
An Optimal Parallel Algorithm for Minimum
Spanning Trees in Planar Graphs

Ka Wong Chong1 and Christos Zaroliagis2,3(B)

1 Department of Computer Science, The University of Hong-Kong,
Porfulam Road, Porfulam, Hong Kong

2 Department of Computer Engineering and Informatics,
University of Patras, 26504 Patras, Greece

zaro@ceid.upatras.gr
3 Computer Technology Institute and Press “Diophantus”, N. Kazantzaki Str.,

Patras University Campus, 26504 Patras, Greece

Abstract. We present an optimal deterministic O(n)-work parallel algo-
rithm for finding a minimum spanning tree on an n-vertex planar
graph. The algorithm runs in O(log n) time on a CRCW PRAM and
in O(log n log∗ n) time on an EREW PRAM. Our results hold for any
sparse graph that is closed under taking of minors, as well as for a class
of graphs with non-bounded genus.

1 Introduction

The minimum spanning tree problem is one of the most fundamental problems
in network optimization with a wealth of theoretical and practical applications
(see e.g., [1]). Given a connected n-vertex, m-edge undirected graph G with real
edge weights, the minimum spanning tree (MST) problem is to find a spanning
tree of minimum total weight among all spanning trees of G. The problem has
been extensively studied both in sequential and in parallel computation.

In sequential computation, the MST problem has started being investigated
as early as 1926 [4]. The currently best deterministic sequential algorithms [5,15,
27] run in almost linear time. The first two [5,15] run on the (classical) unit-cost
random access machine (RAM) model of computation, where the only operations
allowed on the edge weights are binary comparisons, while the third one [27] is
optimal and runs on the pointer machine. Better, linear-time algorithms are
known if randomization is allowed [25], or if the input graph is planar [6], or if
more powerful models of computation are used [14].

In parallel computation, the MST problem has been studied in the parallel
random access machine (PRAM) model of computation, the parallel version of
the unit-cost RAM (for more on PRAMs see e.g., [21,26]). In the parallel context,
there is a close relationship between the connected components and the MST
problem in the sense that almost all parallel algorithms for either of the prob-
lems use the hook-and-contract approach (also known as Sollin’s or Boruvka’s
approach): initially each vertex represents a component by itself. Then, every

c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 169–182, 2015.
DOI: 10.1007/978-3-319-24024-4 11

170 K.W. Chong and C. Zaroliagis

component Ci hooks to another component Cj by selecting an edge whose one
endpoint is in Ci and the other in Cj . After hooking, every (new) component is
contracted into a single vertex. The hooking and contraction steps are repeated
until there are no more edges connecting different components. While in com-
puting connected components the selection of the hooking edge can be arbitrary,
in the MST problem this selection is critical: it has to be the edge with minimum
weight. This particular difficulty usually increases the running time and/or the
work of the MST algorithms. Further, it has been shown in [24] that the MST
problem can be reduced to a connected components problem without an increase
in the time; however, the number of processors used (and hence the work) is
increased to m1+ε, for some ε > 0.

The results of [8,23] for the MST problem on the EREW PRAM came there-
fore as a surprise since they matched the corresponding connected components
bounds in [9,22]. Namely, in [23] an algorithm for the MST problem is presented
running in O(log3/2 n) time and performing O(m log3/2 n) work. In [8] this result
is improved to O(log n log log n) time and O(m log n log log n) work. Note that
both MST results used much different techniques from those used in the corre-
sponding connected components algorithms. The time for MST (and connected
components) on the EREW PRAM was ultimately reduced to O(log n) in a
breakthrough result [10] that used a new technique based on concurrent threads.
The algorithm in [10] performs O((n + m) log n) work.

On the CRCW PRAM, there is still a certain gap in the work performed
between the best deterministic connectivity algorithm [13] and the best MST
algorithm [29]. The connected components algorithm in [13] runs in O(log n)
time and performs O(mα(m,n)) work on an Arbitrary CRCW PRAM. The
MST algorithm in [29] runs in O(log n) time and performs O(m log n) work on
a Common CRCW PRAM. Previous approaches for the MST problem [2,13]
achieve similar bounds but on the much stronger Priority CRCW PRAM
model.

Optimal-work parallel MST algorithms are known only for the case where
randomization is allowed, or for the case of special classes of graphs. Regarding
the former, a randomized algorithm is presented in [11] that runs in O(log n) time
and performs O(m) work on an Arbitrary CRCW PRAM, while an EREW
PRAM algorithm with the same bounds was presented in [28]. Regarding the
latter, for very dense graphs (i.e., m = Ω(n2)) a CREW PRAM algorithm
was given in [7] that runs in O(log2 n) time and performs O(n2) work. For the
case of planar graphs, O(n)-work deterministic parallel algorithms running in
O(log n log∗ n) time on an EREW PRAM and in O(log n) time on a CRCW
PRAM were given in [18].

In this paper, we present another optimal deterministic parallel algorithm
that solves the MST problem in the important case of planar graphs. Our algo-
rithm runs in O(log n log∗ n) time on an EREW PRAM, or in O(log n) time
on an Arbitrary CRCW PRAM, and performs O(n) work. Our algorithm
matches the bounds in [18] as well as those of the best parallel algorithm for
computing connected components on the same models of computation and for
the same classes of graphs [17]. Our algorithm uses different techniques compared

An Optimal Parallel Algorithm for Minimum Spanning Trees 171

to those in [17,18] and might constitute a simpler alternative to those algorithms.
In addition, our results hold for any sparse graph that is closed under taking of
minors, as well as for a class of graphs with non-bounded genus.

The main idea of our algorithm is the following. We perform a number of
iterations (as in the hook-and-contract approach), but we maintain the prop-
erty that the graph we are dealing with has constant degree. However, after a
contraction the maximum degree of a graph may increase and hence after a few
iterations is no longer bounded by a constant. To overcome this problem, we
expand the graph into a new one with maximum degree 3 (Sect. 2). The expan-
sion is done such that an MST of the original graph can be easily found from
an MST of the expanded graph. Moreover, we can guarantee that for the graphs
considered the “contraction rate” is larger than the “expansion rate” so that the
algorithm terminates after a logarithmic number of iterations. For simplicity, we
present first our algorithm for the case of planar graphs (Sects. 3 and 4). Later
(Sect. 5) we discuss how it extends to any class of sparse graphs that is closed
under taking of minors, as well as for a class of non-bounded genus graphs.

2 Preliminaries

All graphs throughout the paper are undirected and are assumed to be given in
its adjacency list representation. Let G = (V,E) be a connected graph, where
|V | = n and |E| = m. Let also w(·) be a weight function on the edges of G and
let degG(v) denote the degree of v in G. If ∀v ∈ V , degG(v) ≤ δ, then we shall call
G a degree-δ graph. For any spanning tree T of G, we define its weight, w(T), as
the sum of the weights of all the edges in T . Then, a minimum spanning tree of
G, denoted by T ∗

G, is the one with the minimum weight. Throughout the paper
we shall not distinguish between a spanning tree T and its set of edges (unless
stated otherwise). To simplify our discussion, we make the following assumptions
concerning the minimum spanning tree problem.

A1. No two edges in G have the same weight and consequently T ∗
G is unique.

We can easily fulfill this assumption by considering the triple 〈w(e), u, v〉 as the
weight of the edge e = (u, v) in the adjacency list of u and compare edge weights
using the lexicographic order.

A2. The weight function takes values on the positive reals, i.e., w : E → IR+.
This is not a restriction, since we can always add to all edge weights in G a
sufficiently large number L > 0 to make them positive. Moreover, it is easy to
verify that the MST, say T+, found in this case is isomorphic to T ∗

G and that
w(T ∗

G) = w(T+) − (n − 1)L.
Let G′ = (V ′, E′) be a connected subgraph of G, where V ′ ⊆ V and E′ ⊆ E.

We call the edges in E′ internal edges of G′, and the edges of G with only
one endpoint in V ′ external edges of G′. Throughout the paper, the contraction
of G′ into a single vertex is an operation defined as follows: first, remove all
internal edges in G′ and all but one vertices in V ′ (the remaining vertex is the
vertex representing G′ in the contracted graph). Then, replace all multiple edges

172 K.W. Chong and C. Zaroliagis

that may have been created with the one of minimum weight. (The latter step
guarantees that the contracted graph is a simple graph.)

Let F ⊂ E be a subset of edges of G. Consider the subgraphs of G induced
by the edges in F . If every such induced subgraph is a tree, then we say the F
induces a forest in G. If a vertex v ∈ V has no edge from F incident on it, then
v induces a tree by itself.

We shall need the following well-known property of MSTs (for a proof see
e.g., [1]).

Lemma 1. Let F be a set of edges of G such that F induces a forest in G and
F ⊆ T ∗

G. Let (u, v) be the external edge of minimum weight of a tree in F . Then,
a minimum spanning tree of G contains the edge (u, v) and all edges in F .

The following properties of a planar graph will be useful later.

Lemma 2. Let G be a weighted planar graph and let F be a set of edges of G
that induce a forest in G. Then:
(i) The number of edges m in G is no more than 3n − 6.
(ii) If we contract each tree (connected component) in F into a single vertex, the
contracted graph G′ is still planar.
(iii) If F ⊆ T ∗

G, then T ∗
G = T ∗

G′ ∪ F .

Properties (i) and (ii), in the above lemma, are well-known properties of
planar graphs (see e.g., [20]). Property (iii) follows by Lemma 1.

The following concept plays a key role in our algorithm.

Definition 1. Let H be a weighted graph and let S be a subset of edges of H
that induce a forest. Then, S is said to be a (c, f(c))-connector of H if every
edge of S belongs to T ∗

H and for each tree T induced by S in H, c ≤ |T | ≤ f(c),
where |T | denotes the number of vertices in T and f(c) is a function of c. By
convention, if H has less than c vertices, then S = T ∗

H.

In all applications of the above definition, throughout the paper, c will always
be a constant. As we shall see in Sect. 4, a (c, f(c))-connector S, for constant
c, can be computed very efficiently. After contracting the trees induced by S,
the graph H is contracted by a factor of at least c. Since further each tree of
S contains at most f(c) vertices, the contraction can be done in O(1) time,
resulting in a (new) contracted graph H ′. The remaining of the edges of T ∗

H can
now be found in H ′ (according to Lemma 2 (iii)).

During the execution of our algorithm, we want to maintain the invariant
that the graph in processing satisfies the property that every vertex has degree
bounded by a fixed constant. However, it can be easily verified that after con-
tracting a graph the maximum degree may increase (i.e., the maximum degree of
H ′ may be larger than that of H). We deal with this problem by expanding the
graph. In the following, we describe a simple transformation that implements
the expansion. More precisely, the transformation takes as input a graph G and
outputs a graph H in which every vertex has degree bounded by 3. Moreover,

An Optimal Parallel Algorithm for Minimum Spanning Trees 173

the minimum spanning tree of H naturally defines the minimum spanning tree
of G (see Lemma 5 below).

The expansion transformation is defined as follows. For every vertex v of G,
if degG(v) ≤ 3, then include v and all its edges into H directly. Otherwise, if
degG(v) > 3, we create t = degG(v) − 2 new vertices, v1, v2, . . . , vt, in H. (We
alternatively say that v is split into t vertices.) Let e1, e2, . . . , et+1, et+2 be the
edges incident on v in G. Then in H, make e1 and e2 incident on v1, make ei

incident on vi−1, for 3 ≤ i ≤ t, and make et+1 and et+2 incident on vt. Finally,
add edges between vi and vi+1, for 1 ≤ i ≤ t − 1. Each of these new edges
is associated with zero weight. The expansion transformation is illustrated in
Fig. 1.

Fig. 1. A vertex v with degree 6, incident on edges a, b, c, d, e, and f , is transformed
into four vertices, v1, v2, v3, and v4. The three new edges (v1, v2), (v2, v3), and (v3, v4)
are associated with zero weight.

Lemma 3. (i) The transformation of a graph G into a degree-3 graph H can
be done in O(log d) time and O(m) work on an EREW PRAM, where d is the
maximum degree of a vertex in G.
(ii) If G is planar, then H is also planar and nh ≤ 5n − 12, where nh is the
number of vertices in H.

Proof. (i) It can be easily done using list ranking and segmented parallel prefix
computations [21].

(ii) The planarity of H is obvious. For the number of vertices in H, we have
that nh ≤ ∑

v∈G max{degG(v) − 2, 1} ≤ 2m − 2n + n = 2m − n. As m ≤ 3n − 6
(Lemma 2 (i)), we have nh ≤ 5n − 12. ��

The degree-3 graph H, resulting from this transformation, has some useful
properties which we discuss next and which allow us to find easily the MST of
G, if the MST of H is given.

Lemma 4. Every edge in H with zero weight belongs to T ∗
H.

Proof. Consider a greedy (e.g., Kruskal’s) algorithm that finds T ∗
H by selecting

edges in non-decreasing order of weight, and discards an edge if it creates a
cycle with already selected edges. (The correctness of this approach can be easily
verified using Lemma 1.) Now, all zero weight edges must be present in T ∗

H , since
their weight is smaller than those of the remaining edges in H and they do not
form any cycle. ��

174 K.W. Chong and C. Zaroliagis

Lemma 5. The edges with non-zero weight in T ∗
H are the edges of T ∗

G.

Proof. It suffices to prove that: (a) all the non-zero weight edges of T ∗
H induce a

spanning tree in G; and (b) this spanning tree is the MST of G.
To prove claim (a), first observe that in H there are nh −n edges which have

zero weight. Let X be the non-zero weight edges of T ∗
H . By Lemma 4, all the zero

weight edges of H must be in T ∗
H . Therefore, |X| = nh − 1 − (nh − n) = n − 1.

Suppose on the contrary that X does not induce a spanning tree in G. Then,
there must be a simple cycle C ⊆ X induced by X. Let u0, u1, . . . , uk−1 be
the vertices of C and e0, e1, . . . , ek−1 be its edges, where ui, 0 ≤ i ≤ k − 1, is
incident on edges e(i−1) mod k and ei mod k. By the transformation, each ui will
be split into several vertices which are connected through (a path consisting of)
the new edges with zero weight. As a result, the edges e(i−1) mod k and ei mod k

are connected through the zero weight edges in T ∗
H . Thus, there is a cycle in H

involving the edges of C and the zero weight edges of H. Since by Lemma 4 all
zero weight edges of H must be present in T ∗

H , we have that C is a cycle in H
induced by edges of T ∗

H . But this contradicts the fact that T ∗
H is a spanning tree

of H. Hence, claim (a) is proved.
We now turn to claim (b). Let TG be the spanning tree in G induced by the

non-zero weight edges of T ∗
H . Clearly, w(TG) = w(T ∗

H).
Suppose on the contrary that TG is not the minimum spanning tree and let

T ′
G be the MST in G. Then, w(T ′

G) < w(TG). By the transformation, T ′
G defines

a spanning tree TH in H consisting of all the edges of T ′
G and all the zero weight

edges of H. But then w(TH) = w(T ′
G) < w(TG) = w(T ∗

H), a contradiction to the
assumption that T ∗

H is the MST of H. This ends the proof of claim (b) and the
proof of the lemma. ��

3 The Algorithm

Our algorithm works in phases, where in each phase we find some edges of T ∗
G.

The input to Phase i is a planar degree-3 graph Gi. Initially, G is transformed
into a degree-3 graph which is the graph G0. Let T ∗

i be the minimum spanning
tree of Gi. Phase i proceeds in three steps. First, we find a (c, 2c4)-connector Si

of Gi, where c is a constant (whose value will be determined later). Each tree
induced by Si has size at most 2c4 and the non-zero weight edges of Si belong
to T ∗

G. Second, we contract each tree induced by Si in Gi into a single vertex.
Let G′

i be the contracted graph. Third, we transform G′
i into a degree-3 graph

to meet the input requirements of the next phase. A less informal description of
the algorithm follows.

Algorithm: MST-Planar
Input: A planar graph G.
Output: The minimum spanning tree, T ∗

G, of G.
1. Transform G into a degree-3 graph G0;
2. i = 0;
3. While Gi contains more than one vertex do

An Optimal Parallel Algorithm for Minimum Spanning Trees 175

(a) Find a (c, 2c4)-connector Si in Gi, where c is a constant;
(b) Contract each tree induced by Si in Gi and let G′

i be the resulting graph;
(c) Transform G′

i into a degree-3 graph Gi+1;
(d) i = i + 1;

od
4. Return the non-zero weight edges in

⋃i−1
j=0 Sj , which are the edges of T ∗

G;

We first discuss the correctness of the algorithm. Let Zi denote the set of
zero weight edges in Gi.

Lemma 6. T ∗
i = (T ∗

i+1 − Zi+1) ∪ Si = (T ∗
i+1 ∪ Si) − Zi+1.

Proof. Consider the graph G′
i which is formed by contracting the trees induced

by Si in Gi. By Lemma 2 (iii), we have that T ∗
i = T ∗

G′
i
∪Si. On the other hand, by

Lemma 5 we have that T ∗
G′

i
= T ∗

i+1 − Zi+1. Therefore, T ∗
i = (T ∗

i+1 − Zi+1) ∪ Si =
(T ∗

i+1 ∪Si)−Zi+1, where the last equality is true because Si ∩Zj = ∅ for i �= j. ��
Lemma 7. Let t be the total number of iterations of Algorithm MST-Planar.
Then, T ∗

G =
⋃t

i=0 Si − ⋃t
i=0 Zi.

Proof. By Lemma 5 we have that T ∗
G = T ∗

0 − Z0. Now, by repeated applications
of Lemma 6, we get:

T ∗
G = T ∗

0 − Z0 = ((T ∗
1 ∪ S0) − Z1) − Z0

= ((((T ∗
2 ∪ S1) − Z2) ∪ S0) − Z1) − Z0

= ((((T ∗
2 ∪ S1) ∪ S0) − Z2) − Z1) − Z0

= · · ·
= ((· · · ((T ∗

t+1 ∪ St) ∪ St−1) · · · ∪ S0) − Zt+1) − Zt) − · · ·) − Z0

=
t⋃

i=0

Si −
t⋃

i=0

Zi

where the last equality follows from the fact that T ∗
t+1 = Zt+1 = ∅ and

⋂t
i=0

Zi = ∅. ��
Hence, the correctness of Algorithm MST-Planar has been established. We

now turn to the resource bounds. We shall need the following lemma, whose
proof is given in Sect. 4.

Lemma 8. For all constant c, a (c, 2c4)-connector of a degree-3 graph G with
n vertices can be computed: (i) in O(1) time using O(n) work on a CRCW
PRAM; (ii) in O(log∗ n) time using O(n log∗ n) work on an EREW PRAM;
(iii) in O(log n) time using O(n) work on an EREW PRAM.

The transformation of the input graph G into a degree-3 graph G0, in Step 1
of the algorithm, can be done in O(log n) time and O(n) work on an EREW
PRAM (Lemma 3 (i)). Step 4 can be implemented within the same resource
bounds.

176 K.W. Chong and C. Zaroliagis

Let us now consider the resource bounds of Step 3. Let ni and n′
i denote the

number of vertices in Gi and G′
i, respectively. The bounds of Step 3(a) are given

by Lemma 8. In Step 3(b), we have first to contract each tree in Gi induced by
Si. This means that we have to remove internal edges in such a tree and replace
multiple edges between two vertices by the one with minimum weight. Since
each tree in Si has size at most 2c4, and c is a constant, Step 3(b) takes O(1)
time using O(ni) work on an EREW PRAM. Moreover, since each tree in Si has
size at least c, we have that n′

i ≤ ni/c. Note that G′
i is also a (simple) planar

graph (Lemma 3 (ii)). Finally, Step 3(c) needs O(1) time using O(ni) work on an
EREW PRAM, by Lemma 3 (i). Consequently, each iteration of the while-loop
in Step 3 is dominated by the resource bounds of Step 3(a).

To bound the number of iterations, note that by Lemma3 (ii), ni+1 ≤ 5n′
i −

12 ≤ 5ni/c − 12. Hence, by choosing c = 10, we have that ni+1 ≤ ni/2. Thus,
the number of iterations of the while-loop in Step 3 is �log n�.

Now, on a CRCW PRAM, each iteration takes O(1) time and O(ni) work,
by Lemma 8 (i). Therefore, in total Step 3 can be implemented in O(log n) time
and O(

∑�log n�
i=0 ni) = O(n) work.

Similarly, Step 3 can be implemented in O(log n log∗ n) time and O(n log∗ n)
work on an EREW PRAM, since each iteration takes O(ni log∗ n) work and
O(log∗ n) time by Lemma 8 (ii). To achieve optimal work on an EREW PRAM,
we additionally use the implementation of the (c, 2c4)-connector which runs
in O(log n) time and O(ni) work (Lemma 8 (iii)). Having these two EREW
PRAM implementations of a (c, 2c4)-connector, we apply the method given in
[19, Sect. 4] or in the proof of Theorem 5.1 in [12]: we run in the first O(log∗ n)
iterations the optimal implementation (Lemma 8 (iii)), and in the remaining iter-
ations the non-optimal one (Lemma8 (ii)). This results (again) in a running time
of O(log n log∗ n), but now a simple simulation argument (see [19, Sect. 4] or [12,
Theorem 5.1]) shows that the algorithm can be performed using only O(n) work.

We have therefore established the following.

Theorem 1. A minimum spanning tree of an n-vertex weighted planar graph G
can be found: (i) in O(log n) time and O(n) work on a CRCW PRAM; (ii) in
O(log n log∗ n) time using O(n) work on an EREW PRAM.

4 Finding a (c, f(c))-Connector in a Degree-3 Graph

In this section, we shall prove Lemma 8. Let H be a degree-3 graph with n
vertices. Recall that a (c, f(c))-connector of H is a set of edges S ⊆ T ∗

H such
that for each tree T induced by S in H c ≤ |T | ≤ f(c), where |T | denotes the
number of vertices in T and f(c) is a function of c.

Note that one should be careful in finding a (c, f(c))-connector, in the sense
that there are many simple ways to do it, but they result in a value for f(c)
which may be exponential in c. Hence, a different idea is required in order to
avoid such a huge value for f(c). In this section, we shall show how to achieve
f(c) = 2c4.

An Optimal Parallel Algorithm for Minimum Spanning Trees 177

We find the (c, f(c))-connector in two stages. In the first stage we find a set
of edges K ⊆ T ∗

H such that each tree induced by K in H contains at least c
vertices. However, there may be some trees having as many as Θ(n) vertices.
Then in the second stage, we remove some edges from K in order to break down
these “big” trees into trees of bounded size. The remaining edges in K form a
(c, f(c))-connector of G.

The first stage consists of a number of iterations, where iteration i finds a
set of edges Ki ⊆ K. Let Fi be the set of trees induced by Ki in H (where each
tree in F0 is a single vertex). The first stage of the (c, f(c))-connector algorithm
is implemented as follows.

Stage 1 of the (c, f(c))-connector algorithm:
1. i = 0; Ki = ∅; M = ∅;
2. Let Fi be the set of trees induced by Ki in H;
3. while ∃ tree T in Fi such that |T | < c do

Find the minimum-weight external edge of T and add it to M ;
Ki+1 = Ki ∪ M ; Let Fi+1 be the set of trees induced by Ki+1 in H;
M = ∅; i = i + 1;

od

Observe that each tree in Fi contains at least 2i vertices. Thus, after �log c�
iterations, every tree contains at least c vertices. Let K = K�log c�. Since only
trees with less than c vertices participate in every iteration, it follows that each
iteration can be done in O(log c) time using O(n) work. (Remark: within the
same resouce bounds we can also check whether |T | < c.) Hence, the first stage
runs in O(log2 c) time using O(n log c) work.

In the second stage, we have to remove some edges in K to obtain a (c, f(c))-
connector of H. Let T be a tree induced by K. Recall that every internal vertex
in T has degree bounded by 3 and |T | ≥ c. To find a (c, f(c))-connector of H, it
suffices to find a (c, f(c))-connector in every such tree T ; then, the union of the
(c, f(c))-connectors of every tree T is a (c, f(c))-connector of H.

The second stage consists also of a number of iterations. In each iteration we
contract a subtree of T (in a manner to be discussed). Let Ti denote T at the
beginning of the ith iteration. Initially, T0 = T and i = 0.

Every vertex v ∈ Ti represents a (contracted) connected subtree of Ti−1 and
hence of T . Let size(v) denote the number of vertices of T that v represents (i.e.,
they have been contracted into v). Since every vertex of T has degree at most
3, the degree of v in Ti is at most 3size(v) − 2(size(v) − 1) = size(v) + 2.

Let v be a vertex of Ti. Then: (i) v is called inactive if size(v) ≥ c; (ii) v is
called neutral if size(v) < c and all adjacent vertices of v are inactive; and (c) v
is called active, in all other cases. Note that the degree of an active vertex in Ti

is at most c + 1. Stage 2 is implemented as follows:

Stage 2 of the (c, f(c))-connector algorithm:
for every tree T induced by K pardo
1. i = 0; Ti = T ; Ai = {v|v ∈ Ti}; forall v ∈ Ti pardo size(v) = 1 odpar;

178 K.W. Chong and C. Zaroliagis

2. while |Ai| > 1 do
(a) Find a maximal independent set I in Ai, where Ai is the set of active

vertices in Ti;
/* Perform a selective contraction */
(b) Every u ∈ Ai − I selects one of its neighbors in I;
(c) if ∃v ∈ I that has not been selected then

v selects (arbitrarily) one of its neighbors in Ai − I;
(d) The selection process defines connected subtrees of Ti consisting of

active vertices. Then, contract each such subtree into
a single vertex z and compute size(z);

(e) Call the resulting tree Ti+1 and set i = i + 1;
od

3. Every neutral vertex in Ti selects arbitrarily one of its adjacent inactive
vertices to hook (i.e., to merge together in a single component). Contract
each such component into a single vertex and call the resulting tree Tf ;

odpar

At the end of the ith iteration, every active vertex in Ti has size at least
2i. Hence, after at most �log c� iterations there are no more active vertices.
Furthermore, the total number of active vertices that define a connected subtree
of Ti (to be contracted) is at most (c + 2) + c(c + 1) (where the first term comes
from Step 2(b) and the second term from Step 2(c)), which is c2 + 2c + 2. Since
every active vertex has size at most c − 1, we have that the size of a vertex
u ∈ Ti+1, at the beginning of the (i + 1)th iteration, is size(u) ≤ (c2 + 2c + 2)
(c − 1) = c3 + c2 − 2.

Let T�log c� be the tree at the end of Step 2. Note that every vertex in T�log c�
is either inactive or neutral, and that Tf (the tree at the end of Step 3) contains
only inactive vertices. Let v be an inactive vertex in T�log c�. Since size(v) ≤
c3 + c2 − 2, there are at most size(v) + 2 neutral vertices adjacent to it (each
of size at most c − 1). Consequently, an inactive vertex u ∈ Tf has size(u) ≤
c3+c2−2+(c3+c2)(c−1) = c4+c3−2 ≤ 2c4. Hence, every vertex u ∈ Tf satisfies
c ≤ size(u) ≤ 2c4 and represents a connected subtree U of T , where |U | = size(u).
Moreover, every edge of U belongs to T ∗

H , as a consequence of Stage 1. Therefore,
the union of all these subtrees U , or alternatively the set of edges in T − Tf ,
constitutes the required (c, f(c))-connector of T , where f(c) = 2c4.

Let us now consider the complexity of Stage 2. Observe that since T is a
tree, no multiple edges are created in every contraction of a subtree of T , and
consequently there is no need to invoke a sorting procedure to eliminate all but
one multiple edges. Hence, every contraction of a subtree of T of size p can be
done in O(log p) time and O(p) work on an EREW PRAM.

We first discuss the EREW PRAM complexity. Step 3 takes O(log c) time
and O(n log c) work over all trees T . The resource bounds of each iteration of
Step 2 are dominated by those of Step 2(a) to find a maximal independent set
in a tree. This requires (over all trees T) O(log∗ n) time and O(n log∗ n) work
[16, Theorem 4], or alternatively O(log n) time and O(n) work [17, Lemma 7].
Hence, Stage 2 runs in O(log2 c log∗ n) time and O(n log c log∗ n) work, or in
O(log2 c log n) time and O(n log c) work.

An Optimal Parallel Algorithm for Minimum Spanning Trees 179

We now turn to the CRCW PRAM complexity. Unfortunately, the maximal
independent set algorithm of [16] cannot take advantage of this model to solve
the problem faster. Instead, we use an algorithm from [3] that computes a so-
called fractional independent set. More precisely, the following result is proved in
[3, Sect. 6]: Let G be an n-vertex graph of constant degree. Then, an independent
set I such that |I| ≥ εn, where 0 < ε < 1 is a constant, can be found in O(1)
time and O(n) work on a CRCW PRAM.

Now, in Step 2(a) we do not find a maximal independent set, but a fractional
one using the algorithm of [3]. Note that in this case we cannot guarantee that at
the end of the ith iteration every active vertex has size at least 2i. However, we
can guarantee that in every iteration a constant fraction of the (remaining) active
vertices ε|Ai| perform a selective contraction. Consequently, at the beginning of
the next iteration, there are at most (1−ε)|Ai| ≤ (1−ε)|Ti| ≤ (1−ε)i|T0| active
vertices. Hence, we need �log(1

1−ε)
c� = O(log c) iterations to eliminate all active

vertices. This implies that Stage 2 can be implemented to run in O(log2 c) time
and O(n log c) work on a CRCW PRAM.

The bounds of Lemma 8 follow now from the fact that c is always a constant
in all applications of the (c, f(c))-connector algorithm with f(c) = 2c4.

5 Extensions of Our Results

Following [17], a class G of undirected graphs is called linearly contractible if: (1)
for all G in G m ≤ kn, where k is a constant; and (2) G is closed under taking
of minors, i.e., every subgraph and every elementary contraction of a graph in
G is in G. An elementary contraction of a graph G is a new graph obtained from
G by contracting two adjacent vertices u and v into a single vertex z. Examples
of the class of linearly contractible graphs are planar graphs, graphs of bounded
treewidth and graphs of bounded genus.

Observe that the only properties that our algorithm requires from a planar
graph are those stated in Lemma2 (i) and (ii), and which are included in the
above definition of the linearly contractible graphs. Hence, Lemma2 is satisfied
(in a sense) by any graph belonging to a linearly contractible class, with the
difference that part (i) now becomes m ≤ kn. This implies that the number
nh of vertices of the transformed graph (Lemma3) is now bounded by nh ≤
2m−n = (2k − 1)n. To achieve again a number of �log n� iterations of our MST
algorithm in Sect. 3, it suffices to choose c = 4k − 2 in the construction of the
(c, 2c4)-connector. We have therefore established the following.

Theorem 2. A minimum spanning tree of an n-vertex weighted graph G, drawn
from a linearly contractible class, can be found: (i) in O(log n) time and O(n)
work on a CRCW PRAM; (ii) in O(log n log∗ n) time using O(n) work on an
EREW PRAM.

We can further achieve optimal results in the case of graphs with non-
bounded genus. The idea is as follows.

180 K.W. Chong and C. Zaroliagis

Let G be a graph with genus γ. Then, m ≤ 3n + 6γ − 6 [20]. Note that when
G is contracted, the genus of the resulting graph may remain unchanged and
the total number of edges may not decrease accordingly. However, if γ is very
small compared to the number of vertices in the graph, the total number of edges
contributed by the “6γ” term is also very small. In particular, we can assume
that m ≤ 4n, when γ = o(n). Therefore, our algorithm can still work properly
for a number of iterations, as long as the condition γ = o(ni) in every iteration is
satisfied (ni being the number of vertices at iteration i), for some suitable value
of γ and choice of c. As soon as, after a particular iteration, γ ≥ ni, we switch to
another algorithm. Next we show that if γ ≤ 2

log n
log log n , the above approach gives

an optimal algorithm to compute T ∗
G. Note that 2

log n
log log n = Ω(poly log n).

We find T ∗
G in two phases. In Phase I, we run Algorithm MST-Planar up to

the ith iteration, where i = log n − log n/ log log n and we choose the constant
c to be 14. At the end of Phase I, we obtain a graph Gi+1 in which the total
number of vertices is no more than 2

log n
log log n . In Phase II, we use the algorithm of

[8] to find T ∗
i+1 in Gi+1. The edges found in the two phases form the MST of G.

Phase I takes O(log n log∗ n) time using O(n) work on an EREW PRAM, or
O(log n) time using O(n) work on a CRCW PRAM.

Phase II takes O(log n′ log log n′) time using O(m′ log n′ log log n′) work. As
n′ = 2

log n
log log n , Phase II runs in O(log n) time using no more than O(n) work on

an EREW PRAM. Thus we have established the following.

Theorem 3. A minimum spanning tree of an n-vertex weighted graph G with
genus γ ≤ 2

log n
log log n can be found: (i) in O(log n) time and O(n) work on a CRCW

PRAM; (ii) in O(log n log∗ n) time using O(n) work on an EREW PRAM.

6 Conclusions

We presented an O(n) work parallel algorithm for solving the MST problem on
planar, minor closed, and a class of non-bounded genus graphs. The algorithms
runs in O(log n log∗ n) time on an EREW PRAM and in O(log n) time on a
CRCW PRAM.

An interesting open problem is to develop a O(n)-work deterministic EREW
PRAM algorithm for these graph classes that runs in O(log n) time.

Acknowledgements. The last author is indebted to his mentor Paul Spirakis, who
taught him by example to be a scientist and who uniquely affected the shaping of his
career.

References

1. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice-Hall, Englewood
(1993)

2. Awerbuch, B., Shiloach, Y.: New connectivity and MSF algorithms for shuffle-
exchange network and PRAM. IEEE Trans. Comput. 36(10), 1258–1263 (1987)

An Optimal Parallel Algorithm for Minimum Spanning Trees 181

3. Bodlaender, H., Hagerup, T.: Parallel algorithms with optimal speedup for
bounded treewidth. SIAM J. Comput. 27(6), 1725–1746 (1998)

4. Boruvka, O.: O jistém problému minimálńım. Práca Moravské Př́ırodovědecké
Společnosti 3, 37–58 (1926)

5. Chazelle, B.: A minimum spanning tree algorithm with inverse-Ackermann type
complexity. J. ACM 47(6), 1028–1047 (2000)

6. Cheriton, D., Tarjan, R.E.: Finding minimum spanning trees. SIAM J. Comput.
5, 724–742 (1976)

7. Chin, F.Y., Lam, J., Chen, I.N.: Efficient parallel algorithms for some graph prob-
lems. Commun. ACM 25(9), 659–665 (1982)

8. Chong, K.W.: Finding minimum spanning trees on the EREW PRAM. In: Pro-
ceedings of the International Computer Symposium—ICS’96, pp. 7–14. Taiwan
(1996)

9. Chong, K.W., Lam, T.W.: Finding connected components in O(log n log log n) time
on the EREW PRAM. J. Algorithms 18, 378–402 (1995)

10. Chong, K.W., He, Y., Lam, T.W.: Concurrent threads and optimal parallel mini-
mum spanning trees algorithm. J. ACM 48(2), 297–323 (2001)

11. Cole, R., Klein, P.N., Tarjan, R.E.: Finding minimum spanning forests in logarith-
mic time and linear work using random sampling. In: Proceedings of the 8th ACM
symposium on Parallel Algorithms and Architectures (ACM), pp. 243–250 (1996)

12. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal par-
allel list ranking. Inf. Control 70, 32–53 (1986)

13. Cole, R., Vishkin, U.: Approximate and exact parallel scheduling with applications
to list, tree and graph problems. In: Proceedings of the 27th IEEE Symposium on
Foundations of Computer Science, pp. 478–491. IEEE (1986)

14. Fredman, M., Willard, D.E.: Trans-dichotomous algorithms for minimum spanning
trees and shortest paths. J. Comput. Syst. Sci. 48, 533–551 (1994)

15. Gabow, H., Galil, Z., Spencer, T., Tarjan, R.E.: Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs. Combinatorica 6(2),
109–122 (1986)

16. Goldberg, A., Plotkin, S., Shannon, G.: Parallel symmetry-breaking in sparse
graphs. SIAM J. Discrete Math. 1, 434–446 (1988)

17. Hagerup, T.: Optimal parallel algorithms on planar graphs. Inf. Comput. 84, 71–96
(1990)

18. Hagerup, T.: Optimal Parallel Computation of Minimum Spanning Forests in Pla-
nar Graphs, Technical Report 11/1990. Universität des Saarlandes, May 1990

19. Hagerup, T., Chrobak, M., Diks, K.: Optimal parallel 5-colouring of planar graphs.
SIAM J. Comput. 18(2), 288–300 (1989)

20. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)
21. JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley, Reding (1992)
22. Johnson, D.B., Metaxas, P.: Connected components in O(log3/2 |V |) parallel time

for the CREW PRAM. In: Proceeings of 32nd IEEE Symposium on Foundations
of Computer Science, pp. 688–695, IEEE (1991)

23. Johnson, D.B., Metaxas, P.: A parallel algorithm for computing minimum spanning
trees. J. Algorithms 19, 383–401 (1995)

24. Karger, D.R.: Approximating, verifying, and constructing minimum spanning trees.
Unpublished manuscript (1992)

25. Karger, D.R., Klein, P.N., Tarjan, R.E.: A randomized linear-time algorithm to
find minimum spanning trees. J. ACM 42(2), 321–328 (1995)

182 K.W. Chong and C. Zaroliagis

26. Karp, R., Ramachandran, V.: Parallel Algorithms for Shared-Memory Machines.
In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. A, pp.
869–941. Elsevier, Amsterdam (1990)

27. Pettie, S., Ramachandran, V.: An optimal minimum spanning tree algorithm. J.
ACM 49(1), 16–34 (2002)

28. Pettie, S., Ramachandran, V.: A randomized time-work optimal parallel algorithm
for finding a minimum spanning forest. SIAM J. Comput. 31(6), 1879–1895 (2002)

29. Zaroliagis, C.D.: Simple and work-efficient parallel algorithms for the minimum
spanning tree problem. Parallel Process. Lett. 7(1), 25–37 (1997)

	An Optimal Parallel Algorithm for Minimum Spanning Trees in Planar Graphs
	1 Introduction
	2 Preliminaries
	3 The Algorithm
	4 Finding a (c,f(c))-Connector in a Degree-3 Graph
	5 Extensions of Our Results
	6 Conclusions
	References

