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Abstract. The simplex method has been successfully used in solving
linear programming problems for many years. Parallel approaches for the
simplex method have been extensively studied in the literature due to the
intensive computations required, especially for the solution of large linear
problems (LPs). In this paper, first a detailed overview is given of the
parallelization attempts concerning the standard and the revised simplex
method made to date. Next, some of the most recent and significant
relevant attempts are selected and presented in more detail along with
experimental results. The latter include some impressive results obtained
for the revised simplex method over a modern supercomputer, as well as
the recent advances in GPU-based related attempts.
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1 Introduction

Linear programming (LP) is probably the most important and well studied opti-
mization technique. The simplex method has been successfully used for solving
linear programming problems for many years [1]. Parallel approaches for the
simplex method have been extensively studied in the literature due to the inten-
sive computations required [2]. Most research has been focused on the revised
simplex method since it takes advantage of the sparsity that is inherent in most
linear programming applications.

The revised method is advantageous for problems with a high aspect ratio;
that is, for problems with many more columns than rows. However, there have
not been seen many parallel implementations of the revised method that scale
well [2]. On the other hand, the standard method is more efficient for dense
linear problems and it can be easily converted to a parallel version with satis-
factory speedup values and good scalability (e.g. [3–5,11–13]). However, lately,
some alternative very promising efforts have also been made with regard to the
parallelization of the revised method, based either on the block angular structure
(or decomposition) of the initially transformed problems or on the dual form of
the revised simplex, which is the most preferable one nowadays [6–8]. Two other
(a little earlier) valuable attempts over specific variants of the simplex method
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have also been presented in [14,15], and they have led to quite satisfactory results
for large scale problems.

With regard to the hardware architectures used, earlier work focused mainly
on more complex, and more tightly coupled, networking structures than a cluster
or a network of workstations, which became a quite familiar alternative later on.
Hall and McKinnon [9] and Shu [10] worked on parallel revised methods over
known supercomputer environments (like Cray T3D). Thomadakis and Liu [11]
worked on the standard method utilizing the MP-1 and MP-2 MasPar. Eckstein
et al. [12] showed in the context of the parallel connection machine CM-2 that
the iteration time for the parallel revised method tended to be significantly
higher than for the parallel full tableau method even when the revised method
is implemented very carefully. Stunkel [13] found a way to parallelize both the
revised and standard methods so that both obtained a similar advantage in
the context of the parallel Intel iPSC hypercube. Some more recent works on the
standard simplex parallelization [16–18] address the significant influence of the
number of columns and rows (aspect ratio) of an LP problem when a distributed-
memory architecture is used, and achieve particularly high speedup values over
modern (hybrid) cluster architectures, mainly following the column-based data
distribution scheme [3,4,16–18].

Studying the literature one can notice that the standard (tableau-based) sim-
plex method has been efficiently parallelized many times in the past with good
speedup factors ranging from tens to up to a thousand. However, without using
expensive parallel computing resources, its performance is inferior to a good
sparsity-exploiting sequential implementation of the revised simplex method.
On the other hand, the parallelization of the revised simplex method has not
been very efficient and therefore there has been less success in terms of speedup
with respect to the standard method. Indeed, since scalable speedup for general
large sparse LP problems appears unachievable, the revised simplex method has
been considered unsuitable for parallelization. However, since it corresponds to
the computationally efficient serial technique, any improvement in performance
due to exploiting parallelism in the revised simplex method is a worthwhile goal.

In the above context, throughout this paper we first try to give a detailed
overview of the research attempts made till now with respect to the paralleliza-
tion of the various variants of the simplex method, mainly distinguishing between
the standard and the revised form. Next, we describe in more detail three of the
most recent and important related attempts: (a) one presenting the efficient par-
allelization of the dual revised simplex method [6,7] which is considered as the
most efficient and preferred variant of the simplex method nowadays, (b) one
demonstrating the capability of efficiently solving large-scale stochastic LP prob-
lems with the revised simplex method, and gaining particularly high speedups
(over the Clp serial solver) when implemented on a modern high-performance
supercomputer [8], and (c) one presenting a notably efficient, highly scalable
with almost linear speed-up implementation of the standard simplex method
over a modern hybrid hardware architecture with high-speed inteconnection
network and different alternatives in the software platforms used (MPI and MPI-
3 Shared Memory vs. MPI and OpenMP) [16–18]. Finally, we explore separately
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the corresponding approaches contributed to date with the use of the CPU-GPU
model trying to exploit the massive parallelism capabilities offered by the mod-
ern graphic processing units; which is one of the hottest topics in almost all the
research fields of parallel computing nowadays.

Furthermore, our work can be seen as a thorough update of the survey given
in [2], which is the most recent complete survey in simplex parallelization. We
first summarize the most valuable works done till the end of 2010’s (an inter-
val which is covered in more details in [2]), and then we focus on the signifi-
cant advances made during the last five years when the emerging technologies in
hardware architectures (hybrid supercomputers, modern multicore architectures,
hpc clusters, GPU computing etc.) have offered the potential for even greater
achievements in response times and speedup performance. Especially, the rapid
evolution of multicore technology has pushed the research in designing suitable
parallelization schemes that can effectively exploit the increased computation
capability of these modern hardware architectures. The first truly parallel com-
mercial simplex solvers over multicore desktop architectures have also appeared
recently (e.g. [42]), achieving significant improvements against purely sequential
solultions for several kinds of LPs.

The rest of the paper is organized as follows. In Sect. 2 the necessary back-
ground with regard to the simplex method and its variants is given. In Sect. 3
the detailed overview of the research work made till now on the parallelization
of the simplex method is presented. In Sects. 4, 5 and 6 the main achievements
with respect to the three selected recent research attempts described in the pre-
vious paragraph, are stated respectively. In Sect. 7 the most recent approaches
based on the CPU-GPU model are briefly presented, whereas Sect. 8 concludes
the paper.

2 Background

In linear programming problems, the goal is to minimize (or maximize) a linear
function of real variables over a region defined by linear constraints. In the stan-
dard form, it can be expressed as shown in Table 1 (full tableau representation),
where A is an m×n matrix, x is an n-dimensional design variable vector, c is the
price vector, b is the right-hand side vector of the constraints m-dimensional)
vector of the constraints, and T denotes transposition.

Based on the full tableau representation, the basic steps of the standard
simplex method can be summarized (without loss of generality) as follows:

Step 0: Initialization: Start with a feasible basic solution and construct the
corresponding tableau.

Step 1: Choice of the entering variable: Find the winning column i.e., the one
having the larger negative coefficient of the objective function.

Step 2: Choice of the leaving variable: Find the winning row by appling the
min ratio test to the elements of the winning column and choose the row
number with the min ratio.
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Table 1. Standard simplex method with full tableau representation

Standard Full Tableau x1 x2 ... xn xn+1 ... xn+m z

Simplex Method −c1 −c2 ... −cn 0 ... 0 1 0

Minimize z = cTx xn+1 a11 a12 ... a1n 1 ... 0 0 b1

s.t. Ax = b xn+2 a21 a22 ... a2n 0 ... 0 0 b2

x ≥ 0 ... ... ... ... ... ... ... ... ... ...

xn+m am1 am2 ... amn 0 ... 1 0 bm

Step 3: Pivoting: Construct the next tableau by performing pivoting in the
previous tableau rows based on the new pivot row found in step 2.

Step 4: Repeat the above steps until the best solution is found or the problem
gets unbounded.

2.1 The Primal Revised Simplex Method

The revised simplex method performs the same steps as the tableau method but
does not keep the tableau as an aid. Rather, whenever the algorithm requires
a number from the tableau it is computed from one of several matrix equa-
tions, often involving the inverse of the basis. The data for the algorithm are the
matrices A, c and b defining the original problem, the number of variables and
constraints, n and m, and a record of the current basic and nonbasic variables.
The basis matrix B is a square matrix composed of the columns from A corre-
sponding to the m basic variables, whereas the columns of A corresponding to
the n−m nonbasic variables form the matrix N . The computational components
of the primal revised simplex method are presented in Fig. 1 [2].

CHUZC: Scan ĉN for a good candidate q to enter the basis.

FTRAN: Form the pivotal column âq = B−1aq, where aq is column q of A.

CHUZR: Scan the ratios b̂i/âiq for the row p to leave the basis.

Update b̂ = b̂ − αâq, where α = b̂p/âpq.

BTRAN: Form πp = B−T ep.

PRICE: Form the pivotal row âp = NTπp.

Update ĉN = ĉN − βâp, where β = ĉq/âpq.

If {growth in representation of B} then

INVERT: Form a new representation of B−1.

else

UPDATE: Update the representation of B−1 due to the basis change.

end if

Fig. 1. Operations in an iteration of the primal simplex method
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At the beginning of an iteration, it is assumed that the vector of reduced
costs ĉN and the vector b̂ of values of the basic variables are known, that b̂ is
feasible (nonnegative), and that a representation of B−1 is available. The first
operation is CHUZC (choose column), which scans the (weighted) reduced costs
to determine a good candidate q to enter the basis. The pivotal column âq is
formed by using the representation of B−1 in an operation referred to as FTRAN
(forward transformation). The CHUZR (choose row) operation determines the
variable to leave the basis, with p being used to denote the index of the row in
which the leaving variable occurred, referred to as the pivotal row. As a result, a
basis change is said to have occurred and the vector b̂ is then updated adequately.
Before the next iteration can be performed, one must update also the reduced
costs (BTRAN and PRICE) and obtain a representation of the new matrix B−1

(UPDATE). Periodically, it is either more efficient or necessary for numerical
stability to find a new representation of B−1 using the INVERT operation.

2.2 The Dual Revised Simplex Method

While the primal simplex has been historically more important, it is now widely
accepted that the dual variant (the dual simplex method) generally has superior
performance. Dual simplex is often the default algorithm in commercial solvers,
and it is also used inside branch-and-bound algorithms. Given an initial partition
and corresponding values for the basic and nonbasic primal and dual variables,
the dual simplex method aims to find an optimal solution of by maintaining dual
feasibility and seeking primal feasibility. Thus optimality is achieved when the
basic variables b̂ are non-negative. The computational components of the dual
revised simplex method are illustrated in Fig. 2 [8], where the same data are
assumed to be known at the beginning of an iteration. The first operation is
CHUZR which scans the (weighted) basic variables to determine a good candi-
date to leave the basis, with p being used to denote the index of the row in which
the leaving variable occurs. The pivotal row âTp is then formed via BTRAN and
PRICE operations. The CHUZC operation determines the variable q to enter
the basis. In order to update the vector b̂ , it is necessary to form the pivotal
column âq with an FTRAN operation.

3 Overview of Simplex Parallelization

The approaches contributed till now to the literature with regard to the par-
allelization of the simplex method can be naturally classified according to the
variant of the simplex method that is considered and the extent to which sparsity
is exploited. It should be noticed that parallel implementations of the simplex
variants that are more efficient as a mean of solving large sparse LP problems
are less successful in terms of speed-up. Conversely, the simplex variants that are
generally less efficient achieve the best speed-up. A few of the parallel schemes
discussed below offered good speed-up relative to efficient coeval serial solvers.
However, some parallel techniques are only now seen as being inefficient in the
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CHUZR: Scan b̂ for the row p of a good candidate to leave the basis.

BTRAN: Form πp = B−T ep.

PRICE: Form the pivotal row âT
p = πT

p N .

CHUZC: Scan the ratios ĉj/âpj for the row q to enter the basis.

Update ĉN = ĉN − βâp, where β = ĉq/âpq.

FTRAN: Form the pivotal column âq = B−1aq, where aq is column q of A.

Update b̂ = b̂ − αâq, where α = b̂p/âpq.

If {growth in representation of B} then

INVERT: Form a new representation of B−1.

else

UPDATE: Update the representation of B−1 due to the basis change.

end if

Fig. 2. Operations in an iteration of the dual simplex method

light of serial revised simplex techniques that either were not sufficiently known
at the time or were developed subsequently. In the following two paragraphs the
reader may find a brief analysis of the most representative parallelization efforts
of the standard and revised simplex methods, whereas Tables 2 and 3 summarize
the most significant of these efforts.

3.1 Parallelizing the Standard Simplex Method

There are many parallel implementations of the dense standard simplex method
as well as of the revised simplex method with a dense explicit inverse. The
simple data structures involved and the potential for linear speed-ups make
them attractive implementation exercises either on shared memory machines
or over distributed memory parallel environments. However, for solving general
large sparse LP problems, the serial inefficiency of these implementations is such
that only with a massive number of parallel processes they could conceivably
compete with a good sparsity-exploiting serial implementation of the revised
simplex method.

Some of the most known early works on parallelizing the standard simplex
method can be found in [13,19–22]. Most of them focus on the possible data
distribution and communication schemes, with implementations limited to small
numbers of processes on distributed memory machines. The work of Stunkel [13]
should be considered the most successful among them. He implemented both the
dense standard simplex method and the revised simplex method with a dense
inverse on a 16-processor Intel hypercube, achieving a speed-up of between 8
and 12 for small problem instances from the Netlib test set.

A few years later, two other valuable approaches were presented [23,24] with
similar achievements. Cvetanovic et al. [23] report a speed-up of 12 when solving
two small problem instances using the standard simplex method, a result that is
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notable for being achieved on a 16-processor shared memory machine. Luo and
Reijns [24] obtained also satisfactory speedups of more than 12 on 16 transputers
when using the revised simplex method with a dense inverse to solve modest
Netlib test linear problems.

In the following years until 2000s, the first attempts over massively parallel
computers appeared, with Eckstein et al. [12] and Thomadakis and Liu [11] con-
tributing the most known and competent relevant works and implementations.
Eckstein et al. [12] parallelized the standard simplex method and the revised sim-
plex method with a dense inverse on the massively parallel Connection Machine
CM-2 and CM-5, incorporating the steepest edge pricing strategy directly within
their standard simplex implementation. As a consequence of using steepest edge
weights and the expand procedure, this implementation is notable for its numeri-
cal stability, an issue that has rarely been considered in parallel implementations
of the simplex method. Further details can be found in [25]. When solving a range
of larger Netlib problems and very dense machine learning problems, speedups
of between 1.6 and 1.8 were achieved when doubling the number of processors.
They also presented results which indicated that the performance of their imple-
mentation was generally superior to MINOS (a well-known serial simplex solver),
particularly for the denser problems. Thomadakis and Liu [11] also used steepest
edge in their implementation of the standard simplex method on MasPar MP-1
and MP-2 machines. Solving a range of large, apparently randomly-generated
problems, they achieved a speed-up of up to three orders of magnitude on the
128×128 processor MP-2.

During the next many years (till now) only a few significant new attempts and
implementations were made with regard to the parallelization of the standard
simplex method. Among them, a quite valuable theoretical work on parallel
implementations of the standard simplex method with steepest edge, and its
practical implementation on modest numbers of processors has been presented
by Yarmish in [3,40]. The work in [3] has also led to high parallel efficiency
and corresponding scalability for large-scale problems, whereas it has also been
compared to MINOS, and it has been shown to be highly competitive even for
very low density problems. Reports of small-scale parallel implementations also
continue to appear. Relatively recently, Badr et al. [4] presented results for an
implementation on eight processors, achieving a speed-up of five when solving
small random dense LP problems.

A substantial difference between the two above attempts ([3] and [4]) was the
way the simplex tableau is distributed among the processors. Either a column
distribution scheme or a row distribution scheme may be applied, depending on
several parameters (relative number of rows and columns, total size of the prob-
lem, target hardware environment details etc.). The most recent works following
the column distribution scheme which is the most popular and widely used for
practical problems, were by Yarmish et al. [3] as well as by Qin et al. [5]. On
the other hand, the work of Badr et al. [4] referred above, followed the row
distribution scheme and presented a well-designed and relatively efficient imple-
mentation on eight loosely coupled processors. Furthermore, a comprehensive
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Table 2. Standard simplex - representative parallelization efforts

Authors Hardware platform Speedup

Stunkel [13] (1988) 16-processor Intel Hypercube Between 8 and 12 for small Netlib

problems

Eckstein et al. [12] (1995) CM-2 and CM-5 with thousands of

processors

Between 1.6 and 1.8 when doubling

the number of processors - superior

to MINOS

Thomadakis and Liu [11] (1996) MP-1 and MP-2 (128×128 proces-

sor MP-2)

Up to 1000 on large random LPs

Yarmish et al. [3] (2009) 7 workstations - Fast Ethernet On iteration speed: up to ∼ 7 for

random high-aspect ratio LPs

Mamalis et al. [16–18] (2011–14) 8-nodes Myrinet-connected Intel

Xeon cluster - 4 × 4 quad-core Intel

with gigabit ethernet

On iteration speed: up to ∼ 8 for

random and Netlib LPs with high-

aspect ratio - 11.5 to 15.2 for large

LPs of all kinds

study and comparison of both the above data distribution schemes, as well as
the corresponding implementations over high-performance cluster (distributed
memory or hybrid) environments achieving particularly high speedup values are
given in the recent works of Mamalis et al. [16–18]. The key points and achieve-
ments of the latter are presented in more details in Sect. 6.

3.2 Parallelizing the Revised Simplex Method

Undoubtedly, the real challenge in developing a parallel simplex implementation
of general practical value is to exploit parallelism when using a variant of the
revised method with sparse matrix algebra techniques. Only then the resulting
solver could be competitive to a good serial implementation when solving general
large sparse LP problems using a realistic number of processors. Efficient serial
simplex solvers are based on the revised simplex method with a factored inverse
since the practical LP problems whose solution poses a computational challenge
are large and sparse. For such problems, the superiority of the revised simplex
method over the known serial standard simplex schemes is clear and obvious. It
follows that the only scope for developing a really worthwhile parallel simplex
solver is to identify how the revised simplex method with a factored inverse may
be parallelized. The natural data parallelism of the PRICE operation has been
exploited by most authors. Several researchers have also considered the data
parallelism in other computational components, whereas others have studied
the extent to which task parallelism can be exploited by overlapping operations
that are then executed either in serial or, in the case of PRICE, by exploiting
data parallelism.

The first worth telling research attempts were contributed by Pfefferkorn
and Tomlin [26] and Helgason et al. [27]. In [26] the authors were the first to
discuss how parallelism could be exploited in each computational component
of the revised simplex method. On the other hand, in [27] the authors trying
to contribute new ideas, beyond the classics, discussed the scope for paralleliz-
ing FTRAN and BTRAN operations based on the relatively unknown quadrant
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interlocking factorization technique. Further, McKinnon and Plab [28] consid-
ered how data parallelism could be exploited in FTRAN operation for both
dense and sparse right-hand sides. They also investigated how the Markowitz
criterion could be modified in order to increase the potential for exploiting data
parallelism in subsequent FTRAN operations.

The first attempt to exploit task parallelism in the revised simplex method
was reported by Ho and Sundarraj [29]. In addition to the natural data paral-
lelism of the PRICE operation, Ho and Sundarraj identified that the INVERT
operation can be overlapped with simplex iterations. The performance of Ho
and Sundarrajs implementation, on an Intel iPSC/2 and Sequent Balance 8000,
was quite promising, however limited in accordance with Amdahls law (since
only some parts of the whole algorithm were parallelized). On a set of small
Netlib and proprietary problems, they report an average saving of 33 % over the
corresponding serial solution time.

The next ambitious implementation that attempted to exploit full data par-
allelism over the revised simplex method was that of Shu [10]. It was based on a
parallel triangularization phase for the INVERT operation, a distributed sparse
LU decomposition of the basis matrix for parallel FTRAN and BTRAN opera-
tions, as well as a typical parallelization of the PRICE operation. However, no
significant speed-up was achieved in the corresponding experimental tests.

In the following years till now, the most known and notable corresponding
atttempts were contributed by Hall and McKinnon [9,41]. Their first parallel
revised simplex scheme was ASYNPLEX [9]. This corresponds to a variant of
the revised simplex method in which reduced costs are computed directly. ASYN-
PLEX was implemented on a Cray T3D and it was tested using four modest but
representative Netlib test problems. Using between 8 and 12 processors to per-
form simplex iterations, the iteration speed was increased by a factor of about 5
in all cases. However, the increase in the number of iterations required to solve
the problem led to a speed-up in solution time ranging from 2.4 to 4.8. Hall and
McKinnons second parallel scheme was PARSMI [41]. This was developed in an
attempt to address the deficiencies of ASYNPLEX. In order to make realistic
comparisons with good serial solvers, PARSMI updates the reduced costs and
uses Devex pricing. As the authors state, the implementation of PARSMI was
a highly complex programming task, magnified by the fact that communica-
tion times are not deterministic and the order of arrival of messages determined
the operation of the program. Programming difficulties, together with numerical
instability meant that the implementation was never reliable. In the very limited
results that were obtained on modest Netlib problems, using eight processors,
the speed-up in iteration speed was between 2.2 and 2.4 (leading to a speedup
in solution time between 1.7 and 1.9).

As it can be seen, all attempts to exploit parallelism in the revised simplex
method have focused on the primal simplex method. The dual simplex method,
which is much more efficient for many LP problems has not been addressed a lot
in terms of parallelization. However, as it is explained in more detail in [2,30],
there is one important distinction between the primal and dual simplex methods
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which has the potential to cause significant differences in parallel performance.
In the primal simplex method the PRICE operation is restricted to just a subset
of the non-basic variables, whereas, in the dual simplex method, especially for
problems with very large column/row ratios the completely dominant cost is
due to the PRICE operation. Hence its parallelization can be expected to yield
a significant improvement in performance over that of the efficient serial dual
simplex solvers. Bixby and Martin [30] were the first to investigate the scope
for parallelism in the dual revised simplex method and chose to parallelize only
those operations whose cost is related to the number of columns in the problem,
that is the PRICE operation, the dual ratio test and the update of the dual
variables. They implemented the dual simplex method on several architectures;
however using the full Netlib set, no significant gain in performance was obtained.
The latter was a normal behavior since few problems in the Netlib set have
significantly more columns than rows. Focusing on this kind of problems and
using up to four processors on an IBM SP2, a quite satisfactory speedup was
observed, ranging from 1 to 3.

Till recently, no other valuable attempts have been made to parallelize the
dual revised simplex method, thus making the one that immediately follows
(Huangfu and Hall [6,7], Sect. 4) a distinguished one. Another significant parallel
implementation using the revised simplex method that deserves to be presented
separately (see Sect. 5) has also been recently achieved by Lubin et al. [8],
demonstrating the capability of solving large scale stochastic LP problems in
acceptable times within the computing environment of a supercomputer.

4 Recent Advances on the Parallelization of the Dual
Revised Simplex Method

As mentioned in the previous sections, for sparse LP problems the revised (either
primal or dual) simplex method is generally preferred against the simplex method

Table 3. Revised simplex - representative parallelization efforts

Authors Hardware platform Speedup

Ho and Sundarraj [29] (1994) Intel iPSC/2 and Sequent Balance

8000 (primal simplex)

1.5 on average for medium sized

Netlib and other LPs

Hall and McKinnon [9] (1998) Cray T3D (8 to 12 processors) (pri-

mal simplex)

Between 2.5 and 4.8 on medium

sized Netlib LPs (∼ 5 on iteration

speed)

Bixby and Martin [30] (2000) Different platforms - 4 pr. on a IBM

SP2 (dual simplex)

Between 1 and 3 on high-aspect

ratio Netlib LPs

Huangfu and Hall [6,7] (2012–14) 8 cores of a 16xIntel Xeon E5620

(dual suboptimization)

> 2 on average for test LPs of all

kinds (max of 3.5), 1.5 on average

over regular dual simplex, compa-

rable to Cplex & Clp

Lubin et al. [8] (2013) a 320x8-node cluster with Infini-

Band and a Blue Gene/P supercom-

puter with 40960 nodes (both pri-

mal and dual)

On iteration speed: ∼ 100 over Clp

when using 16 nodes (128 cores) for

large-scale two-stage stochastic LP

problems
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in its standard form since it permits the sparsity of the problem to be exploited.
This is achieved using techniques for decomposing sparse matrices and solv-
ing hyper-sparse linear systems. Also important for the dual revised simplex
method are advanced algorithmic variants introduced in the 1990s, particularly
dual steepest-edge (DSE) pricing and the bound flipping ratio test (BFRT).
These led to significant performance improvements and resulted in the dual sim-
plex algorithm being preferred. However, for many years now, although the dual
revised method is regarded as the most preferable and efficient, no practical
parallel implementations appeared in this context. Towards the above direction,
the authors in [6,7] introduce two novel parallel dual simplex solvers for general
large scale sparse linear programming problems, over standard desktop architec-
tures. The first approach extends a relatively unknown pivoting strategy called
suboptimization and exploits parallelism across multiple iterations. The second
approach exploits purely single iteration parallelism. Computational results show
that the performance of the first approach is comparable with the world-leading
commercial simplex solvers, and that the second approach complements the first
one, in achieving speedup when it results in slowdown.

Moreover, in the past, parallel implementations generally used dedicated high
performance computers to achieve the best performance. Now that every desk-
top computer is a multi-core machine, any speedup is desirable in terms of solu-
tion time reduction for daily use. In this direction, the authors have chosen to
use relatively standard architecture to perform computational experiments with
very good results. It should certainly be considered as one of the most valuable
practical attempts during the last decade with respect to the general-purpose
parallelization of the revised simplex method.1

4.1 Design and Implementation (Key Issues)

As reported in Sect. 2, the dual simplex algorithm solves an LP problem itera-
tively by seeking primal feasibility while maintaining dual feasibility. Considering
the operations within each iteration (as given in Fig. 2), there is immediate scope
for data parallelization within CHUZR, PRICE, CHUZC and most of the update
operations since they require independent operations for each (nonzero) compo-
nent of a vector. Additionally, the scope for task parallelism by overlapping the
execution of the sub-operations within FTRAN was considered by Bixby and
Martin but rejected as being disadvantageous computationally. On the other
hand, Huangfu and Hall [6,7] have based their implementation on the technique
of suboptimization, which is is one of the oldest variants of the revised simplex
method and consists of a major-minor iteration scheme [7]. Within the primal
revised simplex method, suboptimization performs minor iterations of the stan-
dard primal simplex method using small subsets of columns from the reduced
1 Note also that the techniques applied in the proposed approaches, have been the

basis for the integration of FICO Xpress parallel solver [42], which was the first
commercial parallel simplex solver and has been regarded quite faster than the pre-
existing ones in various kinds of large-scale LPs.



292 B. Mamalis and G. Pantziou

coefficient matrix B−1A. Suboptimization for the dual simplex method was first
set out by Rosander [31]. It performs minor operations of the standard dual
simplex method, applied to small subsets of rows from B−1A. Originally, subop-
timization was proposed mainly as a pivoting scheme for achieving better pivot
choices and advantageous data affinity. In modern revised simplex implementa-
tions, the DSE and BFRT are together regarded as the best pivotal rules and
the idea of suboptimization has been naturally forgotten. However, in terms of
parallelization, suboptimization is attractive because it certainly provides more
scope for parallelization.

In the design and implementation of the first proposed approach, the authors
extend the suboptimization scheme of [31], incorporating (serial) algorithmic
techniques and exploiting parallelism across multiple iterations. The main sub-
optimization steps (the exact mathematical formulation can be found in [7]) in
each iteration include (a) the major optimality test, (b) the minor initialization
step, (c) the minor iterations step consisting of of three basic sub-operations
i.e., the minor optimality test, the minor ratio test and the minor update step,
and (d) the major update step. Based on the above decomposition, the authors
apply extensively data parallelism (mainly with respect to the various vector-
based operations met) in almost all steps. Specifically, vector-based operations
are met (and can be efficiently parallelized) on both the major optimality test
and the major update step, whereas the minor initialization step offers a good
opportunity for task parallelization. With regard to the composite minor iter-
ations step, data parallelism is applied on the minor ratio test with respect to
the PRICE operation and the first part of CHUZC operations, as well as on the
minor update step (vector-based update operations).

In their second parallel implementation the authors introduce a relative sim-
ple approach to exploiting parallelism within a single iteration of the dual revised
simplex method. The relevant approach is a significant development of the work
of Bixby and Martin [30] who parallelized only the PRICE, CHUZC and update-
dual operations, having rejected the task parallelism of FTRAN sub-operations
as being computationally disadvantageous. The mixed parallelization scheme of
this implementation can be found in more details in [7].

4.2 Experimental Results

The experimental performance of the two parallelization approaches described
above has been tested using a reference set consisting of 30 problems. Most of
these LP problems are taken from a comprehensive list of various representative
LP problems maintained by Mittelmann [32]. The problems in this reference
set reflect the wide spread of LP properties and revised simplex characteristics,
including the dimension of the linear systems (number of rows and columns),
the density of the coefficient matrix (average number of non-zeros per column),
and the extent to which they exhibit hyper-sparsity.

The performance of both approaches has been measured using experiments
performed on a workstation with 16 (Intel Xeon E5620, 2.4 GHz) cores, using 8
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of the cores for the parallel calculations. With respect to the results obtained for
the first approach, the main observations can be summarized as follows:

– For most of the problems included in the reference set, the speedup compared
to its sequential version is more than 2 (with a geometric mean of 2.23). The
best speedup obtained was equal to 3.50.

– When compared to the regular dual simplex method, the sequential version
of the proposed implementation is generally less efficient (about 30 % slower).
As a consequence, the overall (true) speedup is somewhat restricted, resulting
in a mean speedup of about 1.5.

– It is also worth mentioning that the instances of better speedup (greater than
the average) correspond largely to the sparse LP problems.

The above results are satisfactory since they refer to a general-case reference
set with all kinds of problems. Furthermore, the worst performances are associ-
ated with dense LP problems, whereas the achieved performance when solving
hyper-sparse LP problems is moderate but relatively stable. As it is also clearly
indicated in the original paper [7], the performance of the proposed approach is
comparable with the dual simplex implementation of CPLEX, a world-leading
commercial dual revised simplex solver, and clearly superior to that of CLP, the
world’s leading open-source solver. On the other hand, the results obtained for
the second approach can be summarized as follows:

– The overall performance is quite worse than that of the first approach. An
average speedup of 1.13 has been achieved, with a maximum value of 2.05.

– The worst cases are associated with the hyper-sparse LP problems where, in
most cases, it results in a slowdown.

– However, when applied to dense LP problems, the performance is moderate
and relative stable. This is especially so for those instances where the first
approach exhibits a slowdown.

In summary, the second approach is a straightforward parallelization approach
which exploits purely single iteration parallelism and achieves relatively poor
speedup for general LP problems. However, it is frequently complementary to the
first approach in achieving speedup when the latter results in slowdown. Overall,
the authors in this paper have introduced the design and development of a novel
parallel dual revised simplex method implementation framework, which has been
measured to provide an average speedup of 1.5 for general large scale sparse
linear programming problems, over standard desktop architectures. Although
this is not particularly high, the resulting performance of the first approach is
comparable to the dual simplex implementation of CPLEX.

5 Parallel Distributed-Memory Simplex for Large-Scale
Stochastic LP Problems

The parallel implementation of the revised simplex method for several special
cases of linear programming problems may often be implemented quite more
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efficiently than in the general case due to the special structure of these prob-
lems [2]. Seeking towards that direction (special-purpose parallel revised simplex
solvers) one of the most impressive works made recently was the one presented
in [8]. In this work the authors present a parallelization of the revised simplex
method for large extensive forms of two-stage stochastic linear programming
(LP) problems, which can be considered one of the most interesting special
cases of linear programming problems (due to their very large size as well as
their significance in real life). These problems have been considered too large
to solve with the simplex method; instead, decomposition approaches based on
Benders decomposition or, more recently, interior point methods are generally
used. However, these approaches do not provide optimal basic solutions. The
present approach exploits the dual block-angular structure of these problems
inside the linear algebra of the revised simplex method in a manner suitable for
high-performance distributed-memory clusters or supercomputers. While this
paper focuses on stochastic LPs, the work is applicable to all problems with a
dual block-angular structure. The whole implementation is competitive in serial
with highly efficient simplex solvers and achieves significant relative speed-ups
when executed in parallel. Additionally, very large problems with hundreds of
millions of variables have been successfully solved to optimality.

Moreover, as the authors claim, this is the largest-scale parallel sparsity-
exploiting revised simplex implementation that has been developed to date and
the first truly distributed solver. It is built on novel analysis of the linear algebra
for dual block-angular LP problems when solved by using the revised simplex
method and a novel parallel scheme for applying product-form updates.2

5.1 Design and Implementation (Key Issues)

More concretely, the proposed parallelization approach is based on the revised
simplex method for linear programming (LP) problems with a special structure
which is known as dual block angular or block angular with linking columns [8].
This structure commonly arises in stochastic optimization as the extensive form
or deterministic equivalent of two-stage stochastic linear programs [33]. Linear
programs with block-angular structure, both primal and dual, occur in a wide
array of applications, and this structure can also be identified within general
LPs. They are typically met in the form given below:

minimize cT0 x0 + cT1 x1 + cT2 x2 + . . . + cTNxN

subject to Ax0 = b0,
T1x0 + W1x1 = b1,
T2x0 + W2x2 = b2,

...
. . .

...
TNx0 + WNxN = bN ,
x0 ≥ 0, x1 ≥ 0, x2 ≥ 0, . . . , xN ≥ 0

2 Note also that this paper has received recently the COAP (Computational Opti-
mization and Applications) journal Best Paper Award for year 2013.
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Borrowing the terminology from stochastic optimization, the vector x0 is
supposed to contain the first-stage variables and the vectors x1, ... , xN the
second-stage variables. On the other hand, the matrices W1,W2, ..., WN contain
the coefficients of the second-stage constraints, and the matrices T1, T2, ..., TN

those of the linking constraints.
With regard to the distribution of data across the parallel processes, the

authors have adopted a carefully designed allocation scheme as follows: Given
a set of P MPI processes and N ≥ P scenarios or second-stage blocks, on
the initialization, each second-stage block is assigned to a single MPI process.
All data, iterates, and computations relating to the first stage are duplicated
in each process. The second-stage data (i.e., Wi, Ti, ci, and bi), iterates, and
computations are only stored in and performed by their assigned process. If a
scenario is not assigned to a process, this process stores no data pertaining to
the scenario, not even the basic/nonbasic states of its variables.

Then, the authors proceed with the first (and probably the most important)
step of their solution, i.e., the factorizing of the basis matrix. Accordingly, one
has to form an invertible representation of the basis matrix B. This is performed
in efficient sparsity-exploiting codes by forming a sparse LU factorization of the
basis matrix. These factors are formed in parallel via the following steps:

– Perform partial sparse Gaussian elimination on each second-stage block.
– Collect and duplicate the necessary terms across processes.
– In each process, form and factor the first-stage block.

The first step may be performed in parallel for each second-stage block (since
they have been evenly distributed to the multiple processes). In the second
step the results are collected and duplicated in each parallel process by using
MPI Allgather() function, and in the third step, each process factors its local
copy of the first-stage block. If then an LU factorization of the first-stage block
is performed, this entire procedure could be viewed as forming an LU factoriza-
tion of B through a restricted sequence of pivot choices. The remaining linear
system is now trivial to solve towards the final solution. Appropriate paral-
lelization is being applied in all the following necessary steps (solving linear
systems. matrix-vector product, updating the inverse etc.) by the means of some
of the well-known collective communication functions of MPI (MPI Bcast(),
MPI Allgather(), MPI Allreduce() etc.) [8].

5.2 Experimental Results

The proposed approach (PIPS-S) was evaluated experimentally with the use of
two powerful distributed memory architectures available at Argonne National
Laboratory (ANL):

– Fusion is a 320-node cluster with an InfiniBand QDR interconnect; each node
has two 2.6 GHz Xeon processors (total 8 cores). Most nodes have 36 GB of
RAM, while a small number of them offer 96 GB of RAM.
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– Intrepid is a Blue Gene/P (BG/P) supercomputer with 40,960 nodes with a
custom high-performance interconnect. Each BG/P node has a quad-core 850
MHz PowerPC processor with 2 GB of RAM.

Using suitable stochastic LP test problems, the authors present results of three
different scales by varying the number of scenarios. Part of the measurements
i.e. the ones for SSN and Storm problems which exhibit the best performance,
are presented in Table 4. First, the authors consider instances that could be
solved on a modern desktop from scratch, that is, from an all-slack starting
basis. These large-scale instances (with 110 million total variables) serve both to
compare the serial efficiency of PIPS-S with that of a modern simplex code and
to investigate the potential for parallel speedup on problems of this size. The
main observations can be summarized as follows:

– Clp is faster than PIPS-S in serial on all instances; however, the total number
of iterations performed by PIPS-S is consistent with the number of iterations
performed by Clp.

– Significant parallel speedups are observed in all cases; as an example PIPS-S
is 5 and 8 times faster than Clp for SSN and Storm respectively when using
four nodes (32 cores).

– The speedups obtained on some other instances are smaller, possibly because
of the smaller number of scenarios and the larger dimensions of the first stage.

Next, some quite larger instances with 20–40 million total variables are con-
sidered. The high memory nodes of the Fusion cluster with 96 GB of RAM were
required for these tests. Given the long times to solution for the smaller instances
solved in the previous section, it is impractical to solve these larger instances
from scratch. Instead, the authors proceed using advanced or near-optimal start-
ing bases in two different contexts. The corresponding results can be summarized
as follows:

– Clp remains faster in serial than PIPS-S on these instances, although by a
smaller factor than before.

– The parallel scalability of PIPS-S is almost ideal (>90 % parallel efficiency) up
to 4 nodes (32 cores) and continues to scale well up to 16 nodes (128 cores).
Scaling from 16 nodes to 32 nodes is poor.

– On 16 nodes, the iteration speed of PIPS-S is about 100 times better than
that of Clp for Storm and 70 times better than that of Clp for SSN.

Finally, the authors report on the solution of a very large instance with 8,192
scenarios. This instance has 463,113,276 variables and 486,899,712 constraints.
An advanced starting basis was generated from 4,096 scenarios, not included
in the execution time. This problem requires approximately 1 TB of RAM to
solve, requiring a minimum of 512 Blue Gene/P nodes; however, results are only
available for runs with 1,024 nodes or more because of execution time limits.
The derived solution time was around 6 h on 1024 nodes (2048 cores), 5 h on
2048 nodes (4096 cores), and 4.5 h on 4096 nodes (8192 cores). While scaling
performance is poor on these large numbers of nodes, this test demonstrates the
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Table 4. Part of the experimental results of [8]

Test problem Solver Nodes Cores Time (sec.) Iter/sec.

Solves from scratch using dual simplex

Storm Clp 1 1 133,047 50.4

PIPS-S 1 1 385,825 16.5

1 8 52,948 119.8

4 32 15,667 405.2

SSN Clp 1 1 12,619 93.1

PIPS-S 1 1 58,425 17.5

1 8 7,788 135.5

4 32 1,931 542.1

Solves from advanced starting basis using primal simplex

Storm Clp 1 1 7,537 2.2

PIPS-S 1 1 7,184 1.3

2 16 137 47.6

16 128 35.5 216.6

32 256 25.2 260.4

SSN Clp 1 1 50,737 2.0

PIPS-S 1 1 427,648 0.8

2 16 9,550 22.9

16 128 1,481 143.3

32 256 1,117 180.0

capability of PIPS-S to solve instances considered far too large to solve today
with commercial solvers.

6 Revisiting the Parallelization of Standard Full Tableau
Simplex Method

The fact that a parallel simplex solver based on the standard (full tableau) rep-
resentation may be practical only for dense LP problems and may not easily be
competitive to the fast serial revised simplex solvers of nowadays unless it uses
expensive parallel computing resources, has naturally led to less corresponding
efforts in the literature during the last years. However, any new intuitive corre-
sponding study and relevant implementation would still be worthwhile as far as it
achieves either particularly high speedups in absolute values (which also usually
means competitive solution times to the ones of the serial solvers) or particularly
high efficiency values combined with correspondingly high scalability. The latter
has the potential to lead to even higher speedups and competitive solution times
when executing to architectures with larger number of processors/cores.
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One of the most recent and worth mentioning relevant attempts combining
sufficient theoretical study and results with a relevant particularly efficient par-
allel implementation of the standard simplex method, was the one presented by
Yarmish et al. [3]. The corresponding implementation has led to very satisfactory
speedup values, whereas it has also been compared to MINOS (a well-known ser-
ial revised simplex solver), and it has been shown to be highly competitive, even
for very low density problems. Moreover, together with the work of Badr et al. [4],
they are the most recent works that put on the table the significant influence of
the number of columns and rows of an LP problem when a distributed memory
architecture is used. Being inspired by the motivation and the results of the above
two research attempts, as well as by the means of the current technology (either
in terms of high-speed network connections or in terms of powerful hybrid hard-
ware architectures and corresponding hybrid software solutions), in [16–18] the
authors present two very promising relevant approaches with regard to simplex
parallelization in its standard (full tableau) form.

First, in [16,17] the authors present a highly scalable parallel implementation
framework designed for distributed memory (message passing) environments.
Two basic data distribution schemes have been implemented, a column-based
one and a row-based distribution scheme, in order to measure the influence
of each distribution method over LP problems with different aspect ratio and
compare their performance with other works in the literature. They have exper-
imentally evaluated their implementations over a considerably powerful parallel
environment; a linux-cluster of 8 (16 threads) Xeon processors connected via a
dedicated (low latency) Myrinet network interface. They have tested and com-
pared the two implementation schemes among each other, as well as to the
corresponding implementations of [3,4] referred above. Both schemes lead to
particularly high speed-up and efficiency values for typical test LPs, that are
considerably better in all cases than the ones achieved by the corresponding
implementations of [3,4].

Next, in [18] the authors focus on the modern hybrid hardware architec-
tures (distributed memory/cluster environments with multicore nodes) of nowa-
days, and they involve several different software alternatives on the paralleliza-
tion of the standard simplex method with the column-based data distribution
scheme. Specifically, they present relevant implementations combining pure MPI,
OpenMP and MPI 3.0 Shared Memory support. They compare their approaches
among each other for variable number of nodes/cores and problem size, as well
as to the approach presented in [3]. The experiments have been performed over
a hybrid parallel environment which consists of up to 4 quad-core processors
(making a total of 16 cores) connected via Gigabit ethernet interface. All the
evaluated parallelization schemes have led to particularly high speed-up and effi-
ciency values, whereas the corresponding values for the hybrid MPI+OpenMP
based scheme (which is proved to be the most efficient) are considerably better
in all cases than the ones achieved in the work of [3].
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6.1 Design and Implementation (Key Issues)

As mentioned above the most efficient implementations presented in [16–18]
have followed the column-based distribution for spreading the initial tableau
to all the processors. This is a relatively straightforward parallelization scheme
within the standard simplex method which involves dividing up the columns of
the simplex table among all the processors and it is theoretically regarded as the
most effective one in the general case. Following this scheme all the computation
parts except step 2 of the basic (sequential) algorithm (presented in Sect. 2),
are fully parallelized. Additionally, this form of parallelization looks as the most
natural choice since in most practical problems the number of columns is larger
than the number of rows. The basic steps of the algorithm are given below:

Step 0: The simplex table is shared among the processors by columns. Also,
the right-hand constraints vector is broadcasted to all processors.

Step 1: Each processor searches in its local part and chooses the locally best
candidate column the one with the larger negative coefficient in the objective
function part (local contribution for the global determination of the entering
variable).

Step 2: The local results are gathered in parallel and the winning processor i.e.,
the one with the larger negative coefficient among all, is found and globally
known. At the end of this step each processor will know which processor is
the winner and has the global column choice.

Step 3: The processor with the winning column (entering variable) computes
the leaving variable (winning row) using the minimum ratio test over all the
winning columns elements.

Step 4: The same (winning) processor then broadcasts the winning column as
well as the winning rows id to all processors.

Step 5: Each processor performs (in parallel) on its own part (columns) of the
table all the calculations required for the global rows pivoting, based on the
pivot data received during step 4.

Step 6: The above steps are repeated until the best solution is found or the
problem gets unbounded.

A relevant, row-based, distribution scheme has also been implemented and stud-
ied in comparison to the one stated above (see [17] for more details). Based on
the above step by step decomposition three different parallelization schemes were
designed and implemented as follows:

a. Pure MPI implementation.
The well-known MPI collective communication functions MPI Scatter,
MPI Bcast and MPI Reduce/Allreduce (with or without MAXLOC/MINLOC
operators) were appropriately used for the efficient implementation of the data
communication required by steps 0, 2 and 4 of the parallel algorithm.

b. Hybrid MPI+OpenMP implementation.
Appropriately built parallel for constructs were used for the efficient thread-
based parallelization of the loops implied by steps 1, 3 and 5. Especially with
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regard to the parallelization of steps 1 (in cooperation with step 2) and 3, in
order to optimize the parallel implementation of the corresponding procedures,
the newly added min/max reduction operators of OpenMP API specification for
C/C++ were used. Also, with regard to the parallelization of step 5, in order
to achieve even distribution of computations to the working threads, collapse-
based nested parallelism is used in combination with dynamic scheduling pol-
icy. Beyond the OpenMP-based parallelization inside each node, the well-known
MPI collective communication functions were also used for the communication
between the network connected nodes as in pure MPI implementation.

c. Hybrid MPI+MPI Shared Memory implementation.
The corresponding shared memory support functions of MPI 3.0 (mainly: MPI
Comm split type, MPI Win allocate shared and MPI Win shared query) as well
as the syncronization primitives MPI Win fence, MPI Win lock/unlock and
MPI Accumulate were used for the efficient implementation of all the data com-
munication (the initial and intermediate data sharing as well as the computation
of minimum/maximum values) required by steps 0, 2, 3 and 4 of the parallel
algorithm over the multiple cores of each node. The well-known MPI collective
communication functions were used for the communication between the network
connected nodes as in pure MPI implementation.

6.2 Experimental Results

First, in order to compare their approach to the one of Yarmish et al. [3] (which
is also based on the column-based distribution scheme) the authors have run on
their Myrinet-connected linux-cluster platform their basic implementation over
the large size (1000x5000) linear problem presented there [3], with the same char-
acteristics, and they have measured the execution time per iteration for 1, 2 up
to 8 processors. This problem is a large-scale problem with many more columns
than rows, so it is expected to have good speedup with the use of the column
distribution scheme. Note also that the parallel platform used in the experiments
of [3] consisted of 7 dedicated processors (the exact configuration is not men-
tioned) connected via Fast Ethernet network interface. The corresponding results
(in terms of speedup and efficiency measures based on the execution time per
iteration) for varying number of processors are presented in Table 5. Observing
the results of Table 5, firstly it can easily be noticed that the execution times (in
one or more processors) of the algorithm in [17] are much better than the ones
of [3], which however was expected due to the fact that the test platform is quite
more powerful than the platform of [3]. The most important, the achieved speed-
up values are also better than the ones achieved in [3]. Furthermore, observing
the corresponding efficiency values in the last column someone can easily notice
the high scalability (higher and smoother than in [3]) achieved. Note also that
the achieved speedup remains very high (close to the maximum/speedup = 7.92,
efficiency = 99.0 %) even for 8 processors.

Additionally, in other experimental measurements in the same platform (as
presented in [17]), the authors compare the performance of their two different
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Table 5. Comparing to the implementation of [3]

P Yarmish et al. [3] Mamalis et al. [17]

#proc Time/iter Sp = T1/TP Ep = Sp/P (%) Time/iter Sp = T1/TP Ep = Sp/P (%)

1 0.61328 1.00 100.0 0.27344 1.00 100.0

2 0.31150 1.97 98.4 0.13713 1.99 99.7

3 0.21724 2.82 94.1 0.09225 2.96 98.8

4 0.15496 3.96 98.9 0.06877 3.98 99.5

5 0.13114 4.68 93.5 0.05592 4.89 97.8

6 0.10658 5.75 95.9 0.04636 5.90 98.3

7 0.09128 6.72 96.0 0.03958 6.91 98.7

8 0.03453 7.92 99.0

data distribution schemes (column-based vs. row-based) among each other (with
the use of a suitable subset of NETLIB test linear problems of varying sizes),
concluding to two basic remarks: (a) the column-based distribution scheme is
clearly superior in most cases, however (b) there are several cases that one should
choose the row-based distribution scheme instead mainly for small sized problems
with almost equal number of rows and columns or greater number of rows. The
high scalability of the column-based distribution scheme over sixteen processors
(threads) is also demonstrated in relevant experiments for very large-scale prob-
lems. Furthermore, the authors notice that the influence of having more columns
than rows in favor of the column distribution scheme is greater than the influ-
ence of having more rows than columns in favor of the row distribution scheme;
which means that the communication overhead caused by the parallelization of
the row distribution scheme is more significant in the general case than the one
caused by the parallelization of the column distribution scheme.

Similarly, the authors in [17] have also run corresponding exeperiments on
their hybrid hardware platform (4x4 quad-core processors connected with Giga-
bit Ethernet), in order to compare the performance of their two different hybrid
parallelization schemes among each other (MPI+OpenMP vs. MPI+MPI 3.0
Shared Memory support), with use of another suitable subset of the NETLIB
test linear problems of varying sizes. The corresponding results (speedup and
efficiency values for 8 and 16 processors/cores - two quad-core processors and
four quad-core processors, respectively) are presented in Table 6, and they can
be summarized as follows:

– The achieved speed-up and efficiency values of the hybrid MPI+OpenMP
implementation are better than the ones of the hybrid MPI+MPI 3.0 Shared
Memory implementation, in all cases.

– However the achieved values for the MPI+MPI 3.0 Shared Memory imple-
mentation are also particularly high and competitive (up to 90% efficiency for
medium-sized problems on eight cores).

– More concretely, for linear problems of small size the corresponding measure-
ments are almost the same (slightly better for the MPI+OpenMP approach),
whereas for problems of larger size the difference is quite clear.
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Overall, one can say that the shared window allocation mechanism of MPI
3.0 offers a very good alternative (with almost equivalent results to the
MPI+OpenMP approach) for shared memory parallelization when the shared
data are of relatively small/medium scale, however it cannot scale up the same
well (for large windows and large number of cores) due to internal protocol lim-
itations and management costs, especially in applications where some kind of
synchronization is required. Finally, in order to further validate the high effi-
ciency and scalability of the hybrid MPI+OpenMP parallelization scheme, in
more representative (closer to the real word) cases, the authors have also per-
formed corresponding experiments for large and very large NETLIB problems.
The corresponding measuremnets are shown for 2 up to 16 processors/cores in
Table 7. One can easily observe the following:

– The efficiency values decrease with the increase of the number of processors.
However, this decrease is quite slow, and both the speedup and efficiency
values remain high (≥80%) even for 16 cores, in all cases.

– Particularly high efficiency values (almost linear speedup) are achieved for
all the high aspect ratio problems (e.g. see the values for problems FIT2P,
80BAU3B and QAP15 where the efficiency even for 16 processors/cores is
over 90% - a particularly high value for realistic problems).

7 GPU-Based Simplex Parallelization Efforts

The computational power provided by the massive parallelism of modern graph-
ics processing units (GPUs) has moved increasingly into focus over the past few
years. However, in the area of simplex parallelization for several reasons (similar
to the ones discussed for the conventional CPU-only parallelization) there have

Table 6. Comparing the two hybrid schemes

Linear Problems MPI+OpenMP MPI+MPI 3.0 SM

2 × 4 cores 4 × 4 cores 2 × 4 cores 4 × 4 cores

Sp Ep (%) Sp Ep (%) Sp Ep (%) Sp Ep (%)

SC50A (50 × 48) 4.89 61.1 6.50 40.6 4.85 60.6 6.40 40.0

SHARE2B (96 × 79) 5.59 69.8 8.24 51.5 5.49 68.6 8.00 50.0

SC105 (105 × 103) 5.81 72.6 8.78 54.9 5.69 71.1 8.50 53.1

BRANDY (220 × 249) 7.00 87.5 12.17 76.1 6.60 82.5 10.63 66.5

AGG (488 × 163) 6.76 84.5 12.11 75.7 6.38 79.8 11.27 70.4

AGG2 (516 × 302) 7.00 87.5 12.89 80.5 6.58 82.3 11.99 74.9

BANDM (305 × 472) 7.42 92.8 13.61 85.0 6.82 85.3 12.03 75.2

SCFXM3 (990 × 1371) 7.60 95.0 14.38 89.9 7.16 89.5 13.05 81.5
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Table 7. Speed-up & efficiency for large problems

Linear Problems 2× 1 cores 2× 2 cores 2× 4 cores 4× 4 cores

Sp Ep (%) Sp Ep (%) Sp Ep (%) Sp Ep (%)

FIT2P (3000× 13525) 1.977 98.9 3.94 98.5 7.80 97.5 15.24 95.3

80BAU3B (2263× 9799) 1.969 98.5 3.91 97.8 7.72 96.5 14.92 93.3

QAP15 (6330× 22275) 1.963 98.2 3.89 97.3 7.62 95.3 14.47 90.5

MAROS-R7 (3136× 9408) 1.957 97.9 3.87 96.8 7.54 94.3 14.12 88.3

QAP12 (3192× 8856) 1.953 97.7 3.86 96.5 7.50 93.8 13.97 87.3

DFL001 (6071× 12230) 1.945 97.3 3.85 96.3 7.50 93.8 14.04 87.8

GREENBEA (2392× 5405) 1.949 97.5 3.84 96.0 7.40 92.5 13.59 84.9

STOCFOR3 (16675× 15695) 1.925 96.3 3.79 94.8 7.23 90.4 12.80 80.0

not been noticed as many relevant attempts as one would expect. As a conse-
quence, no parallel GPU-based implementation of the simplex algorithm has yet
offered significantly better performance relative to an efficient sequential simplex
solver; at least not in all types of LPs (sparse or dense, randomly generated or
benchmark etc.). Certainly, some quite significant progress (and corresponding
comparative results, satisfactory speedup values etc.) has been achieved at least
for dense LP problems.

The quite strict model of parallelization, the limited development tools,
and the limited processing element/core speed are some of the basic disadvan-
tages comparing to the conventional model. The relatively slow memory transfer
between CPU and GPU is also a significant drawback when a fully combined
processing model is to be adopted. So, although the modern GPUs offer thou-
sands of processing cores, the revised simplex method remains difficult to be
efficiently parallelized and give satisfactory/competitive results compared to the
existing serial solvers, whereas a GPU-based parallel version of the standard
simplex method remains to be practical only for dense problems and with mul-
tiple computing resources (i.e. multiple GPUs). Furthermore, no corresponding
GPU-accelerated implementation has been reported on a supercomputer. In the
above context, we present the most recent and worth telling corresponding works
in the next paragraphs.

Spampinato and Elster have proposed in [34] a parallel implementation of the
revised Simplex method for LP on GPU with NVIDIA CUBLAS and NVIDIA
LAPACK libraries. Tests were carried out on randomly generated LP problems
of at most 2000 variables and 2000 constraints. The implementation showed a
maximum speedup of 2.5 on a NVIDIA GTX 280 GPU as compared with sequen-
tial implementation on CPU with Intel Core2 Quad 2.83 GHz. Bieling, Peschlow
and Martini have proposed in [35] another implementation of the revised Sim-
plex method on GPU. This implementation permits one to speed up solution
with a maximum factor of 18 in single precision on a NVIDIA GeForce 9600 GT
GPU card as compared with GLPK solver run on Intel Core 2 Duo 3 GHz CPU.
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Lalami et al. [36] have presented a parallel implementation via CUDA of
the standard Simplex algorithm on CPU-GPU systems for dense LP problems.
Experiments carried out on a CPU with 3 GHz Xeon Quadro INTEL processor
and a GTX 260 GPU card have shown substantial speedup of 12.5 in double pre-
cision. Double precision implementation is used in order to improve the quality
of solutions. The authors have also extended their work on a multi-GPU imple-
mentation [37] and their computational results on randomly generated dense
problems showed a maximum speedup of 24.5. The experiments were performed
with use of two Tesla C2050 boards.

Meyer et al. [38] proposed a mono- and a multi-GPU implementation of the
tableau simplex algorithm and compared their implementation with the serial
Clp solver. Their implementation outperformed Clp solver on large sparse LPs.
Both these papers [37,38] that extend their approach to multiple GPUs, have
dealt with a complete implementation of the simplex algorithm on the GPUs
including the pivoting and the selection of the entering and leaving variables in
order to avoid extra communication between the CPU and the GPUs. In multi-
GPU computing several decomposition schemes can be adopted. An horizon-
tal decomposition distributes the constraints on the different GPUs. A vertical
decomposition distributes the variables of the LP problem on the GPUs. Finally,
one may consider also tiles. The choice of a decomposition scheme has important
consequences on the resulting communication pattern and multi-GPU efficacy.
A decomposition based on tiles may appear scalable; it nevertheless necessitates
many communications between GPUs. In [38], the authors have adopted a ver-
tical decomposition in order to have less communication between GPUs. An
horizontal decomposition has been adopted in [37].

Finally, Ploskas and Samaras [39] propose two efficient GPU-based imple-
mentations of the revised simplex algorithm and a primal-dual exterior point
simplex algorithm. Both parallel algorithms have been implemented in MAT-
LAB using MATLABs Parallel Computing Toolbox. Computational results on
randomly generated sparse and dense linear programming problems and on a
set of benchmark problems (netlib, kennington, meszaros) are also presented.
The results show that the primal-dual exterior point simplex implementation
achieves a quite satisfactory speedup (2.3 on average) over MATLABs interior
point method for the set of benchmark LPs and much greater speedups for the
randomly generated LPs. However, the corresponding results (and the speedups
obtained) for the revised simplex implementation, although quite good for ran-
domly generated dense LPs, they were significantly inferior in the general case
to the ones referred above for the exterior point method.

As it can be seen, although the general feeling is that the overall research work
in GPU-based simplex parallelization has not yet led to significant achievements
in the general case (especially for sparse problems in comparison with serial
solvers), worth telling improvements have been noticed in the case of dense LP
problems. Also as GPUs are rapidly evolving, we can certainly expect for such
implementations a great improvement of performances in the near future.
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8 Conclusion

A number of valuable recent works in the parallelization of the simplex method
are presented throughout this paper. A detailed overview is also given, includ-
ing the recent advances in GPU-based simplex parallelization efforts. Naturally,
most of the parallelization attempts made the last years refer to the revised
simplex method, however a parallel implementation based on the standard sim-
plex method could also be practical for dense problems if powerful/expensive
computing resources are used. The difficulty of implementing a parallel sim-
plex solver that could be significantly faster than (or at least highly competitive
to) the existing commercial serial solvers in all cases remains an issue. Indeed
the most impressive recent work in the literature refers to the utilization of the
revised simplex method for solving large-scale stochastic LP problems, achieving
speed-up values more than 100 over the Clp serial simplex solver when imple-
mented on a supercomputer. The efficient parallelization of the dual revised
method exploiting the scope of parallelization offered by the technique of sub-
optimization, should also be considered a significant contribution. Moreover, all
the corresponding results (either the older ones or the most recent ones) defi-
nitely outline the fact that there isn’t an appropriate parallel solver for all kinds
of LPs. As a consequence, a valuable piece of future research should probably
be the design of some kind of metasolver, that given an LP would automatically
propose/select the most efficient parallel solver.
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