four panes: the console pane, the
source pane, the workspace and history pane, and the files, plots, packages, and help pane. The
layout can be modified through the global options in the Tools menu

10The version used while writing this book was 0.99.xxx.
11It can be changed through the Tools > Global options menu.
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• Plots. It is the RStudio graphics device. The plots generated in R are shown
here;

• Packages. Shows the packages available in the system, and we can install,
uninstall, or update them easily;

• Help. This tab provides access to all the R Documentation, including the
documentation of the installed contributed packages;

• Viewer. This tab is used to develop web applications with RStudio, which
will not be covered in this book.

The R(Studio) Console

The R console in RStudio is located by default in the lower-left pane, see Fig. 2.3.
Its behavior is the same as in the standard R GUI: there is a prompt identified by
the “>” symbol that is waiting for an expression. The user writes an expression after
the prompt and presses the Intro or return key. R evaluates the expression and
produces a result. An important issue puzzling for newcomers that arises quite often
is that if an expression is incomplete, the prompt changes to the “+” symbol, waiting
for the rest of the expression. Most of the times the user thought that the expression
was complete and does not know what to do. Usually, it is due to a missing closing
parenthesis or the like, and the way to cancel the expression is to press the ESC key.
Some details about the RStudio console:

Fig. 2.3 RStudio console. The RStudio console provides interaction with R
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• We can go to the console prompt using the keyboard shortcut CTRL+2 from
anywhere;

• The title bar of the RStudio console contains a valuable information: the current
working directory (see below);

• The arrow next to the working directory path is to show the working directory in
the files pane;

• When writing an expression, we can press TAB or CTRL+SPACEBAR to see a
contextual menu and select: available objects in the workspace and functions;
arguments of a function (within a function); or files and folders of the working
directory (within quotation marks);

• The ESC key cancels the current expression;
• CTRL+L clears the console;
• The up and down arrow keys navigate through the history.

In what follows, R code is shown in gray background. Input expressions can be
written directly in the RStudio Console or script editor (or copy-pasted if you are
reading the electronic version of this book). The output produced by R is shown in
the book after two hash symbols (“##”) at the beginning of the line. For example,
the simplest expression we can input is a number. Type the number 1 at the console
and press Intro:

1

## [1] 1

We can see that the result of this input expression is a line of text with the number
1 between squared brackets followed by the number 1. The number in square
brackets is an identifier that will be explained later. The result of the expression is
the same number that we wrote. One step beyond would be to ask for a calculation,
for example:

1 + 1

## [1] 2

Now the output is the result of the arithmetic expression. What happens if the
expression is incomplete?

1 +

As you may have realized, the > symbol changes to +, denoting that the expres-
sion is not complete. The system remains in that state until either the expression
is completed or the ESC key is pressed, cancelling the expression. Arithmetic
expressions return the result of the operation. Another type of R expressions are
logical expressions, which return the TRUE or FALSE value:
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5 > 6

## [1] FALSE

An R expression can be a call to a function. In fact, it is the most used
type of expression. The call to a function is always the same: the name of the
function followed (imperatively) by opening and closing parenthesis and, within
the parenthesis, the arguments of the function separated by commas. The function
arguments can be provided in several ways:

• Explicitly by the name of the argument in the form “name = value”. R allows
partial matching of names12

• Implicitly in the same order they were defined in the function.
• Using the default value defined for the function.

We can see the arguments of a function and their default values in the documen-
tation of the function, or by pressing the TAB key after the opening parenthesis. The
function str using a function name as an argument also returns the arguments of
the function. This is a simple example of the use of a function:

log(pi)

## [1] 1.14473

where pi is itself an expression that gets the value of the internal object containing
the value of � = 3,14159. . . .

pi

## [1] 3.141593

The log function gets the logarithm of a number. We can see the possible
arguments of the function through the function str13:

str(log)

## function (x, base = exp(1))

Therefore, log is a function that accepts two arguments: x, that does not have
any default value, and base, whose default value is the expression:

exp(1)

## [1] 2.718282

12This means that only the first letters of the argument name can be provided. We do not
recommend that, though.
13This function returns the structure of any R object.
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i.e., the e constant. Thus, the value that we get with the log function is the natural
logarithm, i.e., with base e, of the number we pass as first argument, or with a
different base if we pass the base argument. For example, the decimal logarithm
would be:

log(1000, base = 10)

## [1] 3

What happens if we pass no arguments to the function?

log()

## Error in eval(expr, envir, enclos): argument "x" is
missing, with no default

What happens is that the expression returns an error because there is no default
value for the first argument (x) and the function needs it. Read carefully the error
messages, they usually have clues to solve the problem.

Some functions do not need any arguments to work. For example, the seq
function generates sequences of numbers.

str(seq)

## function (...)

The dot-dot-dot (. . . ) argument means that the function accepts an undefined
number of arguments. So, will it work without arguments?

seq()

## [1] 1

It works, we get a sequence of numbers form 1 to 1 by steps of 1, i.e., the number
1. We can find out more about the arguments a function accepts using any of the
following expressions14:

help("seq")
?seq

The documentation for the function is then shown in the Help tab, lower-right
pane. As the function does not need any argument to work, could we use it without
parenthesis?

14Pressing the F1 key when the cursor is in a function name also works.
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seq

## function (...)
## UseMethod("seq")
## <bytecode: 0x7faede18c658>
## <environment: namespace:base>

The answer is no, because in R, every symbol is an object. The expression seq
without parenthesis is the symbol of the function seq, and what R returns is the
content of the function, i.e., its code.15

Let us finish this subsection with an explanation of the mysterious [1] at the
beginning of the R console output. It is meaningless when the output is only one
value, but when the output is a set of values that occupy more than one line, it is
useful. The number at the beginning of each line is the index of the first element in
the row. You will learn more about lengths and indices later on, just see the following
example in which a vector with 20 random variates from a normal distribution are
generated. The [19] at the beginning of the last row indicates that the first value in
that line is the 19th value in the vector.

rnorm(20)

## [1] 0.05460517 1.70767743 -1.09437298
## [4] -0.28928182 2.20741296 0.51874901
## [7] -1.40491794 2.01486448 -1.18815834
## [10] 0.19038081 -1.16973591 -0.03808156
## [13] 2.35420426 1.39342626 -0.56033236
## [16] -0.67145938 0.49243855 -1.17939052
## [19] -1.05871745 1.13790261

Note that you might get a different number of elements per row, as the output
width has been set to 50 characters for the generation of the book’s code, you can
set your own preferred output with the options function as follows:

options(width = 50)

The Source Editor

In the source editor we create text files with R expressions. Expressions can be more
than one line length. In fact, when expressions are too long, it is better to split it in
lines in order to make the code more readable. On the other hand, more than one
expression can be placed in the same line if we separate them with a semicolon (;).

15In this case not all the code is shown because seq is a built-in, compiled function.



2.5 Introduction to RStudio 41

Comments can be included in the code using the # character. R scripts files have
.R extension. The reason for using scripts is to reuse the code that we write once
and ordinarily use it afterwards, maybe with slight changes, in quality control data
analysis.

The RStudio source editor, see Fig. 2.4, has the following improvements with
respect to the R editor in the R GUI:

• Code highlighting: functions, objects, numbers, and texts appear with different
colors;

• Automatic indentation of code;
• Automatic closing of opening embracement characters such as parenthesis,

square brackets, curly braces, and quotation marks;
• CTRL+SPACEBAR and TAB keys: Provide some help in the same way that we

described for the console;
• Link to the documentation using the F1 key.

Complex scripts can be run from the console or from other scripts. For example,
if we have a script called dayly.R that performs ordinary tasks that we want to
use in other scripts, e.g., loading packages, import data, etc., we can run such script
with the following expression:

source("dayly.R")

Fig. 2.4 RStudio source editor. The RStudio source editor can manage R scripts, reports, and code
in other programming languages, such as C++ and Python
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The R Graphical Output

One of the R’s strengths is its graphical system. Publication-quality plots can be
easily produced, including mathematical symbols and formulae. The defaults of the
plotting functions have been set for the minor design choices, but the user retains
full control and elaborated plots can be made by tuning the graphical parameters up,
functions’ arguments, and global options.

The R graphical system is based in so-called devices. Plots are sent to devices.
If no device is open, a new one is open when calling a high-level graphics function.
The grDevices package in the R base includes a number of devices, including
the appropriate one for the user’s OS, and file-format devices such as pdf, jpeg, or
png among others.

Devices can be managed by several functions both interactively and through
scripts, thereby controlling the graphical output of our code. A global option gives
the default device, which is initially set as the most appropriate for each platform.
Some R packages provide further graphics devices. This is the case of RStudio,
which includes its own graphics device in the lower-right pane, see Fig. 2.5.

The RStudio graphics device includes a menu bar with several options that makes
life easier with devices management:

• Navigation through the graphics history;
• Zooming;
• Export files to several formats using a dialog box;
• Removing and clearing of graphics history.

Fig. 2.5 RStudio plots tab. Plots generated in RStudio are shown in the plots tab, lower-right pane
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The export menu includes three options for graphics: save as image, save as pdf,
and copy to clipboard. The former two open a dialog box with export options such
as the file extension (in the case of image), file path, and image size, see Fig. 2.6.

The graphics package contains functions for “base” graphics. Those tra-
ditional graphics are enough for most cases. The more recent development of
R graphics relies on the grid package [24]. Both of them are included in the
R base, as well as the lattice package, [32] aimed at elegant plots with a
focus on multivariate representations. Another very popular package for graphics
is the ggplot2 package [36]. In the chapters devoted to specific quality control
modelling and analysis we will see in detail how to make different types of plots
and charts.

The R Commands History

When working in the console, the commands history can be accessed using the up
and down arrow keys, like in the R GUI console. In RStudio, we can also visualize
all the history in the history tab, upper-right pane, see Fig. 2.7. Expressions in the
history can be sent either to the console or to the source editor. Further actions such
as save, open, or clean the history are available in the menu bar of the history tab.

The history can also be accessed via R code, see the documentation of the
functions loadhistory, savehistory, history.

Fig. 2.6 RStudio export graphic dialog box. A preview of the image is shown along with the
export options: image format and dimensions being the most relevant
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Fig. 2.7 RStudio history. The R History can be easily consulted, searched, and used during an R
session through the History tab in the upper-right pane

The R Workspace

The objects that are available in R are stored in the workspace. The workspace is
organized in different environments. The Global Environment is the place in which
the objects we create through assignments are stored. Each loaded package has its
own environment. Environments are also created for calls to functions, and the user
can even create environments. For the scope of this book, just keep track of your
Global Environment tab, upper-right pane, see Fig. 2.8 where you will find useful
information about the objects that are available to use in your session. You can
save, open, search, and clear objects in the workspace through the menu bar of
the Environment tab. To make actions only over selected objects in the workspace,
change the view using the upper-right icon on the menu bar from “List” (default)
to “Grid,” select the objects you want to save or clear, and click the appropriate
button. Remember to change again to the List view in order to be able to explore the
environment. An icon for importing datasets stored in text files is also available (we
will go over this later on).

The R workspace can also be accessed via R code, see the documentation of the
functions ls, str, load, save, save.image, and rm.
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Fig. 2.8 RStudio workspace. The R Workspace contains a list of available objects in the global
environment, which can be used in R expressions during the R Session

The Working Directory

A Working Directory is always associated with an R session. All tasks related to
files would take this directory in the file system as the path where read or write files,
for example, to read data in files, save scripts, or export plots. When an R expression
contains file names, they must be provided in quotation marks ("). Relative paths
from the working directory can be used. A tricky feature of RStudio is that we can
pick folders and files when writing in the source editor or the console just pressing
CTRL+SPACEBAR while the cursor is between quotation marks. The path to the
file or folder is auto-completed as selected in the contextual menu. Furthermore, the
Files tab in the lower-right pane (see Fig. 2.9) is a file explorer which can be linked to
the working directory. To do so, click on the arrow icon in the title bar of the console,
right after the working directory path. The reverse operation is also possible: Click
the “Go to directory” button, that is, the button with the ellipsis on the upper-right
side of the Files Pane; look for the directory you want to be the working directory;
click on the Select button; click on the More. . . menu on the title bar of the Files tab
and select the Set as working directory option; now the title bar of the console shows
the path to your working directory, which is also visualized in the Files pane. The
working directory can also be set through the Session menu, either to the Files pane
location, the active source file location, or to a chosen directory. Basic operations
such as creating a new folder and renaming or deleting items can be done. However,
it is usually better to show the folder in a new window through the More. . . menu
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Fig. 2.9 RStudio files pane. Interaction with the file system is possible through the Files pane,
including the setting and visualization of the R working directory

and work with files from there. Please note that files and folders deleted from the
Files pane are permanently deleted, they do not go to the trash system folder. Finally,
the default working directory can be set in the RStudio global options in the Tools
menu.

The R working directory and the file system can also be accessed via R code, see
the documentation of the functions getwd (returns the working directory), setwd
(sets the working directory), list.files, list.dirs, and dir. Actually, it is
common practice to include at the beginning of the scripts an expression to set the
working directory, for example:

setwd("C:/Rprojects/myProject")

Recall that the backslash character (“\”) has a special meaning in R and
Windows paths must be provided using either a forward slash (“/”) or a double
backward slash (“\\”) to separate folders and file names. This is particularly
important when copying and pasting paths from the address bar of the Windows
file explorer.

## Correct:
setwd("C:/myscripts")
setwd("C:\\myscripts")

## Incorrect:
setwd("C:\myscripts")
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Packages

R functionality is organized by means of packages. The R distribution itself includes
about 30 packages. Some of them are loaded when starting R. In addition, a number
of contributed packages are available, see Sect. 1.4 in Chapter 1. In order to use the
functions of a package, it must be loaded in advance. Obviously, the package must
be installed in the system in order to be loaded. The installation of a package is
done once, while the package must be loaded in the R workspace every time we
want to use it. Both operations can be done through the Packages pane of RStudio,
see Fig. 2.10.

To install a package, click on the Install icon in the Packages tab menu bar. A
dialog box opens where we can select whether to install the package from CRAN or
from a local file. To install a package from CRAN, type the name of the package (or
just the first letters to get a list) and click on the Install button. If you select to install
it from a local file, a dialog box appears to search the file. This is useful for packages
that are not published in official repositories, but are available from other sources.
Similarly to the R software, add-on packages are regularly updated by their authors.
Installed packages can be updated by clicking the Update button in the command
bar of the Packages tab. From the list of installed packages we can also go to the
documentation of the package by clicking on its name, remove the package from
the system clicking on the icon on the right, or load the package in the workspace
by selecting the check-box on the left. Nevertheless, even though the installation

Fig. 2.10 RStudio packages. The Packages tab in the lower-right pane shows a list of installed
packages with links to the documentation and command buttons to manage the packages
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of packages is comfortable through the RStudio interface, it is more convenient to
load the packages in the scripts as they are needed in the code using the library
function. For example, to load the qcc package:

library(qcc)

Packages management can also be performed with the install.packages
and remove.packages functions. Other functions related to packages are
require, detach, search, installed.packages, and available.
packages, check their documentation for details. An example of use could be to
get the number of packages available at CRAN on a given date, try out by yourself
and check how R grows:

Sys.Date()

## [1] "2015-07-09"

nrow(available.packages())

## [1] 6797

R and RStudio Help

The R documentation can be accessed through the Help tab in the lower-right pane
of RStudio, see Fig. 2.11. You can go there (there is even a keyboard shortcut:
CTRL+3) and browse the help documentation: Manuals, packages reference, search
engine and keywords, and miscellaneous material. There are other several ways of
getting help in RStudio:

• The keyboard shortcut CTRL+SPACEBAR inside a function shows the basic
documentation of that function;

• Pressing the F1 key when the cursor is over the name of a function or any other
R object with documentation, for example a dataset;

• Using the search text box in the Help tab toolbar. A list of topics starting with the
text of the search appears. If a topic is selected on this list, the documentation for
the topic is shown. Otherwise, a search over all the documentation is done and
the topics in which the search string appears are listed.

Typically, the documentation of a function contains the following sections:

• Description: a paragraph with a description of the function;
• Usage: The function name and the arguments it expects as they are defined in the

code;
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• Arguments: a detailed description of each argument. This is very important in
order to provide the function with objects of the correct class (see the most
common errors in Sect. 2.1);

• Value: a description of the returned value. Such value can be stored in R objects;
• References;
• See Also: links to related functions or topics;
• Examples: reproducible examples which can be copy-pasted or executed by

calling the example function with the function name as argument.

There is a special type of documentation called vignettes, which can include
examples with output and extended explanations. If a package contains vignettes,
then they are available from the package documentation index page.

R help can also be interactively accessed through R expressions. Some inter-
esting functions to get help in such a way are (check their documentation for
more details): apropos, help, help.search, example, demo, vignette,
browseVignettes.

As for RStudio, there is a “Help” menu in the menu bar. There you can access to
the R help home in the help tab, information about the RStudio version, check for
updates, diagnostics, and a keyboard shortcut quick reference. Regarding help for
RStudio itself, there are links to RStudio Support and to RStudio docs in the RStudio
website. Note that both R and RStudio are continuously evolving, and there may
have been changes with respect to what we are showing in the book, highly likely
improvements for the user benefit. Check the latest documentation.

Fig. 2.11 RStudio help. The R documentation is easily available from the RStudio interface
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2.6 Working with Data in R

Data Structures

In R, data regarding a given variable can be of a specific type, for example numeric
or character. Those variables, in turn, can be included in other data structures. The
simplest form is a vector for the data of a single variable. A matrix is a vector
with more than one dimension. Lists can contain objects of different type and
length. Objects whose class is data.frame are composed by variables which can
be of different type, but with the same length. This is the most common way of
organizing information for data analysis, and also for quality control. Each column
of a data frame is for a variable, and each row represents an observation (item,
individual, etc.) for which all the variables have been measured.

Classes and Data Types

Regarding data objects in R, we can talk about them in two different senses: their
class and their data type. For example, an object whose class is data.frame may have
columns that are of type numeric, logical, or character, for example. The main basic
data types in R are:

• logical: TRUE/FALSE;
• integer: Integer number;
• double: Real number. It can also appear as numeric or real;
• character: String character;

Thus, vectors whose elements are of any of those data types can be created.
There are some other basic types for objects that we do not use in the book, see
the documentation of the typeof function to learn more about them. On the other
hand, those basic data are organized in data structures of different classes. The most
important classes available in R to organize the information are:

• vector: One dimensional variable, all the values of the same type;
• matrix: Vector organized in rows and columns;
• list: List of objects that can be of different types and lengths;
• data.frame: Dataset organized in columns of the same length but may have

different type, and rows;
• factor: One dimensional categorical variable. In addition to values, a factor

contains information about levels and labels;
• POSIXct, Date: Special classes for temporal data.

The classes listed above are enough for the scope of this book, but there are
many more classes in R, and new classes can be created through the programming
capabilities of R. For example, objects of class ts are useful for working with time
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series. And remember that R functions are R objects which class is “function”;
Most of those extended classes are actually containers for objects of other classes,
including the basic classes enumerated above. Regarding quality control, control
charts can be stored in objects of class qcc in order to use the information of the
control chart afterwards for further analysis, for example the points out of control.
Such objects are usually a list of other objects of different classes and types. If in
doubt, you can find out the class of an object through the class function. .

Vectors

Creating Vectors

The most basic classes in R are vectors. They are also very important because more
complex data structures usually are composed by vectors. For example, the columns
of a data frame with the data of a process are actually vectors with the values of
different variables. Therefore, the explanations in this subsection are mostly valid
for working with objects whose class is data.frame or list.

There are several ways of creating vectors. The most basic one is entering the
values interactively in the console using the scan function. If you type on the
console:

x1 <- scan()

then the console prompt changes to “1:” waiting for the first element of the vector.
Type, for example, 10 and press RETURN. Now the prompt changes again to “2:”
and waits for the second element of the vector, and so on. Enter, for example, two
more values: 20 and 30. When you have finished, press INTRO without any value
and the scanning of values finishes. Your output should look like this:

## 1: 10
## 2: 20
## 3: 30
## 4:
Read 3 items

Now you have a vector whose name is “x” on your workspace. This is what the
assignment operator (“<-”) did: to assign the result of the scan function to the “x”
symbol.16 If you are using RStudio, check the Environment tab in the upper-right
pane, and see the information you have at a glance. Under the “Values” group, you
have the object x and some information about it: the data type (num), its length

16The scan function also accepts arguments to scan data from files and text, check the function
documentation.
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(from index 1 to index 3, i.e., 3 elements), and the first values of the vector (in this
case all of them as there are few of them). You can always access this information
from code either in the console or within a script. The following expression gets the
list of objects in your workspace using the ls function17:

ls()

## [1] "x1"

And now you can ask for the structure of the x object with the str function:

str(x1)

## num [1:3] 10 20 30

If you input the variable symbol as a expression, you get its contents as output:

x1

## [1] 10 20 30

When using scripts, creating vectors interactively is not practical. Instead, vectors
are created using the c function, which combines its arguments into a vector. For
example, the following expression is equivalent to the above process:

x1 <- c(10, 20, 30)

We can also create vectors using operators and functions to generate sequences.
For example, the seq function generates sequences of numbers, and the following
expression is also valid to create our vector:

x1 <- seq(from = 10, to = 30, by = 10)

Sequences of integers can also be created using the colon operator (“:”) between
the first and last numbers of the intended sequence. For example, the following
expression creates a vector with the integer numbers from 1 to 10:

x2 <- 1:10; x2

## [1] 1 2 3 4 5 6 7 8 9 10

Notice how in the above code we have typed two expressions in the same line, but
a semicolon was used to separate them. Another useful function to generate vectors
is the rep function, that repeats values. When working with vectors, it is common
practice to combine the different ways of creating vectors:

17Note that the output might have more elements if further objects were created beforehand.
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x3 <- c(rep("pinetree", 3), rep("oaktree", 2)); x3

## [1] "pinetree" "pinetree" "pinetree" "oaktree"
## [5] "oaktree"

x4 <- c(seq(from = 0, to = 1, by = 0.2), 5:9); x4

## [1] 0.0 0.2 0.4 0.6 0.8 1.0 5.0 6.0 7.0 8.0 9.0

The sequence of indices along a vector can also be generated with the
seq_alog function:

x5 <- seq_along(x4); x5

## [1] 1 2 3 4 5 6 7 8 9 10 11

Check that you have all the five new vectors in your workspace. We have created
numeric and character vectors. Logical vectors can also be created:

logicalVector <- 1:6 > 3

Let us study this expression. We are assigning to the “logicalVector” symbol what
we have on the right-hand side of the assignment expression. There, we first have
the vector “1:6”, which is compared to the number “3”. This comparison is done
for all the elements in the vector, and the result is another vector with the results of
those comparisons, and this logical vector is assigned to the “logicalVector” object:

logicalVector

## [1] FALSE FALSE FALSE TRUE TRUE TRUE

The TRUE and FALSE values are coerced to 1 and 0, respectively, when trying
to operate with them. This is useful, for example, to get the number of elements that
are true in a logical vector18:

sum(logicalVector)

## [1] 3

Vectors and Factors

Vectors and factors are different classes in R. But, actually, a factor is a kind
of vector which contains information about the possible values we can find in it
(levels), and the identifying labels for those possible values. For example, we might

18The sum function will be explained later.
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have a variable for the machine that operates a given process, being those machines
identified by letters. This identification is the label.

myFactor <- factor(rep(1:5, 2), labels = letters[1:5])
myFactor

## [1] a b c d e a b c d e
## Levels: a b c d e

In the above expression, we used the internal object letters, which is actually
a vector with the letters of the alphabet. There is also a LETTERS object, guess
the difference and try them in the console. We can also generate factors for a given
number of replications of each level using the gl function:

factorLevels <- gl(n = 5, k = 3, labels = letters[1:5])
factorLevels

## [1] a a a b b b c c c d d d e e e
## Levels: a b c d e

Lengths and Names

Vectors (and factors) lengths can be get using the length function. Moreover, we
can assign names to each element of a vector. For example, the following expression
gets the length of our first vector:

length(x1)

## [1] 3

If we want to label each element of this vector, for example because the numbers
are for different weeks, we can do so using the names function:

names(x1) <- c("week1", "week2", "week3"); x1

## week1 week2 week3
## 10 20 30

Accessing Vector Items

Data objects in R are indexed, and we can access each element of a vector (or factor,
or any other R object as we will see later) either through its index or through its
name, if such name exists. Vector indices are indicated through the square brackets
symbols (“[ ]”). We can access elements of a vector for either extracting or
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replacing their content. For example, the following expression extracts the third
element of the “x1” vector:

x1[3]

## week3
## 30

while the following one replaces the content of the third element by the number 50:

x1[3] <- 50
x1

## week1 week2 week3
## 10 20 50

remaining the rest of the items unchanged. We can include integer vectors as index
to select more than one element. For example the following expression gets the first
and third elements of the x1 vector:

x1[c(1,3)]

## week1 week3
## 10 50

We can also exclude elements from the selection instead of specifying the
included elements. Thus, the previous expression is equivalent to this one:

x1[c(-2)]

## week1 week3
## 10 50

New elements can be added to a vector either creating a new vector with the
original one and the new element(s) or assigning the new element to the index
greater than the last one, for example:

c(x1, 60)

## week1 week2 week3
## 10 20 50 60

x1[4] <- 60
x1

## week1 week2 week3
## 10 20 50 60

To delete a vector item, we re-assign the vector resulting of the exclusion of such
element:
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x1 <- x1[c(-4)]
x1

## week1 week2 week3
## 10 20 50

If the elements of a vector has names, then the selection can also be done through
such names as follows:

x1["week1"]

## week1
## 10

When working with data in R, it is very common to select elements of an object
through logical vectors. Hence, instead of using numerical vectors as indices, we
can use logical vectors of the same length than the vector, and the result will be a
vector with the elements of the original vector whose indices are TRUE in the logical
vector. For example, for the above selection we could make the following selection
using logical indices:

x1[c(TRUE, FALSE, TRUE)]

## week1 week3
## 10 50

The combination of logical expressions and index selection is what makes this
strategy powerful for data analysis. For example, to get the values of the vector that
are greater than 15, we would use the following expression:

x1[x1 > 15]

## week2 week3
## 20 50

First, the expression x1 > 15 is evaluated, returning the logical vector
{FALSE, TRUE, TRUE}. Then, the selection is done returning only the second
and third elements of the vector, which are the ones that fulfill the condition. See
Appendix C for further logical operators.

Ordering Vectors

Two functions are related with the ordering of vectors. Let us create a random vector
to illustrate them. The following expressions are to get a random sample of size 10
from the digits 0 to 9. The set.seed function sets the seed in order to make
the example reproducible, see ?RNG to get help about random numbers generation
with R.
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set.seed(1234)
x6 <- sample(0:9, 10, replace = TRUE); x6

## [1] 1 6 6 6 8 6 0 2 6 5

The sort function returns the values of the vector ordered:

sort(x6)

## [1] 0 1 2 5 6 6 6 6 6 8

The order function returns the indices of the ordered values of the original
vector, i.e., the first element is the index of the minimum value in the original vector,
and so on:

order(x6)

## [1] 7 1 8 10 2 3 4 6 9 5

This function is very useful for sorting datasets as we will see later. Both the
order function and the sort function accept a “decreasing” argument to get the
reverse result. In addition, the rev function reverses the order of any vector, for
example, the following expressions are equivalent:

sort(x6, decreasing = TRUE)

## [1] 8 6 6 6 6 6 5 2 1 0

rev(sort(x6))

## [1] 8 6 6 6 6 6 5 2 1 0

Operating with Vectors

There are two types of operations we can perform over a vector, namely:

• Operations over all elements of a vector as a whole. A function is applied using all
the elements in the vector to produce a given result, which can be a computation,
some other values, a plot, etc. For example, to compute the average of all the
elements in vector x1 we can apply the mean function passing the vector as first
argument:

mean(x1)

## [1] 26.66667
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• Operations over each element of the vector, resulting on a vector of the same
length with a computation over each value of the vector. For example, arithmetic
operations and some mathematical functions work like that:

x1 + 5

## week1 week2 week3
## 15 25 55

At this point, let us introduce one interesting feature of R: recycling. The first
expression in the above chunk of code is a sum of a vector whose length is 3 and
another vector whose length is 1. To do that operation, the vector of length 1, i.e.,
the number 5, is coerced to a vector of length 3 recycling the number 5 twice. If we
add a vector of length 2, recycling is also done, but we get a warning because the
length of the first vector is not a multiple of the second one:

x1 + c(5, 6)

## Warning in x1 + c(5, 6): longer object length is not
a multiple of shorter object length

## week1 week2 week3
## 15 26 55

In this case, the 5 has been recycled once to complete a 3-length vector.
Mathematical functions which require a single value as argument return vectors
with the result of the function over each value of the original vector. For example,
the sqrt function returns the square root of a number:

sqrt(x1)

## week1 week2 week3
## 3.162278 4.472136 7.071068

Matrices

Creating and Accessing Matrices

A matrix is actually a vector organized in rows and columns. All the elements must
be of the same type. The most common way of creating matrices is through the
matrix function, whose main arguments are: (1) the vector with all elements of
the matrix; (2) the number of rows; and (3) the number of columns. The data are
added by columns, unless the byrow argument is set to TRUE:
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myMatrix <- matrix(c(10, 20, 30, 40, 12, 26, 34, 39),
nrow = 4, ncol = 2); myMatrix

## [,1] [,2]
## [1,] 10 12
## [2,] 20 26
## [3,] 30 34
## [4,] 40 39

We can extract and replace parts of a matrix in the same way as in vectors. The
only difference is that now we have two indices rather than one inside the squared
brackets, separated by a comma. The first one is for the row index, and the second
one is for the column index. We can extract a whole row (column) by leaving the
second (first) index empty:

myMatrix[3, 2]

## [1] 34

myMatrix[1, ]

## [1] 10 12

myMatrix[, 1]

## [1] 10 20 30 40

Notice that in the Environment tab of the upper-right pane of RStudio, the
matrix is under the “Data” group, instead of the “Values” one. As matrices have
two dimensions, i.e., rows and columns, they can be visualized in the RStudio data
viewer by clicking on the icon on the right of the list. The structure of the matrix can
be also get using the str function. See how now the lengths of the two dimensions
are shown, i.e., four rows and two columns:

str(myMatrix)

## num [1:4, 1:2] 10 20 30 40 12 26 34 39

Basic Matrix Operations

We can assign names to rows and/or columns of matrices:

colnames(myMatrix) <- c("variable1", "variable2")
rownames(myMatrix) <- c("case1", "case2",

"case3", "case4")
myMatrix
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## variable1 variable2
## case1 10 12
## case2 20 26
## case3 30 34
## case4 40 39

Marginal sums and means can be computed using the rowSums, colSums,
rowMeans, and colMeans functions, for example:

rowSums(myMatrix)

## case1 case2 case3 case4
## 22 46 64 79

colMeans(myMatrix)

## variable1 variable2
## 25.00 27.75

See Appendix C for more examples of matrix operations. Arrays of higher
dimensions are possible in R through the array function.

Lists

Creating Lists

Lists are data structures that can contain any other R objects of different types and
lengths. Such objects can be created within the own definition of the list, or taken
from the workspace. The elements of a list can also be named, typically this is done
when creating the list. In the following example, we create a list whose name is
“myList,” and has three components.

myList <- list(matrix = myMatrix, vector1 = x1, x2)
myList

## $matrix
## variable1 variable2
## case1 10 12
## case2 20 26
## case3 30 34
## case4 40 39
##
## $vector1
## week1 week2 week3
## 10 20 50
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##
## [[3]]
## [1] 1 2 3 4 5 6 7 8 9 10

See the printing of the list. The first two elements are shown with its name
preceded by a $ symbol. This is because we named them in the list definition. The
third element had no name and it is identified by its index between double square
brackets [[3]].

Accessing Lists

Similarly to vectors, the components of a list are indexed, and we can extract each
element of the list either by its index or by its name. In the latter case, we can use
the $ operator. See the following examples:

myList$vector1

## week1 week2 week3
## 10 20 50

myList[[1]]

## variable1 variable2
## case1 10 12
## case2 20 26
## case3 30 34
## case4 40 39

myList["vector1"]

## $vector1
## week1 week2 week3
## 10 20 50

myList[3]

## [[1]]
## [1] 1 2 3 4 5 6 7 8 9 10

myList$matrix[, 2]

## case1 case2 case3 case4
## 12 26 34 39

The difference between simple and double squared brackets is that when using
double squared brackets, we get the original object that is within the list, of its own
class, e.g., matrix. On the contrary, if we do the extraction using the single squared
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brackets like in vectors, we get an object of class list. This makes possible to select
more than one element in the list, for example:

myList[c(2,3)]

## $vector1
## week1 week2 week3
## 10 20 50
##
## [[2]]
## [1] 1 2 3 4 5 6 7 8 9 10

Notice that we can extract elements from the inner components of a list, for
example a column of the matrix that is the first element of the list. We can also
replace parts of an object as we had done with vectors and matrices:

myList$matrix[, 2, drop = FALSE]

## variable2
## case1 12
## case2 26
## case3 34
## case4 39

myList$matrix[1, 2] <- 120
myList$matrix

## variable1 variable2
## case1 10 120
## case2 20 26
## case3 30 34
## case4 40 39

You can see the structure of a list in the workspace by looking at the Environment
tab in the upper-right pane of RStudio, or using the str function:

str(myList)

## List of 3
## $ matrix : num [1:4, 1:2] 10 20 30 40 120 26 34..
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:4] "case1" "case2" "case3" "c"..
## .. ..$ : chr [1:2] "variable1" "variable2"
## $ vector1: Named num [1:3] 10 20 50
## ..- attr(*, "names")= chr [1:3] "week1" "week"..
## $ : int [1:10] 1 2 3 4 5 6 7 8 9 10
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Notice that the structure of a list shows the structure of each element of the list.
In the Environment tab, RStudio upper-right pane, the number of elements of the
list is shown, and by clicking on the left-side icon next to the name of the list, the
list is expanded to show the structure of each element of the list.

Data Frames

The usual way of working with data is by organizing them in rows and columns.
It is common that we have our data in such a way, either from spreadsheets, text
files, or databases. Columns represent variables, which are measured or observed in
a set of items, represented by rows. The class of R objects with such structure is the
data.frame class. We refer to them as data frames hereon. Recall that matrices
are also organized in rows and columns. The difference is that a matrix can only
contain data of the same type, for example numbers or character strings. However,
the columns of a data frame can be of different types, e.g., a numerical column for
the measurement of a quality characteristic, another one logical stating whether the
item is nonconforming, another one a factor for the machine where the item was
produced, and so on.

Creating Data Frames

Normally, we will import data to data frames from files. Nevertheless, sometimes
we need to create data frames from other R objects or by generating vectors. We
create data frames with the function data.frame

myData <- data.frame(type = c("A", "A", "B",
"C", "C", "C"),

weight = c(10.1, 20.3, 15.2,
13.4, 23.2, 8.1))

myData

## type weight
## 1 A 10.1
## 2 A 20.3
## 3 B 15.2
## 4 C 13.4
## 5 C 23.2
## 6 C 8.1
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Accessing Data Frames

Data frames are actually a sort of combination of lists, matrices, and vectors. Look
at the Environment tab in the upper-right pane of RStudio. Equally to matrices, data
frames are under the “Data” group and can be visualized in the RStudio data viewer:
click on the right icon to show the data as a new tab in the RStudio source pane, see
Fig. 2.12. In that sense, a data frame is a matrix with rows and columns. On the other
hand, the information shown about the data frame is the number of observations
(rows) and the number of variables (columns). Notice that the expand/collapse icon
for list objects explained above is also next to the data frame name. If you click on
it, the structure of each column is shown. Let us see the structure of the data frame
using the str function:

str(myData)

## ’data.frame’: 6 obs. of 2 variables:
## $ type : Factor w/ 3 levels "A","B","C": 1 1 2..
## $ weight: num 10.1 20.3 15.2 13.4 23.2 8.1

Therefore, a data frame is a list of columns, and each column is a vector. Similarly
to lists, we can access data frame columns by names using the $ operator, or by
index:

Fig. 2.12 RStudio data viewer. Matrices and data frames can be visualized in the data viewer. A
new tab is open when clicking the icon right to the object in the Environment tab
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myData$type

## [1] A A B C C C
## Levels: A B C

myData[1]

## type
## 1 A
## 2 A
## 3 B
## 4 C
## 5 C
## 6 C

Notice that the access by name is equivalent to the access using double squared
brackets. The difference is whether the result is a data frame or a vector. As a
two dimensional data object, we can also access data frame elements in the matrix
fashion:

myData[3, ]

## type weight
## 3 B 15.2

myData[myData$weight < 15, ]

## type weight
## 1 A 10.1
## 4 C 13.4
## 6 C 8.1

Sometimes, we need to get the number of rows or the number of columns
of a data frame to be used in expressions. We can get them with the following
expressions:

nrow(myData)

## [1] 6

ncol(myData)

## [1] 2

Data frames rows and columns have always names. Even if they are not available
when creating the data frame, R assign them: for columns, using the letter V
followed by a number (V1, V2, . . . ); for rows, the default names are row indices.
Rows and column names can be consulted and changed afterwards in the same way
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we explained above for factors and vectors, see the following examples19 (we first
create a copy of the data frame):

myEditedData <- myData
colnames(myEditedData)

## [1] "type" "weight"

colnames(myEditedData)[2] <- "itemWeight"
rownames(myEditedData)

## [1] "1" "2" "3" "4" "5" "6"

rownames(myEditedData) <- paste("case",
rownames(myEditedData),
sep = "_")

myEditedData

## type itemWeight
## case_1 A 10.1
## case_2 A 20.3
## case_3 B 15.2
## case_4 C 13.4
## case_5 C 23.2
## case_6 C 8.1

Ordering, Filtering, and Aggregating Data Frames

We already know that data frame columns are vectors. Therefore we can use the
functions explained for vectors in data frames. For example, to sort the data frame
created above by the weight column, we use the extracting strategy by means of the
squared brackets, passing as row indices the result of the order function over the
column (or columns) of interest:

myData[order(myData$weight), ]

## type weight
## 6 C 8.1
## 1 A 10.1
## 4 C 13.4
## 3 B 15.2
## 2 A 20.3
## 5 C 23.2

19We use the paste function to get a sequence of character strings, see Appendix C to see more
functions to work with strings.
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For filtering (subsetting in R jargon) data frames, in addition to the use of
indexing, we can use the subset function, whose use is more intuitive: the first
argument is the data frame to be subset, and the second one a logical expression with
the condition. Further options can be used, see the documentation of the function:

subset(myData, weight > 15)

## type weight
## 2 A 20.3
## 3 B 15.2
## 5 C 23.2

On the other hand, the aggregate function allows us to get subtotals of
numerical variables by categorical variables in a data frame. A special type of
expression is used as the first argument of the function: a formula. A formula is an
expression with two sides, separated by the symbol ~. It is mainly used to specify
models (see Chapter 5) in the form of y ~ model, where y is the response variable
and model can include several independent variables and their relationship. For
aggregating data, the idea is that the y in the formula left-hand side is the variable
that we want to aggregate, and the model are the criteria by which we want to
aggregate the data. For example, if we want to get the sum of weight by type in our
data frame:

aggregate(weight ~ type, data = myData, sum)

## type weight
## 1 A 30.4
## 2 B 15.2
## 3 C 44.7

where the third argument can be any function over a vector, typically aggregation
functions, see Appendix C.

Editing Data Frames

We use assignment expressions to edit, add, or remove elements of a data frame.
Changing values in a data frame is done in the same way as in vectors or matrices.
For example, to change the third observation of the second column:

myData

## type weight
## 1 A 10.1
## 2 A 20.3
## 3 B 15.2
## 4 C 13.4
## 5 C 23.2
## 6 C 8.1
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myData[3, 2] <- 22.2
myData

## type weight
## 1 A 10.1
## 2 A 20.3
## 3 B 22.2
## 4 C 13.4
## 5 C 23.2
## 6 C 8.1

We can add new columns to a data frame as follows. For example, imagine
we want to inspect the items in the data frame at a random order to check the
measurements. Then we add the randomorder column as follows20:

set.seed(1)
myData$randomorder <- sample(1:6)
myData

## type weight randomorder
## 1 A 10.1 2
## 2 A 20.3 6
## 3 B 22.2 3
## 4 C 13.4 4
## 5 C 23.2 1
## 6 C 8.1 5

Note that if we do the assignment over an existing column, it is overwritten.
Sometimes this is what we want to do, but some others we are unexpectedly losing
data. To remove a column, we assign the special value NULL to it:

myData$randomorder <- NULL
myData

## type weight
## 1 A 10.1
## 2 A 20.3
## 3 B 22.2
## 4 C 13.4
## 5 C 23.2
## 6 C 8.1

Computed columns are easy to add to our data frames. The operation is similar
to what we do in spreadsheets with formulas, for example to add values in columns,

20We first fix the seed in order to make the example reproducible.
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or any other operations over data, and then copy the formulas throughout the rows,
and so on. In this case it is more straightforward. Imagine we want to compute
a column with the proportion over the total each item represents. The following
simple expression does that, and it is ready to further work with it:

myData$proportion <- myData$weight/sum(myData$weight)
myData

## type weight proportion
## 1 A 10.1 0.10380267
## 2 A 20.3 0.20863309
## 3 B 22.2 0.22816033
## 4 C 13.4 0.13771840
## 5 C 23.2 0.23843782
## 6 C 8.1 0.08324769

Special Data Values

Missing Values

Missing values treatment is a quite important topic in data analysis in general, and
in quality control in particular, especially in early stages of data cleaning. Missing
values are represented in R by the special value NA (not available). If we try to do
computations over vectors that include NAs, for example the mean, we will get NA
as a result, unless the argument na.rm (remove NAs) is set to TRUE. Such argument
is available in a number of functions and methods, but not always. It may happen
that NA values should actually have a value, but it was not correctly identified when
creating the data object. Then we can assign other values to NAs. For that purpose
(and others) the is.na function is very useful. First, let us create a new column in
our data frame to illustrate NAs. Suppose we measured the content of salt of each
element in the data frame in addition to the weight. Unfortunately, for some reason
the measurements could have not be taken for all of the items. We add this new
information as we learnt above:

myData$salt <- c(2.30, 2.15, 2.25, 2.17, NA, 2.00)
myData

## type weight proportion salt
## 1 A 10.1 0.10380267 2.30
## 2 A 20.3 0.20863309 2.15
## 3 B 22.2 0.22816033 2.25
## 4 C 13.4 0.13771840 2.17
## 5 C 23.2 0.23843782 NA
## 6 C 8.1 0.08324769 2.00



70 2 An Introduction to R for Quality Control

Let us compute the means of the two numerical variables in the data frame:

mean(myData$weight)

## [1] 16.21667

mean(myData$salt)

## [1] NA

There was no problem to compute the mean weight, as all the observations are
available. However, the mean salt could not be computed because there is a missing
value. To overcome this situation, we must tell the mean function to omit the missing
values:

mean(myData$salt, na.rm = TRUE)

## [1] 2.174

Another possible action over NAs is to assign a value. Let us suppose that the
missing value is due to the fact that the item had no salt at all, i.e., the correct value
should be zero. We can turn all the NAs values into zeros (or any other value) as
follows:

myData$salt[is.na(myData$salt)] <- 0
myData

## type weight proportion salt
## 1 A 10.1 0.10380267 2.30
## 2 A 20.3 0.20863309 2.15
## 3 B 22.2 0.22816033 2.25
## 4 C 13.4 0.13771840 2.17
## 5 C 23.2 0.23843782 0.00
## 6 C 8.1 0.08324769 2.00

Other Special Values in R

In addition to the NA and NULL values we have seen so far, there are other special
values in R. For example, the Inf value represents the infinity:

1/0

## [1] Inf

-1/0

## [1] -Inf
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Sometimes we get NaNs (not a number) when an operation cannot be done:

sqrt(-1)

## Warning in sqrt(-1): NaNs produced

## [1] NaN

The i symbol is used to represent complex numbers:

1i

## [1] 0+1i

as.numeric(1i^2)

## [1] -1

The following built-in constants are also available:

pi

## [1] 3.141593

letters

## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k"
## [12] "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v"
## [23] "w" "x" "y" "z"

LETTERS

## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K"
## [12] "L" "M" "N" "O" "P" "Q" "R" "S" "T" "U" "V"
## [23] "W" "X" "Y" "Z"

month.name

## [1] "January" "February" "March"
## [4] "April" "May" "June"
## [7] "July" "August" "September"
## [10] "October" "November" "December"

month.abb

## [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul"
## [8] "Aug" "Sep" "Oct" "Nov" "Dec"
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Data Types Conversion

When creating objects, sometimes data types can be specified somehow, for example
via the creating function arguments. Thus, the data.frame function accepts the
stringsAsFactors argument to determine whether strings should be created as
factors (default) or as character (setting the argument to FALSE). R tries to figure
out what is the best type for a data set. For example, when creating a vector, if
the input data includes only numbers, it creates a numeric vector; if the input data
includes only character strings, it creates a character vector; if the input data includes
both numbers and character strings, it creates a character vector to preserve all the
information: numbers can be converted to strings, but strings cannot be converted to
numbers. We can see the type of data in the vector using the class function:

vector1 <- c(1, 2, 3)
class(vector1)

## [1] "numeric"

vector2 <- c("one", "two", "trhee")
class(vector2)

## [1] "character"

vector3 <- c(1, 2, "three")
class(vector3)

## [1] "character"

We can also check whether an object is of a given type:

is.numeric(vector3)

## [1] FALSE

In any case, data structures and types can be converted from one type to another.
For example, if we want vector3 to be a numeric vector, we coerce the object to
numeric:

as.numeric(vector3)

## Warning: NAs introduced by coercion

## [1] 1 2 NA

Note that, as the third element cannot be converted to a number, NA is introduced
by coercion. Functions as.xxx and is.xxx are available for a number of types and
classes, type apropos("^as[.]") for a list.
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Working with Dates

Dates and times are important types of data. As was shown in Chapter 1, in quality
control it is important to keep track of the sequential order in which the data
were produced. Dates and times are usually stored in form of character strings,
and they can be expressed in varied formats. For example, suppose we know the
manufacturing date for some of the items in our data frame (DD/MM/YYYY
format):

myData$date <- c("15/01/2015", "16/01/2015",
"17/01/2015", "18/01/2015",
"13/02/2015", "14/02/2015")

myData

## type weight proportion salt date
## 1 A 10.1 0.10380267 2.30 15/01/2015
## 2 A 20.3 0.20863309 2.15 16/01/2015
## 3 B 22.2 0.22816033 2.25 17/01/2015
## 4 C 13.4 0.13771840 2.17 18/01/2015
## 5 C 23.2 0.23843782 0.00 13/02/2015
## 6 C 8.1 0.08324769 2.00 14/02/2015

We have added a character vector with the dates to the data frame. If we had
included the column when creating the data frame, the column would have factor
class. If we keep this variable as is, all the operations we do with it are referred to
characters. For example, try to sort the data frame by date:

myData[order(myData$date), ]

## type weight proportion salt date
## 5 C 23.2 0.23843782 0.00 13/02/2015
## 6 C 8.1 0.08324769 2.00 14/02/2015
## 1 A 10.1 0.10380267 2.30 15/01/2015
## 2 A 20.3 0.20863309 2.15 16/01/2015
## 3 B 22.2 0.22816033 2.25 17/01/2015
## 4 C 13.4 0.13771840 2.17 18/01/2015

It did not work because the string “13/02/2015” is the first one in a by-character
order. To make R understand that a variable is a date, we need to convert the
character string into a date. As you have likely guess, we do that with an as.xxx
function. But in this case we need an important additional argument: the format
in which the date is stored in the character vector. In the case at hand, we have a
day/month/year format, which must be specified as follows (we overwrite the date
variable):
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myData$date <- as.Date(myData$date,
format = "%d/%m/%Y")

str(myData)

## ’data.frame’: 6 obs. of 5 variables:
## $ type : Factor w/ 3 levels "A","B","C": 1..
## $ weight : num 10.1 20.3 22.2 13.4 23.2 8.1
## $ proportion: num 0.104 0.209 0.228 0.138 0.23..
## $ salt : num 2.3 2.15 2.25 2.17 0 2
## $ date : Date, format: ...

Note that now the date column is of Date type, and the data is represented
in ISO format, i.e., “YYYY-MM-DD”. The format argument expects a character
string indicating the pattern used in the character strings that store the dates. In our
example, we are specifying that the string is formed by: (1) the day of the month
in decimal format (%d); (2) a forward slash; (3) the month of the year in decimal
format (%m); (4) another forward slash; and (5) the year with century (%Y). Check
the documentation for the strptime topic for more options. Now we can sort the
data frame by date:

myData[order(myData$date), ]

## type weight proportion salt date
## 1 A 10.1 0.10380267 2.30 2015-01-15
## 2 A 20.3 0.20863309 2.15 2015-01-16
## 3 B 22.2 0.22816033 2.25 2015-01-17
## 4 C 13.4 0.13771840 2.17 2015-01-18
## 5 C 23.2 0.23843782 0.00 2015-02-13
## 6 C 8.1 0.08324769 2.00 2015-02-14

It can also be useful to create variables for the year, month, etc. for aggregation,
classification, stratification, or any other purpose. For example, if we store the week
we can plot control charts where the groups are the weeks. We use the format
function in the reverse sense, i.e., we turn dates into character strings, see the
following examples:

myData$year <- format(myData$date, "%Y")
myData$month <- format(myData$date, "%Y")
myData$monthyear <- format(myData$date, "%Y-%m")
myData$week <- format(myData$date, "%Y-W%V")
myData[, c(5:9)]

## date year month monthyear week
## 1 2015-01-15 2015 2015 2015-01 2015-W03
## 2 2015-01-16 2015 2015 2015-01 2015-W03
## 3 2015-01-17 2015 2015 2015-01 2015-W03
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## 4 2015-01-18 2015 2015 2015-01 2015-W03
## 5 2015-02-13 2015 2015 2015-02 2015-W07
## 6 2015-02-14 2015 2015 2015-02 2015-W07

str(myData)

## ’data.frame’: 6 obs. of 9 variables:
## $ type : Factor w/ 3 levels "A","B","C": 1..
## $ weight : num 10.1 20.3 22.2 13.4 23.2 8.1
## $ proportion: num 0.104 0.209 0.228 0.138 0.23..
## $ salt : num 2.3 2.15 2.25 2.17 0 2
## $ date : Date, format: ...
## $ year : chr "2015" "2015" "2015" "2015" ..
## $ month : chr "2015" "2015" "2015" "2015" ..
## $ monthyear : chr "2015-01" "2015-01" "2015-0"..
## $ week : chr "2015-W03" "2015-W03" "2015"..

2.7 Data Import and Export with R

In the previous section we have created all data from scratch. There are many
situations in which we will use such strategy. However, raw data usually comes
from external sources, either because they are automatically recorded during the
process, or stored in databases, or manually entered in spreadsheets. The easiest way
to import data in R is using .csv files. CSV stands for Comma Separated Values,
and .csv files are text files in which each line corresponds to an observation of a
dataset, and the values for each column are separated by a comma. Actually, the
comma can be substituted by another value, for example when the comma is used
as decimal point, then semicolons are used instead of commas to separate columns.
The main advantage of using .csv files is that they can be generated by most of
the applications that storage data, such as spreadsheets, databases, etc. Furthermore,
.csv files can be opened and edited in spreadsheets applications such as Microsoft
Office or LibreOffice, for which most of the users are already trained.

In the following, we will explain how to get data into R from .csv files. At the
end of the section, some directions are provided to import data from other sources.
A .csv file is available for downloading from the book’s companion website.

Importing .csv Files

In manufacturing it is common that PLCs (Programmable Logic Controllers) record
data regarding product quality features. Quite often such recording machines can



76 2 An Introduction to R for Quality Control

automatically generate data in .csv files. In such a case the files are ready to work
with them in R. However, if we are exporting data from spreadsheets, we must take
into account that the resulting file will only contain text, and what we see on the
screen may be different than what we get on the file. If the data on the file does not
correspond with what we want, then formats, formulas, or other application-specific
options might be the cause. Remove all the formats in numbers and characters. It
is also recommended to do the computations in R rather than using formulas in the
spreadsheet. Make sure the data in each column are consistent, for example you
do not use different data types in the same columns (text and numbers). Once you
have your data ready for exporting, select the “Save as . . . ” menu option of your
spreadsheet application and select the .csv format in the “File type” list. Search the
location where you want to save the file, for example your R working directory,
choose a name, and save the file. Depending on your system locale configuration,
the software usually decides the decimal point symbol and the separator for values.
For example, if your system is in English, the decimal point symbol will be the
period, and the separator, the comma; but if your system is, for example, in Spanish,
then the decimal point symbol will be the comma, and the separator, the semicolon.
These two formats are the most common ones.

For the examples below, you need to download the file http://www.
qualitycontrolwithr.com/lab.csv to your working directory. You can go to your
browser and download it as any other file. Alternatively, you can use the
download.file function21:

download.file(
url = "http://emilio.lcano.com/qcrbook/lab.csv",
destfile = "lab.csv")

Now that you have a .csv file on your working directory, you can explore it. If
you click the file in the Files pane of RStudio, the text file is opened in the source
pane. This format is difficult to manage from a text editor, so take a look just to see
how it looks like, and close it. Before importing the data into R, open the .csv file
with your spreadsheet application, for example Microsoft Excel. Double-clicking
the file in a files explorer window should work, but if it does not, use the “File /
Open . . . ” menu of your spreadsheet application and search the file. It is possible
that the spreadsheet application asks for the format of your data. If so, just select
the period as decimal symbol and the comma as values separator. See how the data
inside the .csv file looks like your usual spreadsheets, without formats, though. Now
you can close the file, from now on we will work with the data in R.

21We use a different URL within the download.file function as it fails in redirecting URLs.

http://www.qualitycontrolwithr.com/lab.csv
http://www.qualitycontrolwithr.com/lab.csv
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Importing Data from Text Files

RStudio includes a functionality to import data from files. In the Environment tab,
upper-right pane (see Fig. 2.8), the “Import Dataset” menu has two options: “From
Text File . . . ” and “From Web URL . . . ”. The former opens a dialog box to search a
text file. Select the lab.csv file that you downloaded and click on Open. A dialog
box appears, see Fig. 2.13. In this dialog box, we can see on the right how the text
input file looks like (top), and a preview of the data frame that is to be created when
clicking on the Import button. On the left side we can tune the import options, which
are automatically detected:

• The name of the data frame in your workspace;
• Whether the file contains headings, i.e., the first row contains the variables’

names;
• The characters that define the separator, the decimal point symbol, and the text

quotes;
• The value for empty strings, NA by default;
• Whether importing strings as factors (default). Unchecking the box, string

columns are imported as character vectors.

Accept the default settings and click on the Open button. Several things happen
after importing data. Check your workspace in the Environment tab, upper-right
pane. Now you have a data frame named lab in your workspace, under the “Data”
group. Expand the structure using the left icon to see the variables data types.

Fig. 2.13 RStudio import dataset dialog box. From the Environment tab we can import data in
text files through the Import Dataset menu
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Moreover, RStudio opens automatically the data viewer to visualize the data frame
in the source pane. On the other hand, take a look to your console. After importing
the data, you should have something similar to this:

> lab <- read.csv("<your_path>/lab.csv")
> View(lab)

where <your_path> is the path where you downloaded the .csv file, i.e., your
working directory if you used the previous code. The second expression is the one
that opened the data frame in the data viewer. It is just what RStudio does when
clicking on the icon to the right of a data frame or matrix in the Environment tab.
The first expression is the interesting one. Importing files from the import dataset
menu is useful to explore data files, or to import a static data file once and then save
the data processing as specific R data files (extension .RData). However, the usual
way of working is that data files are regularly updated, either adding rows to the files
or adding files to folders. Thus, it is more efficient to automate the data import in
the scripts, and we do that with the read.csv function above. Note that the only
argument that was included was the file path, as the rest of the default options are
valid for standard .csv files as it is the case. The read.csv function is actually a
wrapper of the read.table function, check the documentation for more details
and options.

Data Cleaning

Now we have the data available in our system, but raw data is likely to contain
errors. Before applying the methods described in the following chapters, make sure
that your data are ready for quality control. An exploratory data analysis should
be made to detect possible errors, find outliers, and identify missing values. Some
examples are given below. The first thing we must do is to verify if the data frame
is what we expect to be. Check the number of rows, number of columns and their
type, either in the RStudio environment tab or in the console:

str(lab)

## ’data.frame’: 1259 obs. of 7 variables:
## $ date : Factor w/ 250 levels "","01/02/2012"..
## $ fat : num 14 13 13 13 13.5 12.5 13 12.5 1..
## $ salt : num NA NA 1.2 NA NA NA NA NA 1.14 N..
## $ ph : num 6.64 6.65 6.66 6.6 6.6 6.63 6.6..
## $ analyst: Factor w/ 5 levels "analyst_1","ana"..
## $ nc : logi FALSE FALSE FALSE FALSE FALSE ..
## $ type : Factor w/ 3 levels "TYPE_1","TYPE_2"..
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Exploratory Data Analysis

Exploratory data analysis should include descriptive statistics, which is described in
Chapter 5. This exploratory data analysis should also include techniques to detect
errors like the ones presented hereon. Once the data has been cleaned, exploratory
data analysis would continue with statistics, probability, and plotting techniques.
Let us illustrate the data cleaning part of exploratory data analysis using the data
we have imported from the .csv file. For the purpose of this illustration, we will
use the summary function, which will be further explained in Chapter 5. This
function produces result summaries of a given R object. Applied over a numeric
vector, summary statistics are shown: the minimum, first quartile, median, mean,
third quartile, and the maximum. This is enough for the moment.

Missing Values

Let us get a summary of the ph variable of the lab data frame.

summary(lab$ph)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.360 6.610 6.650 6.691 6.680 66.300
## NA’s
## 1

Notice that in addition to the summary statistics mentioned above, we are also
informed about the number of mission values (NA’s). It is strange that in a dataset
of 1259 observations there is one and only one NA. We can look for that value using
the extraction techniques learned in this chapter:

lab[is.na(lab$ph), ]

## date fat salt ph analyst nc type
## 22 10/01/2012 13 NA NA analyst_2 FALSE TYPE_3

Let us suppose that we do some research and find out that the measurement was
taken but the operator forgave to record it. We know that the value is 6.6. Again,
using objects’ assignment and replacement we can fix that (note that we know from
the previous output that row number 22 was the wrong one):

lab$ph[22] <- 6.6
summary(lab$ph)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.360 6.610 6.650 6.691 6.680 66.300

and now we have no missing values for the ph variable. It is not always necessary to
assign missing values. For example, for the other two numerical variables of the data
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set, there are missing values, but we know from the own process that ph is always
measured, but fat and salt are only measured for some items. Thus, it is normal
having NAs in those columns. We just must be aware and take that into account
when making computations:

summary(lab$salt)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6500 0.7600 0.8800 0.8797 0.9850 1.2000
## NA’s
## 1044

mean(lab$salt)

## [1] NA

summary(lab$fat)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11.50 13.40 13.80 13.73 14.00 15.75
## NA’s
## 87

mean(lab$fat, na.rm = TRUE)

## [1] 13.72922

In addition to the is.na function, the functions any.na and complete.
cases functions are useful to manage missing values. The former returns TRUE
if at least one of the values of the first argument is NA. The latter gets the row
indices of a data frame whose columns are all not NAs. This can be useful to get
only the rows of a data frame that are complete.

anyNA(lab$ph)

## [1] FALSE

anyNA(lab$salt)

## [1] TRUE

sum(complete.cases(lab))

## [1] 207
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Outliers

Outliers are another type of particular data that must be examined before applying
statistics to quality control. An outlier of a data set is, as defined in [18], “a member
of a small subset of observations that appears to be inconsistent with the remainder
of a given sample.” Outliers or outlying observations can be typically attributed to
one or more of the following causes:

• Measurement or recording error;
• Contamination;
• Incorrect distributional assumption;
• Rare observations.

Similarly to missing values, sometimes outliers are correct, or we just cannot
remove them or assign a different value. In such cases, robust techniques should be
applied, see [18]. But in some other cases, the value is either impossible or extremely
unlikely to occur, and it should be corrected or removed. In a dataset with more
variables, this removal means assigning the NA value.

To illustrate outliers, let us go back to the ph variable of our lab data frame. You
have probably already realized that there is a strange number in the summary:

summary(lab$ph)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.360 6.610 6.650 6.691 6.680 66.300

As you might have guessed, the median and mean are close to 6.6, the
minimum is 6.63, but the maximum is ten times those values. It looks like there
is something inconsistent. There is obviously something wrong with that value. We
can descendently sort the dataset and check the first values to see if there are more
extreme values:

head(lab[order(lab$ph, decreasing = TRUE), 1:5])

## date fat salt ph analyst
## 16 09/01/2012 13.0 NA 66.30 analyst_2
## 392 10/06/2012 12.5 NA 6.84 analyst_1
## 394 10/06/2012 15.0 NA 6.84 analyst_1
## 153 04/03/2012 13.2 NA 6.83 analyst_2
## 195 22/03/2012 13.6 0.71 6.83 analyst_4
## 393 10/06/2012 12.5 NA 6.83 analyst_1

We see that it is just row number 16 who has the maximum value. After some
investigation, it was detected a wrong recording of the value, the value should have
been 6.63. Note that this is a very common error when recording data. Again, we
can fix the problem as follows:
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lab$ph[16] <- 6.63
summary(lab$ph)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.360 6.610 6.650 6.644 6.680 6.840

In addition to the statistics summary, a powerful tool to identify outliers is the
box plot. It will be described in Chapter 5, and a thorough explanation can also be
found in [18]. It is basically the representation of the numbers in the summary, but
all the possible outliers are also identified.

Wrong Values

Finally, other wrong values may arise in the data. It is not always easy to detect
wrong values. For categorical variables, a frequency table is a good way to find
possible errors. Let us get a frequency table for the analyst variable using the
function table. The result is the count of rows for each possible value of the
variable used as argument:

table(lab$analyst)

##
## analyst_1 analyst_2 analyst_3 analyst4 analyst_4
## 319 288 355 1 296

Notice that there is an “analyst4” and an “analyst_4”. The former has only one
count, and the rest are 288 or above. Apparently, “analyst4” and “analyst_4” are
the same person, and we have again a recording error. Unfortunately, these types of
errors are quite common when manually recording data in spreadsheets.

A more difficult to detect error is the one we have in the date column. There is
no value for row 24, but it is not detected as missing value because it was imported
as an empty string rather than a missing value:

anyNA(lab$date)

## [1] FALSE

which(lab$date == "")

## [1] 24

The which function returns the TRUE indices of a logical vector, very useful to
use for data extraction. In this case, we should have created a column of type Date in
advance, and then look for missing data over that column, because the empty string
is coerced to NA:
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lab$date2 <- as.Date(lab$date, format = "%d/%m/%Y")
anyNA(lab$date2)

## [1] TRUE

Let us fix it, supposing the correct date is 2012-01-10:

lab$date2[24] <- as.Date("2012-01-10")
anyNA(lab$date2)

## [1] FALSE

Exporting Data from R

So far in this section, we have imported data from text files, and clean the data to
get it ready for quality control. From here, we could follow two approaches:

• Save the import and data cleaning code and run it again at the beginning of the
quality control data analysis;

• Save the clean data in a data file and import the data at the beginning of the
quality control data analysis.

For the first approach, the expressions corresponding to the data import and
replacement are to be saved in a script and then include an expression in the
quality control analysis script to run the script via the source function as
explained in Sect. 2.5. For the second approach, we can save the clean data in
a file and then include an expression in the quality control analysis script to
import the clean data. For that purpose, the counterpart function of the read.csv
function is write.csv. The following expression saves our clean data in the file
lab_clean.csv:

write.csv(lab,
file = "lab_clean.csv",
row.names = FALSE)

The first argument of the function is the object in the workspace that contains
the data to be exported, preferably a matrix or data frame; The second argument is
the path to the output file; and the third argument avoids to create a column with
the row names, typically the row index unless row names have been set. Thus, the
lab_clean.csv has the same structure as lab.csv but with the wrong data
fixed. In fact, it is the same result as if we had edited the .csv file with a spreadsheet
application such as Microsoft Excel to correct the data and then saved the file with
a new name.
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A strategy mixing both approaches is however the most efficient. The following
step-by-step procedure can be followed as a guide when planning quality control
data analysis:

1. Create folders structure for your quality control data analysis project. The
following could be a general proposal which should be adapted to the project
specifics, if any:

• data: This folder shall contain the data files. It could contain sub-folders such
as “rawdata” and “cleandata”, “yyyy_mm_dd” (one folder per day), etc.;

• code: This folder shall contain the scripts;
• reports: This folder shall contain the .Rmd files and their counterpart compiled

reports as shown in Sect. 1.6, Chapter 1;
• plots: This folder could contain the exported plots to be used by other

programs;
• other. . . : Any other folder useful for the purpose of the quality control data

analysis.

2. Save the raw data file;
3. Create a script for data cleaning. This allows to keep track of the changes made,

even including comments in the code for further reference and lessons learned;
4. Export the clean data in a data file with a new name (included in the data cleaning

script);
5. Create scripts for the quality control data analysis. There might be several

different scripts, for example for exploratory data analysis, control charts,
capability analysis, etc.;

6. Create report files with the relevant results.

In addition to .csv files, data can be exported to many other formats. For example,
one or more objects in the workspace can be saved in a .RData file using the save
function. The following expression saves the lab data frame in the lab.RData
file:

save(lab, file = "lab.RData" )

Later on, the data in a .RData file can be imported to the workspace with the
load function:

load(file = "lab.RData")

It is up to the user which data and file formats to choose for their quality control
data analysis. All of them have advantages and disadvantages. Depending on the use
that will be done over the data, it could be better to use .csv files, e.g., when the data
are bound to be used by other applications, or .RData files, if only R will make use
of them. In addition to .csv and .RData, many other formats can be used in R for
data import and export, see the following subsection.
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Importing Data from Other Sources

Importing files from .RData or text files is the easiest and less prone-error way
of getting data into R. Nevertheless, there are many more ways of importing data
from different sources. Check the “R Data Import/Export” manual enclosed in the
R documentation or at the R project website. The following is a list of the functions
and packages that deal with importing data from common sources, check their
documentation for details if you need to import data from the sources they manage:

• The foreign package [26] can read data coming from the main statistical
packages, such as Minitab, S, SAS, SPSS, Stata, or Systat, among others;

• The RODBC package [28] deals with Open Database Connectivity (ODBC)
sources. It originated on Windows but is also implemented on Linux / Unix /
OS X. The supported databases include Microsoft SQL Server, Access, MySQL,
PostgreSQL, Oracle, and IBM DB2;

• RMySQL [25], RSQLite [37], and RPostgreSQL [9] are the appropriate
packages for their counterpart FOSS database management systems;

• ROracle [23] and RJDBC [35] work with Oracle and Java databases, respec-
tively;

• The XML package [21] can make many operations with XML files;
• The XLConnect package [22] can read and write Microsoft Excel files

directly22;
• Unstructured and distributed databases are also accessible, for example via the
RMongo [7] and h5 [2] packages.

More and more institutions are making their data available on the Internet.
A general approach to deal with those data is to download the source file to disk
as explained above to download the “lab.csv” file and then import the data into R.

2.8 R Task View for Quality Control (Unofficial)

If there were a Task View for Quality Control at CRAN, it should include the
following resources.

This Task View collects information on R packages for Statistical Quality
Control. Statistical Quality Control applies statistics to process control and improve-
ment. The main tools used in statistical quality control are control charts, capability
analysis, and acceptance sampling. All statistical tools may be useful at some point
in a quality control planning.

22There are more packages able to deal with Excel files, check http://www.thertrader.com/2014/
02/11/a-million-ways-to-connect-r-and-excel/.

http://www.thertrader.com/2014/02/11/a-million-ways-to-connect-r-and-excel/
http://www.thertrader.com/2014/02/11/a-million-ways-to-connect-r-and-excel/
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Modeling Quality

The packages in this paragraph are installed with the base installation of R.

• The base package contains basic functions to describe the process variability.
The summary function gets a numerical summary of a variable. The function
table returns frequency tables. The functions mean, median, var, and sd
compute the mean, median, variance, and standard deviation of a sample, respec-
tively. For two variables, we can compute the covariance and the correlation with
the functions cov and cor, respectively.

• The stats package includes functions to work with probability distributions.
The functions for the density/mass function, cumulative distribution function,
quantile function, and random variate generation are named in the form dxxx,
pxxx, qxxx, and rxxx respectively, where xxx represents a given theoretic
distribution, including norm (normal), binom (binomial), beta, geom (geometric),
and so on, see ?Distributions for a complete list. Linear models can be
adjusted using the lm function. Analysis of Variance (ANOVA) can be done with
the anova function. The ts and arima functions are available for time series
analysis.

Visualizing Quality

Standard plots can be easily made with the graphics package. It basically
works as a painter canvas: you can start plotting a simple plot and then add more
details. The graphics, grid, and lattice packages are included in the R base
installation. The grid and lattice packages must be loaded before use, though.

• The graphics package allows to build standard plots using the plot (scat-
ter plots), hist (histograms), barplot (bar plots), boxplot (box plots)
functions. Low-level graphics can also be drawn using the functions: points,
lines, rect (rectangles), text, and polygon. Those functions can also be
used to annotate standard plots. Functions of x can be drawn with the curve
function.

• The grid package implements a different way to create and modify plots in run
time, including support for interaction.

• The lattice package [32] can plot a number of elegant plots with an emphasis
on multivariate data. It is based in Trellis plots.

• ggplot2 is another package [36] providing elegant plots through the grammar
of graphics.

• Cause-and-effect diagrams can be drawn with the cause.and.effect (qcc
package [33]) and the ss.ceDiag (SixSigma package [5]) functions.

• To make Pareto charts the functions pareto.chart (qcc package),
paretoChart (qualityTools package [29]) and paretochart

(qicharts package [1]) can be used.
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Control Charts

• The qcc package [33] can perform several types of control charts, including:
xbar (mean), R (range), S (standard deviation), xbar.one (individual values), p
(proportion), np, c, u (nonconformities), and g (number of non-events between
events). The function qcc plots a control chart of the type specified in the type
argument for the data specified in the data argument. For charts expecting data
in groups, i.e., xbar, R, and S charts, the input data must be prepared with the
function qcc.groups, whose arguments are the vector with the measurements
and the vector with the groups identifiers. For attribute charts where the size of
groups is needed, e.g., p, np, and u, the sizes argument is mandatory.

• The qcc package allows to implement customized control charts, see
demo("p.std.chart").

• The functions ewma, cusum, and mqcc in the qcc package are for exponen-
tially weighted moving average control charts, cumulative sums control charts,
and multivariate control charts, respectively.

• The SixSigma package can plot moving range control charts with the ss.cc
function.

• The qicharts package provides the qic to plot control charts and run charts .
It has also the trc function for multivariate data run charts.

• The IQCC package [3] implements qcc control charts with a focus on Phase I
and Phase II analysis.

• The qcr package [12] provides quality control charts and numerical results.
• The MSQC package [31] is a toolkit for multivariate process monitoring.
• Control Charts Operating Characteristic (OC) curves. The qcc package
oc.curves function draws operating characteristic curves which provide
information about the probability of not detecting a shift in the process.

Capability Analysis

• The qcc package process.capability function performs a capability
analysis over a qcc object previously created.

• The qualityTools package cp function returns capability indices and charts.
• The SixSigma package contains functions to individually get the indices

(ss.ca.cp, ss.ca.cpk, ss.ca.z). A complete capability analysis includ-
ing plots can be done with the ss.ca.study function.

• The mpcv package [8] performs multivariate process capability analysis using
the multivariate process capability vector.

• The tolerance package [41] contains functions for calculating tolerance
intervals, useful to set specifications.
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Acceptance Sampling

• The AcceptanceSampling package [20] provides functionality for creating
and evaluating single, double, and multiple acceptance sampling plans. A single
sampling plan can be obtained with the find.plan function

• The acc.samp function in the tolerance package provides an upper bound
on the number of acceptable rejects or nonconformities in a process.

• The Dodge package [15] contains functions for acceptance sampling ideas
originated by Dodge [10].

Design of Experiments

• Please visit the ExperimentalDesign Task View to see all resources regarding this
topic.

Quality Control Reports

• The Sweave function can produce .pdf files from .Rnw files, which can contain
LATEX and R code.

• The knitr package [38–40] can produce .pdf, .html, and .docx files from .Rmd
files, which can contain markdown text and R code.

CRAN Packages

• AcceptanceSampling
• base
• Dodge
• edcc
• ggplot2
• graphics
• grid
• IQCC
• knitr
• lattice
• mpcv
• MSQC
• qcc
• qcr
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• qicharts
• qualityTools
• SixSigma
• spc
• spcadjust
• stats
• tolerance

Books

• Cano, E.L., Moguerza, J.M., Redchuk, A.: Six Sigma with R. Statistical Engi-
neering for Process Improvement, Use R!, vol. 36. Springer, New York (2012).

• Cano, E.L., Moguerza, J.M., Prieto, M.: Quality Control with R. An ISO
Standards Approach, Use R!. Springer, New York (2015).

• Dodge, H., Romig, H.: Sampling Inspection Tables, Single and Double Sam-
pling. John Wiley and Sons (1959)

• Montgomery, D.C. Statistical Quality Control, Wiley (2012)

Links

• http://www.qualitycontrolwithr.com
• http://www.sixsigmawithr.com
• http://www.r-qualitytools.org

2.9 ISO Standards and R

This book follows an ISO Standards approach for quality control using R. The
process of creating international standards is explained in Chapter 4. The aim of
this approach is to present the standards relevant to the quality control topics, such
as statistics, control charts, capability analysis, and acceptance sampling. In this
section we reference some ISO Standards related to software and data, as well as
the Certification issue.

ISO Standards and Data

In Sect. 2.6 it was shown how R represents dates in ISO format. In particular,
according to the strptime topic documentation:

http://www.qualitycontrolwithr.com
http://www.sixsigmawithr.com
http://www.r-qualitytools.org
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The default formats follow the rules of the ISO 8601 international standard which expresses
a day as “2001-02-28” and a time as “14:01:02” using leading zeroes as here. (The ISO form
uses no space to separate dates and times: R does by default.)

Check ISO 8601 international standard [17] for more details on date and time data
representation. As explained in Sect. 2.6, using the format function and the %
operator, any format can be obtained. The ISOweek package [4] could be useful if
you are in trouble to get weeks in ISO format when using Windows.

As referenced in Sect. 2.7, part 4 of ISO 16269, Statistical interpretation of
data—Part 4: Detection and treatment of outliers [18], “provides detailed descrip-
tions of sound statistical testing procedures and graphical data analysis methods
for detecting outliers in data obtained from measurement processes. It recommends
sound robust estimation and testing procedures to accommodate the presence of
outliers.”

Some examples in this chapter generated random numbers. ISO 28640 [19],
“Random variate generation methods,” specifies methods for this technique.

Regarding data management and interchange, there are a number of international
standards developed by the ISO/IEC JTC 1/SC 32, check the available standards in
the subcommittee web page23 for further details.

Data is becoming a relevant topic in standardization. Recently, a Big Data
Study Group has been created within the ISO/IEC JTC 1 Technical Committee
(Information Technology).24 Keep updated on this standardization topic if your
quality control data is big.

R Certification

Even though there is not a specific reference to ISO Standards in the R project
documentation regarding the software, we can find in the R website homepage
a link to “R Certification.” There we can find “A Guidance Document for the
Use of R in Regulated Clinical Trial Environments,” a document devoted to
“Regulatory Compliance and Validation Issues.” Even though the document focuses
on the United States Federal Drug Administration (FDA) regulations, many of
the topics covered can be applied to or adopted for other fields. In particular, the
Software Development Life Cycle (SDLC) section, which is also available in the R
Certification web page as a standalone document, represents “A Description of R’s
Development, Testing, Release and Maintenance Processes,” which can be used for
certification processes if needed, for example, in relation to ISO/IEC 12207 [16],
Systems and software engineering—Software life cycle processes.

23http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=45342.
24http://www.jtc1bigdatasg.nist.gov.

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=45342
http://www.jtc1bigdatasg.nist.gov
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Chapter 3
The Seven Quality Control Tools
in a Nutshell: R and ISO Approaches

Abstract The aim of this chapter is to smoothly introduce the reader to Quality
Control techniques from the so-called Seven Basic Quality Control tools: Cause-
and-effect-diagram, check sheet, control chart, histogram, Pareto chart, scatter
diagram, and stratification. These are basic but powerful tools when used wisely.

3.1 Origin

Kaoru Ishikawa is one of the main Japanese figures in the quality area. He chose
a set of seven very simple tools, which as such a set constitute an improvement
methodology [5]. Using these tools, most standard quality and productivity prob-
lems become affordable, see [19]. The seven quality Ishikawa tools are:

1. Cause-and-effect diagram1

2. Check sheet
3. Control chart
4. Histogram
5. Pareto chart
6. Scatter diagram
7. Stratification2

Next, we provide brief R examples of the use of each tool.

3.2 Cause-and-Effect Diagram

The cause-and-effect diagram, also known as Ishikawa diagram, or “fishbone”
diagram is used to identify the causes of a “problem” (referred in the quality
control literature as “effect”). Usually, once a problem has been detected, in order
to mitigate its effects, the problem causes are to be identified. Often, at a first

1Also known as Ishikawa diagram or “fishbone” diagram.
2Some authors replace “stratification” by “flow chart” or “run chart” in the original list.

© Springer International Publishing Switzerland 2015
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stage, some groups of causes are identified, and then, at a second stage, concrete
causes within each group are detected. A way to begin is to use the five M’s
method as groups of causes, namely Manpower, Materials, Machines, Methods,
and Measurements. Sometimes a sixth M is used referring to Mother Nature, and
in some cases, even two more M’s are considered, Money and Maintenance. In fact,
ISO 13053-2 Standard [18] recommends to use the 5Ms+E (Environment), see
Sect. 3.9 for more on ISO standards for the seven Ishikawa quality tools.

Example 3.1. Pellets density.
Let us consider the introductory example in Chapter 1, in which three measure-

ments of pellets density were out of control. You can also see the control chart of the
process later in this chapter, Sect. 3.4. The Ishikawa diagram could be used in this
context to find out the reason of such out-of-control state (the effect). Interviews
with operators, brainstorming meetings, checking of records or any other method
can be used to determine the possible causes for this problem. The following list is
a suitable example for this situation:

• Manpower

– Receptionist
– Recording Operator
– Storage operators

• Materials

– Supplier
– Transport agency
– Packing

• Machines

– Compressor
– Operation conditions
– Machine adjustment

• Methods

– Raw materials reception
– Transport method

• Measurements

– Recording method
– Measurement apparatus

The above list can be graphically represented in R with the qcc and the
SixSigma packages. First, let us save the data into R character vectors. In this
way, we only have to type them once. This is useful not only for the two cause-and-
effect diagrams below, but for further purposes as we will see later.
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cManpower <- c("Recepcionist", "Record. Operator",
"Storage operators")

cMaterials <- c("Supplier", "Transport agency",
"Packing")

cMachines <- c("Compressor type",
"Operation conditions",
"Machine adjustment")

cMethods <- c("Reception", "Transport method")
cMeasurements <- c("Recording method",

"Measurement appraisal")
cGroups <- c("Manpower", "Materials", "Machines",

"Methods", "Measurements")
cEffect <- "Too high density"

The following code produces the Ishikawa diagram in Fig. 3.1 using the
cause.and.effect function of the qcc package [23].

library(qcc)
cause.and.effect(

cause = list(Manpower = cManpower,
Materials = cMaterials,
Machines = cMachines,
Methods = cMethods,
Measurements = cMeasurements),

effect = cEffect)

Cause−and−Effect diagram

Too high density

Manpower

Methods

Materials

Measurements

Machines

Recepcionist

Record. Operator

Storage operators

Supplier

Transport agency

Packing

Compressor type

Operation conditions

Machine adjustment

Reception

Transport method

Recording method

Measurement appraisal

Fig. 3.1 Cause-and-effect diagram for the intuitive example. A horizontal straight line is
drawn and the cause is put on the right side. Then, lines for the groups stem from the center
line, looking like a fishbone. The possible causes within each group are finally printed besides
those lines
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A more elaborated visualization can be produced with the ss.ceDiag function
in the SixSigma package [3] through the following code, see Fig. 3.2:

library(SixSigma)
ss.ceDiag(

effect = cEffect,
causes.gr <- cGroups,
causes = list(cManpower, cMaterials, cMachines,

cMethods, cMeasurements),
main = "Cause-and-effect diagram",
sub = "Pellets Density")

ut

3.3 Check Sheet

The check sheet is a very important tool for the compilation of data. This tool
allows obtaining data from people whose knowledge about the project at hand is
thorough. In practice, although most data are automatically recovered, some data
are compiled by hand in order to be analyzed later on. A straightforward example is
the compilation of stopping times in production machinery.

Cause−and−effect diagram

Pellets Density

Too high density

Manpower
Recepcionist

Record. Operator
Storage operators

Materials
Supplier

Transport agency
Packing

Machines

Compressor type
Operation conditions

Machine adjustment

Methods

Reception
Transport method

Measurements

Recording method
Measurement appraisal

Fig. 3.2 Cause-and-effect diagram for the intuitive example. The SixSigma package pro-
duces a more elaborated diagram
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The compilation of data using check sheets and its subsequent manipulation
should be reflected in the quality improvement plan. In this regard, the check sheets
must be adequately treated by introducing its data into a database or a spreadsheet,
in order to be analyzed at a subsequent step. Check sheets should be part of the data
collection plan, see ISO 13053-2 [18].

There are as many check sheet models as possible problems. The kind of data to
be introduced in a check sheet may be very different depending on the problem at
hand: from a simple event to a group of variables. It is important always to include
dates, machine operator and operator taking the information if different.

Let us focus on the simplest and most widely used check sheets type, i.e., the
so-called tally sheet, in which an operator makes tick marks whenever a given event
occurs. This event can be a machine stop, error, interruption, or any other event
relevant for the process. The aim is to record a count of the times the event occur for
each identified category, e.g., what cause the error. Note that such categories might
have been identified in advance using the first essential quality control described in
this chapter: the cause-and-effect diagram. As remarked above, it is also important
to record any additional information for future data analysis. For example, when
recording defects on parts, the check sheet might include room to identify the
location of the defect within the part, e.g., top, bottom, center, and so on.

Example 3.2. Pellets density (cont.)
Although a check sheet can be designed with text processing or spreadsheet

software, we will use R to produce a check sheet with the data we have from the
previous examples. This has the advantage of reusing data, which reduces errors and
is part of the reproducible research approach explained in Chapter 1. Recall from
the previous section that we saved the causes and the effect in character vectors in
order to use them when necessary. Now we consolidate all those vectors in a data
frame:

data_checkSheet <- rbind(
data.frame(Group = "Manpower",

Cause = cManpower),
data.frame(Group = "Machines",

Cause = cMachines),
data.frame(Group = "Materials",

Cause = cMaterials),
data.frame(Group = "Methods",

Cause = cMethods),
data.frame(Group = "Measurements",

Cause = cMeasurements)
)

The rbind function binds rows of data frames with identical columns to create
larger data frames. Additional columns can be added to register events by different
criteria. For example: a column for each day of the week and then analyze the
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check sheets weekly; a column for the machine where the pellet was compacted;
etc. In this example, let us suppose that the raw material could come from three
different suppliers, and we want to count the point out of control by each supplier.
Then we need to add three columns to the data frame that will form the check sheet.
For the moment, NA values can be assigned, see Chapter 2 to find out more about
NAs.

data_checkSheet$A_supplier <- NA
data_checkSheet$B_supplier <- NA
data_checkSheet$C_supplier <- NA

Examine the data_checkSheet object in your workspace. Now we have a
data structure in rows and columns that could be exported to a .csv file, and opened
in a spreadsheet application to print the check sheet, see Chapter 2 to find out more
about csv files. However, our approach is to generate the check sheet from R itself.
Thus, we can create an R Markdown file in RStudio to generate the check sheet.
The following text is a complete R Markdown file to produce a .html file.

---
title: "Out of control pellets density check sheet"
author: "Quality Control Department"
date: "30/06/2015"
output: html_document
---

Instructions: Mark ticks for the more likely cause
of the out-of-control point. Cross every four ticks
to make five.

‘‘‘{r, echo=FALSE, results=’asis’}
source("checksheet_data.R")
library(xtable)
print(xtable(data_checkSheet), type = "HTML",

html.table.attributes =
"border=1 width=100% cellpadding=10")

‘‘‘

|Week|Operator|Signature|
|----|--------|---------|
| | | |

We use the xtable package [4] to generate tables in .html and .pdf reports.
Notice that the checksheet_data.R file is sourced. It contains the code to create the
vectors and data frame above. Fig. 3.3 shows the check sheet in the RStudio viewer
after knitting the R Markdown file. You can click on the “Open in Browser” button
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and print the check sheet for the operator. A filled-out check sheet could be that in
Fig. 3.4, we will use it to illustrate Pareto charts in Sect. 3.6. ut

Fig. 3.3 R Markdown check sheet. We can produce tables in reports and in this way a check
sheet is easy to generate

Fig. 3.4 Filled check sheet. An operator registers the events per potential cause with simple tick
marks
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3.4 Control Chart

The control charts underlying idea is that measurements corresponding to an in-
control process live between some natural limits (referred as control limits). When
measurements go out of these limits, the cause of this especial variability should be
explored and eliminated, see Chapter 1 for an introduction. As we will explain in
Chapter 9, where we will treat control charts in detail, it is important not to confuse
control limits with specification limits.

Example 3.3. Pellets density (cont.)
In our illustrative example, the control chart for pellets density measurements

plotted in Chapter 1 is reproduced in Fig. 3.5 in order to make this chapter self-
contained. To make such control chart, we need to have the data in an R object
as follows:

xbar.one Chart
for pdensity
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Number of groups = 24
Center = 10.73415
StdDev = 0.09433395

LCL = 10.45115
UCL = 11.01716

Number beyond limits = 3
Number violating runs = 0

Fig. 3.5 Control chart tool. The control chart advances possible problems before they reach the
customer
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pdensity <- c(10.6817, 10.6040, 10.5709, 10.7858,
10.7668, 10.8101, 10.6905, 10.6079,
10.5724, 10.7736, 11.0921, 11.1023,
11.0934, 10.8530, 10.6774, 10.6712,
10.6935, 10.5669, 10.8002, 10.7607,
10.5470, 10.5555, 10.5705, 10.7723)

and then plot the control chart for individual values using the qcc package as
follows:

myControlChart <- qcc(data = pdensity,
type = "xbar.one")

summary(myControlChart)

##
## Call:
## qcc(data = pdensity, type = "xbar.one")
##
## xbar.one chart for pdensity
##
## Summary of group statistics:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 10.55 10.60 10.69 10.73 10.79 11.10
##
## Group sample size: 1
## Number of groups: 24
## Center of group statistics: 10.73415
## Standard deviation: 0.09433395
##
## Control limits:
## LCL UCL
## 10.45115 11.01716

A summary of the object shows basic information. The assigned object is a list
whose content can be used for further analysis, for example to get the out-of-control
points:

myControlChart$violations

## $beyond.limits
## [1] 11 12 13
##
## $violating.runs
## numeric(0)
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In this case, three points are beyond the control limits, namely measurements
number 11, 12, 13. This means that they are highly unlikely to occur, and therefore
the cause of this situation should be investigated. This investigation might result in
a cause-and-effect diagram as explained in Sect. 3.2. ut

3.5 Histogram

A histogram provides an idea of the statistical distribution of the process data, that
is, whether the data are centered or not, or even if the data are concentrated around
the mean or sparse. To build a histogram, at a first stage some intervals are calculated
and then, at a second stage, the number of observations inside each interval has to
be accounted. This number of observations is known as the “frequency.” Finally,
the frequencies are represented using vertical adjacent bars. The area of each bar
is proportional to its frequency, being its width the length of the corresponding
interval.

Example 3.4. Pellets density (cont.)
Basic histograms can be generated with short R expressions and the standard

graphics. For example, the histogram of the pellets density in the illustrative
example explained in Chapter 1 shown in Fig. 3.6 is obtained with the following
simple expression:

hist(pdensity)

Notice that histograms generated with statistical software are usually built with
constant width intervals, being the height of the bars for the frequency (absolute or
relative) of data points within each interval. The number and width of intervals are
decided by the software using one of the accepted rules, see Chapter 5 for details.

Fig. 3.6 Pellets density
basic histogram. A basic
histogram is generated just
with the hist function with
a numerical vector as
argument
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The R Core, see Chapter 1, is very concerned about making possible to draw
plots with few options. This allows to generate plots with such short expressions as
the one that generated the extremely simple histogram in Fig. 3.6. Nevertheless, one
of the strengths of R is its graphical capability. Thus, more elements and styles can
be added to the histogram just with the graphics base package, see, for example, the
following code that generates a more elaborated version of our histogram, shown in
Fig. 3.7:

par(bg = "gray95")
hist(pdensity,

main = "Histogram of pellets density - Sample #25",
sub = "Data from ceramic process",
xlab = expression("Density (g"/"cm"^3*")"),
col = "steelblue",
border = "white",
lwd = 2,
las = 1,
bg = "gray")

See the documentation for the topics hist, plot, and par to find out more
about those and other options. Check also how to include expressions through the
expression function. On the other hand, there are some packages specialized
in elegant graphics that use specific syntax. The lattice package [22] is included
in the R base installation, but it is not loaded at the start-up. The histogram
function is the one to generate lattice-based histograms. The panel argument
accepts a number of functions to make complex plots. For example, in the following
code we add a density line to the histogram, see Fig. 3.8 for the result:

Fig. 3.7 A histogram with
options. Graphical options
can be added to the hist
function to generate nicer
histograms
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library(lattice)
histogram(pdensity,

xlab = expression("Pellets density (g"/"cm"^3*")"),
ylab = "Probability density",
type = "density",
panel = function(x, ...) {

panel.histogram(x, ...)
panel.mathdensity(dmath = dnorm,

col = "black",
lwd = 3,
args = list(mean = mean(x),

sd = sd(x)))
} )

Consult the lattice package documentation and its functions histogram and xyplot
for graphical options, and trellis.par.set, trellis.par.get for themes and styles.

The ggplot2 package [24] can also plot histograms using the grammar of
graphics, see [24]. The following code creates the histogram in Fig. 3.9.3 On
the other hand, the special grammar of ggplot2 builds the chart by adding
components with the “+” operator.

Fig. 3.8 A lattice-based
histogram. A density line has
been added to the histogram
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3The ggplot function requires a data frame object as input data, so the pdensity vector is
converted to a data frame in the first argument.
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library(ggplot2)
ggplot(data = data.frame(pdensity),

aes(x = pdensity)) +
geom_histogram(fill = "seagreen",

colour = "lightgoldenrodyellow",
binwidth = 0.2) +

labs(title = "Histogram",
x = expression("Density ("*g/cm^3*")"),
y = "Frequency")

Note that the number of bars in a histogram is an arbitrary decision. Different
functions use different rules. All of them are correct, and they can be adjusted via
the functions’ arguments. The key part is that the histogram should tell us something
about our process. If the default options are meaningless, try to change the criteria
for constructing the histogram. ut

3.6 Pareto Chart

Cause-and-effect diagrams and check sheets data are usually represented using
Pareto charts. These types of charts plot sorted bars (from the highest bar to
the shortest bar) representing the variable measured, in this case, the counts for
plausible causes of an effect. Pareto analysis, based on the Pareto principle or 80-20
rule, consists of identifying those few vital causes (20 %) producing the main part
of the problem (80 %), in order to avoid assigning resources to the many trivial
causes (the remaining 80 %). This kind of analysis can also be used to prioritize, for
instance, those improvement projects leading to the largest savings.

Fig. 3.9 A ggplot2-based
histogram. In this function,
the number of bars is
determined by the binwidth
argument, which sets the
interval width to create the
frequency table
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There are several alternatives to build Pareto charts in R. The simplest one would
be to create a data frame or table with the data, sort the observations, and call the
barplot function of the base graphics package.

Example 3.5. Pellets density (cont.)
Let us illustrate Pareto charts with the example we used in sections 3.2 and 3.3.

The data gathered by the process owner in the check sheet shown in Fig. 3.4 can be
saved into an R data frame with the following code. Note how we are re-using the
data recorded in the previous tools.

data_checkSheet$A_supplier <- c(2, 0, 0, 2, 1, 7, 1,
3, 6, 0, 1, 2, 0)

data_checkSheet$B_supplier <- c(0, 0, 1, 1, 2, 1, 12,
1, 2, 1, 0, 0, 1)

data_checkSheet$C_supplier <- c(0, 1, 0, 6, 0, 2, 2,
4, 3, 0, 1, 0, 2)

data_checkSheet$Total <- data_checkSheet$A_supplier +
data_checkSheet$B_supplier +
data_checkSheet$C_supplier

Now we have all data in the same place:

data_checkSheet

## Group Cause A_supplier
## 1 Manpower Recepcionist 2
## 2 Manpower Record. Operator 0
## 3 Manpower Storage operators 0
## 4 Machines Compressor type 2
## 5 Machines Operation conditions 1
## 6 Machines Machine adjustment 7
## 7 Materials Supplier 1
## 8 Materials Transport agency 3
## 9 Materials Packing 6
## 10 Methods Reception 0
## 11 Methods Transport method 1
## 12 Measurements Recording method 2
## 13 Measurements Measurement appraisal 0
## B_supplier C_supplier Total
## 1 0 0 2
## 2 0 1 1
## 3 1 0 1
## 4 1 6 9
## 5 2 0 3
## 6 1 2 10
## 7 12 2 15
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## 8 1 4 8
## 9 2 3 11
## 10 1 0 1
## 11 0 1 2
## 12 0 0 2
## 13 1 2 3

A simple bar plot for the total variable in the data frame could be the one in
Fig. 3.10 using this short expression:

barplot(height = data_checkSheet$Total,
names.arg = data_checkSheet$Cause)

This bar plot is useless for Pareto analysis. The following changes result in
Fig. 3.11, which is an actual Pareto Chart. Note that the options have been tuned up
to improve the readability of the plot, check the documentation of the par function.

data_pareto <- data_checkSheet[order(
data_checkSheet$Total,
decreasing = TRUE), ]

par(mar = c(8, 4, 4, 2) + 0.1)
barplot(height = data_pareto$Total,

names.arg = data_pareto$Cause,
las = 2,
main = "Pareto chart for total causes")

Even though we can use standard plots for Pareto charts, there are some functions
in contributed packages that can be useful. The pareto.chart in the qcc
package returns the plot and a table containing the descriptive statistics used to
draw the Pareto chart. This table can be stored in an R object for further use. The
data input should be a named vector, so we first prepare our data. The result is the
chart in Fig. 3.12.

Fig. 3.10 A simple barplot.
A simple barplot is not useful
for Pareto Analysis Recepcionist Operation conditions Packing Recording method
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library(qcc)
data_pareto2 <- data_pareto$Total
names(data_pareto2) <- data_pareto$Cause
pareto.chart(x = data_pareto2,

main = "Out-of-control causes")

Fig. 3.11 A basic Pareto
chart. Simply sorting the bars
and reorganizing the axis
information a simple bar plot
becomes a useful Pareto chart
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Fig. 3.12 Pareto chart with
the qcc package. A dot and
line plot is plotted with the
cumulative percentage
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##
## Pareto chart analysis for data_pareto2
## Frequency Cum.Freq.
## Supplier 15 15
## Packing 11 26
## Machine adjustment 10 36
## Compressor type 9 45
## Transport agency 8 53
## Operation conditions 3 56
## Measurement appraisal 3 59
## Recepcionist 2 61
## Transport method 2 63
## Recording method 2 65
## Record. Operator 1 66
## Storage operators 1 67
## Reception 1 68
##
## Pareto chart analysis for data_pareto2
## Percentage Cum.Percent.
## Supplier 22.058824 22.05882
## Packing 16.176471 38.23529
## Machine adjustment 14.705882 52.94118
## Compressor type 13.235294 66.17647
## Transport agency 11.764706 77.94118
## Operation conditions 4.411765 82.35294
## Measurement appraisal 4.411765 86.76471
## Recepcionist 2.941176 89.70588
## Transport method 2.941176 92.64706
## Recording method 2.941176 95.58824
## Record. Operator 1.470588 97.05882
## Storage operators 1.470588 98.52941
## Reception 1.470588 100.00000

The qualityTools package [21] also includes a function for Pareto charts,
namely paretoChart. It also uses a named vector and returns a frequency table,
see Fig. 3.13.

library(qualityTools)
paretoChart(x = data_pareto2,

main = "Out-of-control causes")

##
## Frequency 15 11 10 9 8 3
## Cum. Frequency 15 26 36 45 53 56
## Percentage 22.1% 16.2% 14.7% 13.2% 11.8% 4.4%
## Cum. Percentage 22.1% 38.2% 52.9% 66.2% 77.9% 82.4%
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##
## Frequency 3 2 2 2 1 1
## Cum. Frequency 59 61 63 65 66 67
## Percentage 4.4% 2.9% 2.9% 2.9% 1.5% 1.5%
## Cum. Percentage 86.8% 89.7% 92.6% 95.6% 97.1% 98.5%
##
## Frequency 1
## Cum. Frequency 68
## Percentage 1.5%
## Cum. Percentage 100.0%
##
## Frequency 15.00000 11.00000 10.00000 9.00000
## Cum. Frequency 15.00000 26.00000 36.00000 45.00000
## Percentage 22.05882 16.17647 14.70588 13.23529
## Cum. Percentage 22.05882 38.23529 52.94118 66.17647
##
## Frequency 8.00000 3.000000 3.000000
## Cum. Frequency 53.00000 56.000000 59.000000
## Percentage 11.76471 4.411765 4.411765
## Cum. Percentage 77.94118 82.352941 86.764706
##
## Frequency 2.000000 2.000000 2.000000
## Cum. Frequency 61.000000 63.000000 65.000000
## Percentage 2.941176 2.941176 2.941176
## Cum. Percentage 89.705882 92.647059 95.588235
##
## Frequency 1.000000 1.000000 1.000000
## Cum. Frequency 66.000000 67.000000 68.000000
## Percentage 1.470588 1.470588 1.470588
## Cum. Percentage 97.058824 98.529412 100.000000

Fig. 3.13 Pareto chart with
the qualityTools package.
The table below the chart can
be removed by setting the
showTable argument to
FALSE
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Another option is the paretochart function in the qicharts package [1].
This function expects a factor or character vector to make the counts by itself.
We can easily create this data structure with the rep function, see Chapter 2.
The following code produces Fig. 3.14:

library(qicharts)
spreadvector <- rep(names(data_pareto2),

times = data_pareto2)
paretochart(spreadvector)

## Frequency
## Supplier 15
## Packing 11
## Machine adjustment 10
## Compressor type 9
## Transport agency 8
## Measurement appraisal 3
## Operation conditions 3
## Recepcionist 2
## Recording method 2
## Transport method 2
## Reception 1
## Record. Operator 1
## Storage operators 1
## Cumulative Frequency
## Supplier 15
## Packing 26
## Machine adjustment 36
## Compressor type 45

Fig. 3.14 Pareto chart with
the qicharts package. The
output shows the frequency
table used to plot the chart
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## Transport agency 53
## Measurement appraisal 56
## Operation conditions 59
## Recepcionist 61
## Recording method 63
## Transport method 65
## Reception 66
## Record. Operator 67
## Storage operators 68
## Percentage
## Supplier 22.058824
## Packing 16.176471
## Machine adjustment 14.705882
## Compressor type 13.235294
## Transport agency 11.764706
## Measurement appraisal 4.411765
## Operation conditions 4.411765
## Recepcionist 2.941176
## Recording method 2.941176
## Transport method 2.941176
## Reception 1.470588
## Record. Operator 1.470588
## Storage operators 1.470588
## Cumulative Percentage
## Supplier 22.05882
## Packing 38.23529
## Machine adjustment 52.94118
## Compressor type 66.17647
## Transport agency 77.94118
## Measurement appraisal 82.35294
## Operation conditions 86.76471
## Recepcionist 89.70588
## Recording method 92.64706
## Transport method 95.58824
## Reception 97.05882
## Record. Operator 98.52941
## Storage operators 100.00000

Note that when using specific functions we usually lose control over the graphics.
Such specific functions are often convenient, but we may need something different
in the output for our quality control report. For example, we could split and color
the bars in Fig. 3.11 according to the suppliers information in the check sheet. On
the other hand, adding lines and points with the cumulative percentages in the
Pareto chart in Fig. 3.11 is straightforward with the points function. Moreover,
customizing packages’ functions is also possible as the source code is available.

ut
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3.7 Scatter Plot

The scatter plot (or scatter diagram) is used to discover relations between variables.
Once potential cause-and-effect relations are identified, they should be validated
through an experimental design. Consider again the pellets example. Imagine that,
in addition to the density, the temperature of the product is also available. In order
to check the relation between both variables a scatter plot can be used. This plot is a
two dimensional graph where one variable is represented in the horizontal axis and
the other one in the vertical axis. In this way, each point in the scatter plot represents
the value of the pair of variables measured for each item.

Example 3.6. Pellets density (cont.)
To illustrate the example, we simulate the temperature with the following code:

set.seed(1234)
ptemp <- - 140 + 15*pdensity + rnorm(24)

In this simulation, we have added random noise, i.e., values of a normal standard
distribution, with the rnorm function (see Chapter 5 for more about probability
distributions), fixing the seed to an arbitrary value to make the example reproducible
(see Chapter 6 for more references about random number generation). Now we have
two variables: density and temperature, and we can check with the scatter plot if
there is some relation between them. We use the generic plot function to generate
scatter plots, the following code produces Fig. 3.15:

plot(pdensity ~ ptemp,
col = "gray40",
pch = 20,
main = "Pellets density vs. temperature",
xlab = "Temperature (Celsius)",
ylab = expression("Density ("*g/cm^3*")"))

Fig. 3.15 Scatter plot
example. Relations between
variables can be found by
using scatter plots.
Cause-and-effect relations
must be validated through
designed experiments, though 18 20 22 24 26
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The input of the plot function can be a formula, as in this example, where the
left-hand expression is for the response variable (vertical axis) and the right-hand
expression is for the predictive variable (horizontal axis). Similarly to histograms
and other plots, scatter plots can be also generated with the lattice and
ggplot2 packages, check the functions xyplot and geom_point, respectively.

In this example,4 it is apparent that when one variable increases, the other one
also grows in magnitude. Further investigation is usually needed to demonstrate the
cause-and-effect relationship, and to eventually set the optimal values of the factors
for the process optimization. ut

3.8 Stratification

In many cases, some numerical variables may have been measured for different
groups (also referred to as factors). When this information is available, the quality
control analysis should be made by these groups (strata). We illustrate the stratifica-
tion strategy, by means of the box plot, one of the most useful graphical tools that
will be described in detail in Chapter 5. Using the same scale in the vertical axis,
the data distribution for each factor can be visualized at a glance. It is important to
register as much information as possible about the factors which data can be split
into (operator, machine, laboratory, etc.). Otherwise, masking effects or mixtures of
populations may take place, slowing down the detection of possible problems.

Example 3.7. Pellets density (cont.)
In the case of the example we have been using throughout this chapter, let us

assume that the observations of the density measurements correspond to the three
suppliers A, B, and C:

psupplier <- rep(c("A", "B", "C"), each = 8)

Now we have a numerical variable (density) and a categorical variable (supplier)
in which our data can be grouped. Now we can make stratified analysis, for example
to check if there are differences among the groups. The above-mentioned box plot
by supplier can be easily plotted with R as follows, see the result in Fig. 3.16. The
counterpart functions in the lattice and ggplot2 packages are bwplot and
geom_boxplot.

boxplot(pdensity ~ psupplier,
col = "gray70",
xlab = "Supplier",
ylab = expression("Density ("*g/cm^3*")"),
main = "Box plots by supplier")

ut

4As expected from the simulation!
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Actually, stratification is a strategy that is used throughout the rest of the seven
basic quality tools, and in the application of any other statistical technique in
quality control. For example, it was stratification what we did when designing the
check sheet to gather information by supplier. Stratification can also be applied to
histograms, scatter plots, or Pareto charts. We will see in Chapter 6 that stratified
sampling is also a way to improve our estimations and predictions about the process.

The seven basic quality tools is a topic covered by a number of authors, as it is an
effective and easy to implement problem-solving technique, even being included in
the Project Management Base of Knowledge (PMBoK) [20]. In this regard, most of
the lists keep the six previous tools. However, some of them replace “stratification”
by “run chart” or “flow chart.” A run chart is actually a simplified version of the
control chart, where data points are plotted sequentially. Flow charts and similar
diagrams such as process maps are in fact a previous-to-stratification step. Those
problem-structuring tools allow to divide the process into steps or sub-processes,
and identify the different factors that could influence the output, thereby defining the
groups in which perform the stratified analysis. A detailed explanation of process
maps and how to get them with R can be found in [3].

3.9 ISO Standards for the Seven Basic Quality Control Tools

The cause-and-effect diagram is one of the tools in the Six Sigma quality
improvement methodology. There is a subcommittee devoted to this methodology
within the ISO/TC 69 that has developed the ISO 13053 Series, Quantitative
methods in process improvement – Six Sigma. According to part 1 of ISO 13053,
DMAIC methodology [17], the cause-and-effect diagram should be one of the

Fig. 3.16 Stratified box
plots. Box plots by groups
provide quick insights about
the differences between
groups, regarding both central
tendency and variability
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outputs in the Analyze phase of the DMAIC5 methodology. In this part, the cause-
and-effect diagram is also included in the typical training agendas for both SixSigma
black belts and green belts, see [2] for a brief introduction on the Six Sigma
methodology. On the other hand, in part 2 of ISO 13053, Tools and techniques [18],
a complete factsheet for the tool can be found, pointing to [6] as a key reference.
This standard relates the cause-and-effect diagram with the brainstorming tool as
a possible input. On the other hand, ISO/IEC 31010 [7], Risk management – Risk
assessment techniques, includes the cause-and-effect diagram as one of the tools to
be used in root cause analysis (RCA), as well as in the cause-and-effect analysis,
both of them being part of the risk assessment techniques covered by that standard.

Regarding check sheets, they should be part of the Data collection plan, also
included in ISO 13053-2 [18] as a DMAIC methodology tool. You could also
check clause 7 (data collection) of ISO/IEC 19795-1 [8]. Pareto charts and Pareto
analysis are also included as Six Sigma tools in ISO 13053 series.

Histograms are defined in ISO 3534-1 [9], Statistics – Vocabulary and symbols
– Part 1: General statistical terms and terms used in probability. This standard
“defines general statistical terms and terms used in probability which may be used
in the drafting of other International Standards. In addition, it defines symbols for a
limited number of those terms”.

There is a series of standards for control charts, developed by ISO/TC 69 SC 4.
The following parts have been already published at the time this is written6:

• ISO 7870-1:2014 [15], Control charts – Part 1: General guidelines. It presents
key elements and philosophy of the control chart approach;

• ISO 7870-2:2013 [14], Control charts – Part 2: Shewhart control charts. It is a
guide to the use and understanding of the Shewhart control chart approach to
processes’ statistical control;

• ISO 7870-3:2012 [13], Control charts – Part 3: Acceptance control charts. This
part gives guidance on the uses of acceptance control charts and establishes
general procedures for determining sample sizes, action limits and decision
criteria;

• ISO 7870-4:2011 [12], Control charts – Part 4: Cumulative sum charts. This part
provides statistical procedures for setting up cumulative sum (cusum) schemes
for process and quality control using variables (measured) and attribute data;

• ISO 7870-5:2014 [16], Control charts – Part 5: Specialized control charts.
Specialized control charts should be used in situations where commonly used
Shewhart control chart approach to the methods of statistical control of a process
may either be not applicable or less efficient in detecting unnatural patterns of
variation of the process;

5Define, Measure, Analyze, Improve, and Control.
6Descriptions are from the standards summaries at the ISO website http://www.iso.org.

http://www.iso.org
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Part 6 of the 7870 series is in preparation for Exponentially Weighted Moving
Average (EWMA) control charts, which will be likely already published when you
are reading this chapter.7

Stratification is defined in ISO 3534-1 [9], and then this definition is used in
other ones to bound the use of some techniques such as sampling, e.g. in ISO
3534-4, Survey Sampling [10]. As a crossing topic, stratification can also appear
in different ISO standards to apply in other tools and techniques. For example,
in ISO 13053-2 [18], stratified data collection is needed, and descriptive statistics
visualization may involve stratifying by levels of a factor.

Finally, ISO 11462-2 [11] is a catalogue of tools and techniques for Statistical
Process Control (SPC) that includes all the 7 basic quality control tools in such
a catalogue. There you can find a short description, application, and references
(including related ISO Standards).
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Chapter 4
R and the ISO Standards for Quality Control

Abstract This chapter details the way ISO international standards for quality
control are developed. Quality Control starts with Quality, and standardization is
crucial to deliver products and services where quality satisfies final users, whatever
they are customers, organizations, or public bodies. The development process,
carried out by Technical Committees (TCs), entails a kind of path until the standard
is finally adopted, including several types of intermediate deliverables. The work of
such TCs is outlined along with the general structure of ISO, and with a focus on the
TC in charge of statistical methods. Finally, the current and potential role that R can
play, not only as statistical software, but also as programming language, is shown.

4.1 ISO Members and Technical Committees

The International Organization for Standardization (ISO) is an independent, non-
governmental membership organization and the world’s largest developer of volun-
tary International Standards. Note that ISO is not a proper acronym. Actually, ISO
founders decided to give it the short form ISO from the Greek isos, whose meaning
is equal. Thus, whatever the country, whatever the language, the International
Organization for Standardization is always ISO.

ISO is a network of national standards bodies. Each member represents ISO in
its country, and there is only one member per country. At the time this book is
being written, 163 national bodies are members of ISO.1 For example, ANSI is the
USA member, BSI the UK member, AENOR the Spanish member, etc. ISO central
secretariat is in Geneva, Switzerland, and the ISO Council governs the operations
of ISO.

ISO technical committee structure is managed by the Technical Management
Board (TMB). Its role is contained in the ISO statutes, including the following:
“Technical committees shall be established by the Technical Management Board
and shall work under its authority. The TMB deals with appeals in accordance with
the ISO/IEC Directives, Part 1”. The TMB also approves the programme of work
for each TC. The TMB reports to the ISO Council.

1Check the up-to-date list at http://www.iso.org/iso/home/about/iso_members.htm.
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A technical committee works in a specific field of technical activity. New
technical committees can be proposed by different stakeholders, such as national
bodies or existing technical committees, among others. The main duty of technical
committees is the development and maintenance of International Standards, but
they can also publish other types of deliverables, namely: Technical Specifications
(TS), Publicly Available Specifications (PAS) or Technical Reports (TR). Technical
committees are defined by a number, a title, and a scope. The scope precisely
defines the limits of the work of a TC. Within a TC, subcommittees (SC) can
be established, upon certain conditions, see ISO/IEC Directives Part 1 [95] for
details. Subcommittees also have a number, title and scope, and their structure
and procedures are similar to TCs. Technical committees and subcommittees are
organized as follows:

• Secretariat, allocated to a national body. An individual is to be appointed
as secretary. Provides technical and administrative services to its TC or SC
and ensures that the ISO/IEC Directives and the decisions of the technical
management board are followed. It is responsible for monitoring, reporting, and
ensuring active progress of the TC or SC work.

• Chair, nominated by the secretariat. Responsible of the TC or SC overall
management.

• Working Groups (WG), established by a TC or SC for specific tasks, for
example for preparing working drafts (WD). A restricted number of experts,
appointed by but independent of a national body, compose a WG.

Other structures are editing committees, for the purpose of updating and editing
drafts at different stages, and project committees, established by the TMB to prepare
standards out of the scope of existing TCs and SCs.

National bodies participate in the work of technical committees. For each
technical committee or subcommittee, each national body can have two different
roles, which must be clearly indicated. Thus, one of the following roles can be
assumed:

• P-member (participating country), if the national body intends to participate
actively in the work. P-members are obliged to vote on the different standards
development stages, and to contribute to meetings;

• O-member (observing country), if the national body intends just to follow the
work as an observer. They have the right to attend meetings, vote at some
standards development stages, and submit comments.

P-members can have automatically changed their status to O-member if failing at
their obligations, i.e., meetings and votes. An O-member can become a P-member
if they want to participate more actively. A member of a committee must notify if
they want to contribute to a given subcommittee, regardless of their status in the
committee. When a subcommittee is established, all the committee members are
given the opportunity of joining it.

Other organizations may participate in the technical work of technical com-
mittees by means of liaisons. Such organizations must be representative of their
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technical or industrial field. They are required to be willing to contribute to the
technical work, assuming the ISO/IEC directives and the rest of the TC rules.
There may be liaisons at two levels: (a) technical committees or subcommittees,
called category A (active contribution) and category B (keep informed); (b) working
groups, called category D. Liaisons can also be arranged between TCs working
in related fields. Details about liaisons can be found in the ISO/IEC Directive
Part 1 [95].

4.2 ISO Standards and Quality

Quality Control starts with Quality. So let us take a look at what quality means.
Quality is, in general, a subjective term which perception vary from one person
to another. That is to say, something that is of good quality for one person could
be of poor quality for another one. Nevertheless, we can find different definitions
of quality. If we look at what the gods say, the meaning of quality is also viewed
from different perspectives, for example “fitness for use” for Joseph Juran [98], or
“conformance to requirements” for Philip Crosby [4]. Quality is defined relative to
the need to improve for W. Edwards Deming [100], whilst Taguchi sees quality as
“loss given to a society” [102]. In summary, different approaches trying to reach
the fuzzy concept of being good enough. And at the end, George P. Box, the
consummate ‘Renaissance man’ in the field of the quality sciences2 wrote “I often
think the Quality Gurus do not help”[2].

We can look for more formal definitions in dictionaries or encyclopedias. For
example, quality is defined on Cambridge Dictionaries3 as how good or bad
something is, which matches with the subjective perception. The Wikipedia article4

for Quality (Business) says that Quality “has a pragmatic interpretation as the non-
inferiority or superiority of something; it is also defined as fitness for purpose.”

But this chapter is about standards, so let us look for a standardized definition of
quality. Undoubtedly, the most popular ISO standards family is ISO 9000—Quality
management. This family of standards includes the following:

ISO 9000:2005 Quality management systems—Fundamentals and vocabulary
[7]. This standard covers the basic concepts and language.

ISO 9001:2008 Quality management systems—Requirements [8]. This standard
sets out the requirements of a quality management system.

ISO 9004:2009 Managing for the sustained success of an organization—A qual-
ity management approach [9]. This standard focuses on how to make a quality
management system more efficient and effective.

2Frank Kaplan, see http://asq.org/about-asq/who-we-are/bio_box.html.
3http://dictionary.cambridge.org/dictionary/british/quality.
4http://en.wikipedia.org/wiki/Quality_(business).

http://asq.org/about-asq/who-we-are/bio_box.html
http://dictionary.cambridge.org/dictionary/british/quality
http://en.wikipedia.org/wiki/Quality_(business)
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ISO 19011:2011 Guidelines for auditing management systems [11]. Importantly,
the popularity of ISO 9000 is due to the certification process. This standard sets
out guidance on internal and external audits of quality management systems.

It is in ISO 9000 where quality is defined as “degree to which a set of inherent
characteristics fulfils requirements.” The bolded terms are also defined, being a
characteristic a “distinguishing feature” and a requirement a “need or expectation.”
On the other hand, the role of statistical techniques deserves a subclause (2.10) in
ISO 9000, where it is remarked how statistical techniques help in understanding
variability, Statistics’ reason for being [3]. ISO TR/10017 [10] provides guidance
on statistical techniques for quality management systems.

The importance of standardization is twofold. On the one hand, the fulfilment
of requirements by the product or service characteristic must be based in standard
values that can be assessed. Sometimes this is stated by other standards or
regulations, for example for the average weight in packages. On the other hand,
the use of standardized procedures is a requirement for quality assurance.

At this point, it is important to remark that, even though ISO 9000 family and
other certifiable rock stars5 are known for almost everybody, the ISO Standards
catalogue6 contains over 19,500 Standards. In particular, there are a number of ISO
Standards regarding statistical techniques used in quality control, published by the
ISO/TC69 Technical committee, Applications of Statistical Methods. In Sec. 4.3,
the standard development process is explained. The structure of ISO Technical
committees is detailed in Sect. 4.1. Details of TC69 secretariat and subcommittees
(SCs) and their published standards are given in Sects. 4.4–4.10. Sect. 4.11 outlines
the role of R in ISO standards.

4.3 The ISO Standards Development Process

The procedures used to develop and maintain ISO standards and other technical
work are described in ISO/IEC Directives. Even though such directives apply to
ISO, IEC, and ISO/IEC Standards, we will refer hereon to ISO terminology for
the sake of clarity, although there could be slight differences at the IEC scope. ISO
Standards are developed and maintained by ISO technical committees, see Sect. 4.1.
ISO/IEC Directives are published in two parts:

• Part 1 and Consolidated ISO Supplement: Official procedures to be followed
when developing and maintaining an International Standard and procedures
specific to ISO [95].

5For example, ISO 14000—Environmental management.
6http://www.iso.org/iso/home/standards.htm.

http://www.iso.org/iso/home/standards.htm
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• Part 2: Principles to structure and draft documents intended to become
International Standards, Technical Specifications or Publicly Available
Specifications. [94]

The process of elaborating and publishing an ISO standard is quite similar to the
academic peer-reviewed process when publishing scientific papers. After someone
proposes a new standard, possibly from outside the corresponding TC, a draft
(manuscript) is prepared, circulated, voted, and revised, throughout a series of steps
until the standard is published. Of course it might happen that a proposal or draft
is rejected at some point and eventually not published. However, in contrast with
academic publications, ISO standards are also bounded to maintenance procedures
to keep the applicable bulk of standards alive. The different stages that an ISO
standard passes through are summarized in Table 4.1.

Once a proposal (NP) is accepted, it is included as a project in the programme of
work of the corresponding TC or SC. As such a project, it must include target dates
for each subsequent stage, a project leader, and procedures for project management
and progress control. Let us take a walk for the usual stages of an ISO Standard
development. Please note that some stages are mandatory, whilst others could be
skipped, see [95].

1. PWI. Preliminary Work Items that are not yet mature enough to be incorporated
to a programme of work, for example relating to emerging technologies or recent
discoveries. If the preliminary work item has not progressed to the proposal stage
in 3 years, it is automatically deleted from the programme of work.

2. NP. A new Work Item Proposal can be for a new standard, a new part of
an existing standard, a technical specification (TS) or a publicly available
specification (PAS). The proposal can be made by different stakeholders, such
as the own TC, a national body, or an organization in liaison, among others. It
must include at least an outline and a project leader. The (of course standardized)
form is circulated to the TC members to vote. Approval requires simple majority
of P-members (see Sect. 4.1) and the commitment to participate by some of them.
Once approved, it is included in the TC programme of work as a project.

Table 4.1 Standard
development project stages

Acronym Description

PWI Preliminary Work Item

NP New Work Item Proposal

WD Working Draft

CD Committee Draft

DIS Draft International Standard

FDIS Final Draft International Standard

ISO International Standard

SR Systematic Review
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3. WD. A first version of the Working Draft could have been submitted with the NP.
Once the project is accepted, the project leader and the experts nominated during
the approval work together to prepare/improve a working draft conforming to
Part 2 of ISO/IEC Directives [94]. A working group can be proposed by the TC
Secretariat. ISO/IEC Directive Part 2 assures that all standards have the same
structure and style. ISO Standards are published in English and French7, so all
efforts must be made to have English and French versions of the text in order to
avoid delays. When the WD is finished, it is circulated to TC members as a first
committee draft (CD).

4. CD. At this stage, national bodies provide comments on the CD. It is quite an
active stage in which technical details are discussed within the TC or SC both
electronically and in-person meetings. Comments are compiled by the secretariat
until an appropriate level of consensus is attained. In case of doubt, a two-thirds
majority is usually sufficient. During this stage the CD can be discussed and
revised until it is proposed as a DIS.

5. DIS. A draft international standard is circulated for voting and commenting to all
national bodies, not only to those involved in the TC/SC. At this stage, technical
comments, mandatory in case of negative vote, can be made. Comments can be
addressed by the secretary for the final draft. Before stepping into the next stage,
a report on the voting and decisions on comments is circulated again, and finally
an FDIS is prepared.

6. FDIS. This is the last stage before publication. The procedure follows a similar
procedure to the one in DIS. However, editorial comments are expected rather
than technical comments.

7. ISO. The international standard is eventually published once the comments in
FDIS has been addressed.

8. SR. After publication, an ISO Standard and other deliverables such as TR are
subject to systematic review in order to determine whether it should be con-
firmed, revised/amended, converted to another form of deliverable, or withdrawn.
For an ISO Standard, the maximum elapsed time before systematic review is 5
years.

Figure 4.1 summarizes the standards development process, including approx-
imate target dates, see [95] for details. Please note that at any voting stage,
the document can be rejected and referred back to the TC/SC, that may decide
to resubmit a modified version, change the type of document (e.g., a technical
specification instead of an international standard), or cancel the project.

7Sometimes also in Russian.
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4.4 ISO TC69 Secretariat

The scope of technical committee ISO TC69 is the “standardization in the applica-
tion of statistical methods, including generation, collection (planning and design),
analysis, presentation and interpretation of data.” Most of the standards stemmed
from ISO TC69 are developed by the subcommittees, at the scope of their specific
field of activity. Nevertheless, some standards are under the direct responsibility of
the TC secretariat. It is important to remark that ISO TC69 has also “the function
of advisor to all ISO technical committees in matters concerning the application of
statistical methods in standardization.”

ISO Standards publication path

[PWI]
Preliminary Work Item

max. 3 years

Not mature proposals
Programme of work

[NP]
New Work Item Proposal

3 months

Simple Majority
Commitment to participate
Project

[WD]
Working Draft

by project

ISO/IEC Directives 2

[CD]
Committee Draft

2−4 months

TC/SC members comments
Meetings
Compiled comments

[DIS]
Draft International Standard

3 months

All national bodies comments
Technical issues
Voting and report

[FDIS]
Final Draft International Standard

2 months

Editorial comments
Final approval
Publication

[ISO]
International Standard 5yr max

[SR] Systematic Review

Fig. 4.1 ISO Standards publication path. Standardized process
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ISO TC69 is structured in six subcommittees, a Working Group (WG), a
Chairman Advisory Group (CAG), and an Ad-Hoc Group (AHG). The role of each
group and subcommittee are as follows:

• ISO/TC 69/CAG: Chairman Advisory Group
• ISO/TC 69/AHG 1: Documents to support the application of statistical methods

standards;
• ISO/TC 69/WG 3: Statistical interpretation of data;
• ISO/TC 69/SC 1: Terminology and symbols;
• ISO/TC 69/SC 4: Applications of statistical methods in process management;
• ISO/TC 69/SC 5: Acceptance sampling;
• ISO/TC 69/SC 6: Measurement methods and results;
• ISO/TC 69/SC 7: Applications of statistical and related techniques for the

implementation of Six Sigma;
• ISO/TC 69/SC 8: Application of statistical and related methodology for new

technology and product development.

The following standards and TRs have been published under the direct responsi-
bility of ISO TC69 Secretariat. A short description of each document can be found
at the standard webpage within the ISO website, see the references section at the
end of this chapter.

• ISO 11453:1996 Statistical interpretation of data—Tests and confidence inter-
vals relating to proportions [83].

• ISO 11453:1996/Cor 1:1999 [80].
• ISO 16269-4:2010 Statistical interpretation of data—Part 4: Detection and

treatment of outliers [82].
• ISO 16269-6:2014 Statistical interpretation of data—Part 6: Determination of

statistical tolerance intervals [88].
• ISO 16269-7:2001 Statistical interpretation of data—Part 7: Median—

Estimation and confidence intervals [84].
• ISO 16269-8:2004 Statistical interpretation of data—Part 8: Determination of

prediction intervals [87].
• ISO 2602:1980 Statistical interpretation of test results—Estimation of the

mean—Confidence interval [89].
• ISO 2854:1976 Statistical interpretation of data—Techniques of estimation and

tests relating to means and variances [90].
• ISO 28640:2010 Random variate generation methods [91].
• ISO 3301:1975 Statistical interpretation of data—Comparison of two means in

the case of paired observations [92].
• ISO 3494:1976 Statistical interpretation of data—Power of tests relating to

means and variances [93].
• ISO 5479:1997 Statistical interpretation of data—Tests for departure from the

normal distribution [85].
• ISO/TR 13519:2012 Guidance on the development and use of ISO statistical

publications supported by software [86].
• ISO/TR 18532:2009 Guidance on the application of statistical methods to

quality and to industrial standardization [81].
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4.5 ISO TC69/SC1: Terminology

Terminology standards are very important not only for the rest of ISO TC69, but also
to other committees that use statistical terminology. In fact, this SC has liaisons with
several TCs and organizations. ISO TC69/SC1 has currently the following Working
Groups:

• ISO/TC 69/SC 1/WG 2: Revisions of ISO 3534;
• ISO/TC 69/SC 1/WG 5: Terminology liaison;
• ISO/TC 69/SC 1/WG 6: Terminology for emerging areas of statistical applica-

tions.

The following standards have been published by ISO TC69/SC1. A short
description of each document can be found at the standard webpage within the ISO
website, see the references section at the end of this chapter.

• ISO 3534-1:2006 Statistics—Vocabulary and symbols—Part 1: General statisti-
cal terms and terms used in probability [12].

• ISO 3534-2:2006 Statistics—Vocabulary and symbols—Part 2: Applied statis-
tics [14].

• ISO 3534-3:2013 Statistics—Vocabulary and symbols—Part 3: Design of exper-
iments [13].

• ISO 3534-4:2014 Statistics—Vocabulary and symbols—Part 4: Survey
sampling [15].

4.6 ISO TC69/SC4: Application of Statistical Methods
in Process Management

This subcommittee develops standards regarding Statistical Process Control,
capability analysis, and control charts. There are three working groups, namely:

• ISO/TC 69/SC 4/WG 10: Revision of control charts standards;
• ISO/TC 69/SC 4/WG 11: Process capability and performance;
• ISO/TC 69/SC 4/WG 12: Implementation of statistical Process Control.

ISO TC69/SC4 has published the following documents. Note that one of them
is a TR, probably due to the fact that during the standard development process, see
Sect. 4.3, the document did not reach the appropriate level to be a standard. A short
description of each document can be found at the standard webpage within the ISO
website, see the references section at the end of this chapter.

• ISO 11462-1:2001 Guidelines for implementation of statistical process control
(SPC)—Part 1: Elements of SPC [18].

• ISO 22514-1:2014 Statistical methods in process management—Capability and
performance—Part 1: General principles and concepts [25].
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• ISO 22514-2:2013 Statistical methods in process management—Capability and
performance—Part 2: Process capability and performance of time-dependent
process models [21].

• ISO 22514-3:2008 Statistical methods in process management—Capability
and performance—Part 3: Machine performance studies for measured data on
discrete parts [16].

• ISO 22514-6:2013 Statistical methods in process management—Capability and
performance—Part 6: Process capability statistics for characteristics following a
multivariate normal distribution [22].

• ISO 22514-7:2012 Statistical methods in process management—Capability and
performance—Part 7: Capability of measurement processes [19].

• ISO 22514-8:2014 Statistical methods in process management—Capability and
performance—Part 8: Machine performance of a multi-state production process
[26].

• ISO 7870-1:2014 Control charts—Part 1: General guidelines [27].
• ISO 7870-2:2013 Control charts—Part 2: Shewhart control charts [23].
• ISO 7870-3:2012 Control charts—Part 3: Acceptance control charts [20].
• ISO 7870-4:2011 Control charts—Part 4: Cumulative sum charts [17].
• ISO 7870-5:2014 Control charts—Part 5: Specialized control charts [28].
• ISO/TR 22514-4:2007 Statistical methods in process management—Capability

and performance—Part 4: Process capability estimates and performance
measures [24].

4.7 ISO TC69/SC5: Acceptance Sampling

There are four working groups in the acceptance sampling SC:

• ISO/TC 69/SC 5/WG 2: Sampling procedures for inspection by attributes
(Revision of ISO 2859);

• ISO/TC 69/SC 5/WG 3: Sampling procedures and charts for inspection by
variables for percent nonconforming (Revision of ISO 3951);

• ISO/TC 69/SC 5/WG 8: Sampling by attributes;
• ISO/TC 69/SC 5/WG 10: Audit sampling.

Acceptance Sampling is a popular topic, as the number of standards published
by ISO TC69/SC5 shows. A short description of each document can be found at the
standard webpage within the ISO website, see the references section at the end of
this chapter.

• ISO 13448-1:2005 Acceptance sampling procedures based on the allocation of
priorities principle (APP)—Part 1: Guidelines for the APP approach [34].

• ISO 13448-2:2004 Acceptance sampling procedures based on the allocation
of priorities principle (APP)—Part 2: Coordinated single sampling plans for
acceptance sampling by attributes [37].
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• ISO 14560:2004 Acceptance sampling procedures by attributes—Specified
quality levels in nonconforming items per million [38].

• ISO 18414:2006 Acceptance sampling procedures by attributes—Accept-zero
sampling system based on credit principle for controlling outgoing quality [39].

• ISO 21247:2005 Combined accept-zero sampling systems and process control
procedures for product acceptance [40].

• ISO 24153:2009 Random sampling and randomization procedures [48].
• ISO 2859-10:2006 Sampling procedures for inspection by attributes—Part 10:

Introduction to the ISO 2859 series of standards for sampling for inspection by
attributes [41].

• ISO 2859-1:1999 Sampling procedures for inspection by attributes—Part 1:
Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot
inspection [42].

• ISO 2859-1:1999/Amd 1:2011 [31].
• ISO 2859-3:2005 Sampling procedures for inspection by attributes—Part 3:

Skip-lot sampling procedures [43].
• ISO 2859-4:2002 Sampling procedures for inspection by attributes—Part 4:

Procedures for assessment of declared quality levels [29].
• ISO 2859-5:2005 Sampling procedures for inspection by attributes—Part 5:

System of sequential sampling plans indexed by acceptance quality limit (AQL)
for lot-by-lot inspection [44].

• ISO 28801:2011 Double sampling plans by attributes with minimal sample sizes,
indexed by producer’s risk quality (PRQ) and consumer’s risk quality (CRQ)
[32].

• ISO 3951-1:2013 Sampling procedures for inspection by variables—Part 1:
Specification for single sampling plans indexed by acceptance quality limit
(AQL) for lot-by-lot inspection for a single quality characteristic and a single
AQL [35].

• ISO 3951-2:2013 Sampling procedures for inspection by variables—Part 2:
General specification for single sampling plans indexed by acceptance quality
limit (AQL) for lot-by-lot inspection of independent quality characteristics [36].

• ISO 3951-3:2007 Sampling procedures for inspection by variables—Part 3:
Double sampling schemes indexed by acceptance quality limit (AQL) for lot-
by-lot inspection [30].

• ISO 3951-4:2011 Sampling procedures for inspection by variables—Part 4:
Procedures for assessment of declared quality levels [33].

• ISO 3951-5:2006 Sampling procedures for inspection by variables—Part 5:
Sequential sampling plans indexed by acceptance quality limit (AQL) for
inspection by variables (known standard deviation) [45].

• ISO 8422:2006 Sequential sampling plans for inspection by attributes [46].
• ISO 8423:2008 Sequential sampling plans for inspection by variables for percent

nonconforming (known standard deviation) [47].
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4.8 ISO TC69/SC6: Measurement Methods and Results

The following working groups can be found at ISO TC69/SC6:

• ISO/TC 69/SC 6/WG 1 Accuracy of measurement methods and results;
• ISO/TC 69/SC 6/WG 5 Capability of detection;
• ISO/TC 69/SC 6/WG 7 Statistical methods to support measurement uncertainty

evaluation;
• ISO/TC 69/SC 6/WG 9 Statistical methods for use in proficiency testing.

The following standards and documents have been published by ISO TC 69/SC6.
In addition to international standards we can found technical reports and technical
specifications. A short description of each document can be found at the standard
webpage within the ISO website, see the references section at the end of this chapter.

• ISO 10576-1:2003 Statistical methods—Guidelines for the evaluation of confor-
mity with specified requirements—Part 1: General principles [61].

• ISO 10725:2000 Acceptance sampling plans and procedures for the inspection
of bulk materials [49].

• ISO 11095:1996 Linear calibration using reference materials [62].
• ISO 11648-1:2003 Statistical aspects of sampling from bulk materials—Part 1:

General principles [63].
• ISO 11648-2:2001 Statistical aspects of sampling from bulk materials—Part 2:

Sampling of particulate materials [52].
• ISO 11843-1:1997 Capability of detection—Part 1: Terms and definitions [64].
• ISO 11843-2:2000 Capability of detection—Part 2: Methodology in the linear

calibration case [50].
• ISO 11843-3:2003 Capability of detection—Part 3: Methodology for determina-

tion of the critical value for the response variable when no calibration data are
used [65].

• ISO 11843-4:2003 Capability of detection—Part 4: Methodology for comparing
the minimum detectable value with a given value [66].

• ISO 11843-5:2008 Capability of detection—Part 5: Methodology in the linear
and non-linear calibration cases [53].

• ISO 11843-6:2013 Capability of detection—Part 6: Methodology for the deter-
mination of the critical value and the minimum detectable value in Poisson
distributed measurements by normal approximations [57].

• ISO 11843-7:2012 Capability of detection—Part 7: Methodology based on
stochastic properties of instrumental noise [67].

• ISO 21748:2010 Guidance for the use of repeatability, reproducibility and
trueness estimates in measurement uncertainty estimation [51].

• ISO 5725-1:1994 Accuracy (trueness and precision) of measurement methods
and results—Part 1: General principles and definitions [54].

• ISO 5725-2:1994 Accuracy (trueness and precision) of measurement methods
and results—Part 2: Basic method for the determination of repeatability and
reproducibility of a standard measurement method [58].
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• ISO 5725-3:1994 Accuracy (trueness and precision) of measurement methods
and results—Part 3: Intermediate measures of the precision of a standard
measurement method [59].

• ISO 5725-4:1994 Accuracy (trueness and precision) of measurement methods
and results—Part 4: Basic methods for the determination of the trueness of a
standard measurement method [60].

• ISO 5725-5:1998 Accuracy (trueness and precision) of measurement methods
and results—Part 5: Alternative methods for the determination of the precision
of a standard measurement method [68].

• ISO 5725-6:1994 Accuracy (trueness and precision) of measurement methods
and results—Part 6: Use in practice of accuracy values [55].

• ISO/TR 13587:2012 Three statistical approaches for the assessment and inter-
pretation of measurement uncertainty [56].

• ISO/TS 21749:2005 Measurement uncertainty for metrological applications—
Repeated measurements and nested experiments [70].

• ISO/TS 28037:2010 Determination and use of straight-line calibration
functions [69].

4.9 ISO TC69/SC7: Applications of Statistical and Related
Techniques for the Implementation of Six Sigma

Six Sigma is a breakthrough methodology that is in part extending the use of
statistics throughout companies all over the World. Even though Six Sigma was
born in the 1980s, this ISO SC was recently created, specifically in 2008. The work
is organized in three WGs and one AHG as follows:

• ISO/TC 69/SC 7/WG 1: Design of experiments;
• ISO/TC 69/SC 7/AHG 1: Strategic planning and working practice;
• ISO/TC 69/SC 7/WG 2: Process measurement and measurement capability;
• ISO/TC 69/SC 7/WG 3: Six sigma methodology.

Given its young age, there are few ISO TC 69/SC7 standards published. However,
the SC work programme works in new standards.8 Technical Reports produced by
this SC illustrate different techniques for some applications, using different software
packages. A short description of each document can be found at the standard
webpage within the ISO website, see the references section at the end of this chapter.

• ISO 13053-1:2011 Quantitative methods in process improvement—Six Sigma—
Part 1: DMAIC methodology [75].

• ISO 13053-2:2011 Quantitative methods in process improvement—Six Sigma—
Part 2: Tools and techniques [76].

8Check http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=
560992&development=on.

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=560992&development=on
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=560992&development=on
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• ISO 17258:2015 Statistical methods—Six Sigma—Basic criteria underlying
benchmarking for Six Sigma in organisations [78].

• ISO/TR 12845:2010 Selected illustrations of fractional factorial screening
experiments [73].

• ISO/TR 12888:2011 Selected illustrations of gauge repeatability and repro-
ducibility studies [77].

• ISO/TR 14468:2010 Selected illustrations of attribute agreement analysis [74].
• ISO/TR 29901:2007 Selected illustrations of full factorial experiments with four

factors [71].
• ISO/TR 29901:2007/Cor 1:2009 [72].

4.10 ISO TC69/SC8: Application of Statistical and Related
Methodology for New Technology and Product
Development

ISO TC69/SC8 is the youngest of the SCs in TC69. The following three WGs are
working on developing innovative standards:

• ISO/TC 69/SC 8/WG 1: Sample survey;
• ISO/TC 69/SC 8/WG 2: Transformation;
• ISO/TC 69/SC 8/WG 3: Optimization;

Established in 2009, at the time this book is being written only one international
standard has been published by ISO/TC 69 SC 8. However, one DIS and seven
Approved Work Items (AWIs) can be found in the work programme, some or all
of them will very likely be published when you are reading this book. A short
description of that standard can be found at the standard webpage within the ISO
website, see the references section at the end of this chapter.

• ISO 16336:2014 Applications of statistical and related methods to new technol-
ogy and product development process—Robust parameter design (RPD) [79].

4.11 The Role of R in Standards

Nowadays, we cannot think about applying statistical techniques without using
a statistical software. Even though international standards tend to be software-
agnostic, sometimes software tools and packages appear within them. Market-
leaders such as Minitab and JMP (by SAS) are usually the most referred. For
example, if we look at ISO TC69/SC7 TRs, they are used in all of them: ISO/TR
29901 [71], ISO/TR 12888 [77], ISO/TR 29901 [71], and ISO/TR 12845 [73].
In ISO/TR 12845 also R is referred, which is a signal of the increasing interest
in the industry on the R statistical software and programming language. In fact,
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in the comments submitted by ISO members during the standards development
process, see Sect. 4.3, R is more and more mentioned by experts. On the other
hand, R has become a kind of de facto standard for data analysis, see, for example,
[1, 3, 5, 6, 101]. Being R open source, it is just common sense to use it within
standards in order to allow all the users test methods and reproduce examples.

Furthermore, R is not just statistical software. R is a programming language that
can be used to illustrate new methods or algorithms. For example, ISO 28640 [91]
is for random variate generation methods. Annex B of that standard lists C code for
several algorithms, including the Mersenne-Twister algorithm [99], the default one
to generate random numbers in R, see the documentation for the RNG topic (?RNG).
R could be used also for this purpose, i.e., illustrate algorithms and programming
code. However, R is not still an ISO standardized language like C. Perhaps some day
R and other emerging programming languages for data analysis like Python will join
the club at ISO/IEC JTC 1/SC 22—Programming languages, their environments
and system software interfaces. In addition to ISO/IEC 9899 for C [96] and ISO/IEC
14882 for C++ [97], this Joint Technical Committee has published a total of 96 ISO
standards for a number of programming languages, including Prolog, Pascal, Ruby,
Fortran, and Ada, among others. Check the JTC web page9 to find out more about
them.

To finish this chapter, let us use R to retrieve information about ISO standards
from the web. The ISO catalogue can be browsed in the website (http://www.iso.
org) in the usual way. The search box at the top right side allows to find a standard
immediately. The full standards catalogue can be browsed by TC or by International
Classification for Standards (ICS) at http://www.iso.org/iso/home/store/catalogue_
tc.htm. Furthermore, a great resource is the ISO Online Browse Platform (OBP)
(https://www.iso.org/obp/). Previews of ISO standards are available, both from the
individual standard web page, that redirects to OBP, and from the searchable data
base. In addition to this manual search, information may be retrieved from the ISO
RSS channels. There is a link to subscribe RSS channels at a TC or SC web page
and at a single standard webpage. For example, Figure 4.2 shows the ISO/TC69
web page where you can find a link to subscribe to updates. This link leads to an
XML file with the standards of the TC. As XML files are data structures, they can
be imported into R objects for further use. For example, the following code retrieves
TC69/SC1 standards into an R data.frame, via the XML package:

library(XML)
rsslink <- "http://www.iso.org/iso/rss.xml?commid=49754

&rss=TCbrowse"
doc <- xmlTreeParse(rsslink)
src <- xpathApply(xmlRoot(doc), "//item")
for (i in 1:(length(src))) {

if (i == 1) {

9http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=
45202&published=on.

http://www.iso.org
http://www.iso.org
http://www.iso.org/iso/home/store/catalogue_tc.htm
http://www.iso.org/iso/home/store/catalogue_tc.htm
https://www.iso.org/obp/
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=45202&published=on
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=45202&published=on
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foo <- xmlSApply(src[[i]], xmlValue)
DATA <- data.frame(t(foo), stringsAsFactors = FALSE)

} else {
foo <- xmlSApply(src[[i]], xmlValue)
tmp <- data.frame(t(foo), stringsAsFactors = FALSE)
DATA <- rbind(DATA, tmp)

}
}
str(DATA)

## ’data.frame’: 10 obs. of 6 variables:
## $ title : chr "ISO 3534-2:2006 - Statist"..
## $ link : chr "http://www.iso.org/iso/ca"..
## $ description: chr "This document reached sta"..
## $ category : chr "Published standards" "Pub"..
## $ guid : chr "http://www.iso.org/iso/ca"..
## $ pubDate : chr "2014-06-02" "2014-04-17" "..

Now we have a data.frame called DATA with ten observations and six variables,
namely: title, link, description, category, guid, pubDate. From the information of
each variable we can extract information to have more useful variables, for example
splitting the title variable to get the standard code as follows:

DATA$code <- sapply(1:nrow(DATA), function(x){
unlist(strsplit(DATA$title[x], " - "))[1]

})

Fig. 4.2 ISO TC69 web page. A link to subscribe RSS channels is available at each TC, SC, and
individual standard web pages
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Finally, we can use also XML syntax to do what is usually called webscrapping,
i.e., retrieving information from websites accessing the pages HTML structure. One
of the fields retrieved from the RSS channel is the URL of each standard web page.
In such standard web pages we can find interesting information, for example an
abstract for the standard. Let us get the abstract of ISO 3534-1:2006.10 First, we
need the URL for the standard11:

linkstd <- DATA$link[grep("3534-1:2006", DATA$title)]

Then, following a similar approach of that for an XML file, the information from
an HTML file can be get. However, errors may arise due to the strict rules of the
XML specification. Webscrapping is easier to do using the rvest package, see
the package documentation for details. In our example, the following code gets the
abstract for ISO 3534-1:200612:

library(rvest)
mystd <- rvest::html(linkstd)

abstract <- mystd %>%
html_nodes(".abstract") %>%
html_text()

Now you can use the text for any purpose, for example to print out the abstract
with the cat function:

Output:

cat(abstract)

Abstract
ISO 3534-1:2006 defines general statistical terms and terms used in probability which may
be used in the drafting of other International Standards. In addition, it defines symbols for
a limited number of these terms.

In any case, webscrapping requires practice and knowledge on HTML documents
structure. We have just illustrated how R can help beyond statistical data analysis,
with an application on catching up with the standards development world.

10There is an RSS channel for each standard, but the abstract is not there.
11The grep function uses regular expressions to match text info.
12The syntax package::function avoids conflict with other packages’ functions with the
same name.
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Part II
Statistics for Quality Control

This part includes two chapters about basic Statistics, needed to perform statistical
quality control. The techniques explained throughout the book make use of basic
concepts such as mean, variance, sample, population, probability distribution, etc.
A practical approach is followed, without details about the mathematical theory.
Chapter 5 reviews descriptive statistics, probability, and statistical inference with
quality control examples illustrated with the R software. Chapter 6 tackles the
crucial task of appropriately taking samples from a population, using intuitive
examples and R capabilities.



Chapter 5
Modelling Quality with R

Abstract This chapter provides the necessary background to understand the
fundamental ideas of descriptive and inferential statistics. In particular, the basic
ideas and tools used in the description both graphical and numerical, of the inherent
variability always present in real world are described. Additionally, some of the most
usual statistical distributions used in quality control, for both the discrete and the
continuous domains are introduced. Finally, the very important topic of statistical
inference contains many examples of specific applications of R to solve these
problems. The chapter also summarizes a selection of the ISO standards available
to help users in the practice of descriptive and inferential statistic problems.

5.1 The Description of Variability

5.1.1 Background

The data we want to analyze are measurements or observations of a characteristic in
a set of items. These items can be people, products, parts, or some individual unit in
a set where we can observe the characteristic under study. The characteristic we are
observing is a variable as it is expected not to be constant among the items. In terms
of probability theory, a characteristic is a random variable with a given probability
distribution. It is important to keep in mind that statistical analyses are based on the
underlying probability distribution of the data.

There are two main types of variables: quantitative variables and qualitative
variables. When the observed characteristic can be measured using some scale, we
have a quantitative variable. When the observed characteristic is a description or
a categorization of an item, we have a qualitative variable. Furthermore, quanti-
tative variables can be classified in continuous and discrete variables. Continuous
variables can take any value within an interval, for example, temperature or length.
Discrete variables can take a countable number of values (finite or infinite); for
example, the number of defective units within a lot of finished products can only
have the values 1, 2, 3, . . . , n where “n” is the total number of units in the lot.

It is rather complex to describe variability. Scientists have developed two general
approaches that greatly help in this job: graphical representations (a series of
different charts) and numerical descriptions (numbers that condense the information
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146 5 Modelling Quality with R

obtained from the measurements). From the point of view of quality control, the
description of variability is vital since a change in variability behavior is the flag
that indicates that something has changed in the process under study.

There is a huge amount of literature regarding descriptive statistics, probability,
and inference, the topics of this chapter. Just to mention some advisable ones, [13] is
an easy-to-read one, while [12] and [3] contain deeper explanations and theoretical
background.

This chapter provides the necessary background to understand the fundamental
ideas of descriptive and inferential statistics. Sect. 5.1. develops the basic ideas
and tools used in the description both graphical and numerical, of the inherent
variability always present in real world. Sect. 5.2. introduces some of the most
usual statistical distributions used in quality control, for both the discrete and
the continuous domains. Sect. 5.3. develops the very important topic of statistical
inference. Sects. 5.1 to 5.3. contain many examples of specific applications of
R to solve these problems. Finally, Sect. 5.4 provides a selection of the ISO
standards available to help users in the practice of descriptive and inferential statistic
problems.

5.1.2 Graphical Description of Variation

There is a large number of charts that can be used for describing variabil-
ity/variation. Sometimes we simply want to condense the information regardless
of its behavior with respect to time (static vision); in other occasions, the factor
time is essential for understanding variability (dynamic vision). It is very common
that for a certain analysis more than a single chart has to be used; each of them will
help us in understanding a specific aspect of variation.

5.1.2.1 Histogram

The histogram, briefly introduced in Chapter 3, is one of the most popular charts
used in statistics; it is simple to construct and simple to understand. A histogram
is a bar chart used for describing continuous variables. This bar chart shows the
distribution of the measurements of variables. On the x-axis, each bar’s width
represents an interval of the possible values of a variable. The height of the bars (that
is, the y-axis) represents the frequency (relative or absolute) of the measurements
within each interval. The rule is that the area of the bars should be proportional to
the frequencies.

The histogram does not give us information about the behavior of the measure-
ments with respect to time; it is used to find the distribution of a variable, that is:

• Is the variable centered or asymmetric?
• What is the variation like? Are the observations close to the central values, or is

it a spread distribution?
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• Is there any pattern that would prompt further analysis?
• Is it a normal distribution?

To make a histogram of our data, we first determine the number of bins (bars)
that we are going to plot. Then, we decide on the width of the intervals (usually the
same for all intervals) and count the number of measurements within each interval.
Finally, we plot the bars. For intervals with equal widths, the height of the bars will
be equal to the frequencies.

The simplest way to create a histogram with R is by means of the standard
graphics capabilities, i.e., using the hist function. A simple call to this function
with the vector of data as argument plots the histogram. More elaborate charts can
be made using the lattice and ggplot2 packages, see Chapter 2. They are
specially useful if we need to visualize several histograms in the same chart as we
will see in the following example. Remember that histograms are one of the seven
basic quality control tools, see Chapter 3, you can see there more examples.

Example 5.1. Metal plates thickness. Histogram.
Table 5.1 contains two sets of 12 measurements, each one corresponding to the

thickness of a certain steel plate produced in 2 successive days. Nominal thickness
of this product is 0.75 in. Production equipment was readjusted after Day 1 because
the engineer in charge of the production line concluded that the product was thicker
than required. The following code creates a data frame in the R workspace1:

day1 <- c(0.821, 0.846, 0.892, 0.750, 0.773, 0.786,
0.956, 0.840, 0.913, 0.737, 0.793, 0.872)

day2 <- c(0.678, 0.742, 0.684, 0.766, 0.721, 0.785,
0.759, 0.708, 0.789, 0.732, 0.804, 0.758)

plates <- data.frame(thickness = c(day1, day2),
day = rep(c("Day1", "Day2"), each = 12))

Table 5.1 Thickness of a
certain steel plate

Thickness Day Thickness Day

0.821 Day1 0.678 Day2

0.846 Day1 0.742 Day2

0.892 Day1 0.684 Day2

0.750 Day1 0.766 Day2

0.773 Day1 0.721 Day2

0.786 Day1 0.785 Day2

0.956 Day1 0.759 Day2

0.840 Day1 0.708 Day2

0.913 Day1 0.789 Day2

0.737 Day1 0.732 Day2

0.793 Day1 0.804 Day2

0.872 Day1 0.758 Day2

1The data frame is also available in the SixSigma package.
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Although in the case of the data corresponding to Day1 it may seem clear that
the numbers are larger than 0.75 in (only two data points out of twelve are not larger
than that value) a histogram will put the situation even clearer. Fig. 5.1 shows the
histogram generated with the following code:

hist(plates$thickness,
main = "Histogram of Thickness",
xlab = "Thickness (in)",
las = 1,
col = gray(0.5),
border = "white")

As was shown in Chapter 2, even though R can produce charts with very little
information (for example, in the above code only the first argument would be
needed), we can add options to get the desired result. Try the function with and
without the added options and see the differences. When doing so, we explain the
arguments used in the code. In this case:

main Sets the plot title
xlab Sets the label for the x axis
las Sets the axis labels orientation
col Sets the histogram bars fill color
border Sets the histogram bars border color

There are more graphical options, you can always check the documentation of the
plotting function (in this case, hist) and the graphical parameters options (par).

Having this chart will give the engineer a good argument to backup his feeling
about Day1 data. A good idea would be to represent data before and after the
adjustment of the equipment, in the search for an evidence of the improvement.
A straightforward way to display charts for different groups in R is using functions
of the lattice package. The following code produces the chart in Fig. 5.2.

Fig. 5.1 Histogram. A
histogram provides an idea of
the data distribution. The x
axis represents the magnitude
we are measuring. The y axis
is for the frequency of data.
Thus, hints about the range,
central values and underlying
probability distribution
can be got
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library(lattice)
trellis.par.set(canonical.theme(color = FALSE))
trellis.par.set("background", list(col = gray(0.85)))
trellis.par.set("panel.background", list(col = "white"))
histogram(~ thickness | day, data = plates,

main = "Histogram of Thickness by day",
xlab = "Thickness (in)",
ylab = "Frequency",
type = "count")

This is what the code does:

• Load the lattice package;
• Set graphical parameters:

– A black and white theme for monochrome printing;
– A gray background for the whole canvas;
– A white background for the panels (where plots are actually drawn);

• Plot a histogram of thickness for each level of the day factor, variables which
are in the plates data frame. Title and labels are added similarly to the standard
graphics histogram, and the type argument is to state that the y axis is for
counts instead of the default value (percent). Note that lattice uses a formula
expression to decide how to display plots in panels.

Histogram of Thickness by day
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Fig. 5.2 Histograms by groups. When different groups are in a data set, visualization by those
groups is a powerful tool
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The histogram tells us in a very direct way that process has been successfully
adjusted in Day2 around a value close to the goal of 0.75 in. ut

5.1.2.2 Run Chart

A run chart is a bidimensional chart where the x-axis represents a time line and on
the y-axis is plotted the variable that we want to monitor. These types of charts are
also called time-series charts when we have a time scale on the x-axis. The scale
of the x-axis may not necessarily be equally temporally shifted (for example, the
volume of some recipients whose production is sequential). Thus, we will have a
number of subgroups where a characteristic is measured, and we have the order of
the subgroups (notice that a subgroup may contain only one element). Usually a
centered line is plotted in a run chart. It may represent a target, the mean of the data,
or any other value. Run charts allow us to detect patterns that can be indicative of
changes in a process. Changes entail variability and, thus less quality. In particular,
if we detect cycles, trends, or shifts, we should review our process. If we use the
median as center line, then half of the points are below the center line, and have
of the points are above the center line. If a process is in control, the position of
each point with respect to the center line is random. However, if the process is not
in control, then non-random variation appears in the run chart. In addition to the
apparent patterns detected visualizing the chart, additional numerical tests can be
run to detect such non-random variation.

Simple run charts can be plotted using R standard graphics simply plotting a
vector of data with the plot function, and then adding a center line using the
abline function. The qichart package provides a simple interface to plot run
charts and get run tests.

Example 5.2. Metal plates thickness (cont.) Run chart.
The run chart corresponding to our example of plate thickness in Fig. 5.3 is the

simplest version of a run chart we can get with just the following two expressions:

Fig. 5.3 Simple run chart.
The run chart provides
insights about changes in the
process
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plot(plates$thickness,
type = "b",
main = "Run Chart of Thickness",
las = 1,
ylab = "Thickness",
xlab = "Plate number",
pch = 20)

abline(h = median(plates$thickness),
lwd = 2)

type Sets the type of representation for each data point (lines, points, both)
pch Sets the symbol to be plotted at each point
h Sets the value in the vertical axis at which a horizontal line will be

plotted
lwd Sets the line width

The run chart produced by the qicharts package in Fig. 5.4 provides further
information. In particular, the number of observations, the longest run, and the
crossings.
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Fig. 5.4 Run chart with tests. Numerical tests can be run to detect process shifts
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library(qicharts)
qic(thickness,

data = plates,
freeze = 12,
pre.text = "Day 1",
post.text = "Day 2",
runvals = TRUE)

freeze Point in the x axis that divides the data set in two subsets
pre.text Text to annotate the pre-freeze period
post.text Text to annotate the post-freeze period
runvals (logical) whether to print the statistics from runs analysis

Note that the median has been computed only with day 1 data, as we have frozen
those data as in-control data. The numbers in brackets for the longest run and
the crossings are the limits to consider that the process is in control. In this case,
both criteria indicate that the distribution around the median cannot be considered
random. Details about the foundations of these tests can be found in [2] and [15].

The sequential representation of the same data provides a substantially different
vision that what the histogram does. Now it seems to be evident that a real change
occurred after observation number 12 (corresponding to the adjustment of the
process after Day1)

If we analyze in detail the information provided by the histogram and the run
chart, we can conclude that none is better, both are complementary and necessary to
understand the whole picture of the situation. ut

5.1.2.3 Other Important Charts in Quality Control

Tier Chart

A tier chart is similar to a run chart. We use tier charts when we have more than
one observation in each run (e.g., batches, days, etc.). With the tier chart we can
see short-term variation and long-term variation jointly in a single chart. Short-term
variation is the variation within each subgroup, whereas long-term variation is the
variation among all the groups.

To create a tier chart, we plot vertical lines at the position of each run from the
higher to the lower value. Then, the single values are plotted as a point or as a
vertical segment.

There is not a specific function to plot tier charts in R (neither in all statistical
software). Nevertheless, we can tune up a dot plot in order to get the typical tier
chart. The dotplot function in the lattice package does the trick using the
appropriate panel functions.
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Example 5.3. Metal plates thickness (cont.) Tier chart.
Now let us suppose that our plate thickness data for each day can be divided

into two groups of equal size, each corresponding to a different working shift. The
following code adds this information to the data frame:

plates$shift <- factor(paste0("Shift",
(rep(1:2, each = 6))))

plates$dayshift <- factor(paste(plates$day,
plates$shift, sep = "."))

We can plot a dot plot using the dotplot function in the lattice package,
and then add lines to get a typical tier chart. The following code plots the tier chart
in Fig. 5.5.

dotplot(thickness ~ dayshift,
data = plates,
pch = "-",
cex = 4,
panel = function(x, y, ...){
panel.dotplot(x, y, ...)
panel.superpose(x, y,

subscripts = 1:length(x), x,
panel.groups = "llines",
col = "black",
type = "l",
lty = 1)

})

Fig. 5.5 Tier chart by shifts.
A tier chart displays
variability within and
between groups
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cex Magnifying factor for text and symbols
lty Type of line to be plotted (1 = solid)
panel.superpose Function to plot different elements by groups within a panel
subscripts indices of the data in the original data source to be used
panel.groups the name of the function to be used when superposing

Note that the panel argument in lattice plots allows to add a lot of
sophistication to multivariate plots. The value for this argument is an anonymous
function in which the elements in the panel are drawn by calling panel.*
functions. Usually, the first element is the counterpart of the container function,
in our example, panel.dotplot. See [14] for details about lattice graphics. ut

Box-and-Whisker Plot

The box-and-whisker plot is also known as the box plot. It graphically summarizes
the distribution of a continuous variable. The sides of the box are the first and third
quartiles (25th and 75th percentile, respectively).2 Thus, inside the box we have the
middle 50 % of the data. The median is plotted as a line that crosses the box. The
extreme whisker values can be the maximum and minimum of the data or other
limits beyond which the data are considered outliers. The limits are usually taken
as:

ŒQ1 � 1:5 � IQR; Q3 C 1:5 � IQR�;

where Q1 and Q3 are the first and third quartiles, respectively, and IQR is the
interquartile range (Q3 � Q1). Quantiles and IQR will be explained in detail in
Sect. 5.1.3.2. We can replace 1.5 with any value in the boxplot function of R.
The outliers are plotted beyond the whiskers as isolated points and can be labeled to
identify the index of the outliers. The box plot tells us if the distribution is centered
or biased (the position of the median with respect to the rest of the data), if there
are outliers (points outside the whiskers), or if the data are close to the center values
(small whiskers or boxes). This chart is especially useful when we want to compare
groups and check if there are differences among them.

To create a boxplot with R we can use the boxplot standard function or other
packages functions like bwplot in the lattice package.

Example 5.4. Metal plates thickness (cont.) Box plot.
For the example of the metal plates, we obtain the boxplot in Fig. 5.6 for the

whole data set using the following code:

boxplot(plates$thickness)

2Actually, a version of those quartiles called hinches, see [5] and ?boxplot.stats.
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To compare groups using boxplots, we can add a formula to the function, see
Fig. 5.7:

boxplot(thickness ~ day, data = plates)

We can even make comparisons using more than one grouping variable. The
lattice package is more appropriate for this task. In Fig. 5.8, we create a panel
for each day using the following expression:

bwplot(thickness ~ shift | day , data = plates)

ut

Fig. 5.6 Box plot for all
data. A box plot shows the
distribution of the data
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5.1.3 Numerical Description of Variation

5.1.3.1 Central Tendency

The central values of a data set are the simplest way to summarize the data. A central
measure value is a number around which the data vary. Three important central
tendency measures are mainly used in any statistical analysis:

1. The sample mean is the average value. This is the most widely used measure due
to its mathematical properties. The main inconvenience is that it is sensitive to
outliers (values far from the central values):

x D
P

xi

n

To calculate the mean with R we use the mean function.

Example 5.5. Metal plates thickness (cont.) Mean of the metal plates thickness.
The mean function over a vector returns the average of the values in the vector.

If there are missing values (NA), the returned value is NA, unless we set the na.rm
argument to TRUE, see Chapter 2 for details.

mean(plates$thickness)

## [1] 0.7877083

To make any computation by groups in R, we can use the tapply function, in
our example:

tapply(plates$thickness, plates$day, mean)

## Day1 Day2
## 0.8315833 0.7438333

ut

Fig. 5.8 Lattice box plots.
A deeper stratified analysis
can be made using lattice
graphics
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2. The median is the value that divides the data into two halves: one containing
the higher values, the other containing the lower values. It is not influenced by
outliers. If we have an even number of data, the average value of the two central
values is taken.

The median function computes the median of a numeric vector in R.

Example 5.6. Metal plates thickness (cont.) Median of the metal plates thickness.

tapply(plates$thickness, plates$dayshift, median)

## Day1.Shift1 Day1.Shift2 Day2.Shift1 Day2.Shift2
## 0.8035 0.8560 0.7315 0.7585

ut
3. The mode is the most frequent value (or range of values in a continuous variable).

In a frequency table, it is the value that has the maximum frequency. Even
though the mean and the median are unique values, a data set might have more
than one mode. Many times this means that the sample data come from merged
populations, and we should measure categorical variables in order to make an
appropriate stratification.

There is not a function to calculate the mode with R. Instead, we need to check
the value or range of values that has the maximum frequency.

Example 5.7. Metal plates thickness (cont.). Mode of the metal plates thickness.
For the example of the metal plates none of the values are repeated, so there is

no value that can be considered as the mode. However, we can check which interval
has the highest frequency. This is the modal interval. We can follow two approaches.
One is to divide the range into a number of intervals and check which interval is the
modal one, for example:

thickness.freq <- table(cut(plates$thickness,
round(sqrt(length(plates$thickness)))))

thickness.freq

##
## (0.678,0.734] (0.734,0.789] (0.789,0.845]
## 5 10 4
## (0.845,0.9] (0.9,0.956]
## 3 2

thickness.mode.int <- names(
thickness.freq)[
thickness.freq == max(thickness.freq)]

thickness.mode.int

## [1] "(0.734,0.789]"



158 5 Modelling Quality with R

In the code above, we first divide the range of the variable into (rounded)
p

n
intervals with the cut function, where n is the number of observations. This is
quite a common rule to start, but there are other, for example to build a histogram
the Sturges’ formula [16] is used, type ?nclass.Sturges to see other. Then we
create an object with the frequency table, and finally the name of the class whose
frequency is maximal is showed.

The second approach is to use the intervals produced to construct a histogram,
which are taken with a rounded interval width. To do that, we simple save the result
of the hist function instead of plotting it, and then access to the object in which
that information was saved. We could also take the mid value of the interval in order
to provide a single value for the mode.

thickness.hist <- hist(plates$thickness, plot = FALSE)
names(thickness.hist)

## [1] "breaks" "counts" "density" "mids"
## [5] "xname" "equidist"

thickness.mode.mid <- thickness.hist$mids[
thickness.hist$counts == max(thickness.hist$counts)]

thickness.mode.mid

## [1] 0.775

In the object saved, the element mid contains the mid points of each interval,
and the counts element contains the frequencies.

Note that both approaches provide a similar result, which is definitely enough
for a descriptive analysis. Putting all together, if we compare the central tendency
measures and the graphical tools (histogram and box plot), we can see how the
asymmetry shown by the histogram, with a slight positive skew (longest right tail)
results in a mean higher than the median and the mode. Fig. 5.9 shows the measures
in the own histogram, produced with the following code.

thickness.central <- list(mean = mean(plates$thickness),
median = median(plates$thickness),
mode = thickness.mode.mid)

plot(thickness.hist)
abline(v = thickness.central,

col = c("red4", "green4", "steelblue"),
lwd = 2)

legend(x = 0.85, y = 8,
legend = names(thickness.central),
lwd = 2,
col = c("red4", "green4", "steelblue"))

ut
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In the code above, we have:

1. saved the three central tendency measures in a list;
2. plotted a histogram of the thickness data;
3. plot a vertical line for each central tendency measure;
4. added a legend to the plot.

5.1.3.2 Variability

Variability is statistics’ reason for being [1]. In this section we will see how to
measure such variability. The variance is the most important measure of variability
due to its mathematical properties. It is the average squared distance from the mean,
and we will represent it by �2:

�2 D

nP
iD1

.xi � �/2

n

Another estimator for the variance of a population with better mathematical
properties than �2 is the sample variance, computed in a slightly different way and
represented by s2:

s2 D

nP
iD1

.xi � x/2

n � 1

Fig. 5.9 Histogram with
central tendency measures.
The mean of a sample data
departs from the median to
the longest tail

Histogram of plates$thickness

plates$thickness

F
re

qu
en

cy

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0

2

4

6

8
mean
median
mode



160 5 Modelling Quality with R

To calculate the sample variance with R we use the var function.

Example 5.8. Metal plates thickness (cont.) Variance.

var(plates$thickness)

## [1] 0.004987955

tapply(plates$thickness, plates$day, var)

## Day1 Day2
## 0.004580265 0.001649061

ut
The variance is in square units compared with the mean. Hence, the standard

deviation is the most commonly used variability measure:

s D

vuuut
nP

iD1

.xi � x/2

n � 1
:

To calculate the standard deviation with R we use the sd function.
The sample standard deviation is not an unbiased estimator of the population

standard deviation. This is the reason why in some control charts described in
Chapter 9 one of the following estimates of the standard deviation is used:

O� D s

c4

I O� D R

d2

;

where c4 and d2 are tabulated constants for a given n sample size, and R is the sample
range (see below).

Example 5.9. Metal plates thickness (cont.) Standard deviation.

## Sample standard deviation
sd(plates$thickness)

## [1] 0.07062545

## Unbiased estimators
sd(plates$thickness)/ss.cc.getc4(

length(plates$thickness))

## c4
## 0.07139706

diff(range((plates$thickness)))/ss.cc.getd2(
length(plates$thickness))

## d2
## 0.07136718

ut
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The range (R) is the difference between the maximum value and the minimum
value, but it is strongly influenced by extreme values. Nevertheless, when we have
few data, it is used as a robust method to estimate the variability as outlined above,
see [12] for details:

R D max xi � min xi:

To calculate the range with R, we need to get the maximum and minimum using
the range function, and then get the difference.

Example 5.10. Metal plates thickness (cont.) Sample range.

diff(range(plates$thickness))

## [1] 0.278

tapply(plates$thickness, plates$day, function(x){
diff(range(x))})

## Day1 Day2
## 0.219 0.126

Note how we can add any customized function on the fly to make any computa-
tion by groups. The third argument of the tapply function in the above code is a
so-called anonymous function, always with an x as argument that is then used within
the function body. This strategy can also be used in vectorized functions such as
lapply and sapply, type ?lapply in the console and check the documentation
and examples on the topic.

ut
If we want to measure the variability around the median, the appropriate measure

is the median absolute deviation (MAD), that is:

MAD.X/ D Median .jxi � Median.X/j/ :

Similarly to the median, we can compute the quartiles. These are the values that
divide the data into four parts. Thus the median is the second quartile (Q2). The first
quartile (Q1) is the value that has 25 % of data below it, and the third quartile (Q3)
is the value above which 25 % of data remain. The interquartile range (IQR) is a
measure of variability that avoids the influence of outliers. This range contains the
middle 50 % of the data:

IQR D Q3 � Q1:

To calculate the quartiles with R we can use the quantile function. The
summary function over a numeric vector returns the five numbers summary
(max, min, Median, Q1 and Q3) and the mean. The IQR function computes the
interquartile range. The mad function returns the median absolute deviation.
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Example 5.11. Metal plates thickness (cont.) MAD, Quartiles and interquartile
range.

mad(plates$thickness)

## [1] 0.0622692

summary(plates$thickness)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6780 0.7408 0.7790 0.7877 0.8258 0.9560

quantile(plates$thickness, 0.25)

## 25%
## 0.74075

IQR(plates$thickness)

## [1] 0.085

tapply(plates$thickness, plates$day, IQR)

## Day1 Day2
## 0.09425 0.05300

ut

5.1.3.3 Frequency Tables

Usually, raw data becomes as difficult to interpret as the number of observations
increases. Thus, many times the first operation we do with the data is to build a
frequency table. For a discrete variable, the frequency of a value of the variable is
the number of times this particular value appears. For a discrete variable the relative
frequency is the fraction of times the value appears.

For continuous variables we need to arrange the data into classes. For example,
if in our example of plate thickness we want to count the number of values above
and below the nominal value of 0.75 in, we first create a new factor variable.

We use the R function table to get frequency tables. To discretize a numerical
variable we can use the cut function or just combine logical expressions and
assignments.

Example 5.12. Metal plates thickness (cont.) Frequency tables.

plates$position <- cut(x = plates$thickness,
breaks = c(min(plates$thickness), 0.75,
max(plates$thickness)),
labels = c("bellow", "above"),
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include.lowest = TRUE)
table(plates$position, plates$day)

##
## Day1 Day2
## bellow 2 6
## above 10 6

breaks Points where breaking the data
labels Labels for the resulting factor levels
include.lowest whether to make the first interval closed

ut

5.2 Probability Distributions

Characteristics of processes can be modeled as random variables. A random variable
is a variable quantity measured over a population for which we can compute
probabilities. In general, a random variable is determined by the set of values
that can take, and the probabilities associated with such values. Even though
“random variable” concept is theoretical, we can compute its expectation (average
or expected value) and variance, usually denoted by � and �2 , respectively. Most
processes can be modeled by means of known probability distribution models
whose properties have been previously studied. As a consequence, probabilities
and characteristics are usually predetermined and can be easily computed. In
this section, the most important probability distribution models, both discrete and
continuous, are explained.

In inferential statistics, a usual path to follow is, after getting sample data or study
the process, guess the most appropriate probability distribution model. Then, given
that theoretical model, test hypothesis, computations, predictions, and decisions can
be made. Such predictions usually involve the estimation of � and �2 at some
extent. In what follows, X represents a random variable, x a possible value for such
value, and p.x/ D P.X D x/ the probability that the variable takes the value x. The
probability distribution function is denoted by F.x/ D P.X � x/.

5.2.1 Discrete Distributions

In certain occasions the random variable can only take on certain values, e.g.,
“defective” and “non defective” (0, 1), “number of events in a period” (0, 1, 2,
. . . ). In these cases the probability distribution is called a discrete distribution, and
a certain probability of occurrence is assigned to each of the possible states of the
variable.
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5.2.1.1 Hypergeometric Distribution

The hypergeometric distribution is used when, within a finite population of N items,
there is a certain number D of them that belong to a certain category, e.g., defectives.
The problem consists in calculating the probability of obtaining x items of that
special category if a random sample of n items is taken from the population without
replacement. In this case, we say that X follows a hypergeometric distribution and
we denote it by X � H.N; n; p/, where p D D

N . That probability can be calculated by

p.x/ D

�
D
x

��
N � D
n � x

�
�

N
n

� ;

where, in general,
�n

k

�
is the binomial coefficient:

 
n

k

!
D nŠ

kŠ .n � k/Š

and nŠ is the factorial of n computed as n � .n � 1/ � .n � 2/ � : : : � 2 � 1.
A key idea regarding the hypergeometric distribution is that the probability of

obtaining an item of the special category is not constant with the sample number.
In other words, the successive extractions are not independent events. This results
comes from the fact that the population is finite. The mean and variance of a
hypergeometric random variable H.N; n; p/ are:

� D np;

�2 D npq
N � n

N � 1
I q D 1 � p:

To calculate the probability function of the hypergeometric distribution with R
we use the dhyper function. There are always four functions associated with a
probability distribution. For the hypergeometric distribution:

• dhyper(x, m, n, k, ...): Density of the probability distribution. For
discrete distributions, it is the probability that the random variable is equal to x,
P.X D x/;

• phyper(q, m, n, k, ...): Distribution function. It is the probability
that the random variable is less or equal to q, P.X � q/;

• qhyper(p, m, n, k, ...): Quantile function. It is the inverse of the
distribution function, i.e., the quantile x at which the probability that the random
variable is less than x equals p, x=P.X � x/ D q.

• rhyper(nn, m, n, k): random generation. Generates nn random variates
of a hypergeometric distribution.
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The function to use depends on the question we want to answer, and sometimes
we need to use the properties of probability to get the appropriate result, e.g.,
the probability of the complementary event. In addition to the main function
argument described above, the parameters of the probability distribution model
are to be specified within the function. In case of the hypergeometric distribution,
those parameters are: (1) m, corresponding to D in the formulae above; (2) n,
corresponding to N�D; and (3) k, corresponding to n in the mathematical formulae.
By default, functions phyper and qhyper return the distribution function and its
inverse, respectively, i.e., P.X � x/ and x=P.X � x/ D q. Changing the argument
lower.tail to FALSE, we get P.X > x/ and its inverse x=P.X > x/ D q. Note
that P.X > x/ D 1 � P.X � x/.

Example 5.13. Metal plates thickness (cont.)
In our example, considering the population of the 24 plates produced in the 2

days, there is a total of seven plates thinner than the nominal value. If we take
a random sample of five plates, which is the probability of obtaining all of them
thicker than the nominal value?

If X is the random variable number of plates thinner than the nominal value, the
question to answer is: P.X D 0/, and therefore we use the dhyper function. For
this particular random variable, N D 24, D D 7, and n D 5. Thus, we get the sought
probability as follows:

dhyper(x = 0, m = 7, n = 17, k = 5)

## [1] 0.1455863

This is a relatively low probability (14.56 %).
ut

5.2.1.2 Binomial Distribution

The binomial distribution is the appropriate distribution to deal with proportions. It
is defined as the total number of successes in n independent trials. By independent
trial we mean the so-called Bernoulli trial, whose outcome can be success or
failure, with p being the probability of success assumed as constant. The binomial
distribution is absolutely determined by the parameters p and n, and its probability
function is

P.X D x/ D
�

n
x

�
px .1 � p/n�x ;

where

�
n
x

�
D nŠ

xŠ.n�x/Š
and nŠ (n-factorial) is calculated as

n � .n � 1/ � .n � 2/ � : : : � 2 � 1:
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In this case, we say that X follows a Binomial distribution and we denote it by
X � B.n; p/. The mean and variance of a binomial random variable B.n; p/ are:

� D np;

� D npqI q D 1 � p:

To compute probabilities of the binomial distribution with R we use the *binom
family of functions, being * one of d, p, q, or r for density (probability in discrete
distributions), distribution function, quantile, or random generation, respectively.

Example 5.14. Metal plates thickness (cont.) Binomial distribution.
In our example, in the second day just 6 out of the 12 plates (50 %) were thinner

than the nominal value. If we suppose that this rate remains constant (a necessary
hypothesis to consider the binomial distribution as applicable), it could be possible
to calculate the probability of obtaining x=0 plates thinner that the nominal values
in the next 5 units. Let X be the binomial random variable number of thinner-than-
nominal plates in a 5-sized sample B.n D 5I p D 0:5/. The question is to compute
P.X D 0/, which can be done with the following expression:

dbinom(x = 0, size = 5, prob = 0.5)

## [1] 0.03125

This probability, just around 3 %, indicates that this would be a rare event.
Another example would be to get the probability of having more than 1 thinner-

than-nominal plates. We could add up the densities from 2 to 5, or simply use the
pbinom function to get P.X > 1/ as follows:

pbinom(q = 1, size = 5, prob = 0.5, lower.tail = FALSE)

## [1] 0.8125

ut
If, instead of having a fixed number of Bernoulli trials n, we have a continuous

process in which the random variable X measures the number of failures until getting
r successes, then X follows a negative binomial distribution NB.r; p/. A particular
case of the binomial negative distribution when r D 1 leads to the geometric
distribution G.p/, see [1].

5.2.1.3 Poisson Distribution

The Poisson distribution is useful to describe random processes where the events
occur at random and at a per unit basis, e.g., defects per unit surface, or defective
units per hour. In this distribution the rate of occurrence is supposed to be constant
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and, theoretically, the number of events may range from zero to infinity. The Poisson
probability of observing x events in a sample unit for which the average number of
defects were �, would be calculated as:

p.x/ D e���x

xŠ
:

In this case, we say that X follows a Poisson distribution and we denote it by
X � P.�/. The mean and variance of a Poisson random variable are both �.

To calculate the probability function of the binomial distribution with R we
use the *pois family of functions, being * one of d, p, q, or r for density
(probability in discrete distributions), distribution function, quantile, or random
generation respectively.

Example 5.15. Metal plates thickness (cont.)
If in our production of metal plates the rate of a certain surface defect were 0.2

defects/unit, which would be the probability that the next unit has zero defects?
Being X the random variable number of defects per unit � Po.� D 0:2/, we want to
know P.X D 0/, computed in R as follows:

dpois(x = 0, lambda = 0.2)

## [1] 0.8187308

This is a pretty high probability (81,87 %).
ut

5.2.2 Continuous Distributions

The discrete distributions above take a finite or countable number of values, i.e.,
between one value and the following one the probability of the intermediate values
equals zero. In the continuous case, the random variable can take all values in a
continuous scale, e.g. 12.071 etc., being the only limitation the number of decimal
places available due to the measuring device. In these cases the probability distri-
bution is called a continuous distribution, and a certain probability of occurrence
is assigned to intervals of variation of the variable. For this type of distributions,
we mainly use the distribution function F.x/. Thus, as F.x/ D P.X � x/, P.a �
X � b/ D F.b/ � F.a/, where a and b are constants such that a < b. We can also
compute P.a � X � b/ using the probability density function f .x/, defined as:

f .x/ D dF.x/

dx
;

so that P.a � X � b/ D R b
a f .x/dx:
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5.2.2.1 Normal Distribution

The normal distribution, also known as the Gaussian distribution, is the most
important probability distribution for continuous variables. It is determined by two
parameters, the mean � (which in this case coincides with the median and the mode)
and the variance �2, and has the following probability density function

f .x/ D 1

�
p

2�
exp

�
� .x � �/2

2�2

�
;

whose shape is the one in Fig. 5.10.
In this case, we say that X follows a Normal distribution and we denote it by

X � N.�; �/. The relevance of the normal distribution is due to the central limit
theorem, which states that the sum of n random variables (regardless of its mean,
variance, and distribution) approximates a normal distribution as n increases. Nor-
mally, a process is the result of many other subprocesses, and therefore the normal
distribution appears in many real-world processes such as human measurements
(e.g., height and weight of people) or industrial processes.

To calculate values of the distribution function of the normal distribution with R
we use the pnorm function. Similarly to the discrete distributions above, we can
get the density, without a clear interpretation in continuous variables but useful to
represent a normal distribution as in Fig. 5.10, as well as the quantile for a given
value of the distribution function. Random generation of normal data can be done
using the rnorm function.

Example 5.16. Metal plates thickness (cont.)Normal distribution.
It would be a useful information about the change that has taken place in the

production process between day 1 and day 2 if we knew, in the long term, which
fraction of each of these two populations is lower than the nominal value of 0.75 in.

Fig. 5.10 Normal
distribution. Between the
mean and three standard
deviations fall 99.7 % of the
data. Between the mean and
two standard deviations fall
95.5 % of the data. Between
the mean and one standard
deviation fall 68.3 % of the
data
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In Sect. 5.3.2.4 we will demonstrate that these two populations are normal. Once
this has been done, we obtain the values of the mean and standard deviation for each
group, namely:

tmeans <- data.frame(
Mean = tapply(plates$thickness, plates$day, mean),
StdDev = tapply(plates$thickness, plates$day, sd))

tmeans

## Mean StdDev
## Day1 0.8315833 0.06767766
## Day2 0.7438333 0.04060863

Then, we have two random variables X1 thickness in day 1 � N.� D 0:832; � D
0:068/ and X2 thickness in day 2 � N.� D 0:744; � D 0:041/. The results of
the distribution function corresponding to x D 0:75 for both random variables are
computed as follows:
P.X1 � x/:

pnorm(q = 0.75,
mean = tmeans$Mean[1],
sd = tmeans$StdDev[1])

## [1] 0.1140111

P.X2 � x/:

pnorm(q = 0.75,
mean = tmeans$Mean[2],
sd = tmeans$StdDev[2])

## [1] 0.5603498

These results clearly show that a shift has taken place in the process, since the
fraction of values raised from 11.40 % to 56.03 %.

ut

5.2.2.2 Other Important Continuous Distributions

Although the normal distribution is by far the most important one in the field of
quality control, many processes follow other different distributions. Among these
so-called non-normal distributions we may mention the uniform distribution, the
exponential distribution (that appears when we measure the time until an event
occurs in a Poisson process), the lognormal distribution (when the logarithm of the
random variable follows a normal distribution), the Weibull distribution (extensively
used in reliability analysis), etc. Other important type of probability distributions
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are those used for inference, namely: the Student’s t, the F distribution, and the �2

distribution. For a brief description and R functions for these and other important
continuous distributions, see [1].

Check also the documentation of the topic “Distributions” (type ?Distri-
butions to see a list of distributions supported in R). Basically, they work as
the distributions explained above, i.e., four functions for each distribution (d*, p*,
q*, r*), for example pweibull for the distribution function of a Weibull random
variable, and so on. You can also find a number of distributions defined in ISO 3534-
1 [4] with details about their parameters, distribution function, mean, variance, and
other features.

5.2.2.3 Data Transformation

In many situations we have to deal with non-normal distributions. Typical non-
normal distributions are skewed, a clearly different behavior to the one of the
symmetrical one exhibited by the normal distribution.

Example 5.17. Metal plates thickness (cont.) Non-normal data.
That could be the case, in our example, after some kind of change in the

production process in days 3, 4, and 5. The histogram departs from the symmetric
normal distribution, being better represented by a probability distribution skewed to
the right. First, let us add the new data to the data frame:

Days345 <- c(0.608, 0.700, 0.864, 0.643, 1.188, 0.610,
0.741, 0.646, 0.782, 0.709, 0.668, 0.684,
1.034, 1.242, 0.697, 0.689, 0.759, 0.700,
0.604, 0.676, 0.687, 0.666, 0.612, 0.638,
0.829, 0.838, 0.944, 0.829, 0.826, 0.649,
0.702, 0.764, 0.873, 0.784, 0.697, 0.658)

The histogram in Fig. 5.11 clearly depicts the new situation. The mean is now
far from the median, and a normal density (solid line) does not fit at all with the
histogram shape.

ut
Typical control charts can work well with non-normal data, since their basic goal

is to identify anomalous departures from a stable (normal) process. We will see in
detail control charts in Chapter 9. Nevertheless, we are going to illustrate here a data
transformation using control charts for individual values.

Example 5.18. Metal plates thickness (cont.) Non-normal data control chart.
The control chart using the non-normal data would be the one in Fig. 5.12. We

use the following code to plot this control chart, see Chapter 9 for details on the
qcc package and function.
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library(qcc)
qcc(Days345, type = "xbar.one")

ut
But if from the knowledge of the process one could conclude that this new

behavior will represent the process in the near future, it could be advisable to adjust
the data in order to account for the non normality.

The idea is to transform the data with the help of an algorithm in such a way
that after the transformation they will look like a true normal population. Then the
control chart, ideally conceived to detect assignable causes in a normal population
would be even more effective.

The simplest algorithm used for this purpose is called the Box-Cox transforma-
tion. It consists in taking the original data to the power � (or log � if � D 0). There
exists an optimum value of this parameter for which the transformed data mostly
shows a normal behavior.

There are several ways for performing Box-Cox data transformation with R. One
is the boxcox function in the MASS package, which provides a plot of the possible
values of � against their log-Likelihood, including a confidence interval. Another
one is to use the powerTransform function in the car package, which provides
numerical results. We will combine both approaches in the following example.

Example 5.19. Metal plates thickness (cont.) Non-normal data transformation.
The application of the transformation for the data corresponding to day 3, 4, and

5 yields the plot in Fig. 5.13, generated with the following code:

library(MASS)
boxcox(Days345 ~ 1, lambda = seq(-5, 5, 0.1))

Fig. 5.11 Histogram of
non-normal density data. The
histogram shows a
non-normal distribution with
a positive skew
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The boxcox function expects a model in order to perform the transformation on
the response. To transform a single vector, a formula with the vector in the left-hand
side and the number 1 in the right-hand side should be provided as first argument.
The argument lambda is a vector of possible values of � (by default a sequence
of numbers between �2 and 2 in steps of 0.1). Sometimes it is necessary to change
this default values in order to see the whole confidence interval in the plot, as it is
the case due to the fact that the confidence lower limit is lower than �2. An exact
point estimator for � can be computed, but usually, any value within the confidence
interval would work, and a rounded value is desirable. In this case, it seems that �2

would be a good value of � for transforming our data to fit a normal distribution.
The following code provides more details using the powerTransform func-

tion in the car package:

library(car)
d345.trans <- powerTransform(Days345)
summary(d345.trans)

## bcPower Transformation to Normality
##
## Est.Power Std.Err. Wald Lower Bound
## Days345 -3.1506 1.0123 -5.1346
## Wald Upper Bound
## Days345 -1.1666
##
## Likelihood ratio tests about transformation

parameters
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## LRT df pval
## LR test, lambda = (0) 11.76625 1 6.031446e-04
## LR test, lambda = (1) 21.48012 1 3.575152e-06

d345.lambda <- coef(d345.trans, round = TRUE)
d345.lambda

## Days345
## -2

The result of the powerTransform function is an object of class
powerTransform, containing a list of 13 elements that can be accessed as
usual. Generic functions summary and coef return details and the optimal value
of � (rounded when argument round is set to TRUE), respectively. Thus, the
estimated optimal value for � is �3:1506, but as the confidence interval contains
the value -2, this is considered to be the best value for the transformation.

Now we can proceed plotting the control chart for the transformed data, see
Fig. 5.14. First we save the transformed data using the bcPower function in the
car package.

transformed.Days345 <- bcPower(Days345,
lambda = d345.lambda)

qcc(transformed.Days345, type = "xbar.one")

The fact that working with the transformed data yields no data points out of the
control limits is a clear indication that, actually, this process was statistically in
control.

ut

Fig. 5.13 Box-Cox
transformation plot. A 95 %
confidence interval contains
� D �2
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5.3 Inference About Distribution Parameters

Statistical inference is the branch of statistics whereby we arrive at conclusions
about a whole population through a sample of the population. We can make
inferences concerning several issues related to the data, for example, the parameters
of the probability distribution, the parameters of a given model that explains the
relationship between variables, goodness of fit to a probability distribution, and
differences between groups (e.g., regarding the mean or the variance).

In this section, some basic statistical inference tools and techniques are reviewed.
In Sect. 5.3.1 confidence intervals and point estimation are explained. Hypothesis-
testing concepts are very important for every inference analysis. You can read about
them in Sect. 5.3.2.

5.3.1 Confidence Intervals

5.3.1.1 Sampling Distribution and Point Estimation

Through point estimation, one or more parameters of a population’s probability
distribution can be inferred using a sample. A function over the values of the sample
is called a statistic. For example, the sample mean is a statistic. When we make
inferences about the parameters of a population’s probability distribution, we use
statistics. These statistics have, in turn, a probability distribution. That is, for every
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sample extracted from a given population, we have a value for the statistic. In this
way, we may build a new population of values (of the statistic) that follows some
probability distribution.

The probability distribution of a statistic is a sampling distribution, and the
properties of this distribution allow us to know if the statistic is a good estimator
of the parameter under study. To determine if a statistic is a good estimator, some
important properties are to be studied. A desirable property is unbiasedness. An
estimator is unbiased if its expectation equals the real value of the parameter.

To distinguish the actual value of a parameter from its estimator, a hat ( O ) is
placed over the symbol of the estimator, e.g., O�2 is an estimator for the variance �2.
We will not explain in detail the properties of the statistics or explain how to
study sampling distributions, see [3] for in-depth explanations. Instead, we will
introduce some of the most important statistics for estimating proportions, means,
and variances.

For binomial distributions, the sample proportion is an unbiased estimator:

Op D x

n
:

That is, the number of events (x) in n Bernoulli experiments over the number of
experiments.

For normal distributions the sample mean is an unbiased estimator of the
population mean

O� D x D
Pn

iD1 xi

n
:

The sampling distribution of this mean is, in turn, a normal distribution with the
following parameters:

�Nx D �I �2Nx D �p
n

For the variance the unbiased estimator is the sample variance, defined as

s2 D
Pn

iD1 .xi � Nx/2

n � 1
:

We have obtained an estimation for the parameter of interest for our process.
However, any estimation is linked to some uncertainty, and therefore we will have to
deal with some error level. To quantify this uncertainty, we use interval estimation.
Interval estimation consists in giving bounds for our estimation (LL and UL, lower
and upper limits). These limits are calculated so that we have confidence in the fact
that the real value of the parameter is contained within them. This fact is stated
as a confidence level and expressed as a percentage. The confidence level reflects
the percentage of times that the real value of the parameter is assumed to be in the
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interval when repeating the sampling. Usually the confidence level is represented by
100 � .1 � ˛/ %, with ˛ the confidence coefficient. The confidence coefficient is a
measure of the error in our estimation. Common values for the confidence level are
99, 95, or 90 %, corresponding, respectively, to ˛ D 0:01, ˛ D 0:05, and ˛ D 0:1.

A confidence interval is expressed as an inequality. If � is a parameter, then [LL,
UL] means

LL � � � UL:

5.3.1.2 Proportion Confidence Interval

When we are dealing with proportions, the binomial distribution is the appropriate
probability distribution to model a process. The typical application of this model is
the calculation of the fraction of nonconforming items in a process.

Due to the central limit theorem, we can construct a confidence interval for the
proportion using the following formula:

Op ˙ z1� ˛
2

�
r Op � .1 � Op/

n

where z1� ˛
2

is the quantile of the standard normal distribution3 that leaves a
probability of ˛=2 on the right-hand side. This is the classical way to construct
a confidence interval for the proportion when the sample size n is large and Op
is not small (under these circumstances, the normal distribution can be used to
approximate the binomial distribution).

The R function prop.test uses another approximation approach (non-
parametric). Nevertheless, the binom.test function provides an exact confidence
interval for the probability of success, though this exact test might be too
conservative. We can compare methods and results using the binconf function in
the Hmisc package.

Example 5.20. Metal plates thickness (cont.) Confidence interval for a proportion.
In Example 5.14 we estimated the proportion of plates thinner than the nominal

value as:

Op D x

n
D 6

12
D 0:5:

That was a point estimator, we can obtain a confidence interval with the following
code:

prop.test(6, 12)

##

3A normal distribution with � D 0 and � D 1.
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## 1-sample proportions test without continuity
correction

##
## data: 6 out of 12, null probability 0.5
## X-squared = 0, df = 1, p-value = 1
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.2537816 0.7462184
## sample estimates:
## p
## 0.5

Thus, a confidence interval for the proportion of plates thinner than the nominal
value is [0.2538, 0.7462].

An exact test returns a wider (more conservative) interval:

binom.test(6, 12)

##
## Exact binomial test
##
## data: 6 and 12
## number of successes = 6, number of trials = 12,

p-value = 1
## alternative hypothesis: true probability of success

is not equal to 0.5
## 95 percent confidence interval:
## 0.2109446 0.7890554
## sample estimates:
## probability of success
## 0.5

Other methods are used and compared with the following code, see the docu-
mentation of the binconf function to find out more.

library(Hmisc)
binconf(6, 12, method = "all")

## PointEst Lower Upper
## Exact 0.5 0.2109446 0.7890554
## Wilson 0.5 0.2537816 0.7462184
## Asymptotic 0.5 0.2171036 0.7828964

ut



178 5 Modelling Quality with R

5.3.1.3 Mean Confidence Interval

Thanks to the central limit theorem, for large sample sizes we can construct
confidence intervals for the mean of any distribution using the following formula:

Nx ˙ z˛=2 � �p
n

:

Usually, � is unknown. In this case, instead of � and the normal quantile z, we must
use the sample standard deviation s and Student’s t quantile with n � 1 degrees of
freedom t˛=2;n�1. A thorough explanation of this important concept is outside the
scope of this book. The degrees of freedom can be thought of as the number of
data minus the number of constraints used to estimate the parameter under study.
Therefore, the confidence interval takes the following form:

Nx ˙ t˛=2;n�1 � sp
n

:

Example 5.21. Metal plates thickness (cont.) Confidence interval for the mean.
Let’s calculate with R the 95 % confidence intervals for the mean of the

populations corresponding to Day1 and Day2. We use the function t.test, but
let us save the result in an object to focus just in the confidence interval, which is
the element conf.int of the returned list.

ci.day1 <- t.test(day1)
ci.day1$conf.int

## [1] 0.7885830 0.8745837
## attr(,"conf.level")
## [1] 0.95

ci.day2 <- t.test(day2)
ci.day2$conf.int

## [1] 0.7180318 0.7696348
## attr(,"conf.level")
## [1] 0.95

We can see that the two confidence intervals do not overlap, since the upper
limit of Day2 (0,7696) is smaller than the lower limit of Day1 (0,7885). We may
anticipate that a situation like this is a clear indication that the two means are
different. ut

5.3.1.4 Variance Confidence Interval

Sometimes we need to find out if the variance of a process is within a given range.
Confidence intervals are a fast way to verify this issue. There are two important
differences between mean and variance confidence intervals:
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• Methods for variance are more sensitive to the normality assumption. Thus, a
normality test is advisable for validating results;

• The statistic used to construct the confidence interval, �2 (chi square), for the
variance is not symmetric, unlike z or t. Therefore, the limits are not symmetric
with respect to the point estimator.

The formulae to construct the confidence interval are as follows:

.n � 1/s2

�2
1�˛=2;n�1

� �2 � .n � 1/s2

�2
˛=2;n�1

:

Example 5.22. Metal plates thickness (cont.) Confidence interval for the mean.
Let’s calculate with R the 95 % confidence intervals for the variance of the

populations corresponding to Day1 and Day2. The function var.test does not
return a confidence interval for the variance of a population given a sample, but for
the ratio between variances. Nevertheless, we can easily construct the confidence
interval computing the limits in the formulae above.

day1.var.ll <- (11*var(day1))/(qchisq(0.975, 11))
day1.var.ul <- (11*var(day1))/(qchisq(0.025, 11))
day2.var.ll <- (11*var(day2))/(qchisq(0.975, 11))
day2.var.ul <- (11*var(day2))/(qchisq(0.025, 11))
cat("Day 1:\n", round(c(day1.var.ll,day1.var.ul), 3))

## Day 1:
## 0.002 0.013

cat("Day 2:\n", round(c(day2.var.ll,day2.var.ul), 3))

## Day 2:
## 0.001 0.005

ut

5.3.2 Hypothesis Testing

In statistical inference, hypothesis testing is intended to confirm or validate some
conjectures about the process we are analyzing. Importantly, these hypotheses are
related to the parameters of the probability distribution of the data.

Hypothesis testing tries to find evidence about the refutability of the null
hypothesis H0 using probability theory. We want to check if a new situation
represented by the alternative hypothesis (H1) is arising. Subsequently, we will
reject the null hypothesis (H1) if the data do not support it with “enough evidence.”
The threshold for enough evidence is decided by the analyst, and it is expressed as
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a significance level ˛, similarly to the confidence intervals explained in Sect. 5.3.1.
A 0.05 significance level is a widely accepted value in most cases, although other
typical values are 0.01 or 0.1.

To verify whether the data support the alternative hypothesis, a statistic (related
to the underlying probability distribution given H0) is calculated. If the value of the
statistic is within the rejection region, then the null hypothesis is rejected. If the
statistic is outside the rejection region, then we say that we do not have enough
evidence to accept the alternative hypothesis (perhaps it is true, but the data do not
support it).

Usually the refutability of the null hypothesis is assessed through the p-value
stemmed from the hypothesis test. If the p-value is larger than ˛, then H0 should not
be rejected, otherwise H0 must be rejected. The p-value is sometimes interpreted as
the probability that the null hypothesis is true. This interpretation is not correct. The
p-value is the probability of finding a more extreme sample (in the sense of rejecting
H0) than the one that we are currently using to perform the hypothesis test. So if the
p-value is small, the probability of finding a more extreme sample is small, and
therefore the null hypothesis should be rejected. Otherwise, if the p-value is large,
the null hypothesis should not be rejected. The concept of “large” is determined by
the significance level ˛. In practice, if p < ˛, then H0 is rejected. Otherwise, H0 is
not rejected.

Thus, for instance, if the confidence level is 95 % (˛ D 0:05) and the p-value is
smaller than 0.05, we do not accept the null hypothesis taking into account empirical
evidence provided by the sample at hand.

There are some functions in R to perform hypothesis tests, for example, t.test
for means, prop.test for proportions, var.test and bartlett.test for
variances, chisq.test for contingency table tests and goodness-of-fit tests,
poisson.test for Poisson distributions, binom.test for binomial distribu-
tions, shapiro.test for normality tests. Usually, these functions also provide a
confidence interval for the parameter tested.

5.3.2.1 Means

This test can be stated in various ways; we could, for example, test the null
hypothesis that the mean of one population is equal to the mean of another
population; these kinds of tests are called two-sided tests. For example,

H0 W �1 D �2;

H1 W �1 ¤ �2:

On the other hand, a one-sided test would look like

H0 W �1 � �2;

H1 W �1 > �2:

The purpose of this last test is to demonstrate that the mean of the second sample is
smaller than the first one.
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Example 5.23. Metal plates thickness (cont.) Hypothesis tests for the mean.
The application of this last kind of test to our data corresponding to Day1 and

Day2 yields the following result:

t.test(x = day1, y = day2,
alternative = "greater")

##
## Welch Two Sample t-test
##
## data: day1 and day2
## t = 3.8514, df = 18.012, p-value = 0.0005841
## alternative hypothesis: true difference in means

is greater than 0
## 95 percent confidence interval:
## 0.04824251 Inf
## sample estimates:
## mean of x mean of y
## 0.8315833 0.7438333

Since the p-value is very small (even lower than 0.01) we reject the null
hypothesis and consider that the Day1 values mean is larger than the Day2 mean.

ut

5.3.2.2 Variances

The null hypothesis of this test is usually stated as the ratio of the two variances to
be compared being equal to one. This is

H0 W �2
1

�2
2

D 1;

H1 W �2
1

�2
2

¤ 1:

On the other hand, a one-sided test would look like

H0 W �2
1

�2
2

� 1;

H1 W �2
1

�2
2

> 1:

The purpose of this last test is to demonstrate that the variance of the second sample
is smaller than the first one.

Example 5.24. Metal plates thickness (cont.) Hypothesis tests for the variance.
The application of the two-sided test to Day1 and Day2 data yields the following

result.
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var.test(x = day1, y = day2)

##
## F test to compare two variances
##
## data: day1 and day2
## F = 2.7775, num df = 11, denom df = 11, p-value =

0.1046
## alternative hypothesis: true ratio of variances is

not equal to 1
## 95 percent confidence interval:
## 0.7995798 9.6481977
## sample estimates:
## ratio of variances
## 2.7775

Since p-value is large (even larger than 0.1), we cannot reject the null hypothesis,
thus accepting that the two variances are equal. ut

5.3.2.3 Proportions

The test to decide if two proportions, p1 and p2, differ in a hypothesized value, p0,
is similar to the test of means, this is;

H0 W p1 � p2 D p0;

H1 W p1 � p2 ¤ p0:

Example 5.25. Metal plates thickness (cont.) Hypothesis tests for proportions.
In our example, in the second day just 6 out of the 12 plates were thinner than

the nominal value of 0.75, while in the first day only 1 out of the 12 plates was.
The question is, are these two proportions equal? The test of proportions gives the
following result:

prop.test(x = c(6, 1), n = c(12, 12))

##
## 2-sample test for equality of proportions with

continuity
## correction
##
## data: c(6, 1) out of c(12, 12)
## X-squared = 3.2269, df = 1, p-value = 0.07244
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.01009329 0.82324004
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## sample estimates:
## prop 1 prop 2
## 0.50000000 0.08333333

Since the p-value is greater than the 0.05 criterion, we cannot reject the null
hypothesis at a 95 % confidence level, thus accepting that the two proportions
are equal. The p-value is close to ˛ D 0:05, though. A larger sample could be
drawn to perform again the test if we suspect that there is a real difference between
proportions.

ut

5.3.2.4 Normality

In many situations it is necessary to check if the data under analysis follow a normal
distribution. The reason for this is that many tests have been developed under the
hypothesis that the data are normal; therefore, if this requirement is not fulfilled by
the data, the results of the test could be misleading.

Example 5.26. Metal plates thickness (cont.) Hypothesis tests for normality.
There are several statistical tests to check normality, the most known is called the

Shapiro-Wilks test. The hypothesis are as follows:
H0: The data are normally distributed
H1: The data are not normally distributed
Let’s use this test to check normality for the 12 data points of Day1:

shapiro.test(day1)

##
## Shapiro-Wilk normality test
##
## data: day1
## W = 0.97067, p-value = 0.9177

Day1 data is normal. A graphical tool can also be used to check normality, it
is called a Quantile-Quantile plot (or Q-Q plot). In this plot, if data come from a
normal distribution, the points lie approximately along a straight line, see Fig. 5.15,
which has been obtained with the following expressions:

qqnorm(day1, pch = 16, col = gray(0.4))
grid()
qqline(day1)

If we try with Day2 we get a very similar result. But what happens with data
from days 3, 4, and 5? Let us give it a try:
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shapiro.test(Days345)

##
## Shapiro-Wilk normality test
##
## data: Days345
## W = 0.80675, p-value = 2.224e-05

These data are clearly non-normal, and we reject the null hypothesis with a
high confidence (the p-value is very small). We guessed that in Sect. 5.2.2.3 and
transformed the data using the Box-Cox transformation. In this case, non-normality
was clear just looking at the histogram in Fig. 5.11, but sometimes this is not evident
and we can confirm it with this simple test and a Quantile-Quantile plot like the one
in Fig. 5.16.

qqnorm(Days345, pch = 16, col = gray(0.4))
grid()
qqline(Days345)

ut

5.4 ISO Standards for Quality Modeling with R

The complete list of Standards related to the topics addressed in this chapter can be
found from ISO/TC 69. The most relevant of them for the scope of this chapter are
in the following ones.

• ISO 2602:1980 Statistical interpretation of test results—Estimation of the
mean—Confidence interval [8]. This International Standard describes the
estimation of the mean of a normal population on the basis of a series of tests

Fig. 5.15 Quantile-Quantile
plot. The points are
approximately in a straight
line
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applied to a random sample of individuals drawn from this population when the
variance of the population is unknown and calculation of the confidence interval
for the population mean therefrom and from the standard deviation.

• ISO 2854:1976 Statistical interpretation of data—Techniques of estimation
and tests relating to means and variances [9]. This International Standard
describes the comparison of a variance with a given value, estimation of a
variance, comparison of two variances, estimation of the ratio of two variances,
and the same procedures for a mean with known or unknown variance are dealt
with.

• ISO 3301:1975 Statistical interpretation of data—Comparison of two means
in the case of paired observations [10]. This International Standard specifies a
method for comparing the mean of a population of differences with zero or any
other preassigned value.

• ISO 3494:1976 Statistical interpretation of data—Power of tests relating to
means and variances [11]. This International Standard deals with comparison of
a mean with a given value (variance known or unknown), of two means (variance
known or unknown), of a variance with a given value, and of two variances, and
gives sets of curves for these type II risk for a given alternative and given size of
sample and to determine the size of sample to be selected for a given alternative
and a given values of type II risk.

• ISO 5479:1997 Statistical interpretation of data—Tests for departure from
the normal distribution [7]. This International Standard gives guidance on
methods and tests for use in deciding whether or not the hypothesis of a normal
distribution should be rejected, assuming that the observations are independent.

• ISO 11453:1996 (and ISO 11453:1996/Cor 1:1999) Statistical interpretation
of data—Tests and confidence intervals relating to proportions [6]. This
International Standard Describes specific statistical methods for the interpreta-
tion of data and for determining the two-sided confidence limits for a desired
confidence level.

Fig. 5.16 Quantile-Quantile
plot (non normal). The points
clearly depart from the
straight line
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• ISO 3534-1:2006 - Statistics—Vocabulary and symbols—Part 1: General
statistical terms and terms used in probability [4]. This Standard defines
general statistical terms and terms used in probability, including the description
of a number of probability distributions, numerical and graphical tools.

• ISO 16269-4:2010 - Statistical interpretation of data—Part 4: Detection and
treatment of outliers [5]. This standard provides methods for the detection and
accommodation of outlier(s), including sound statistical testing procedures and
graphical data analysis methods for detecting outliers in data obtained from
measurement processes. Box-and-whiskers plots are explained in detail in this
standard.
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Chapter 6
Data Sampling for Quality Control with R

Abstract Statistical Quality Control tries to predict the behavior of a given process
through the collection of a subset of data coming from the performance of the
process. This chapter showcases the importance of sampling and describes the most
important techniques used to draw representative samples. An example using R on
how to plot Operating Characteristic (OC) curves and its application to determine
the sample size of groups within a sampling process is shown. Finally, the ISO
Standards related to sampling are summarized.

6.1 The Importance of Sampling

Process’ owner main responsibility is to assure that their process remains under
control, thus leading to products that comply with design specifications. Among
the several tasks required to fulfill this responsibility, one of the most important
consists in the observation of the process. By “observing the process” we understand
measuring it. There are different things that can be measured in a process: finished
product, product in an intermediate production stage, process parameters, etc.
Although all these things are very different to each other, all of them have something
in common: it is rarely possible to gather all the information that is generated in the
process. There are several reasons why this is the case in general. In some cases,
the cost of measuring an item is very high or it takes a long time, in other cases
the population is very large thus making it impractical to measure thousands of
items (no matter if the individual cost of measuring were very low). Finally, in
other situations, the measuring process is destructive, which obviously forces the
reduction in the number of observations. Therefore, process’ owner have to take
decisions based on limited pieces of information obtained from the process. This
is what we call a sample. A first broad distinction can be made with regard to
the purpose of sampling. Samples can be taken to: (a) make a decision (normally
accept/reject) about a lot of items; or (b) make a decision about the state of control
of a process. The first case will be dealt in detail in Chapter 7, while the second one
will be dealt in Chapter 9 in the context of control charts.

Typically, lot populations are finite (composed of a limited number of items)
while process populations are infinite (very large number of items or even theo-
retically infinite). The previous paragraph depicts the situation to which process’
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owner have to face every day; in order to make decisions about a certain population
of items, sampling is an inevitable tool they have to be aware of. Sampling has a
number of advantages over a complete—if possible— measuring of the population:
lower cost, quicker reaction time, etc. But sampling has one major weakness; there
is always an inherent error of such an observation strategy. It could be understood
as the price to be paid in order to get the aforementioned advantages. Fortunately,
this error can be estimated and bounds can be set on it.

6.2 Different Kinds of Sampling

Depending on the nature of the population to be measured by means of a sampling
procedure, there may be a number of difficulties. An example will illustrate this idea.

Example 6.1. Pool Liquid Density.
Let us suppose we have to determine the average density of the liquid contained

in a large pool. Let us also suppose this liquid contains a certain solid compound
dissolved in the base liquid; as long as the solid material will slowly tend to fall
downwards forced by gravity, density will not be uniform at different depths in
the pool.

If, based on ease of collection, we took samples from the surface of the pool, the
resulting average density so calculated would underestimate the real density in the
entire pool. In this case we can say that these samples do not adequately represent
the population parameter. ut

The key element in a sampling procedure is to guarantee that the sample is
representative of the population. Then, any previous available information about the
population’s nature should be taken into account to develop the sampling procedure.

In Example 6.1, the total number of observations should be distributed at
different depths in the pool. If there is no information about the population’s nature,
a simple random sampling procedure would proceed. Let us see this and other
sampling procedures and learn when to use all them.

6.2.1 Simple Random Sampling

In this kind of sampling every item in the population has the same probability
of being chosen for the sample. In order to select the sample items from the
population, random numbers are commonly used. In Chapter 5 we saw how to
generate random values for a random variable given its probability distribution, e.g.
normal, Poisson, etc. In general, uniform random numbers can be generated between
0 and 1. In this way, the probability of an interval only depends on its width. Taking
the appropriate number of digits, random numbers in a given range can be easily
obtained. In practice, software packages select random samples of a set using this
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Table 6.1 Complex bills population

Bill no Clerk Errors Bill no Clerk Errors Bill no Clerk Errors

1 Mary 2 9 John 0 17 John 1

2 Mary 2 10 John 1 18 John 0

3 John 0 11 John 2 19 John 0

4 John 1 12 Mary 1 20 John 0

5 John 2 13 Mary 1 21 John 0

6 John 0 14 Mary 1 22 John 0

7 John 0 15 John 0 23 Mary 1

8 John 0 16 John 1 24 Mary 1

strategy transparently for the user. Actually, random variate generation is based on
the fact that a uniform random variate is a sample of a probability, and thus it can
be used to sample values of a random variable just looking for the quantile where
the distribution function equals a uniform random variate. The following simple
example will illustrate how R will help determine the sample.

Example 6.2. Complex Bills.
A transactional process generates complex bills, consisting of many data fields

that have to be filled by the clerks. Thirty-two bills were produced yesterday, and
the supervisor wishes to check eight of them in detail. Which ones should he
choose? Table 6.1 shows all the population of bills. The data in Table 6.1 is in the
ss.data.bills data frame of the SixSigma package and it is available when
loading the package:

library(SixSigma)
str(ss.data.bills)

## ’data.frame’: 32 obs. of 3 variables:
## $ nbill : int 1 2 3 4 5 6 7 8 9 10 ...
## $ clerk : chr "Mary" "Mary" "John" "John" ...
## $ errors: int 2 2 0 1 2 0 0 0 0 1 ...

Thus, we have a data frame with 32 observation and three variables: nbill for
the bill identification; clerk for the clerk name and errors for the count of errors
in the bill.

We have to select eight random numbers between 1 and 32 and choose the bills
with the selected identifiers as sample elements. In other words, we need to take
a random sample of the nbill variable in the ss.data.bills data frame.
To do that with R, we use the sample function. It has three important arguments:
the vector that contains the population to be sampled, the sample size, and whether
the sample is with or without replacement. Replacement means that a member of the
population can be selected more than once. In this case, the population is formed by
the bill’s identifiers, the size is equal to eight, and the sample is without replacement.
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set.seed(18)
billsRandom <- sample(ss.data.bills$nbill,

size = 8,
replace = FALSE)

billsRandom

## [1] 27 23 29 3 2 16 11 13

Note that in the above code we fix the seed using the set.seed function for
the sake of reproducibility of the example. In this way, anyone who runs the code
will get the same results. This is due to the fact that random numbers generated with
computers are actually pseudo-random because they are based on an initial seed. In
a production environment, the seed is rarely set, except in specific conditions such
as simulation experiments that should be verified by a third party. Find out more
about Random Number Generation (RNG) with R in the documentation for the RNG
topic (type ?RNG in the R console). ISO 28640 Standard deals with random variate
generation methods, see [8].

The result is that the supervisor has to select bills No. 27, 23, 29, 3, 2, 16, 11,
and 13. We can save the sample in a new data frame as a subset of the population as
follows:

billsSample <- subset(ss.data.bills,
nbill %in% billsRandom)

billsSample

## nbill clerk errors
## 2 2 Mary 2
## 3 3 John 0
## 11 11 John 2
## 13 13 Mary 1
## 16 16 John 1
## 23 23 Mary 1
## 27 27 Mary 1
## 29 29 John 0

Based on this sample, the average number of defects in the population should be
estimated (see Chapter 5) as 1 defect per bill:

mean(billsSample$errors)

## [1] 1

ut



6.2 Different Kinds of Sampling 191

6.2.2 Stratified Sampling

If we analyze the sample that resulted from the simple random procedure followed
in Example 6.2 we see that bills No 2, 13, 23, and 27 correspond to clerk Mary
(50 % of the sample) while the four others correspond to clerk John (the remaining
50 %). But in the total population of bills clerk Mary only produced 8 bills out of
32 (25 %) while John produced 24 of 32 (75 %). If the probability of introducing an
error in a bill depended on the clerk, then the sampling approach followed would be
misleading. This a priori information—or suspicion—could be made a part of the
sampling procedure in the form of a stratified strategy.

In this strategy, the population is divided into a number of strata and items
are selected from each stratum in the corresponding proportion. Note that we are
actually applying one of the seven quality control tools, see Chapter 3.

Example 6.3. Complex Bills (Cont.) Stratified sampling.
We can get in R the proportions of each clerk both in the population and in the

sample with the following code:

## Population proportion
table(ss.data.bills$clerk)/length(ss.data.bills$clerk)

##
## John Mary
## 0.75 0.25

## Simple sample proportion
table(billsSample$clerk)/length(billsSample$clerk)

##
## John Mary
## 0.5 0.5

Thus, in order to stratify the sample, a 25 % of the sample, namely 2 bills, will
be taken from Mary’s production and a 75 % of the sample, namely 6 bills, will be
taken from John’s production. In R, we can first extract the bills from each stratum:

billsMary <- ss.data.bills$nbill[
ss.data.bills$clerk == "Mary"]

billsJohn <- ss.data.bills$nbill[
ss.data.bills$clerk == "John"]

and then draw a sample from each stratum of the appropriate size:

set.seed(18)
billsRandomMary <- sample(billsMary, 2)
billsRandomJohn <- sample(billsJohn, 6)
billsRandomStrat <- c(billsRandomMary,

billsRandomJohn)
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and finally save the sample into a new data frame:

billsSampleStrat <- subset(ss.data.bills,
nbill %in% billsRandomStrat)

billsSampleStrat

## nbill clerk errors
## 4 4 John 1
## 10 10 John 1
## 14 14 Mary 1
## 15 15 John 0
## 18 18 John 0
## 24 24 Mary 1
## 31 31 John 1
## 32 32 John 0

Thus, with the aid of R, we have selected two random items from Mary’s stratum
(1, 2, 12, 13, 14, 23, 24, and 27). The result is that the supervisor has to select bills
No. 24 and 14. Similarly, we have selected six random items from John’s stratum
(3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 28, 29, 30, 31, and
32). The result is that the supervisor has to select bills No. 32, 4, 31, 18, 10, and 15.
Therefore, the number of errors in this sample of bills is:

eSampleMary <- subset(billsSampleStrat,
clerk == "Mary",
errors,
drop = TRUE)

eSampleMary

## [1] 1 1

eSampleJohn <- subset(billsSampleStrat,
clerk == "John",
errors,
drop = TRUE)

eSampleJohn

## [1] 1 1 0 0 1 0

Based on this sample, the average number of defects in the population should be
estimated as a weighted mean:

1 C 1

2
� 0:25 C 1 C 1 C 0 C 0 C 1 C 0

6
� 0:75 D 0:625 defects/bills

This can be computed in R using the weighted.mean function, which accepts
the values to be averaged as first argument, and the weights as the second argument.
In this case, the means and proportions for each clerk:
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weighted.mean(x = c(mean(eSampleMary),mean(eSampleJohn)),
w = c(0.25, 0.75))

## [1] 0.625

This estimation is closer to population’s real average value (0.719). This result is
the expected one as long as the means are clearly different between the two strata
and the final weighting takes into account this difference in the final sample value
calculation. ut

6.2.3 Cluster Sampling

In occasions, population data are grouped in clusters whose variability is represen-
tative of the whole population variability. Then, it will only be necessary to sample
some of these clusters to get a reasonable idea of the population.

Example 6.4. Complex Bills (Cont.) Cluster sampling.
Going back to the example of the bills, the clusters could be the different

customers to whom bills are made for. Measuring the number of defects for the
bills corresponding to one or two customers a good result could be obtained at a
much lower cost. ut

6.2.4 Systematic Sampling

Sometimes it is easier to choose sample items at a constant interval period. This is
especially common in production lines where a stream of items are processed.

Example 6.5. Complex Bills (Cont.) Systematic sampling.
In our example of the bills it was decided to take a sample of 8 items, so an item

must be selected every 32/8=4 bills. We only have to decide, at random, which of
the four first bills will be selected as the first one in the sample (let this number be n)
and then continue selecting (n C 4), (n C 8), etc. ut

6.3 Sample Size, Test Power, and OC Curves with R

A control chart is, in its essence, nothing but a hypothesis test that is performed
online, sample after sample. See the foundations of hypothesis testing as inference
tool in Chapter 5. In any hypothesis test there exist two possibilities of error:
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1. The null hypothesis is true and is rejected (Error type I);
2. The null hypothesis is false and is not rejected (Error type II).

Fig. 6.1 illustrates these two possibilities for a typical control chart that keeps
track of sample average value, i.e., the X-bar chart, see Chapter 9. In this chart, the
null and alternative hypotheses are, respectively

H0 W � D �0;

H1 W � D �0 C ı:

If H0 were true (left part of the figure), a sample A could fall outside of the
control limits thus leading us to reject H0. On the other hand, if H0 were false (right
part of the figure), a sample B could fall within the control limits thus leading us to
accept H0.

The maximum probabilities for these situations to occur are denoted as ˛ for
error type I and ˇ for error type II, and they are set up in the design stage of any
hypothesis test. In particular, in Chapter 5 we showed that usually ˛ is typically set
to 0.01, 0.05, or 0.1. It can be proved that there exists a specific relationship among
˛, ˇ, ı, and n (sample size) for every hypothesis test.

For the case of control charts it is very important to know what the capability of
the chart will be for detecting a certain change in the process, e.g., in the process
mean. This capability of detecting a change of a certain magnitude is called the
“power” of the chart. It can be shown that

Power D 1 � ˇ:

It is common practice to plot ˇ as a function of ı for different sample sizes. This
plot is called the “operating characteristic (OC) curve.” Let’s show how to construct

Fig. 6.1 Error types.
Different error types for an
x-bar chart
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these OC curves for the case of the X-bar control chart. Going back to Fig. 6.1, ˇ

is the probability of a sample mean to fall within the control limits in the case the
population mean has shifted ı units from the original value. Mathematically:

ˇ D NCD.UCL=� D �0 C ı/ � NCD.LCL=� D �0 C ı/;

where NCD stands for “normal cumulative distribution.” Since X-bar approaches
a normal distribution with mean �0 and variance �2=n1, and the control limits are
UCL = �0 C 3�=

p
n and LCL = �0 � 3�=

p
n, we have:

ˇ D NCD

�
UCL � .�0 C ı/

�=
p

n

�
� NCD

�
LCL � .�0 C ı/

�=
p

n

�
!

ˇ D NCD

 
�0 C 3 �p

n
� .�0 C ı/

�=
p

n

!
� NCD

 
�0 � 3 �p

n
� .�0 C ı/

�=
p

n

!
:

If we express ı in terms of � , e.g., ı D 	� we finally arrive at

ˇ D NCD
�
3 � 	

p
n
� � NCD

��3 � 	
p

n
�

We can easily plot OC curves for quality control with R. The function
oc.curves in the qcc package plots the operating characteristic curves for
a ‘qcc’ object. We explain in detail objects whose class is qcc in Chapter 9.
To illustrate OC curves in this chapter, let us consider the example in Chapter 1.

Example 6.6. Pellets Density.
In this example, a set of 24 measurements for the density of a given material are

available, see Table 6.2. In order to plot OC curves for an X-bar chart, we need the
data organized in rational subgroups. Let us assume that every four measurements
make up a group. Therefore, there are six samples whose size is four. With this
information, we can create a qcc object as mentioned above. First, we need to
create the data and the qcc.groups object as follows:

Table 6.2 Pellets
density data

10.6817 10.6040 10.5709 10.7858 10.7668 10.8101

10.6905 10.6079 10.5724 10.7736 11.0921 11.1023

11.0934 10.8530 10.6774 10.6712 10.6935 10.5669

10.8002 10.7607 10.5470 10.5555 10.5705 10.7723

1See the concept of sampling distribution in Chapter 5.
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pdensity <- c(10.6817, 10.6040, 10.5709, 10.7858,
10.7668, 10.8101, 10.6905, 10.6079,
10.5724, 10.7736, 11.0921, 11.1023,
11.0934, 10.8530, 10.6774, 10.6712,
10.6935, 10.5669, 10.8002, 10.7607,
10.5470, 10.5555, 10.5705, 10.7723)

gdensity <- rep(1:6, each = 4)
library(qcc)
myGroups <- qcc.groups(data = pdensity,

sample = gdensity)

Now we can create the qcc object, and plot the OC curves for that specific control
chart (see Fig. 6.2):

myqcc <- qcc(myGroups, type = "xbar", plot = FALSE)
mybeta <- oc.curves(myqcc)

Fig 6.2 shows the representation of ˇ for different sample sizes. This figure is
very useful as it is the basis for determining the sample size required for detecting a
given process shift with a desired probability. Furthermore, if we save the result of
the oc.curves function in an R object, we can explore the complete set of data
and look for the best sampling strategy. The first rows of the matrix created are as
follows:

Fig. 6.2 OC curves. Each
curve represents a function of
the error type II probability as
a function of the deviation
from the process mean that
the control chart will be able
to detect for different sample
sizes
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head(mybeta)

## sample size
## shift (std.dev) n=4 n=1 n=5
## 0 0.9973002 0.9973002 0.9973002
## 0.05 0.9971666 0.9972669 0.9971330
## 0.1 0.9967577 0.9971666 0.9966188
## 0.15 0.9960496 0.9969977 0.9957200
## 0.2 0.9950019 0.9967577 0.9943735
## 0.25 0.9935577 0.9964432 0.9924902
## sample size
## shift (std.dev) n=10 n=15 n=20
## 0 0.9973002 0.9973002 0.9973002
## 0.05 0.9969637 0.9967923 0.9966188
## 0.1 0.9959040 0.9951556 0.9943735
## 0.15 0.9939699 0.9920483 0.9899543
## 0.2 0.9909063 0.9868928 0.9823300
## 0.25 0.9863525 0.9788745 0.9700606

and we can check the type II error for each sample size for a given deviation from
the current process mean. For example, if we want to detect a 1.5 standard deviations
depart from the mean:

mybeta["1.5",]

## n=4 n=1 n=5 n=10
## 0.4999999990 0.9331894011 0.3616312342 0.0406304449
## n=15 n=20
## 0.0024811185 0.0001043673

With the current sample size (n D 4), the probability of false negatives ˇ, i.e.,
being the process out of control the chart does not show a signal, is near 50 %. We
need groups of 10 to have this value around 0.04, i.e., a power of at least 95 %.
Note that we can choose the samples sizes to plot through the n argument of the
oc.curves function. On the other hand, the function also provides OC curves for
attributes control charts (see Chapter 9). ut

6.4 ISO Standards for Sampling with R

These are the most relevant ISO Standards in relation to the topic addressed in this
chapter:

• ISO 24153:2009 Random sampling and randomization procedures [7]. This
International Standard defines procedures for random sampling and random-
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ization. Several methods are provided, including older approaches based on
mechanical devices, random numbers, etc. as well as more modern ones based
on algorithms for random numbers generations. Different sampling strategies
included random, stratified and cluster sampling are described.

• ISO 28640:2010 Random variate generation methods [8]. This International
Standard specifies typical algorithms by which it is possible to generate numeri-
cal sequences as if they were real random variates. Two annexes contain relevant
information regarding random numbers tables and several algorithms that can be
used to generate pseudo-random numbers with the aid of a computer.

• ISO 3534-4:2014 Statistics—Vocabulary and symbols—Part 4: Survey sam-
pling [4]. This standard defines the terms used in the field of survey sampling,
but it is not constrained to surveys to the use of questionnaires.

Other standards related to the topics covered in this chapter are ISO 11462-2 [5]
(SPC, Statistical Process Control), ISO 7870-2 [6] (Shewhart control charts), and
parts 1 and 2 of ISO 3534 (Vocabulary and symbols) [2, 3].

There are also some books worth to reading, or just having them as reference.
Cochran [1] is a classic on sampling techniques; a more recent book is the one by
Lohr [9]; Montgomery [10] is cited in ISO 11462-2 [5] for sample sizes calculation.
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Part III
Delimiting and Assessing Quality

This part includes two chapters covering how to compare the quality standards with
the process. In Chapter 7, acceptance sampling techniques are reviewed. Sampling
plans are obtained in order to fulfill requirements pertaining to producer’s risk and
consumer’s risk. The sampled items are assessed against an attribute (defective, non
defective) or a variable (a given continuous quality characteristic). Chapter 8 starts
establishing the quality specifications, i.e., the voice of the customer (VoC), in order
to compare with the voice of the process (VoP) through Capability Analysis. Then,
examples using R illustrate the methods, and the ISO Standards related to these
topics are discussed.



Chapter 7
Acceptance Sampling with R

Abstract Undoubtedly, an effective but expensive way of providing conforming
items to a customer is making a complete inspection of all items before shipping.
In an ideal situation, a process designed to assure zero defects would not need
inspection at all. In practice, a compromise between these two extremes is attained,
and acceptance sampling is the quality control technique that allows reducing the
level of inspection according to the process performance. This chapter shows how
to apply acceptance sampling using R and the related ISO standards.

7.1 Introduction

The basic problem associated with acceptance sampling is as follows: whenever a
company receives a shipment of products (typically raw material) from a supplier a
decision has to be made about the acceptance or rejection of the product. In order
to make such a decision, the company selects a sample out of the lot, measures a
specified quality characteristic and, based on the results of the inspection decides
among:

• Accepting the lot (and send it to the production line);
• Rejecting the lot (and send it back to the supplier);
• Take another sample before deciding (if results are not conclusive).

Sampling plans can be classified in attribute and variables. The attribute case
corresponds to the situation where the inspection simply determines if the item is
“good” or “bad,” this means it complies or not with a certain specification. This
kind of inspection is cheaper, but larger sample sizes are required. The variable
case, on the other hand, corresponds to the situation where the quality characteristic
is measured, thus allowing the inspector to decide based on the value obtained. This
kind of inspection is more expensive, but smaller sample sizes are required.

In practice, the procedure to be followed is very simple; whenever the company
receives a shipment of N units, a random sample of n units is taken from the lot
and if d or less units happen to be considered as defective then the lot is accepted.
The procedure described corresponds to the case of attribute inspection; the variable
case is somewhat more sophisticated but conceptually equivalent. For details on
sampling methods, see Chapter 6.
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As any other hypothesis test, acceptance sampling is not a perfect tool but just
a useful one. There always exists the possibility of accepting a lot containing too
many defective items, as well as rejecting another one with very few defectives.
Fortunately, an upper bound for these two probabilities can be set up in all cases by
adequately selecting the parameters n and d.

This chapter provides the necessary background to understand the fundamental
ideas of acceptance sampling plans. Section 7.1 describes the philosophy of the
acceptance sampling problem. Sections 7.2 and 7.3, respectively, develop the basic
computational methods for attribute and variable acceptance sampling as well as
the way to implement them with R. Finally, Sect.7.4 provides a selection of the ISO
standards available to help users in the practice of acceptance sampling.

7.2 Sampling Plans for Attributes

As it was stated in Sect. 7.1 a sample plan for attributes is defined by means of the
following three parameters:

N lot size;
n sample size (taken at random from the lot);
d maximum number of defective units in the sample for acceptance.

The result of the inspection of the sample is:

x number of defectives found in the sample

The decision rule is:

1. Accept the lot if x � d;
2. Reject the lot if x > d.

This kind of sampling plans, the simplest ones, are called single sampling plans
because the lot’s fate is decided based on the results of a unique sample. There
exist other kinds of sampling plans where two values of d are established; the lot
is accepted if x � dlower ; rejected if x � dupper; and a second sample taken if
dlower < x < dupper. This kind of sampling plans are called double sampling plans.

The performance of a determined sampling plan is described by its operating
characteristic (OC) curve. This curve is a graphical representation of the probability
of accepting the lot as a function of the lot’s defective fraction. This probability can
be computed by means of the binomial probability distribution (see Chapter 5), as
long as the lot size be much larger than the sample size (n=N < 0:1):

Pa D
dX

xD0

nŠ

xŠ.n � x/Š
px.1 � p/n�x; (7.1)

where Pa stands for the probability of accepting the lot and p stands for the lot’s
fraction defective.
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Example 7.1. single sampling plan.
If we assume that n D 100 and d D 5, the resulting OC curve should look like

Figure 7.1, which has been produced with the following R code:

n <- 100
d <- 5
p <- seq(0 , 0.1, by = 0.001)
Pa <- pbinom(q = d, size = n, prob = p)
plot(Pa ~ p, type = "l", lwd = 2, las = 1,

main = "OC Curve for n = 100, d = 5",
xlab = "Fraction defective",
ylab = "Probability of acceptance")

grid()

ut
There is a specific OC curve for every different sample plan; this means that if

we change either n or d, the curve will also change. But the general behavior of all
the curves will be similar; they start at Pa D 1 for p D 0, decrease more or less
rapidly as p increases, and finish at Pa D 0 for p D 1.

Two points in the OC curve are of special interest. The point of view of the
producer is that he requires a sampling plan having a high probability of acceptance
for a lot with a low (agreed) defective fraction. This low defective fraction is called
“acceptable quality level” (AQL), and the probability of such a good quality lot
being rejected is called “producer’s risk” (˛). On the other hand, the point of view

Fig. 7.1 OC curve for a
simple sampling plan. The
parameters of this OC curve
are n D 100, d D 5
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of the customer is that he requires a sampling plan having a high probability of
rejection for a lot with a high (agreed) defective fraction. This high defective fraction
is called “lot tolerance percent defective” (LTPD), and the probability of such a low
quality lot being accepted is called “consumer’s risk” (ˇ). Figure 7.2 illustrates
these two probabilities for a typical OC curve.

The problem with acceptance sampling plans is then to choose n and d in
such a way that reasonable values for ˛ and ˇ are achieved for AQL and LTPD.
In mathematical terms, the problem is equivalent to solving the following system of
equations, where the unknowns are n and d:

1 � ˛ D
dX

xD0

nŠ

xŠ.n � x/Š
px

AQL.1 � pAQL/n�x;

ˇ D
dX

xD0

nŠ

xŠ.n � x/Š
px

LTPD.1 � pLTPD/n�x:

The solution to this system is not easy and even not feasible all the times, so that
in general an acceptable solution will be as far as we could go. For “acceptable”
solution we understand a sampling plan that leads to actual ˛ and ˇ values close
enough to target values. Traditionally, nomographs (also called nomograms) have
been used to get approximate values of n and d given ˛ and ˇ with paper and
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Fig. 7.2 OC curve risks illustration. The fraction defective values AQL and LTPD are agreed.
A sampling plan yields then a producer’s risk ˛ and a consumer’s risk ˇ
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pencil, see, for example, [15]. Computational methods can be used, though. R and a
simple iterative method will greatly help in finding such an acceptable solution. The
iterative method we suggest is as follows:

Step 1) Choose your target ˛ and ˇ values.
Step 2) Start with a sampling plan like n D 10 and d D 1. Calculate ˛ and ˇ

values with R. Normally, such an initial plan will give ˛actual close to ˛target and
ˇactual >> ˇtarget.

Step 3) There are two possibilities: If ˛actual >> ˛target, then change d to d C 1.
Calculate ˛ and ˇ values with R and repeat Step 3.
Or
If ˇactual >> ˇtarget, then change n to nCın. Calculate ˛ and ˇ values with R and
repeat Step 3.
Normally, ın should range between 10 to 50 depending on how large be the
difference between ˛actual and ˛target. Larger ın correspond to larger differences.

Step 4) If the solution happens to be feasible, final values obtained for ˛actual and
ˇactual will be close to their target values. If not, judgement will have to be used
in order to decide the best values for n and d.

Example 7.2. Iterative method to select a sampling plan.
An example will illustrate this method. Let us suppose we need a sampling plan

that will provide us with ˛target D 0:05 for AQL D 5 % and ˇtarget D 0:10 for
LTPD D 16 %. The following R code runs the method above getting the result
in Table 7.1.

## Initial values
n <- 10
d <- 1
## Adding values
more_n <- 15
more_d <- 1
plans <- matrix(nrow=10, ncol = 5)

Table 7.1 Iterative sampling
plan selection method

Iteration n d ˛ ˇ Decision

1 10 1 0.09 0.51 Increase n

2 25 1 0.36 0.07 Increase d

3 25 2 0.13 0.21 Increase d

4 25 3 0.03 0.42 Increase n

5 40 3 0.14 0.10 Increase d

6 40 4 0.05 0.21 Increase n

7 55 4 0.14 0.05 Increase d

8 55 5 0.06 0.11 Increase d

9 55 6 0.02 0.20 Increase n

10 70 6 0.06 0.05 . . .
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colnames(plans) <- c("iteration", "n", "d",
"alpha", "beta")

for (i in 1:10){
actual_a <- 1 - pbinom(q = d, size = n, prob = 0.05)
actual_b <- pbinom(q = d, size = n, prob = 0.16)
plans[i,] <- c(i, n, d, actual_a, actual_b)
if (actual_a/0.05 > actual_b/0.10){
d <- d + more_d

} else{
n <- n + more_n

}
}

Note that we fix 10 iterations and make a decision depending on which risk is
farther away from the target. A customized function can be programmed taking into
account the specific problem at hand. In the eighth iteration we get a plan that yields
producer’s and customer’s risks very close to the targets.

ut
In addition to the iterative method described above, we can use the

AcceptanceSampling R package [14]. Function OC2c plots OC curves for
attribute acceptance sampling plans, and function find.plan finds a simple
sampling plan with smallest sample size.

Example 7.3. OC curve and acceptance sampling plan with the AcceptanceSam-
pling R package.

The following code gets the OC curve for the sampling plan in Example 7.1, i.e.,
with n D 100 and d D 5. The result is in Fig. 7.3.

library(AcceptanceSampling)
myplan <- OC2c(n = 100, c = 5)
myplan

## Acceptance Sampling Plan (binomial)
##
## Sample 1
## Sample size(s) 100
## Acc. Number(s) 5
## Rej. Number(s) 6

plot(myplan, xlim = c(0, 0.15), las = 1,
main = "OC Curve for n = 100 and d = 5")

Now let us compute the sampling plan proposed by the find.plan function
for the requirements in Example 7.2, i.e., ˛ D 0:05 for AQL D 5 % and ˇ D 0:10

for LTPD D 16 %. The arguments of the find.plan function are the producer
risk point (PRP) and consumer risk point (CRP). Each argument should be a vector
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of two numbers, the first number being AQL or LTPD, and the second one being the
corresponding probability of acceptance, i.e., 1 � ˛ and ˇ, respectively.

myplan <- find.plan(PRP = c(0.05, 0.95),
CRP = c(0.16, 0.10))

myplan

## $n
## [1] 64
##
## $c
## [1] 6
##
## $r
## [1] 7

Thus, the proposed plan is drawing samples of size 64 and reject the lot if there
are seven or more defectives. We can create an object of class OC2c for this plan in
order to plot the OC curve (see Fig. 7.4) and assess its performance. The assess
function returns the plan and its probabilities of acceptance, and compares them
with the required ones.
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Fig. 7.3 OC curve with the AcceptanceSampling package. Graphical parameters can be
added to customize the plot
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foundOC <- OC2c(myplan$n, myplan$c, myplan$r)
plot(foundOC, xlim = c(0, 0.25), las = 1,

main = "OC Curve for plan n = 64, d = 6")
assess(foundOC, PRP = c(0.05, 0.95),

CRP = c(0.16, 0.10))

## Acceptance Sampling Plan (binomial)
##
## Sample 1
## Sample size(s) 64
## Acc. Number(s) 6
## Rej. Number(s) 7
##
## Plan CAN meet desired risk point(s):
##
## Quality RP P(accept) Plan P(accept)
## PRP 0.05 0.95 0.95970311
## CRP 0.16 0.10 0.09552958

Note that the result is slightly different to the one obtained in Example 7.2. Both
are close to risk targets and probably acceptable approximations for both parts.

ut
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Fig. 7.4 OC curve for the found plan. The found plan can be plotted and assessed
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Throughout this section, the assumption was made that the binomial probability
distribution could be used for the purpose of calculating the probabilities associated
with the sampling process. As it was stated before, this assumption holds as long
as the sample size be small in comparison with the lot size (n << N). This will
therefore guarantee that the probability of finding a defect in one sampled item
will remain approximately constant. But in the general case this assumption is not
true, and the more accurate hypergeometric distribution, which was described in
Chapter 5 should be employed instead. Nevertheless, the methods are the same,
just changing probability functions to the appropriate distribution. As for the
AcceptanceSampling package, functions OC2c and find.plan accept a
type argument whose possible values are binomial, hypergeom, poisson,
and normal (the latter for sampling plans for variables in the next section).

7.3 Sampling Plans for Variables

A variable sampling plan corresponds to the situation where a certain quality
characteristic is measured in a continuous scale for every item selected from the
lot. The distinction between a “good” and a “bad” individual value results from
its comparison with the specified limit. Technical specifications may incorporate a
lower (LSL) or an upper (USL) specification limit. In some cases two simultaneous
limits may exist. But in variable sampling we are not specially interested in
individual values. What is done is to compute the mean of the measured values
and calculate the statistic

ZUSL D USL � x

�
; (7.2)

where USL is the Upper Specification Limit, x is the sample mean, and � is the
process standard deviation. This case corresponds to the situation where only the
USL exists, and the standard deviation of the distribution of the individual values
is assumed to be known. If the so calculated ZUSL value is larger than k (a value
known as “acceptability constant”), then the lot may be accepted. Fig. 7.5 illustrates
this concept.

In a way equivalent to what is done for attribute sampling, OC curves are gen-
erated for variable sampling. The two elements that constitute a variable sampling
plan, namely: n, the sample size, and k, the acceptability constant, are calculated to
assure that:

a) For a lot with a low (agreed) fraction defective (AQL), the probability of rejection
(producer’s risk) is equal to ˛;

b) For a lot with a high (agreed) fraction defective (LTPD), the probability of
acceptance (consumer’s risk) is equal to ˇ.
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Conceptually, the situation is illustrated in Figures 7.6 and 7.7. Figure 7.6
corresponds to the situation where the population has a defective fraction p1 equal
to AQL, whereas Figure 7.7 corresponds to the situation where the population has a
defective fraction p2 equal to LTPD.

Sample size and the acceptability constant are chosen in such a way that the
probability of acceptance approximately corresponds to (1 � ˛) for Figure 7.6
and (ˇ) for Figure 7.7. Note that sample size has a clear effect on sample mean
distribution variance, as long as

�mean D �individualp
n

:

The resulting formulae corresponding to the case when there is a single
specification limit and the standard deviation is known are:

n D
�

Z˛ C Zˇ

Z1 � Z2

�2

and k D K1 C K2

2
;

where:

K1 D Z1 � Z˛p
n

; K2 D Z2 C Zˇp
n

;

Quality characteristic

μ USL

σ

ZPmax=
USL − μ

σ
≡ k

pmax

maximum
allowable
defective
fraction

Fig. 7.5 Variables acceptance sampling illustration. Maximum allowable defective fraction and
acceptability constant
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and:

Z1 is the .1 � p1/ � 100 percentile of the standard normal distribution;
p1 is the AQL;
Z2 is the .1 � p2/ � 100 percentile of the standard normal distribution;
p2 is the LTPD;
Z˛ is the .1 � ˛/ � 100 percentile of the standard normal distribution;
Zˇ is the .1 � ˇ/ � 100 percentile of the standard normal distribution.

Quality characteristic

μ1 USL

kσ

p1 = AQL

pa =1 − α

Sample means distribution
Individual values distribution

Fig. 7.6 Probability of acceptance when p=AQL. Probability of acceptance for a population
with defective fraction equal to AQL

Quality characteristic

μ2 USL

kσ

p2 = LTPD

pa = β

Sample means distribution
Individual values distribution

Fig. 7.7 Probability of acceptance when p=LPTD. Probability of acceptance for a population
with defective fraction equal to LPTD
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Example 7.4. Variable acceptance sampling. Known standard deviation.
A simple example will illustrate how these formulae are implemented in R. Let

us suppose we wish to develop a variable sample plan where:

AQL p1 D 1 %
LTPD p2 D 5 %
producer’s risk ˛ D 5 %
consumer’s risk ˇ D 10 %
� assumed known

To find the sampling plan for these requirements, we use again the find.plan
function. In this case, we need to add a new argument to the function call, namely
type, in order to get the sampling plan for continuous variables.

varplan <- find.plan(PRP = c(0.01, 0.95),
CRP = c(0.05, 0.10),
type = "normal")

varplan

## $n
## [1] 19
##
## $k
## [1] 1.948993
##
## $s.type
## [1] "known"

Thus, the sampling plan is n D 19, k D 1:949. ut
In general, for a quality characteristic with only an upper specification limit

(USL), we would proceed with the implementation of an acceptance plan as follows:

1. Take random samples of n items from each lot;
2. Compute the sample mean x;
3. Compute the ZUSL value in Eq. (7.2);
4. Compare ZUSL with k;
5. Decide whether to accept (ZUSL > k) or reject (ZUSL � k) the lot.

Example 7.5. Variable acceptance sampling. Implementation for the metal plates
thickness example.

A numerical example will illustrate the procedure. Let us simulate the process
described in Example 5.1 of Chapter 5. The quality characteristic was the thickness
of a certain steel plate produced in a manufacturing plant. Nominal thickness of
this product was 0.75 in. Let us assume that the standard deviation is known and
equal to 0.05, and the USL is 1 in. A simulated sample of this process can be
obtained with the following code:
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set.seed(1)
mysample <- rnorm(n = 19, mean = 0.75, sd = 0.05)
mysample <- round(mysample, 3)
mysample

## [1] 0.719 0.759 0.708 0.830 0.766 0.709 0.774
## [8] 0.787 0.779 0.735 0.826 0.769 0.719 0.639
## [15] 0.806 0.748 0.749 0.797 0.791

Now we compute the sample mean and the ZUSL value as follows:

mysamplemean <- mean(mysample)
z.usl <- (1 - mysamplemean)/ 0.05
z.usl

## [1] 4.831579

As ZUSL > k, this lot must be accepted. We suggest the reader to run this
simulation for different values of the mean and standard deviation and see how lots
are rejected as mean shifts or increase in variation occur. The following convenient
function helps automate this decision process1:

lotControl <- function(n, k, mean, sd, usl){
z.usl <- (usl - mean)/ sd
if(z.usl > k){
message("Accept lot")

} else{
message("Warning: Reject lot")

}
}
lotControl(n = varplan$n,

k = varplan$k,
mean = 0.92,
sd = 0.05,
usl = 1)

## Warning: Reject lot

Thus, if a new sample whose mean is 0.92 is drawn, then the lot should be
rejected.

ut
In the example above, we assumed that the standard deviation of the population

was known. If this is not the case, the sampling plan must be more conservative as

1It is relatively easy to implement this in an on-line process via an R interface like, Shiny (http://
www.shiny.rstudio.com), possibly using automatically recorded measurements.

http://www.shiny.rstudio.com
http://www.shiny.rstudio.com
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we have less knowledge about the process. The resulting formulae corresponding to
the case when there is a single specification limit and the standard deviation is
unknown are:

n D
�

1 C k2

2

��
Z˛ C Zˇ

Z1 � Z2

�2

and k D Z˛Z2 C ZˇZ1

Z˛ C Zˇ

:

Example 7.6. Variable acceptance sampling (cont). Unknown standard deviation.
If the standard deviation in Example 7.4 is unknown, then the sampling plan

corresponding with the conditions:

AQL p1 D 1 %
LTPD p2 D 5 %
producer’s risk ˛ D 5 %
consumer’s risk ˇ D 10 %
� assumed unknown

is obtained with the following code:

varplan2 <- find.plan(PRP = c(0.01, 0.95),
CRP = c(0.05, 0.10),
type = "normal",
s.type = "unknown")

varplan2

## $n
## [1] 55
##
## $k
## [1] 1.952195
##
## $s.type
## [1] "unknown"

Notice that we only have to change the s.type argument in the find.plan
function (by default "known"). Now we need much more items to be sampled in
order to achieve the objectives. We can simulate a new sample from our production
process, but now we need to estimate � in Eq. (7.2) through the sample standard
deviation s.

set.seed(1)
newsample <- rnorm(n = varplan2$n,

mean = 0.75, sd = 0.05)
lotControl(n = varplan2$n,

k = varplan2$k,
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mean = mean(newsample),
sd = sd(newsample),
usl = 1)

## Accept lot

ut
In this chapter we have assumed a smaller-the-better quality characteristic. In the

case when the quality characteristic is a larger-the-better one, we have only a lower
specification limit (LSL), and the procedure is the same we have explained so far just
using ZLSL D x�LSL

�
instead of Eq. (7.2). When both limits exist (nominal-is-best

characteristic), both ZUSL and ZLSL must be larger than k in order to accept the lot.
The computation of k for different situations may vary depending on the software
used and the specific model that applies. Some of these models can be found in
the corresponding ISO standards (see the following section) and all of them can be
implemented with R similarly to what we have done in this chapter. In addition to
numerical computations, ISO standards provide a set of tabulated sampling plans
given the most common values for producer and customer risks, AQL, and LTPD.
Moreover, different rules to change from normal to reduced and rigorous sampling
can also be applied in sequential plans.

We have focused on simple sampling plans for both attributes and variables.
There exist more complex sampling plans which are out of the scope of this book,
such as double, multiple, or sequential plans. Double and multiple sampling plans
for attributes can be created and assessed with the AcceptanceSampling R
package just providing sample sizes ni and maximum number of defects di for each
i stage as vectors to the OC2c function.

7.4 ISO Standards for Acceptance Sampling and R

The complete list of Standards related to the topic addressed in this chapter can be
found from Subcommittee SC5, ISO/TC 69/SC 5—acceptance sampling. The most
relevant of them are in the following.

• ISO 2859-1:1999 Sampling procedures for inspection by attributes – Part
1: Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-
lot inspection [8]. This International Standard specifies an acceptance sampling
system for inspection by attributes. It is indexed in terms of the AQL. Its purpose
is to induce a supplier through the economic and psychological pressure of lot
non-acceptance to maintain a process average at least as good as the specified
AQL, while at the same time providing an upper limit for the risk to the consumer
of accepting the occasional poor lot.
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• ISO 2859-3:2005 Sampling procedures for inspection by attributes – Part 3:
Skip-lot sampling procedures [9].
This International Standard specifies generic skip-lot sampling procedures for
acceptance inspection by attributes. The purpose of these procedures is to provide
a way of reducing the inspection effort on products of high quality submitted
by a supplier who has a satisfactory quality assurance system and effective
quality controls. The reduction in inspection effort is achieved by determining
at random, with a specified probability, whether a lot presented for inspection
will be accepted without inspection.

• ISO 2859-5:2005 Sampling procedures for inspection by attributes – Part
5: System of sequential sampling plans indexed by AQL for lot-by-lot
inspection [10].
This International Standard contains sequential sampling schemes that supple-
ment the ISO 2859-1 acceptance sampling system for inspection by attributes,
whereby a supplier, through the economic and psychological pressure of lot non-
acceptance, can maintain a process average at least as good as the specified AQL,
while at the same time provide an upper limit for the risk to the consumer of
accepting the occasional poor lot.

• ISO 3951-1:2013 Sampling procedures for inspection by variables – Part
1: Specification for single sampling plans indexed by AQL for lot-by-lot
inspection for a single quality characteristic and a single AQL [6].
This International Standard specifies an acceptance sampling system of single
sampling plans for inspection by variables. It is indexed in terms of the AQL and
is designed for users who have simple requirements.

• ISO 3951-2:2013 Sampling procedures for inspection by variables – Part 2:
General specification for single sampling plans indexed by AQL for lot-by-
lot inspection of independent quality characteristics [7].
This International Standard specifies an acceptance sampling system of single
sampling plans for inspection by variables. It is indexed in terms of the AQL and
is of a technical nature, aimed at users who are already familiar with sampling
by variables or who have complicated requirements.

• ISO 3951-3:2007 Sampling procedures for inspection by variables – Part 3:
Double sampling schemes indexed by AQL for lot-by-lot inspection [5].
This International Standard specifies an acceptance sampling system of double
sampling schemes for inspection by variables for percent nonconforming. It is
indexed in terms of the AQL.

• ISO 3951-5:2006 Sampling procedures for inspection by variables – Part
5: Sequential sampling plans indexed by AQL for inspection by variables
(known standard deviation) [11].
This International Standard specifies a system of sequential sampling plans
(schemes) for lot-by-lot inspection by variables. The schemes are indexed in
terms of a preferred series of AQL values, ranging from 0.01 to 10, which are
defined in terms of percent nonconforming items. The schemes are designed to
be applied to a continuing series of lots.
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Other standards useful for acceptance sampling are ISO 24153 [12] (Random
sampling and randomization procedures), ISO 3534-4 [4] (vocabulary and symbols
about sampling) and parts 1 and 2 of ISO 3534 (Vocabulary and symbols about
Statistics, Probability, and Applied Statistics) [2, 3].

Acceptance Sampling can be usually found in any SPC book, see, for example,
the ones by Juran [13], Ishikawa [1], or Montgomery [15]. A more complete book,
devoted entirely to Acceptance Sampling, is the one by Schilling [16] where you
can find more details about acceptance sampling techniques.
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Chapter 8
Quality Specifications and Process Capability
Analysis with R

Abstract In order to assess quality, specification limits are to be established. In this
chapter a method to set specification limits taking into account customers’ and
producer’s loss is presented. Furthermore, the specification limits are the voice of the
customer, and quality can be assessed by comparing it with the voice of the process,
that is, its natural limits. Capability indices and the study of long- and short-term
variability do the job.

8.1 Introduction

In Chapter 4 we reviewed some definitions of Quality from several standpoints.
The fulfillment of some specifications seemed to be a generally accepted criteria
to assess Quality. In this chapter we provide some guidelines and resources to
establish such specifications, and how to measure and analyze the capability of a
process to fulfill them. The idea is to fix some specification limits, Upper and/or
Lower (USL and LSL respectively), and compare them with the natural limits of
the process. These natural limits are normally the same used as Upper and Lower
Control Limits (UCL and LCL respectively) in the Control Charts explained in
Chapter 9. This is the first caution a Quality analyst must take: making clear the
difference between Specification Limits and Control Limits. Specification Limits
are the voice of the customer1 (VoC). Natural limits (or Control Limits) are the voice
of the process (VoP). Thus, the capability of a process is a way of assessing how
the VoP is taking care of the VoC. Capability analysis quantifies this fact through
graphical tools, capability indices, and other metrics, thereby measuring the Quality
of our process.

8.2 Tolerance Limits and Specifications Design

In this section, we focus on tolerance from the point of view of customer specifica-
tions. Note that specification limits are independent of the process.

1A current trend is to use voice of stakeholders (VoS) instead of VoC.
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8.2.1 The Voice of the Customer

The setting of the specification limits is a crucial task in Quality Control. Such
specifications should stem from the customer during the design phase of a product or
service, involving not only engineering departments, but also other customer-related
teams, especially from marketing. In this chapter we assume that the specification
limits have already been set, either by the client or during the design phase. We refer
to them as upper specification limit (USL) and lower specification limit (LSL).
Processes can be classified into three categories according to their specification
limits, namely:

• Smaller-the-better, when the process has only a USL;
• Larger-the-better, when the process has only an LSL;
• Nominal-is-best, when the process has both USL and LSL.

Modern Quality Control techniques for the establishment of appropriate specifi-
cations include quality function deployment (QFD) and robust parameter design
(RPD). Details on RPD can be consulted in ISO 16336 [11]. ISO technical
committee TC69 SC8 is also developing a standard on QFD, at the time this is
written in DIS stage.2 It is also a usual tool in design for Six Sigma (DFSS)
methodologies, see, [17].

8.2.2 Process Tolerance

Customer specification limits can be taken directly as specification limits in a
production environment.3 However, an economic approach can be followed in order
to take into account the producer’s and the customer’s perception of loss due to
poor quality. The basis is the Taguchi Loss Function. Details about Loss Function
analysis can be found in Chapter 4 of [1] or in the free on-line textbook [12].
According to Taguchi method, if there is a target value Y0 for a given quality
characteristic Y , departures from this target produce non-perfect products and,
therefore, there is a loss for the society due to poor quality. This loss can be modeled
as a quadratic function of the form:

L.Y/ D k.Y � Y0/2;

where Y is the quality characteristic and Y0 is the target value. For a specific process,
k is obtained as:

k D Lc


2
c

;

2see Chapter 4 for details on ISO standards development stages.
3Production is applicable to products and services for the scope of this chapter.
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where 
c is the tolerance for the characteristic Y from the point of view of the
customer, and Lc is the loss for the customer when the characteristic is just out of
specification, i.e., Y0 ˙ 
c. Notice that the loss is zero when the process is exactly
at the target, and increases as the value of the characteristic departs from this target,
see Fig. 8.1.

The cost of poor quality is usually higher for the customer than for the producer.
The reason is that a product or service that is delivered to a customer is usually
compound of a series of items or components. Thus, if a component of the product
or service is defective, then the whole thing must be repaired or replaced. Not to
mention installation, transport, and collateral costs. However, a defective item in the
house of the producer would produce a lesser cost, just for reworking or dismissing
the individual component. Let Lm be the loss for the producer. Then we can find a
value for the product characteristic Y0 ˙ 
m for which the loss function equals that
loss. Thus, as it is clearly shown in Fig. 8.1, the manufacturing specification limit
is lower than the customer specification limit. The distance between both of them
depends on the difference between the customer’s loss and the producer’s loss, as
the manufacturing tolerance can be computed as:


m D 
c �
s

Lm

Lc
:

Quality characteristic value

Lo
ss

Y0 − Δc Y0 − Δm Y0 Y0 + Δm Y0 + Δc

0

L1

L0

Fig. 8.1 Taguchi’s loss function and specification design. The farther the target, the higher
the loss. The function is determined by the cost for the customer at the specification limits.
The manufacturing limits are then fixed at the point in which the function equals the cost for
the producer
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Example 8.1. Metal plates thickness.
We use the example described in Chapter 5. The quality characteristic under

study is the thickness of a certain steel plate. Nominal thickness of this product is
Y0 D 0:75 in, with a standard deviation of 0.05 in. The production is organized in
two shifts, seven days a week, and a sample of n D 6 units is drawn from each shift.
The data frame ss.data.thickness2 in the SixSigma package contains the
thickness measurements for two given weeks.

The structure of the data frame and a sample of its first rows are:

str(ss.data.thickness2)

## ’data.frame’: 84 obs. of 5 variables:
## $ day : Factor w/ 7 levels "1","2","3","4"..
## $ shift : Factor w/ 2 levels "1","2": 1 1 1 ..
## $ thickness: num 0.713 0.776 0.743 0.713 0.747..
## $ ushift : chr "1.1" "1.1" "1.1" "1.1" ...
## $ flaws : int 9 NA NA NA NA NA 2 7 9 NA ...

head(ss.data.thickness2)

## day shift thickness ushift flaws
## 1 1 1 0.713 1.1 9
## 2 1 1 0.776 1.1 NA
## 3 1 1 0.743 1.1 NA
## 4 1 1 0.713 1.1 NA
## 5 1 1 0.747 1.1 NA
## 6 1 1 0.753 1.1 NA

A visualization of all the data is in Fig. 8.2 by means of a dot plot with the
lattice package [15] using the following code:

library(lattice)
dotplot(thickness ~ shift | day,

data = ss.data.thickness2,
layout = c(7, 1))

The layout argument is a two-element integer vector for the number of
columns and rows in which the matrix of plots is organized, in this case we have
one panel for each day and in this way we sequentially display the whole week in
one row.

Let us assume that a tolerance 
c D ˙0:05 in is allowed by design in order to
consider the product acceptable by 50 % of the customers4 and that the customer
loss at that point is Lc D 2:5 USD. Then, the expression of the loss function is:

4This way of fixing specifications is called functional tolerance in Taguchi’s method terminology.
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L.Y/ D 2:5

0:052
.Y � 0:75/2;

If the cost for the producer at the specification limit Lm D 1 USD, then the
manufacturing tolerance is:


m D 
c �
s

Lm

Lc
D 0:032 in;

and the manufacturing specification limits are 0:75 ˙ 0:032. ut
In this section, we have focused on a nominal-is-best characteristic, but there

are models for larger-the-better and smaller-the-better characteristics loss functions,
see, for example, [1] or [16].

8.3 Capability Analysis

In this section, the VoC will be compared with the VoP. Firstly, we need to quantify
the VoP.

8.3.1 The Voice of the Process

In the previous section, we saw that the VoC is determined by the specification
limits. Now, the reference limits take the stall in name of the VoP. Reference limits
are usually named natural limits. They are also used as control limits in control
charts, so sometimes the three terms are used as synonyms. Reference limits are
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Fig. 8.2 Thickness example: one week data dot plot. Each point represents the thickness of one
metal plate
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defined in ISO 22514-4 [8] as the 0.135 % and the 99.865 % quantiles of the
distribution that describe the process characteristic. This means that the interval
within the reference limits includes 99.73 % of the observations. In a Normal
distribution, this is equivalent to a distance of three standard deviations from the
mean of the process, see Fig. 8.3. The probability of being out of the natural limits
(0.0027) is used as the ˛ value in hypothesis tests, see Chapter 5.

At this point, we need data in order to listen to the VoP. On the one hand,
we need to estimate the reference limits, so we need a sample of an in-control
process and make inference about the probability distribution. If we can accept that
data come from a normally distributed process, then the reference limits are just
� ˙ 3� . We estimate � and � , and we are done, see Chapter 5 for inference and
estimation. On the other hand, samples are to be taken in order to compare items’
actual measurements with specification limits. Thus, the easiest way of assessing our
quality is to count the number of items in the sample that are correct. The proportion
of correct units is the yield of the sample. The yield of the process may be
calculated taking into account rework (first time yield) and several linked processes
(rolled throughput yield). The proportion of defects is the complementary of process
yield. Defects per unit and defects per million opportunities (DPMO) are other usual
metrics. Either way, if the sample is representative of the population, then we can
estimate the yield of the process through the sample proportion of correct items.

Example 8.2. Metal plates thickness (cont.) Process yield.
For the sake of clarity, we use the customer specification limits, i.e., 0:75 ˙ 0:05.

Thus, we can count the items out of specification in the sample as follows:

Fig. 8.3 Reference limits in
a Normal distribution.
Within the reference limits
fall 99.7 % of the data Standard deviations from the process mean

−4 −3 −2 −1 0 1 2 3 4

μ−3σ μ+3σ

99.73% (Reference limits)
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nc <- sum(ss.data.thickness2$thickness > 0.8 |
ss.data.thickness2$thickness <0.7)

nc/length(ss.data.thickness2$thickness)

## [1] 0.07142857

Therefore, the yield of the sample is 78/84 = 92.86% and the proportion of
defects in the sample is 7.14%. ut

The number of defects in a sample is useful for accounting purposes or for
acceptance sampling procedures (see Chapter 7). However, in Statistical Quality
Control we are interested in the long-term performance of a process. To find out
about that, we identify the probability distribution of the data and estimate its
parameters. Then, the proportion of defects is estimated as the probability that the
random variable defining the process exceeds the specification limits.

Example 8.3. Metal plates thickness (cont.) Proportion of defects.
The first question would be: is the random variable that characterizes the quality

characteristic of our process normally distributed? The first tool we can use is a
histogram. Fig. 8.4 shows the histogram for all the samples of the week in our
example. Even though it seems normal, we can perform a hypothesis test and see if
we should reject normality:

Histogram of ss.data.thickness2$thickness

ss.data.thickness2$thickness

F
re

qu
en

cy

0.70 0.75 0.80

0

5

10

15

20

Fig. 8.4 Histogram of metal plates thickness. The histogram provides clues about normality.
A normality test proves to be helpful when in doubt
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hist(ss.data.thickness2$thickness)
library(nortest)
ad.test(ss.data.thickness2$thickness)

##
## Anderson-Darling normality test
##
## data: ss.data.thickness2$thickness
## A = 0.48374, p-value = 0.2231

We use the Anderson-Darling normality test, which is recommended in ISO
22514-4. As the p-value is large (even larger than 0.1), we cannot reject the
normality hypothesis (see Chapter 5). Then let us estimate the parameters of our
population:

thick.mu <- mean(ss.data.thickness2$thickness)
thick.sigma <- sd(ss.data.thickness2$thickness)

And now we can estimate the likely proportion of defects of our process:

def.USL <- pnorm(q = 0.8,
mean = thick.mu,
sd = thick.sigma,
lower.tail = FALSE)

def.LSL <- pnorm(q = 0.7,
mean = thick.mu,
sd = thick.sigma)

def.USL + def.LSL

## [1] 0.08648634

More than 8.6 % of the items will be, in the long term, out of specifications. ut

8.3.2 Process Performance Indices

For the sake of simplicity in the exposition, in what follows we assume normally
distributed characteristics. For non-normal characteristics the estimation methods
are slightly different, but the logic is the same, see [8] . The process performance can
be evaluated at any point by comparing the reference limits with the specification
limits. Thus, the process performance index is defined as:

Pp D USL � LSL

6�LT
;

where �LT represents long-term (LT) variation. Note that this quotient is the number
of times the reference limits (natural variation) fits into the specification limits. The
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lower the index, the greater the proportion of non-conforming items. However, if
the process is not centered in the target, we have a different performance for larger
values and for lower values. To overcome this situation, the upper and lower process
performance indices are defined as:

PpkU D USL � �

3�LT
;

PpkL D � � LSL

3�LT
;

and the minimum process performance index reflects better the performance of the
process:

Ppk D minfPpkU; PpkLg:

An important interpretation of those indices is that if Pp ¤ Ppk, then the process
is not centered at the specification tolerance, and the process might need to be
adjusted.

As we have a sample of our process, we need to estimate the performance indices.
To do so, we need to estimate the mean and standard deviation of the population,
i.e., � and �LT respectively. The sample mean and the sample (overall) standard
deviation are usually used to estimate performance indices:

OPp D USL � LSL

6s
; OPpkU D USL � x

3s
; OPpkL D x � LSL

3s
;

OPpk D minf OPpkU; OPpkLg:

where:

O�LT D s D
Pn

iD1.xi � x/2

n � 1
:

The above reasoning applies to the capability indices in the next section. Fig. 8.5
shows the interpretation of the index depending on its value. If an index is equal to 1,
it means that the reference limits and the specification limits are of equal width, and
therefore we will get approximately .˛�100/ % defects in the long term. If the index
is greater than one, then the process is “capable” of fulfilling the specifications,
whilst if the index is lower than 1, then we have a poor quality and the proportion
of defects is greater than ˛.
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LSL=LCL UCL=USL

Variation
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Observed value
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Fig. 8.5 Specification limits vs. reference limits. The larger the distance from the reference
limit to the specification limits, the better the performance. The plots correrspond, left to right,
to performance (or capability) indices equal, greater, and lower than 1

Example 8.4. Metal plates thickness. Process performance.
The sample mean standard deviation were computed in the previous example.

Moreover, the producer’s specification limits are 0:75 ˙ 0:032, i.e., USL = 0.782
and LSL = 0.718. Then we can easily calculate the performance indices as follows:

P.p <- (0.782 - 0.718)/(6*thick.sigma); P.p

## [1] 0.3823743

P.pkU <- (0.782 - thick.mu)/(3*thick.sigma); P.pkU

## [1] 0.2805216

P.pkL <- (thick.mu - 0.718)/(3*thick.sigma); P.pkL

## [1] 0.4842269

P.pk <- min(P.pkU, P.pkL); P.pk

## [1] 0.2805216

We will see in the following section how to compute performance indices using
the qcc R package.

ut

8.3.3 Capability Indices

Performance indices in the previous section can be used even when the process is out
of control. Moreover, performance indices measure long-term (LT) variability. Once
the process is in control, capability indices can be obtained. In order to compute
capability indices, we need data in m rational subgroups of size n. The aim of a
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capability index is the same as in performance indices, i.e., to measure the ratio
between the specification tolerance and the reference interval:

Cp D USL � LSL

6�ST
:

The difference is in the data used and in the fact that short term (ST) variability
�ST is used for an in-control process instead of the LT variability.

Again, the lower the index, the greater the proportion of non-conforming items.
We also define upper and lower process capability indices as:

CpkU D USL � �

3�ST
;

CpkL D � � LSL

3�ST
;

and the minimum process capability index reflects better the performance of the
process:

Cpk D minfCpkU; CpkLg:

If the process is not centered in the specification tolerance, then we have different
values for Cp and Cpk. Likewise with performance indices, we need to estimate the
capability indices. The mean of the process � is estimated also through the sample
mean x. However, we use the following estimator for the ST standard deviation �ST:

O�ST D
sP

s2
j

m
;

where sj is the standard deviation of each subgroup. If the process is monitored
using a Range control chart or a Standard Deviation control chart, the following
estimators can be used respectively:

O�ST D R

d2

; O� D S

c4

;

where R and S are the average range and standard deviation of the subgroups
respectively, and d2 and c4 are tabulated constants that only depend on the sample
size n. See Chapter 9 to find out more about control charts. Then, the appropriate
point estimators for the capability indices are:

OCp D USL � LSL

6 O�ST
; OCpkU D USL � x

3 O�ST
; OCpkL D x � LSL

3 O�ST
;

OCpk D minf OCpkU; OCpkLg:
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Finally, let us consider a process in which the target T is not centered in the
specification interval, i.e., T ¤ .ULS � LSL/=2. In this situation, we can use the
so-called Taguchi index defined as:

Cpmk D minfUSL � T; T � LSLg
3
p

�2 C .� � T/2
;

which can be calculated also from the Cpk as follows:

Cpmk D Cpkr
1 C

�
��T

�

	2
:

Example 8.5. Metal plates thickness. Capability indices.
In order to perform a capability analysis using the qcc package we need to create

a qcc object as if we wanted to plot a control chart (see Chapter 9) with subgroups.
Assuming that each shift is a subgroup:

library(qcc)
groups <- qcc.groups(ss.data.thickness2$thickness,

ss.data.thickness2$ushift)
myqcc <- qcc(data = groups, type = "xbar", plot = FALSE)

Now we can get the capability indices and a graphical representation of the
process using the process.capability function, see Fig. 8.6:

process.capability(object = myqcc,
spec.limits = c(0.718, 0.782))

##
## Process Capability Analysis
##
## Call:
## process.capability(object = myqcc, spec.limits =

c(0.718, 0.782))
##
## Number of obs = 84 Target = 0.75
## Center = 0.7585 LSL = 0.718
## StdDev = 0.02376 USL = 0.782
##
## Capability indices:
##
## Value 2.5% 97.5%
## Cp 0.4489 0.3807 0.5170
## Cp_l 0.5685 0.4744 0.6625
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## Cp_u 0.3293 0.2562 0.4024
## Cp_k 0.3293 0.2422 0.4164
## Cpm 0.4225 0.3552 0.4898
##
## Exp<LSL 4.4% Obs<LSL 6%
## Exp>USL 16% Obs>USL 21%

Notice that, in addition to point estimators, a confidence interval is provided
which is very useful for the monitoring of the capability. It is apparent that this
illustrative process is not capable at all. ut

A final remark on Performance and Capability indices. Performance indices
measure the actual capability of the process, using the variability in the long
term, i.e., the overall variability. Capability indices measure the potential level of
performance that could be attained if all special causes of variation were eliminated.
Indeed, capability will be normally lower than performance indices as they measure
variability in the short term, i.e., the within groups variability. This can be clearly
seen in Fig. 8.2 where each group individually has approximately the same variation,
but if we take all the measurements there is a larger variation. On the other hand,

Process Capability Analysis
for groups

0.70 0.75 0.80

LSL USLTarget

Number of obs = 84
Center = 0.7585238
StdDev = 0.02376254

Target = 0.75
LSL = 0.718
USL = 0.782

Cp     = 0.449
Cp_l  = 0.568
Cp_u = 0.329
Cp_k = 0.329
Cpm  = 0.423

Exp<LSL 4.4%
Exp>USL 16%
Obs<LSL 6%
Obs>USL 21%

Fig. 8.6 Capability analysis for the thickness example. A histogram is shown and compared
with the specification limits and target, along with the computed indices
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we can find in the literature tables of recommended values for the indices. From
our view, all processes are different, and the important thing is that the expert in the
subject matter understands capability indices and monitors processes consciously.
Just to have some numbers in mind, values for Cpk equal to 1.33 and 1.67 could be
for good and outstanding processes respectively. A value of Cpk D 2 corresponds
with a Sigma score of 6, i.e., a Six Sigma quality process, see [1].

We have provided formulae for estimating capability indices through point
estimators. These point estimators have a sampling distribution (see Chapter 5),
and confidence intervals can also be obtained, as in the above example. More details
about capability indices estimation can be found in [14] and [13].

The R packages SixSigma and qualityTools also compute capability
indices. For the sake of space we do not include examples of them, check their
documentation for details.

8.4 ISO Standards for Capability Analysis and R

As it was shown in Sect. 8.2, ISO technical committee TC69/SC8 (Application of
statistical and related methodology for new technology and product development)
is developing standards about new products design. Several standards are under
development at the time this is written, and one standard is already published:

• ISO 16336:2014 Applications of statistical and related methods to new
technology and product development process – Robust parameter design
(RPD) [11]. This standard gives guidelines for applying the optimization method
of RPD, an effective methodology for optimization based on Taguchi Methods,
to achieve robust products.

ISO technical committee TC69/SC4 (Applications of statistical methods in
process management) is, in turn, responsible for Capability analysis standards.
ISO 22514 Series (Statistical methods in process management – Capability and
performance) is a comprehensive set of standards covering the topics addressed in
this chapter, among others. The Series is composed of the following eight parts:

• Part 1: General principles and concepts [9]. This standard describes the fun-
damental principles of capability and performance of manufacturing processes.
It has been prepared to provide guidance about circumstances where a capability
study is demanded or necessary to determine if the output from a manufacturing
process or the production equipment (a production machine) is acceptable
according to appropriate criteria. Such circumstances are common in quality
control when the purpose for the study is part of some kind of production
acceptance. These studies can also be used when diagnosis is required concerning
a production output or as part of a problem solving effort. The methods are very
versatile and have been applied for many situations;
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• Part 2: Process capability and performance of time-dependent process
models [6]. This standard describes a procedure for the determination of statistics
for estimating the quality capability or performance of product and process
characteristics. The process results of these quality characteristics are categorized
into eight possible distribution types. Calculation formulae for the statistical
measures are placed with every distribution;

• Part 3: Machine performance studies for measured data on discrete parts[4].
This standard prescribes the steps to be taken in conducting short-term perfor-
mance studies that are typically performed on machines where parts produced
consecutively under repeatability conditions are considered. The number of
observations to be analyzed will vary according to the patterns the data produce,
or if the runs (the rate at which items are produced) on the machine are low in
quantity;

• Part 4: Process capability estimates and performance measures [8]. This
standard is being technically revised at the time this is written. This standard
describes process capability and performance measures that are commonly used;

• Part 5: Process capability estimates and performance for attributive char-
acteristics. This standard is under development at the time this is written;

• Part 6: Process capability statistics for characteristics following a multivari-
ate normal distribution [7]. This standard provides methods for calculating
performance and capability statistics for process or product quantities where it
is necessary or beneficial to consider a family of singular quantities in relation to
each other;

• Part 7: Capability of measurement processes [5]. This standard defines a
procedure to validate measuring systems and a measurement process in order
to state whether a given measurement process can satisfy the requirements
for a specific measurement task with a recommendation of acceptance criteria.
The acceptance criteria are defined as a capability figure or a capability ratio;

• Part 8: Machine performance of a multi-state production process [10]. The
aim of this standard is to define the evaluation method to quantify the short-
term capability of a production process (capacity of the production tool, widely
termed capability), i.e. the machine performance index, to ensure compliance to a
toleranced measurable product characteristic, when said process does not feature
any kind of sorting system.

Finally, parts 1 and 2 of ISO 3534 (Vocabulary and symbols about Statistics,
Probability, and Applied Statistics) [2, 3] are also useful for the scope of Capability
Analysis.
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Part IV
Control Charts

This Part contains two chapters dealing with the monitoring of processes. In
Chapter 9, the most important tool in statistical process control is explained: control
charts. Several types of control charts are shown in order to detect if a process
is out of control. By controlling the stability of the process, we may anticipate
future problems before products/services are received by the customer. It is also
a powerful improvement tool, as the investigation of special causes of variation may
result on better procedures to avoid the root cause of the out-of-control situation.
Chapter 10 presents a methodology to monitor processes where a nonlinear function
characterizes the quality characteristic. Thus, confidence bands are computed for the
so-called nonlinear profiles, allowing the monitoring of processes under a similar
methodology to the control charts approach.



Chapter 9
Control Charts with R

Abstract Control charts constitute a basic tool in statistical process control. This
chapter develops the fundamentals of the most commonly applied control charts.
Although the general basic ideas of control charts are common, two main different
classes are to be considered: control charts for variables, where continuous charac-
teristics are monitored; and control charts for attributes, where discrete variables are
monitored. In addition, as a special type of control charts, time weighed charts are
also outlined in the chapter. Finally, to guide users in the practice of control charts,
a selection of the available ISO standards is provided.

9.1 Introduction

In Chapter 1 we introduced quality control with an intuitive example based on the
use of a control chart. In fact, control charts are one of the most important tools
in Statistical Process Control (SPC). The underlying idea of control charts is to
build some natural limits for a given summary statistic of a quality characteristic.
Under the presence of common (natural) causes of variation, this summary statistic
is expected to remain within these limits. However, if the statistic falls out of the
natural limits, it is very unlikely that only natural variability is present, and an
investigation should be carried out in order to look for possible assignable causes
of variation, which should be eliminated [18]. In practice, the natural limits will
be estimated according to the sampling distribution of the statistic to be monitored,
and we will refer to the estimated limits as “control limits.” In fact, every point in a
control chart leads to a hypothesis test: a point out of the control limits may imply an
abnormal performance of the process under study and, as a consequence, the process
may be considered to be out of control. On the contrary, if all points remain within
the control limits, the process may be considered to be in control. See Chapter 5 for
details about statistics, sampling distributions, and hypothesis tests.

This chapter develops the fundamentals of the most commonly applied control
charts, the basic tool used in SPC. The remaining of this section depicts the basic
ideas of control charts; Sect. 9.2 describes the control charts for variables as well as
the special (time weighed) charts; Sect 9.3, describes the control charts for attributes.
Finally, Sect. 9.5 provides a selection of the ISO standards available to help users in
the practice of control chart.

© Springer International Publishing Switzerland 2015
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9.1.1 The Elements of a Control Chart

A control chart is a two-dimensional chart whose y-axis represents the variable we
are monitoring. In general, a summary statistic for the variable is computed for each
sample j D 1; : : : m of the process (see Chapter 5), and plotted sequentially in the
order in which they have arisen. The x-axis of the chart is an identification of such j
sample. Sometimes this sample is an individual value xj, and sometimes the sample
is a group of values xij, i D 1; : : : ; nj. If all the groups have the same size, then
nj D n. The values are plotted as points and linked with straight lines to identify
patterns that show significant changes in the process performance. Along with the
sequence of points, three important lines are plotted:

1. Center line (CL): This is the central value the statistic should vary around. For
example, the mean of the process;

2. Lower control limit (LCL). This is the value below which it is very unlikely for
the statistic to occur when the process is in control;

3. Upper control limit (UCL). This is the counterpart of the LCL on the upper side
of the CL. The LCL and UCL are symmetric if the probability distribution of the
statistic to be monitored is symmetric (e.g., normal).

The control limits are completely different from the specification limits, that
is, the limits beyond which the process will not be accepted by the customer
(see Chap. 8). The control limits are computed as a confidence interval (see Chap. 5)
that comprises a high proportion of the values. Typical control limits are those
between the mean and three standard deviations (� ˙ 3� ). For a normal probability
distribution these limits include 99.73 % of the data. Thus, if nothing abnormal
is taking place in the process, there will only be a probability of 0.0027 for an
individual observation to be outside the control limits. Moreover, a control chart
adds information about the variation of the process. Figure 9.1 shows how both
types of information are related.

9.1.2 Control Chart Design

The main aspect to consider in a control chart is how to set the control limits.
In general, it is a two-phase process. In Phase I, reliable control limits are estimated
using a preliminary set of samples. In order to find appropriate limits, the process
should be in control during Phase I. Thus, if special causes of variation are identified,
those points should be removed from the data set. Moreover, as a general rule the
limits should be computed with at least 25–30 samples. From that point on, in Phase
II, the subsequent samples are plotted in a chart with the former control limits.
When the individual observations of the statistic that is being monitored are within
the control limits, the process is considered to be statistically in control. It should
be noted that sometimes Phase I limits are assumed to be fixed, for example because



9.1 Introduction 241

the nominal values are accepted for the current process. In this case, that should be
confirmed with the appropriate hypothesis tests. In any case, if the process changes,
e.g., a reduction of variability is attained, then the control limits should be revised.
Otherwise the control chart losses effectiveness. For the sake of simplicity, in what
follows we will plot the charts in a single phase, although in practice it should be
done in two phases.

The sampling strategy is the other main concern when designing a control chart.
The first feature of this strategy is whether we can sample rational subgroups or
we can only sample individual items. When possible, it is always preferable to
have groups to monitor the mean instead of individual values, as the methods
are more robust against deviations of the data from the normal distribution. Of
course the sampling must be random, and the order of the samples must be known.
The crucial feature of a sample is that it must be representative of the process
under normal conditions. Next, the size of the group samples is to be determined.
In Chapter 6 we presented a method to get Operating Characteristic (OC) curves
as a tool to determine the sample size for an X chart. We will see more examples in
this chapter. Finally, we could be interested in deciding the frequency of sampling.
To answer this question, we look at the Average Run Length (ARL). The ARL is
the number of samples, on average, that will be drawn before detecting a change
in the process. This number follows a Geometric probability distribution, whose
unique parameter p is the probability of a point falling out the control limits., i.e.,
0.0027 as we showed in Sect. 9.1.1. The mean value of a Geometric distribution
is � D 1=p and, therefore, in an in-control process, we will get, on average, an
out-of-control false alarm every 370 samples as:

ARL D 1

p
D 1

0:0027
D 370:37:
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Fig. 9.1 Control charts vs. probability distribution. The control chart shows the sequence of the
observations. The variation around the central line provides an idea of the probability distribution
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Having said that, we are interested in learning how many samples will be needed
to detect a given change in the process. In this case, the probability of detection is
the power of the control chart, i.e., 1 � ˇ, where ˇ is obtained from the OC curve
mentioned above, see Chapter 6. Thus, to detect a mean shift corresponding to a
given ˇ, the ARL is:

ARL D 1

1 � ˇ
:

The ARL indicates the number of samples we need to detect the change. Then,
we should check the sampling frequency depending on our preference regarding
the time we are willing to wait before detecting a change. We leave the illustrative
example for Sect. 9.2 in order to first introduce other concepts.

9.1.3 Reading a Control Chart

Process natural variation is due to common causes, whereas variation outside the
control limits is due to special causes. Common causes arise from randomness and
all we can do is try to reduce it in order to improve the process, for example via
Design of Experiments (DoE), see [3]. Special causes prompt variability that is not
a consequence of randomness. Thus, when a point is outside the control limits, the
(special) cause must be identified, analyzed, and eradicated (Fig. 9.2).
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Fig. 9.2 Identifying special causes through individual points. When an individual point is out of
the control limits, a research on the cause should be started, in order to eliminate the root of the
problem
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Special causes can also generate other persistent problems in a process. They
can be identified through patterns in the chart. Three important patterns that we can
detect are trends, shifts, and seasonality (Fig. 9.3).

The following signals may help identify the above out-of-control situations.
Basically, the occurrence of any of the following circumstances is highly unlikely,
thus leading us to the conclusion that an assignable cause may be present in the
process.

• Points out of control limits;
• Seven consecutive points at the same side of the center line;
• Six consecutive points either increasing or decreasing;
• Fourteen consecutive points alternating up and down;
• Any other unusual pattern.

In addition to control limits we may look inside them in order to anticipate
possible problems. Three zones can be defined comprised by the control limits
(Fig. 9.4).

1. Zone C: ranges between the central line and one standard deviation;
2. Zone B: ranges between one and two standard deviations from the central line;
3. Zone A: ranges between two and three standard deviations from the central line.

After the definition of these three zones, some other unusual patterns may arise,
namely:

• Two out of three consecutive points in Zone A or above;
• Four out of five consecutive points in Zone B or above;
• Fifteen consecutive points in Zone B.

9.2 Control Charts for Variables

9.2.1 Introduction

When the characteristic to be measured is a continuous numerical variable we must
use control charts for variables. In this type of process control we have to control
both the central values of the variable and its variability, this is the reason why
control charts for variables are usually used two by two: one chart for the central
values (or the individual values if there are no groups) and another one for the
variability.

For the calculation of the control limits we have to take into account that we
work with samples from our processes. Then we will have to estimate the standard
deviation of the process with the aid of these samples. The theoretical details
involved in this estimation are out of the scope of this book (see [15]); we will
simply point out that some Shewhart charts use the distribution of the range from
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Fig. 9.3 Patterns in control charts. We can identify several patterns in a control chart, namely:
Recurring cycles (seasonality) (a), Shifts (b), or Trends (c)
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normal samples. The coefficients required to determine the standard deviation may
be found in Appendix A, and also in [15] and in [11].

9.2.2 Estimation of � for Control Charts

The sample standard deviation is not an unbiased estimator of the population
standard deviation. Therefore, in SPC, the two following unbiased estimators are
usually employed: s

c4
or R

d2
: Coefficients c4 and d2 may be found in Appendix A,

and also in [15] and in ISO 7870-2 [11]. They can also be computed in R using the
ss.cc.getc4 and ss.cc.getd2 functions in the SixSigma package.

9.2.3 Control Charts for Grouped Data

In order to construct this kind of charts we have to define rational subgroups, ideally
of the same size. If the groups have different sizes, then the control limits will not
be constant, and will have an uneven aspect what makes them more difficult to
interpret. This is the reason why it is advisable that the subgroup sizes be as similar
as possible. By the way, in the range chart the central line would also be variable.

As already mentioned, control charts should be plotted by pairs. The most famous
pair of control charts is the one made up by the X-bar chart and the Range chart.
The reason to use the range as a measure of variability is that we normally work with
small samples and the range is easy to compute and a good measure of variability
in that case. To estimate the standard deviation, and the control limits thereafter,
Shewhart’s formulae are used. The calculations are easily performed by R, as will
be shown soon.
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Fig. 9.4 Control chart zones. The distribution of the observations in the three zones can convey
out-of-control situations
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9.2.3.1 Mean Chart (X-Bar Chart)

The statistic to be monitored is the mean of each sample xj:

xj D
Pn

iD1 xij

nj
; j D 1; : : : ; m:

The center line (CL) is the so-called grand average x, i.e.:

x D
Pm

jD1 xj

m
:

To compute the control limits (CL ˙ 3� ) we need to estimate � . In this case,
as we are monitoring means, we need the standard deviation of those means in
order to compute the limits. From the sample distribution of the sample mean
(see Chapter 5), we know that its standard deviation is �p

n
. From the central limit

theorem, we can also use this result, even for non-normal distributions. Thus, the
formulae for the central line and the control limits of the mean chart are as follows:

CL D x;

ULC D x C R � 3

d2

p
n

;

LCL D x � R � 3

d2

p
n

;

where R is the average range, i.e.:

R D
Pm

jD1 Rj

m
I Rj D max xij � min xij;

and d2 is a constant that only depends on n. Note that, if groups have different sample
size nj, then the limits are to be calculated for each sample j. For simplicity when
computing control limits, the factor 3=d2

p
n is also tabulated as A2, see Appendix A.

Example 9.1. Metal plates thickness. X-bar chart.
In this chapter, we will use the metal plates thickness example in Chapter 8.

We recall here that we have measurements of metal plates thickness made up
of m D 14 samples of size n D 6, corresponding to 7 days, one sample for
each of the two shifts in which the production is organized. The data frame
ss.data.thickness2 is in the SixSigma package. The points of the X-bar
control are the following ones:
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aggregate(thickness ~ ushift,
data = ss.data.thickness2,
FUN = mean)

## ushift thickness
## 1 1.1 0.7408333
## 2 1.2 0.7313333
## 3 2.1 0.7950000
## 4 2.2 0.7658333
## 5 3.1 0.7373333
## 6 3.2 0.7425000
## 7 4.1 0.7698333
## 8 4.2 0.7783333
## 9 5.1 0.7521667
## 10 5.2 0.7456667
## 11 6.1 0.7556667
## 12 6.2 0.7561667
## 13 7.1 0.7740000
## 14 7.2 0.7746667

We could make the computations for the control limits using the formulae above
and then plot the control chart using R graphical capabilities. This might be needed
at some point, but in general it is more convenient to use contributed packages that
do all the work. Even though there are several packages that can plot control charts,
we will focus just on the qcc package [17], which is widely used in both academy
and industry. Before plotting the X-bar chart, we show the main features of the
functions in the package and the workflow to use it.

The use of the qcc package is simple. The main function is also named qcc, and
it returns a special object of class qcc. Even though the three entities have the same
name, they are not the same, check Chapter 2 to find out more about packages,
functions, and objects. The qcc function only needs two or three arguments to
create the object: one for the data, one for the type of chart, and another for
the sample sizes. The latter is only needed for certain types of charts, as we will
see later. The data argument can be one of the following: (1) a vector of individual
values; or (2) a matrix or a data frame containing one sample in each row. In our
case, we do not have the data structured in this way, but all the measurements are
in a column of the data frame, and the groups are identified in another column of
the data frame. We could transform the data using standard R functions, but the
qcc package includes a convenient function that does the job: qcc.groups. This
function requires as arguments two vectors of the same length: data containing all
the observations, and sample containing the sample identifiers for each data value.
Thus, we first transform our original data into a matrix in the appropriate format for
the qcc package:
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library(qcc)
samples.thick <- qcc.groups(

data = ss.data.thickness2$thickness,
sample = ss.data.thickness2$ushift)

samples.thick

## [,1] [,2] [,3] [,4] [,5] [,6]
## 1.1 0.713 0.776 0.743 0.713 0.747 0.753
## 1.2 0.749 0.726 0.774 0.744 0.718 0.677
## 2.1 0.778 0.802 0.798 0.793 0.801 0.798
## 2.2 0.780 0.729 0.793 0.777 0.774 0.742
## 3.1 0.775 0.735 0.749 0.737 0.701 0.727
## 3.2 0.727 0.736 0.768 0.759 0.734 0.731
## 4.1 0.748 0.748 0.778 0.789 0.764 0.792
## 4.2 0.778 0.750 0.777 0.736 0.807 0.822
## 5.1 0.752 0.738 0.788 0.740 0.754 0.741
## 5.2 0.726 0.745 0.705 0.770 0.744 0.784
## 6.1 0.775 0.742 0.735 0.768 0.752 0.762
## 6.2 0.763 0.749 0.750 0.759 0.787 0.729
## 7.1 0.793 0.757 0.775 0.772 0.750 0.797
## 7.2 0.796 0.784 0.807 0.780 0.731 0.750

Next, we can create the qcc object for an X-bar chart:

xbar.thick <- qcc(data = samples.thick, type = "xbar")

Finally, we can obtain the numerical or graphical results by using the generic
functions summary and plot, see Fig. 9.5:

summary(xbar.thick)

##
## Call:
## qcc(data = samples.thick, type = "xbar")
##
## xbar chart for samples.thick
##
## Summary of group statistics:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7313 0.7433 0.7559 0.7585 0.7730 0.7950
##
## Group sample size: 6
## Number of groups: 14
## Center of group statistics: 0.7585238
## Standard deviation: 0.02376254
##
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## Control limits:
## LCL UCL
## 0.7294208 0.7876269

plot(xbar.thick)

The summary function returns: the call to the function; the title of the chart; a
five-number summary (Q1, Q3, median, maximum and minimum) plus the mean of
the statistic monitored; the sample size n; the number of groups m; the center value
of the statistic and its standard deviation; and the control limits. All this information
can be accessed in the object of class qcc, as it is actually a list with the following
elements:

names(xbar.thick)

## [1] "call" "type" "data.name"
## [4] "data" "statistics" "sizes"
## [7] "center" "std.dev" "nsigmas"
## [10] "limits" "violations"

This information can be used for further purposes. Notice that some infor-
mation is not shown by the summary function, namely: type, nsigmas, and
violations.
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Fig. 9.5 X-bar chart example (basic options). To get a control chart, just the data and the type of
chart are needed
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xbar.thick$type

## [1] "xbar"

xbar.thick$nsigmas

## [1] 3

xbar.thick$violations

## $beyond.limits
## [1] 3
##
## $violating.runs
## numeric(0)

The violations item is, in turn, a list of two elements: (1) the indices of the
samples out of the control limits; and (2) the indices of the samples that violate
some of the rules listed above, e.g., too many points at the same side of the center
line. In our example, only an out-of-control-signal is shown: sample number three
is out of the control limits. Special causes of variation should be investigated.

We can add options to the qcc function to customize our control chart. The
following is a brief description of the available options:

• center: Phase I fixed center value;
• std.dev: a fixed value for the standard deviation (or a method to estimate it);
• limits: Phase I fixed limits;
• data.name: a character string, just for the plots;
• labels: labels for the samples;
• newdata: if provided, the data in the argument data is used as Phase I data,

i.e., to compute limits. A vertical line is plotted to separate Phase I and Phase II
data;

• newsizes; sample sizes for the Phase II new data;
• newlabels; labels for the new samples;
• nsigmas: The number of standard deviations to compute the control limits

(by default 3);
• confidence.level: if provided, control limits are computed as quantiles.

For example, a confidence level of 0.9973 is equivalent to 3 sigmas;
• rules: rules for out-of-control signals. Experienced R users can add new rules

adapted to their processes;
• plot: whether to plot the control chart or not.

On the other hand, the qcc.options function allows to set global options
for the current session, check the function documentation (type ?qcc.options)
to find out more. Also the call to the plot function over a qcc object allows to
customize parts of the chart. The following code sets options and adds arguments to
our object of class qcc, see Fig. 9.6.
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qcc.options("beyond.limits" = list(pch = 20,
col = "red3"))

qcc.options(bg.margin = "azure2")
plot(xbar.thick,

axes.las = 1,
digits = 3,
title = "X-Bar chart metal plates thickness",
xlab = "Shift",
ylab = "Sample mean",
ylim = c(0.70, 0.80))

Let us finish this example getting the OC Curves and ARL explained in
Sect. 9.1.2. Now that we have an object of class qcc, we can use the oc.curves
function to get values of ˇ for some values of n, including n D 6 in the example,
and plot the OC curve, see Figure 9.7:

thick.betas <- oc.curves(xbar.thick)
1/(1 - thick.betas[rownames(thick.betas) == "1", 1])

## [1] 3.436606

The oc.curves function, in addition to plotting the OC curve, returns a matrix
with the values of ˇ for each sample size n (columns) and process shift (rows).
Thus, the last expression in the above code calculates the ARL for a one-standard-
deviation process shift. From the calculated ARL = 3.43, we conclude that, in
average, more than three samples are needed to detect an out-of-control situation.

X−Bar chart metal plates thickness
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Fig. 9.6 X-bar chart example (basic options). Options can be added to the qcc function and
globally to the qcc.options
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In our example, if we need to detect such a change within 1 day, then the solution
would be drawing two samples per shift, or increasing the sample size of the groups
and see the new ARL.

ut
In this section, we have explained in detail the use of the qcc package. The main

ideas are the same for all types of control charts. Therefore, in the following we
provide less details, explaining just the features that are differential among charts.
Likewise, for the sake of space, OC curves and ARL for each specific control chart
are not explained, see [15] for details.

9.2.3.2 Range Chart (R Chart)

This chart monitors the stability of the process variability by means of the sample
ranges. Thus, the statistic is the range, and the control limits are:

CL D R; (9.1)

UCL D R C 3R
d3

d2

; (9.2)

LCL D R � 3R
d3

d2

: (9.3)
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Fig. 9.7 OC curve for the X-bar control chart. The values of ˇ can be stored and, afterwards, we
can calculate the ARL
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In this case, we estimate �R as d3
R
d2

, see [15] for details. Usually the formulae are
simplified as:

UCL D R � D4;

LCL D R � D3;

where:

D4 D 1 C 3d3

d2

I D3 D 1 � 3d3

d2

;

whose values are tabulated for certain values of n, see Appendix A.

Example 9.2. Metal plates thickness (cont.). Range chart.
As we already have the matrix with the samples in the object samples.thick,

we just create the range chart in Fig. 9.8 just changing the type of control chart as
follows:

r.thick <- qcc(data = samples.thick, type = "R")

Apparently, even though we detected an out-of-control sample for the mean, the
variation of the process is in control. ut
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Fig. 9.8 Range chart for metal plates thickness. The range charts monitor variability
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9.2.3.3 Standard Deviation Chart (S Chart)

Range charts are easy to compute and interpret. However, as sample size increases,
it is more appropriate to monitor variability using the standard deviation. In general
for n � 8 (10 according to some authors), we should use the standard deviation chart
(S Chart). Obviously, the statistic monitored for each sample is the sample standard
deviation sj:

sj D
Pn

iD1.xij � xj/
2

nj � 1
:

We estimate the standard deviation of the s statistic as:

s

q
1 � c2

4

c4

;

and therefore the central line and the control limits are the following:

CL D s D
Pm

jD1 sj

m
;

UCL D s C 3s

q
1 � c2

4

c4

;

LCL D s � 3s

q
1 � c2

4

c4

:

New constants B3 and B4 are then defined to simplify the formulae as follows:

UCL D s � B4;

LCL D s � B3;

where:

B4 D 1 C 3

q
1 � c2

4

c4

I B3 D 1 � 3

q
1 � c2

4

c4

:

Example 9.3. Metal plates thickness (cont.) Standard deviation chart.
Figure 9.9 shows the S chart created with the following expression, again using

the matrix of samples:

r.thick <- qcc(data = samples.thick, type = "S")

As expected, there are not out-of-control samples for standard deviations.
ut
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At the beginning of this section we pointed out that control charts for variables
should be shown in couples. Why is this so important? We have seen in the examples
above that we might have out-of-control samples in terms of the mean values, while
being the variability in control; and the opposite case may also occur. This is the
reason why if we only monitor mean values, we will not be aware of such situations.

Example 9.4. Metal plates thickness (cont.) X-bar & S chart.
To illustrate the importance of monitoring variability, let us simulate a new shift

sample with the following code:

set.seed(1)
new.sample <- matrix(round(rnorm(6, 0.75, 0.05), 3),

nrow = 1, ncol = 6)
mean(new.sample)

## [1] 0.7485

In order to jointly plot the two control charts, we use the graphical parameter
mfrow to divide the graphics device in two rows. We add the new sample as Phase
II data:

ccxbar <- qcc(data = samples.thick, type = "xbar",
newdata = new.sample, newlabels = "8.1")

ccs <- qcc(data = samples.thick, type = "S",
newdata = new.sample, newlabels = "8.1")

par(mfrow = c(2, 1))
plot(ccxbar, restore.par = FALSE, add.stats = FALSE)
plot(ccs, add.stats = FALSE)
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Fig. 9.9 S chart for metal plates thickness. The S chart monitors variability through the standard
deviation of the samples
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As it is clearly shown in Fig. 9.10, the last point is in control from the point of
view of the mean, but it is out of control from the point of view of variability. In
fact, one of the six new values is even out of the specification limits. ut

9.2.4 Control Charts for Non-grouped Data

9.2.4.1 Individual Values Chart and Moving Range Chart

The simplest control chart we may create is the individual values chart (I Chart).
When it is not possible to create rational subgroups we may monitor data individu-
ally. In this case, we estimate the global standard deviation as MR=d2 taking d2 for
n D 2.
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Fig. 9.10 X-bar and S chart for metal plates thickness. It is important to monitor both mean values
and variability
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The control lines for the I Chart are:

CL D x;

UCL D x C 3
MR

d2

;

LCL D x � 3
MR

d2

;

where MR is the moving range, computed as:

MR D
Pm

jD1 MRj

m � 1
I MRj D jxjC1 � xjj:

The most adequate chart to accompany the individual values chart in order to
control process variability is the moving range chart. Actually, what we do in such
a case is to assume that every two successive data points constitute a group, and
in this way we can determine a range equivalence to the difference between two
consecutive observations. This is how Shewhart’s principles for sample sizes n D 2

can be applied to individual values. Therefore, the center line and control limits are
the same as in Eq. (9.1) for the R chart, taking the constants d3 and d2 for n D 2.
In practice, the lower limit is always zero since the formula returns a negative value
and a range cannot be negative by definition.

Example 9.5. Metal plates thickness (cont.) I & MR control charts.
For illustrative purposes, let us use the first 24 values in the ss.data.

thickness2 data frame to plot the individuals control chart. In this case, a vector
with the data is required, hence we do not need any transformation. On the other
hand, to plot the moving range control chart, we can create a matrix with two
artificial samples: one with the first original 23 values, and another one with the last
original 23 values. The following code plots the I & MR control charts in Fig. 9.11.

thickness2days <- ss.data.thickness2$thickness[1:24]
mov.samples <- cbind(thickness2days[1:23],

thickness2days[2:24])
cci <- qcc(thickness2days, type = "xbar.one")
ccmr <- qcc(mov.samples, type = "R")
par(mfrow = c(2, 1))
plot(cci, restore.par = FALSE, add.stats = FALSE)
plot(ccmr, add.stats = FALSE)
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In this case, an out-of-control signal is produced for both charts in measurement
12. In addition, a violating run is also produced in sample 19, as there are too many
points at the same side of the center line.

ut

9.2.5 Special Control Charts

The Shewhart control charts for variables explained so far are very powerful to
detect significant out-of-control situations under the assumption of independent
samples. In this section we outline two more types of charts that are useful for time-
dependent processes. Their computations and interpretation are less intuitive than
in Shewhart charts. We provide the formulae and illustrate with examples, without
going into the details, that may be consulted, for example, in [15].
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Fig. 9.11 Individual and moving range charts for metal plates thickness. The moving range
assumes sample size n D 2 to compute limits
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9.2.5.1 CUSUM Chart

The CUSUM chart (cumulative sums) controls the process by means of the
difference of accumulated sums with respect to a target value (usually the mean).
This chart may be used with either grouped or individual values. For each sample
two statistics are monitored, the so-called cusum coefficients: one for the positive
deviations CC

j and another one for the negative deviations C�
j , which are calculated

as follows:

CC
j max

h
0; xj � .�0 C K/ C CC

j�1

i
;

C�
i max



0; .�0 � K/ � xj C C�

j�1

�
;

CC
0 D C�

0 D 0;

where K represents the amount of shift we want to detect in terms of standard errors.
A typical value for K is 1. Note that for samples of n � 2 observations, xj should be
used instead of xj. For an in-control process, coefficients will randomly vary around
0. Thus, the center line is at 0. The control limits of the CUSUM control chart are
fixed at ˙H, where H is related to the number of standard errors. A typical value
for H is 5. See [15] for a detailed design of the CUSUM control chart.

Example 9.6. Metal plates thickness (cont.) CUSUM chart.
The following expression plots the CUSUM chart in Fig. 9.12 using the default

settings, check the documentation of the function to learn more about how to change
them:

cusum.thick <- cusum(data = thickness2days)
summary(cusum.thick)

##
## Call:
## cusum(data = thickness2days)
##
## cusum chart for thickness2days
##
## Summary of group statistics:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6770 0.7388 0.7635 0.7582 0.7832 0.8020
##
## Group sample size: 1
## Number of groups: 24
## Center of group statistics: 0.75825
## Standard deviation: 0.02570922
##
## Decision interval (std.err.): 5
## Shift detection (std. err.): 1
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Note that an out-of-control signal is detected in sample 18. The number of points
at the same side of the central line indicates when the shift took place. ut

9.2.5.2 EWMA Chart

EWMA is the acronym for Exponentially Weighted Moving Average. This chart
permits the identification of small deviations. It is said that the EWMA chart
has memory, as each monitored value takes into account the information from
previously monitored values. It is specially appropriate when data significantly
deviates from the normal distribution. The statistic to be monitored is a weighted
moving average zj computed as:

zj D �xj C .1 � �/zj�1I z0 D x:

The center line is at x and the control limits are:

UCL D x C L�

s
�

2 � � Œ1 � .1 � �/2j�
;

LCL D �0 � L�

s
�

2 � � Œ1 � .1 � �/2j�
:
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Fig. 9.12 CUSUM chart for metal plates thickness. Process shifts are detected sooner than with
Shewhart charts
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Therefore, we need two parameters to design the EWMA chart: the smoothing
parameter � and the number of sigmas L determining the width of the control limits.
Typical values for these parameters are 0.2 and 3, respectively.

Example 9.7. Metal plates thickness (cont.) EWMA chart.
The following expression plots the EWMA chart in Fig. 9.13 using the default

settings, check the documentation of the function to learn more about how to change
them:

ewma.thick <- ewma(data = thickness2days)

Note that in addition to the points and lines of the statistic zj, the real value of
each sample or observation is plotted as a ‘+’ symbol. ut

Finally, it is important to remark that CUSUM and EWMA charts should be
initialized when out-of-control signals appear.

9.3 Control Charts for Attributes

9.3.1 Introduction

It is not always possible to measure a quality characteristic numerically. However
it is easy to check certain attributes, for instance: conforming/nonconforming. It is
possible to perform a process control over this kind of data by means of the so-
called attribute control charts. Likewise the control charts for variables, this kind of
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control charts detect highly unlikely situations according to the inherent probability
distribution of the process. In this case, discrete probabilities like the binomial or
the Poisson distributions are used instead of the normal distribution, see Chapter 5
for details on probability distributions.

9.3.2 Attributes Control Charts for Groups

In attribute control charts, we may have j samples of data with a given size nj, in
which we count the items Dj that fall in a given category, e.g., “defective,” and
calculate the proportion of items in the sample pj D Dj=nj. Then we can monitor
the process with the p and np control charts. The underlying probability distribution
used in these charts is the binomial B.n; p/.

9.3.2.1 The p Chart

This chart is used to control proportions within groups of a certain size, such as lots,
orders in a day, etc. The statistic to be monitored is the sample proportion pj, whose
standard deviation is:

s
p.1 � p/

nj
:

The center line is the total proportion of defects p, i.e.:

p D
Pm

jD1 DjPm
jD1 nj

;

and the limits are calculated as follows:

UCLj D p C 3

s
p.1 � p/

nj
;

LCLj D p � 3

s
p.1 � p/

nj
:

Note that if we have different sample sizes the control limits are not constant.



9.3 Control Charts for Attributes 263

9.3.2.2 The np Chart

The np control chart is used to monitor the number of elements Dj with the
characteristic to be controlled, not the proportion. Nevertheless, the type of data
is the same as in the p chart, i.e., groups with a given size n, mandatory all of the
same size for this chart. The center line is the average number of items with the
characteristic per sample, i.e., np. In this case the control limits are calculated as:

UCL D np C 3
p

np.1 � p/;

LCL D np � 3
p

np.1 � p/;

Example 9.8. Metal plates thickness (cont.) p and np charts.
Suppose we want to monitor the proportion and the number of items whose

thickness is larger than the midpoint between the nominal value and the specification
limit, i.e., 0.775 in. We first need a vector with the proportions for each sample, that
can be calculated with the following expression:

thick.attribute <- aggregate(thickness ~ ushift,
data = ss.data.thickness2,
FUN = function(x){
sum(x>0.775)

})

The p control chart in Fig. 9.14 can now be obtained with the following call to
the qcc function:

thick.p <- qcc(data = thick.attribute$thickness,
type = "p",
sizes = 6)

The np control chart in Fig. 9.15 shows the same pattern. The election of one
or another is most of the times a matter of what is easier of interpret by the team:
proportions or counts. Moreover, the np chart only can be used when all the samples
have the same size n.

thick.np <- qcc(data = thick.attribute$thickness,
type = "np",
sizes = 6)

ut



264 9 Control Charts with R

9.3.3 Control Charts for Events

Unlike in the previous charts, sometimes we count events, e.g., nonconformities,
not within a finite sample, but in a fixed interval of time or space. We can monitor
these type of processes with the c and u control charts. The underlying probability
distribution used in these charts is the Poisson Po.�/.

9.3.3.1 The c Chart

The c control chart is used to control the total number of events for a given process
in an errors per interval basis, this is a process that follows a Poisson distribution
in which there could theoretically be an infinite number of possible events. In this
kind of processes we do not have a sample size from which a proportion could be
calculated, as in the p and np charts. The most common application of this chart is
to control the total number of nonconformities measured in a series of m samples of
the same extension, either temporal or spatial.

Examples could be the number of unattended calls per hour, the number of
nonconformities per day, etc. It could also be used to monitor the number of
events of physical samples, e.g., when samples form a continuous material are taken
(fabric, surfaces (ft2), liquid (l), etc.) and the average number of events per sample
are measured. The statistic of each sample is the count of events cj. The center line
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Fig. 9.14 p chart for metal plates thickness. The statistic monitored is the proportion of items in
each sample
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Fig. 9.15 np chart for metal plates thickness. The statistic monitored is the number of items within
a category in each sample

is the average number of events per sample c D
P

cj

m . As in a Poisson distribution
the variance is the parameter �, then an estimator of the standard deviation is

p
c,

and therefore the control limits are:

UCLj D c C 3
p

c;

LCLj D c � 3
p

c:

9.3.3.2 The u Chart

When in the previous situation we have nj items of different size within each sample
j in which we count the total number of events xj in all the elements within the
sample, it may be interesting to monitor the average number of defects per item.
In such a situation the u chart should be used. The statistic to be monitored is uj, the
number of defects per unit in the sample j, i.e.:

uj D xj

nj
;
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and the center line is the average number of defects per unit in all the samples:

CL D u D
Pm

jD1 ui

m
:

The limits are calculated as follows:

UCL D u C 3

s
u

nj
;

LCL D u � 3

s
u

nj
:

Example 9.9. Metal plates thickness (cont.) c and u charts.
In addition to the thickness measurement, some metal plates (1, 2, or 3) are

inspected to find flaws in the surface. The inspector counts the number of flaws
in each inspected metal plate, and this information is in the column flaws of the
ss.data.thickness2 data frame.

To plot the c chart for all the metal plates in Fig. 9.16 we need the vector with
just the inspected items, i.e., removing the NA values:

flaws <- ss.data.thickness2$flaws[
!is.na(ss.data.thickness2$flaws)]

thick.c <- qcc(data = flaws, type = "c")

Finally, if we want to monitor the average flaws per metal plate in each shift, then
we need the u chart in Fig. 9.17 that is the result of the following code:

shift.flaws <- aggregate(flaws ~ ushift,
data = ss.data.thickness2,
sum,
na.rm = TRUE)[,2]

shift.inspected <- aggregate(flaws ~ ushift,
data = ss.data.thickness2,
function(x) {
sum(!is.na(x))

})[,2]
thick.c <- qcc(data = shift.flaws,

type = "u",
sizes = shift.inspected)

ut
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9.4 Control Chart Selection

In this chapter, we have reviewed the main types of control charts used. A decision
tree summarizing how to choose the appropriate control chart is shown in Fig. 9.18.
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Fig. 9.16 c chart for metal plates thickness. The statistic monitored is the count of flaws in each
individual metal plate

u Chart
for shift.flaws

Group

G
ro

up
 s

um
m

ar
y 

st
at

is
tic

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

4

8

12

LCL

UCL

CL

Number of groups = 14
Center = 5.26087
StdDev = 3.237014

LCL is variable
UCL is variable

Number beyond limits = 0
Number violating runs = 0

Fig. 9.17 u chart for metal plates thickness. Note that, as we have a different number of inspected
items in each shift, the limits are not constant



268 9 Control Charts with R

We have focused on the use of the qcc R package [17]. Other packages
can be used to plot control charts, e.g., IQCC [2], qcr [4], spc [14], and
qicharts[1]. Packages also useful for quality control charting in R are, for
example, the spcadjust package [5], with functions for the calibration of control
charts; and the edcc package [20], specific for economic design of control charts.
Nevertheless, with the formulae provided for the control lines (center, upper limit,
and lower limit) you are prepared to plot your own control charts with the R
graphical functions in the packages graphics, lattice [16] or ggplot2 [19],
just plotting points and lines and adding control lines (CL, UCL, LCL). In this way,
you can customize any feature of your control chart. Furthermore, for the sake of
completeness, Appendix A contains the constants used in the formulae.

Type

Variable

Attribute

n

1

2−10

>10

Groups

Finite (proportion)

Continuous (# defects)

I−MR Chart

x − R Chart

x − s Chart

p / np Charts

c / u Charts

Fig. 9.18 Decision tree for basic process control charts. First, check your variable type. If it is a
continuous variable, the chart depends on the groups size. If it is an attribute variable, the chart
depends on what you want to monitor (proportion of defects or number of defects per unit)
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9.5 ISO Standards for Control Charts

The following are the more relevant standards in the topic of control charts:

• ISO 7870-1:2014 Control charts—Part 1: General guidelines [12]. This
Standard presents the key elements and philosophy of the control chart approach,
and identifies a wide variety of control charts, such as Shewhart control chart and
specialized control charts.

• ISO 7870-2:2013 Control charts—Part 2: Shewhart control charts [11]. This
Standard establishes a guide to the use and understanding of the Shewhart control
chart approach to the methods for statistical control of a process. It is limited to
the treatment of SPC methods using only Shewhart’s charts. Some supplementary
material that is consistent with the Shewhart approach, such as the use of warning
limits, analysis of trend patterns and process capability is briefly introduced.

• ISO 7870-3:2012 Control charts—Part 3: Acceptance control charts [10].
This Standard provides guidance on the uses of acceptance control charts and
establishes general procedures for determining sample sizes, action limits, and
decision criteria. This chart is typically used when the process variable under
study is normally distributed, however, it can be applied to a non-normal
distribution. Examples are included to illustrate a variety of circumstances in
which this technique has advantages and to provide details of the determination
of the sample size, the action limits, and the decision criteria.

• ISO 7870-4:2011 Control charts—Part 4: Cumulative sum charts [8]. This
Standard provides statistical procedures for setting up cumulative sum (CUSUM)
schemes for process and quality control using variables (measured) and attribute
data.

• ISO 7870-5:2014 Control charts—Part 5: Specialized control charts [13].
This Standard establishes a guide to the use of specialized control charts in
situations where commonly used Shewhart control chart approach to the methods
of statistical control of a process may either be not applicable or less efficient in
detecting unnatural patterns of variation of the process.

• ISO 11462-1:2001 Guidelines for implementation of statistical process con-
trol (SPC)—Part 1: Elements of SPC [9]. This Standard provides guidelines
for the implementation of a SPC system, and a variety of elements to guide an
organization in planning, developing, executing, and/or evaluating a SPC system.

In addition, parts 1 and 2 of ISO 3534 (Vocabulary and symbols about Statistics,
Probability, and Applied Statistics) [6, 7] are also useful for the scope of Control
Charts.
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Chapter 10
Nonlinear Profiles with R

Abstract In many situations, processes are often represented by a function that
involves a response variable and a number of predictive variables. In this chapter, we
show how to treat data whose relation between the predictive and response variables
is nonlinear and, as a consequence, cannot be adequately represented by a linear
model. This kind of data are known as nonlinear profiles. Our aim is to show how
to build nonlinear control limits and a baseline prototype using a set of observed
in-control profiles. Using R, we show how to afford situations in which nonlinear
profiles arise and how to plot easy-to-use nonlinear control charts.

10.1 Introduction

In Chapter 9 we presented control charts, considered to be the basic tools of
statistical process control (SPC). In particular, control charts are useful to test the
stability of a process when measuring one or more response variables sequentially.
However, in many situations, processes are often represented by a function (called
profile) that involves a response variable and a number of predictive variables. The
simplest profiles are those coming from a linear relation between the response
and the predictive variables. Nevertheless, in many cases, a nonlinear relation
exists among the variables under study and, therefore, more complex models are
demanded by the industry. In this chapter, we show how to treat data whose relation
between the predictive and response variables is nonlinear and, as a consequence,
cannot be adequately represented by a linear model. This kind of data are known as
nonlinear profiles.

One of the first approaches to nonlinear profiles in the industry can be consulted
in the document entitled “Advanced Quality System Tools” published by Boeing in
1998 [1]. On page 91 of that publication, a location variability chart of the flange-
angle deviation from target at each location within a given spar is shown, with the
peculiarity that, in addition to the classical specification limits, location averages
and natural tolerance limits are included for each location. These so-called natural
tolerance limits are far from linear, demonstrating that a nonlinear relation between
the location and the flange-angle deviation exists. A brief review on nonlinear
profiles research can be consulted in [12].

© Springer International Publishing Switzerland 2015
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10.2 Nonlinear Profiles Basics

Consider a typical process where, given an item, a characteristic has to be observed
under different conditions or locations within the item.

Example 10.1. Engineered woodboards.
To illustrate this chapter, we will use a data set in the SixSigma package [2].

It is a variation of the example introduced in [11]. Our data set is made up of
observations over 50 items, named P1, . . . , P50. Each item corresponds to an
engineered woodboard. For each woodboard, 500 observations (measurements) of
its density are taken at locations 0.001 in apart within the board. The observations
have been sequentially obtained. Each five observations correspond to a sample
from the same 4-h shift, that is, the first five observations correspond to the first
4-h shift, and so on. The data are available in the SixSigma package as data
objects ss.data.wbx for the locations, and ss.data.wby for the density
measurements. Note that ss.data.wby is a matrix in which each column contains
the measurements corresponding to a woodboard. The column names allow to
easily identify the woodboard and the group it belongs to. Fig. 10.1 graphically
represents board P1, using standard R graphics functions. The 500 locations where
the measurements were taken are in the x-axis, while the y-axis is for the density
measurements at each location. We will refer to each set of 500 measurements taken
over a given board as a profile.

library(SixSigma)
plot(ss.data.wbx, ss.data.wby[, "P1"], type = "l")

ut
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Fig. 10.1 Single woodboard example. Plot of the first board in the sample (named P1). The density
measurements (y axis) are plotted against their location within the woodboard (x axis)
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From a mathematical point of view, consider a typical design of an in-control
process. Given an item, its associated profile is made up of n observations of a
characteristic Y of the item, yi, i D 1; : : : ; n. We will refer to Y as the response
variable. Let X be the predictive variable. Let xi, i D 1; : : : ; n be the corresponding
values of the predictive variable. For each item, the underlying in-control model is:

yi D f .xi/ C "i; i D 1; : : : ; n (10.1)

where f is a smooth function, and "i are error terms from an unknown distribution. In
this chapter, our aim is to show how to build confidence bands and an estimation of
f .x/ using a set of observed in-control profiles. Such confidence bands correspond
to upper and lower nonlinear control limits around function f .x/ and will be used
to detect out-of-control profiles. Although rigorously speaking the term “confidence
bands” may not be appropriate, we will use it for the sake of clarity.

Example 10.2. Engineered woodboards (cont.)
In the case at hand, n D 500, corresponding every xi to each one of the 500

locations taken 0.001 inches apart within the board, and every yi to each one of the
500 measurements taken at the locations. The first 20 locations and measurements
corresponding to board P1 are:

ss.data.wbx[1:20]

## [1] 0.000 0.001 0.002 0.003 0.004 0.005 0.006
## [8] 0.007 0.008 0.009 0.010 0.011 0.012 0.013
## [15] 0.014 0.015 0.016 0.017 0.018 0.019

ss.data.wby[1:20, "P1"]

## [1] 58.38115 57.99777 58.17090 58.35552 57.92579
## [6] 57.57768 56.92579 57.39193 57.66014 57.35137
## [11] 56.66480 56.35189 56.57832 56.66493 55.63115
## [16] 56.10753 56.48934 56.47111 55.26861 55.50989

Notice that the locations are common to all profiles.
In many applications, it is interesting to work with smoothed versions of the pro-

files [3, 9]. We can calculate a smoothed version of profile P1. The smoothing proce-
dure can be made using different techniques. The function smoothProfiles in
the SixSigma package makes use of regularization theory in order to smooth the
profile. In particular, a support vector machine (SVM) approach [10] is followed. In
any case, this is transparent for the user and the function acts as a black box, that
is, a profile is given as input and the function provides the smoothed version of the
profile. For instance, profile P1 and its smoothed version can be jointly plotted using
the following code (see Fig. 10.2):
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P1.smooth <- smoothProfiles(
profiles = ss.data.wby[, "P1"],
x = ss.data.wbx)

plotProfiles(profiles = cbind(P1.smooth,
ss.data.wby[, "P1"]),

x = ss.data.wbx)

Notice that the smoothing procedure is working well as the smoothed version
seems to fit the original profile.

Function smoothProfiles accepts as first input argument a matrix contain-
ing a set of profiles. In this case, as we are working only with profile P1, the
input matrix is the vector containing the measurements corresponding to profile P1
(ss.data.wby[, "P1"]). The second argument is the vector corresponding
to the locations where the measurements are taken (ss.data.wbx). The output
of the function is the smoothed version of profile P1, which is assigned to object
P1.smooth. The function allows the tuning of the SVM model inside. To this
aim, additional arguments may be provided to change the default settings (check the
function documentation for details by typing ?smoothProfiles). Note that this
function makes use of the e1071 library, and therefore it must be installed in R in
advance.

Function PlotProfiles plots a set of profiles in a matrix. In this case, we
have built a matrix with the smoothed version of profile P1 in the first column and
profile P1 itself in the second column using the cbind function. We may plot the
whole set of profiles with the following code (see Fig. 10.3):

plotProfiles(profiles = ss.data.wby,
x = ss.data.wbx)
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Fig. 10.2 Single woodboard example (smoothed). Profile P1 and its smoothed version



10.3 Phase I and Phase II Analysis 275

Straightforwardly, we may plot the smoothed versions of the 50 profiles. We
firstly smooth the profiles:

wby.smooth <- smoothProfiles(profiles = ss.data.wby,
x = ss.data.wbx)

And secondly, we plot the smoothed profiles (see Fig. 10.4):

plotProfiles(profiles = wby.smooth,
x = ss.data.wbx)

ut
It is important to remark that we should always check that the smoothing

procedure is working well. Graphically, this can be easily checked by choosing some
profiles at random. For each profile chosen, we should plot jointly the profile itself
and its smoothed version, and in this way visually check if the smoothing procedure
is working appropriately, similarly to what we did in Fig. 10.2. If the smoothing
procedure seems to fail, the simplest way to proceed is to use the original set of
profiles without smoothing. More expert users may try to change the default SVM
parameters in the smoothProfiles function.

10.3 Phase I and Phase II Analysis

In the SPC methodology two phases are involved, Phase I and Phase II. In Phase I,
an in-control baseline subset of profiles is sought. The goal in this phase is to test
the stability of the process, in order to model the in-control process performance. In
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Fig. 10.3 Woodboard example: whole set of profiles. Plot of the 50 profiles. The density
measurements (y axis) are plotted against their location within the woodboard (x axis)
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Phase II, the goal is to monitor the process. To this aim, the model adjusted in Phase
I is used for the detection of out-of-control profiles over a set of new profiles not
previously analyzed.

10.3.1 Phase I

Example 10.3. Engineered woodboards (cont.) Phase I analysis.
We will divide the set of 50 profiles into two subsets. A first subset will be made

up of the profiles obtained within the first seven 4-h shifts, that is, profiles P1, . . . ,
P35. The second subset will be made up of the remaining profiles, i.e., profiles
P36, . . . , P50. In Phase I, we will use the profiles in the first group to seek for a
baseline subset of in-control profiles and, with this baseline subset, model the in-
control process performance. We will refer to this first group as Phase I group.

First, we create a matrix with the profiles in the Phase I group (columns 1–35 in
matrix ss.data.wby):

wby.phase1 <- ss.data.wby[, 1:35]

Next, we calculate and plot confidence bands from the profiles in the Phase I
group and an estimation of function f .x/ in (10.1), see Fig. 10.5. In the following,
we will refer to f .x/ as the prototype profile.
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Fig. 10.4 Woodboard example: whole set of smoothed profiles. Plot of the 50 smoothed profiles.
The smoothed density measurements (y axis) are plotted against their location within the
woodboard (x axis)
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wb.limits <- climProfiles(profiles = wby.phase1,
x = ss.data.wbx,
smoothprof = TRUE,
smoothlim = TRUE)

plotProfiles(profiles = wby.phase1,
x = ss.data.wbx,
cLimits = wb.limits)

Given a set of profiles, function climProfiles calculates confidence bands
and an estimation of the prototype profile f .x/. This function, by default, calculates
99 % confidence bands (parameter alpha= 0.01 by default, see the function docu-
mentation). In the case at hand, the calculations are done using smoothed versions
of the input profiles (parameter smoothprof = TRUE), and the confidence bands
have also been smoothed (parameter smoothlim = TRUE). The functions allows
to change these default settings at the user’s preference through the function
arguments.

Note that to plot the profiles and the confidence bands, we have used again the
plotProfiles function adding a new argument cLimits with the computed
confidence bands and the prototype profile.

Fig. 10.5 shows the profiles in the Phase I group (thin black lines), the confidence
bands calculated from these profiles (thick blue lines) and the estimation of f .x/

(thick green line). In the plot it is apparent that some profiles are out of the inner
region determined by the confidence bands, and, therefore, may be considered out
of control. The following code returns the list of out-of-control profiles.
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Fig. 10.5 Woodboard example: Phase I. Plot of the 35 Phase I group profiles, confidence bands,
and estimation of f .x/
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wb.out.phase1 <- outProfiles(profiles = wby.phase1,
x = ss.data.wbx,
cLimits = wb.limits)

wb.out.phase1

## $labOut
## [1] "P28" "P32"
##
## $idOut
## [1] 28 32
##
## $pOut
## [1] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## [10] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## [19] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## [28] 0.96 0.00 0.00 0.00 0.77 0.02 0.00 0.01

The function outProfiles returns a list of three vectors. The first vector
(labOut) contains the labels of the out-of-control profiles. The second vector
(idOut) contains the indexes of the out-of-control profiles. This vector is given
for completeness as in some cases the index may be preferable to the label. The
third vector contains the proportion of times that each profile remains out of the
confidence bands. By default, the function considers a profile to be out of control
if the proportion of times that this profile remains out of the confidence bands is
over 0.5. The user may change this default value by including the tol argument
with the desired value. For instance, the user may change the value of the tol
parameter to 0.80. In this case, only one out-of-control profile arises, P28. After
some investigation, the user may consider that profile P28 is out of control, and
should not belong to the in-control baseline subset of profiles. As a consequence,
it is removed and the confidence bands are calculated again without this profile,
following in this way a classical Phase I SPC strategy.

wb.out35 <- outProfiles(profiles = wby.phase1,
x = ss.data.wbx,
cLimits = wb.limits,
tol = 0.8)

wb.out35

## $labOut
## [1] "P28"
##
## $idOut
## [1] 28
##
## $pOut
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## [1] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## [10] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## [19] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## [28] 0.96 0.00 0.00 0.00 0.77 0.02 0.00 0.01

With the following code the confidence bands are calculated again using 34
profiles, that is, without profile P28 in the Phase I group of profiles:

wb.limits <- climProfiles(profiles = wby.phase1[, -28],
x = ss.data.wbx,
smoothprof = TRUE,
smoothlim = TRUE)

plotProfiles(profiles = wby.phase1[, -28],
x = ss.data.wbx,
cLimits = wb.limits)

Fig. 10.6 shows the 34 profiles (thin black lines), the confidence bands calculated
from these 34 profiles (thick blue lines) and the estimation of f .x/ (thick green
line). In the plot it is apparent that some profiles are close to the confidence bands.
The following code looks for the new list of out-of-control profiles using the 0.8
tolerance previously defined by the user.

wb.out.phase1 <- outProfiles(profiles = wby.phase1[,-28],
x = ss.data.wbx,
cLimits = wb.limits,
tol = 0.8)

wb.out.phase1
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Fig. 10.6 Woodboard example: Phase I. Plot of the Phase I baseline in-control profiles, confidence
bands, and estimation of f .x/



280 10 Nonlinear Profiles with R

## $labOut
## NULL
##
## $idOut
## NULL
##
## $pOut
## [1] 0.00 0.00 0.00 0.00 0.00 0.68 0.00 0.00 0.00
## [10] 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
## [19] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## [28] 0.00 0.00 0.01 0.77 0.02 0.00 0.01

In this case, the value NULL indicates that the vector is empty, and therefore, no
out-of-control profiles were detected. It is clear that now the process seems to be
in control. And these 34 profiles constitute the Phase I in-control baseline group of
profiles. ut

10.3.2 Phase II

Once the confidence bands and the baseline profiles have been determined, we
will use these confidence bands to check if some not previously analyzed profiles
(typically new ones) are out of control.

Example 10.4. Engineered woodboards (cont.) Phase II analysis.
In Phase II, we will check whether the profiles in the last three 4-h shifts, profiles

P36, . . . , P50, are out of control. Notice that these profiles were not used to estimate
the confidence bands in Phase I. Next, we create a matrix with these profiles:

wby.phase2 <- ss.data.wby[, 36:50]

In order to check if the new profiles are out of control, we just use function
outProfiles over the new set of profiles and the control limits calculated in
Phase I.

wb.out.phase2 <- outProfiles(profiles = wby.phase2,
x = ss.data.wbx,
cLimits = wb.limits,
tol = 0.8)

wb.out.phase2

## $labOut
## [1] "P46" "P47" "P48"
##
## $idOut
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## [1] 11 12 13
##
## $pOut
## [1] 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01
## [10] 0.00 1.00 0.95 1.00 0.00 0.00

Profiles P46, P47, and P48 are considered to be out of control. The proportion
of times that these profiles remain out of the confidence bands is 1, 0.95, and 1
respectively. As a consequence, the user may conclude that during the last 4-h shift
the process was not in-control and the causes should be investigated.

We can plot the Phase II profiles, the confidence bands, the estimation of f .x/, and
the out-of-control profiles. To do this, we use again the plotProfiles function
adding a new argument outControl with the labels or indexes of the out-of-
control profiles, see Fig. 10.7.

plotProfiles(wby.phase2,
x = ss.data.wbx,
cLimits = wb.limits,
outControl = wb.out.phase2$idOut)

Finally, for the sake of clarity, we can plot a graph only containing the out-of-
control profiles, the confidence bands, and the prototype, see Fig. 10.8. The code to
plot this chart is:
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Fig. 10.7 Woodboard example: Phase II. Plot of the Phase II profiles, confidence bands, estimation
of f .x/, and out-of-control profiles
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plotProfiles(wby.phase2,
x = ss.data.wbx,
cLimits = wb.limits,
outControl = wb.out.phase2$idOut,
onlyout = TRUE)

In order to plot only the out-of-control profiles, we must change the default value
of the argument onlyout to TRUE.

10.4 A Simple Profiles Control Chart

In this section we show how to plot a very simple but useful profiles control chart.
The chart summarizes sequentially the results shown in the previous sections. Since
for each profile we can obtain the proportion of times that it remains out of the
confidence bands, we can plot this proportions jointly with the tolerance fixed by
the user so that sequential patterns may be detected, similarly to the typical SPC
strategy. Notice that in many nonlinear profiles real problems the concept “out
of control” depends on the user’s knowledge and requirements. More experienced
users may implement this using real-time recorded data via an R interface.

Example 10.5. Engineered woodboards (cont.) Profiles control chart.
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Fig. 10.8 Woodboard example: Phase II out of control. Plot of the Phase II out-of-control profiles,
confidence bands, estimation of f .x/
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Function outProfiles provides a vector which includes the proportion of
times that each profile is out of the confidence bands in the pOut element of the
output list. Notice that the pOut is independent of the tol parameter. To plot this
chart (see Fig. 10.9) we use the function plotControlProfiles as follows:

plotControlProfiles(wb.out.phase2$pOut, tol = 0.8)

ut

10.5 ISO Standards for Nonlinear Profiles and R

To the best of our knowledge, no standards have been published regarding the
monitoring of nonlinear profiles. Nevertheless, nonlinearity is a subject that is
taken into account in some ISO Standards. For example, part 5 of ISO 11843
series [6] includes a methodology for nonlinear calibration within the capability of
detection topic. On the other hand, the out-of-control rates obtained as a result of a
nonlinear profiles analysis can be monitored using a Shewhart p-chart, as described
in Chapter 9. This kind of charts can be consulted in ISO 7870-2 [4]. Regarding
specialized control charts, ISO 7870-5 [5] contains several charts appropriate for
time-dependent and non-normal data.

Finally, although out of the scope of ISO technical committee TC69, SVM are
considered in several standards such as ISO 13179-1 [7] or ISO 15746-1 [8].
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Fig. 10.9 Woodboard example: Profiles control chart. Sequential plot of the profiles out-of-control
rate for a given tolerance
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Appendix A
Shewhart Constants for Control Charts

The main Shewhart constants d2, d3, and c4 can be obtained for any n using R as
shown in the following examples:

library(SixSigma)
ss.cc.getd2(n = 5)

## d2
## 2.325929

ss.cc.getd3(n = 5)

## d3
## 0.8640819

ss.cc.getc4(n = 5)

## c4
## 0.9399856

The rest of Shewhart constants that can be found at any textbook are computed
using those three basic constants. A full table of constants can also be generated
using R. Table A.1 shows the constants used in this book. There are other constants
not covered by this book which could also be computed just using the appropriate
formula. A data frame with the constants in Table A.1 can be obtained with the
following code:

nmax <- 25
n <- 2:nmax
d2 <- sapply(2:nmax, ss.cc.getd2)
d3 <- sapply(2:nmax, ss.cc.getd3)
c4 <- sapply(2:nmax, ss.cc.getc4)
A2 <- 3/(d2*sqrt(n))
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Table A.1 Shewhart constants

n d2 d3 c4 A2 D3 D4 B3 B4

2 1.1284 0.8525 0.7979 1.8800 0.0000 3.2665 0.0000 3.2665

3 1.6926 0.8884 0.8862 1.0233 0.0000 2.5746 0.0000 2.5682

4 2.0588 0.8798 0.9213 0.7286 0.0000 2.2821 0.0000 2.2660

5 2.3259 0.8641 0.9400 0.5768 0.0000 2.1145 0.0000 2.0890

6 2.5344 0.8480 0.9515 0.4832 0.0000 2.0038 0.0304 1.9696

7 2.7044 0.8332 0.9594 0.4193 0.0757 1.9243 0.1177 1.8823

8 2.8472 0.8198 0.9650 0.3725 0.1362 1.8638 0.1851 1.8149

9 2.9700 0.8078 0.9693 0.3367 0.1840 1.8160 0.2391 1.7609

10 3.0775 0.7971 0.9727 0.3083 0.2230 1.7770 0.2837 1.7163

11 3.1729 0.7873 0.9754 0.2851 0.2556 1.7444 0.3213 1.6787

12 3.2585 0.7785 0.9776 0.2658 0.2833 1.7167 0.3535 1.6465

13 3.3360 0.7704 0.9794 0.2494 0.3072 1.6928 0.3816 1.6184

14 3.4068 0.7630 0.9810 0.2354 0.3281 1.6719 0.4062 1.5938

15 3.4718 0.7562 0.9823 0.2231 0.3466 1.6534 0.4282 1.5718

16 3.5320 0.7499 0.9835 0.2123 0.3630 1.6370 0.4479 1.5521

17 3.5879 0.7441 0.9845 0.2028 0.3779 1.6221 0.4657 1.5343

18 3.6401 0.7386 0.9854 0.1943 0.3913 1.6087 0.4818 1.5182

19 3.6890 0.7335 0.9862 0.1866 0.4035 1.5965 0.4966 1.5034

20 3.7349 0.7287 0.9869 0.1796 0.4147 1.5853 0.5102 1.4898

21 3.7783 0.7242 0.9876 0.1733 0.4250 1.5750 0.5228 1.4772

22 3.8194 0.7199 0.9882 0.1675 0.4345 1.5655 0.5344 1.4656

23 3.8583 0.7159 0.9887 0.1621 0.4434 1.5566 0.5452 1.4548

24 3.8953 0.7121 0.9892 0.1572 0.4516 1.5484 0.5553 1.4447

25 3.9306 0.7084 0.9896 0.1526 0.4593 1.5407 0.5648 1.4352

D3 <- sapply(1:(nmax-1), function(x){
max(c(0, 1 - 3*(d3[x]/d2[x])))})

D4 <- (1 + 3*(d3/d2))
B3 <- sapply(1:(nmax-1), function(x){

max(0, 1 - 3*(sqrt(1-c4[x]^2)/c4[x]))})
B4 <- 1 + 3*(sqrt(1-c4^2)/c4)
constdf <- data.frame(n, d2, d3, c4, A2,

D3, D4, B3, B4)

The table of constants is also available as a one-page pdf document through one
of the SixSigma package vignettes:

vignette(topic = "Shewhart Constants",
package = "SixSigma")



Appendix B
ISO Standards Published by the ISO/TC69:
Application of Statistical Methods

This appendix contains all the international standards and technical reports
published by the ISO TC69—Application of Statistical Methods, grouped by
subcommittees. Please note that ISO standards are continously evolving. All
references to standards in this appendix and throughout the book are specific
for a given point in time. In particular, this point in time is end of June 2015.
Therefore, some new standards may have appeared when you are reading this
book, or even other changes may have happen in ISO. For example, at the time
of publishing a subcommittee has changed its denomination! Keep updated in the
committee website: http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_
browse.htm?commid=49742.

TC69/SCS: Secretariat

ISO 11453:1996 Statistical interpretation of data—Tests and confidence intervals
relating to proportions.

ISO 11453:1996/Cor 1:1999 .
ISO 16269-4:2010 Statistical interpretation of data—Part 4: Detection and treat-

ment of outliers.
ISO 16269-6:2014 Statistical interpretation of data—Part 6: Determination of

statistical tolerance intervals.
ISO 16269-7:2001 Statistical interpretation of data—Part 7: Median—

Estimation and confidence intervals.
ISO 16269-8:2004 Statistical interpretation of data—Part 8: Determination of

prediction intervals.
ISO 2602:1980 Statistical interpretation of test results—Estimation of the

mean—Confidence interval.
ISO 2854:1976 Statistical interpretation of data—Techniques of estimation and

tests relating to means and variances.
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ISO 28640:2010 Random variate generation methods.
ISO 3301:1975 Statistical interpretation of data—Comparison of two means in

the case of paired observations.
ISO 3494:1976 Statistical interpretation of data—Power of tests relating to

means and variances.
ISO 5479:1997 Statistical interpretation of data—Tests for departure from the

normal distribution.
ISO/TR 13519:2012 Guidance on the development and use of ISO statistical

publications supported by software.
ISO/TR 18532:2009 Guidance on the application of statistical methods to quality

and to industrial standardization.

TC69/SC1: Terminology and Symbols

Statistics
ISO 3534-1:2006 —Vocabulary and symbols—Part 1: General statistical terms

and terms used in probability.
ISO 3534-2:2006 Statistics—Vocabulary and symbols—Part 2: Applied

statistics.
ISO 3534-3:2013 Statistics—Vocabulary and symbols—Part 3: Design of

experiments.
ISO 3534-4:2014 Statistics—Vocabulary and symbols—Part 4: Survey sampling.

TC69/SC4: Applications of Statistical Methods in Process
Management

ISO 11462-1:2001 Guidelines for implementation of statistical process control
(SPC)—Part 1: Elements of SPC.

ISO 11462-2:2010 Guidelines for implementation of statistical process control
(SPC)—Part 2: Catalogue of tools and techniques.

ISO 22514-1:2014 Statistical methods in process management—Capability and
performance—Part 1: General principles and concepts.

ISO 22514-2:2013 Statistical methods in process management—Capability and
performance—Part 2: Process capability and performance of time-dependent
process models.

ISO 22514-3:2008 Statistical methods in process management—Capability and
performance—Part 3: Machine performance studies for measured data on dis-
crete parts.
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ISO 22514-6:2013 Statistical methods in process management—Capability and
performance—Part 6: Process capability statistics for characteristics following a
multivariate normal distribution.

ISO 22514-7:2012 Statistical methods in process management—Capability and
performance—Part 7: Capability of measurement processes.

ISO 22514-8:2014 Statistical methods in process management—Capability and
performance—Part 8: Machine performance of a multi-state production process.

ISO 7870-1:2014 Control charts—Part 1: General guidelines.
ISO 7870-2:2013 Control charts—Part 2: Shewhart control charts.
ISO 7870-3:2012 Control charts—Part 3: Acceptance control charts.
ISO 7870-4:2011 Control charts—Part 4: Cumulative sum charts.
ISO 7870-5:2014 Control charts—Part 5: Specialized control charts.
ISO/TR 22514-4:2007 Statistical methods in process management—Capability

and performance—Part 4: Process capability estimates and performance mea-
sures.

TC69/SC5: Acceptance Sampling

ISO 13448-1:2005 Acceptance sampling procedures based on the allocation of
priorities principle (APP)—Part 1: Guidelines for the APP approach.

ISO 13448-2:2004 Acceptance sampling procedures based on the allocation
of priorities principle (APP)—Part 2: Coordinated single sampling plans for
acceptance sampling by attributes.

ISO 14560:2004 Acceptance sampling procedures by attributes—Specified
quality levels in nonconforming items per million.

ISO 18414:2006 Acceptance sampling procedures by attributes—Accept-zero
sampling system based on credit principle for controlling outgoing quality.

ISO 21247:2005 Combined accept-zero sampling systems and process control
procedures for product acceptance.

ISO 24153:2009 Random sampling and randomization procedures.
ISO 2859-10:2006 Sampling procedures for inspection by attributes—Part 10:

Introduction to the ISO 2859 series of standards for sampling for inspection by
attributes.

ISO 2859-1:1999 Sampling procedures for inspection by attributes—Part 1:
Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot
inspection.

ISO 2859-1:1999/Amd 1:2011 .
ISO 2859-3:2005 Sampling procedures for inspection by attributes—Part 3:

Skip-lot sampling procedures.
ISO 2859-4:2002 Sampling procedures for inspection by attributes—Part 4:

Procedures for assessment of declared quality levels.
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ISO 2859-5:2005 Sampling procedures for inspection by attributes—Part 5:
System of sequential sampling plans indexed by acceptance quality limit (AQL)
for lot-by-lot inspection.

ISO 28801:2011 Double sampling plans by attributes with minimal sample sizes,
indexed by producer’s risk quality (PRQ) and consumer’s risk quality (CRQ).

ISO 3951-1:2013 Sampling procedures for inspection by variables—Part 1:
Specification for single sampling plans indexed by acceptance quality limit
(AQL) for lot-by-lot inspection for a single quality characteristic and a single
AQL.

ISO 3951-2:2013 Sampling procedures for inspection by variables—Part 2:
General specification for single sampling plans indexed by acceptance quality
limit (AQL) for lot-by-lot inspection of independent quality characteristics.

ISO 3951-3:2007 Sampling procedures for inspection by variables—Part 3: Dou-
ble sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot
inspection.

ISO 3951-4:2011 Sampling procedures for inspection by variables—Part 4: Pro-
cedures for assessment of declared quality levels.

ISO 3951-5:2006 Sampling procedures for inspection by variables—Part 5:
Sequential sampling plans indexed by acceptance quality limit (AQL) for
inspection by variables (known standard deviation).

ISO 8422:2006 Sequential sampling plans for inspection by attributes.
ISO 8423:2008 Sequential sampling plans for inspection by variables for percent

nonconforming (known standard deviation).

TC69/SC6: Measurement Methods and Results

ISO 10576-1:2003 Statistical methods—Guidelines for the evaluation of confor-
mity with specified requirements—Part 1: General principles.

ISO 10725:2000 Acceptance sampling plans and procedures for the inspection of
bulk materials.

ISO 11095:1996 Linear calibration using reference materials.
ISO 11648-1:2003 Statistical aspects of sampling from bulk materials—Part 1:

General principles.
ISO 11648-2:2001 Statistical aspects of sampling from bulk materials—Part 2:

Sampling of particulate materials.
ISO 11843-1:1997 Capability of detection—Part 1: Terms and definitions.
ISO 11843-2:2000 Capability of detection—Part 2: Methodology in the linear

calibration case.
ISO 11843-3:2003 Capability of detection—Part 3: Methodology for determina-

tion of the critical value for the response variable when no calibration data are
used.

ISO 11843-4:2003 Capability of detection—Part 4: Methodology for comparing
the minimum detectable value with a given value.
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ISO 11843-5:2008 Capability of detection—Part 5: Methodology in the linear
and non-linear calibration cases.

ISO 11843-6:2013 Capability of detection—Part 6: Methodology for the deter-
mination of the critical value and the minimum detectable value in Poisson
distributed measurements by normal approximations.

ISO 11843-7:2012 Capability of detection—Part 7: Methodology based on
stochastic properties of instrumental noise.

ISO 21748:2010 Guidance for the use of repeatability, reproducibility and true-
ness estimates in measurement uncertainty estimation.

ISO 5725-1:1994 Accuracy (trueness and precision) of measurement methods
and results—Part 1: General principles and definitions.

ISO 5725-2:1994 Accuracy (trueness and precision) of measurement methods
and results—Part 2: Basic method for the determination of repeatability and
reproducibility of a standard measurement method.

ISO 5725-3:1994 Accuracy (trueness and precision) of measurement methods
and results—Part 3: Intermediate measures of the precision of a standard
measurement method.

ISO 5725-4:1994 Accuracy (trueness and precision) of measurement methods
and results—Part 4: Basic methods for the determination of the trueness of a
standard measurement method.

ISO 5725-5:1998 Accuracy (trueness and precision) of measurement methods
and results—Part 5: Alternative methods for the determination of the precision
of a standard measurement method.

ISO 5725-6:1994 Accuracy (trueness and precision) of measurement methods
and results—Part 6: Use in practice of accuracy values.

ISO/TR 13587:2012 Three statistical approaches for the assessment and inter-
pretation of measurement uncertainty.

ISO/TS 21749:2005 Measurement uncertainty for metrological applications—
Repeated measurements and nested experiments.

ISO/TS 28037:2010 Determination and use of straight-line calibration functions.

TC69/SC7: Applications of Statistical and Related Techniques
for the Implementation of Six Sigma

ISO 13053-1:2011 Quantitative methods in process improvement—Six Sigma—
Part 1: DMAIC methodology.

ISO 13053-2:2011 Quantitative methods in process improvement—Six Sigma—
Part 2: Tools and techniques.

ISO 17258:2015 Statistical methods—Six Sigma—Basic criteria underlying
benchmarking for Six Sigma in organisations.

ISO/TR 12845:2010 Selected illustrations of fractional factorial screening
experiments.
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ISO/TR 12888:2011 Selected illustrations of gauge repeatability and repro-
ducibility studies.

ISO/TR 14468:2010 Selected illustrations of attribute agreement analysis.
ISO/TR 29901:2007 Selected illustrations of full factorial experiments with four

factors.
ISO/TR 29901:2007/Cor 1:2009 .

TC69/SC8: Application of Statistical and Related
Methodology for New Technology and Product Development

ISO 16336:2014 Applications of statistical and related methods to new
technology and product development process—Robust parameter design (RPD).



Appendix C
R Cheat Sheet for Quality Control

R Console

" # Navigate expressions history
CTRL+L Clear console
ESC Cancel current expression

RStudio

CTRL + number Go to panel:

• 1: Editor
• 2: Console
• 3: Help
• 4: History
• 5: Files
• 6: Plots
• 7: Packages
• 8: Environment

CTRL + MAYÚS + K knit current R Markdown report
CTRL + MAYÚS + I Compile R Sweave (LATEX) current report
CTRL + S Save file
F1 Contextual help (upon the cursor position)
CTRL + F Activates search (within different panels)1

<console>

1See ‘Edit’ menu for further options.

© Springer International Publishing Switzerland 2015
E.L. Cano et al., Quality Control with R, Use R!,
DOI 10.1007/978-3-319-24046-6
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" # Expressions history
CTRL+L Clear console
ESC Cancel current expression
<editor and console>
TAB Prompt menu:

• Select objects in the workspace
• Select function arguments (when in parenthesis)
• Select list elements (after the $ character)
• Select chunk options (when in chunk header)
• Select files (when in quotes)

<editor>
CTRL + ENTER Run current line or selection
CTRL + MAYÚS + S Source full script
CTRL + ALT + I Insert code chunk
CTRL + ALT + C Run current code chunk (within a chunk)
CTRL + MAYÚS + P Repeat las code run
CTRL + MAYÚS + C Comment current line or selection (add # at the begin-

ning of the line)
CTRL + D Delete current line
ALT + " # Move current line or selection up or down
ALT + MAYÚS + " # Copy current line or selection up or down

Help

?, help Help on a function

help("mean")
?mean

??, help.search Search help over a topic

help.search("topic")

apropos Show function containing a given string

apropos("prop.test")

## [1] "pairwise.prop.test" "power.prop.test"
## [3] "prop.test"
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General

; Separate expressions in the same line
<- Assignment operator
{ <code> } Code blocks within curly brackets

# Comment (ignores the remaining of the line)
‘<string>‘ (backtick) Allow using identifiers with special characters and/or
blank spaces

?(‘[‘)
‘my var‘ <- 1:5
‘my var‘

Math Operators

+, - /, *, O Arithmetic

5 + 2

## [1] 7

pi - 3

## [1] 0.1415927

1:5 * 2

## [1] 2 4 6 8 10

3 / 1:3

## [1] 3.0 1.5 1.0

3^4

## [1] 81

<, >, <=, >=, ==, !=, %in% Comparisons

5 >= 3



296 C R Cheat Sheet for Quality Control

## [1] TRUE

5 %in% 1:4

## [1] FALSE

"a" %in% letters

## [1] TRUE

3.14 != pi

## [1] TRUE

&, &&, |, ||, ! Logic operations2

5 >= 3 | 8 > 10

## [1] TRUE

5 >= 3 & 8 > 10

## [1] FALSE

1:2 < 3 & 3:4 > 2

## [1] TRUE TRUE

1:2 < 3 && 3:4 > 2

## [1] TRUE

Integer Operations

%/% Integer division

15 %/% 2

## [1] 7

%% Module (remainder of a division)

15 %% 2

## [1] 1

2Double operators && and || are used to compare vectors globally. Single operators, element-wise.
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Comparison Functions

all Are all elements TRUE?

all(1 > 2, 1 <2)

## [1] FALSE

any Is any element TRUE?

any(1 > 2, 1 < 2)

## [1] TRUE

Math Functions

sqrt Square root

sqrt(16)

## [1] 4

exp, log Exponential and logarithmic

exp(-5)

## [1] 0.006737947

log(5)

## [1] 1.609438

sin, cos, tan Trigonometry

sin(pi)

## [1] 1.224647e-16

asin, acos, atan Inverse trigonometry

asin(1)

## [1] 1.570796
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abs Absolute value

abs(log(0.5))

## [1] 0.6931472

round, floor, ceiling Rounding

round(5.5)

## [1] 6

floor(5.5)

## [1] 5

ceiling(5.4)

## [1] 6

max, min Maximum and minimum

x <- 1:10
max(x)

## [1] 10

min(x)

## [1] 1

sum, prod Sums and products

sum(x)

## [1] 55

prod(x)

## [1] 3628800

cumsum, cumprod, cummax, cummin Cumulative operations

cumsum(x)

## [1] 1 3 6 10 15 21 28 36 45 55

cumprod(1:5)

## [1] 1 2 6 24 120
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factorial Factorial

factorial(5)

## [1] 120

choose Binomial coefficient

choose(5,3)

## [1] 10

Vectors

c Create a vector (combine values)

svec <- c(1, 2, 5, 7, 4); svec

## [1] 1 2 5 7 4

seq : Creates a sequence

seq(4, 11, 2)

## [1] 4 6 8 10

4:11

## [1] 4 5 6 7 8 9 10 11

rep Repeat values

rep(1:2, each = 2)

## [1] 1 1 2 2

rep(1:2, times = 2)

## [1] 1 2 1 2

length Vector length

length(svec)

## [1] 5
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[ ] Item selection

x[3]

## [1] 3

x[-3]

## [1] 1 2 4 5 6 7 8 9 10

sort Sorting

svec

## [1] 1 2 5 7 4

sort(svec)

## [1] 1 2 4 5 7

order Get indices ordered by magnitude

order(svec)

## [1] 1 2 5 3 4

rev Reverse order

rev(sort(svec))

## [1] 7 5 4 2 1

unique Get unique values

x2 <- c(1, 2, 2, 3, 4, 5, 5); x2

## [1] 1 2 2 3 4 5 5

unique(x2)

## [1] 1 2 3 4 5

which Devuelve índices que cumplen condición

which(x2 == 5)

## [1] 6 7
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union, intersect, setdiff, setequal, %in% Sets operations

union(1:3, 3:5)

## [1] 1 2 3 4 5

intersect(1:3, 3:5)

## [1] 3

setdiff(1:3, 3:5)

## [1] 1 2

setequal(1:3, 3:5)

## [1] FALSE

3 %in% 1:3

## [1] TRUE

Matrices

matrix Create a matrix

A <- matrix(1:4, nrow=2); A

## [,1] [,2]
## [1,] 1 3
## [2,] 2 4

B <- matrix(1:2, ncol=1); B

## [,1]
## [1,] 1
## [2,] 2

%*% Matrix multiplication

A %*% B

## [,1]
## [1,] 7
## [2,] 10
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t Transpose a matrix

t(A)

## [,1] [,2]
## [1,] 1 2
## [2,] 3 4

solve Inverse a matrix

solve(A)

## [,1] [,2]
## [1,] -2 1.5
## [2,] 1 -0.5

colSums, rowSums Sum by rows or columns

colSums(A)

## [1] 3 7

colMeans, rowMeans Average by rows or columns

rowMeans(B)

## [1] 1 2

colnames, rownames Column or rows names

colnames(A) <- c("col1", "col2"); A

## col1 col2
## [1,] 1 3
## [2,] 2 4

dim, nrow, ncol Dimensions

dim(A)

## [1] 2 2

nrow(A)

## [1] 2

ncol(A)

## [1] 2
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rbind, cbind Add columns or rows to a matrix matrix

rbind(A, 10:11)

## col1 col2
## [1,] 1 3
## [2,] 2 4
## [3,] 10 11

cbind(B, 10:11)

## [,1] [,2]
## [1,] 1 10
## [2,] 2 11

[ , ] Items selection

A[1, ] # row

## col1 col2
## 1 3

A[, 1] # column

## [1] 1 2

A[1, 2]#cell

## col2
## 3

A[1, , drop = FALSE]

## col1 col2
## [1,] 1 3

Factors

factor Create a factor

xf <- factor(rep(1:2, 2)); xf

## [1] 1 2 1 2
## Levels: 1 2
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gl Generate levels of a factor

xgl <- gl(3, 2, labels = LETTERS[1:3])

expand.grid Generate factors combinations

my.factors <- expand.grid(xf, xgl)

Dates

as.Date Convert to date

my.date <- as.Date("10/06/2014",
format("%d/%m/%Y")); my.date

## [1] "2014-06-10"

format Returns a date in a given format

format(my.date, "%m-%y")

## [1] "06-14"

ISOweek Returns the week of a date in ISO format (ISOweek package)

library(ISOweek)
ISOweek(my.date)

## [1] "2014-W24"

Character String

nchar Get number of characters

my.string <- "R is free software"
nchar(my.string)

## [1] 18
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paste, paste0 Paste character strings

your.string <- "as in Beer"
paste(my.string, your.string)

## [1] "R is free software as in Beer"

cat Print a character string in the console

cat("Hello World!")

## Hello World!

Lists

list Create a list

my.list <- list(a_string = my.string,
a_matrix = A,
a_vector = svec)

my.list

## $a_string
## [1] "R is free software"
##
## $a_matrix
## col1 col2
## [1,] 1 3
## [2,] 2 4
##
## $a_vector
## [1] 1 2 5 7 4

my.list$a_vector

## [1] 1 2 5 7 4

my.list[1]

## $a_string
## [1] "R is free software"

my.list[[1]]

## [1] "R is free software"
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Data Frames

data.frame Create a data frame

my.data <- data.frame(variable1 = 1:10,
variable2 = letters[1:10],
group = rep(1:2, each = 5))

my.data$variable1

## [1] 1 2 3 4 5 6 7 8 9 10

my.data[2, ]

## variable1 variable2 group
## 2 2 b 1

str Get data frame structure: column names, types, and sample data

str(my.data)

## ’data.frame’: 10 obs. of 3 variables:
## $ variable1: int 1 2 3 4 5 6 7 8 9 10
## $ variable2: Factor w/ 10 levels "a","b","c","..
## $ group : int 1 1 1 1 1 2 2 2 2 2

head, tail Get first or last rows of a data frame

head(my.data)

## variable1 variable2 group
## 1 1 a 1
## 2 2 b 1
## 3 3 c 1
## 4 4 d 1
## 5 5 e 1
## 6 6 f 2

tail(my.data)

## variable1 variable2 group
## 5 5 e 1
## 6 6 f 2
## 7 7 g 2
## 8 8 h 2
## 9 9 i 2
## 10 10 j 2
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subset Get a (filtered) subset of data

subset(my.data, group == 1)

## variable1 variable2 group
## 1 1 a 1
## 2 2 b 1
## 3 3 c 1
## 4 4 d 1
## 5 5 e 1

aggregate Get aggregate data applying a function over groups

aggregate(variable1 ~ group, my.data, mean)

## group variable1
## 1 1 3
## 2 2 8

Files

download.file Download files

download.file(
url = "http://emilio.lcano.com/qcrbook/lab.csv",
destfile = "lab.csv")

read.table Import data

importedData <- read.table("lab.csv",
header = TRUE,
sep = ",",
dec = ".")

read.csv2 Import data from csv file

importedData <- read.csv("lab.csv")

write.csv2 Save csv data file

write.csv2(importedData,
file = "labnew.csv",
row.names = FALSE)
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scan Read data from the console or text

scannedVector <- scan()
typedData <- scan(text = "1 2 3 4 5 6")

save Save an R data file

save(importedData, file = "lab.RData")

load Load an R data file into the workspace

load("lab.RData")

Data Simulation

set.seed Fix the seed3

set.seed(1234)

sample Draw a random sample from a set

sample(letters, 5)

## [1] "c" "p" "o" "x" "s"

sample(1:6, 10, replace = TRUE)

## [1] 4 1 2 4 4 5 4 2 6 2

rnorm, rbinom, rpois, . . . Draw random variates from probability distributions
(normal, binomial, Poisson, . . . )

snorm <- rnorm(20, mean = 10, sd = 1)
spois <- rpois(20, lambda = 3)

3This makes results reproducible.
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Graphics

boxplot Box plot

boxplot(snorm)
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hist Histogram

hist(snorm)

Histogram of snorm
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plot Scatter plot (for two numeric vectors)

plot(spois, snorm, pch = 20, )
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0 1 2 3 4 5
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barplot Bar plot (for counts)

barplot(table(spois))
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par Graphical parameters (see ?par)

par Get or set graphical parameters
main Add a title to a plot (top)
sub Add a subtitle to a plot (bottom)
xlab, ylab Set horizontal and vertical axes labels
legend Add a legend
col Set color (see link at the end)
las Axes labels orientation
lty Line type
lwd Line width
pch Symbol (for points)

par(bg = "gray90")
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plot(1:10, main = "Main title", sub = "Subtitle",
xlab = "horizontal axis label",
ylab = "vertical axis label",
las = 2)
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Main title

horizontal axis label
Subtitle
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par(bg = "white")

graphics Graphical functions

points Add points to a plot
abline Draw a straight line (horizontal, vertical, or with a slope)
text Put text in the plot
mtext Add text in the margins

par(bg = "gray90")
plot(1:10, main = "Main title", sub = "Subtitle",

xlab = "horizontal axis label",
ylab = "vertical axis label",
las = 2)

par(bg = "white")
points(x = 2.5, y = 6, col = "red", pch = 16)
abline(h = 4, lty = 2, lwd = 2)
abline(v = 6, lty = 3, lwd = 3, col = 3)
text(x = 8, y = 2, labels = "Free text")
mtext(text = "margin text", side = 3)
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Descriptive Statistics

table Count the elements within each category

table(spois)

## spois
## 0 1 2 3 4 5
## 3 4 3 4 3 3

summary Five-num summary (plus the mean)

summary(snorm)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 8.249 9.376 10.010 9.957 10.710 11.370

mean Average

mean(snorm)

## [1] 9.956699

median Median

median(snorm)

## [1] 10.0082
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quantile Percentiles, quantiles

quantile(snorm, 0.1)

## 10%
## 9.172885

var Variance

var(snorm)

## [1] 0.7240189

sd Standard deviation

sd(snorm)

## [1] 0.850893

cor Correlation

cor(snorm, spois)

## [1] -0.1691365

max, min, range Maximum, minimum, range

max(x)

## [1] 10

min(x)

## [1] 1

range(x)

## [1] 1 10

diff(range(x))

## [1] 9

Acceptance Sampling

• Simple sampling plan

x <- OC2c(10,1); x

## Acceptance Sampling Plan (binomial)
##
## Sample 1
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## Sample size(s) 10
## Acc. Number(s) 1
## Rej. Number(s) 2

plot(x, xlim=c(0,0.5))
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• Double sampling plan

x <- OC2c(c(125,125), c(1,4), c(4,5),
pd = seq(0,0.1,0.001)); x

## Acceptance Sampling Plan (binomial)
##
## Sample 1 Sample 2
## Sample size(s) 125 125
## Acc. Number(s) 1 4
## Rej. Number(s) 4 5

plot(x)
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• Assess plan

assess(x, PRP=c(0.01, 0.95), CRP=c(0.05, 0.04))

## Acceptance Sampling Plan (binomial)
##
## Sample 1 Sample 2
## Sample size(s) 125 125
## Acc. Number(s) 1 4
## Rej. Number(s) 4 5
##
## Plan CANNOT meet desired risk point(s):
##
## Quality RP P(accept) Plan P(accept)
## PRP 0.01 0.95 0.89995598
## CRP 0.05 0.04 0.01507571

Control Charts

qcc Library

library(qcc)
data(pistonrings)
str(pistonrings)

## ’data.frame’: 200 obs. of 3 variables:
## $ diameter: num 74 74 74 74 74 ...
## $ sample : int 1 1 1 1 1 2 2 2 2 2 ...
## $ trial : logi TRUE TRUE TRUE TRUE TRUE TRUE..

head(pistonrings)

## diameter sample trial
## 1 74.030 1 TRUE
## 2 74.002 1 TRUE
## 3 74.019 1 TRUE
## 4 73.992 1 TRUE
## 5 74.008 1 TRUE
## 6 73.995 2 TRUE

table(pistonrings$trial)

##
## FALSE TRUE
## 75 125
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str(qcc)

## function (data, type = c("xbar", "R", "S",
## "xbar.one", "p", "np", "c", "u", "g"),
## sizes, center, std.dev, limits, data.name,
## labels, newdata, newsizes, newlabels,
## nsigmas = 3, confidence.level, rules = shewh..
## plot = TRUE, ...)

qcc.groups Create object with grouped data

my.groups <- qcc.groups(data = pistonrings$diameter,
sample = pistonrings$sample)

qcc Create control chart object. Some options:

data Vector, matrix or data frame with the data
type One of: “xbar”, “R”, “S”, “xbar.one”, “p”, “np”, “c”, “u”, “g”
sizes Vector with sample sizes for charts: “p”, “np”, o “u”
center Known center value
std.dev Known standard deviation
limits Phase I limits (vector with LCL, UCL)
plot If FALSE the chart is not shown
newdata Phase II data
newsizes Phase II sample sizes
nsigmas Number of standard deviations to compute control limits
confidence.level Confidence level to compute control limits (instead of

nsigmas)

Control charts for variables:

# Individual values chart
qcc(pistonrings$diameter, type = "xbar.one")

xbar.one Chart
for pistonrings$diameter
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Number of groups = 200
Center = 74.0036
StdDev = 0.01001461

LCL = 73.97356
UCL = 74.03365

Number beyond limits = 3
Number violating runs = 15
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## List of 11
## $ call : language qcc(data = pistonrings"..
## $ type : chr "xbar.one"
## $ data.name : chr "pistonrings$diameter"
## $ data : num [1:200, 1] 74 74 74 74 74 ...
## ..- attr(*, "dimnames")=List of 2
## $ statistics: Named num [1:200] 74 74 74 74 74..
## ..- attr(*, "names")= chr [1:200] "1" "2" "3"..
## $ sizes : int [1:200] 1 1 1 1 1 1 1 1 1 1 ..
## $ center : num 74
## $ std.dev : num 0.01
## $ nsigmas : num 3
## $ limits : num [1, 1:2] 74 74
## ..- attr(*, "dimnames")=List of 2
## $ violations:List of 2
## - attr(*, "class")= chr "qcc"

# X-bar chart
qcc(my.groups, type = "xbar")

xbar Chart
for my.groups
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Number of groups = 40
Center = 74.0036
StdDev = 0.01007094

LCL = 73.99009
UCL = 74.01712

Number beyond limits = 2
Number violating runs = 1

## List of 11
## $ call : language qcc(data = my.groups, "..
## $ type : chr "xbar"
## $ data.name : chr "my.groups"
## $ data : num [1:40, 1:5] 74 74 74 74 74 ...
## ..- attr(*, "dimnames")=List of 2
## $ statistics: Named num [1:40] 74 74 74 74 74 ..
## ..- attr(*, "names")= chr [1:40] "1" "2" "3""..
## $ sizes : Named int [1:40] 5 5 5 5 5 5 5 5..
## ..- attr(*, "names")= chr [1:40] "1" "2" "3""..
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## $ center : num 74
## $ std.dev : num 0.0101
## $ nsigmas : num 3
## $ limits : num [1, 1:2] 74 74
## ..- attr(*, "dimnames")=List of 2
## $ violations:List of 2
## - attr(*, "class")= chr "qcc"

# Range chart
qcc(my.groups, type = "R")

R Chart
for my.groups
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Center = 0.023425
StdDev = 0.01007094

LCL = 0
UCL = 0.04953145

Number beyond limits = 0
Number violating runs = 0

## List of 11
## $ call : language qcc(data = my.groups, "..
## $ type : chr "R"
## $ data.name : chr "my.groups"
## $ data : num [1:40, 1:5] 74 74 74 74 74 ...
## ..- attr(*, "dimnames")=List of 2
## $ statistics: Named num [1:40] 0.038 0.019 0.0..
## ..- attr(*, "names")= chr [1:40] "1" "2" "3""..
## $ sizes : Named int [1:40] 5 5 5 5 5 5 5 5..
## ..- attr(*, "names")= chr [1:40] "1" "2" "3""..
## $ center : num 0.0234
## $ std.dev : num 0.0101
## $ nsigmas : num 3
## $ limits : num [1, 1:2] 0 0.0495
## ..- attr(*, "dimnames")=List of 2
## $ violations:List of 2
## - attr(*, "class")= chr "qcc"

# S chart
qcc(my.groups, type = "S")
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S Chart
for my.groups
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Number of groups = 40
Center = 0.009435682
StdDev = 0.01003811

LCL = 0
UCL = 0.01971112

Number beyond limits = 0
Number violating runs = 0

## List of 11
## $ call : language qcc(data = my.groups, "..
## $ type : chr "S"
## $ data.name : chr "my.groups"
## $ data : num [1:40, 1:5] 74 74 74 74 74 ...
## ..- attr(*, "dimnames")=List of 2
## $ statistics: Named num [1:40] 0.01477 0.0075 ..
## ..- attr(*, "names")= chr [1:40] "1" "2" "3""..
## $ sizes : Named int [1:40] 5 5 5 5 5 5 5 5..
## ..- attr(*, "names")= chr [1:40] "1" "2" "3""..
## $ center : num 0.00944
## $ std.dev : num 0.01
## $ nsigmas : num 3
## $ limits : num [1, 1:2] 0 0.0197
## ..- attr(*, "dimnames")=List of 2
## $ violations:List of 2
## - attr(*, "class")= chr "qcc"

Control charts for attributes:

# p chart
data(orangejuice)
str(orangejuice)

## ’data.frame’: 54 obs. of 4 variables:
## $ sample: int 1 2 3 4 5 6 7 8 9 10 ...
## $ D : int 12 15 8 10 4 7 16 9 14 10 ...
## $ size : int 50 50 50 50 50 50 50 50 50 50 ...
## $ trial : logi TRUE TRUE TRUE TRUE TRUE TRUE ..

qcc(orangejuice$D, sizes = orangejuice$size,
type = "p")
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p Chart
for orangejuice$D
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Number of groups = 54
Center = 0.1777778
StdDev = 0.3823256

LCL = 0.01557078
UCL = 0.3399848

Number beyond limits = 5
Number violating runs = 17

## List of 11
## $ call : language qcc(data = orangejuice"..
## $ type : chr "p"
## $ data.name : chr "orangejuice$D"
## $ data : int [1:54, 1] 12 15 8 10 4 7 16 ..
## ..- attr(*, "dimnames")=List of 2
## $ statistics: Named num [1:54] 0.24 0.3 0.16 0..
## ..- attr(*, "names")= chr [1:54] "1" "2" "3""..
## $ sizes : int [1:54] 50 50 50 50 50 50 50 ..
## $ center : num 0.178
## $ std.dev : num 0.382
## $ nsigmas : num 3
## $ limits : num [1, 1:2] 0.0156 0.34
## ..- attr(*, "dimnames")=List of 2
## $ violations:List of 2
## - attr(*, "class")= chr "qcc"

# np chart
qcc(orangejuice$D, sizes = orangejuice$size,

type = "np")
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np Chart
for orangejuice$D
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Number of groups = 54
Center = 8.888889
StdDev = 2.70345

LCL = 0.7785388
UCL = 16.99924

Number beyond limits = 5
Number violating runs = 17

## List of 11
## $ call : language qcc(data = orangejuice"..
## $ type : chr "np"
## $ data.name : chr "orangejuice$D"
## $ data : int [1:54, 1] 12 15 8 10 4 7 16 ..
## ..- attr(*, "dimnames")=List of 2
## $ statistics: Named int [1:54] 12 15 8 10 4 7 ..
## ..- attr(*, "names")= chr [1:54] "1" "2" "3""..
## $ sizes : int [1:54] 50 50 50 50 50 50 50 ..
## $ center : num 8.89
## $ std.dev : num 2.7
## $ nsigmas : num 3
## $ limits : num [1, 1:2] 0.779 16.999
## ..- attr(*, "dimnames")=List of 2
## $ violations:List of 2
## - attr(*, "class")= chr "qcc"

# chart for counts
data(circuit)
str(circuit)

## ’data.frame’: 46 obs. of 3 variables:
## $ x : int 21 24 16 12 15 5 28 20 31 25 ...
## $ size : int 100 100 100 100 100 100 100 100 ..
## $ trial: logi TRUE TRUE TRUE TRUE TRUE TRUE ...

qcc(circuit$x, sizes = circuit$size, type = "c")
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c Chart
for circuit$x
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Number of groups = 46
Center = 19.17391
StdDev = 4.378803

LCL = 6.037505
UCL = 32.31032

Number beyond limits = 2
Number violating runs = 2

## List of 11
## $ call : language qcc(data = circuit$x, "..
## $ type : chr "c"
## $ data.name : chr "circuit$x"
## $ data : int [1:46, 1] 21 24 16 12 15 5 2..
## ..- attr(*, "dimnames")=List of 2
## $ statistics: Named int [1:46] 21 24 16 12 15 ..
## ..- attr(*, "names")= chr [1:46] "1" "2" "3""..
## $ sizes : int [1:46] 100 100 100 100 100 1..
## $ center : num 19.2
## $ std.dev : num 4.38
## $ nsigmas : num 3
## $ limits : num [1, 1:2] 6.04 32.31
## ..- attr(*, "dimnames")=List of 2
## $ violations:List of 2
## - attr(*, "class")= chr "qcc"

# Chart for counts per unit
data(dyedcloth)
str(dyedcloth)

## ’data.frame’: 10 obs. of 2 variables:
## $ x : int 14 12 20 11 7 10 21 16 19 23
## $ size: num 10 8 13 10 9.5 10 12 10.5 12 12.5

qcc(dyedcloth$x, sizes = dyedcloth$size, type = "u")
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u Chart
for dyedcloth$x
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Center = 1.423256
StdDev = 3.986022
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Number beyond limits = 0
Number violating runs = 0

## List of 11
## $ call : language qcc(data = dyedcloth$x"..
## $ type : chr "u"
## $ data.name : chr "dyedcloth$x"
## $ data : int [1:10, 1] 14 12 20 11 7 10 2..
## ..- attr(*, "dimnames")=List of 2
## $ statistics: Named num [1:10] 1.4 1.5 1.538 1..
## ..- attr(*, "names")= chr [1:10] "1" "2" "3""..
## $ sizes : num [1:10] 10 8 13 10 9.5 10 12 ..
## $ center : num 1.42
## $ std.dev : num 3.99
## $ nsigmas : num 3
## $ limits : num [1:10, 1:2] 0.291 0.158 0.43..
## ..- attr(*, "dimnames")=List of 2
## $ violations:List of 2
## - attr(*, "class")= chr "qcc"

Process Capability

qcc Package

process.capability Needs a qcc object

my.qcc <- qcc(my.groups, type = "xbar", plot = FALSE)
process.capability(my.qcc,

spec.limits = c(73.9, 74.1),
target = 74)
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Process Capability Analysis
for my.groups

73.90 73.95 74.00 74.05 74.10

LSL USLTarget

Number of obs = 200
Center = 74.0036
StdDev = 0.01007094

Target = 74
LSL = 73.9
USL = 74.1

Cp     = 3.31
Cp_l  = 3.43
Cp_u = 3.19
Cp_k = 3.19
Cpm  = 3.12

Exp<LSL 0%
Exp>USL 0%
Obs<LSL 0%
Obs>USL 0%

##
## Process Capability Analysis
##
## Call:
## process.capability(object = my.qcc, spec.limits

= c(73.9, 74.1), target = 74)
##
## Number of obs = 200 Target = 74
## Center = 74 LSL = 73.9
## StdDev = 0.01007 USL = 74.1
##
## Capability indices:
##
## Value 2.5% 97.5%
## Cp 3.310 2.985 3.635
## Cp_l 3.429 3.144 3.715
## Cp_u 3.191 2.925 3.456
## Cp_k 3.191 2.874 3.507
## Cpm 3.116 2.794 3.438
##
## Exp<LSL 0% Obs<LSL 0%
## Exp>USL 0% Obs>USL 0%
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SixSigma Package

ss.study.ca Returns graphical and numerical capability analysis

ss.study.ca(pistonrings$diameter,
LSL = 73.9, USL = 74.1, Target = 74)

Six Sigma Capability Analysis Study
Histogram & Density

LSL Target USL
73.90 73.95 74.00 74.05 74.10

Check Normality
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l l Shapiro−Wilk Test
p−value:  0.1607

Lilliefors (K−S) Test

p−value:  0.1255

Normality accepted when p−value > 0.05

Density Lines Legend

Density ST

Theoretical Dens. ST

Specifications
LSL: 73.9

Target: 74
USL: 74.1

ProcessShort Term

Mean: 74.0036
SD: 0.0114

n: 200
Zs: 6.94

Long Term

Mean: NA
SD: NA

n: 0
Zs: 5.44

DPMO: 0

IndicesShort Term

Cp: 2.9196
CI: [2.6,3.2]

Cpk: 2.8143
CI: [2.5,3.1]

Long Term

Pp: NA
CI: [NA,NA]

Ppk: NA
CI: [NA,NA]

qualityTools Package

cp Process capability indices

library(qualityTools)
cp(x = pistonrings$diameter,

lsl = 73.9, usl = 74.1,
target = 74)
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ppm = 0
ppm = 0

ppm = 0
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##
## Anderson Darling Test for normal
## distribution
##
## data: pistonrings$diameter
## A = 0.5181, mean = 74.004, sd = 0.011,
## p-value = 0.1862
## alternative hypothesis: true distribution is not

equal to normal

Pareto Analysis

qcc Package

cause.and.effect Cause-and-effect analysis

cause.and.effect(cause = list(
Measurements=c("Micrometers", "Microscopes",

"Inspectors"),
Materials=c("Alloys", "Lubricants",

"Suppliers"),
Personnel=c("Shifts", "Supervisors",

"Training", "Operators"),
Environment=c("Condensation", "Moisture"),
Methods=c("Brake", "Engager", "Angle"),
Machines=c("Speed", "Lathes", "Bits",

"Sockets")),
effect = "Surface Flaws")

Cause−and−Effect diagram

Surface Flaws

Measurements

Environment

Materials

Methods

Personnel

Machines

Micrometers

Microscopes

Inspectors

Alloys

Lubricants

Suppliers

Shifts

Supervisors

Training

Operators

Condensation

Moisture

Brake

Engager

Angle

Speed

Lathes

Bits

Sockets
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pareto.chart Pareto Chart

defect <- c(80, 27, 66, 94, 33)
names(defect) <- c("price code", "schedule date",

"supplier code", "contact num.", "part num.")
pareto.chart(defect, ylab = "Error frequency")
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##
## Pareto chart analysis for defect
## Frequency Cum.Freq. Percentage
## contact num. 94 94 31.33333
## price code 80 174 26.66667
## supplier code 66 240 22.00000
## part num. 33 273 11.00000
## schedule date 27 300 9.00000
##
## Pareto chart analysis for defect
## Cum.Percent.
## contact num. 31.33333
## price code 58.00000
## supplier code 80.00000
## part num. 91.00000
## schedule date 100.00000

qualityTools Package

paretoChart Pareto chart

paretoChart(defect, las = 2)
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Pareto Chart for  defect
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22

80

33

273

11

91

27

300

9
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##
## Frequency 94 80 66 33 27
## Cum. Frequency 94 174 240 273 300
## Percentage 31.3% 26.7% 22.0% 11.0% 9.0%
## Cum. Percentage 31.3% 58.0% 80.0% 91.0% 100.0%
##
## Frequency 94.00000 80.00000 66 33 27
## Cum. Frequency 94.00000 174.00000 240 273 300
## Percentage 31.33333 26.66667 22 11 9
## Cum. Percentage 31.33333 58.00000 80 91 100

SixSigma Package

ss.ceDiag Cause-and-effect diagram

effect <- "Flight Time"
causes.gr <- c("Operator", "Environment", "Tools",

"Design", "Raw.Material", "Measure.Tool")
causes <- vector(mode = "list",

length = length(causes.gr))
causes[1] <- list(c("operator #1", "operator #2",

"operator #3"))
causes[2] <- list(c("height", "cleaning"))
causes[3] <- list(c("scissors", "tape"))
causes[4] <- list(c("rotor.length", "rotor.width2",

"paperclip"))
causes[5] <- list(c("thickness", "marks"))
causes[6] <- list(c("calibrate", "model"))
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ss.ceDiag(effect, causes.gr, causes,
sub = "Paper Helicopter Project")

Six Sigma Cause−and−effect Diagram

Paper Helicopter Project

Flight Time

Operator
operator #1

operator #2
operator #3

Environment
height

cleaning

Tools
scissors

tape

Design

rotor.length
rotor.width2

paperclip

Raw.Material

thickness
marks

Measure.Tool

calibrate
model

Probability

p* Distribution function for a given value

pnorm(q = 8, mean = 10, sd = 1)

## [1] 0.02275013

## help("distributions") for further distributions

q* Quantile for a given cumulative probability probabilidad «»= qnorm(p = 0.95,
mean = 10, sd = 1) @

d* Density for a given value (probability in discrete distributions)

dpois(2, lambda = 3)

## [1] 0.2240418

Objects

str Get the structure of an object

str(log)

## function (x, base = exp(1))

str(xgl)

## Factor w/ 3 levels "A","B","C": 1 1 2 2 3 3
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class Get the class of an object

class(xgl)

## [1] "factor"

is.* Return a logic value TRUE if the object is of the specified class, for example,
numeric

as.* Coerce to the specified class

as.character(1:3)

## [1] "1" "2" "3"

as.data.frame(A)

## col1 col2
## 1 1 3
## 2 2 4

Vectorized Functions

tapply Apply a function to values for each level of a factor

tapply(pistonrings$diameter, pistonrings$trial,
summary)

## $‘FALSE‘
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 73.98 74.00 74.00 74.01 74.02 74.04
##
## $‘TRUE‘
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 73.97 73.99 74.00 74.00 74.01 74.03

lapply Apply a function to each element of a list returning a list

lapply(1:3, factorial)
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## [[1]]
## [1] 1
##
## [[2]]
## [1] 2
##
## [[3]]
## [1] 6

sapply Apply a function to each element of a list returning a list,vector, or matrix

sapply(1:3, factorial)

## [1] 1 2 6

apply Apply a function to the rows or columns of a matrix

apply(A, 1, median)

## [1] 2 3

split Divide an object over factor levels returning a list

groups <- split(pistonrings$diameter, pistonrings$
trial)

str(groups)

## List of 2
## $ FALSE: num [1:75] 74 74 74 74 74 ...
## $ TRUE : num [1:125] 74 74 74 74 74 ...

mappy Multivariate version of sapply

mapply(rep, 1:4, 4:1)

## [[1]]
## [1] 1 1 1 1
##
## [[2]]
## [1] 2 2 2
##
## [[3]]
## [1] 3 3
##
## [[4]]
## [1] 4
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rapply Recursive version of lapply

X <- list(list(a = pi, b = list(c = 1:1)), d =
"a test")
rapply(X, sqrt, classes = "numeric", how = "replace")

## [[1]]
## [[1]]$a
## [1] 1.772454

##
## [[1]]$b
## [[1]]$b$c
## [1] 1
##
##
##
## $d
## [1] "a test"

Programming

for Loop over the values of a vector or list

x <- numeric()
for (i in 1:3){
x[i] <- factorial(i)

}
x

## [1] 1 2 6

if . . . else Control flow

if (is.numeric(x)){
cat("Is numeric")

} else if (is.character(x)){
cat("Is character")

} else{
cat("Is another thing")

}

## Is numeric
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function Create functions

# Function that computes the difference between
two vectors’ means
mifuncion <- function(x, y){
mean(x) - mean(y)

}
mifuncion(1:10, 11:20)

## [1] -10

Useful functions within a function:

warning warning("This is a warning")
## Warning: This is a warning

message message("This is a message")
## This is a message

stop Stops the execution of code

stop("An error occurs")

## Error in eval(expr, envir, enclos): An error occurs

Reports

xtable Package

xtable Create tables in different formats, e.g., LATEX, HTML

caption Table caption
label Table label
align Alignment
digits Number of significant digits
display Format (see ?xtable)

More options can be passed to the print generic function ?print.xtable

library(xtable)
xtable(A)
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col1 col2

1 1 3

2 2 4

Package knitr

knit Converts Rmd, Rhtml and Rnw files into HTML, MS Word o PDF reports.
See documentación at http://yihui.name/knitr/.
Main options in a code chunk header:

echo Show code in the report
error Show error messages in the report
warning Show warning messages in the report
message Show messages in the report
eval Evaluate the chunk
fig.align Figure alignment
fig.width Figure width (in inches, 7 by default)
fig.height Figure height (in inches, 7 by default)
out.width Figure width within the report
out.height Figure height within the report
fig.keep Keep plots in the report
include Show text output in the report
results How to show the reports

Useful Links

• R-Project: http://www.r-project.org
• RStudio: http://www.rstudio.com
• Easy R practice: http://tryr.codeschool.com/
• List of colours with names: http://www.stat.columbia.edu/~tzheng/files/Rcolor.

pdf
• http://www.cyclismo.org/tutorial/R/
• http://www.statmethods.net/index.html
• Recipes: http://www.cookbook-r.com/
• Search documentation: http://www.rdocumentation.org/
• http://www.computerworld.com/s/article/9239625/Beginner_s_guide_to_R_

Introduction
• http://www.inside-r.org/
• http://www.r-bloggers.com/
• Google R styleguide: http://google-styleguide.googlecode.com/svn/trunk/

Rguide.xml
• Book Six Sigma with R: www.sixsigmawithr.com

http://yihui.name/knitr/
http://www.r-project.org
http://www.rstudio.com
http://tryr.codeschool.com/
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
http://www.cyclismo.org/tutorial/R/
http://www.statmethods.net/index.html
http://www.cookbook-r.com/
http://www.rdocumentation.org/
http://www.computerworld.com/s/article/9239625/Beginner_s_guide_to_R_Introduction
http://www.computerworld.com/s/article/9239625/Beginner_s_guide_to_R_Introduction
http://www.inside-r.org/
http://www.r-bloggers.com/
http://google-styleguide.googlecode.com/svn/trunk/Rguide.xml
http://google-styleguide.googlecode.com/svn/trunk/Rguide.xml
www.sixsigmawithr.com


R Packages and Functions Used in the Book

Symbols
:, 52
;, 52
<-, 51
>, 53
[, 54, 59, 64
[[, 61
$, 61, 64

A
AcceptanceSampling, 88, 208, 217

assess, 209
find.plan, 88, 209, 214, 216
OC2c, 208, 217

B
base, 86

anyNA, 80, 82
array, 60
as.Date, 73, 82
as.numeric, 72
c, 52, 95
class, 51, 72
colMeans, 60
colnames, 59, 66
cut, 157, 162
data.frame, 63, 97, 133, 147, 169
detach, 48
diff, 161
dir, 46
exp, 38
expression, 21, 103

factor, 54, 153
format, 74
getwd, 46
gl, 54
grep, 135
is.na, 70, 79
is.numeric, 72
length, 54, 157, 191, 227
library, 21, 48
list, 60, 158
list.dirs, 46
list.files, 46
load, 44, 84
log, 38
ls, 44, 52
matrix, 58, 255
max, 157
mean, 57, 70, 80, 86, 156, 190, 215, 228,

255
names, 54, 157, 249
ncol, 65
nrow, 65
options, 40
order, 57, 66, 73, 74, 107
paste, 66
range, 161
rbind, 97, 133
rep, 52, 111, 114, 196
require, 48
rev, 57
rm, 44
RNG, 133
round, 157, 214
rownames, 59, 66
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base (cont.)
rowSums, 60
sample, 56, 68, 189, 191
sapply, 134
save, 44, 84
save.image, 44
scan, 51
search, 48
seq, 39, 52
seq_along, 53
set.seed, 56, 68, 113, 189, 191, 214, 255
setwd, 46
sort, 57
source, 41, 83, 98
sqrt, 58
strsplit, 134
subset, 67, 190, 192
sum, 53, 227
summary, 79, 80, 86, 162, 248, 259
table, 82, 86, 157, 162, 191
tapply, 156, 161
typeof, 50
unlist, 134
which, 82

C
car, 172
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