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Abstract. Unit selection speech synthesis systems generally rely on tar-
get and concatenation costs for selecting a best unit sequence. These
costs, though often considering contextual features, mainly include local
distances that are accumulated afterwards. In this paper, we describe
a new duration target cost that takes a whole sequence into account.
It aims at selecting a sequence globally good, instead of a very good
sequence almost everywhere but having a few local duration cost leaps
that are counter-balanced by other units. The problem of weighting this
new duration cost with other sub-costs is also investigated. Experiments
showed this new measure performed well on sentences featuring duration
artefacts, while not deteriorating others.

Keywords: Target cost · Cost function · Neural networks ·
Corpus-based TTS · Unit selection

1 Introduction

While new Statistical Parametric Speech Synthesis based TTS techniques are
currently emerging, like DNN-based TTS, unit selection and HSMM-based syn-
thesis remain the two most influential methods investigated so far, along with
hybrid techniques that try to get the best from both worlds. HMM-based para-
metric approaches, for which HTS [1] is the main system, are quite recent and
have been the framework for many academic work in recent years. These methods
offer advanced control on the signal and produces extremely intelligible speech
but generated voice lacks naturalness. The historical approach, unit selection, is
a refinement of concatenative synthesis [2–7].

In the formulation of the unit selection problem, a unit is a list of contigu-
ous segments (from a speech corpus) fitting a portion of the target sequence of
phonemes to synthesize. To discriminate units that fit requirements expressed
via the target sequence, the usual method [3] is to search a unit graph with a
search algorithm, evaluating the context matching degree (target cost) and the
risk of creating an artefact if concatenating the unit (concatenation cost) via
balanced cost functions. Alternative ways exist though. For instance, one can
also achieve unit selection with genetic algorithms and selection and crossover
operators are used along with fitness measures [8].
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Speech created using unit selection features naturalness and prosodic quality
unmatched by other methods, as it basically concatenate speech actually pro-
duced by a human being. For this reason, most industrial TTS systems mainly
use either pure unit selection approaches or hybrid ones. However, unit selection
offers less control than statistical parametric methods, especially over prosody.
Moreover, artefacts may appear in the synthesized signal and penalize intelligi-
bility. While obtaining good speech output with neutral voice is (almost) a solved
problem with unit selection, getting prosody right for natural and expressiveness
is entirely another matter. Prosody modification methods after selection - like
TD-PSOLA for adapting duration - are an option, but for now none has been
convincing. The possibility of influencing selection to choose units that are the
closest to the required prosody remains. A good state of the art for expressive
speech synthesis is made in [9]. As phonetic durations are subject to a lot of
changes when considering voices with different levels of expressiveness, control-
ling duration gets particularly important. Lastly, decision trees have been the
most widely used method to predict duration, for instance, in systems like HTS,
with only a few mentions to using a target duration cost (e.g. in [10]) within
unit selection cost function. Recent approaches where DNNs replace HTS deci-
sion tree can also be mentioned [11].

In this article, we propose a new way of computing duration target cost, not
only based on the assumption that we want to get units as close as possible
to a predicted duration. Thus, we try to find the units that stay the closest to
requested duration by optimizing the mean duration error with respect to the
previous units. Hence, it prevents inadequate units in terms of duration from
being selected if other units are available while not forcing a path with homoge-
neous durations. The main idea is that it is better to have units globally longer
or shorter than to have only one or two units with a big duration error in the
synthesized speech. The paper is organized as follows. The TTS system used
as a basis for experimentation is presented in section 2. Proposed target cost,
along with the underlying duration model are presented in section 3. Experi-
mental evaluation on french corpora including both objective assessments of the
model and the target cost (4.2) and subjective evaluation by listeners (4.3) are
presented in section 4. Conclusions and future work are presented in section 5.

2 The TTS System

In this work, we use the IRISA corpus-based TTS system[12] as a basis for our
experiments. The cost function is built following the traditional equation [3]:

U∗ = argmin
U

(Wtc

card(U)∑

n=1

wnCt(un)

+ Wcc

card(U)∑

n=2

vnCc(un−1, un)) (1)
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where U∗ is the best unit sequence according to the cost function and un the
candidate unit trying to match the nth target unit in the candidate sequence U .
In this work, the considered unit size is the diphoneme. Ct(un) is the target cost
and Cc(un−1, un) is the concatenation cost. Wtc, Wcc, wn and vn are weights
for adjusting magnitude for all the parameters. Sub-costs are weighted using
corresponding mean cost values in the TTS corpus to compensate magnitudes of
all sub-costs. Our concatenation cost is composed of amplitude, MFCC and F0
distances. Current target cost is composed of the new duration cost alone. The
algorithm accesses the corpus via a set of preselection filters, preventing units
that do not match them to be added to the graph. Their purpose is twofold.
First, it considerably prunes the graph explored by the unit selection algorithm,
making selection process faster. Second, it serves as a set of binary target cost
functions relying on the assumption that if a unit doesn’t respect the required
set of features, it cannot be used for selection. The preselection filters should
therefore be seen as part of the cost for a node. In our system, when no corpus
unit respects a given set of preselection filters, the set is relaxed (removing
features that seem the least helpfull one by one) until units are found. This
mechanism ensures finding a path in all cases provided that the corpus has a full
covering of diphonemes. The set of preselection filters we use in this work is the
following:

1. Unit label (cannot be relaxed).
2. Is the unit a Non Speech Sound (cannot be relaxed)?
3. Is the phone in the last syllable of its sentence?
4. Is the phone in the last syllable of its breath group?
5. Is the current syllable in word end?

3 An Adaptive Duration Target Cost

3.1 Neural Network

Prediction of phoneme duration has a long history in the TTS field. It was
first performed by creating expert hand-made rules that were integrated in
rules-based (formant synthesis) and concatenation synthesizers. Over last years,
decision trees have been the most widely used method to predict duration, for
instance, in systems like HTS. In particular, the use of neural networks for
phoneme duration prediction starts in the early ’90s. A TTS system using a set
of ANNs (one for each phoneme) trained on cepstral coefficients can be cited [13].
A TDNN (Time Delay Neural Network) has also proven to be very efficient for
predicting duration, though the learning set was small [14]. In following years,
major improvements in the technique were obtained mainly by increasing the
number of input features and the size of the learning corpus. The advantage of
neural networks is that, contrary to decision trees, they do not cluster predicted
values (at least when properly trained). When the network faces an unknown
set of features, the predicted value is not the assimilated result for the closest
feature set, which can result in much better results [15]. Recent work in speech
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synthesis is now focusing on deep approaches (DNNs, DBNs, DRNs). For dura-
tion prediction, we did not think such deep approaches were necessary. Thus, we
use a MLP (Multi-Layer Perceptron) with batch gradient descent. Input data
is composed of a set of 50 features by phoneme, mainly phonetic and linguistic
parameters. We also take into account the contextual information for the two
preceding and following phonemes. Thus, the network has a topology of 250
input neurons, 1 rectified linear hidden layer of 512 neurons and one output
linear Gaussian neuron (directly predicting durations in ms as other measures
like log ms were not performing better). These parameters were the best among
the different configurations tested.

3.2 Duration Target Cost

The proposed duration target cost aims at influencing selection so that selected
units are, on average, at the same distance of the predicted unit durations.
Defining the cost that way means we prefer a sequence moderately close to
predicted values, but homogeneous in the repartition of the duration distance
among units, to a sequence of perfect elements featuring one unit with dramatic
cost. The cost for target unit n in the sequence U (see eq. 1) is as follows:

De = |Dt(un) − D(un)| (2)
Cd(un) = |Δ(un−1) − De| (3)

Δ(un) =
Δ(un−1) ∗ (n − 1) + De

n
(4)

with Δun
being the mean distance to predicted duration for previous target units

in the sequence (from u1 to un), Dt(un) the target duration for unit un, D(un)
the duration of un and Cd(un) the target duration cost for unit un.

Equation (2) computes the local cost between the target duration and the
current unit. This cost is then used to compute the duration target cost in
equation (3), which takes into account the mean distance to predicted duration
for all the previous units. Finally, the mean duration error is updated using
equation (4). Thus, the quality of the current unit depends on the quality of
previous units. In other words, it means that if un is longer (resp. shorter)
that desired, the target cost will be low if the previous units are also longer
(resp. shorter). This way, we want to keep the consistency between the different
units which might be better than inconsistency and perhaps produce a credible
speaking rate slow-down or speed-up.

4 Experiments

We have conducted experiments aiming at (i) testing the accuracy of our ANN,
(ii) measuring the impact of the new target cost on the unit selection algorithm
and (iii) subjectively assessing the improvement in produced speech.
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4.1 Corpus Description

Two corpora were used, both as learning sets for ANNs and TTS voices. All are in
french language. The first one, Audiobook, is extracted from an highly expressive
audiobook. The speaker is a male and the mean F0 value for voiced segments
is low, at only 87Hz in the corpus. Data was automatically annotated using
the process described in [16]. Audiobook learning has 353, 691 phonemes and
22, 727 Non Speech Sounds and is 10 hours long. Its diphoneme covering is not
full (78%) but all the most commonly used diphonemes are present. The second
corpus, named IVS, was recorded for TTS purposes within an Interactive Vocal
System with a hand-made recording script which aim was to cover all diphonemes
present in French and comprises most used words in the telecommunications
field. It features a neutral Female voice sampled at 16kHz (lossless encoding, 1
channel) with a mean F0 at 163Hz for voiced segments. The corpus is composed
of 7, 662 utterances, 239, 260 phonemes and 20, 424 Non Speech Sounds for 7h05’
speech and is manually annotated. Both corpora are managed using the Roots
toolkit [17].

200 utterances were removed from each corpus to create four 100 utterances
corpora: Audiobook test, Audiobook validation, IVS test and IVS validation. Test
corpora are used during the train process on ANNs to control training quality at
each epoch. Validation sets were used to verify the efficiency of the model after
training.

Finally, we used 100 french sentences (i.e. sometimes featuring more than 1
utterance) corpus extracted from a wide variety of audiobooks, featuring very
different styles, many being far from IVS and Audiobook ’s styles. It served as our
TTS test corpus. All TTS generations in our experiments used these as target
sentences. In the following, it will be referred to as TTS test corpus.

4.2 Objective Analysis

Neural Network. The mean RMS error for IVS voice is slightly better
(RMS=24.24, std=9.07) than for Audiobook (RMS=26.58, std=6.61). Pearson
scores show that predictions are strongly correlated to real values, and the prob-
ability of error on the Pearson score is extremely weak. A detailed analysis on
a per phoneme basis shows that the worst phonemes are those having very few
representations in the learning corpus, for each voice. For instance, /ñ/ has only
2 realizations in the Audiobook corpus, and only one in Audiobook validation.
Finally, when looking at real and predicted centroids for each phoneme, most
of them are very close, if not identical. Given these results, which we consider
as fair, and knowing we do not need extremely accurate predictions as they are
solely used to influence selection, these models have been kept as is.

Behavior of the Cost Function. To evaluate the impact of duration cost and
its interactions with concatenation costs, we considered all {Wtc,Wcc} couples
in the [0, 100] interval with a pace of 10. For each weight configuration, we
generated the 100 sentences in our TTS test corpus. Sentence (not utterance)
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based measures were extracted for each configuration. In this section, we will
only discuss these measures on IVS voice, but exactly the same patterns are
observed on Audiobook voice. Only small variation in magnitudes are observed
between the two voices. It is important to point out that costs presented here
are obtained without applying Wtc and Wcc weights. Magnitudes due to these
weights have been removed to get raw costs.

Fig. 1. Duration delta between model predictions and synthesized durations evolution
when target and concatenation costs vary. Distance, per phoneme, is given in ms. Data
computed using synthesis from TTS test corpus.

Figure (1) shows the evolution of the mean delta per phoneme in ms between
predictions by the network and final produced durations in relation to target and
concatenation costs magnitudes. As it can be seen, the general trend is that dis-
tance increases when the target cost increases, which shows a good functioning
of our target cost. Moreover, when getting the worst target cost, the delta largely
increases. An unexpected result is the relation between the delta and concatena-
tion cost when target cost is high which seems to suggest that concatenation cost
excludes units with worst duration, improving the delta. When concatenation
cost increases again, the delta dramatically increases again too. We can further
note that duration delta at high target costs and low concatenation costs, while
being good, remains much higher than the delta we get at lower target costs
(this time independently of concatenation cost).

This result led us to think it would be worth investigating the behavior of
a system where the duration target cost would be activated only on certain
conditions, like for high concatenation cost or when confronted to a drastic
relaxation of preselection filters.
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4.3 Subjective Evaluation

Based on precedent measures, we selected the configuration {Wtc = 30,Wcc =
70} for listening tests. This choice was motivated by the low variability in terms
of duration costs when getting over Wtc = 30 and the fact that concatenation
cost alteration at this level is low. The same reasoning led us to Wcc = 70.
In consequence, listening tests were performed using two system configurations:
the baseline system, with weight configuration {Wtc = 0,Wcc = 100} which
we call Uncontrolled ; and the configuration incorporating our duration distance,
{Wtc = 30,Wcc = 70}, called Controlled.

We performed two AB tests involving 13 testers for the first and 11 for the
second (half of which were experts) on the Uncontrolled and Controlled systems.
Tests follow recommendations in [18]. Three answers were proposed to the lis-
teners: A, B and “Indifferent”. Both Audiobook and IVS voices were mixed in
each test.

The first test presented 20 stimuli for each voice, taken randomly in the
TTS test set. The testers were asked to assess the rhythm of speech and select
the best system. On raw results, systems were getting almost as much votes
(43% for Uncontrolled and 38% for Controlled with overlapping intervals). We
spotted extremely different scales of notation among testers, with none seeming
to have the same way of performing the test. Thus, no hard conclusion can be
derived from this test. Nonetheless, it suggests the two systems are on par. It is
important to underline that post-analysis of the stimuli presented for this test
showed that very few samples had strong duration incoherences.

An important point is that IVS corpus featuring only neutral voice, duration
artefacts are less serious and less frequent. On the contrary, Audiobook, being
very expressive, features much more minor duration issues. Major duration prob-
lems are also much more frequent.

Fig. 2. AB test results. Uncontrolled featuring duration artefacts is opposed to Con-
trolled system. First and second row are a decomposition of the third one. Controlled is
clearly preferred.
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The second test was focused on sentences having audible duration artefacts.
22 different sentences featuring duration artefacts (of various amplitudes but all
being audible) were extracted from Uncontrolled synthesis (11 for each voice).
They were confronted to their equivalent with Controlled system. The testers
were asked to say which system has the most natural voice. The testers were
also asked to pay particular attention to rhythm (but not exclusively).

Results for this second test are presented on figure 2. First row shows results
for Audiobook voice only, second for IVS only while the third one is the global
result. In this test, Controlled is strongly preferred by testers, especially for
Audiobook voice which is normal as it is the voice the most likely to generate
artefacts. It was also interesting to see that testers all followed the same trend,
placing Controlled ahead with different levels of preference. Experts especially
had a strong preference for Controlled when using expressive voice Audiobook,
and less for IVS.

Given these results, it can be derived that our target costs behaves well in
enhancing durations when needed and only when needed, while not deteriorating
synthesis on other aspects.

5 Conclusion

In this paper, we presented a new duration target cost for unit selection. This
cost aims at selecting the whole unit sequence that best minimizes duration dis-
tance with predicted values rather than choosing the sequence containing units
that individually minimize a duration distance. This is intended to avoid cases
like excellent synthesis penalized by few very bad units. Experiments showed
that this new measure performs well on speech samples that feature durations
issues, especially on expressive voices. Furthermore, the new measure does not
seem to affect synthesized samples that have good durations from the beginning.
An extension of this work we are investigating is to test activating the duration
cost only on some sub-parts of the target sequence, under particular conditions
suggesting the target cost is needed like a strong relaxation of preselection filters
or high concatenation cost. A distinct pause duration model, which could use
the same specifications as presented in this paper should also be added. Imple-
menting an intonation target cost relying on a F0 contour prediction model is
also part of our next work.
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