
On the Implementation of Combinatorial
Algorithms for the Linear Exchange Market

Kurt Mehlhorn(B)

Max-Planck-Institute for Informatics, Saarbrücken, Germany
mehlhorn@mpi-inf.mpg.de

Abstract. Duan and Mehlhorn and Duan, Garg, and Mehlhorn pre-
sented polynomial time combinatorial algorithms [DM13,DGM15] for
the computation of equilibrium prices in linear exchange markets. I am
currently implementing these algorithms. I discuss the questions that I
hope to answer through the implementation.

1 Introduction

In the linear exchange market model [Wal74] there are n agents and n goods;
agent i owns good i. Agents have preferences over goods. Let uij ∈ N≥0 be the
utility of agent i if all of good j is allocated to him. Goods are divisible. At a
certain vector p = (p1, . . . , pn) of prices, agents are only willing to spend money
on goods that give them maximum utility per unit of money. Agents are sellers
and buyers, i.e., if agent i sells his good completely, he has a budget of pi units of
money. The task is to compute prices at which the market clears, i.e., all goods
are completely sold and all money is completely spent. Formally, we want to find
a positive price vector p and a nonnegative flow of money f = (fij) such that

pi =
∑

j fij for all i money is completely spent
pj =

∑
i fij for all j goods are completely sold

fij > 0 =⇒ uij

pj
= max�

ui�

p�
agents are selfish

Fig. 1 shows an example.
The problem is solvable in polynomial time. Jain and Ye [Jai07,Ye07] gave

algorithms based on the Ellipsoid and interior point method, respectively. Duan
and Mehlhorn [DM13] provided a combinatorial algorithm which was recently
improved by Duan, Garg, and Mehlhorn [DGM15]. We review the former algo-
rithm in Sects. 2 and 3. We have recently started to implement the algorithm.
In Sect. 4 we discuss the questions that we want to address through the imple-
mentation. A detailed description of the implementation is under preparation.

2 The Algorithm

This section and the next are based on [DM13]. Each agent only buys its favorite
goods. Define the bang per buck of buyer bi to be αi = maxj uij/pj . For a price
c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 87–94, 2015.
DOI: 10.1007/978-3-319-24024-4 7

88 K. Mehlhorn

Buyers

1

12

10

5

1

1

5

4

1

Goods/Sellers GoodsBuyers

1

12

10

5

1

1

5

4

1

15 15

12 12

10 10

12

3

10

5

7

Fig. 1. The input is shown on the left. Each agent is shown twice, once in its role as
seller or owner of a good and once in his role as buyer. The utility uij is indicated
on the edge from the i-th buyer to the j-th good. A solution is shown on the right.
The prices of the goods (= budgets of the buyers) are shown inside the nodes. The
bang-for-buck edges and the money flow are shown in blue.

vector p, the equality network Np is a flow network with vertex set {s, t}∪B∪C,
where s is a source node, t is a sink node, B = {b1, . . . , bn} is the set of buyers,
and C = {c1, . . . , cn} is the set of goods, and the following edge set:

– An edge (s, bi) with capacity pi for each bi ∈ B.
– An edge (ci, t) with capacity pi for each ci ∈ C.
– An edge (bi, cj) with infinite capacity whenever uij/pj = αi. We use Ep to

denote these edges.

Our task is to find a positive price vector p such that there is a flow in which
all edges from s and to t are saturated. When this is satisfied, all goods are sold
and all of the money earned by each agent is spent on goods of maximum utility
per unit of money. With respect to a flow f , define the surplus r(bi) of a buyer
i as r(bi) = pi −∑

j fij , where fij is the amount of flow on the edge (bi, cj), and
define the surplus r(cj) of a good j as r(cj) = pj − ∑

i fij , Define the surplus
vector of buyers to be r = (r(b1), r(b2), ..., r(bn)). Also, define the total surplus
to be |r| =

∑
i r(bi), which is also

∑
j r(cj) since the total capacity from s and

to t are both equal to
∑

i pi. For convenience, we denote the surplus vector of
flow f ′ by r′. In the network corresponding to market clearing prices, the total
surplus of a maximum flow is zero.

A maximum flow f in Np is balanced if it minimizes the 2-norm ‖r‖2 of the
surplus vector of the buyers among all maximum flows. Balanced flows were
introduced in [DPSV08] and shown to be computable by n maxflow computa-
tions in Np. The equality graph may have as many as Θ(n2) edges and hence,
assuming the use of an O(nm+n2 log n) maxflow algorithm, a balanced flow can

On the Implementation of Combinatorial Algorithms 89

Set ε = 1/(8n4nU3n), where U = maxij uij ;

Set pi = 1 for all i and set f to a balanced flow in Np;

Repeat

Sort the buyers by their surpluses in decreasing order: b1, b2, ..., bn;

Find the smallest � for which r(b�)/r(b�+1) > 1 + 1/n, and
let � = n when there is no such �;

Let S = {b1, . . . , b�};
Compute x = min(xeq , x23, x24, x2).

Multiply prices of goods in Γ (S) and flows into these goods by x.

Extend f to a balanced flow (goods of surplus zero must keep surplus zero);

Until |r(B)| < ε;

Extract a linear system from Np and compute equilibrium prices from it.

Fig. 2. The algorithm

be computed with O(n4) arithmetic operations. The algorithm for computing a
balanced flow is based on the following characterization of balanced flows.

Lemma 1 [DPSV08]. A maximum flow f is balanced if for any two edges
(bi, ck) and (bj , ck) on the equality graph with fik > 0, either r(bi) = r(bj) or
(r(bi) > r(bj) and fjk = 0).

The algorithm is shown in Fig. 2. It starts with all prices pi equal to one and
a balanced flow f in Np. It works in phases. In each phase, we first number the
buyers in order of decreasing surpluses: b1, . . . , bn. Let � be minimal such that
r(b�) is by a factor of 1 + 1/n larger than r(b�+1); � = n if there is no such �. By
this choice of �, r(b�) ≥ |r(B)|/(e ·n) and r(bi) ≤ e ·r(b�) for all i is guaranteed.1

Let S = {b1, . . . , b�} and let Γ (S) = {c ∈ C | (b, c) ∈ Epfor someb ∈ S} be the
goods that are adjacent to a buyer in S in the equality graph. Since every buyer
has at least one incident edge in the equality graph, Γ (S) is non-empty. All flow
from buyers in S goes to goods in Γ (S) and all buyers in S have surplus. Thus
the goods in Γ (S) have no surplus, since the current flow is maximum, and the
demand for them at the current prices exceeds their supply.

Let S̄ = B \ S. Since the flow is balanced and the buyers in S have larger
surplus than the buyers in S̄, there is no flow from S̄ to Γ (S). We raise the
prices of the goods in Γ (S) and the flow on the edges incident to them by a
common factor x > 1. We also increase the flow from s to buyers in S such that
flow conservation holds. This give us a new price vector p′ and a new flow f ′.
Observe that the surpluses of the goods in Γ (S) stay zero. Formally,

1 Clearly b1 ≥ |r(B)|/n. Also, r(bj)/r(bj+1) ≤ 1 + 1/n for j < �, and hence r(b�) ≥
r(b1)/(1 + 1/n)−n ≥ r(b1)/e ≥ |r(B)|/(e · n).

90 K. Mehlhorn

p′
j =

{
x · pj if cj ∈ Γ (S);
pj if cj /∈ Γ (S).

(1) f ′
ij =

{
x · fij if cj ∈ Γ (S);
fij if cj /∈ Γ (S).

(2)

The changes on the edges incident to s and t are implied by flow conservation.
The change of prices and flows affects the surpluses of the buyers, some go

up and some go down.

Lemma 2 [DM13]. Given a balanced flow f in Np, a set S of buyers such that
all goods in Γ (S) are completely sold and there is no flow from S̄ to Γ (S), and a
sufficiently small parameter x > 1, the flow f ′ defined in (2) is a feasible flow in
the equality network with respect to the prices in (1). The surplus of each good
remains unchanged, and the surpluses of the buyers become:

r′(bi) =

⎧
⎪⎪⎨

⎪⎪⎩

x · r(bi) if bi ∈ S, ci ∈ Γ (S) (type 1 buyer);
(1 − x)pi + x · r(bi) if bi ∈ S, ci /∈ Γ (S) (type 2 buyer);
(x − 1)pi + r(bi) if bi /∈ S, ci ∈ Γ (S) (type 3 buyer);
r(bi) if bi /∈ S, ci /∈ Γ (S) (type 4 buyer).

Proof. See [DM13]. For the definition of the factor x, we perform the following
thought experiment. We increase the prices of the goods in Γ (S) and the flow on
the edges incident to them continuously by a common factor x until one of three
events happens: (1) a new edge enters the equality graph or (2) the surplus of a
type 2 buyer and a type 3 or 4 buyer become equal or (3) the surplus of a type 2
buyer becomes zero. The third event can only happen if S = B and hence there
are no type 3 and type 4 buyers.

The increase of prices of goods in Γ (S) makes the goods in C \ Γ (S) more
attractive to the buyers in S and hence an equality edge connecting a buyer in
S with a good in C \ Γ (S) may arise. This will happen at x = xeq(S), where

xeq(S) = min
{

uij

pj
· pk

uik
| bi ∈ S, (bi, cj) ∈ Ep, ck /∈ Γ (S)

}

.

When we increase the prices of the goods in Γ (S) by a common factor x ≤ xeq(S),
the equality edges in (S × Γ (S)) ∪ (S̄ × (C \ Γ (S))) will remain in the network.
Equality edges in S̄ × Γ (S) will disappear, but they carry no flow and hence
may disappear.

The surplus of type 1 and 3 buyers increases, the surplus of type 2 buyers
decreases, and the surplus of type 4 buyers does not change. Since the total
surplus does not change (recall that the surpluses of the goods are not affected
by the price update), the decrease in surplus of the type 2 buyers is equal to the
increase in surplus of the type 1 and 3 buyers. In particular, there are type 2
buyers. We define quantities x23(S) and x24(S) at which the surplus of a type 2
and type 3 buyer, respectively type 4 buyer, becomes equal, and a quantity x2

at which the surplus of a type 2 buyer becomes zero.

On the Implementation of Combinatorial Algorithms 91

x23(S) = min
{

pi + pj − r(bj)
pi + pj − r(bi)

bi is type 2 and bj is type 3 buyer
}

,

x24(S) = min
{

pi − r(bj)
pi − r(bi)

bi is type 2 and bj is type 4 buyer
}

,

x2(S) = min
{

pi

pi − r(bi)
bi is type 2 buyer

}

.

The quantity x2(S) is only relevant, if S = B. It guarantees that surpluses of
buyers stay nonnegative.

Lemma 3 [DM13]. With x = min(xeq(S), x23(S), x24(S), x2(S)) and S as
defined in the algorithm, f ′ is a feasible flow in Np′ .

Proof Obvious. We complete the phase by extending f ′ to a balanced flow. In
this step, we make sure that goods with surplus zero keep surplus zero. This ends
the description of the algorithm. Correctness follows from the following lemma.

Lemma 4 [DM13]. Once the surplus of a good becomes zero, it stays zero. As
long as a good has non-zero surplus, its price stays at one.

3 A Glimpse of the Analysis

The analysis uses two potential functions, namely the product P =
∏

i pi of all
prices and the 2-norm ‖r(B)‖2 of the surplus vector of the buyers.

Lemma 5 [DM13]. In the course of the algorithm, all prices stay bounded by
(nU)n.

Lemma 6 [DM13]. For a phase h, let xh > 1 be the factor by which the prices
in Γ (S) are increased. Then

∏

h

xh ≤ (nU)n2
.

Let xmax := 1 + 1
48e2n3 . Call a phase h an xmax-phase if xh ≥ xmax and call

it a balancing phase otherwise.

Lemma 7 [DM13]. The number of xmax-phases is O(n5 log(nU)).

Proof. Let T be the number of xmax-phases. In an xmax-phase, the product P of
the prices grows by at least a factor xmax. Therefore xT

max ≤ (nU)n2
.

The 2-norm of the surplus vector is used to bound the number of balancing
phases. The next lemma justifies the name.

Lemma 8 [DM13]. In a phase h with xh < xmax, the 2-norm of the surplus
vector of the buyers is reduced by a factor 1 − O(1/n3).

92 K. Mehlhorn

Lemma 9 [DM13]. Over all xmax-phases, the 2-norm of the surplus vector of
the buyers increases by at most a multiplicative factor (nU)n2

.

Lemma 10 [DM13]. The number of balancing phases is O(n5 log(nU)).

Proof. Let T be the number of balancing phases. The initial 2-norm of the surplus
vector is at most

√
n. The total multiplicative increase is at most (nU)n2

and
the total multiplicative decrease in balancing phases is at least (1 − O(1/n3))T .
The algorithm terminates once the 1-norm of the surplus vector is less than ε.
This is guaranteed if the 2-norm is less than ε/

√
n. The bound follows.

Theorem 1 [DM13]. The total number of arithmetic operations required by
the algorithm is O(n9 log(nU)).

Polynomial Time: Since we assume utilities to be integers and the algorithm uses
only the basic arithmetic operations, the computation stays within the rationals.
However, it is not clear whether the size of the rationals stays polynomially
bounded. It is conceivable that the size of the rationals doubles in each phase.

Duan and Mehlhorn guarantee polynomial time as follows. Firstly, they
approximate utilities uij by powers of 1 + 1/L, where L = 16n5(nU)n/ε =
126n5n+5U4n. Secondly, they observe that it suffices to approximate x23, x24

and x2 by a nearby power of 1 + 1/L and that only xeq needs to be com-
puted exactly. As a consequence, all prices are powers of 1 + 1/L. Since prices
are bounded by (nU)n, the exponents in the representations are between 0 and
log1+1/L(nU)n = O(nL log(nU). The bitlength of the exponents is O(n log(nU)).

Theorem 2 [DM13]. The total number of arithmetic operations required by
the algorithm is O(n9 log(nU)). Arithmetic on integers with O(n log(nU)) bits
suffices.

4 Questions

Through the implementation, we address the following questions:

1. Do the rationals really explode? Or does it suffice to keep them normalized,
i.e., to keep numerators and denominators relatively prime? For Gaussian
elimination over the rationals it is known [Edm67] that keeping the rationals
normalized suffices to control their size.

2. The known algorithm for computing a balanced flow requires up to n maxflow
computations in a graph with 2n nodes and O(n2) edges.
(a) Cycles in the equality graph can only arise if there are dependencies

between the utilities. Let bi0 , cj0 , bi1 , cj1 , . . . , bik−1 , cjk−1 , bi0 be a cycle in
the equality graph with respect to a price vector p. Then

ui�,j�−1

pj�−1

=
ui�,j�

pj�

On the Implementation of Combinatorial Algorithms 93

for all �, since bi�
is connected to cj�−1 and cj�

in the equality graph
(interpret −1 as k − 1) and hence

∏

0≤�≤k−1

ui�,j�−1 =
∏

0≤�≤k−1

ui�,j�
.

If no such dependency exists, the equality graph Ep is a tree and contains
at most 2n−1 edges. Thus the maxflow computations would be in graphs
with only a linear number of edges and special structure. Perturbation
of the utilities can guarantee that there are no dependencies. What is
the arithmetic cost of perturbation in this context? Does the rounding of
the utilities required to make the algorithm polynomial time counteract
perturbation and introduce dependencies?

(b) The algorithm for computing a balanced flow works recursively. The
divide step answers the question whether all surpluses can be made equal.
Note that the average surplus of a buyer is rave := (

∑
i∈B(pi−

∑
j fij))/n.

We set the capacity of the edge from s to bi to pi − rave and recompute
the maximum flow. If the entire flow can still be routed, all surpluses are
equal to rave in a balanced flow and we are done. Otherwise, let S be the
set of buyers and goods reachable from s in the residual graph and let
T be their complement. The nodes in S ∩ B have surplus at least rave
in a balanced flow and the nodes in B ∩ T have surplus at most rave .
One deletes all edges from buyers in T to goods in S from the equality
graph and recurses on the graphs s∪S ∪ t and s∪T ∪ t. Actually, the two
recursive calls can be combined into one as there are no edges connecting
nodes in S and nodes in T . In this way, the number of recursive calls
is equal to the recursion depth. Can one control the recursion depth, by
using a value different from rave in the divide step?
Note that the networks for the recursive calls are obtained by deleting
some edges and changing the capacities of the edges incident to s. Does
one have to start the maxflow computations from scratch or can one reuse
the results of earlier computations.

(c) Can one use parametric maxflow [GGT89] to speed up the computation?
(d) It seems that one can do with a weaker version of balanced flows, namely

1+1/(cn)-balanced flows where c is a small constant. A maximum flow is
1+1/(cn)-balanced if for any two edges (bi, ck) and (bj , ck) in the equality
graph with fik > 0, we have either r(bj) ≥ r(bi)/(1 + 1/cn)) or fjk = 0.

3. What is the behavior of the algorithm on random inputs? Are their inputs
that force the algorithm into its worst-case running time or close to the worst-
case running time.

4. Are balanced flows really needed? Garg, Duan, and Mehlhorn [DGM15] have
recently shown that the use of balanced flows can be avoided. This reduces
the complexity of a phase to O(n2). Does this theoretical improvement show
in the implementation?

5. The main loop terminates when the 1-norm of the surplus vector of the buyers
is less than ε. At this point, one can extract a linear system from the equal-
ity graph Ep. The equilibrium prices are the solution to this linear system.

94 K. Mehlhorn

Of course, one can extract a linear system from Ep at any time during the
execution and compute prices from it. Since it is easily checked whether a set
of prices is a set of equilibrium prices (one maxflow computation), it makes
sense to extract earlier. If the cost of extracting and solving the system is C,
one should extract after spending cost O(C) in the main loop. In this way
the extraction attempts can be amortized over the cost of the main loop.

6. What problem size can be solved with an O(n10) algorithm? In the worst
case? On average? Are economists interested in exact solutions to problems
of this size?

References

[DGM15] Duan, R., Garg, J., Mehlhorn, K.: A improved combinatorial algorithm for
the linear arrow-debreu marketTODO (2015). Forthcoming

[DM13] Duan, R., Mehlhorn, K.: A combinatorial polynomial algorithm for the lin-
ear arrow-debreu market. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M.,
Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 425–436. Springer,
Heidelberg (2013)

[DPSV08] Devanur, N.R., Papadimitriou, C.H., Saberi, A., Vazirani, V.V.: Market
equilibrium via a primal-dual algorithm for a convex program. J. ACM
55(5), 22:1–22:18 (2008)

[Edm67] Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res.
Nat. Bur. Stan.(B) 71, 241–245 (1967)

[GGT89] Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow
algorithm and applications. SIAM J. Comput. 18, 30–55 (1989)

[Jai07] Jain, K.: A polynomial time algorithm for computing an Arrow-Debreu
market equilibrium for linear utilities. SIAM J. Comput. 37(1), 303–318
(2007)

[Wal74] Walras, L.: Elements of Pure Economics, or the Theory of Social Wealth
(1874)

[Ye07] Ye, Y.: A path to the Arrow-Debreu competitive market equilibrium. Math.
Program. 111(1), 315–348 (2007)

	On the Implementation of Combinatorial Algorithms for the Linear Exchange Market
	1 Introduction
	2 The Algorithm
	3 A Glimpse of the Analysis
	4 Questions
	References

