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Abstract. Processing big volumes of data generated on-line, implies
needs to carry out computations on-the-fly, in the streams of data. In
parallel data-stream computing, the underlying data objects can provide
the means for exchanging the data so that the communication and the
work imbalance between the concurrent threads performing the com-
putation are reduced, while the pipeline parallelism is enhanced. By
shedding light on the concurrent data objects and their role as artic-
ulation points in data-stream processing, we place some cornerstones
to analyze the problems, propose appropriate new data structures suit-
able for a set of functions and identify new key challenges to improve
data-stream processing through co-design with fine-grain efficient syn-
chronization combined with the data exchange.

It is interesting to point out that research in distributed computing
on multiprocessor efficient and consistent data sharing through fine-grain
synchronization emerged from questions in concurrent database-related
research; approximately three decades since then, it is interesting to see
several returns of the fruits of this expedition, helping with the new
problems in the massive-data research domain, with applications in e.g.
cyberphysical systems.

Keywords: Concurrent data structures · Data-streaming · Stream
processing engines · In-memory data analysis

1 Introduction

Concurrent data objects are commonly described as implementations of Abstract
Data Types (ADTs) shared by concurrent execution threads or processes. ADTs
form abstractions of high re-usability across different applications and provide
structured access to the data through their interface. The goals of the algorithmic
implementation are about correctness and minimal complexity overhead of data-
access, modification and retrieval.

One of the challenges in parallel and concurrent programs and applications,
that also applies to their data objects, stems from the communication overhead,
which needs to be minimized, too — besides the computational complexity—, so
as to ensure that the underlying system’s parallelism is properly utilized. Conse-
quently, concurrent data structures need to integrate communication patterns,
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besides access patterns, that will serve the needs of the application domain that
they will be used in.

In the journey from traditional methods for implementing shared objects
through mutual exclusion to lock-free or wait-free algorithmic implementa-
tions, motivation and boost came from research communities focusing on the
analysis and exploration of data. Nearly concurrently with the very important
foundational steps in formalization of concurrency requirements in database-
transactions [44,45,52], there came ideas of allowing concurrency in shared data
object algorithmic implementations; e.g. first through proposing to safely allow
read-only operations to execute concurrently with each-other in [14], later on
with the seminal step by Lamport in [33], providing algorithms that allow concur-
rent reading and writing without assuming process synchrony or mutual exclu-
sion, while also guaranteeing safety properties of the values obtained.

The above are all the more important in the new era of cyberphysical systems,
with needs for computationally- and energy-efficient systems to analyse the big
streams of data and extract useful information [18–20]. While the leveraging of
concurrent algorithmic implementation of shared data objects might have been
limited by the earlier times nature of analysis needs by applications —based on
stored-data, rather than in-memory data— we now are in an era where data
is generated in massive rates —e.g. by cyberphysical systems— and where in-
memory analysis is needed to cope with such rates. Leveraging the concurrent
data objects that best fit the needs of an application in a concurrent environment
is a key issue, as highlighted by Michael in the “Balancing act of choosing non-
blocking features” [40]. Moreover, quoting from [3], “Not having to read from the
disk and write computation results back saves hours to days of scientific work,
giving scientists more time to investigate the data”. To process data in such a
fashion, data-streaming is one of the new computation methodologies that have
been proposed [2,5,8,9,21,25]. In data streaming, continuous queries, defined
as Directed Acyclic Graphs (DAGs) of interconnected operators, are executed
by Stream Processing Engines (SPEs) that process incoming data and produce
results in a continuous fashion, without the necessity of storing the data. As
highlighted in [16], parallelism is a necessity due to the low-latency and high-
throughput requirements of such continuous real-time complex processing of
increasingly large data volumes.

What are the shared objects that meet the needs of concurrent data stream-
ing applications is an important issue that has only recently been brought for
addressing in the literature [13]. By shedding light on the data structures, these
recent findings place essential cornerstones in this study avenue and identify new
key challenges to improve data streaming. In other words, what we observe is
that in the journey where big data and concurrent data transactions meet con-
current data objects, there is a new crossing: data and computation meet in new
forms and with new needs. In-memory, close-to-source analysis of data can pro-
vide useful information and services in cyberphysical systems. Data-streaming is
significant in this context [20]. Concurrent data objects are a means to enhance
the data streaming parallelism as needed, while new data objects and interfaces
are required to be defined to meet the needs of data streaming.



244 V. Gulisano et al.

Outline of the Paper. In the rest of this paper we outline the key points
in the aforementioned findings, emphasizing the role of concurrent data objects
serving as articulation points in data streaming and stream processing engines
in particular. We highlight new challenges and the benefits that can be brought
by the co-design of data stream processing and concurrent object co-design.

Section 2 provides a short overview of the evolution of concurrency in shared
objects algorithmic implementations. Section 3 provides an introduction to data
streaming and the requirements in synchronization and determinism in data
processing. Subsequently, Sects. 4 and 5 elaborate on architectural aspects of
Stream Processing Engines and the challenges in parallelization, in connection
to the way that concurrent threads process and exchange data, in order to meet
the above requirements. Section 6 introduces a new abstract data type, whose
concurrent lock-free and linearizable implementation can allow threads to work
efficiently in an asynchronous fashion and meet the requirements for synchroniza-
tion and determinism in data stream processing. Section 7 provides an example
evaluation of possible throughput and latency improvements in data streaming,
by the use of the new shared object and its concurrent algorithmic implemen-
tation. Section 8 concludes with a discussion, pointing out also directions for
further research.

2 Concurrent object Algorithmic Implementations -
Preliminaries

As discussed in Sect. 1, shared objects have been traditionally implemented
through mutual exclusion. The first steps in introducing true concurrency in
shared object implementations [14,33] can be characterized as ideas and results
that opened a big avenue in research. Setting the foundations for arguing about
concurrency in shared object implementations that allowed concurrent access
became an important next goal. In this context, we can find Lamport’s definitions
[34] of shared object implementations with progress guarantees (wait-freeness)
and safety properties (safeness, regularity, atomicity) of such, describing the
data consistency. The latter were proposed to formulate requirements for the
object constructions and assumptions of the underlying system description. It
was argued that they can e.g. describe consistency guarantees of asynchronous
hardware. Related here is also the work by Misra [42], formulating axioms for
memory access in asynchronous hardware systems, and by Lynch and Tuttle [38]
setting foundations for hierarchical correctness proofs for distributed algorithms
through automata and executions on them. Another significant step has been
the formulation of linearizabilty as correctness condition for concurrent objects,
by Herlihy and Wing [31].

For ease of reference, we paraphrase here the definitions of some of the key
terms, that are also used later in the paper. A wait-free object implementa-
tion ensures that any operation on the object can complete in bounded number
of steps, independently of other contending processes. A relaxed condition is
lock-freedom: a lock-free object implementation ensures that at least one of the
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contending operations makes progress in a finite number of its own steps. These
properties are often referred to in the literature as non-blocking. An implemen-
tation of an object is linearizable if each operation execution appears to take
effect at some point (linearization point) between its invocation and response;
thus, given an execution of concurrent operations and by using the lineariza-
tion points, it should be able to define a total order of the operations, which is
consistent with their real-time ordering and their effects are consistent with the
sequential semantics of the data structure.

Following the foundations, there was a “movement” in the scientific commu-
nity, providing challenging algorithmic implementations of shared data objects
allowing concurrency and guaranteeing a variety of safety properties (lineariz-
ability or weaker forms) and progress properties (e.g. wait-freeness, lock-freeness,
obstruction-freeness); we refer the reader to [6,11,29,37] and references therein,
for overview and more detailed presentations of key results.

In parallel, the hardware point of view is also worthwhile to comment on.
At the first stages, the concept of asynchronous parallel hardware was mainly
studied from a theoretical point of view, with the exception of some elegant
efforts such as the work by the group of Ebergen [15,46]. Similar has been the
perspective of massive parallelism, until the relatively recent era of multicore and
manycore systems in hardware. The latter triggered a new “movement”, that
brought changes including the consideration of new abstractions, most notably
the one of transactional memory [28,47] as well as the deeper consideration of
asynchronous hardware [26]. This evolution makes the need for asynchronous
concurrent implementations of shared objects even more significant.

3 Data Streaming - Preliminaries

In this section, we introduce basic concepts of the data streaming processing
paradigm. We also illustrate them through a sample data streaming continuous
query that analyzes traffic gathered from the SoundCloud [48] social network.
Besides, we overview the evolution of Stream Processing Engines (SPEs) from
centralized to parallel-distributed ones, also introducing the definition of deter-
ministic processing (also referred to as semantic transparency [22]).

Data Streaming Model. A data stream S is an unbounded sequence of tuples
sharing a given schema composed by attributes 〈ts, A1, A2, . . . , An〉. We refer to
attribute Ai of tuple t as t.Ai. Attribute t.ts represents the time when the tuple
is created. As common in the literature [12], we assume that tuples generated
by a given data source and delivered through the same data stream have non-
decreasing ts values. We also suppose data sources have clocks that are well-
synchronized using a clock synchronization protocol like NTP [41].

Table 1 presents a sample schema, composed of four attributes, for tuples car-
rying comments (exchanged by users in relation to songs) from the SoundCloud
platform.

It should be noted that tuples belonging to the same logical data stream,
sharing the same schema and carrying similar information (e.g., comments about
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Table 1. Sample tuple schema.

Attribute Content

ts The creation timestamp of the tuple

user The user commenting a song

song The song to which the comment refers to

comment The comment itself

songs, as in Table 1), might be delivered by multiple distinct physical streams
(e.g., generated by crawlers running at different physical nodes). As we explain in
the following, such distinction plays an important role if tuples must be processed
deterministically. In the remainder, we refer to logical streams simply as streams,
specifying explicitly when physical streams are in focus.

In the data streaming model, input tuples coming from one or multiple input
streams are consumed by Continuous Queries (or simply queries in the follow-
ing), which subsequently produce one or more output streams. A query, defined
as a directed acyclic graph (DAG) with additional input and output edges, pro-
duces results “continuously” while consuming input tuples. Vertexes represent
operators that consume tuples (from at least one input stream) and produce out-
put tuples (for at least one output stream). Edges define how input and output
tuples flow among the operators of a query.

Data Streaming Operators. Data streaming operators, the base unit used to
process and produce tuples, are classified depending on whether they maintain
a state that evolves accordingly with the input tuples being processed. State-
less operators such as Map, Filter and Union do not maintain such a state and
perform a one-by-one processing of input tuples. On the other hand, stateful
operators such as Aggregate and Join maintain a state and process multiple
input tuples in order to produce one output tuple. Due to the unbounded nature
of data streams, stateful computations are usually performed over sliding win-
dows covering portions of the input tuples. Time based windows are defined over
period of times (e.g., tuples received in the last 10 min) while tuple based win-
dows are defined over the number of stored tuples (e.g., last 50 received tuples).

Continuous Query Example. Let us take a look at a sample continuous query
that consumes the tuples sharing the schema presented in Table 1 to count the
number of positive comments (i.e., comments containing certain predefined key-
words) exchanged by users in relation to each song. As presented in Fig. 11, the
query is composed by three operators.

An initial Map operator transforms each comment (attribute comment into
a stream of words typed by users in relation to songs. Its resulting output stream
schema is composed by attributes 〈ts, song, word〉. Subsequently, a Filter oper-
ator is used to forward only the words that belong to a given subset of positive
1 Tuples shown in this example are not extracted from SoundCloud, but handcrafted

for the specific example.
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Fig. 1. Sample query that consumes tuples sharing the schema in Table 1 and counts
the number of positive comments exchanged by users in relation to each song.

words (e.g., nice, great or fantastic). The output tuples produced by this opera-
tor share the same schema of its input tuples. Finally, an Aggregate operator is
used to count, for each song, how many positive words are received over a sliding
window of 10 min and to produce a new result every 2 min.

3.1 Parallel Data Streaming and Deterministic Processing

As emphasized in [16], real-time continuous processing of large volumes of data
demand for low-latency and high throughput processing. During the last decade,
such increasing demand drove the evolution of SPEs from centralized [2,5,9] to
distributed [1] and to parallel-distributed ones [17,22,23]. As shown in Fig. 2
(in relation to the sample query of Fig. 1), queries are entirely deployed and
run by exactly one SPE instance when the latter is centralized. By providing
inter-operator parallelism, distributed SPEs allow for the execution of different
operators belonging to the same query at different SPE instances. Finally, by
providing intra-operator parallelism, parallel-distributed SPEs also allow for a
single operator to be executed at multiple SPE instances. For simplicity, the
figure shows distinct SPE instances running at distinct physical machines. Nev-
ertheless, multiple SPE instances can be deployed within the same physical node
(e.g., to leverage multi-core architectures).
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Distributed SPE

Centralized SPE

Parallel-Distributed SPE

Map Filter Aggregate

Map Filter Aggregate

Map Filter Aggregate

Fig. 2. Evolution of Stream Processing Engines from centralized to distributed and to
parallel-distributed ones.

The parallel execution of data streaming operators (and thus of the queries
they compose) is the only means for a single operator to avoid to get overloaded
because of its volume of input data; the latter would of course be unwanted as it
would degrade the performance of the entire data streaming query. Challenging
aspects in the design and implementation of parallel data streaming operators
do not only aim at improving their performance, but also aim at preserving their
semantic.

Definition 1. [22,23] The property of semantic transparency or deterministim
in parallel stream processing guarantees that, by consuming the tuples delivered
by a given set of physical input streams, a parallel operator produces exactly the
same output that would be produced by its centralized counterpart.

As explained in [13], a condition to enforce deterministic processing for the
operators of a query is to process tuples delivered by distinct physical streams
in timestamp-order (that is, to process them deterministically independently of
their inter-arrival times). In the context of parallel-distributed SPEs, the distinct
physical input streams of an operator do not only refer to the physical streams
generated by distinct sources, but also to the distinct physical streams gener-
ated by the multiple instances of a parallel operator. In the example in Fig. 1,
distinct physical streams could be delivered to the Map operator by distinct
sources, while distinct physical streams could be delivered to the aggregate from
the multiple SPE instances running the Filter operator in parallel. In [12], the
authors introduce the concept of ready tuple as follows:
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Definition 2. Let tji be the i-th tuple in timestamp-sorted physical stream j.
Tuple tji is ready to be processed if tji .ts ≤ mergets, where mergets is the min-
imum among the latest timestamps from each timestamp-sorted physical stream
j, i.e. mergets = minj{maxi(t

j
i .ts)}

Based on this definition, deterministic processing is enforced if operators con-
sume timestamp-sorted ready tuples from their physical input streams.

It should be noticed that the way in which input tuples are distinguished
between the ones that are ready and the ones that are not is not orthogonal to
the data structures used to maintain such tuples. Näıve solutions that rely on
data structures oblivious to the concept of ready tuples bound the parallelism
and concurrency degree of the analysis, usually incur in high processing costs
and introduce processing bottlenecks. On the other hand, streaming-aware data
structures enable for finer-grained and scalable cooperation among the different
threads operating on them, as we will explain in Sect. 5.

4 Inter-thread Communication in SPEs Architecture

In this section, we present the common architecture of a SPE, focusing especially
on the data structures defined for each SPE instance to maintain the tuples being
consumed and produced in a deterministic fashion and the threads operating
on them. For the clarity of the discussion, we illustrate the architecture of a
SPE considering a single query consuming one input stream and producing one
output stream, and do not overview the data structures internal to the query’s
operators (maintaining partial computations and windows). While overviewing
the architecture, we also discuss its limitations motivating the discussion that
follows, in Sect. 5.

Common SPE Architecture. The common architecture of a SPE (presented
in Fig. 3) usually defines three main modules, which we refer to as Min, Mproc

and Mout[1,2,22,36]2. Module Min maintains the queues in which tuples from a
given set of physical input streams I1, . . . , In are collected from the network. The
collection of such tuples is usually performed by a dedicated thread, which we
refer to as Tin, running the add method. Tuples from each physical input stream
can be maintained at individual queues [22,23] or concurrent data structures
such as the LMAX Disruptor [50] (as for the Storm [36] SPE).

Tuples stored at Min are subsequently copied to Mproc and consumed by the
different data streaming operators composing the query run by the SPE. More
concretely, a dedicated thread Tproc:

1. copies the tuples from each physical input stream (method copy),

2 Complementary modules, not in the scope of this discussion, might be defined for
features such as fault tolerance, scheduling, balancing or self-provisioning and self-
decommissioning.
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2. merges the timestamp-sorted physical streams into a single timestamp-sorted
logical stream of tuples in order for the query to process tuples deterministi-
cally (method merge),

3. processes them (method process) and, finally,
4. stores the resulting output tuples in a dedicated queue (method store).

Each time an output tuple is produced, a dedicated thread Tout copies it to
the queue maintained at the Mout module (method copy) and, finally, forwards
it to other SPE instances or to the external user applications (method forward)3.

Query

In1

...

InN

...

Min

...

Mproc Mout

Out

add copy merge
process

store output copy forward

Tin Tproc Tout

Query

Physical data stream

Continuous query

Sorted queue of tuples from 
one physical data stream

LEGEND

Basic Architecture

Fig. 3. Basic architecture of a SPE, presenting the different modules and threads oper-
ating on them.

Enforcing Deterministic Processing. As presented in Fig. 3, the execution
of the method process is preceded by the execution of the method merge for
thread Tproc. The merging of the physical streams referring to the same logical
stream of tuples fed to the query is performed in order to enforce deterministic
process (as discussed in Sect. 3.1). The merging of the physical input streams can
happen in different ways. On one hand, each new tuple from a physical stream
Ii can be compared with the ones previously received from any physical stream
Ij |j �= i in order to identify the ready tuples and process them. Such aggressive
merging, performed by operators such as the Transparent Input Merger [22]
or the SUnion operator [7], results in low processing latency, as each tuple is
processed as soon as it becomes ready. On the other hand, the tuples from the
different physical streams can also be sorted periodically, by using punctuation
tuples [49] or by performing the sorting each time a given time period expires.
3 Depending on how the data structures in modules Min, Mproc and Mout are defined,

locking mechanism can be in place, as in [23].
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With respect to the output tuples produced by the query running at the SPE,
the method forward is executed by exactly one thread in order for the output
tuples to be delivered in timestamp order to the following SPE instance or to
the end user application.

Shortcomings. The architecture outlined above results in several shortcomings,
as we explain in the following.

First, by keeping dedicated threads for the different stages, it is prone to
unbalanced work (and thus does not leverage at their full potential the available
threads). As it can be observed, threads Tin and Tout perform a reduced set of
methods (add , copy and forward) with respect to thread Tout. Moreover, such
operations are light when compared with computational intensive operations
such as merge and process (the latter depending on the number of operators
composing the query run by the SPE).

Secondly, copy operations are performed by both the Tin and Tout threads
in order to retrieve the tuples from their preceding modules. As discussed in [4],
the copies required to maintain tuples at different queues incur in a significant
cost, which in turns affects the performance of the SPE.

Finally, independently of whether tuples are sorted periodically or upon
reception of each new incoming tuple, the merging techniques proposed in the
literature [7,22] usually have a processing cost that grows linearly in the num-
ber of physical streams being merged. Moreover, the merging itself constitutes a
potential bottleneck for the entire system (whose throughput is bounded by the
speed with which input tuples can be merged) and it limits the pipelining of the
operations performed by the different threads. That is, independently of the rate
at which input tuples are retrieved by thread Tin, as long as available tuples are
not merged, no tuple can be processed by thread Tproc and, consequently, no
new result can be forwarded by the thread Tout.

5 Leveraging Concurrent Data Structures in SPEs

As we discuss in this section, three main actions can be undertaken to balance
the work of the different threads running within a SPE instance and thus enhance
its inner concurrency and maximize its performance. As we complement in our
evaluation, such actions result in a significant performance improvement for the
throughput of a SPE.

Switch from Inter-module to Intra-module Data Access. The first action
towards an improved architecture is for modules to share the data structures
where tuples retrieved from the network are maintained before being fed to
the query. While the thread(s) operating on such modules can be in charge
of different tasks (either retrieving tuples from the network or consume input
tuples), the joint access prevents unnecessary copies of tuples across modules Min

and Mproc. In this context, fine-grained synchronization mechanisms should be
defined for threads Min and Mproc intercommunication.



252 V. Gulisano et al.

A) Shared and Concurrent access to input tuples

B) Shared and concurrent access to input and output tuples
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Fig. 4. SPE architectures leveraging concurrent data structures.

Merge Physical Streams Concurrently. As discussed in Sect. 3.1, the tuples
delivered by timestamp-sorted physical input stream streams of a query must be
merged and fed in timestamp order in order to enforce deterministic processing.
Hence, the second action is to enable for the merging of tuples delivered by
physical streams to happen concurrently with their processing (as presented
in Fig. 4A). This approach provides a better balancing of the threads work by
shifting the merge operation to thread Tin.

Consume Logical Streams Concurrently. The third action aims at over-
coming the potential bottleneck caused by merging the tuples delivered by the
distinct physical input streams. This can be achieved by relying on a concurrent
data structure that not only enables for concurrent addition of tuples (being
merged) and retrieval of tuples (being processed), but also allows for such oper-
ations to be performed by arbitrarily number of processing threads. Such an
architecture allows the parallelism degree of a SPE instance to grow beyond the
number of threads usually defined by the latter. In such a case, though, the
synchronization is no only required for the merging of input tuples, but also for
the merging of output ones (as presented in Fig. 4B). That is, since multiple
physical output streams are produced by the processing threads running at the
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SPE, the former must be merged deterministically into a single logical stream.
As we explain in [12,24], the way in which input tuples are processed by the
different threads depends on the semantics of the operators running at the SPE
instance.

6 ScaleGate: A Novel, Concurrency- and Streaming-
Aware Data Object

As discussed in Sect. 5, a shared data structure that enables for concurrent addi-
tion and merging of tuples delivered by multiple physical streams, while also
allowing for an arbitrary number of threads to retrieve ready tuples in timestamp
order, is the key to balance the workload of an arbitrary number of processing
threads running in a SPE instance. In the following, we overview such a data
structure, ScaleGate, focusing on its functionality and core ideas and also pre-
senting its interface. We refer the reader to [24] for its implementation details.

Overview and Interface. The common architecture of SPEs outlined in
Sect. 4, can be seen as a pipeline where data is continuously produced, processed
and consumed across the different stages, in this case the three main modules.
In a parallel implementation, each computational thread associated with one or
more modules will communicate with the rest by accessing and/or modifying the
shared data structures, which are the focal point of this section. The ideal con-
current data structures should organize the data so that the communication cost
and computational complexity of each access is minimized while the parallelism
within the modules and the overall system efficiency is maximized. Moreover,
this should be done under an interface that provides semantics that enhance the
parallelism across modules.

ScaleGate is a recently proposed abstract data type that becomes a cor-
nerstone in achieving the parallelization challenges presented in the previous
section. ScaleGate guarantees properties essential for concurrently merging phys-
ical streams at the articulation points where data and threads meet, while it inte-
grates the necessary synchronization for allowing multiple threads to consume
ready tuples concurrently. It allows for an arbitrary number of timestamp-sorted
streams, each delivered by a source thread, to be merged into a timestamp-sorted
stream of ready tuples (Definition 2). At the same time, it allows for an arbitrary
number of reader threads to consume in timestamp order all the ready tuples of
the resulting timestamp-sorted stream. ScaleGate integrates, in a decentralized
manner, the necessary communication between the source and reader threads
in order to decide whether a tuple is ready or not. The interface of ScaleGate
provides the following methods:

– addTuple(timestamp,tuple,sourceID): which allows a tuple from the source
thread sourceID to be merged by ScaleGate in the resulting timestamp-sorted
stream of ready tuples.
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– getNextReadyTuple(readerID): which provides to the calling reader thread read-
erID the next earliest ready tuple that has not been yet consumed by the
former.

Algorithmic Design for Concurrent Implementation of ScaleGate . As
explained earlier in the paper, synchronization is one of the fundamental design
considerations for a concurrent data structure implementation. Lock-free (a.k.a.
non-blocking) implementations ensure system-wide progress, by guaranteeing at
least one of the threads operating on the data structure to make progress inde-
pendently of the behavior of other threads. Following the expectations based
on their basic properties, such implementations demonstrate higher scalability
and better fairness when compared with coarse- or fine-grain locking mecha-
nisms [10,35,39]. This behavior remains across several multiprocessor hardware
architectures, with varying characteristics such as uniform/non-uniform memory
access, or memory hierarchies. All the above contribute to the choice in [24], for
lock-free algorithmic implementation of the ScaleGate.

A basic requirement for an algorithmic implementation of the ScaleGate is
to maintain items in a sorted manner. Tree-like implementations, especially bal-
anced ones, have not been proven efficient in concurrent environments due to the
strong dependencies that appear in balancing operations [30]. On the contrary,
shared concurrent skip lists [27,51] have been used extensively for such require-
ments. In a nutshell, skip lists maintain a sorted linked list of elements (e.g.,
tuples), while allowing for probabilistically logarithmic concurrent insertions of
new elements and the concurrent deletion of existing ones. This is made possible
by multiple levels (pointers), for each element, that act as shortcuts for quickly
locating the appropriate insertion position of a new element. The number of
additional levels for each element is chosen randomly during its allocation.

Inspired by skip lists, the ScaleGate algoritmic implementation incorporates
a multi-level pointer mechanism adapted to its requirements. Such adaption aims
at enabling fine-grained synchronization that boosts parallelism and is carried
out (1) by making ScaleGate inherently aware of the concept of ready tuples
and (2) by exploiting the specific access patterns of ready tuples (e.g. consumed
in timestamp order by the threads executing the queries) and thus allowing for
a more lightweight implementation than the general purpose delete operations
of skip lists (such operations carry a considerable overhead in the respective
implementations).

Claim. The concurrent implementation of ScaleGate in [12,24] follows the above
elements and satisfies strong safety and liveness requirements, namely lineariz-
ability and lock-freedom. Also, as shown in [12,24], ScaleGate enables determin-
istic execution of data streaming operators.

7 Evaluation Study

In this section we describe an experimental study of how concurrent data struc-
tures can enhance the performance of SPE by finer-grained synchronization
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among the threads operating on the tuples. This is not meant to be a thor-
ough evaluation of the proposed data structure and stream processing engine
designs. Some detailed experimental studies for a range of operators and input
streams that vary in character and volumes can be found in [12,13,24].

In particular, here we show an evaluation of the performance for the query
introduced in Sect. 3, in different SPE architectures presented in Figs. 3 and 4.
More concretely, we measure both their per-tuple processing time (in µs) and
overall throughput (in tuples/second, t/s). We begin by discussing the evalua-
tion setup.

Experiment Setup

This evaluation study has been run with a workstation equipped with a 2.0 GHz
Intel Xeon E5-2650 (16 cores over 2 sockets) and 64 GB of memory. The different
data structures and modules of SPEs’ architectures have been implemented in
Java. We use a dataset, which we refer to as SC, collected from the online
audio distribution platform SoundCloud from a subset of approximately 40, 000
users exchanging comments about 250, 000 songs between 2007 and 2013. Tuples
contain comments sent by users in relation to songs and are composed by the
attributes 〈ts, user, song, comment〉.

We fed tuples from the SC dataset into the query presented in Sect. 3, which
counts the number of positive comments (a comment is considered as positive if
it contains keywords such as nice, great, fantastic and so on) in relation to each
song given a window of size 10 min and advance 2 min. In all the experiments,
we assume input tuples are delivered to the query by 20 distinct physical input
streams.

We refer to the basic architecture (Fig. 3), the architecture defining shared
and concurrent access to the input tuples (Fig. 4A) and the one defining shared
and concurrent access for both input and output tuples (Fig. 4B) as architectures
A1, A2 and A3, respectively. In all the experiments, we measure the average per-
tuple processing time based on the operation performed by threads Tin and Tproc

in the different architectures. Subsequently, we compute the maximum expected
throughput based on such per-tuple processing time. Since both threads Tin and
Tproc perform the same operations for architecture A3, we refer to the threads as
T1 and T2 in all the experiments. All the presented results are averaged over 100
runs. In all the experiments, we do not take into account the per-tuple processing
time incurred by the thread Tout in order to forward each output tuple to the
following SPE instance or the external end-user application.

Illustrative Outcome and Discussion. In the following, we present the
results for the three different setups we considered, namely A1, A2 and A3.
Results about the per-tuple processing time are summarized in Fig. 5 while
throughput results are summarized in Fig. 6.

Architecture A1 (Fig. 3). In the first experiment, we consider the SPE architec-
ture presented in Fig. 3, in which thread Tin is in charge of the add operation
while thread Tproc is in charge of the copy , merge, process and store operations.
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Fig. 5. Per-tuple average processing time for threads T1 and T2 and the different archi-
tectures A1, A2 and A3.

Fig. 6. Throughput achieved by the different architectures A1, A2 and A3.

As presented in Fig. 5 and explained in Sect. 4, the two threads are heavily
unbalanced. Thread Tin is responsible for a single, lightweight operation which
on average takes 0.2 ms to be run. At the same time, thread Tproc is responsible
for merge sorting all the input tuples and process them, which on average takes
6.9 ms (that is, the per-tuple processing time for thread Tproc is 35 times higher
than the one for thread tone). For such a setup, the operations run by thread
Tproc result in a bottleneck of the system, allowing for a maximum throughput
of 150, 000 t/s.

Architecture A2 (Fig. 4A). For this architecture, the merge operation is now per-
formed by thread Tin rather than Tproc. While the work between the two threads
is still unbalanced, it can be observed that thread Tin per-tuple processing now
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grows to approx 3.5 ms while thread Tproc per-tuple processing time decreases
to 4.8 ms. As a result, while still containing a bottleneck, this setup allows for
an increased throughput, up to 200, 000 t/s (thus increasing the baseline A1

throughput by 33 %).

Architecture A3 (Fig. 4B). For this architecture, the operations add , copy , merge,
process and store are not partitioned among the two threads Tin and Tproc

but rather executed (all of them) by both threads in a parallel and concurrent
fashion. As we explained in Sect. 5, while such an architecture requires extra
synchronization in order for the output tuples produced by each thread to be
merged into a single logical stream (in order to enforce deterministic process-
ing), it allows for the parallel and concurrent execution of an arbitrary number
of processing threads (as long as the merging of their output tuples does not
constitute a bottleneck).

As presented in Fig. 5, the per-tuple processing time incurred by both threads
grows to approximately 8.7 ms. As only one of them is needed in order to process
a tuple and each of them is able to process 115000 t/s, independently from the
other, the overall throughput of the system grows to 230000 t/s (thus increasing
the baseline A1 throughput by more than 50 %).

Overview Comment. The significant improvements are achieved through more
balanced work among the threads and the possibility for each thread to make
progress asynchronously and nearly independent of the progress of the other
threads. These are enabled through theScaleGate concurrent object, as expected.

8 Conclusions

In this paper we give an overview of the motivation and the idea of co-design
of data stream processing and concurrent data structures. We point out that
abstract data types and their concurrent implementations play a key role in
data streaming efficiency and we give examples of newly proposed ones that can
offer significant benefits. Symmetrically, we show that stream processing designs
can benefit significantly by awareness of the concurrency in the “articulation”
points, where data and computation “meet”. This is all the more important
given the needs for processing in the continuously increasing data volumes in
e.g. cyber-physical systems [20], where data streaming becomes a must in order
to extract efficiently useful information from the data and justify the existence
of these systems.

Continued research in this new space is expected to have significant impact,
both from the point of view of concurrent algorithmic challenges that are brought
in, as well as from the point of view of usefulness in actual applications’ needs.
Possible topics include efficiency and consistency (and their trade-offs) in the
context of intra-node and inter-node concurrency for data streaming operators,
as well as in the context of operations such as range queries, possibly through
snapshots or iterations on these objects [32,43]; the analysis of data transfor-
mation pipelines (with a query) given the progress properties of the concurrent
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object implementations; new abstract data types and efficient concurrent imple-
mentations that can improve such pipelines.
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J.-H., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y.,
Zdonik, S.B.: The design of the borealis stream processing engine. In: CIDR, pp.
277–289 (2005)

2. Abadi, D.J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S.,
Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: a new model and architecture
for data stream management. VLDB J. 12, 12–139 (2003)

3. Ailamaki, A., Kantere, V., Dash, D.: Managing scientific data. Commun. ACM
53(6), 68–78 (2010)

4. Akram, S., Marazakis, M., Bilas, A.: Understanding and improving the cost of
scaling distributed event processing. In: Proceedings of the 6th ACM International
Conference on Distributed Event-Based Systems, DEBS 2012, pp. 290–301. ACM,
New York (2012)

5. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R.,
Srivastava, U., Widom, J.: Stream: the stanford data stream management system.
Book chapter (2004)

6. Attiya, H., Welch, J.: Distributed Computing: Fundamentals. Simulations and
Advanced Topics, Wiley Online Library (2004)

7. Balazinska, M., Balakrishnan, H., Madden, S.R., Stonebraker, M.: Fault-tolerance
in the Borealis distributed stream processing system. ACM Trans. Database Syst.
33(1), 3 (2008)
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