
Christos Zaroliagis
Grammati Pantziou
Spyros Kontogiannis (Eds.)

Algorithms, Probability,
Networks, and Games

Fe
st

sc
hr

ift
LN

CS
 9

29
5

Scientific Papers and Essays Dedicated to Paul G. Spirakis
on the Occasion of His 60th Birthday

 123

Lecture Notes in Computer Science 9295

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Christos Zaroliagis • Grammati Pantziou
Spyros Kontogiannis (Eds.)

Algorithms, Probability,
Networks, and Games
Scientific Papers and Essays Dedicated to Paul G. Spirakis
on the Occasion of His 60th Birthday

123

Editors
Christos Zaroliagis
University of Patras
Patras
Greece

Grammati Pantziou
Technological Educational Institute

of Athens
Athens
Greece

Spyros Kontogiannis
University of Ioannina
Ioannina
Greece

Cover illustration: Menger’s Theorem for Temporal Graphs
Source: G. Mertzios, O. Michail, I. Chatzigiannakis, P. Spirakis: Temporal Network Optimi-
zation Subject to Connectivity Constraints. In: F.V. Fomin, R. Freivalds, M. Kwiatkowska,
D. Peleg (Eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 657–668. Springer Heidelberg (2013)
Photograph on p. V: The photograph of the honoree was taken by Toms Grinbergs.
© Toms Grinbergs, University of Latvia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-24023-7 ISBN 978-3-319-24024-4 (eBook)
DOI 10.1007/978-3-319-24024-4

Library of Congress Control Number: 2015948167

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Paul G. Spirakis

Preface

This Festschrift volume is published in honor of Paul G. Spirakis on the occasion of his
60th birthday to celebrate his significant contributions to Computer Science.

The celebration was complemented by a special event that took place in Patras on 16
September 2015 within the frame of ALGO 2015 – the major annual algorithmic event
combining the premier algorithmic conference European Symposium on Algorithms
(ESA) along with a number of specialized conferences and workshops (ALGO-
CLOUD, ALGOSENSORS, ATMOS, IPEC, MASSIVE, WAOA), all related to
algorithms and their applications.

Algorithms, Probability, Networks, and Games are the fields of Paul’s main research
activities and we decided to adopt them as the title of the Festschrift, which is divided
into three parts.

Part I contains a modest attempt at a biographical sketch as well as essays from close
collaborators and a former PhD student. Part II contains research contributions from the
three invited speakers to the special event Shlomi Dolev, Kurt Mehlhorn, and Burkhard
Monien, who enthusiastically agreed to participate in the event and to contribute to the
Festschrift. Part III contains research contributions mostly from Paul’s former PhD
students, many of whom now pursue an academic career. The contributions of Part III
have undergone the standard peer review process. All research contributions reflect past
and current research activities in the fields of Algorithms, Probability, Networks, and
Games. In each part, the contributions are listed in alphabetic order (w.r.t. author
names).

Paul Spirakis is an eminent, talented, and influential researcher that has contributed
and keeps contributing significantly to computer science. He is among the most
visionary thought leaders of our generation, with a great talent in inspiring and guiding
young researchers. We are privileged to have him as mentor, teacher, and friend.

Happy Birthday, Paul!

September 2015 Christos Zaroliagis
Grammati Pantziou

Spyros Kontogiannis

Acknowledgements

We sincerely thank all contributors to this volume as well as the reviewers for their
invaluable help. We also thank Andreas Paraskevopoulos for helping with several
technical issues during the whole process of this volume production.

List of Contributors

Maria Andreou Professional Training Centre, TC Square Ltd, Nicosia, Cyprus,
e-mail: maria@tcsquare.com.cy

Christos Bouras Department of Computer Engineering and Informatics, University of
Patras, 26500 Patras, Greece; Computer Technology Institute & Press “Diophantus”,
N. Kazantzaki Str., Patras University Campus, 26504 Patras, Greece, e-mail:
bouras@cti.gr

Ioannis Chatzigiannakis Department of Computer, Control & Informatics Engi-
neering, Sapienza University of Rome, Rome, Italy; Computer Technology Institute &
Press “Diophantus”, N. Kazantzaki Str., Patras University Campus, 26504 Patras,
Greece, e-mail: ichatz@cti.gr

Ka Wong Chong Department of Computer Science, The University of Hong-Kong,
Porfulam Road, Hong Kong

Shlomi Dolev Ben-Gurion University of the Negev, Beer Sheva, Israel, e-mail:
dolev@cs.bgu.ac.il

Pavlos S. Efraimidis Department of Electrical and Computer Engineering,
Democritus University of Thrace, Xanthi, Greece, e-mail: pefraimi@ee.duth.gr

Charilaos Efthymiou College of Computing, Georgia Institute of Technology, 266
Ferst Dr. Atlanta, 30332 Georgia, USA, e-mail: cefthymiou3@mail.gatech.edu

Dimitris Fotakis Division of Computer Science, School of Electrical and Computer
Engineering, National Technical University of Athens, 15780 Athens, Greece, e-mail:
fotakis@cs.ntua.gr

John D. Garofalakis Department of Computer Engineering and Informatics,
University of Patras, 26504 Patras, Greece; Computer Technology Institute &
Press “Diophantus”, N. Kazantzaki Str., Patras University Campus, 26504 Patras,
Greece, e-mail: garofala@ceid.upatras.gr

Anders Gidenstam University of Borås, Sweden, e-mail: anders.gidenstam@hb.se

Vincenzo Gulisano Chalmers University of Technology, Gothenburg, Sweden,
e-mail: vincenzo.gulisano@chalmers.se

Vaggelis Kapoulas Department of Computer Engineering and Informatics, Uni-
versity of Patras, 26504 Patras, Greece; Computer Technology Institute & Press
“Diophantus”, N. Kazantzaki Str., Patras University Campus, 26504 Patras,
Greece, e-mail: kapoulas@cti.gr

Spyros Kontogiannis Department of Computer Science and Engineering,
University of Ioannina, 45110 Ioannina, Greece; Computer Technology Institute &
Press “Diophantus”, N. Kazantzaki Str., Patras University Campus, 26504 Patras,
Greece, e-mail: kontog@cs.uoi.gr

Dimitrios Koukopoulos Department of Cultural Heritage Management & New Tech-
nologies, University of Patras, 30100 Agrinio, Greece, e-mail: dkoukopoulos@upatras.gr

Basilis Mamalis Department of Informatics, Technological Educational Institute of
Athens, Greece, e-mail: vmamalis@teiath.gr

Marios Mavronicolas Department of Computer Science, University of Cyprus, 1678
Nicosia, Cyprus, e-mail: mavronic@cs.ucy.ac.cy

Kurt Mehlhorn Max-Planck-Institute for Informatics, 66123 Saarbrücken, Germany,
e-mail: mehlhorn@mpi-inf.mpg.de

Othon Michail Computer Technology Institute & Press “Diophantus”, N. Kazantzaki
Str., Patras University Campus, 26504 Patras, Greece, e-mail: michailo@cti.gr

Burkhard Monien Faculty of Electrical Engineering, Computer Science and Math-
ematics, University of Paderborn, 33102 Paderborn, Germany, e-mail: bm@upb.de

Athanasios N. Nikolakopoulos Department of Computer Engineering and Infor-
matics, University of Patras, 26504 Patras, Greece; Computer Technology Institute &
Press “Diophantus”, N. Kazantzaki Str., Patras University Campus, 26504 Patras,
Greece, e-mail: nikolako@ceid.upatras.gr

Yiannis Nikolakopoulos Chalmers University of Technology, Gothenburg, Sweden,
e-mail: ioaniko@chalmers.se

Sotiris Nikoletseas Department of Computer Engineering and Informatics, Uni-
versity of Patras, 26504 Patras, Greece; Computer Technology Institute & Press
“Diophantus”, N. Kazantzaki Str., Patras University Campus, 26504 Patras,
Greece, e-mail: znikole@cti.gr

Panagiota N. Panagopoulou Computer Technology Institute & Press “Diophan-
tus”, N. Kazantzaki Str., Patras University Campus, 26504 Patras, Greece, e-mail:
panagopp@cti.gr

Grammati Pantziou Department of Informatics, Technological Educational Institute
of Athens, Greece, e-mail: pantziou@teiath.gr

Christos H. Papadimitriou EECS Department, University of California, Berkeley,
94720 California, USA, e-mail: christos@berkeley.edu

Vicky Papadopoulou Lesta Department of Computer Science and Engineering,
European University Cyprus, Cyprus, e-mail: v.papadopoulou@euc.ac.cy

Marina Papatriantafilou Chalmers University of Technology, Gothenburg, Sweden,
e-mail: ptrianta@chalmers.se

Mikaël Rabie Ben-Gurion University of the Negev, Beer Sheva, Israel, e-mail:
rabie@cs.bgu.ac.il

Christoforos L. Raptopoulos Computer Technology Institute & Press “Diophan-
tus”, N. Kazantzaki Str., Patras University Campus, 26504 Patras, Greece, e-mail:
raptopox@ceid.upatras.gr

XII List of ContributorsXII

Elad M. Schiller Chalmers University of Technology, Gothenburg, Sweden, e-mail:
elad@chalmers.se

Paul G. Spirakis Department of Computer Engineering and Informatics, University
of Patras, 26504 Patras, Greece; Computer Technology Institute & Press “Diophantus”,
N. Kazantzaki Str., Patras University Campus, 26504 Patras, Greece; Department of
Computer Science, University of Liverpool, Liverpool, UK, e-mail: spirakis@cti.gr

Enea Tsanai Department of Computer Engineering and Informatics, University of
Patras, 26504 Patras, Greece, e-mail: tsanai@ceid.upatras.gr

Philippas Tsigas Chalmers University of Technology, Gothenburg, Sweden, e-mail:
tsigas@chalmers.se

Klaus W. Wagner Lehrstuhl für Theoretische Informatik, Institut für Informatik,
Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany, e-mail:
wagner@informatik.uni-wuerzburg.de

Christos Zaroliagis Department of Computer Engineering and Informatics, Univer-
sity of Patras, 26504 Patras, Greece; Computer Technology Institute & Press “Dio-
phantus”, N. Kazantzaki Str., Patras University Campus, 26504 Patras, Greece, e-mail:
zaro@ceid.upatras.gr

List of Contributors XIII

Contents

Part I

A Glimpse at Paul G. Spirakis . 3
Ioannis Chatzigiannakis, Dimitris Fotakis, Spyros Kontogiannis,
Othon Michail, Sotiris Nikoletseas, Grammati Pantziou,
and Christos Zaroliagis

The Reality Game Theory Imposes (Short Summary) 25
Shlomi Dolev

On Neural Networks and Paul Spirakis . 27
Christos H. Papadimitriou

Concurrency, Parallelism, Asynchrony and Life . 29
Marina Papatriantafilou

Part II Invited Talks

Rationality Authority for Provable Rational Behavior 33
Shlomi Dolev, Panagiota N. Panagopoulou, Mikaël Rabie,
Elad M. Schiller, and Paul G. Spirakis

Weighted Boolean Formula Games . 49
Marios Mavronicolas, Burkhard Monien, and Klaus W. Wagner

On the Implementation of Combinatorial Algorithms for the Linear
Exchange Market . 87

Kurt Mehlhorn

Part III Regular Contributions

On Radiocoloring Hierarchically Specified Planar Graphs:
PSPACE-completeness and Approximations . 97

Maria Andreou, Dimitris Fotakis, Vicky Papadopoulou Lesta,
Sotiris Nikoletseas, and Paul Spirakis

Performance Evaluation of Routing Mechanisms for VANETs in Urban
Areas. 133

Christos Bouras, Vaggelis Kapoulas, and Enea Tsanai

Pioneering the Establishment of the Foundations of the Internet of Things . . . 154
Ioannis Chatzigiannakis

http://dx.doi.org/10.1007/978-3-319-24024-4_1
http://dx.doi.org/10.1007/978-3-319-24024-4_2
http://dx.doi.org/10.1007/978-3-319-24024-4_3
http://dx.doi.org/10.1007/978-3-319-24024-4_4
http://dx.doi.org/10.1007/978-3-319-24024-4_5
http://dx.doi.org/10.1007/978-3-319-24024-4_6
http://dx.doi.org/10.1007/978-3-319-24024-4_7
http://dx.doi.org/10.1007/978-3-319-24024-4_7
http://dx.doi.org/10.1007/978-3-319-24024-4_8
http://dx.doi.org/10.1007/978-3-319-24024-4_8
http://dx.doi.org/10.1007/978-3-319-24024-4_9
http://dx.doi.org/10.1007/978-3-319-24024-4_9
http://dx.doi.org/10.1007/978-3-319-24024-4_10

An Optimal Parallel Algorithm for Minimum Spanning Trees in Planar
Graphs. 169

Ka Wong Chong and Christos Zaroliagis

Weighted Random Sampling over Data Streams . 183
Pavlos S. Efraimidis

Random Instances of Problems in NP – Algorithms and Statistical Physics . . . 196
Charilaos Efthymiou

A Selective Tour Through Congestion Games. 223
Dimitris Fotakis

Data-Streaming and Concurrent Data-Object Co-design: Overview
and Algorithmic Challenges . 242

Vincenzo Gulisano, Yiannis Nikolakopoulos, Marina Papatriantafilou,
and Philippas Tsigas

Stability in Heterogeneous Dynamic Multimedia Networks. 261
Dimitrios Koukopoulos

Advances in the Parallelization of the Simplex Method 281
Basilis Mamalis and Grammati Pantziou

An Introduction to Temporal Graphs: An Algorithmic Perspective. 308
Othon Michail

Random Surfing Without Teleportation . 344
Athanasios N. Nikolakopoulos and John D. Garofalakis

Of Concurrent Data Structures and Iterations . 358
Yiannis Nikolakopoulos, Anders Gidenstam, Marina Papatriantafilou,
and Philippas Tsigas

On Some Combinatorial Properties of Random Intersection Graphs 370
Sotiris E. Nikoletseas and Christoforos L. Raptopoulos

Efficient Equilibrium Concepts in Non-cooperative Network Formation 384
Panagiota N. Panagopoulou

Simple Parallel Algorithms for Dynamic Range Products 396
Christos Zaroliagis

Author Index . 409

XVI Contents

http://dx.doi.org/10.1007/978-3-319-24024-4_11
http://dx.doi.org/10.1007/978-3-319-24024-4_11
http://dx.doi.org/10.1007/978-3-319-24024-4_12
http://dx.doi.org/10.1007/978-3-319-24024-4_13
http://dx.doi.org/10.1007/978-3-319-24024-4_14
http://dx.doi.org/10.1007/978-3-319-24024-4_15
http://dx.doi.org/10.1007/978-3-319-24024-4_15
http://dx.doi.org/10.1007/978-3-319-24024-4_16
http://dx.doi.org/10.1007/978-3-319-24024-4_17
http://dx.doi.org/10.1007/978-3-319-24024-4_18
http://dx.doi.org/10.1007/978-3-319-24024-4_19
http://dx.doi.org/10.1007/978-3-319-24024-4_20
http://dx.doi.org/10.1007/978-3-319-24024-4_21
http://dx.doi.org/10.1007/978-3-319-24024-4_22
http://dx.doi.org/10.1007/978-3-319-24024-4_23

Part I

A Glimpse at Paul G. Spirakis

Ioannis Chatzigiannakis1,2(B), Dimitris Fotakis3, Spyros Kontogiannis1,4,
Othon Michail1, Sotiris Nikoletseas1,5, Grammati Pantziou1,6,

and Christos Zaroliagis1,5

1 Computer Technology Institute and Press “Diophantus”, Patras University
Campus, N. Kazantzaki Str., 26504 Patras, Greece

{ichatz,michailo,nikole}@cti.gr
2 Sapienza University of Rome, Rome, Italy

3 Division of Computer Science, School of Electrical and Computer Engineering,
National Technical University of Athens, 15780 Athens, Greece

fotakis@cs.ntua.gr
4 Department of Computer Science and Engineering, University of Ioannina,

45110 Ioannina, Greece
kontog@cs.uoi.gr

5 Department of Computer Engineering and Informatics, University of Patras,
26504 Patras, Greece

zaro@ceid.upatras.gr
6 Department of Informatics, Technological Educational Institution of Athens,

Egaleo, Greece
pantziou@teiath.gr

1 Introduction

Paul Spirakis is an eminent, talented, and influential researcher that contributed
significantly to computer science. This article is a modest attempt of a biograph-
ical sketch of Paul, which we drafted with extreme love and honor.

2 Childhood, Education and Career

Paul G. Spirakis was born on 29 August 1955 in Didymoteicho, a city in the
northeastern part of Greece, just 2Km from the Greek-Turkish border. His father
George Spirakis originated from that city, while his mother Olga Avgoustinou
originated from the island of Zakynthos (or Zante). She moved to Didymoteicho
as a teacher in an elementary school of the area, where she met Paul’s father.
The family is complemented by a daughter (Eleni). Didymoteicho was the home
of the Spirakis family and Paul’s parents were among the prominent citizens
of the city. George Spirakis was the City Mayor in the periods 1960–1966 and
1978–1982.

Paul finished the elementary school there as well as the five out of the six
classes of the high-school. He was the top student in all classes with a passionate
love for mathematics. This caused his mathematics teacher in high-school’s fifth
class (Mr. Ionas) to convince his parents to let Paul enroll in the advanced 1st

c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 3–24, 2015.
DOI: 10.1007/978-3-319-24024-4 1

4 I. Chatzigiannakis et al.

(public) high-school in Thessaloniki for further training in mathematics. This
indeed happened (to the full disappointment of Paul’s literature teacher, who
was trying to convince him and his parents to study literature) and Paul finished
high-school in Thessaloniki in 1973, again as the top student of his class.

During the same academic year (1972–1973) he was also enrolled to a special
school preparing students for the National Examinations for University Entrance.
His mathematics teacher in that school (Mr. Mpallis), motivated by Paul’s pas-
sionate love and talent for mathematics, soon developed a close relationship with
him and devoted the majority of his time to Paul’s further training in mathe-
matics.

As a result, Paul received in 1973 one of the most prestigious prizes in Greece,
the First Prize of the Greek Mathematics Society. This prize is awarded after
a highly-competitive national examination among students all over Greece. In
the same year, he also succeeded in the National Examinations for University
Entrance, entering the School of Electrical Engineering at the National Technical
University of Athens (NTUA). During his studies, he was constantly among
the top 2 % of students, graduating with excellence in 1978 (5-year Diploma in
Electrical Engineering from NTUA).

Subsequently, Paul was admitted (with scholarship) at Harvard University
for pursuing postgraduate studies. He received his S.M. degree in Applied Mathe-
matics & Computer Science in June 1979, and his Ph.D. in Applied Mathematics
& Computer Science in early 1982. His Ph.D. Thesis “Probabilistic Algorithms,
Algorithms with Random Inputs and Random Combinatorial Structures”, under
the supervision of Prof. John Reif, contributed significantly to the field of prob-
abilistic and randomized algorithms.

After his Ph.D, Paul received a post-doctoral research fellowship at Harvard
University and in September 1982 was appointed as Assistant Professor in the
Courant Institute of Mathematical Sciences at New York University. In the sum-
mer of 1985 he was elected Associate Professor in the Department of Computer
Engineering and Informatics at the University of Patras, and in October 1990
was promoted to a Full Professor (meanwhile, during the period October 1985–
April 1987, he served his obligatory military service in the Greek Army). In
1996, Paul was appointed as the President (Chairman of the Board of Directors)
of the Computer Technology Institute & Press “Diophantus”. Among others,
he is the Head of Research Unit 1 (Foundations of Computer Science, Relevant
Technologies and Applications).

Since September 2013 he holds a chair professorship in the Department of
Computer Science at the University of Liverpool, UK. He also leads the Networks
Sciences and Technologies (NeST) Initiative of the University of Liverpool, and
he is the chair of the research committee of the School of Electrical Engineering,
Electronics and Computer Science at the same university.

3 Teaching, Mentoring, and Publications

During the 33 years of his academic career, Paul Spirakis taught a variety of
classes at both undergraduate and graduate level, covering a broad spectrum

A Glimpse at Paul G. Spirakis 5

of subjects within Computer Science, including Algorithms and Combinatorial
Optimization, Approximation algorithms to Hard Problems, Cryptography, Dis-
crete Mathematics, Distributed Computing and Systems, Game Theory, Eco-
nomics and Algorithms, Operating Systems, Parallel Algorithms, Probability
Theory, Probabilistic Techniques in Algorithms, and Theory of Computation.

Most of these classes were introduced and taught for the first time in a
Greek University. All students of those classes surely remember Paul’s inspiring
lectures, and for most of them those lectures had a predominant influence on
their careers.

A key ability of Paul Spirakis is the identification of core problems in tech-
nologies that are still in their inception, many years before they become apparent
to the scientific community. This requires an almost unique inter-scientific abil-
ity to combine a broad set of techniques and methodologies to examine a given
problem.

Paul Spirakis is among the most visionary thought leaders of our generation,
with a great talent to inspire and guide new researchers. He has invested a
huge amount of effort and time in mentoring students and young scientists,
and introducing them to the mysteries of computation and its applications. He
supervised numerous undergraduate and postgraduate students and he awarded
more than 32 doctoral dissertations.

It did not then come as a surprise that, in a study conducted in 2004, he was
reported among the top 50 nurturers in Computer Science Research [47].

Paul Spirakis has a tremendous publication record. He has published:

– More than 120 research papers in prestigious peer-reviewed journals.
– More than 290 research papers in refereed proceedings of top international

computer science conferences.
– 12 books (3 in English and 9 in Greek).
– 17 chapters in books or edited volumes.
– More than 40 research papers in archived repositories (representing work in

progress).

His publications have received more than 5300 citations (h-index: 37, g-index: 59).

4 Awards and Distinctions

For his research work and scientific achievements, Paul Spirakis has been honored
with numerous awards and distinctions, which include:

– Fellow of the European Association for Theoretical Computer Science
(EATCS), since 2014.

– Member of Academia Europaea, since 2010.
– Member of the ACM Europe Council, sice 2009.
– Recipient of a Technology Excellence Award, as a Technology Pioneer, in 2009

in the competition of Technology Excellence Awards 2009 organized by the
PC and T3 magazines (Greek Editions).

6 I. Chatzigiannakis et al.

– Vice President of the European Association for Theoretical Computer Science
(elected unanimously), since 2002.

– Member of the Council Board of the European Association for Theoretical
Computer Science (elected unanimously), since 1997.

– Acknowledged as among the top 50 nurturers in Computer Science Res-
earch [47].

– Distinguished Visiting Scientist of the Max-Planck Institute for Informatics,
Fall 2001.

5 Research

The research work of Paul Spirakis is so broad that it would be extremely difficult
(if at all possible) to describe it in an succinct and unambiguous way. It encom-
passes two main streams that fruitfully interact with each other throughout his
career, Algorithms and Complexity, and Computer Systems and Networks. The
former stream includes his contributions to the foundations of computer science.
The latter stream includes mainly applied work that it has heavily benefited
from the former stream.

For this reason, we have chosen here to focus on the Algorithms and Com-
plexity stream and attempt at providing a short overview of his contributions.
In all cases, the vast majority of Paul’s work is characterized by a set of recur-
ring themes: probabilistic and randomized approaches, fundamental methods of
parallel and distributed computing, graph-theoretic approaches, approximation
methods, and (lately) algorithmic game theory and evolution methods & struc-
tures.

5.1 Probabilistic and Randomized Algorithms

From the very start of his academic formation, Paul Spirakis developed a fun-
damental relation to probabilistic methods and their applications in theoretical
computer science. In his Ph.D. Thesis, Paul suggested some novel, major uses
of discrete probability, in combinatorial structures as well as in the design and
analysis of randomized algorithms.

In particular, in [72] he introduced randomness in the fundamental com-
binatorial structure of matroids, towards its powerful generalization to ran-
dom matroids. For the independent set problem under this new model, non-
constructive existence proofs as well as efficient randomized algorithms were
provided. Also, some nice applications of this structure to classic Erdős-Rényi
random graphs were given. The second part of Paul’s Ph.D. Thesis anticipated in
a characteristic way his major future contributions to randomized methods in dis-
tributed computing throughout his career. In [73], he suggested the employment
of probabilistic choice for interprocess communication (and symmetry breaking).
It is worth noting that this has been one the first few uses of random choice in
distributed computing.

A Glimpse at Paul G. Spirakis 7

Since this early stage, and throughout his career, random methods have been
the main connecting thread in the research of Paul Spirakis. Several applications
of randomness to diverse topics are also discussed elsewhere in this chapter. We
highlight here two fundamental (per se) uses of randomness.

The first one concerns his constant investigation of random combinatorial
models. Further to a deep exploration of crucial properties in Gn,p random
graphs, Paul liked to introduce nice extensions of such models, motivated both by
mathematical curiosity and major trends in modern technology. Such extensions
characteristically include the introduction of failures to random regular graphs
models [65] and the exploration of interesting variations of random intersection
graphs [67].

Relevant persistent features of his research include the heavy use of random
processes to model and analyze interesting computational phenomena (see e.g.,
[17,51]) and the use of randomness in algorithms for graph-theoretic problems
(see e.g., [19,29]).

In a second line, the exploration of major combinatorial properties of such
models has been based on a sophisticated use and even extension of probabilis-
tic techniques collectively referred to as the Probabilistic Method established
by Paul Erdős. It is worth noting that Paul Spirakis maintained a deep devo-
tion to such probabilistic techniques, and effectively passed on his dedication
to several of his students and colleagues. He not only applied in a brilliant way
randomized techniques but several times he also further developed and extended
these techniques themselves, such as in [35], where a new series of tail bounds
for occupancy problem has been provided.

5.2 Parallel Algorithms and Complexity

A few years after his Ph.D, Paul Spirakis started an intense research activity
in the field of parallel algorithms and complexity. He studied various fundamen-
tal problems in parallel computing and his results contributed significantly in
promoting the field. We mention here a few indicative cases.

One of his first attempts was to devise efficient algorithms that are sensitive to
properties of the input which can be determined only at run-time. For instance,
in the case of parallel addition in shared memory models, it is interesting to
devise algorithms whose bounds depend on the number of non-zero elements. In
[77], Paul designed such an algorithm for the fundamental problem of parallel
addition. In an input of n numbers, m of which are non-zero entries, he devised
a randomized parallel algorithm for a CRCW PRAM, which runs in O(log m)
expected time with m processors using O(m) shared space. He also applied this
algorithm to the related problem of processor identification.

A fair part of his work dealt with the development of efficient parallel algo-
rithms and the investigation of the parallel complexity of several problems on
graphs within the context of shared memory parallel computing:

– Along the former, he derived (along with Grammati Pantziou and Christos
Zaroliagis) efficient deterministic parallel algorithms for shortest paths and

8 I. Chatzigiannakis et al.

other problems (see e.g., [38,71]) as well as parallel algorithms which exhib-
ited a remarkable average case performance. In particular, he studied with
John Reif in [76] the parallel average case complexity of several problems on
random instances of undirected and directed graphs. In that paper, a bulk of
algorithms was developed, based on new results on the diameter of random
(directed) graphs, that are able to solve a host of graph problems on an n-
node random (directed) graph (connectivity, biconnectivity, transitive closure,
minimum spanning trees, and all pairs minimum cost paths) in O(log log n)
expected parallel time on a CRCW PRAM. These are exponentially faster
algorithms than their deterministic counterparts.

– Along the latter, he investigated the parallel complexity of the problem of
testing whether a given graph G contains an induced subgraph of vertex (edge)
connectivity at least k. Paul Spirakis, with Maria Serna and Lefteris Kirousis,
proved in [41] that this problem is P -complete for any fixed k ≥ 3. This result
came as a surprise, since the related problem of computing the triconnected
(or Tutte) components of G (maximal subgraphs of G such that for any four
vertices in any of them, any two of these vertices can be connected by a path
in G that avoids the other two) was known to be in NC. In addition, they
provided interesting NC approximability and inapproximability results.

Another thread of his research concerned fault-tolerant parallel computing.
Paul Spirakis together with KZvi Kedem and Krishna Palem investigated in
[39] the problem of executing efficient robust parallel computations on a PRAM
whose processing elements are prone to failure. In particular, they devised a
general strategy for simulating an arbitrary step of an ideal CRCW PRAM on
a PRAM with faulty processors at a small multiplicative time overhead and at
a small (per processor) additive constant space overhead.

An equally important thread of Paul’s research focused on more realistic mod-
els of parallel computing. In particular, he (along with co-authors) investigated
in [4] a quantitative comparison of the BSP and LogP models of parallel compu-
tation. Both models are successful paradigms of the so-called bridging models of
parallel computation, where one seeks for balancing simplicity (that eases soft-
ware development), accuracy (to enable realistic performance predictions), and
generality (to enable software portability across various architectures). In BSP
the fundamental primitives are global barrier synchronization and the routing of
arbitrary message sets. LogP lacks explicit synchronization and imposes a more
constrained message-passing style which aims at keeping the load of the under-
lying communication network below a specified capacity limit. Intuitively, BSP
offers a more convenient abstraction for algorithm design and programming,
while LogP provides better control of machine resources. In [4], very efficient
cross simulations between BSP and the stall-free LogP were derived, showing
their substantial equivalence for algorithmic design guided by asymptotic analy-
sis. It was also shown that the two models can be implemented with similar
performance on most point-to-point networks.

A Glimpse at Paul G. Spirakis 9

5.3 Networks and Distributed Computing

The contribution of the research work of Paul Spirakis in the field of networks
and distributed computing has been very important for the further development
of the field. He has coauthored a significant number of research articles while he
contributed as a program committee member of related scientific conferences and
as editor of journals. In the following, we highlight some of the most important
research works of Paul Spirakis and his coauthors in the field.

Paul Spirakis with John Reif addressed in [75] the fundamental problem of
synchronizing communication between distributed processes whose speeds vary
dynamically, and they showed how to implement a distributed local scheduler
to find matching pairs of processes which are willing to communicate. In [73,74]
they considered the probabilistic approach to synchronization of communication
in a network of distributed asynchronous processes and presented probabilistic
synchronization algorithms that have real time response (the establishment of
communication is taking place within a specified time interval with high prob-
ability). The algorithms are applied to solve a large class of real time resource
synchronization problems.

Paul Spirakis with Hermann Jung and Lefteris Kirousis presented in [34] an
algorithm for scheduling a DAG of n nodes on a multiprocessor. The algorithm
constructs an optimum schedule which uses at most n processors. They also gave
lower bound results on the amount of recomputation needed, thus answering an
open question posed by Papadimitriou and Yannakakis.

Paul Spirakis with Lefteris Kirousis and Philippas Tsigas addressed in [42]
the problem of reading more than one variables in one atomic operation by
only one reader while each of the variables is being written by a set of writers.
They presented a deterministic protocol with linear in the number of processes
space complexity, linear time complexity for a read operation and constant time
complexity for a write operation, as well as a simple probabilistic algorithm
with sublinear space complexity and time complexity for a read operation, thus
improving significantly previous approaches which required at best, quadratic
time and space complexity.

Paul Spirakis with Panagiota Fatourou studied in [21] the problem of effi-
ciently scheduling strict multithreaded computations and presented the first fully
distributed scheduling algorithm. The algorithm is asynchronous, on-line, and
efficient not only in terms of its memory requirements and its execution time,
but also in terms of its communication complexity. Their analysis applies to both
shared and distributed memory machines.

Paul Spirakis with Josep Diaz, Dimitrios Koukopoulos, Sotiris Nikoletseas,
Maria Serna, and Dimitrios Thilikos analyzed in [18] the stability properties of
the FIFO protocol in the adversarial queueing model for packet routing. They
presented an upper bound result for stability of any network under the FIFO
protocol, answering partially an existing open question. In [45] Paul Spirakis
with his co-authors Dimitrios Koukopoulos, Marios Mavronicolas, and Sotiris
Nikoletseas, studied the problem of how network structure affects the stabil-
ity properties of greedy contention-resolution protocols in the framework of the

10 I. Chatzigiannakis et al.

adversarial queueing theory. They came up with a comprehensive collection of
structural results in the form of stability and instability bounds on injection rate
of the adversary.

Another aspect of Paul’s research concerned intrusion propagation in net-
works. In a joint work with Nikoletseas et al. [66], they studied the problem of
intrusion propagation under the assumption of a rather limited in power intruder
and how (under this assumption) intrusion can propagate in a perhaps highly
secure network. To study this problem, they introduced a new general model for
such an intrusion and its propagation in networks. As it turned out by analytic
and experimental methods, even such an intruder can have a large penetration
factor in the network. Moreover, it was also shown that it will not be easy for
a detection mechanism to trace the origin of the intrusion, since it will have to
trace a number of links proportional to the nodes captured.

Except for pure theoretical work, Paul Spirakis together with Christos
Zaroliagis investigated in [78] implementation and experimentation aspects of
distributed algorithms. When one engineers distributed algorithms, some special
characteristics arise that are different from conventional (sequential or parallel)
computing paradigms. These characteristics include: the need for either a scal-
able real network environment or a platform supporting a simulated distributed
environment; the need to incorporate asynchrony, where arbitrary asynchrony
is hard (if at all possible) to implement; and the generation of “difficult” input
instances which is a particular challenge. In [78], the term Distributed Algo-
rithm Engineering was coined to emerge the need for a systematic methodology
to address the aforementioned characteristics as well as the considerable effort
required to convert theoretically efficient and correct distributed algorithms to
efficient, robust, and easily used software implementations on a simulated or
real distributed environment. This conversion has to preserve the assumed prop-
erties and limitations of the distributed computing model. The study in [78]
addresses several methodological issues in Distributed Algorithm Engineering
and illustrates certain approaches to tackle them via case studies.

5.4 Internet, Mobile, and Evolution Networks

Paul was always interested in studying the theoretical foundations of networks
using different techniques and testing alternative research direction. Yet, one
of the most distinguishing aspects of his approach is to steer his theoretical
curiosity into real problems emerging from newly introduced technologies. A
typical example of this aspect of his research character is the case of the mobile
networks.

In the 1990s, mobile telephony networks were attracting a lot of attention
and were emerging as a new technological area. As a first attempt to examine
this new technology, along with Grammati Pantziou and George Pentaris, he
started by looking into the problem of call control using competitive analysis
techniques [70]. Almost in parallel, he also looked into the problem of frequency
assignment for fixed-infrastructure mobile networks (e.g., mobile telephony net-
works) along with Dimitris Fotakis, using graph theoretic techniques [30]. This

A Glimpse at Paul G. Spirakis 11

lightning-fast (Blitzkrieg) examination gave him a good first understanding of
this new technological area. Paul started to understand the intricacies and was
ready to look beyond the first line of research problems and searched for the
deep foundational questions.

In 1999 he forsees that apart from the mobile telephony networks, there is
another, different kind of mobile networks where no fixed infrastructure exists.
In cooperation with Kostas Hatzis, George Pentaris and Vasilis Tampakas they
make one of the very first theoretical approaches into studying fundamental net-
work control problems for the so-called “mobile ad-hoc networks” [32,33]. A key
concept of this new approach is that nodes are free to move within the network
area in any way they deem appropriate. Given this idea of free-mobility, they
understand that all existing graph theoretic models where users are represented
by the vertices of the graph and edges correspond to wireless communication
channels for users that are within each-others communication range, are simply
impractical for use in rigorous theoretical analysis. Among the main contribu-
tion of their work was the so-called “motion graph”, where essentially the graph
represents the area where the nodes move. Under this setting, they introduced
efficient counting algorithms and proved (using markov chain theory) their cor-
rectness even under scenarios of extreme mobility.

The new model of “motion graph” was then used as the basis for study-
ing other fundamental control problems in ad-hoc mobile network along with
Ioannis Chatzigiannakis and Sotiris Nikoletseas. Having as a starting point the
Markov chain theory, they looked into different network management protocols
in large-scale networks, networks with faulty processors and where some nodes
volunteer to support the operation of the network (e.g., see [9,11]). The key
idea of the communication framework they introduced was to take advantage of
the mobile nodes natural movement by exchanging information whenever mobile
nodes meet incidentally. In some way, this idea resembled gossip like communi-
cation protocols where messages are spread among nodes like rumors.

Almost in parallel to the work of Paul and his team, similar gossip-like con-
cepts were followed in [82] where an epidemic algorithm was designed. In their
solution, messages are broadcast to all neighbors as long as there is enough stor-
age space to hold the copies. When there is no room in the local storage of a node,
oldest messages are evicted. However, in contrast to the work in [82] and other
epidemic algorithms introduced later on in the relevant literature, the protocol
framework of Paul and his collaborators did not rely on any assumption on the
mobility patterns of the nodes. To deal with cases where nodes were spread in
remote areas and would not move beyond these areas, they used these volunteer-
nodes to reach them and establish connectivity by physically transporting mes-
sages between the sender and receiver nodes. Interestingly, these ideas were used
to formulate the Delay Tolerant Networking Architecture in 2007 [5] and later on,
in 2014, test them in the field as part of a project partially supported by NASA:
a team of quadcopters was used to establish digital communication networks.

Another typical example of Paul’s interest in emerging technologies, was the
case of Smart Dust networks. These networks share many common points with

12 I. Chatzigiannakis et al.

the ad-hoc networks, however, the main difference is that nodes have extremely
limited capabilities (i.e., in terms of computation, memory and energy). Once
again his plan was to look into fundamental network management problems—and
in particular the problem of event propagation. The first paper [10] in this new
area appeared in 2002 in collaboration with Ioannis Chatzigiannakis and Sotiris
Nikoletseas, and then another Blitzkrieg followed with a series of collaborators,
to name a few: Peter Triantallou and Nikos Ntarmos [81], Tasos Dimitriou and
Marios Mavronicolas [6,7], Ioannis Krontiris and Fotios Nikakis [20]. A few years
later, the term Smart Dust networks was replaced by that of Wireless Sensor
Networks, and a bit later with the term Pervasive Computing.

Eventually these technologies became broadly known as the Internet of
Things. Regardless of the name and ephemeral keywords, the technological goal
remained the same: to deploy low-cost network nodes and integrate them with
the Internet with the ultimate goal to interconnect the digital and physical
domains. Paul’s innovative ideas of occasionally-connected networks, and the
need to provide sets of protocol families are now interwined with the Internet
of Things and uniformly considered by all developers and researchers as a basic
concepts. Yet at the very beginning of the inception of the Internet of Things,
this was not the case. Paul Spirakis was among the very few visionary to predict
that in order to realize all these new types of applications we would have to
address the problem of intermittent connectivity in networks with long delays
between sending and receiving messages, or long periods of disconnection.

Moving forward from the Smart Dust networks and their evolution into the
Internet of Things, Paul had in 2007 one more glimpse into the future. His vision
on future systems included the orchestration of myriads of units/nodes, web
services, business processes, people, companies and institutions that would be
continuously integrated and connected, while preserving their individual prop-
erties, objectives and action. Paul’s idea on the evolution of the Web and the
Internet of Things was about tiny agents that operate using simple local rules
and interact by exchanging short messages. Applications are continuous never-
ending processes that eventually reach a state where the agents have developed
a self-understanding of the global state.

The first attempt to deal with these systems was based on the Population Pro-
tocols model of computation that captures the way in which complex behavior
of systems can emerge from the underlying local interactions of agents. Agents
are usually anonymous and the local interaction rules are scalable (indepen-
dent of the size n of the population). Such protocols can model the antagonism
between members of several “species” and relate to evolutionary games. In the
recent past, Paul was involved in joint research studying the discrete dynam-
ics of cases of such protocols for finite populations. Such dynamics are, usually,
probabilistic in nature, either due to the protocol itself or due to the stochastic
nature of scheduling local interactions. Examples are (a) the generalized Moran
process (where the protocol is evolutionary because a fitness parameter is cru-
cially involved) [17] (b) the Discrete Lotka-Volterra Population Protocols (and
associated Cyclic Games) [14] and (c) the Majority protocols for random inter-
actions [52].

A Glimpse at Paul G. Spirakis 13

Such protocols are usually discrete time transient Markov chains. However
the detailed states description of such chains is exponential in size and the state
equations do not facilitate a rigorous approach. Instead, ideas related to fil-
tering, stochastic domination and Potentials (leading to Martingales) help in
understanding the dynamics of the protocols. Paul looked into the question of
fast (in time polynomial in the population size) convergence (to an absorbing
state). He addressed questions of “most probable” eventual state of the protocols
(and the computation of the probability of such states). Several aspects of such
discrete dynamics are wide open and it seems that the algorithmic thought can
contribute to the understanding of this emerging subfield of science.

5.5 Algorithmic Game Theory

In the last 15 years, Paul has had a significant contribution to Algorithmic Game
Theory (AGT) and has played a key role to the development of the field. He
has been one of the pioneers in AGT and his ground-breaking work, mostly on
algorithmic properties of load balancing and congestion games and on the effi-
cient computation of exact or approximate Nash equilibria. He has significantly
advanced our knowledge and has inspired many researchers to work on AGT.

Load-Balancing and Congestion Games. Paul had understood, from the
very beginning, that load balancing and congestion games were bound to play a
central role in AGT. His work has shaped the research agenda in the topic for
many years and touches many important questions, from existence and complex-
ity of Nash equilibria, to the inefficiency of equilibria, and to computationally
efficient mechanisms for improving the Price of Anarchy. Notably, the examples
below include four of Paul’s most cited papers in Scopus.

In one of the first AGT papers, Marios Mavronicolas and Paul Spirakis [49]
initiated the study of fully mixed Nash equilibria for load balancing games. They
determined the fully mixed Nash equilibrium for identical links and weighted
players. Building on it, they proved that the Price of Anarchy for n weighted
players and m identical links is O(ln n/ ln lnn), for n ≥ m. Shortly after-
wards, Koutsoupias et al. [46] improved this bound to an almost tight bound of
Θ(ln m/ ln lnm).

Subsequently, Fotakis et al. [27] introduced the notion of generalized fully
mixed Nash equilibria for uniformly related parallel links and proved that they
almost maximize the Price of Anarchy for identical players. They also gave two
proofs of the fact that load balancing games admit pure Nash equilibria. The
proof techniques, one based on a greedy argument and the other on a lexico-
graphic potential, have found numerous applications since then.

Investigating necessary and sufficient conditions for the existence of pure
Nash equilibria in congestion games with weighted players, Fotakis et al. [26]
proved that if the delay functions are linear, such games admit a weighted poten-
tial function. The construction is versatile and has been extended to several gen-
eralizations of congestion games. For instance, Paul and his coauthors extended

14 I. Chatzigiannakis et al.

it for linear congestion games with static coalitions of players [28] and for linear
congestion games in a social network [24]. Moreover, Panagopoulou and Spirakis
[68] presented a potential function for weighted congestion games with exponen-
tial delays. Today we know that there are no other classes of weighted congestion
games with a potential function [31].

Investigating the inefficiency of equilibria in congestion games, Christodoulou
et al. [13] proved general tight bounds on the Price of Anarchy and the Price of
Stability for ε-approximate pure Nash equilibria of congestion games with linear
delays.

Trying to eliminate the inefficiency of equilibria, Kaporis and Spirakis [37]
introduced the price of optimum, namely the smallest fraction of coordinated
players required to induce an optimal configuration in Stackelberg routing games,
and showed how to efficiently compute it.

A most interesting and counterintuitive fact in selfish routing is the Braess
paradox, namely that edge removal may improve the players’ delay at equilib-
rium. Detecting and eliminating the Braess paradox is a notoriously hard com-
putational problem. Fotakis et al. [25] proved that for non-atomic congestion
games on single-commodity networks with linear delays, if the delays of almost
all edges are strictly increasing, the most severe manifestations of the Braess
paradox can be recognized in polynomial time.

Nash Equilibria in Bimatrix Games. One of the most appealing concepts
in game theory is the notion of Nash equilibrium: A collection of strategies for
the players, from which no player has an incentive to unilaterally deviate. The
extremely nice thing about Nash equilibria is that they always exist in any
finite normal-form game [64]. Nevertheless, the recent advances in the apparent
hardness of the problem NASH(k) of computing an arbitrary Nash equilibrium
in k-player games [15], even for 2-player (a.k.a. bimatrix) games [12], crucially
question its appllicability as a realistic solution concept.

Therefore, a flurry of results have appeared in the literature during the last
decade, concerning the polynomial-time construction of either an approximation
of a Nash equilibrium for the general case, or an exact Nash equilibrium for
certain important classes of bimatrix games. Spirakis has been one of the leading
researchers in both these research trends.

With respect to the approximability of Nash equilibria, he essentially
initiated the discussion on polynomial-time constructible approximations of
NASH(2) [43], in parallel with the group of Papadimitriou [16]. Since then there
has been a significant effort in the literature to reduce these upper bounds, for
various notions of Nash equilibrium approximations. Spirakis and his colleagues
have established novel techniques for constructing approximate equilibria in nor-
malized bimatrix games, which essentially hold the record so far for the two most
popular notions of Nash equilibrium approximations:

– For the most common notion of additive ε−approximate Nash equilibria (ε-
NE in short), in which no player may increase its payoff more than an additive
term of ε given the strategies of the opponents, Spirakis and Tsaknakis [79]

A Glimpse at Paul G. Spirakis 15

suggested a gradient-based approach on the regret functions of the two play-
ers, and proved that it converges in polynomial time to a 0.3393-NE of an
arbitrary normalized bimatrix game. For symmetric bimatrix games, Spirakis
and Kontogiannis have provided a polynomial-time algorithm for construct-
ing (1/3 + δ)-NE, for any constant δ > 0 [44], which is also so far the best
polynomial-time approximation guarantee. Although there is to date no the-
oretical evidence that one cannot go below these thresholds, all experimental
evidence [23,44,80] demonstrate that it is indeed hard to break it with the
existent approaches.

– For the more demanding notion of, again additive, ε−well supported approx-
imate Nash equilibria (ε−WSNE in short), in which each player may assign
positive probability mass only to actions that are ε−approximate best
responses to the opponent’s strategy, Spirakis and Kontogiannis suggested
a polynomial-time algorithm that is based on the tractability of linear pro-
gramming and constructs (2/3)−WSNE. This result has only slightly been
improved in [22] to (2/3 − 0.005913759)-WSNE. It is also known that going
below the 2/3 threshold, one would need to check profiles of strategies with
at least polylogarithmic support sizes [2], essentially ruling out enumerative
approaches on the support sizes.

Concerning the second research trend, of polynomial-time algorithms for effi-
ciently solving exactly NASH(2) in certain classes of bimatrix games, the most
typical class is that of constant-sum games. Spirakis and Kontogiannis have
determined another class of polynomial-time solvable bimatrix games, called
mutually-concave games [44]. The main idea was based on the polynomial-time
tractability of convex quadratic programs, along with a parameterization of the
quadratic-program formulation of Mangasarian and Stone for Nash equilibria in
bimatrix games [48]. It was proved in [44] that this class of games is essentially
equivalent to the class of strategically-zero-sum games proposed by Moulin [63],
but the approach in [44] provides a faster algorithm for computing an equillib-
rium than the one suggested by Moulin. The class of mutually-concave games
is strictly larger than that of constant-sum games, and is incomparable to the
other widely studied class of constant-rank games, for which it is known that a
FPTAS exists [36]. Spirakis and Panagopoulou have also proved that randomly
constructed bimatrix games are easy to solve [69].

5.6 Population Protocols and Temporal Graphs

In the last 7 years, Paul Spirakis has been studying in a systematic way formal
models and problems inspired from Dynamic Distributed Computing Systems
and Networks. His work on this modern subject can be broken down into two
main strands: Population Protocols and Temporal Graphs.

Population Protocols (PPs) of Angluin et al. [3] is a distributed comput-
ing model of highly restricted computational entities (e.g., tiny sensor nodes or
nanorobots) that move and interact passively, following the dynamicity of their
environment. In terms of modeling, the entities are automata that interact in

16 I. Chatzigiannakis et al.

pairs according to a fair (or random) scheduler. The main result known when
Spirakis started working on the subject was that PPs are very limited computa-
tionally, being able to compute only semilinear predicates on input assignments.
The work carried out by Spirakis, together with Othon Michail, Ioannis Chatzi-
giannakis, and other collaborators, is prominent between those that established
PPs as a very active and rapidly growing sub-area of Distributed Computing.
Working on their Mediated Population Protocols (MPPs) [55], an extension that
allows the automata to additionally establish (physical or virtual) links with
each other, they proved a quite surprising (at that time) result: the n automata
can now be programmed to simulate any nondeterministic Turing machine of
spaceO(n2). Recently, building upon the MPP model, Othon Michail and Paul
Spirakis initiated the study of protocols that can algorithmically construct stable
networks [59], trying at the same time to answer computability questions and
questions related to the potential of their model to represent chemical and biolog-
ical self-assembly processes. Between the several other important contributions
of Spirakis and his collaborators on PPs, one can distinguish the parameter-
ized study of PPs according to the size of their local memories [8], papers that
have promoted our understanding on the Termination problem [61,62], his work
with George Mertzios, Sotiris Nikoletseas, and Christoforos Raptopoulos on the
Majority problem [52], and with Czyzowicz et al. on the dynamics of discrete
Lotka-Volterra PPs [14]. His involvement in PPs has led to a remarkable research
record since 2008: 1 research monograph [54], 1 book chapter, around 20 publi-
cations in prestigious journals and conferences, and numerous invited talks and
lectures.

Though very recent, and with its full story remaining to be written, the work
of Spirakis on PPs has already been recognized at the highest level, being one
of the four research areas for which he received his 2014 EATCS Fellowship (see
Sect. 4).

Inspired by the theoretical developments in dynamic distributed computing
systems, together with Othon Michail and other collaborators, Paul Spirakis
started envisioning a Temporal extension of Graph Theory and he is currently
working intensively to put down its founding stone. Informally, a temporal graph
is a graph that changes with time. It can be thought of as a special case of labeled
graphs, where the (usually discrete) labels represent some measure of time and
constrain connectivity to respect the additional time-dimension, captured in the
notion of time-respecting paths. The work of Spirakis on the subject begins with
[50]. That paper has received attention, as it gave the first temporal analogue of
Menger’s theorem (in contrast to a famous negative result proving that the clas-
sical formulation of Menger’s theorem fails on temporal graphs [40]) and intro-
duced the intriguing problem of designing a cost-optimal temporal graph under
various combinations of connectivity constraints and cost parameters. Together
with Othon Michail, he defined and initiated the study of temporal versions
of several well-known combinatorial optimization graph-problems, such as the
Temporal Exploration problem, the Temporal Traveling Salesman Problem with
Costs One and Two, and the Temporal Matching problem, and gave a first set of

A Glimpse at Paul G. Spirakis 17

approximation algorithms and hardness results for them [60]. Moreover, Spirakis
may be considered as one of the very few people that have initiated the formal
study of Random Temporal Graphs, on which he is currently working with Eleni
Akrida and other collaborators [1]. For a more detailed introduction to the work
of Spirakis and others on the subject of Temporal Graphs, the reader is referred
to [53], which is included in this volume.

Finally, we should mention that Paul Spirakis, together with Othon Michail
and Ioannis Chatzigiannakis, has worked on the modern area of distributed
computation in highly-dynamic networks, where protocols must perform their
task against a worst-case adversary that controls and alters the communication
topology. His contribution to the subject can be found in [56–58].

6 Other Professional Activities

Paul Spirakis has been extremely successful in receiving project grants—a con-
dition sine qua non for establishing a research group and descent conditions for
pursuing research.

He devoted a considerable amount of his time in submitting proposals and
getting highly-competitive project grants, most of which came from the Euro-
pean Union (other funding organizations included NSF and the Greek State).
Overall, he has been involved in about 50 projects—a fair portion of which he
acted as coordinator.

One of Paul’s major efforts, since 1996, was to run (as Chairman of the Board
of Directors) the Computer Technology Institute & Press “Diophantus” (CTI),
one of the largest Research & Development Institutes in Greece. He carried
out this challenging job with great success, managing to run CTI without gov-
ernmental funding. CTI is a self-funded organization employing more than 300
experienced and specialized scientists (including faculty members of the Depart-
ment of Computer Engineering and Informatics at the University of Patras),
engineers, PhD students, and supporting staff. In the last 5 years, CTI has suc-
cessfully undertaken more than 130 R&D projects, 95 of which were funded
by the EC. In the last 20 years, CTI has exhibited substantial basic and applied
research activity in areas such as algorithms and complexity, optimization, wired
as well as wireless and sensor networks, computer and network security, ubiqui-
tous and distributed computing, e-learning, complex information systems design
and development, production systems, embedded systems, integration and sus-
tainable development.

One of the memorable great successes of Paul Spirakis was the development
of close ties between CTI and the Greek State, making CTI the official technical
consultant of the Ministry of Education on IT issues continuously in the past
20 years. CTI places particular emphasis on education, by developing and deploy-
ing conventional and digital media in education and lifelong learning, publishing
printed and electronic educational materials, administrating and managing the
Greek School Network, and supporting the organization and operation of the
electronic infrastructure of the Greek Ministry of Education and all educational

18 I. Chatzigiannakis et al.

units. In addition, CTI undertakes the lifelong training of school teachers in the
new education technology and material.

Because of his extensive involvement in the theory and applications of Com-
puter Science (CS) as well as of the Information & Communication Technologies
(ICT) in general, Paul Spirakis had a prominent role in promoting the impor-
tance and in determining the research agenda of CS and ICT within Europe.
He also served as a consultant in numerous bodies of European Union and the
Greek State.

Paul writes occasionally articles in Greek newspapers, mostly in special
columns devoted to science and technology, as well as articles expressing his
liberal opinions about several aspects of our political and socio-economic envi-
ronment.

7 Contributions to the Scientific Community

Paul Spirakis delivered more than 125 lectures as invited speaker of various
scientific conferences, research institutes, and universities around the globe.

He serves in the Editorial Boards of prestigious computer science journals,
including Acta Informatica, Algorithmica, Computer Science Review, Interna-
tional Journal of Computing Theory, Journal of Parallel and Distributed Com-
puting, Parallel Processing Letters, Theoretical Computer Science, and Theory
of Computing Systems. He has also been editor of Computational Geometry
Journal—Theory and Applications, and area editor of the Encyclopedia of Algo-
rithms, published by Springer.

Paul Spirakis was the chairman of more than 25 and a member in more
than 130 Program Committees of major international conferences in computer
science (incuding STOC, ESA, IPDPS, ICALP, PODC, SPAA, and STACS). He
has also been editor in several special issues of prestigious journals dedicated to
selected papers from some of these major conferences.

8 Personal

Paul Spirakis is married to (the mathematician) Asimina Chrisofaki. They have
two daughters, Olga, an actress and choreographer, and Zeta (Georgia), a com-
puter scientist who currently pursues postgraduates studies (MA) in The Lon-
don Film School. Paul has also a grandson from Olga. He greatly believes in the
importance of family, having said among others that “investing time on family
is a very good investment”.

A first acquaintance with Paul makes you immediately realizing that you are
confronted with a perspicacious and open-minded man. Paul is warm, gener-
ous, and cultured. Despite being an eminent scientist, he remains simple and
approachable, and his door is always open to students and young aspiring
researchers. Paul greatly believes in the new generation and in the proper edu-
cation of young people. He is extremely patient with students believing in their
potential and helping each one of them self-realize his/her own special talents.

A Glimpse at Paul G. Spirakis 19

This makes him at the same time a teacher, a good friend, and a father of his
students.

Another immediate observation from a first acquaintance with Paul is that
he is a heavy smoker and a passionate drinker of Greek Frappe (cold instant)
coffee.

He is characterized by an extremely good sense of humor and high optimism,
which make him a pleasant company. He laughs out loudly, especially when he
listens to or tells a funny joke (something that he enjoys a lot).

Paul tries every day to learn or discover something new in mathematics. If
not, he (claims that he) feels guilty. He also studies books and papers from other
scientific disciplines (physics, biology, etc.), because he truly believes that multi-
disciplinarity is the key to new ideas and approaches. Time seems to have almost
no effect on him. He is full of energy and always keen and ready to tackle the
next open problem.

In his free time, he likes to read. Among the great variety of subjects that
he reads, he is a passionate reader of crime and spy novels, science fiction, and
history. Paul is also a very talented chess player.

Paul has a unique talent in accomplishing heavy managerial and administra-
tive duties and at the same time high-level research and teaching. His passion for
research was evident at Friday nights, when, after a whole day (and preceding
week) of administrative meetings, he remained in the building of CTI (usually
until after midnight) in order to have some fruitful research meetings with his
students and collaborators.

Paul deeply believes in the ideals of democracy, social justice, and the pro-
motion of individual talents and initiatives.

9 Epilogue

This article offers a glimpse at the life and career of Paul Spirakis. It is an effort
(hopefully successful) to present main aspects of his personal and professional
life and to emphasize on his visions and achievements. In any case, the goal was
to highlight Paul’s excessive offering as a teacher, researcher and scientist, and
to express our gratitude and appreciation to him.

Acknowledgements. We are indebted to Eleni Spiraki (Paul’s sister) for her great
help in the preparation of this article.

References

1. Akrida, E., Gasieniec, L., Mertzios, G., Spirakis, P.: Ephemeral networks with
random availability of links: diameter and connectivity. In: Proceedings of 26th
ACM Symposium on Parallelism in Algorithms and Architectures—SPAA 2014,
pp. 267–276 (2014)

20 I. Chatzigiannakis et al.

2. Anbalagan, Y., Norin, S., Savani, R., Vetta, A.: Polylogarithmic supports are
required for approximate well-supported Nash equilibria below 2/3. In: Chen, Y.,
Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 15–23. Springer, Heidelberg
(2013)

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006)

4. Bilardi, G., Herley, K., Pietracaprina, A., Pucci, G., Spirakis, P.: BSP versus LogP.
Algorithmica 24, 405–422 (1999). Preliminary version in SPAA 1996

5. Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, B., Scott, K., Fall, K.,
Weiss, H.: Delay-tolerant networking architecture. Technical report, The IETF
Trust (2007)

6. Chatzigiannakis, I., Dimitriou, T.D., Mavronicolas, M., Nikoletseas, S.E., Spirakis,
P.G.: A comparative study of protocols for efficient data propagation in smart dust
networks. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003.
LNCS, vol. 2790, pp. 1003–1016. Springer, Heidelberg (2003)

7. Chatzigiannakis, I., Dimitriou, T., Mavronicolas, M., Nikoletseas, S., Spirakis, P.:
A comparative study of protocols for efficient data propagation in smart dust
networks. Parallel Process. Lett. 13(4), 615–627 (2003)

8. Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.: Pas-
sively mobile communicating machines that use restricted space. Theor. Comput.
Sci. 412(46), 6469–6483 (2011)

9. Chatzigiannakis, I., Nikoletseas, S.E., Paspallis, N., Spirakis, P.G., Zaroliagis, C.D.:
An experimental study of basic communication protocols in ad-hoc mobile net-
works. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE 2001.
LNCS, vol. 2141, pp. 159–171. Springer, Heidelberg (2001)

10. Chatzigiannakis, I., Nikoletseas, S., Spirakis, P.: Smart dust protocols for local
detection and propagation. In: Proceedings of 2nd ACM International Workshop
on Principles of Mobile Computing—POMC 2002, pp. 9–16 (2002)

11. Chatzigiannakis, I., Nikoletseas, S., Spirakis, P.: Distributed communication algo-
rithms for ad hoc mobile networks. J. Parallel Distrib. Comput. 63(1), 58–74 (2003)

12. Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player
Nash equilibria. J. ACM 56, 3, Art. No. 14 (2009)

13. Christodoulou, G., Koutsoupias, E., Spirakis, P.: On the performance of approxi-
mate equilibria in congestion games. Algorithmica 61(1), 116–140 (2011)

14. Czyzowicz, J., Ga̧sieniec, L., Kosowski, A., Kranakis, E., Spirakis, P.G., Uznański,
P.: On convergence and threshold properties of discrete Lotka-Volterra population
protocols. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
ICALP 2015. LNCS, vol. 9134, pp. 393–405. Springer, Heidelberg (2015)

15. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009). Preliminary version
in ACM STOC 2006

16. Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approximate Nash equi-
libria. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006.
LNCS, vol. 4286, pp. 297–306. Springer, Heidelberg (2006)

17. Dı́az, J., Goldberg, L.A., Mertzios, G.B., Richerby, D., Serna, M.J., Spirakis, P.:
Approximating fixation probabilities in the generalized Moran process. Algorith-
mica 69(1), 78–91 (2014). Preliminary version in SODA 2012

18. Diaz, J., Koukopoulos, D., Nikoletseas, S., Spirakis, P., Serna, M., Thilikos, D.:
Stability and instability of the FIFO protocol. In: Proceedings of 13th ACM Sym-
posium on Parallel Algorithms and Architectures—SPAA 2001, pp. 48–52 (2001)

A Glimpse at Paul G. Spirakis 21

19. Dı́az, J., Serna, M.J., Spirakis, P.: On the random generation and counting of
matchings in dense graphs. Theor. Comput. Sci. 201(1–2), 281–290 (1998)

20. Dimitriou, T.D., Krontiris, I., Nikakis, F., Spirakis, P.G.: SPEED: Scalable Proto-
cols for Efficient Event Delivery in sensor networks. In: Mitrou, N.M., Kontovasilis,
K., Rouskas, G.N., Iliadis, I., Merakos, L. (eds.) NETWORKING 2004. LNCS, vol.
3042, pp. 1300–1305. Springer, Heidelberg (2004)

21. Fatourou, P., Spirakis, P.: Efficient scheduling of strict multithreaded computa-
tions. Theory Comput. Syst. 33(3), 173232 (2000)

22. Fearnley, J., Goldberg, P.W., Savani, R., Sørensen, T.B.: Approximate well-
supported Nash equilibria below two-thirds. In: Serna, M. (ed.) SAGT 2012. LNCS,
vol. 7615, pp. 108–119. Springer, Heidelberg (2012)

23. Fearnley, J., Igwe, T.P., Savani, R.: An empirical study of finding approximate
equilibria in bimatrix games. ArXiv/CoRR, abs/1502.04980 (2015)

24. Fotakis, D., Gkatzelis, V., Kaporis, A., Spirakis, P.: The impact of social ignorance
on weighted congestion games. Theory Comput, Syst. 50(3), 559–578 (2012)

25. Fotakis, D., Kaporis, A., Spirakis, P.: Efficient methods for selfish network design.
Theor. Comput. Sci. 448, 9–20 (2012)

26. Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable flows. Theor. Com-
put. Sci. 348, 226–239 (2005)

27. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.:
The structure and complexity of Nash equilibria for a selfish routing game. Theor.
Comput. Sci. 410(36), 3305–3326 (2009)

28. Fotakis, D., Kontogiannis, S., Spirakis, P.: Atomic congestion games among coali-
tions. ACM Trans. Algorithms 4, 4 (2008)

29. Fotakis, D., Nikoletseas, S., Papadopoulou, V., Spirakis, P.: Radiocoloring in pla-
nar graphs: complexity and approximations. Theor. Comput. Sci. 340(3), 514–538
(2005)

30. Fotakis, D.A., Spirakis, P.G.: A Hamiltonian approach to the assignment of non-
reusable frequencies. In: Arvind, V., Sarukkai, S. (eds.) FST TCS 1998. LNCS, vol.
1530, pp. 18–30. Springer, Heidelberg (1998)

31. Harks, T., Klimm, M., Möhring, R.H.: Characterizing the existence of potential
functions in weighted congestion games. Theory Comput. Syst. 49(1), 46–70 (2011)

32. Hatzis, K., Pentaris, G., Spirakis, P.G., Tampakas, B.: Counting in mobile net-
works: theory and experimentation. In: Vitter, J.S., Zaroliagis, C.D. (eds.) WAE
1999. LNCS, vol. 1668, pp. 95–109. Springer, Heidelberg (1999)

33. Hatzis, K., Pentaris, G., Spirakis, P., Tampakas, V., Tan, R.B.: Fundamental con-
trol algorithms in mobile networks. In: Proceedings of ACM SPAA 1999, pp. 251–
260 (1999)

34. Jung, J., Kirousis, L.M., Spirakis, P.: Lower bounds and efficient algorithms for
multiprocessor scheduling of directed acyclic graphs with communication delays.
Inf. Comput. 105, 94–104 (1993)

35. Kamath, A., Motwani, R., Palem, K., Spirakis, P.: Tail bounds for occupancy and
the satisfiability threshold conjecture. In: Proceedings of 35th IEEE Symposium
on Foundations of Computer Science—FOCS 1994, pp. 592–603 (1994)

36. Kannan, R., Theobald, T.: Games of fixed rank: a hierarchy of bimatrix games.
Econ. Theory 42, 157–173 (2010). Preliminary version in ACM-SIAM SODA 2007

37. Kaporis, A., Spirakis, P.: The price of optimum in Stackelberg games on arbitrary
single commodity networks and latency functions. Theor. Comput. Sci. 410(8–10),
745–755 (2009)

22 I. Chatzigiannakis et al.

38. Kavvadias, D., Pantziou, G., Spirakis, P., Zaroliagis, C.: Hammock-on-Ears decom-
position: a technique for the efficient parallel solution of shortest paths and other
problems. Theor. Comput. Sci. 168(1), 121–154 (1996). Preliminary version in
MFCS 1994

39. Kedem, Z., Palem, K., Spirakis, P.G.: Efficient robust parallel computations. In:
Proceedings of 22nd Annual ACM Symposium on Theory of Computing—STOC
1990, pp. 138–148 (1990)

40. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for
temporal networks. In: Proceedings of 32nd ACM Symposium on Theory of
Computing—STOC 2000, pp. 504–513 (2000)

41. Kirousis, L., Serna, M., Spirakis, P.: The parallel complexity of the connected
subgraph problem. SIAM J. Comput. 22(3), 573–586 (1993). Preliminary version
in FOCS 1989

42. Kirousis, L., Spirakis, P., Tsigas, P.: Reading many variables in one atomic oper-
ation solutions with linear or sublinear complexity. IEEE Trans. Parallel Distrib.
Comput. 5(7), 688–696 (1994)

43. Kontogiannis, S.C., Panagopoulou, P.N., Spirakis, P.G.: Polynomial algorithms for
approximating nash equilibria of bimatrix games. In: Spirakis, P.G., Mavronicolas,
M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 286–296. Springer,
Heidelberg (2006)

44. Kontogiannis, S., Spirakis, P.: Approximability of symmetric bimatrix games and
related experiments. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS,
vol. 6630, pp. 1–20. Springer, Heidelberg (2011)

45. Koukopoulos, D., Mavronicolas, M., Nikoletseas, S., Spirakis, P.: The impact of
network structure on the stability of greedy protocols. Theory Comput. Syst. 38(4),
425–460 (2005)

46. Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate equilibria and ball
fusion. Theory Comput. Syst. 36, 683–693 (2003)

47. Kumar, B., Srikant, Y.N.: The best nurturers in computer science research. In:
Proceedings of 2005 SIAM International Conference on Data Mining, pp. 566–570;
also Technical Report IISc-CSA-TR-2004-10, Computer Science and Automation,
Indian Institute of Science, India, October 2004

48. Mangasarian, O.L., Stone, H.: Two-person nonzero-sum games and quadratic pro-
gramming. J. Math. Anal. Appl. 9(3), 348–355 (1964)

49. Mavronicolas, M., Spirakis, P.: The price of selfish routing. Algorithmica 48(1),
91–126 (2007)

50. Mertzios, G.B., Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Temporal network
optimization subject to connectivity constraints. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp.
657–668. Springer, Heidelberg (2013)

51. Mertzios, G.B., Nikoletseas, S., Raptopoulos, C., Spirakis, P.: Natural models for
evolution on networks. Theor. Comput. Sci. 477, 76–95 (2013)

52. Mertzios, G.B., Nikoletseas, S.E., Raptopoulos, C.L., Spirakis, P.G.: Determin-
ing majority in networks with local interactions and very small local memory.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014.
LNCS, vol. 8572, pp. 871–882. Springer, Heidelberg (2014)

53. Michail, O.: An introduction to temporal graphs—an algorithmic perspective. In:
Algorithms, Probability, Networks, and Games. LNCS, vol. 9295. Springer, New
York (2015)

A Glimpse at Paul G. Spirakis 23

54. Michail, O., Chatzigiannakis, I., Spirakis, P.: New Models for Population Proto-
cols. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, San Rafael (2011)

55. Michail, O., Chatzigiannakis, I., Spirakis, P.: Mediated population protocols.
Theor. Comput. Sci. 412(22), 2434–2450 (2011)

56. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Naming and counting in anony-
mous unknown dynamic networks. In: Higashino, T., Katayama, Y., Masuzawa,
T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp.
281–295. Springer, Heidelberg (2013)

57. Michail, O., Chatzigiannakis, I., Spirakis, P.: Causality, influence, and computa-
tion in possibly disconnected synchronous dynamic networks. J. Parallel Distrib.
Comput. 74(1), 2016–2026 (2014)

58. Michail, O., Chatzigiannakis, I., Spirakis, P.: Computing in dynamic networks.
In: Dehmer, M., Emmert-Streib, F., Pickl, S. (eds.) Chapter 6 in Computational
Network Theory: Theoretical Foundations and Applications, 1st edn, pp. 173–218,
Wiley-VCH Verlag GmbH & Co. KGaA (2015)

59. Michail, O., Spirakis, P.: Simple and efficient local codes for distributed stable
network construction. In: Proceedings of 33rd ACM Symposium on Principles of
Distributed Computing—PODC 2014, pp. 76–85 (2014)

60. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. In:
Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS,
vol. 8635, pp. 553–564. Springer, Heidelberg (2014)

61. Michail, O., Spirakis, P.: Terminating population protocols via some minimal global
knowledge assumptions. J. Parallel Distrib. Comput. 81, 1–10 (2015)

62. Michail, O., Spirakis, P.: Distributed computation by connectivity preserving net-
work transformers (2015) (to appear)

63. Moulin, H., Vial, J.P.: Strategically zero-sum games: the class of games whose
completely mixed equilibria cannot be improved upon. Int. J. Game Theory 7(3–
4), 201–221 (1978)

64. Nash, J.: Noncooperative games. Ann. Math. 54, 289–295 (1951)
65. Nikoletseas, S., Palem, K.V., Spirakis, P., Yung, M.: Short vertex disjoint paths and

multiconnectivity in random graphs: reliable network computing. In: Proceedings
of 21st International Colloquium on Automata, Languages and Programming—
ICALP 1994, pp. 508–519 (1994)

66. Nikoletseas, S., Prasinos, G., Spirakis, P., Zaroliagis, C.: Attack propagation in
networks. Theory Comput. Syst. 36, 553–574 (2003). Preliminary version in ACM
SPAA 2001

67. Nikoletseas, S.E., Raptopoulos, C., Spirakis, P.G.: The existence and efficient con-
struction of large independent sets in general random intersection graphs. In: Dı́az,
J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 1029–1040. Springer, Heidelberg (2004)

68. Panagopoulou, P., Spirakis, P.: Algorithms for pure Nash equilibria in weighted
congestion games. ACM J. Exp. Algorithmics 11, 1–19 (2006)

69. Panagopoulou, P., Spirakis, P.: Random bimatrix games are asymptotically easy
to solve (A simple proof). Theor. Comput. Sci. 54(3), 479–490 (2014)

70. Pantziou, G., Pentaris, G., Spirakis, P.: Competitive call control in mobile net-
works. In: Algorithms and Computation—ISAAC 1997, pp. 404–413 (1997)

71. Pantziou, G., Spirakis, P., Zaroliagis, C.: Efficient parallel algorithms for shortest
paths in planar digraphs. BIT 32(2), 215–236 (1992). Preliminary vesrion in SWAT
1990

24 I. Chatzigiannakis et al.

72. Reif, J., Spirakis, P.: Random matroids. In: Proceedings 12th ACM Symposium
on Theory of Computing—STOC 1980, pp. 385–397 (1980)

73. Reif, J., Spirakis, P.: Distributed algorithms for synchronizing interprocess com-
munication within real time. In: Proceedings of 13th ACM Symposium on Theory
of Computing—STOC 1981, pp. 133–145 (1981)

74. Reif, J., Spirakis, P.: Real time synchronization of interprocess communications.
ACM Trans. Programm. Lang. Syst. 6(2), 215–238 (1984)

75. Reif, J., Spirakis, P.: Unbounded speed variability in distributed systems. SIAM
J. Comput. 14(1), 7592 (1985)

76. Reif, J., Spirakis, P.: Expected parallel time and sequential space complexity of
graph and digraph problems. Algorithmica 7, 597–630 (1992)

77. Spirakis, P.: Optimal parallel randomized algorithms for addition sparse addition
and identification. Inf. Comput. 76, 1–12 (1988)

78. Spirakis, P., Zaroliagis, C.: Distributed algorithm engineering. In: Fleischer, R.,
Moret, B.M.E., Schmidt, E.M. (eds.) Experimental Algorithmics. LNCS, vol. 2547,
pp. 197–228. Springer, Heidelberg (2002)

79. Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate Nash
equilibria. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp.
42–56. Springer, Heidelberg (2007)

80. Tsaknakis, H., Spirakis, P.G., Kanoulas, D.: Performance evaluation of a descent
algorithm for bi-matrix games. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008.
LNCS, vol. 5385, pp. 222–230. Springer, Heidelberg (2008)

81. Triantafillou, P., Ntarmos, N., Nikoletseas, S., Spirakis, P.: Nanopeer networks
and P2P worlds. In: Proceedings of 3rd International Conference on Peer-to-Peer
Computing—P2P 2003, pp. 40–46 (2003)

82. Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks.
Technical report CS-200006, Duke University (2000)

The Reality Game Theory Imposes
(Short Summary)

Shlomi Dolev(B)

Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

dolev@cs.bgu.ac.il

I was lucky to be exposed to game theory by Paul Spirakis, moreover to have my
first PhD student, Elad Schiller staying with Paul as his PostDoc. It was a great
opportunity to examine and think about the combination of philosophical and
social considerations when examining the rigorous mathematical settings, results
and implications of Game Theory. Implications, that should reflect our real life
situations. Especially when searching for game theory tools to be used auto-
matically by societies of (users connected to) computers that form a distributed
system.

Distributed computing has changed dramatically in recent years where com-
puting devices that participate in the distributed system are not identical any-
more, and may have different hardware, software and utilities. In particular, in
the scope of the Internet of things technology, heterogeneous, ad-hoc connected
entities form the distributed system, implying the need for game theory tech-
niques in managing the distributed system.

Maybe the most popular and simple example in game theory is the prisoner’s
dilemma. The possible actions are either to betray or be silent, and the outcome
is either to be free (when one prisoner chooses to betray while the other prisoner
is silent) or be in prison for two years if both betray or three years if one keeps
silent while the other betrays. Such a setting is proven to imply a situation in
which both betray and both stay two years in prison. Trying to formulate the
game in an autonomous computer system requires the restriction of actions to
be in the restricted vocabulary of either betray or keep silent, and obviously
not including escape as an option. The restriction on using only rules in the
game vocabulary is based on our implicit knowledge of society’s authority tools
and structure, where the role of the police is to prevent out of rule actions.
Hence, we should implement game authority [2] that will enforce the vocabulary
of rules in the game, and the corresponding outcome. A way to implement such
an authority by (almost) identical (computer) participants, just as in society, is
based on the cooperation of the majority of the individuals in monitoring and
enforcing the rules of the games, possibly by using global Byzantine agreement
in the distributed system. In turn, there is a need for game adoption decisions
prior to the enforcement of game rules, just like the legislative service. One

Partially supported by Rita Altura Trust Chair in Computer Sciences, Lynne and
William Frankel Center for Computer Sciences, Israel Science Foundation (grant
number 428/11), and Israeli Internet Association.

c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 25–26, 2015.
DOI: 10.1007/978-3-319-24024-4 2

26 S. Dolev

should assume that there are moral meta-rules (say, in the style of the ten
commandments) agreed upon by the vast majority of the participants. These
meta-rules can then imply the majority’s choice on moral (rule of) games and
enforcement of the agreed upon game rules. Otherwise, when the number of
Byzantine participants is more than the threshold, the society may not able to
decide on (moral) games and enforce their rules.

Once we have the game authority that enforces the rules and outcomes of the
chosen games, there is still free choice for the players to act according to their
(possibly unknown) utility function. Sometimes when the rules of the game are
known and the utility is clear the argument and computation needed to real-
ize the correct choice is too complicated to comprehend. The situation is even
more complicated, as when some of the players deviate from their optimal choice
the rest of the players may be dramatically influenced. To overcome this we sug-
gested the rational authority which enforces that players choose the best action
in the game according to their possible unrevealed utility [3]. The idea behind
the rational authority is to provide the player with a procedure to privately com-
pute the best choice, a procedure that also outputs a proof for the optimality
of the choice, where the proof itself can be verified by many reputable proof
checkers. Thus, the user can find the best action and verify the action optimal-
ity without revealing the private utility. Auditing may be used to ensure that
indeed a player uses the provided procedure and verification, the user may be
asked to keep signed information for future auditing.

Given the game authority and rational authority, game theory results can
be applied to real life actions (or scenarios). Is this real life, or the force of
democracy to administer games and impose “artificial rational” action? What
action is rational, and who’s to define a mathematical utility function, when the
secret of creation and life is beyond our understanding? Is rationality based on
selfishness ([5])? selfishness of genes ([1])? or is it uncertain ([4]) or an outcome
of practical reasons ([6])?

In the end, let me reiterate, I am lucky to have the opportunity to work
with Paul who introduced me to the fascinating field of Game Theory, given his
deep understanding and enthusiasm for research. I wish him great success in the
future.

References

1. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1989)
2. Dolev, S., Schiller, E.M., Spirakis, P.G., Tsigas, P.: Game authority for robust

and scalable distributed selfish-computer systems. Theor. Comput. Sci. 411(26–28),
2459–2466 (2010)

3. Dolev, S., Panagopoulou, P.N., Rabie, M., Schiller, E.M., Spirakis, P.G.: Rationality
authority for provable rational behavior. In: PODC 2011, pp. 289–290 (2011)

4. Gigerenzer, G.: Rationality for Mortals, How people cope with uncertainty. Oxford
University Press, New York (2008)

5. Rand, A.: The Virtue of Selfishness, New American Library (1964)
6. Wallace, J.R.: Practical reason. In: Millgram, E. (ed.) Varieties of Practical Rea-

soning. MIT Press, Cambridge (2001)

On Neural Networks and Paul Spirakis

Christos H. Papadimitriou(B)

EECS Department, University of California, Berkeley, CA 94720, USA
christos@berkeley.edu

“We are our connectome,” this is the tautology du jour. Everything we do,
think, remember, say (or write), is merely a projection of our current neural
configuration. So, here goes.

It was the memorable January of 1978. Boston was recovering from the great-
est snowstorm of its recorded history. This was my second year as Assistant
Professor at the Aiken Lab, Harvard’s fledgling Computer Science department.
A senior colleague showed me the file of a PhD applicant. “His is very good,”
he said, “except that he seems fascinated with neural networks.” I stared at the
orange-colored wall across the hall. I had no idea what this phrase meant. “Can
you talk to him? Find out how serious his interest is? He cannot pursue neural
nets here.” He winked at me. “He is Greek.”

That evening, after reading the application file, and quickly leafing through
an article on neural networks in the library, I spoke for the first time to Paul
Spirakis.

I cannot recall exactly what was said, but I do remember that, considering
the occasion, it was a very comfortable exchange, surprisingly warm and frank.
For some reason my recollection is that he addressed me as “brother,” as he does
now, but this cannot be. In any event, he assured me in no uncertain terms that
he has no firm commitment to neural networks as a research subject, and as a
result he was welcomed to Harvard’s PhD program with open arms.

I am happy to acknowledge that Paul has kept his promise to me. In fact, he
kept it in the strongest way possible, because he seems to have worked on every
subfield of Computer Science other than neural networks. Starting with a paper in
STOC on random matroids, co-authored with his advisor John Reif, he continued
into distributed systems and operating systems theory, computational geometry
and random graph theory — all themes that would recur often — then parallel
algorithms for more than a decade, concurrent with network and database the-
ory and VLSI, then parallel complexity and approximation, queuing theory and
later phase transitions, robust and reliable computation as well as network syn-
chronization (plus work combining many of the above themes), routing on meshes
and multithreaded computation, security and — finally in 1995 — the web. Next
came scheduling, as well as frequency coloring and mobile networks, then, with
the new century, game theory — price of anarchy and complexity and approxima-
tion of equilibria but also fairness — then networks again, except now it is smart
dust and sensor nets and peer-to-peer. It gets more intense: Onward to evolution
and electronic voting, deeper into all aspects of game theory, then dynamic and
temporal networks, but not without frequent forays back to random graphs and
distributed computation and performance evaluation. And of course it is not the

c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 27–28, 2015.
DOI: 10.1007/978-3-319-24024-4 3

28 C.H. Papadimitriou

list that is most impressive, but the timing, the way Paul Spirakis’s research path
crisscrossed four decades of history of Computer Science, responding to its prior-
ities and aspirations and anxieties. Like a master football player, Paul has always
managed to be close to the ball.

It may not be easy for our younger colleagues to understand the force that
drives such exquisite breadth. Paul Spirakis belongs in a generation of theoreti-
cians who understood and loved all of Computer Science — we almost felt that
we owned Computer Science. Back then, our mission was not only to advance
the mathematical elegance and sophistication of our arguments. We considered
it our responsibility to outfit with rigorous foundations all the important prac-
tical endeavors that were unfolding around us. This is the mindset in the opus
of Paul Spirakis.

If there is one thing missing from Paul’s formidable research trail so far, it
has to be our first joint paper. It is hard to believe that, with all the intersection
points of our research and lives, we have yet to prove a theorem together. But I
can feel it, it is coming close now.

And maybe it will be on neural networks.

Concurrency, Parallelism, Asynchrony and Life

Marina Papatriantafilou(B)

Chalmers University of Technology, Gothenburg, Sweden
ptrianta@chalmers.se

Abstract. This is a brief essay in honor of Paul Spirakis on the occasion
of his 60th birthday, and a prologue for the articles of this volume titled
“Of concurrent data structures and iterations” and “Data-streaming and
concurrent data-object co-design: overview and algorithmic challenges”.

Patras, Middle of 80’s, Some September Late Afternoons

The amphitheater is full, the professor that holds the classes is newly arrived
from NYU. With a big smile, full of energy and enthusiasm, he is taking the
class by storm, with new knowledge. No slides, just pure, genuine discussion and
blackboard. The speed is unbelievable and so is the flow of knowledge. Some
of us are wondering “Will he soon start writing backwards on the blackboard?
Then we can go even faster, learn even more! (laughter)”. Always with a smile
and enthusiasm! And of course we loved it!

For the author of this essay, this has been the start of a journey, starting
from those lectures on inter-process synchronization and later on, as researcher,
moving to concurrency in general, algorithms for multiprocessor and multicore
systems, the magic world of distributed computing and the differences between
the possible and the impossible.

Three Decades Later

In two of the articles in this volume, it is possible to find an extract of some of
the recent work by the author along this journey, coauthored with colleagues.
The articles, titled “Of concurrent data structures and iterations” and “Data-
streaming and concurrent data-object co-design: overview and algorithmic chal-
lenges”, put together a brief flashback on the needs from implementations of
shared objects and their role in concurrency, relatively to efficiency, consistency
and determinism. The articles shed light on shared data objects and their role as
data exchange and synchronization points in new contexts in demanding appli-
cations such as data-streaming, in-memory analysis of large data volumes, with
needs for iterations and range queries over the elements of the data structures.

More specifically, the article on concurrent iterations on shared data objects
describes recent work on the problem, including a framework of consistency
specifications, together with an overview of iteration implementations that have
appeared in the research literature, as well as in widely-used programming envi-
ronments; furthermore, it outlines a range of application targets and challenging
c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 29–30, 2015.
DOI: 10.1007/978-3-319-24024-4 4

30 M. Papatriantafilou

future directions. The article on concurrent data-stream processing proposes to
analyze the related issues through newly proposed data objects and identifies
new key challenges to improve data-stream processing through co-design of fine-
grain efficient synchronization combined with the data exchange.

To achieve parallelism with consistency, combined with the inherent asyn-
chrony present in systems and applications, has been and continues to be chal-
lenging. Asynchronous threads need to do useful work independently, as well
as to meet e.g. through synchronization and/or the data that they exchange.
The aforementioned articles, contributing to the exploration of these challenges
and possibilities in new contexts, also showing new paths, are offspring of a tree
planted with enthusiasm and have been written with gratitude to the person
who inspired the enthusiasm and who is honored in this volume.

Thank you Paul and Happy Birthday!

Invited Talks

Rationality Authority for Provable
Rational Behavior

Shlomi Dolev1(B), Panagiota N. Panagopoulou2, Mikaël Rabie1,
Elad M. Schiller3, and Paul G. Spirakis2,4

1 Ben-Gurion University of the Negev, Beer Sheva, Israel
{dolev,rabie}@cs.bgu.ac.il

2 Computer Technology Institute, and Press “Diophantus”, Rio, Greece
{panagopp,spirakis}@cti.gr

3 Chalmers University of Technology, Gothenburg, Sweden
elad@chalmers.se

4 University of Liverpool, Liverpool, UK
P.Spirakis@liverpool.ac.uk

Abstract. Players in a game are assumed to be totally rational and
absolutely smart. However, in reality all players may act in non-rational
ways and may fail to understand and find their best actions. In particular,
participants in social interactions, such as lotteries and auctions, cannot
be expected to always find by themselves the “best-reply” to any situa-
tion. Indeed, agents may consult with others about the possible outcome
of their actions. It is then up to the counselee to assure the rationality
of the consultant’s advice. We present a distributed computer system
infrastructure, named rationality authority, that allows safe consulta-
tion among (possibly biased) parties. The parties’ advices are adapted
only after verifying their feasibility and optimality by standard formal
proof checkers. The rationality authority design considers computational
constraints, as well as privacy and security issues, such as verification
methods that do not reveal private preferences. Some of the techniques
resembles zero-knowledge proofs. A non-cooperative game is presented
by the game inventor along with its (possibly intractable) equilibrium.
The game inventor advises playing by this equilibrium and offers a check-
able proof for the equilibrium feasibility and optimality. Standard veri-
fication procedures, provided by trusted (according to their reputation)
verification procedures, are used to verify the proof. Thus, the proposed
rationality authority infrastructure facilitates the applications of game
theory in several important real-life scenarios by the use of computing
systems.

1 Introduction

Game theory is based on the assumption that (at least, some) players play
rationally. This assumption is questionable in the face of the sophistication for
obtaining the best strategy in (even simple) games. Thus, the application of game
theory in real life is limited by the degree in which the players (who are rarely
c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 33–48, 2015.
DOI: 10.1007/978-3-319-24024-4 5

34 S. Dolev et al.

mathematicians, economic experts, or computer scientists) can understand the
meaning of the game rules and the way to act. One famous example is auctions
where every variant of an auction introduces the need for a new proof that, say,
reconfirms that the second price auction is the best to use [5,22]. We have in
mind a framework that will let the ordinary and inexperienced Joe and Jane
safely figure their best-reply.

Distributed computer systems can implement the rationality authority frame-
work that in turn, can enable (and ensure by audit schemes) rational behavior,
without sacrificing the players’ privacy, e.g., keeping the individual preferences
(utilities) private. The framework, as depicted in Fig. 1, includes:

– The game inventor, which may possibly gain revenues from the game. We
consider game inventors that create games for which they could predict the
best-reply and prove their feasibility and optimality to the players/agents.

– The agents are the game participants, for which they receive verifiable advices
on the feasible and optimal actions to take.

– The verifiers are trustable service providers that profit from selling general
purpose verification procedures, v(), (using formal methods and languages),
and therefore would like to have a good long-lasting reputation on being honest
in checking (a variety of) proofs. We note the possibility of having several
verifiers, such that their majority is trusted. The reputation of the verifiers
can be updated according to the (majority of their) results.

Fig. 1. The inventor sends the game
G with a procedure p() to the agents,
suggesting actions and proofs for the
optimality of the suggested actions. A
designated verifier v() sends verification
procedures to the agents to allow verifica-
tion of the proofs.

The verification procedures supplied
by the verifiers may be general purpose
procedures, not restricted to the context
of the rationality authority. They should
be able to check proofs [3] in an agreed
upon format, a detailed logic proof in 3-
SAT or Coq, probabilistically checkable
proofs, interactive proofs in the style of
zero-knowledge proofs, globally agreed
upon, and simple instructions for the
agents to check the proof (or even an
empty proof relying on the verifier pro-
cedure to check the suggested actions
in the style of nondeterministic Tur-
ing machines). The verifiers may use a
library for the specification of the solu-
tion concepts and inform the user con-
cerning the solution concept used and the consequences of the choice.

Verifying a best-reply could be as hard as computing it [24,29]. Computing
the best-reply is known to be intractable [6]. However, there are some cases in
which the game outcome is known, say, due to human innovation or statistically
emerging patterns [14]. For example, taxation authorities or system adminis-
trators can sometimes observe the outcome and advise the participants about
employing Nash equilibria, as in [32]. Thus, we may study the verification of

Rationality Authority for Provable Rational Behavior 35

such advised solutions, rather than only their (possibly unrevealed way of) com-
putation.

Online auctions have gained tremendous popularity in electronic commerce,
B2B applications, and Internet ad auction applications [11]. Much of the lit-
erature models these auctions as single stage games or as repeated games. In
some of our examples for the use of the rationality authority, we take a realistic
approach in which the agents join the game in some random order, rather than
participating in all game rounds (see Sects. 5 and 6).

Related Work

All agents are aware of the existence of the rationality authority as common
knowledge. Since it communicates with agents before they choose their actions,
one might view the authority as synchronization mechanisms that are used in
correlated equilibria [1] or as moderators that are used in multi-party computa-
tion [15]. However, the rationality authority is not trusted, where as synchroniza-
tion mechanisms are. Vis., the inventors must demonstrate their trustworthiness
and have only the (trusted) verifiers at their disposal. This assumption is directly
implied by the separation principles between the inventors and the verifiers.

Guerin and Pitt [19] present a framework for verification and compliance in a
multi-agent system. They discuss whether the verification depends on the infor-
mation that may be available (agent internals, observable behavior, normative
specifications) and the semantic definition of the communication language. More-
over, they consider the types of languages that permit verification and testing in
open systems where agents’ internals are kept private. Their analysis is useful in
enforcing compliance in open systems. Guerin [17] explains how to formally spec-
ify and verify subgame perfect equilibria. Tadjouddine [29] considers the com-
plexity of verifying an equilibrium. Tadjouddine shows that Nash and Bayesian
Nash equilibria can be verified in polynomial time. Moreover, dominant strategy
equilibrium is NP-complete. Other related work includes [18,20,28,30,31], to
name a few. None of the aforementioned results considers non-revealing verifica-
tion methods. In [9,10] we proposed the game authority, which is a self-stabilizing
middleware for assuring that all agents honestly follow the rules of the game.
In [8,9] we presented a self-stabilizing mechanism for deterring joint deviations.

Our Contribution

We propose the rationality authority infrastructure that separates the inter-
est, benefit and goals of the parties (game inventors, verifiers and agents) that
enables agents to take rational (feasible and optimal) actions. The separation
also includes the disjointment of the game inventor from game revenues and the
verifier from selling reliable verification procedures. We propose the following
specific case studies for the usefulness of the rationality authority framework.

– We explain how to use interactive theorem provers for verifying pure Nash
equilibria (Sect. 3).

36 S. Dolev et al.

– We present an equilibrium verification method that does not reveal the agent
preferences, and by that, preserves the users privacy and secures their actions
when acting upon the advised equilibria. As a second case study, we present a
general 2-agents (bimatrix) game for which a unique Nash equilibrium exists
but it is hard to compute. For this game, we present a polynomial-time equi-
libria verifier with privacy guarantees. Namely, the verifier does not reveal the
agent preferences in a way that resembles zero-knowledge proofs [16] (Sect. 4).

– We present the participation game, which has an equilibrium that is hard to
compute without the game inventor advice. We show how to use the advice
for computing the game equilibrium and verify it (Sect. 5).

– We study competitive on-line games in which each agent joins the game at
a different time (as in [12]). The game inventor keeps statistical information
about past agent actions. Each agent, upon arrival, has to choose a strategy.
With probability p, the agent follows the inventor’s suggested strategy. With
probability (1 − p), it chooses a strategy based on its knowledge about the
strategic (off-line) version of the game. The inventor chooses a strategy for
the agent based on its statistics. When the inventor suggests a strategy, it
must convince the agent that the strategy is beneficial for it. To do so, the
inventor provides the agent with a formal proof that can be checked by a
trusted verifier (Sect. 6).

The rationality authority enables agents to identify and take rational choices.
Not only does the rationality authority verify the feasibility and optimality of
proposed equilibria, but it can also cooperate with the game authority proposed
in [9,10] that guarantees that the agents employ the strategy equilibrium by
following the game rules.

This work appears as a brief announcement in [7].

2 Preliminaries

We use N to denote the set of agents that rationally and unilaterally choose
an action from the set Ai, where i ∈ N is an agent. A preference relation,
�i, expresses the desire of the individual agent for one particular outcome over
another. For game, G, the relation �i refers to agent i’s preferences. We can
replace �i with a payoff/utility function ui : A → R, for which ui(a) ≥ ui(b)
whenever a �i b. Namely, ui is a function A → Z, which associates with the
strategies of each agent the gain of agent i, where A = A0 × · · · × An−1. We
represent single stage games, G, in their strategic form as 〈N,A = (Ai),�= (�i)〉
(or 〈N,A = (Ai)i∈N , U = (ui)i∈N 〉).

Profiles

A strategy profile (a strategy combination) a = (ai)i∈N is a strategy set, one
for each agent, that completely implies all game actions by specifying a single
strategy for each agent. We borrow from [27] also the notation of profiles that

Rationality Authority for Provable Rational Behavior 37

Types
2 n; number of agents

4 TSi; associate each agent with its number of strategies

6 Si; for each agent i,Si(i) is the strategy played by i

8 u;u(i,Si) (utility) is i′s gain for the strategy profile Si

10 Functions and Properties
change(Si,si, i); a strategy profile that is different from Si by the strategy si for agent i. Note that this function

12 can build all the strategies needed for proving that a strategy profile is a Nash Equilibrium

14 isStrat(n,TSi,Si); verifies the strategy profile′s size; ∀i ≤ n : Si(i) ≤ TSi(i)

16 eqStrat(n,Si1,Si2); checks equality of two strategy profiles; ∀i ≤ n : Si1(i) = Si2(i)

18 leStrat(n,u,Si1,Si2); checks incomparability of Si1 and Si2;∃i, j : ui(Si1) < ui(Si2)∧u j(Si2) < u j(Si1)

20 leStrat(n,u,Si1,Si2); checks Si1 ≤u Si2;∀i ≤ n : ui(Si1) ≤ ui(Si2)

22 Pure Nash Equilibrium (definitions)
isNash(n,u,Si,TSi); verifies that Si is a Nash equilibrium;

24

isStrat(n,TSi,Si)∧∀i ≤ n,si ≤ Si(i) : ui(Si) ≤ ui(change(Si,si, i))
26

isMaxNash(n,u,Si,TSi); checks isNash∧∀ Nash equilibrium S′i : Si ≤s S′i
28

Verifying a Nash Equilibrium (proof scheme)
30 allStrat;∀Si : isStrat(n,TSi,Si) → eqStrat(n,Si,Si1)∨ eqStrat(n,Si,Si2)∨ . . .eqStrat(n,Si,Sim), where {Si j} j≤m

are possible strategies
32

allNash;∀Si : isNash(n,u,Si,TSi) → eqStrat(n,Si,NSi1)∨ eqStrat(n,Si,NSi2)∨ . . .eqStrat(n,Si,NSim),
34 where {NSi j} j≤m are Nash equilibrium

36 NashMax;∀Si : isNash(n,u,Si,TSi) → leStrat(n,u,Si,NSi)∨noComp(n,u,Si,NSi)

Fig. 2. Definition of the game model and its equilibria. These definitions are used for
verifying Pure Nash equilibria.

do not include the strategy of a single agent, i.e., (a−i, ai), as well as the profile
of action sets, A−i. We say that the strategy profile s ∈ A is greater than s′ ∈ A
if ∀i ∈ N : ui(s) ≥ ui(s′). We denote s ≥u s′.

Nash Equilibria

A strategy profile s ∈ A is a pure Nash equilibrium of game G = 〈N,A =
(Ai),�= (�i)〉, if ∀i ∈ N , ∀s′

i ∈ Ai, ui(s) ≥ ui((s−i, s
′
i)). We say that a pure

Nash equilibrium (PNE) s is maximal if for any pure Nash equilibrium s′, we do
not have s′ ≥u s.1 A game may not possess a PNE at all. However, if we extend
the game to include mixed strategy by allowing each agent to choose its strategy
with certain probabilities (and if we extend the payoff functions ui to capture
expectation), then an equilibrium is guaranteed to exist [23].

1 Similarly, we can define the minimal Nash equilibria; s is minimal if for any pure
Nash equilibrium s′, we do not have s′ ≤u s.

38 S. Dolev et al.

3 Verifying a Nash Equilibrium Using Coq

Agents are expected to act rationally. We consider agents that are offered a
strategy for which optimality is claimed. In order to familiarize the reader with
equilibria verification, we briefly explain how to verify that a strategy profile,
NSi, is a maximal Nash equilibrium. The proof presented in this section enumer-
ates all strategy profiles, i.e., intractable with respect to both time and space for
an unbounded number of agents or strategies (Sect. 4 addresses these important
complexity issues). We sketch the proof of a pure Nash equilibrium using the
theorem prover, Coq [2]. We use Coq because it is a standard and well-tested
theorem prover.

The proof sketch considers the definitions that appears in Fig. 2. We note
that Proposition all strat (line 30) enumerates all strategy profiles. The proof
of Proposition all strat (line 30) is demonstrated by destructing all Si(i) as long
as Si(i) ≤ TSi(i), and then concluding that the equality exists with one of the
strategies enumerated. The next step is to show that NSi is an equilibrium.
Then, we enumerate all Nash equilibria (constructing a proposition for each of
them). For each enumerated strategy in the Proposition all strat (line 30), if
it is an equilibrium, we use the corresponding proposition, if it is not, we show
a counter-example (i and si such as u(i, Si) < u(i, change(Si, si, i))). NSi’s
optimality is showed by verifying that there is no equilibrium Si greater than
the equilibrium NSi (Proposition Nash max, line 36). Proposition Nash max
assume that we are looking for a maximal equilibrium and in the opposite case
we just have to change le strat(n, u, Si,NSi) with le strat(n, u,NSi, Si)).

4 Provable Rationality Using Interactive Proofs

We study a 2-agent game, defined by the n × m matrices A,B of the payoffs
of the two agents. Broadly speaking, the equilibrium is hard to compute. We
present two interactive proofs that lead to an easy polynomial-time verification.
The second proof also has privacy guarantees.

Case Study: A General 2-agent Game with Privacy Guarantees

We now turn to consider a 2-agent game, defined by the n × m matrices A,B of
the payoffs of the two agents (the row agent , whose pure strategies are the n
rows, and the column agent, whose strategies are the m columns). Here an equi-
librium is, in general, hard to compute, i.e., complete in the complexity class
PPAD, see [6]. However, the interactive proofs P1 and P2 (Figs. 3 and 4, respec-
tively) lead to an easy polynomial-time verification with privacy guarantees in
the case of P2.

Lemma 1 shows that P1’s verifier algorithm has polynomial time complexity.
The proof follows from the second Nash theorem [23], i.e., that for each strategy
of the row agent in the support S1 the expected gain should be the same and no
less than the expected gain for strategies not in the support. It is easy to state
the Verifier for the column agent.

Rationality Authority for Provable Rational Behavior 39

Prover (inventor): Provide each agent the agents’ supports, i.e., strategy profiled played with
non-zero probabilities.
Verifier of the row agent i: Let the support S2 of the other agent (the column agent) be
{ j1, . . . , jk}. Let y j1 , . . . ,y jk be the Nash probabilities of the column agent. Let S1 be the
support of the row agent and S1 = {i1, . . . , i�}. The verifier solves the linear system (1) and
verifies that 0≤ yt ≤ 1 for all t ∈ { j1, . . . , jk} and also that, for each row i /∈ S1, the expected
gain y j1A(i, j1)+ · · ·+ y jkA(i, jk) < λ1.

λ1 = y j1A(i1, j1)+ y j2A(i1, j2)+ · · ·+ y jkA(i1, jk) (1)

...

λ1 = y j�A(i�, j1)+ y j2A(i�, j2)+ · · ·+ y jkA(i�, jk)

yi1 + · · ·+ y jk = 1

Fig. 3. Interactive prover P1.

Prover (inventor): Send to each agent just its support, its probabilities, and the values λ1,λ2.
Verifier of the row agent i: Agent i ∈ {1,2} asks the prover for two random indices j1, j2.
If the prover is honest, it will return whether j1 is in S2 (or not) and whether j2 is in S2 (or
not). Then the verifier computes the expected gains of the other agent for the two indices,
λ2(j1) and λ2(j2). The verifier can then check whether
• “both j’s in S2”, i.e., λ2(j1) = λ2(j2) = λ2, and
• “1-in/1-out”, say j1 is in, i.e., λ2(j1) = λ2 ≥ λ2(j2).
The test is inconclusive for both j1, j2 /∈ S2 but at least one will be in with probability at least
1/n. Thus, on average, O(n) random queries of the verifier will verify the equilibrium play.

Fig. 4. A private proof P2.

Lemma 1. The interactive proof P1 has verifier complexity of time LP (n,m)
(where LP is the time of a linear program solver of at most n equations and m
unknowns) and the number of bits communicated is O(n + m).

Proof Sketch. The verifier must solve a linear system of k + 1 equations and
k + 1 unknown variables, where k ≥ max(n,m) as implied by Fig. 3. Also, the
prover just sends the two support sets (indices); each is less than max(n,m) in
cardinality. Thus, it can actually send a vector of zeroes and ones, where the
ones indicate the support indices. �

Note that our proof P1 reveals both equilibrium supports to each agent.
However, P1 does not need to explicitly send any probability values. Moreover,
the verifier algorithm P2 extends P1, still has a polynomial time, and yet does
not reveal to any agent the Support (or probability values) of the other agents!

Remark 1. We can generalize the scheme of P1 and P2 to n agents. The prover
provides the support sets S1, . . . , Sn to all. The verifier of each agent then solves
the corresponding polynomial system to find the Nash equilibrium probabilities.

40 S. Dolev et al.

Remark 2. The interactive proof P2 does not reveal the actual equilibrium to
either agent. Namely, the row agent, for example, cannot in general compute the
Support (and hence the probability values) of the column agent if the row agent
knows λ1, λ2 and its own Support and probabilities. To see this, consider the
example in Fig. 5. Assume that the prover sends to the row agent its Support
S1 = {A}, its probabilities pA = 1, pB = 0, its payoff λ1 = 1, and the payoff
of the column player λ2 = 1. Then, the row agent cannot conclude which is the
actual equilibrium, since it is easy to see that any probabilities qC , qD of the
column agent such that qC + qD = 1, q ≤ 1/2, qC ≥ 0, qD ≥ 0 correspond to
Nash equilibrium probabilities with λ2 = 1.

Remark 3. In the case of large supports, e.g., θ(n), our verifier can test the equi-
librium in a constant, k, number of queries, because the probability is constant
in each case. Note that one can get the other’s support via n queries, i.e., each
query asks “is j in the other’s support?” for all j to get all the support of the
other agents. Thus, our verifier has a definite advantage in this case of large sup-
ports. The proposed test is always sublinear in n, except for the case of constant
size supports.

C D

A 1, 1 1, 1
B 0, 1 2, 0

Fig. 5. A bimatrix game example.

5 Equilibrium Consultant with Provable Advices

We present the Participation game in which c is the auction participation fee
and no gain is offered to the solo participant. The game’s equilibrium is hard to
compute without the rationality authority’s advice. We explain how the agent
can use the advice for computing the game equilibrium and verify the rationality
authority’s advice.

Consider n firms that are eligible to participate in an auction. The auction
rules are:

– A firm f gets a value v > 0 if at least k = 2 firms choose to participate and
f chooses not to.

– A firm f gets a value v − c > 0 when at least k = 2 firms participate and f is
one of them.

– If nobody participates, then each firm gains zero.
– If firm f participates but the total number of participants is less than k, then

f pays c > 0.

Rationality Authority for Provable Rational Behavior 41

The Participation game is a symmetric game and thus, by Nash’s theorem [23],
it has a symmetric Nash equilibrium in which each firm decides to participate
or not with probability p independent of the others.2 The equilibrium stability
implies equality between the expected payoffs of a firm f for participating and
for not participating:

(v − c) · Pr{at least 1 other participates |f participates} − (2)
cPr{no other firm participates |f participates} =
v Pr{at least 2 other firms participate |f does not} +

0 · Pr{at most 1 other firm participates |f does not}
Equation (2) defines the equilibrium’s probability p. Thus, the verifier can verify
Eq. (2) by computing Eq. (3).

(v − c) · A + (−c) · B = v · C + 0 · D, (3)

where

A = Pr{at least 1 other firm participates | f participates} = 1 − (1 − p)n−1

B = Pr{no other firm participates | f participates} = (1 − p)n−1

C = Pr{at least 2 other participate | f does not} = 1 − (1 − p)n−1 − (n − 1)p(1 − p)n−2

D = Pr{at most 1 other participates | f does not} = (1 − p)n−1 + (n − 1)p(1 − p)n−2

In fact, our simple example defines an easier job for the verifier since Eq. (3)
gives Eq. (4).

(v − c) − (v − c)(1 − p)n−1 + (−c)(1 − p)n−1 = v − v(1 − p)n−1 − v(n − 1)p(1 − p)n−2

(v − c) + (−v + c − c)(1 − p)n−1 = v − v(1 − p)n−1 − v(n − 1)p(1 − p)n−2

(v − c) − v(1 − p)n−1 = v − v(1 − p)n−1 − v(n − 1)p(1 − p)n−2

c = v(n − 1)p(1 − p)n−2 (4)

For c
v = 3

8 , n = 3, and p = 1
4 , the firm’s expected gain is v

(
1 − (

3
4

)2 − 2 · 1
4 · 3

4

)
=

v
16 . In the case of any k, the prover still has to provide each firm with the equilib-
rium value of p and the verifier asserts Eq. (5).

(v − c) · Ak + (−c) · Bk = v · Ck + 0 · Dk, where (5)
Ak = Pr{at least k firms participate | f participates}
Bk = Pr{at most k − 1 firms participate | f participates}
Ck = Pr{at least k firms participate | f does not}
Dk = Pr{at most k − 1 firms participate | f does not}

Note that, now, p’s value is hard to compute but, once it is given, it is easy to
compute the conditional probabilities Ak, Bk, and Ck and verify the equilibrium
2 We assume that firms do not differ significantly (or that they are aware of any

difference among themselves) and thus a symmetric equilibrium, in which each firm
participates with probability p > 0, is natural to assume.

42 S. Dolev et al.

play in which a firm expects to get the same by using p to decide whether to play.
Also note that for the Participation game, and for symmetric games in general,
the players can cross-check that the prover has sent the same probability p to each
of them, since it might be the case that more than one symmetric equilibrium
exists. The existence of multiple equilibria would allow a dishonest prover to send
different probabilities to the players, with each probability corresponding to a
different symmetric equilibrium.

On-line Participation. Let us again assume that k = 2 and consider the case in
which firms need to decide about their participation at different times. If firm f
is the last to choose, the prover’s “proof” is either p = 1, when at least one other
firm has entered the game, or p = 0 otherwise. If the advice is p = 1, firm f will
gain v − c = 5v

8 and if p = 0, firm f will gain v. In both cases, f gains more
in “on-line” advice in this setting. However, this verification method reveals the
number of firms that have already played.

Of course, such advice favors the late arriving agents. But if the order of
arrivals is random, the expected gain of any firm after advice is at least 1

3 · 5v
8 =

5v
24 , still better than v

16 in the off-line case. On the other hand, false advice to
the last agent, i.e., a flip of the value of p, will result in a loss! Thus it is crucial
here to verify that the advice given by the prover is truthful. Namely, that it can
lead to a best-reply given past history.

6 On-line Network Congestion Games

We study competitive games in a setting in which each agent joins the game at
a different time (on-line games [12]). The game inventor, named the inventor,
keeps statistical information about past agents. Each agent, upon arrival, has to
choose a strategy. With probability p, the agent follows the inventor’s suggested
strategy. With probability (1 − p), it chooses a strategy based on its knowledge
about the strategic (off-line) version of the game. The inventor chooses a strategy
for the agent based on its statistics. When the inventor suggests a strategy, it
must convince the agent that the strategy is beneficial. To do so, we assume that
the inventor provides the agent with a formal proof that can be checked by a
trusted verifier (as in Sect. 5).

After defining an online variation of congestion games, such as [13], we present
a greedy strategy for choosing a path based on the inventor’s statistics. Let us
consider a communication network, N = (V,E, (de)e∈E), where V is the set of
nodes, E is the set of arcs, and de : R+ → R+ is a non-decreasing function for
each e ∈ E, indicating the delay on arc e as a function of its congestion, i.e., the
total load on it. Initially, the set of agents (the network users) is unknown to
the inventor, which in the case of on-line congestion games is the operator of the
network. We assume, however, that the number of agents, n, is known. Each agent
i, at some point τi, joins the network and chooses a path πi from a source node
si ∈ V to a sink node ti ∈ V to route its load wi ∈ R+. The decision of each agent
on the path is irrevocable. Let [i] = {1, . . . , i}. The configuration of the network

Rationality Authority for Provable Rational Behavior 43

a

b

c

d

k+1 k+1

k k

a

b

c

d

k+1 k+1+1

k k

Fig. 6. An example in which the delay of each edge e is de(x) = x. Consider unit loads,
and agent 2k+1 that chooses a path from a to d. Observe that each edge has congestion
k. A best-reply for agent 2k + 1 would be a → b → d (shortest path). Suppose that
the next agent to enter the network, agent 2k + 2, has to choose a path from b to d.
Its only option is the path b → d. Therefore, at time τ2k+2, the delay experienced by
agent 2k +1 is 2k + 3, while its best-reply would be path a → c → d with a total delay
of 2k + 2.

at time τi (right after agent i joins) is π(i) = (πj)j∈[i]. Given a configuration
π(k), let We(π(k)) =

∑
j∈[k]:e∈πj

wj denote the total load on arc e ∈ E. At time
τk, the total delay experienced by agent i is then λi(π(k)) =

∑
e∈πi

de(π(k)).
The goal of each agent is to choose a path, πi, from si to ti so that λi(π(n))

is minimized in N . However, an agent i ∈ [n − 1] cannot be aware of the final
configuration π(n). At time τi, its best-reply is to choose a shortest path from
si to ti, but this path cannot remain a best-reply for agent i at time τn when
the game ends. To see this, consider the network shown in Fig. 6. The goal of
the inventor is to minimize total congestion Λ(π(n)) =

∑
e∈E de(π(n)).

Choosing a Path Based on the Inventor’s Statistics

The question now is, how should an agent choose its path since it is not aware
of the final configuration. We let each agent i have two options: either to choose
a shortest path given π(i − 1), or to ask the inventor for a suggested path.

What is the statistical information that the inventor maintains? We consider
two cases: In the first case, the inventor has prior knowledge about the loads
of the agents, knows for example that they are drawn from some particular
probability distribution. In the second case, the inventor dynamically updates
its information about the loads. That is, at each time τi, assuming that the total
number of agents n is known, the inventor knows that loads w1, . . . , wi have
appeared, and expects for example (n − i) loads of expected value

∑i
k=1 wk

i .

Greedy Strategies for Parallel Links

Assume that the network consists of a set [m] = {1, . . . m} of m parallel links
from a source node s to a sink node t. What is the best-reply of agent i of load
wi that arrives at time τi? The best-reply is not necessarily the least loaded link
at time τi, because agent i knows that the game has not ended, and expects n− i

44 S. Dolev et al.

0 42 92 142 192 242 292 342 392 442 492
60%

70%

80%

90%

100%

Number of links

Ite
ra

tio
ns

Fig. 7. The number of links (x-axis) and the iteration percentage (y-axis) in which the
final assignment is strictly better, w.r.t. makespan, than the greedy strategy, see also
Remark 4. We consider 1000 agents, uniform load distribution in [0, 1000], the number
of (equispeed) links is m = 2, . . . 500.

loads to arrive. Namely, at time τi, agent i knows: (1) The total congestion on
each link by time τi, (2) Its own load wi, and (3) That n − i loads are expected
to arrive.

We simulate a simple on-line congestion game where all agents ask the inven-
tor, i.e., p = 1 (see Fig. 7). We compare the greedy strategy (each agent on
arrival chooses the least loaded link) to the strategy suggested by the inventor:
The inventor takes into consideration the fact that more agents are expected.
For each agent i, the inventor computes the average load wi that has appeared
so far.3 Given the congestion on the links by time τi, agent i computes a Nash
equilibrium assignment of its own load wi and of n − i loads wi. Namely, each
load is assigned to the least loaded link, greatest load first. Then the inventor
suggests that agent i choose the link that is suggested by that Nash equilibrium
assignment. The greedy strategy is natural to assume while it also offers a per-
formance guarantee (see Lemma 2); however, it is clear from the figure that it
is outperformed by the strategy suggested by the inventor. The lemma refers to
the term makespan, which is the maximum load on any link.

Lemma 2 (Greedy Strategy). Let L1, . . . Lm be the total loads of links 1, . . . m
when all agents have entered the game. Lj ≤ (

2 − 1
m

) · OPT , where OPT is the
optimum makespan (given all wi’s).

Proof. Let Lij be the total load of link j right after agent i enters the game.
Clearly, Lj

n = Lj . Let ij be the last agent of load wij that is assigned to link j.

3 One can consider a way in which the agents can know that the inventor is not
cheating about the average loads. For example, the system can require the inventor
to publish the average loads with its signature at each round. In everyone record,
then the inventor is kept responsible when found cheating, as in [10].

Rationality Authority for Provable Rational Behavior 45

Since each agent chooses the least loaded link at the time it enters the game,
Expression (6) holds for any link j.

Lj
ij−1 ≤ Lk

ij−1 ∀k ∈ [m] \ {j} Lj
n − wij ≤ Lk

n ∀k ∈ [m] \ {j}
Lj

ij
− wij ≤ Lk

ij
∀k ∈ [m] \ {j} Lj − wij ≤ Lk ∀k ∈ [m] \ {j}

(6)

Expression (7) completes the proof by summing for all k ∈ [m] \ {j}.

(m − 1)(Lj − wij) ≤
n∑

i=1

wi − Lj (7)

Lj ≤
∑n

i=1 wi

m
+

m − 1

m
wij ≤

∑n
i=1 wi

m
+

m − 1

m
max

i
wi ≤

(
2 − 1

m

)
· OPT

Remark 4. Note that in Fig. 7, we plot the percentage of iterations where the
strategy suggested by the inventor outperforms the greedy strategy. Each itera-
tion involves an experiment, which considers random numbers, i.e., the agents’
loads. The chart illustrates that, for sufficiently large number of links, obeying
to the inventor’s suggestion outperforms greediness in the vast majority of iter-
ations. Note that we also observe particular cases in which the greedy strategy
outperforms the inventor, e.g., in the experiment with 332 edges, the inventor
was better at 99% of the cases than the greedy strategy.

7 Discussions

This work studies the rationality authority infrastructure for encouraging com-
puter agents to identify and make rational choices that are feasible and optimal.
The agents can use this infrastructure for consulting with possibly biased game
inventors. The agents verify these advices by using the verification procedures.

Anecdotes

There is a story about two folks, Ron (the rational) and Norton (the irrational),
who walk in a far away road in the middle of a rainy night. At some point
they both decide to sleep. Ron chooses to sleep on the muddy side of the road,
in order to avoid cars that may drive in the paved part of the road. Norton
decides to sleep on the more convenient paved part. A car arrives, the driver
sees Norton at the last minute, and turns to the side of the road, exactly where
Ron decided to sleep. . . Later, Norton may claim that he could not predict the
influence of his irrational action on Ron. The existence of rationality authority
suggests the way to act and produces a check-able proof for the optimality of the
suggestion, eliminates the possible validity of Norton’s excuse and may be used
(after auditing Norton’s actions) to blame Norton for not using the rationality
authority results to act rationally.

The theory of non-cooperative games considers agents that are capable of
identifying and making rational choices. However, non-cooperative game analy-
sis is complicated; it is the subject of extensive theoretical study [27]. In certain

46 S. Dolev et al.

games the ingenious observations that are needed in order to figure the game
outcome are even beyond the computer’s capabilities; many solution concepts
have no polynomial time decidability [26]. Such difficulties could be circumvented
when the game inventor has additional capabilities that enables the game inven-
tor to compute and propose solutions.

We consider game inventors that may have conflicts of interest with the
agents and attempt to misadvise them. Therefore, we require the game inventor
to equip the agents with a procedure to determine their actions for the game
and with a procedure that produces a rationality proof of the chosen actions.
The agent privately uses the procedures for choosing actions, possibly without
revealing their preferences (utilities). The agents may suspect that the supplied
procedures are biased or incorrect, as the inventor may benefit from the game.
Thus, the outcome of the procedure that defines the actions and the outcome
of the procedure that supplies the proof for the rationality of the chosen actions
are checked using proof verification procedures (that are possibly provided by
several verifiers).

The rationality authority design considers computational constraints as well
as computer security considerations. The game inventor that suggests the actions
and proofs, supplies procedures that are executed by the agents on their com-
puters, where users execute the procedures, with their preferences (utilities),
that are unknown to the rest of the world. To prevent information leakage, the
agents may protect the activity in their computers by isolating them from the
communication network. The rationality authority is designed to enable ratio-
nal behavior of agents, whether they are humans or processes acting as part of
electronic commerce.

Consider lottery with x raffle tickets to be sold. When the lottery is fair, the
possibility to win, after buying a raffle ticket, is 1/x. Suppose that the (game
inventor, which is the) lottery company, knows that there are fake raffle tickets,
which are almost indistinguishable from the valid ones. The lottery company
knows that these fake tickets are being sold in a certain geographic area A . The
lottery company can advise the lottery participants to avoid buying tickets sold
in area A , supplying convincing proofs for identifying these fake raffles. By doing
so, the lottery company allows the lottery participants to keep their chances at
1/x. In this case, the information disclosure is minimal but very useful to the
agents. The rationality authority can support such scenarios.

Conclusions

We focus on verification methods that do not violate the agents’ privacy by
revealing their preferences (utilities). Autonomous agents do not voluntarily
reveal their preferences, because it could jeopardize the success of their actions.
Moreover, even when such preferences are known to a trusted third party, secu-
rity concerns and privacy restrictions limit the use of such information. This
work presents examples in which such parties privately consult the agents using
knowledge that only they have, as in [32], and yet offer proof for their advices,
unlike [32]. Moreover, the local equilibrium verification allows us to consider a

Rationality Authority for Provable Rational Behavior 47

more general scenario in which the agents have private and public preferences
(as in [25]). Future research can further investigate efficient private verification
of online games and online best replies [24].

Once the rationality authority requirements are satisfied, a game authority [9,
10] can guarantee that all agents take rational and honest actions; actions that
follow the game rules. Moreover, actions of dishonest game inventors, agents, and
verifiers can exclude the participant from acting in games and can be reported
to a reputation system that audits their actions (e.g., see [8,9]).

The ordinary Joe and Jane do not have sufficient experience or the aca-
demic background for choosing best-replies and “perfect” maximum expected
utility [21]. Interestingly, they are assured of making the right choice when using
the rationality authority.

References

1. Aumann, R.J.: Subjectivity and correlation in randomized strategies. J. Math.
Econ. 1(1), 67–96 (1974)

2. Bertot, Y., Castéran, P., Huet, G., Paulin-Mohring, C., Pierre, C.: Interactive
Theorem Proving and Program Development: Coq’Art: The Calculus of Inductive
Constructions. Springer, New York (2004)

3. Brânzei, S., Procaccia, A.D.: Verifiably truthful mechanisms. CoRR abs/1412.0056
(2014)

4. Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.): CEEMAS
2007. LNCS (LNAI), vol. 4696, pp. 11–21. Springer, Heidelberg (2007)

5. Coy, P.: The secret to google’s success. Business Week/Bloomberg L.P., 6 March
2006. (ts innovative auction system has ad revenues soaring)

6. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a nash equilibrium. Commun. ACM 52(2), 89–97 (2009)

7. Dolev, S., Panagopoulou, P.N., Rabiey, M., Schiller, E.M., Spirakis, P.G.: Brief
announcement: Rationality authority for provable rational behavior. In: PODC
2011 TR 2011:03, Department CSE, Chalmers University of Technology (2011)

8. Dolev, S., Schiller, E.M., Spirakis, P.G., Tsigas, P.: Strategies for repeated
games with subsystem takeovers implantable by deterministic and self-stabilizing
automata. In: Manzalini, A. (ed.) Autonomics. ACM International Conference Pro-
ceeding Series, ACM (2008)

9. Dolev, S., Schiller, E.M., Spirakis, P.G., Tsigas, P.: Robust and scalable middleware
for selfish-computer systems. Comput. Sci. Rev. 5(1), 69–84 (2011)

10. Dolev, S., Schiller, E.M., Spirakis, P.G., Tsigas, P.: Game authority for robust and
scalable distributed selfish-computer systems. Theor. Comput. Sci. 411(26–28),
2459–2466 (2010)

11. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and the generalized
second-price auction: selling billions of dollars worth of keywords. Am. Econ. Rev.
97(1), 242–259 (2007)

12. Foster, D.P., Vohra, R.: Regret in the on-line decision problem. Games Econ.
Behav. 29(1–2), 7–35 (1999)

13. Fotakis, D., Kontogiannis, S.C., Spirakis, P.G.: Atomic congestion games among
coalitions. ACM Trans. Algorithms 4(4), 52 (2008)

48 S. Dolev et al.

14. Freund, Y., Schapire, R.E.: Game theory, on-line prediction and boosting. In:
COLT, pp. 325–332 (1996)

15. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A.V. (ed.) Pro-
ceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, pp.
218–229. ACM, New York (1987)

16. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: Sedgewick, R. (ed.) Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, May 6–8, 1985, pp. 291–304.
ACM, Providence (1985)

17. Guerin, F.: An algorithmic approach to specifying and verifying subgame perfect
equilibria. In: Proceedings of the Eighth Workshop on Game Theoretic and Deci-
sion Theoretic Agents (GTDT-2006), Hakodate, Japan (2006)

18. Guerin, F.: Applying game theory mechanisms in open agent systems with com-
plete information. Auton. Agents Multi-Agent Syst. 15(2), 109–146 (2007)

19. Guerin, F., Pitt, J.: Verification and compliance testing. In: Huget, M.-P. (ed.)
Communication in Multiagent Systems. LNCS (LNAI), vol. 2650, pp. 98–112.
Springer, Heidelberg (2003)

20. Guerin, F., Tadjouddine, E.M.: Realising common knowledge assumptions in agent
auctions. In: IAT, pp. 579–586. IEEE Computer Society (2006)

21. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk.
Econometrica 47(2), 263–291 (1979)

22. Mirrokni, V., Muthukrishnan, S., Nadav, U.: Quasi-proportional mechanisms:
prior-free revenue maximization. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS,
vol. 6034, pp. 565–576. Springer, Heidelberg (2010)

23. Nash, J.F.: Equilibrium point in n-person games. Proc. Nat. Acad. Sci. USA 36,
48–49 (1950)

24. Nikoletseas, S., Panagopoulou, P., Raptopoulos, C., Spirakis, P.G.: On the struc-
ture of equilibria in basic network formation. In: Gasieniec, L., Wolter, F. (eds.)
FCT 2013. LNCS, vol. 8070, pp. 259–270. Springer, Heidelberg (2013)

25. Nisan, N., Ronen, A.: Algorithmic Mech. Des. 35, 166–196 (2001)
26. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.

Cambridge University Press, New York (2007)
27. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge

(1994)
28. Pauly, M.: Programming and verifying subgame-perfect mechanisms. J. Log. Com-

put. 15(3), 295–316 (2005)
29. Tadjouddine, E.M.: Complexity of verifying game equilibria. CEEMAS 4, 103–112

(2007)
30. Tadjouddine, E.M., Guerin, F.: Verifying dominant strategy equilibria in auctions.

In: [4], pp. 288–297(2007)
31. Tadjouddine, E.M., Guerin, F., Vasconcelos, W.W.: Abstractions for model-

checking game-theoretic properties of auctions. In: Padgham, L., Parkes, C.D.,
Müller, J., Parsons, S. (eds.) AAMAS (3), pp. 1613–1616. IFAAMAS, South
Carolina (2008)

32. Thaler, R.H., Sunstein, C.R.: Nudge: Improving Decisions About Health, Wealth,
and Happiness. Yale University Press, New Haven (2008)

Weighted Boolean Formula Games

Marios Mavronicolas1(B), Burkhard Monien2, and Klaus W. Wagner3

1 Department of Computer Science, University of Cyprus,
1678 Nicosia, Cyprus

mavronic@cs.ucy.ac.cy
2 Faculty of Electrical Engineering, Computer Science and Mathematics,

University of Paderborn, 33102 Paderborn, Germany
bm@upb.de

3 Lehrstuhl für Theoretische Informatik, Institut für Informatik,
Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany

wagner@informatik.uni-wuerzburg.de

Abstract. We introduce weighted boolean formula games (WBFG) as a
new class of succinct games. Each player has a set of boolean formulas
she wants to get satisfied; the formulas involve a ground set of boolean
variables each of which is controlled by some player. The payoff of a
player is a weighted sum of the values of her formulas. We consider both
pure equilibria and their refinement of payoff-dominant equilibria [34],
where every player is no worse-off than in any other pure equilibrium.
We present both structural and complexity results:

– We consider mutual weighted boolean formula games (MWBFG), a sub-
class of WBFG making a natural mutuality assumption on the formulas
of players. We present a very simple exact potential for MWBFG. We
establish a polynomial monomorphism from certain classes of weighted
congestion games to subclasses of WBFG and MWBFG, respectively,
indicating their rich structure.

– We present a collection of complexity results about decision (and
search) problems for both pure and payoff-dominant equilibria in
WBFG. The precise complexities depend crucially on five parameters:
(i) the number of players; (ii) the number of variables per player;
(iii) the number of formulas per player; (iv) the weights in the pay-
off functions (whether identical or not), and (v) the syntax of the
formulas. These results imply that, unless the polynomial hierarchy
collapses, decision (and search) problems for payoff-dominant equilib-
ria are harder than for pure equilibria.

A preliminary version of this work appeared in the Proceedings of the 3rd Inter-
national Workshop on Internet and Network Economics, X. Deng and F. Chung
Graham eds., pp. 467–481, Vol. 4858, Lecture Notes in Computer Science, Springer-
Verlag, December 2007. This work has been partially supported by the German
Research Foundation (DFG) within the Collaborative Research Centre “On-the-
Fly-Computing” (SFB 901) and by the IST Program of the European Union under
contract numbers IST-2004-001907 (DELIS) and 15964 (AEOLUS).

c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 49–86, 2015.
DOI: 10.1007/978-3-319-24024-4 6

50 M. Mavronicolas et al.

1 Introduction

1.1 Succinct Games and Equilibria Problems

Nash equilibrium [49] is the dominant solution concept in Game Theory; it rep-
resents a stable state of a game where no player could unilaterally improve her
payoff by switching her strategy. The Nash equilibrium is pure when each player
chooses a single strategy; when at least one player randomizes over her strategy
set, the equilibrium is non-pure or mixed. Deciding the existence of and com-
puting Nash equilibria, whether mixed or pure, for a given game are among
the most important problems considered in Algorithmic Game Theory – see, for
example, [1,5,12,14,16–18,26,31,57]. In the explicit form of a game, the play-
ers’ strategy sets and payoffs are presented explicitly by using a total of m · km

numbers when there are m players with k strategies per each. The explicit form
allows for deciding the existence of and computing a pure equilibrium by a
straightforward algorithm, which, however, does not scale in m and k.

In a succinct game, there is an implicit representation, via some model of
computation, of strategy sets and payoffs requiring size much smaller than
for its explicit form (cf. [51, Sect. 2]). For example, in an (unweighted) con-
gestion game [55], the payoffs are represented by explicitly given payoff func-
tions. Other interesting examples of succinct games include graphical games [41],
sparse games [14], symmetric games [30,49], anonymous games [6], polymatrix
games [36], local-effect games [44] and circuit games [24,26,57]. The complex-
ity of both pure and mixed equilibria for succinct games has been studied very
intensively in the last few years – see, e.g., [1,12,17,19,20,23,25,26,29,41,44,45,
51,57].

Equilibrium selection (cf. [34]) deals with singling out some “best” equilib-
rium. A criterion for the selection is set by some refinement of equilibrium.
Payoff-dominance [34] is a well-known refinement; in a payoff-dominant equilib-
rium, every player is no-worse-off than in any other pure equilibrium. Games
admitting payoff-dominant equilibria are called games of common interests
(cf. [2]); simple examples for them include unanimity games [40] and match-
ing games [3] (cf. [15, Sect. 1]). There are many other, well-studied refinements;
we only mention dominating equilibrium, Pareto-optimality, risk-dominance [34]
and social welfare maximization. Due to their strength, refinements of pure equi-
libria are usually unlikely to exist even when pure equilibria do. For example, the
only class of games we know for which Pareto-optimal equilibria always exist are
certain, very special two-person exchange models [13] of an exchange economy
with just two traders. The complexity of deciding the existence and computing
such refinements of pure equilibria in succinct games remains largely unexplored.

1.2 Weighted Boolean Formula Games

We introduce weighted boolean formula games, abbreviated as WBFG, as an ade-
quate and very general form of succinct games (Definition 1). Here each player

Weighted Boolean Formula Games 51

controls a set of boolean variables; different players control disjoint sets of vari-
ables. A strategy of a player is a truth assignment to her boolean variables.
Each player targets a set of constraints expressed by boolean formulas, which
she wants to get satisfied; her formulas may also depend on variables owned by
other players.1 Thus, WBFG represent the payoff functions with succinct size:
the size of formulas. For each formula, there is an (integer) weight expressing
the relative priority of the constraint for the player. In an unweighted boolean
formula game, abbreviated as BFG, all weights are 1. The payoff of a player is
the weighted sum of her satisfied constraints. In a pure equilibrium, no player
can increase her payoff by flipping the values of her variables. We shall study
the structure and complexity of pure and payoff-dominant equilibria for WBFG.

Even though the definition of a WBFG is very simple, any setting in which
variables and weighted constraints are distributed among autonomous agents can
be expressed as a WBFG. Consider, for example, an economic setting in which
a principal motivates a team of agents, or schedulers, each coming with a set of
tasks. Each agent is bound to a set of contracts signed with the principal; how-
ever, a contract may involve tasks owned by multiple agents. For each contract,
the agent is incentivized via a payment conditioned on scheduling all involved
tasks; each agent seeks to maximize her total payment. This setting already gen-
eralizes (weighted) congestion games [47,55] since it allows payments to depend
on combinations of scheduled tasks in an arbitrary way. It is straightforward to
formalize this example using players, boolean variables, boolean formulas and
weights for schedulers, tasks, contracts and payments, respectively.

We shall especially consider a subclass of WBFG, called mutual weighted
boolean formula games and abbreviated as MWBFG; these add a natural mutu-
ality assumption on the constraints targeted by different players. More specifi-
cally, whenever some formula of a player involves a variable owned by a second
player, then the same formula is a constraint for the second player with the
same weight. Mutuality is motivated by typical multi-agent systems, where a
constraint concerns all agents featuring the involved variables in a uniform way.

1.3 Summary of Results and Significance

We present two types of results.

– We identify structural properties for both WBFG and its subclass of MWBFG.
– We present a comprehensive collection of complexity results about pure and

payoff-dominant equilibria; those about the latter are the first known complex-
ity results about payoff-dominant equilibria. More specifically, we investigate
how the complexity of their decision and search problems depends on five
natural parameters:
• The number of players m.
• The (maximum) number k of variables per player.

1 A boolean formula is the special case of a (boolean) circuit where every boolean gate
has fan-out one; so, a boolean formula is a circuit whose underlying graph is a tree.

52 M. Mavronicolas et al.

• The (maximum) number r of boolean formulas weight-summed into a pay-
off function.

• The weights for the payoff functions — whether WBFG are weighted or
unweighted.

• The syntax of the boolean formulas; WBCG denote weighted boolean clause
games.

Each of the parameters m, k, and r is either fixed to some specific natural number
or non-fixed. We discover that the choice of these parameters has a crucial impact
on complexity. In all cases, complexity results for the search problem accompany
those for the decision problem.

Structural Results. We show that a MWBFG is an exact potential game [48]
(Theorem 1); towards this end, we provide a very simple and intuitive exact
potential for a MWBFG with size polynomial in the size of a MWBFG. Thus,
a MWBFG has the Finite Improvement property [48, Lemma 2.3], so that it
admits a pure equilibrium; the corresponding search problem is in PLS [39]
(Corollary 1). We remark that the assumption that variables and formulas are
boolean is not essential for the proof of Theorem 1: mutuality suffices on its own
for the existence of an exact potential.

Recall that (exact) potential games (containing MWBFG) and unweighted
congestion games are equivalent [48,55]; hence, to obtain a classification of
WBFG into known classes of games, we aim at embedding some known class of
congestion games more general than unweighted congestion games into WBFG.
Weighted, linear congestion games with player-specific coefficients and constants
from [29,45] is the class we end up with. As a tool for the embedding, we use
polynomial monomorphisms between classes of games, which not only preserve
the pure equilibria of the original game but also create no new pure equilibrium
for the resulting game.

We show that every weighted, linear congestion game with player-specific
coefficients and constants is polynomial monomorphic to a WBFG (Theorem 2).
The particular monomorphism we employ has the form of a linear relation
between corresponding payoffs of each player (cf. [34, Sect. 3.4]). In the spe-
cial case where the coefficients are player-independent, the same monomorphism
reduces a weighted, linear congestion game with player-specific constants to a
MWBFG (Corollary 2).

Complexity Results for Pure Equilibria. We first consider the case where
m is not fixed while k ≥ 1 is fixed (Theorem 3, Cases (1), (2) and (3)). For
WBFG with r ≥ 1 fixed or not, the decision problem is NP-complete (Case
(1)); for WBCG with r ≥ 2 fixed or not, the decision problem is still NP-
complete (Case (2)). These two results reveal an interesting trade-off between
the number (per player) and the syntax of boolean formulas sufficing for NP-
hardness: either more than one function or arbitrary syntax were needed for the

Weighted Boolean Formula Games 53

proofs. We establish that this trade-off is inherent by showing that, even if k is
not constant, the decision problem for WBCG is in P when r = 1 (Case (3)).

We next consider the case where k is not fixed while m ≥ 2 is fixed or not.
We show that the decision problem is ΣP

2 -complete for WBFG with r ≥ 1 fixed
or not (Theorem 3, Case (4)).

These complexity results indicate that, unless the polynomial hierarchy col-
lapses, allowing an arbitrary number of variables per player has a stronger impact
on the complexity of deciding the existence of pure equilibria in WBFG than
allowing an arbitrary number of players.

Complexity Results for Payoff-Dominant Equilibria. We first consider
the case where m is not fixed while k ≥ 1 is fixed (Theorem 4, Cases (1) and
(2)). For WBFG with r not fixed, the decision problem is ΔP

2 -complete (Case (1));
for BFG with r fixed or not, the decision problem is ΘP

2 -complete (Case (2)).
We next consider the dual case where k is not fixed while m ≥ 3 is fixed or

not (Theorem 4, Cases (3) and (4)). For this case we consider further that r is
not fixed. For WBFG, the decision problem is ΔP

3 -complete (Case (3)); for BFG,
the decision problem is ΘP

3 -complete (Case (4)).
Similarly to the complexity results for pure equilibria, these complexity

results indicate that, unless the polynomial hierarchy collapses, allowing an arbi-
trary number of variables per player has a stronger impact on the complexity
of deciding the existence of payoff-dominant equilibria in WBFG than allowing
an arbitrary number of players. Furthermore, the results indicate that in both
cases (m not fixed and k not fixed, respectively), the impact of weights on this
complexity is conditioned on whether the inclusion ΘP

2 ⊆ ΔP
2 (resp., ΘP

3 ⊆ ΔP
3

is proper or not; it is conjectured in [62, Sect. 2] that on each level i ≥ 1 of the
polynomial hierarchy, the inclusion ΘP

i ⊆ ΔP
i , where ΘP

i = LΣP
i−1 , is proper.

The ΘP
2 -completeness of deciding the existence of payoff-dominant equilibria

in BFG with a non-fixed number of players (Theorem 4, Case (2)) provides one of
the very rare, truly natural complete problems for ΘP

2 — see [62] for references
to other ΘP

2 -complete problems. We feel that this result seconds in importance
the ΘP

2 -completeness [35] of deciding who the winner is in the election system,
known as Dodgson Election, developed back in 1876 by Lewis Carroll. To the
best of our knowledge, the ΘP

3 -completeness of deciding the existence of payoff-
dominant equilibria in BFG with a non-fixed number of variables per player
(Theorem 4, Case (4)) provides the first truly natural complete problem for ΘP

3 .

1.4 Related Work and Comparison

Succinct games with formalisms similar to WBFG have been considered in Algo-
rithmic Game Theory. Several works including [1,4,9,57] have independently
obtained results related to ours for such succinct games. Since WBFG have a
restricted structure, the proofs of the completeness of deciding the existence
of pure equilibria for WBFG have required much more delicate arguments than

54 M. Mavronicolas et al.

the ones in [1,9,57]. There were no complexity results before for deciding the
existence of payoff-dominant equilibria for succinct games.

Circuit Games [57]. In a circuit game [57], players still control disjoint sets
of variables, but each player’s payoff is given by a single boolean circuit and
there are no weights. Note that a WBFG can be encoded as a circuit game since
their payoff functions, defined as the weighted sum of boolean formulas, can
be evaluated by a single boolean circuit. Thus, WBFG make a very restricted
subclass of circuit games. So, any hardness result such as the ones in Sects. 5
and 6 about WBFG automatically holds for circuit games. Boolean circuit games
are the special case of circuit games where each player controls a single boolean
variable. Circuit games had been earlier studied in [24,26].

The best-known upper bound for the formula size L(f) of a boolean function
f in terms of its (boolean) circuit size C(f) is L(f) = O(2C(f)) [42,53].2 So, there
is no known polynomial time transformation of a circuit game into a boolean
formula game where each player has a single equivalent formula. But it is possible
to transform a boolean circuit into a polynomial number of boolean clauses by
introducing new, polynomially many boolean variables to express the correctness
of the computations by its individual gates. Hence, there is a polynomial time
transformation of a circuit game into a boolean formula game where each player
has a polynomial number of clauses. Nevertheless, we aim, in this work, at WBFG
where the number of boolean formulas (in particular, clauses) per player is a
small constant.

We note that all upper bounds established in this work for WBFG
(Propositions 1 and 2) are also valid for circuit games. It is shown [57, Theorem 6.1]
that deciding the existence of pure equilibria in two-player circuit games is ΣP

2 -
complete; this result is incomparable to Theorem 3 (Case (4)), which concerns
three-player boolean formula games. Furthermore, it is shown in [57, Theorem 6.2]
that deciding the existence of pure equilibria in boolean circuit games is NP-
complete; this result follows trivially from Theorem3 (Case (1)).

Turing Machine Games [1]. Two different levels (forms) of succinct represen-
tations of such games are considered in [1]: In the implicit form, both the payoff
functions and the strategy sets are given implicitly. Thus, the payoff functions
are represented by a deterministic Turing Machine (dtm) computing the payoffs,
while strategy sets are described succinctly. In the general form, payoff functions
are represented by a dtm as in the explicit form, but strategy sets are now listed
explicitly.

For each form, there are two cases. In the non-uniform case, the payoff func-
tions are represented by a tuple 〈M, 1t〉, where M is a dtm and t is a natural
number bounding its computation time. In the uniform case, the payoff functions

2 The straightforward depth-preserving conversion of a boolean circuit into an equiva-
lent formula may potentially blow up the size exponentially since pieces of the circuit
must be repeated. Nevertheless, the largest shown difference between formula size
and boolean circuit size is only L(f) = Ω(n2 lg−1 n) and C(f) = 2n + o(n), where f
is the storage access function for indirect addressing [54].

Weighted Boolean Formula Games 55

are represented by a dtm M computing the payoffs in polynomial time when
given the number of players and their strategy sets; so, this case corresponds to
games with polynomial time computable payoffs.

Recall the folklore facts that Turing machine computations with t steps can
be encoded as a boolean circuit of size O(t2), and that boolean circuits can
be evaluated by Turing machines in polynomial time (cf. [63, Chapter 9]). So,
Turing machine games in implicit form and circuit games are computationally
equivalent. It follows from the previous discussion on the relation of WBFG to
circuit games that WBFG are computationally equivalent to Turing machine
games in implicit form.

Considered in [1] is also the explicit form, where payoffs are listed explicitly.
However, it is not possible to obtain from a succinct WBFG such an explicit form
in polynomial time.

Completeness results on deciding the existence of pure equilibria are given
in [1, Sects. 6 and 7]. The proofs use a simple gadget game [1, Sect. 6]. It is
straightforward to see that the payoff functions of the gadget game may be
expressed as an instance of a WBFG with r = 5.

Deciding the existence of pure equilibria is NP-complete for games in general
form for both the non-uniform [1, Theorem 6.3] and the uniform [1, Theorem 7.1]
cases. It follows from either [1, Theorem 6.3] or [1, Theorem 7.1] that if m is not
fixed, then the decision problem for WBFG is NP-complete when k ≥ 2 is fixed
and r ≥ 5 is fixed or not.

Deciding the existence of pure equilibria is ΣP
2 -complete for games in implicit

form for both the non-uniform [1, Theorem 6.3] and the uniform [1, Theorem 7.1]
cases. It follows from [1, Theorem 6.3] that if k is not fixed, then the decision
problem for WBFG is ΣP

2 -complete when m ≥ 3 is fixed or not and r ≥ 5 is fixed
or not. This implied result is incomparable to Theorem 3 (Case (4)).

Deciding the existence of pure equilibria in Turing machine games in explicit
form is P-complete [1, Theorem 6.4].

Boolean Games [9,21,32,33]. They were originally introduced in [32,33] and
further studied in [21] as two-player, zero-sum games where the two players
control disjoint sets of boolean variables; there is a single propositional formula
on the variables, which represents the payoff of player 1. Boolean games were
further extended in [9] to games with an arbitrary number of players that are
not necessarily zero-sum.3 In this extended formulation [9], each player attempts
to satisfy her own boolean formula, but, unlike WBFG, neither multiple formulas
nor weights are allowed. Thus, in those extended boolean games [9], each player
has a dichotomous preference: either she is satisfied or not. In contrast, WBFG
allow for modeling players with graded preferences by assigning weights to the
boolean formulas. Boolean games are further studied in [10,11,22,37,38].

A stronger version with m ≥ 2 (fixed or not) of Case (4) in Theorem 3, holding
for m ≥ 3 (fixed or not), had been independently obtained in [9, Proposition 5];

3 We note that the work in [9] appeared for the first time in two conference papers
published in 2006 [7,8]; the formulation of, and results about, WBFG in this paper
represents independent work.

56 M. Mavronicolas et al.

moreover, their result applies to zero-sum (two-player) games. It is proved in [9,
Proposition 6] that when k is not fixed, the decision problem for boolean games
with m ≥ 2 (fixed or not) is NP-complete when the formula of each player
is in disjunctive normal form. That result complements Case (2) in Theorem 3,
establishing NP-completeness for clause formulas. Further complexity results
about boolean games appeared recently in [22,37,38].

Satisfiability Games [4]. Satisfiability games were introduced and studied
independently and concurrently to our work in [4]. As in WBFG, each player
i owns a set of �i boolean variables; but her strategy set is allowed to be any
subset of {0, 1}�i . (In WBFG, her strategy set is exactly {0, 1}�i , but this dif-
ference is not essential.) There is a ground set C of boolean formulas, coined as
clauses, defined over all boolean variables; each clause C ∈ C has an associated
weight c. Associated with player i is the set of clauses Ci containing at least
one literal for a boolean variable owned by the player. For an assignment to the
boolean variables, the payoff of player i is the sum of the weights of clauses from
Ci that get satisfied. The difference between WBFG and satisfiability games is
that it is not necessary in WBFG for a formula in a player’s set to depend on
at least one variable owned by her; since this is required in MWBFG, satisfia-
bility games are equivalent to MWBFG. More precisely, equivalent to MWBFG
are the unrestricted satisfiability games which, unlike the restricted ones, put no
restriction on how many of her variables a player sets to 1.

Satisfiability games with player-specific payoffs [4] use player-specific weights
for the clauses; they encompass all games even if restricted to conjunctive for-
mulas [4, Theorem 3].

It is shown in [4, Theorem 1] that every satisfiability game is an exact poten-
tial game. Since satisfiability games are equivalent to MWBFG, this result is
equivalent to Theorem 1.

Other Work. In contrast to the polynomial sized exact potential for MWBFG in
Theorem 1, the isomorphic potential game constructed from an unweighted con-
gestion game in [48,60] has exponential size since its resource set is the strategy
set of the unweighted congestion game. The exact potential in [27, Theorem 1] for
weighted, linear network congestion games is a special case of the exact potential
for their superclass of MWBFG in Theorem 1.

Complexity results for deciding the existence of pure equilibria in other
classes of succinct games have been shown for graphical games in [19,25,31,41],
for symmetric games in [12], and for weighted (network) congestion games [47]
and local-effect games [44] in [20]. The impact of the precise form of succinctness
on the complexity of pure equilibria for succinct games has been investigated
in [17,25,51,56]. The first complexity result for deciding the existence of pure
equilibria in a particular succinct game dates back to 1974 [56, Theorem 2.4.1].
WBFG were recently considered in a study of the complexity of game isomor-
phism in [28].

Weighted Boolean Formula Games 57

1.5 Road Map

The rest of this paper is organized as follows. Section 2 presents the framework
and some helpful background. Weighted boolean formula games are introduced in
Sect. 3. Mutual weighted boolean formula games are treated in Sect. 4. Sections 5
and 6 present the complexity results about pure equilibria and payoff-dominant
equilibria, respectively. We conclude, in Sect. 7, with some open problems.

2 Framework and Background

2.1 Notation

For an integer n ≥ 1, denote as [n] = {1, . . . , n}. For a set S, denote as |S| and
P(S) the cardinality and the power set of S, respectively. For a boolean vector
x, |x| denotes the natural number with binary representation x. Denote as ≥cw

the component-wise ordering relation on vectors. Denote as ≥le the lexicographic
ordering relation on boolean vectors; for lexicographically ordering two boolean
vectors, the comparison goes from left to right till the first bit where the vectors
differ is met. We shall sometimes abbreviate lexicographically maximum as lmax.

2.2 Games and Equilibria

A game is a triple Γ = 〈m, (Si)i∈[m], (Ui)i∈[m]〉, where m is the number of
players, Si is the strategy set of player i ∈ [m], and Ui : S1 × . . . × Sm → R is
the payoff function of player i ∈ [m]. The game Γ is finite if all strategy sets
are finite; all games considered in this paper will be assumed to be finite. For
the game Γ, denote S := S(Γ) = S1 × . . . × Sm.

A profile is a tuple of strategies s = 〈s1, . . . , sm〉, one for each player; denote
as s−i the partial profile resulting from eliminating the strategy of player i
from s. Given a profile s, a player i ∈ [m] and a strategy t ∈ Si, denote as
(s−i, t) = 〈s1, . . . , si−1, t, si+1, . . . , sm〉; so, (s−i, t) results by substituting in the
profile s the strategy si of player i with t. Associated in the natural way with a
profile s is the payoff vector U(s).

A profile s ∈ S is a pure equilibrium if for each player i ∈ [m] and for each
strategy t ∈ Si, Ui(s) ≥ Ui(s−i, t). Denote as PE(Γ) the set of pure equilibria
of Γ. A pure equilibrium s is a payoff-dominant equilibrium if for each pure
equilibrium s′, for each player i ∈ [m], Ui(s) ≥ Ui(s′); so, each player has a
dominant payoff in a payoff-dominant equilibrium. Denote as PDE(Γ) the set
of payoff-dominant equilibria for Γ; so, PDE(Γ) ⊆ PE(Γ). To compare, a pure
equilibrium s is Pareto-optimal if for each pure equilibrium s′, there is a
player i ∈ [m] such that Ui(s) ≥ Ui(s′). Clearly, a payoff-dominant equilibrium
is Pareto-optimal (but not vice versa).

58 M. Mavronicolas et al.

2.3 Isomorphisms and Monomorphisms

Consider games Γ = 〈m, (Si)i∈[m], (Ui)i∈[m]〉 and Γ′ = 〈m, (S′
i)i∈[m], (U′

i)i∈[m]〉
with the same number of players. A strategy bijection (resp., strategy injection)
from Γ to Γ′ is an m-tuple φ = (φi)i∈[m], where each φi is a bijective (resp.,
injective) mapping φi : Si → S′

i. Thus, φ maps profiles from S to profiles from
S′ in the natural way; that is, for a profile s ∈ S, φ(s) = s′ where for each
i ∈ [m], s′

i = φi(si).
The games Γ and Γ′ are isomorphic if there is a strategy bijection φ from

Γ to Γ′ such that for each pair of profiles s, t ∈ S, for each player i ∈ [n],
Ui(s) < Ui(t) if and only if Ui(φ(s)) < Ui(φ(t)); then, φ is an isomorphism
from Γ to Γ′. So, an isomorphism from Γ to Γ′ preserves the preference relations
induced by the payoff functions of the players; hence, φ induces a bijection from
PE(Γ) to PE(Γ′).

The games Γ and Γ′ are monomorphic if there is a strategy injection φ
from Γ to Γ′ such that (C.1) for each pair of profiles s, t ∈ S, for each player
i ∈ [n], Ui(s) < Ui(t) if and only if Ui(φ(s)) < Ui(φ(t)), and (C.2) every
pure equilibrium for Γ′ is the image under φ of a profile of Γ; then, φ is a
monomorphism from Γ to Γ′, which still induces a bijection from PE(Γ) to
PE(Γ′). When both φ and φ are computable in polynomial time, Γ and Γ′ are
polynomial monomorphic and φ is a polynomial monomorphism .

A linear monomorphism (cf. [34, Sect. 3.4]) from Γ to Γ′ is the special
case of a monomorphism φ where for each player i ∈ [m], there are constants
γi > 0 and ζi such that for each profile s ∈ S,

U′
i(φ(s)) = γi Ui(s) + ζi;

so, there is a linear relation between payoffs of each player in Γ and Γ′, respec-
tively. (A strong monomorphism (cf. [49]) is the special case where for each
player i ∈ [m], γi = 1 and ζi = 0.) Say then that Γ is linear monomorphic
to Γ′.

We shall consider extensions of monomorphism from games to classes of
games, which takes computation into account. Fix two classes C and C′ of games.
The class C is monomorphic to a subclass of C′ if every game Γ ∈ C is monomor-
phic to some game Γ′ in the subclass of C′, which can be computed from Γ via a
map λ : C → C′. The class C is polynomial monomorphic to a subclass of C′

if C is monomorphic to a subclass of C′ via a polynomial time map λ : C → C′

such that each game Γ ∈ C is polynomial monomorphic to its image λ(Γ) ∈ C′

2.4 Potential Games and Classes of Congestion Games

An exact potential or potential for short for the game Γ is a function Φ : S →
R such that for each profile s ∈ S, for each player i ∈ [m] and strategy t ∈ Si,

Ui(s−i, t) − Ui(s) = Φ(s−i, t) − Φ(s).

A potential game [48, Sect. 2] is one that admits a potential. A potential game
has a pure equilibrium [48, Corollary 2.2].

Weighted Boolean Formula Games 59

A weighted, linear congestion game with player-specific coefficients
and constants [29] is a game Γ = 〈m, (Si)i∈[m], (Ui)i∈[m]〉 such that:

(1) There is integer k ≥ 2 such that for each player i ∈ [m], Si ⊆ P({1, 2, . . . , k}).
So, Si ⊆ {0, 1}k and each e ∈ {1, 2, . . . , k} is called a resource.

(2) There are families of integers (βie)i∈[m],e∈[k] with βie ≥ 0 (the coefficients),
(δie)i∈[m],e∈[k] with δie ≥ 0 (the constants), and (wi)i∈[m] with wi ≥ 1 (the
weights) such that for each profile s = 〈s1, . . . , sm〉, for each player i ∈ [m],

Ui(s) = −
∑
e∈si

⎛
⎝βie ·

∑
j∈[m]|e∈sj

wj + δie

⎞
⎠ .

Denote as PSC2 both a weighted, linear congestion game with player-specific
coefficients and constants and the corresponding class of games. Note that PSC2

is contained in the general class of weighted congestion games with player-specific
payoff functions [47].

A weighted, linear congestion game with player-specific constants [45],
denoted as PSC, is the special case of a weighted, linear congestion game with
player-specific coefficients and constants where for each resource e ∈ [k], for
each player i ∈ [m], βie = βe for some constant βe ≥ 0; so, the coefficients are
player-independent.

A weighted, linear congestion game [27] is the special case of a weighted,
linear congestion game with player-specific constants where for each resource
e ∈ [k], for each player i ∈ [m], δie = δe for some constant δe ≥ 0; so, both the
coefficients and the constants are player-independent.

A game PSC admits a vector potential and a pure equilibrium [45, Theorem 6
and Corollary 7]; but a game PSC2 does not necessarily admit a pure equilib-
rium [29, Theorem 2].

2.5 Complexity Theory

Classes. We assume familiarity of the reader with some classical complexity
classes (cf. [50]):

– L, P, polynomial local search PLS [39], NP and PSPACE .
– The polynomial hierarchy PH [46,58]; in particular, ΔP

2 = PNP , ΣP
2 =

NPNP and ΔP
3 = PNPNP

, with ΔP
2 ⊆ ΣP

2 ⊆ ΔP
3 .

– The bounded query classes at levels 2 and 3 of PH:
• ΘP

2 = LNP = PNP[log n] [52]: all languages decidable via parallel access to
NP.

• ΘP
3 = LΣP

2 = PΣP
2 [log n] = PNPNP [log n] [62]: all languages decidable via

parallel access to ΣP
2 .

It holds that NP ⊆ ΘP
2 ⊆ ΔP

2 ⊆ ΣP
2 ⊆ ΘP

3 ⊆ ΔP
3 .

– The function classes FP, FNP and FΣP
2 of function problems associated with

languages in P, NP and ΣP
2 , respectively.

60 M. Mavronicolas et al.

Complete Problems. We recall (in language form) some prominent decision
problems which will be used in later reductions. In what follows, H is a proposi-
tional formula and C is the special case of a clause; each of x and y is a vector
of n boolean variables.

SAT = {H(x) | ∃a ∈ {0, 1}n(H(a) = 1)}
CNF-SAT = {H(x) | H(x) is in conjunctive normal form and ∃a ∈ {0, 1}n(H(a) = 1)}
Σ2 − QBF = {H(x,y) | ∃a ∈ {0, 1}n∀b ∈ {0, 1}n(H(a,b) = 1)}

Δ2-QBF = {H(x) | the lexmax a with(H(a) = 1) has an = 1}
Θ2-QBF = {〈H(x), 1m〉 | the lmax a with (H(a) = 1)&|a| ≤ m has an = 1}
Δ3-QBF = {H(x,y) | the lmax a with∀b ∈ {0, 1}n(H(a,b) = 1) has an = 1}
Θ3-QBF =

{ 〈H(x,y), 1m〉 |
the lmax a with ∀b ∈ {0, 1}n(H(a,b) = 1) and |a| ≤ m has an = 1

}

SAT and CNF-SAT are the prototypical NP-complete problems. Σ2-QBF
is ΣP

2 -complete [58,64]. Δ2-QBF is ΔP
2 -complete [43,61]. Θ2-QBF is ΘP

2 -
complete [61]; similarly, Θ3-QBF is ΘP

3 -complete. It is an easy consequence of
results from [59] that Δ3-QBF is ΔP

3 -complete. Consider a subclass Σ2-RQBF of
Σ2-QBF restricted to the domain

R = {H(x,y) | ∀a ∈ {0, 1}n∃b ∈ {0, 1}n(H(a,b) = 1)};

thus,

Σ2-RQBF = {H(x,y) ∈ R | ∃a ∈ {0, 1}n∀b ∈ {0, 1}n(H(a,b) = 1)}.

We observe:

Observation 21. Σ2-RQBF is ΣP
2 -complete.

Proof. By reduction from Σ2-QBF. Given a propositional formula H(x,y), con-
struct the propositional formula H′(x, u,y, v) = (H(x,y)

∧
v)

∨
v. We prove that

H(x,y) ∈ Σ2-QBF if and only if H′(x, u,y, v) ∈ Σ2-RQBF.

– Assume first that H(x,y) ∈ Σ2-QBF. So there is a0 such that for all b,
H(a0,b) = 1.
• Fix arbitrary a and c. Set b := b0 (for an arbitrary b0) and d := 0. Then,

H′(a, c,b0, d) =
(
H(a,b0)

∧
0
) ∨

0 = 1.

So, H′(x, u,y, v) ∈ R.
• Recall a0 and fix an arbitrary c0. Consider arbitrary b and d. Then,

H′(a0, c0,b, d) =
(
H(a0,b)

∧
d
) ∨

d =
(
1
∧

d
) ∨

d = 1.

Hence, H′(x, u,y, v) ∈ Σ2-RQBF.

Weighted Boolean Formula Games 61

– Assume now that H′(x, u,y, v) ∈ Σ2-RQBF. Then, there are a0 and c0 such
that for all b and d, H′(a0, c0,b, d) = 1. Set d := 1. It follows that for all b,

H′(a0, c0,b, 1) =
(
H(a0,b)

∧
1
) ∨

0 = 1.

It follows that H(a0,b) = 1. Hence, H(x,y) ∈ Σ2-QBF.

The proof is now complete.

Similarly, we consider restricted subclasses

Δ3-RQBF = {H(x,y) ∈ R | the lmax a with ∀b ∈ {0, 1}k(H(a,b) = 1) has an = 1}

Θ3-RQBF =

{ 〈H(x,y), 1m〉 ∈ R × 1∗ |
the lmax a with ∀b ∈ {0, 1}k(H(a,b) = 1)&|a| ≤ m has an = 1

}

of Δ3-QBF and Θ3-QBF, respectively. Similarly to Observation 21, Δ3-RQBF is
ΔP

3 -complete and Θ3-RQBF is ΘP
3 -complete.

3 Weighted Boolean Formula Games

3.1 Definition

We introduce:

Definition 1 (Weighted Boolean Formula Game). Fix a triple of inte-
gers m ≥ 2, k ≥ 1 and r ≥ 1. A game Γ = 〈m, (Si)i∈[m], (Ui)i∈[m]〉, is a
weighted(m, k, r)-boolean formula game, or weighted boolean formula
game for short, if the following conditions hold for each player i ∈ [m]:

(1) Si = {0, 1}k.
(2) There is a set

Fi = {(f, α) | f is a (km)-ary propositional boolean formula and α ∈ N},

with |Fi| ≤ r, such that for each profile 〈s1, . . . , sm〉 ∈ S,

Ui(s1, . . . , sm) =
∑

(f,α)∈Fi

α · f(s1, . . . , sm).

We also write Γ = 〈m, k, r, (Fi)i∈[m]〉. Set F :=
⋃

i∈[m] Fi. We use WBFG as an
abbreviation for both a weighted boolean formula game, and the corresponding
class of games.

An (m, k, r)-boolean formula game , denoted as BFG, is the special case
of a weighted (m, k, r)-boolean formula game Γ = 〈m, k, r, (Fi)i∈[m]〉 such that
for each pair (f, α) ∈ F, α = 1. A (weighted) (m, k, r)-boolean clause game ,
denoted as (WBCG) BCG, is the special case of a (weighted) (m, k, r)-boolean
formula game Γ = 〈m, k, r, (Fi)i∈[m]〉 such that for each pair (f, α) ∈ F, f is a
clause. We now formulate a restricted case of a WBFG.

62 M. Mavronicolas et al.

Definition 2. A weighted boolean formula game Γ = 〈m, k, r, (Fi)i∈[m]〉 is
mutual if the following condition holds:

For each pair (f, α) ∈ F, if f depends on a variable of player i ∈ [m],
then (f, α) ∈ Fi.

So, in a mutual weighted boolean formula game, for each pair (f, α) ∈ Fi, if (f, α)
depends on a variable of player l with l �= i, then (f, α) ∈ Fl as well. A mutual
weighted boolean formula game will be abbreviated as MWBFG; so will be the
corresponding class of games.

3.2 Decision and Search Problems

Let m ∈ {2, 3, . . . }, k ∈ {1, 2, . . . } and r ∈ {1, 2, . . . }. We formulate and study
the following decision problems regarding pure and payoff-dominant equilibria:

PROBLEM: PROBLEM: GIVEN: A game Γ, which is:

WBF-PUREd(m, k, r) WBF-PDEd(m, k, r) Weighted (m, k, r)-boolean formula game

BF-PUREd(m, k, r) BF-PDEd(m, k, r) (m, k, r)-boolean formula game

WBC-PUREd(m, k, r) WBC-PDEd(m, k, r) Weighted (m, k, r)-boolean clause game

BC-PUREd(m, k, r) BC-PDEd(m, k, r) (m, k, r)-boolean clause game

QUESTION: Is PE(Γ) �= ∅? QUESTION: Is PDE(Γ) �= ∅?

Also, we shall treat search problems WBF-PUREs(m, k, r), BF-PUREs(m, k, r),
WBC-PUREs(m, k, r), BC-PUREs(m, k, r) for pure equilibria and correspond-
ing search problems WBF-PDEs(m, k, r), BF-PDEs(m, k, r), WBC-PDEs(m, k, r),
BC-PDEs(m, k, r) for payoff-dominant equilibria, respectively. We shall often
consider the case where some of the parameters m, k, and r are not restricted
to a fixed value. In this case, such a parameter gets the value ∗. For example,
for k ∈ {1, 2, . . . } and r ∈ {1, 2, . . . },

BF-PUREd(∗, k, r) =
⋃

m≥2

BF-PUREd(m, k, r).

4 Mutual Weighted Boolean Formula Games

We show:

Theorem 1 (MWBFG is Potential). Fix a MWBFG Γ = 〈m, k, r, (Fi)i∈[m]〉.
Then, the function Φ : ({0, 1}k)m → R with

Φ(s) =
∑

〈f,α〉∈F

α · f(s)

is a potential for Γ.

Weighted Boolean Formula Games 63

Proof. Consider an arbitrary profile s ∈ S and a strategy ti ∈ {0, 1}k of player
i ∈ [m]. Then,

Φ(s−i, ti) − Φ(s)

=
∑

〈f,α〉∈F

α · f(s−i, ti) −
∑

〈f,α〉∈F

α · f(s)

=
∑

〈f,α〉∈Fi

α · f(s−i, ti) +
∑

〈f,α〉�∈Fi

α · f(s−i, ti) −
∑

〈f,α〉∈Fi

α · f(s) −
∑

〈f,α〉�∈Fi

α · f(s)

=
∑

〈f,α〉∈Fi

α · f(s−i, ti) −
∑

〈f,α〉∈Fi

α · f(s) +
∑

〈f,α〉∈F\Fi

α · (f(s−i, ti) − f(s)) .

Since Γ is a MWBFG, it follows that for each pair 〈f, α〉 �∈ Fi, f(s1, . . . , sm) does
not depend on a variable of player i; thus, it does not depend on ti. Hence, for
each pair 〈f, α〉 �∈ Fi, f(s−i, ti) = f(s), so that

Φ(s−i, ti) − Φ(s) =
∑

〈f,α〉∈Fi

α · f(s−i, ti) −
∑

〈f,α〉∈Fi

α · f(s)

= Ui(s−i, ti) − Ui(s).

It follows that Φ is an exact potential for Γ.

Theorem 1 immediately implies:

Corollary 1. MWBF-PUREd(∗, ∗, ∗) ∈ PLS.

We now show:

Theorem 2. PSC2 is polynomial monomorphic to WBFG.

In the proof, we identify a set t ⊆ {1, . . . , k} with the characteristic vector
〈χt(1), . . . , χt(k)〉, where χt is the characteristic function for t: for each e ∈ [k],
χt(e) = 1 if e ∈ t and 0 otherwise. For a boolean variable x, set xχt(e) := x if
χt(e) = 1 and x otherwise.

Proof. We shall give a polynomial linear monomorphism λ from PSC2 to WBFG.
We define the action of λ on a game PSC2 Γ = 〈m, (Si)i∈[m], (Ui)i∈[m]〉, with
Si ⊆ {0, 1}k for each player i ∈ [m]. In the game WBFG, each player i ∈ [m] has
a k-tuple of boolean variables xi = 〈xi1, . . . , xik〉; so, S′

i = {0, 1}k. The set Fi

consists of:

For each: The boolean formula: With weight:

e ∈ [k]: fie(x1, . . . , xm) = xie αie = δie · wi

j ∈ [m] fije(x1, . . . , xm) = xie

∨
xje αije = βie · wi · wj

e ∈ [k]:

t ∈ Si: fit(x1, . . . , xm) =
∧

e∈[k] x
χt(e)
ie αit = wi ·∑e∈[k]

(
βie ·∑j∈[m] wj + δie

)
+ 1

64 M. Mavronicolas et al.

Clearly, λ is computable in polynomial time. It remains to establish that λ is
a monomorphism from Γ to Γ′. For each player i ∈ [m], set φi to the identity
map on Si; thus, φ (φi)i∈[m] induces the identity map on S = ×i∈[m]Si. Fix any
profile s′ = 〈s′

1, . . . , s
′
m〉 for Γ′, where for each player i ∈ [m], si = 〈s′

i1, . . . , s
′
ik〉.

By the definition of WBFG, for each player i ∈ [m],

U′
i(s

′) =
∑
e∈[k]

αie · fie(s′)

︸ ︷︷ ︸
Σ1(s′)

+
∑

j∈[m]

∑
e∈[k]

αije · fije(s′)

︸ ︷︷ ︸
Σ2(s′)

+
∑
t∈Si

αit · fit(s′)

︸ ︷︷ ︸
Σ3(s′)

.

We treat separately each of the three sums Σ1(s′), Σ2(s′) and Σ3(s′).

– For Σ1(s′), note that

Σ1(s′) =
∑
e∈[k]

δie · wi · (1 − s′
ie) = wi

∑
e∈[k]

δie − wi

∑
e∈s′

i

δie.

– For Σ2(s′), note that

Σ2(s′) =
∑

j∈[m]

∑
e∈[k]

βie · wi · wj −
∑

j∈[m]

∑
e∈[k]

βie · wi · wj

(
(s′

ie

∧
s′

je

)
.

Note that s′
ie

∧
s′

je = 1 if and only if e ∈ s′
i and e ∈ s′

j . Hence,

Σ2(s′) = wi

∑
j∈[m]

∑
e∈[k]

βie · wj − wi ·
∑
e∈s′

i

∑
j|e∈s′

j

βie · wj .

It follows that

Σ1(s′) + Σ2(s′)

= wi

∑
e∈[k]

δie − wi

∑
e∈s′

i

δie + wi

∑
j∈[m]

∑
e∈[k]

βie · wj − wi ·
∑
e∈s′

i

∑
j|e∈s′

j

βie · wj

= wi

∑
e∈[k]

⎛
⎝βie ·

∑
j∈[m]

wj + δie

⎞
⎠ − wi

∑
e∈s′

i

⎛
⎝βie ·

∑
j|e∈s′

j

wj + δie

⎞
⎠ .

– For Σ3(s′), note that

Σ3(s′) =
∑
t∈Si

⎛
⎝wi ·

∑
e∈[k]

⎛
⎝βie ·

∑
j∈[m]

wj + δie

⎞
⎠ + 1

⎞
⎠ ·

∧
e∈[k]

(s′
ie)

χt(e)

=

⎛
⎝wi ·

∑
e∈[k]

⎛
⎝βie ·

∑
j∈[m]

wj + δie

⎞
⎠ + 1

⎞
⎠ ·

∑
t∈Si

∧
e∈[k]

(s′
ie)

χt(e).

Weighted Boolean Formula Games 65

We observe that for each t ∈ Si,
∧

e∈[k](s
′
ie)

χt(e) = 1 if and only if (e ∈ si if
and only if e ∈ t) if and only if s′

i = t. Thus,
∑
t∈Si

∧
e∈[k]

(s′
ie)

χt(e) =
∑
t∈Si

(s′
i = t),

where (s′
i = t) = 1 if and only if s′

i = t. Since
∑

t∈Si
(s′

i = t) = χSi
(s′

i), it
follows that

Σ3(s′) =

⎛
⎝wi ·

∑
e∈[k]

⎛
⎝βie ·

∑
j∈[m]

wj + δie

⎞
⎠ + 1

⎞
⎠ · χSi

(s′
i).

We now establish Conditions (C.1) and (C.2) in the definition of monomorphism.
For (C.1), consider a profile s′ ∈ S′(Γ′) such that s′ = φ(s) for some profile
s ∈ S(Γ). Hence, for each player i ∈ [m], χSi

(si) = 1. Since φ is the identity
map, s′ = s. It follows that for each player i ∈ [m], χSi

(s′
i) = 1 as well. So,

U′
i(φ(s))

= wi

∑
e∈[k]

⎛
⎝βie

∑
j∈[m]

wj + δie

⎞
⎠ − wi

∑
e∈s′

i

⎛
⎝βie

∑
j|e∈s′

j

wj + δie

⎞
⎠

+wi

∑
e∈[k]

⎛
⎝βie

∑
j∈[m]

wj + δie

⎞
⎠ + 1

= −wi

∑
e∈s′

i

⎛
⎝βie

∑
j|e∈s′

j

wj + δie

⎞
⎠ . + 2wi

∑
e∈[k]

⎛
⎝βie

∑
j∈[m]

wj + δie

⎞
⎠ + 1

= −wi

∑
e∈s′

i

⎛
⎝βie

∑
j|e∈sj

wj + δie

⎞
⎠ + 2wi

∑
e∈[k]

⎛
⎝βie

∑
j∈[m]

wj + δie

⎞
⎠ + 1

= wi · Ui(s) + 2wi

∑
e∈[k]

⎛
⎝βie

∑
j∈[m]

wj + δie

⎞
⎠ + 1.

Since wi > 0, Condition (C.1) follows. For Condition (C.2), consider a profile
s′ ∈ S(Γ′) such that there is no profile s ∈ S(Γ) such that s′ = φ(s). Since the
map induced by φ on S = ×i∈[n]Si is the identity, s′ �∈ S(Γ). Hence, there is a
player i ∈ [m] such that s′

i �∈ Si; so, χSi
(s′

i) = 0 and Σ3(s′) = 0. So,

U′
i(s

′) = Σ1(s′) + Σ2(s′) ≤ wi ·
∑
e∈[k]

⎛
⎝βie ·

∑
j∈[m]

wj + δie

⎞
⎠ .

66 M. Mavronicolas et al.

Assume now that player i switches from strategy s′
i �∈ Si to strategy s′′

i ∈ Si;
thus, χSi

(s′′
i) = 1. Hence,

U′
i(s

′
−i, s

′′
i)

= 2wi ·
∑
e∈[k]

⎛
⎝βie ·

∑
j∈[m]

wj + δie

⎞
⎠ + 1 − wi ·

∑
e∈s′′

i

⎛
⎝βie ·

∑
j∈[m]|e∈s′′

j

wj + δie

⎞
⎠

≥ 2wi ·
∑
e∈[k]

⎛
⎝βie ·

∑
j∈[m]

wj + δie

⎞
⎠ + 1 − wi ·

∑
e∈[k]

⎛
⎝βie ·

∑
j∈[m]

wj + δie

⎞
⎠

= wi ·
∑
e∈[k]

⎛
⎝βie ·

∑
j∈[m]

wj + δie

⎞
⎠ + 1.

Hence, U′
i(s

′
−i, s

′′
i) > U′

i(s
′) and s′ is not a pure equilibrium for Γ ′. Condition

(C.2) follows.

Consider the restriction of PSC2 to PSC, where the coefficients (βie)i∈[m],e∈[k]

become player-independent as (βe)e∈[k]. Then, an inspection to the proof of
Theorem 2 reveals that the weights for the boolean formula fije, where i, j ∈ [m]
and e ∈ [k], satisfy αije = αjie = βewiwj ; note that fije is the only boolean
formula owned by more than one player. Thus, the constructed WBFG λ(Γ) is
a MWBFG. Hence, Theorem 2 immediately implies:

Corollary 2. PSC is polynomial monomorphic to MWBFG.

5 Pure Equilibria

Note that the existence of a pure equilibrium in a WBFG is expressed by the
predicate

∃s1 ∈ {0, 1}k . . . ∃sm ∈ {0, 1}k∀i ∈ {1, . . . , m}∀s′
i ∈ {0, 1}k (Ui(s) ≥ Ui(s−i, s

′
i)) ;

this is a ΣP
2 -predicate when k is not fixed (even if m is fixed), while it becomes

an NP-predicate when k is fixed. Hence, upper bounds on the complexity of
deciding the existence of pure equilibria, under corresponding assumptions on
the range of values of m, k and r, follow directly from the type of the predicate:

Proposition 1 (Upper Bounds for Pure Equilibria). Let m ∈ {2, 3, . . .},
k ∈ {1, 2, . . .} and r ∈ {1, 2, . . . , ∗}. Then, we have:

(1) WBF-PUREd(m, k, r) ∈ P (and WBF-PUREs(m, k, r) ∈ FP).
(2) WBF-PUREd(∗, k, r) ∈ NP (and WBF-PUREs(∗, k, r) ∈ FNP).
(3) WBF-PUREd(∗, ∗, r) ∈ ΣP

2 (and WBF-PUREs(∗, ∗, r) ∈ FΣP
2).

We show:

Weighted Boolean Formula Games 67

Theorem 3 (Completeness Results for Pure Equilibria). We have:

(1) For k ∈ {1, 2, . . .} and r ∈ {1, 2, . . . , ∗}, BF-PUREd(∗, k, r) is NP-complete
(and BF-PUREs(∗, k, r) is FNP-complete).

(2) For k ∈ {1, 2, . . .} and r ∈ {2, 3, . . . , ∗}, BC-PUREd(∗, k, r) is NP-complete
(and BC-PUREs(∗, k, r) is FNP-complete).

(3) For k ∈ {1, 2, . . . , ∗}, WBC-PUREd(∗, k, 1) ∈ P (and WBC-PUREs(∗, k, 1) ∈
FP). In fact, every weighted (∗, k, 1)-boolean clause game has a pure equilib-
rium.

(4) For m ∈ {3, 4, . . . , ∗}, r ∈ {1, 2, . . . , ∗}, BF-PUREd(m, ∗, r) is ΣP
2 -complete

(and BC-PUREs(m, ∗, r) is FΣP
2 -complete).

Proof. For each of the Cases (1), (2) and (4), membership in the corresponding
class is established in Case (2), (2) and (3), respectively, of Proposition 1; it
remains to establish hardness. We consider each case separately.

Case(1) : It suffices to prove that BF-PUREd(∗, 1, 1) is NP-hard. Towards this
end, we use a reduction from SAT to BF-PUREd(∗, 1, 1). Given a propositional
formula H(x1, . . . , xn), construct a BFG ΓH = 〈n + 2, 1, 1, (Fi)i∈[n+2]〉 as follows:

Player Variable Boolean formula

i ∈ [n] xi fi(x) = 0

n + 1 xn+1 fn+1(x) = H(x1, . . . , xn)
∨

(xn+1 ⊕ xn+2)

n + 2 xn+2 fn+2(x) = H(x1, . . . , xn)
∨

(xn+1 ⊕ xn+2 ⊕ 1)

Note that all players i ∈ [n] do not matter for a pure equilibrium since their
payoffs are constant. We now prove that H(x1, . . . , xn) is satisfiable if and only
if ΓH has a pure equilibrium:

Lemma 1. For all an+1, an+2 ∈ {0, 1}, it holds that H(a1, . . . an) = 1 if and
only if 〈a1, . . . an, an+1, an+2〉 is a pure equilibrium for ΓH.

Proof. Assume first that H(a1, . . . , an) = 1. Then, for all an+1, an+2 ∈ {0, 1},

fn+1(a1, . . . , an+2) = fn+2(a1, . . . , an+2) = 1,

and no player can improve her payoff Ui(a1, . . . , an, an+1, an+2) = 1. It follows
that 〈a1, . . . , an, an+1, an+2〉 is a pure equilibrium for ΓH.

Assume now that 〈a1, . . . , an, an+1, an+2〉 is a pure equilibrium for ΓH. Then:

– Player n + 1 cannot increase her payoff by flipping an+1 to an+1. It follows
that

H(a1, . . . , an)
∨

(an+1 ⊕ an+2) ≥ H(a1, . . . , an)
∨

(an+1 ⊕ an+2).

Hence, either H(a1, . . . , an) = 1 or an+1 ⊕ an+2 = 1.

68 M. Mavronicolas et al.

– Player n + 2 cannot increase her payoff by flipping an+2 to an+2. It follows
that

H(a1, . . . , an)
∨

(an+1 ⊕ an+2 ⊕ 1) ≥ H(a1, . . . , an)
∨

(an+1 ⊕ an+2 ⊕ 1).

Hence, either H(a1, . . . , an) = 1 or an+1 ⊕ an+2 ⊕ 1 = 1.

It follows that H(a1, . . . , an) = 1, so that H is satisfiable.

Case(2) : It suffices to prove that BC-PUREd(∗, 1, 2) is NP-hard. Towards this
end, we establish a reduction from CNF-SAT to BC-PUREd(∗, 1, 2). Given a CNF
formula H(x1, . . . , xn) =

∧
j∈[m] Cj(x1, . . . , xn), construct a BCG ΓH = 〈n +

2m, 1, 2, (Cjk)j∈[n+2m],k∈[2]〉 as follows:

Player Variable Clause Cj1(x,y, z) Clause Cj2(x,y, z)

j ∈ [n] xj 0 0

n + j with j ∈ [m] yj Cj(x)
∨

yj

∨
zj Cj(x)

∨
yj

∨
zj

n + m + j with j ∈ [m] zj Cj(x)
∨

yj

∨
zj Cj(x)

∨
yj

∨
zj

Note that all players j ∈ [n] do not matter for a pure equilibrium since their
payoffs are constant. In the sequel, we shall use vectors a, b and c to denote
vectors of values for the boolean variables in the vectors x, y and z, respectively.
We prove:

Lemma 2. For all boolean vectors b, c, it holds that H(a) = 1 if and only if
〈a,b, c〉 is a pure equilibrium for ΓH.

Proof. Assume first that H(a) = 1. It follows that for each index j ∈ [m],
Cj(a) = 1. Hence, Cj1(a,b, c) = Cj2(a,b, c) = 1 for all players n + j with
j ∈ [2m]. So, each player n + j with j ∈ [2m] cannot increase her payoff by
flipping her variable (yj or zj). It follows that for any pair of boolean vectors b
and c, 〈a,b, c〉 is a pure equilibrium for ΓH.

Assume now that 〈a,b, c〉 is a pure equilibrium for ΓH. Fix any index j ∈ [m].
Then:

Player n + j cannot increase her payoff by flipping her variable yj from bj to
bj . So,
(
Cj(a)

∨
bj

∨
cj

)
+
(
Cj(a)

∨
bj

∨
cj

)
≥
(
Cj(a)

∨
bj

∨
cj

)
+
(
Cj(a)

∨
bj

∨
cj

)
.

Player n + m + j cannot increase her payoff by flipping her variable zj (from cj

to cj). So,
(
Cj(a)

∨
bj

∨
cj

)
+
(
Cj(a)

∨
bj

∨
cj

)
≥
(
Cj(a)

∨
bj

∨
cj

)
+
(
Cj(a)

∨
bj

∨
cj

)
.

Weighted Boolean Formula Games 69

The two inequalities imply that
(
Cj(a)

∨
bj

∨
cj

)
+
(
Cj(a)

∨
bj

∨
cj

)
=
(
Cj(a)

∨
bj

∨
cj

)
+
(
Cj(a)

∨
bj

∨
cj

)
.

Denote as g(a,b, c) ∈ {0, 1, 2} the common value. We prove that g(a,b, c) = 2.
Assume, by way of contradiction, that g(a,b, c) ∈ {0, 1}. We proceed by case
analysis.

– Assume first that g(a,b, c) = 0. This implies that Cj(a)
∨

bj

∨
cj = 0. It

follows that bj = 0. Hence, Cj(a)
∨

bj

∨
cj = 1, so that g(a,b, c) = 1, a

contradiction.
– Assume now that g(a,b, c) = 1. We proceed by case analysis on the value

Cj(a)
∨

bj

∨
cj .

• Assume first that Cj(a)
∨

bj

∨
cj = 0. This implies that bj = cj = 0. Hence,

it follows that Cj(a)
∨

bj

∨
cj = Cj(a)

∨
bj

∨
cj = 1. So,

g(a,b, c) = Cj(a)
∨

bj

∨
cj + Cj(a)

∨
bj

∨
cj

= 2.

A contradiction.
• Assume now that Cj(a)

∨
bj

∨
cj = 1. Since

g(a,b, c) =
(
Cj(a)

∨
bj

∨
cj

)
+

(
Cj(a)

∨
bj

∨
cj

)

and g(a,b, c) = 1 (by assumption), it follows that Cj(a)
∨

bj

∨
cj) = 0.

This implies that bj = cj = 1. Hence, it follows that Cj(a)
∨

bj

∨
cj =

Cj(a)
∨

bj

∨
cj = 1. So,

g(a,b, c) =
(
Cj(a)

∨
bj

∨
cj

)
+

(
Cj(a)

∨
bj

∨
cj

)

= 2.

A contradiction.

Since g(a,b, c) = 2,

Cj(a)
∨

bj

∨
cj = Cj(a)

∨
bj

∨
cj = Cj(a)

∨
bj

∨
cj = Cj(a)

∨
bj

∨
cj = 1.

It follows that Cj(a) = 1. Since j ∈ [m] was chosen arbitrarily, this implies
that H(a) =

∧
j∈[m] Cj(a) = 1.

Case(3) : Consider any game Γ as input to WBC-PUREd(∗, k, 1). Then, Γ has
a pure equilibrium where player i chooses her variables xi = 〈xi1, . . . , xik〉 ∈
{0, 1}k as follows: if xij appears unnegated in her clause function fi, then xij := 1,
else xij := 0. So, WBC-PUREd(∗, k, 1) ∈ P.

70 M. Mavronicolas et al.

Player Variables Boolean formula

1 x ∈ {0, 1}n f1(x,y, z) = 0

2 y ∈ {0, 1}n f2(x,y, z) = H(x,y) ⊕ H(x, z)

3 z ∈ {0, 1}n f3(x,y, z) = H(x,y) ⊕ H(x, z) ⊕ 1

Case(4) : It suffices to prove that BF-PUREd(3, ∗, 1) is ΣP
2 -hard. Towards this end,

we use a reduction from Σ2-RQBF to BF-PUREd(3, ∗, 1). Given a propositional
formula H(x,y) ∈ R with x = 〈x1, . . . , xn〉 and y = 〈y1, . . . , yn〉, construct a
BFG ΓH = 〈3, n, 1, (Fi)i∈[3]〉 as follows:

We now prove that H(x,y) ∈ Σ2-RQBF if and only if ΓH has a pure
equilibrium:4

Lemma 3. There is a boolean vector a for which it holds that ∀b(H(a,b) = 1)
if and only if 〈a,b, c〉 is a pure equilibrium for ΓH for all pairs of boolean vectors
b and c.

Proof. Assume first that there is a vector a ∈ {0, 1}n such that for all vectors
d ∈ {0, 1}n, H(a,d) = 1. Fix any such vector a ∈ {0, 1}n. Fix arbitrary vectors
b, c ∈ {0, 1}n as strategies of players 2 and 3, respectively.

– The choice of a implies that f2(a,b.c) = H(a,b) ⊕ H(a, c) = 0. Hence, player
2 cannot increase her payoff by switching her strategy b.

– The choice of a implies that f3(a,b, c) = H(a,b) ⊕ H(a, c) ⊕ 1 = 1. Hence,
player 3 cannot increase her payoff by switching her strategy c.

Thus, 〈a,b, c〉 is a pure equilibrium for the game ΓH.
Assume now that 〈a,b, c〉 is a pure equilibrium for the game ΓH. Then:

– Player 2 cannot increase her payoff by switching her strategy b to a strategy
b′. Thus, for all vectors b′ ∈ {0, 1}n,

H(a,b) ⊕ H(a, c) ≥ H(a,b′) ⊕ H(a, c).

Two cases are now possible:
• H(a,b) ⊕ H(a, c) = 1.
• H(a,b) ⊕ H(a, c) = 0. This implies that for all vectors b′ ∈ {0, 1}n,

H(a,b) = H(a,b′).
– Player 3 cannot increase her payoff by switching his strategy c to a strategy

c′. Thus, for all vectors c′ ∈ {0, 1}n,

H(a,b) ⊕ H(a, c) ⊕ 1 ≥ H(a,b) ⊕ H(a, c′) ⊕ 1.

4 We warn the reader against the formula G(x,y) ≡ 0 for all x and y. Note that in the
constructed game ΓG, f1 ≡ 0, f2 ≡ 0 and f3 ≡ 1; so, every profile is a pure equilibrium
for ΓG. But this is not a contradiction, since G �∈ R, which implies that G may not be
an input for Σ2-RQBF (even though G �∈ Σ2-RQBF). In fact, we used reduction from
Σ2-RQBF (as opposed to Σ2-QBF) in order to eliminate such degenerate formulas
from consideration.

Weighted Boolean Formula Games 71

Two cases are now possible:
• H(a,b) ⊕ H(a, c) ⊕ 1 = 1.
• H(a,b) ⊕ H(a, c) ⊕ 1 = 0. This implies that for all vectors c′ ∈ {0, 1}n,

H(a, c) = H(a, c′).

Since it is impossible that both H(a,b)⊕H(a, c) = 1 and H(a,b)⊕H(a, c)⊕1 = 1,
it follows that for all vectors b′ ∈ {0, 1}n, H(a,b) = H(a,b′). Since H ∈ R, there
is a vector b′ ∈ {0, 1}n such that H(a,b′) = 1. It follows that for all b′ ∈ {0, 1}n,
H(a,b′) = 1.

We conclude with two groups of open problems for (i) the two-players case,
and (ii) the case where the boolean formulas are clauses and k is not fixed,
respectively.

Open Problem 51. Find the complexities of the following problems, where r ∈
{1, 2, . . . , ∗}:
(1) BF-PUREd(2, ∗, r) (and BF-PUREs(2, ∗, r));
(2) WBF-PUREd(2, ∗, r) (and WBF-PUREs(2, ∗, r)).

Open Problem 52. Find the complexities of the following problems, where
m ∈ {2, 3, . . . , ∗} and r ∈ {1, 2, . . . , ∗}:
(1) BC-PUREd(m, ∗, r) (and BC-PUREs(m, ∗, r));
(2) WBC-PUREd(m, ∗, r) (and WBC-PUREs(m, ∗, r)).

6 Payoff-Dominant Equilibria

Upper bounds and completeness results are presented in Subsects. 6.1 and 6.2,
respectively.

6.1 Upper Bounds

We show:

Proposition 2 (Upper Bounds for Payoff-Dominant Equilibria). Let
m ∈ {2, 3, . . .}, k ∈ {1, 2, . . .} and r ∈ {1, 2, . . . , ∗}. Then, we have:

(1) WBF-PDEd(m, k, r) ∈ P.
(2) BF-PDEd(∗, k, r) ∈ ΘP

2 .
(3) WBF-PDEd(∗, k, r) ∈ ΔP

2 .
(4) BF-PDEd(∗, ∗, r) ∈ ΘP

3 .
(5) WBF-PDEd(∗, ∗, r) ∈ ΔP

3 .

Proof. Consider a query-based algorithm A, taking as input the WBFG Γ =
〈m, k, r, (Fi)i∈[m]〉:

72 M. Mavronicolas et al.

1. For each player i ∈ [m], compute μi = maxs∈PE(Γ) Ui(s) by a binary
search using queries of the kind:

(Q1) “Does Γ have a pure equilibrium s such that Ui(s) ≥ �?”
2. Output the answer (YES or NO) returned to the query:

(Q2) “Does Γ have a pure equilibrium s such that for each player
i ∈ [m], Ui(s) = μi?”

Clearly, the algorithm A uses a polynomial number of queries of the kind
(Q1) or (Q2). We proceed to establish upper bounds on the time complexity of
A in each case:

(1) With m and k fixed, Case (1) in Proposition 1 implies that each query (Q1)
and (Q2) is a P-query. Hence, WBF-PDEd(m, k, r) ∈ PP = P.

(2) With k fixed, Case (2) in Proposition 1 implies that each query (Q1) and
(Q2) is an NP-query. Since there are no weights and r ∈ {1, 2, . . . , ∗}, the
maximum payoff is O(m). So, the total number of queries is O(lg m). Hence,
BF-PDEd(∗, k, r) ∈ PNP[lg m] = ΘP

2 .
(3) With k fixed, Case (2) in Proposition 1 implies that each query (Q1) and

(Q2) is an NP-query. Hence, WBF-PDEd(∗, k, r) ∈ PNP = ΔP
2 .

(4) Case (3) in Proposition 1 implies that each query (Q1) and (Q2) is a ΣP
2 -

query. Since there are no weights and r ∈ {1, 2, . . . , ∗}, the maximum payoff
is O(m). So, the total number of queries is O(lg m). So, BF-PDEd(∗, ∗, r) ∈
PΣP

2 [lg m] = ΘP
3 .

(5) Case (3) in Proposition 1 implies that each query (Q1) and (Q2) is a ΣP
2 -

query. Hence, WBF-PDEd(∗, ∗, r) ∈ PΣP
2 = ΔP

3 .

The proof is now complete.

6.2 Completeness Results

We show:

Theorem 4 (Completeness Results for Payoff-Dominant Equilibria).
We have:

(1) WBF-PDEd(∗, k, ∗) is ΔP
2 -complete for k ∈ {1, 2, . . .}.

(2) BF-PDEd(∗, k, r) is ΘP
2 -complete for k ∈ {1, 2, . . .} and r ∈ {1, 2, . . . , ∗}.

(3) WBF-PDEd(m, ∗, ∗) is ΔP
3 -complete for m ∈ {3, 4, . . . , ∗}.

(4) BF-PDEd(m, ∗, ∗) is ΘP
3 -complete for m ∈ {3, 4, . . . , ∗}.

Proof. We consider each case separately.

Case(1): Membership in ΔP
2 follows from Case (3) in Proposition 2. For ΔP

2 -
hardness, it suffices to prove that WBF-PDEd(∗, 1, ∗) is ΔP

2 -hard. Towards this
end, we provide a polynomial time reduction from Δ2-QBF to WBF-PDEd(∗, 1, ∗).

Consider a propositional formula H(x) with x = 〈x1, . . . , xn〉. Assume, with-
out loss of generality, that H(0n−11) = 1. Construct a weighted (n + 4, 1, n)-
boolean formula game ΓH as follows, where z = 〈z1, z2, z3, z4〉:

Weighted Boolean Formula Games 73

Player Variable Boolean formulas Weights

i ∈ [n] xi fi(x, z) = 0 αi = 1

n + 1 z1 fn+1(x, z) = H(x)
∨

(z1 ⊕ z2) αn+1 = 1

n + 2 z2 fn+1(x, z) = H(x)
∨

(z1 ⊕ z2 ⊕ 1) αn+2 = 1

n + 3 z3 fn+3,i(x, z) = xi, i ∈ [n] αn+3,i = 2n−i, i ∈ [n]

n + 4 z4 fn+4(x, z) = xn αn+4 = 1

We note that the payoffs of all players i ∈ [n] are constant; the payoffs of players
n+3 and n+4 are independent of their strategies. Hence, neither players i ∈ [n]
nor players n + 3 and n + 4 matter for a pure equilibrium. In the sequel, we
use a and b to denote vectors of values for the vectors x and z of variables,
respectively. We prove:

Lemma 4. The following conditions hold:

(C.1) Consider a vector a ∈ {0, 1}n such that H(a) = 1. Then, for all vectors
b ∈ {0, 1}4, (a,b) is a pure equilibrium for ΓH with payoff vector

U(a,b) =

〈
0, . . . , 0︸ ︷︷ ︸

n

, 1, 1,
∑
j∈[n]

aj · 2n−j , an

〉
.

(C.2) Consider a vector a ∈ {0, 1}n such that H(a) = 0. Then, for all vectors
b ∈ {0, 1}4, (a,b) is not a pure equilibrium for ΓH.

(C.3) H(x) ∈ Δ2-QBF if and only if ΓH has a payoff-dominant equilibrium.

Proof. We start with Condition (C.1). We only need to consider players n + 1
and n+2. Since H(a) = 1, Un+1(a,b) = Un+2(a,b) = 1, which cannot be further
increased. Hence, 〈a,b〉 is a pure equilibrium for ΓH with payoff vector

U(a,b) =

〈
0, . . . , 0︸ ︷︷ ︸

n

, 1, 1,
∑
j∈[n]

aj · 2n−j , an

〉
.

We continue with Condition (C.2). Since H(a) = 0, Un+1(a,b) = b1 ⊕ b2 and
Un+2(a,b) = b1 ⊕ b2 ⊕ 1. We proceed by case analysis on the value of b1 ⊕ b2.

– If b1 ⊕ b2 = 0, then player n + 1 can increase her payoff Un+1(a,b) = 0 by
flipping b1.

– If b1 ⊕ b2 = 1, then player n + 2 can increase her payoff Un+2(a,b) = 0 by
flipping b2.

Hence, (a,b) is not a pure equilibrium.
Finally, for Condition (C.3), assume first that H(x) ∈ Δ2-QBF. Fix the lmax

vector a ∈ {0, 1}n such that H(a) = 1. Since H(x) ∈ Δ2-QBF, it follows that

74 M. Mavronicolas et al.

an = 1. Condition (C.1) implies that (a,b) is a pure equilibrium for ΓH with
payoff vector

U(a,b) =

〈
0, . . . , 0︸ ︷︷ ︸

n

, 1, 1,
∑
j∈[n]

aj · 2n−j , an

〉
.

We now prove that (a,b) is a payoff-dominant equilibrium for ΓH. Fix any
pure equilibrium (a′,b′) for ΓH. By Condition (C.2), H(a′) = 1. Hence, by Con-
dition (C.1),

U(a′,b′) =

〈
0, . . . , 0︸ ︷︷ ︸

n

, 1, 1,
∑
j∈[n]

a′
j · 2n−j , a′

n

〉
.

Clearly, we only need to consider players n + 3 and n + 4.

– Since a is lmax among all vectors a′′ ∈ {0, 1}n such that H(a′′) = 1, it follows
that a ≥le a′. Hence,

∑
j∈[n] aj · 2n−j ≥ ∑

j∈[n] a
′
j · 2n−j , and player n + 3 has

a dominant payoff in (a,b).
– Since an = 1, an ≥ a′

n, and player n + 4 has a dominant payoff in (a,b).

It follows that (a,b) is a payoff-dominant equilibrium for ΓH.
Assume now that H(x) �∈ Δ2-QBF. Assume, by way of contradiction, that ΓH

has a payoff-dominant equilibrium (a,b). By Condition (C.2), H(a) = 1, and by
Condition (C.1),

U(a,b) =

〈
0, . . . , 0︸ ︷︷ ︸

n

, 1, 1,
∑
j∈[n]

aj · 2n−j , an

〉
.

Again, by Condition (C.1), (ã,b) is a pure equilibrium for every vector ã ∈
{0, 1}n with H(ã) = 1. Since player n + 3 has a dominant payoff in (a,b), this
implies that a is the lexmax solution to H(a) = 1.

In this case, due to the assumption that H(x) �∈ Δ2-QBF, it follows that
an = 0. Hence, player n + 4 has payoff 0 in (a,b).

Since H(0n−11) = 1, it follows, by Condition (C.1), that (0n−11,b) is also a
pure equilibrium with payoff vector

U(0n−11,b) =

〈
0, . . . , 0︸ ︷︷ ︸

n

, 1, 1, 1, 1

〉
;

thus, player n + 4 does not have a dominant payoff in (a,b). A contradiction.

Case(2): Membership in ΘP
2 follows from Case (2) in Proposition 2. We prepare

the reader that the proof of ΘP
2 -hardness follows the same structure as the

corresponding proof for Case (1). The main difference in the reduction is that
player n+3 is replaced by players (n+3, �), with � ∈ [m], with formulas (|x| ≥ �).
We continue with the details of the formal proof.

Weighted Boolean Formula Games 75

For ΘP
2 -hardness, it suffices to prove that BF-PDEd(∗, 1, ∗) is ΘP

2 -hard.
Towards this end, we provide a polynomial time reduction from Θ2-QBF to
BF-PDEd(∗, 1, ∗).

Consider a propositional formula H(x) with x = 〈x1, . . . , xn〉 and an integer
m ≥ 1. Assume, without loss of generality, that H(0n−11) = 1. Construct a
weighted (n + m + 3, 1, n)- boolean formula game Γ〈H,m〉 as follows, where z =
〈z1, z2, z3,1, . . . , z3,m, z4〉:

Player Variable Boolean formulas

i ∈ [n] xi fi(x, z) = 0

n + 1 z1 fn+1(x, z) = (H(x) ∧ (|x| ≤ m))
∨

(z1 ⊕ z2)

n + 2 z2 fn+1(x, z) = (H(x) ∧ (|x| ≤ m))
∨

(z1 ⊕ z2 ⊕ 1)

(n + 3, �), � ∈ [m] z3,�, � ∈ [m] fn+3,�(x, z) = (|x| ≥ �), � ∈ [m]

n + 4 z4 fn+4(x, z) = xn

We note that the payoffs of all players i ∈ [n] are constant; the payoffs of players
(n + 3, �) with � ∈ [m] and n + 4 are independent of their strategies. Hence,
neither players i ∈ [n] nor players (n + 3, �) with � ∈ [m] and n + 4 matter for a
pure equilibrium. In the sequel, we use a and b to denote vectors of values for
the vectors x and z of variables, respectively. We prove:

Lemma 5. The following conditions hold:

(C.1) Consider a vector a ∈ {0, 1}n such that H(a) = 1 and |a| ≤ m. Then,
for all vectors b ∈ {0, 1}m+3, (a,b) is a pure equilibrium for Γ〈H,m〉 with
payoff vector

U(a,b) =

〈
0, . . . , 0︸ ︷︷ ︸

n

, 1, 1, 0, . . . , 0︸ ︷︷ ︸
m−|a|

, 1, . . . , 1︸ ︷︷ ︸
|a|

, an

〉
.

(C.2) Consider a vector a ∈ {0, 1}n such that H(a) = 0 or |a| > m. Then, for
all vectors b ∈ {0, 1}m+3, (a,b) is not a pure equilibrium for Γ〈H,m〉.

(C.3) 〈H(x), 1m〉 ∈ Θ2-QBF if and only if Γ〈H,m〉 has a payoff-dominant equilib-
rium.

Proof. We start with Condition (C.1). We only need to consider players n + 1
and n + 2. Since H(a) = 1 and |a| ≤ m, Un+1(a,b) = Un+2(a,b) = 1, which
cannot be further increased. Hence, 〈a,b〉 is a pure equilibrium for Γ〈H,m〉 with
payoff vector

U(a,b) =

〈
0, . . . , 0︸ ︷︷ ︸

n

, 1, 1, 0, . . . , 0︸ ︷︷ ︸
m−|a|

, 1, . . . , 1︸ ︷︷ ︸
|a|

, an

〉
.

76 M. Mavronicolas et al.

We continue with Condition (C.2). Since H(a) = 0 or |a| > m, Un+1(a,b) =
b1 ⊕ b2 and Un+2(a,b) = b1 ⊕ b2 ⊕ 1. We proceed by case analysis on the value
of b1 ⊕ b2.

– If b1 ⊕ b2 = 0, then player n + 1 can increase her payoff Un+1(a,b) = 0 by
flipping b1.

– If b1 ⊕ b2 = 1, then player n + 2 can increase her payoff Un+2(a,b) = 0 by
flipping b2.

Hence, (a,b) is not a pure equilibrium.
Finally, for Condition (C.3), assume first that 〈H(x), 1m〉 ∈ Θ2-QBF. Fix the

lmax vector a ∈ {0, 1}n such that H(a) = 1 and |a| ≤ m. Since 〈H(x), 1m〉 ∈
Θ2-QBF, it follows that an = 1. Condition (C.1) implies that (a,b) is a pure
equilibrium for Γ〈H,m〉 with payoff vector

U(a,b) =

〈
0, . . . , 0︸ ︷︷ ︸

n

, 1, 1, 0, . . . , 0︸ ︷︷ ︸
m−|a|

, 1, . . . , 1︸ ︷︷ ︸
|a|

, an

〉
.

We now prove that (a,b) is a payoff-dominant equilibrium for Γ〈H,m〉. Fix
any pure equilibrium (a′,b′) for Γ〈H,m〉. By Condition (C.2), H(a′) = 1. Hence,
by Condition (C.1),

U(a′,b′) =

〈
0, . . . , 0︸ ︷︷ ︸

n

, 1, 1, 0, . . . , 0︸ ︷︷ ︸
m−|a′|

, 1, . . . , 1︸ ︷︷ ︸
|a′|

, a′
n

〉
.

Clearly, we only need to consider players (n + 3, �) with � ∈ [m] and n + 4.

– Since a is lmax among all vectors a′′ ∈ {0, 1}n such that H(a′′) = 1 and
|a′′| ≤ m, it follows that a ≥le a′. Hence, for each player (n + 3, �) with
� ∈ [m], U(n+3,�)(a′,b′) = 1 only if U(n+3,�)(a,b) = 1, and player (n + 3, �)
has a dominant payoff in (a,b).

– Since an = 1, an ≥ a′
n, and player n + 4 has a dominant payoff in (a,b).

It follows that (a,b) is a payoff-dominant equilibrium for Γ〈H,m〉.
Assume now that 〈H(x), 1m〉 �∈ Θ2-QBF. Assume, by way of contradiction,

that Γ〈H,m〉 has a payoff-dominant equilibrium (a,b). By Condition (C.2), H(a) =
1 and |a| ≤ m, and by Condition (C.1),

U(a,b) =

〈
0, . . . , 0︸ ︷︷ ︸

n

, 1, 1, 0, . . . , 0︸ ︷︷ ︸
m−|a|

, 1, . . . , 1︸ ︷︷ ︸
|a|

, an

〉
.

Again, by Condition (C.1), (ã,b) is a pure equilibrium for Γ〈H,m〉, for every
vector ã ∈ {0, 1}n with H(ã) = 1 and |ã| ≤ m. Since each player (n + 3, �) with
� ∈ [m] has a dominant payoff in (a,b), this implies that a is the lexmax solution
to H(a) = 1 and |a| ≤ m.

Weighted Boolean Formula Games 77

In this case, due to the assumption that 〈H(x), 1m〉 �∈ Θ2-QBF, it follows that
an = 0. Hence, player n + 4 has payoff 0 in (ã,b).

Since H(0n−11) = 1, it follows, by Condition (C.1), that (0n−11,b) is also a
pure equilibrium for Γ〈H,m〉 with payoff vector

U(0n−11,b) =

〈
0, . . . , 0︸ ︷︷ ︸

n

, 1, 1, 0, . . . , 0︸ ︷︷ ︸
m−1

, 1, 1

〉
;

thus, player n + 4 does not have a dominant payoff in (a,b). A contradiction.

Case(3): Membership in ΔP
3 follows from Case (5) in Proposition 2. For ΔP

3 -
hardness, it suffices to prove that WBF-PDEd(3, ∗, ∗) is ΔP

3 -hard. Towards this
end, we give a polynomial time reduction from Δ3-RQBF to WBF-PDEd(3, ∗, ∗).

Consider a propositional formula H(x,y) ∈ R with x = 〈x1, . . . , xn〉 and y =
〈y1, . . . , yn〉. Assume, without loss of generality, that for every vector b ∈ {0, 1}n,
H(0n−11,b) = 1. Construct a weighted (3, n, n + 1)-boolean formula game ΓH as
follows, where z = 〈z1, . . . , zn〉:

Player Variables Boolean formulas Weights

1 x f1(x,y, z) = 0 α1 = 1

2 y f2,0(x,y, z) = H(x,y) ⊕ H(x, z) α2,0 = 1

f2,j(x,y, z) = xj for j ∈ [n] α2,j = 2n−j for j ∈ [n]

3 z f3,1(x,y, z) = H(x,y) ⊕ H(x, z) ⊕ 1 α3,1 = 1

f3,2(x,y, z) = xn α3,2 = 1

We note that player 1 does not matter for a pure equilibrium since her payoff is
constant. Furthermore, we note that

U2(x,y, z) =
∑

j∈{0,1,...,n}
α2,j · f2,j(x,y, z),

while player 2 can influence only f2,0. Likewise,

U3(x,y, z) = f3,1(x,y, z) + f3,2(x,y, z),

while player 3 can influence only f3,1. In the sequel, we use a, b and c to denote
vectors of values for the vectors x, y and z, respectively. We prove:

Lemma 6. The following conditions hold:

(C.1) Consider a vector a ∈ {0, 1}n such that for all vectors b ∈ {0, 1}n,
H(a,b) = 1. Then, for every pair (b, c) with b, c ∈ {0, 1}n, (a,b, c) is
a pure equilibrium for ΓH with payoff vector

U(a,b, c) =

〈
0,

∑
j∈[n]

aj · 2n−j , 1 + an

〉
.

78 M. Mavronicolas et al.

(C.2) Consider a vector a ∈ {0, 1}n such that there is a vector b0
a ∈ {0, 1}n with

H(a,b0
a) = 0. Then, for every pair (b, c) with b, c ∈ {0, 1}n, (a,b, c) is

not a pure equilibrium for ΓH.
(C.3) H(x,y) ∈ Δ3-RQBF if and only if ΓH has a payoff-dominant equilibrium.

Proof. For Condition (C.1), fix an arbitrary pair (b, c). We examine players 2
and 3:

– For player 2, fix any arbitrary strategy b′ ∈ {0, 1}n. Recall that player 2 can
only influence her formula f2,0. The assumption on a implies that

f2(a,b′, c) = H(a,b′) ⊕ H(a, c) = 1 ⊕ 1 = 0.

So, player 2 cannot unilaterally increase the value f2,0(a,b, c) = 0.
– For player 3, fix any arbitrary strategy c′ ∈ {0, 1}n. Recall that player 3 can

only influence her formula f3,1. The assumption on a implies that

f3(a,b, c′) = H(a,b) ⊕ H(a, c′) ⊕ 1 = 1 ⊕ 1 ⊕ 1 = 1.

So, player 3 cannot unilaterally increase the value f3,1(a,b, c) = 1.

It follows that (a,b, c) is a pure equilibrium with payoff vector

U(a,b, c) =

〈
0,

∑
j∈[n]

aj · 2n−j , 1 + an

〉
.

For Condition (C.2), fix an arbitrary pair (b, c). We proceed by case analysis
on the pair of values H(a,b) and H(a, c).

– Assume first that H(a,b) = H(a, c) = 0. Then,

f2,0(a,b, c) = H(a,b) ⊕ H(a, c) = 0 ⊕ 0 = 0.

However, since H(x,y) ∈ R, there is a vector b1
a ∈ {0, 1}n with

f2,0(a,b1
a, c) = H(a,b1

a) ⊕ H(a, c) = 1 ⊕ 0 = 1.

So, player 2 can increase f2,0(a,b, c) by changing her strategy b to b1
a.

– Assume now that H(a,b) = 0 and H(a, c) = 1. (The case where H(a,b) = 1
and H(a, c) = 0 is symmetric.) Then,

f3,1(a,b, c) = H(a,b) ⊕ H(a, c) ⊕ 1 = 0 ⊕ 1 ⊕ 1 = 0.

However, by assumption on a,

f3,1(a,b,b0
a) = H(a,b) ⊕ H(a,b0

a) ⊕ 1 = 0 ⊕ 0 ⊕ 1 = 1.

So, player 3 can increase f3,1(a,b, c) by changing her strategy c to b0
a.

Weighted Boolean Formula Games 79

– Assume finally that H(a,b) = H(a, c) = 1. Then,

f2,0(a,b, c) = H(a,b) ⊕ H(a, c) = 1 ⊕ 1 = 0.

However, by assumption on a,

f2,0(a,b0
a, c) = H(a,b0

a) ⊕ H(a, c) = 0 ⊕ 1 = 1.

So, player 2 can increase f2,0(a,b, c) by changing her strategy b to b0
a.

The case analysis implies that 〈a,b, c〉 is not a pure equilibrium for ΓH.
For Condition (C.3), assume first that H(x,y) ∈ Δ3-RQBF. Choose the lmax

a ∈ {0, 1}n such that for all vectors b ∈ {0, 1}n, H(a,b) = 1 By definition of
Δ3-RQBF, it follows that an = 1. By Condition (C.1), it follows that for every
pair (b, c), (a,b, c) is a pure equilibrium for ΓH with payoff vector

U(a,b, c) =

〈
0,

∑
j∈[n]

aj · 2n−j , 1 + an

〉
.

We now prove that (a,b, c) is a payoff-dominant equilibrium for ΓH. Consider
any pure equilibrium (a′,b′, c′) for ΓH. Condition (C.2) implies that for all vectors
b′′ ∈ {0, 1}n, H(a,b′′) = 1. Condition (C.1) implies that the payoff vector for
(a′,b′, c′) is

U(a′,b′, c′) =

〈
0,

∑
j∈[n]

a′
j · 2n−j , 1 + a′

n

〉
.

We only need to consider players 2 and 3.

– Since a is the lmax vector such that for all vectors b ∈ {0, 1}n, H(a,b) = 1,
it follows that a ≥le a′. Hence,

∑
j∈[n] aj · 2n−j ≥ ∑

j∈[n] a
′
j · 2n−j , and player

2 has a dominant payoff in (a,b, c).
– Since an = 1, an ≥ a′

n, and player 3 has a dominant payoff in (a,b, c).

It follows that
〈

0,
∑
j∈[n]

aj · 2n−j , 1 + an

〉
≥cw

〈
0,

∑
j∈[n]

a′
j · 2n−j , 1 + a′

n

〉
.

Since (a′,b′, c′) was chosen as an arbitrary pure equilibrium for ΓH, this implies
that (a,b, c) is a payoff-dominant equilibrium for ΓH.

Assume now that H(x,y) �∈ Δ3-RQBF. Assume, by way of contradiction, that
ΓH has a payoff-dominant equilibrium (a,b, c).

By Condition (C.2), H(a,b′) = 1 for all vectors b′ ∈ {0, 1}n. By Condition
(C.1),

U(a,b, c) =

〈
0,

∑
j∈[n]

aj · 2n−j , 1 + an

〉
.

80 M. Mavronicolas et al.

Again, by Condition (C.1), (ã,b, c) is a pure equilibrium for ΓH, for every
vector ã ∈ {0, 1}n such that H(ã,b′) = 1 for all vectors b′ ∈ {0, 1}n. Since player
2 has a dominant payoff in (a,b, c), it follows that a is the lexmax solution to
H(a,b′) = 1 for all vectors b′ ∈ {0, 1}n.

In this case, due to the assumption that H(x,y) �∈ Δ3-RQBF, it follows that
an = 0. Hence, player 3 has payoff 1 in (a,b, c).

Recall the assumption that for all vectors b′ ∈ {0, 1}n, H(0n−11,b′) = 1. By
Condition (C.1), this implies that 〈0n−11,b, c〉 is also a pure equilibrium for ΓH

with payoff vector 〈0, 1, 2〉. Hence, player 3 does not have a dominant payoff in
(a,b, c). A contradiction.

Case(4): Membership in ΘP
3 follows from Case (4) in Proposition 2. We prepare

the reader that the corresponding proof of ΘP
3 -hardness follows the same struc-

ture as the corresponding proof for Case (3). The main difference in the reduction
is that now player 1 has the formula (|x| ≤ r) and player 2 has the formulas
f2,� = (|x| ≥ �) with � ∈ [r]. We continue with the details of the formal proof.

For ΘP
3 -hardness, it suffices to prove that BF-PDEd(3, ∗, ∗) is ΘP

3 -hard.
Towards this end, we provide a polynomial time reduction from Θ3-RQBF to
BF-PDEd(3, ∗, ∗).

Consider a propositional formula H(x,y) ∈ R with x = 〈x1, . . . , xn〉 and
y = 〈y1, . . . , yn〉, and an integer r ≥ 1. Assume, without loss of generality, that
for every vector b ∈ {0, 1}n, H(0n−11,b) = 1. Construct a (3, n, r + 1)-boolean
formula game Γ〈H,r〉 as follows, where z = 〈z1, . . . , zn〉:

Player Variables Boolean formulas

1 x f1(x,y, z) = (|x| ≤ r)

2 y f2,0(x,y, z) = H(x,y) ⊕ H(x, z)

f2,�(x,y, z) = (|x| ≥ �) for � ∈ [r]

3 z f3,1(x,y, z) = H(x,y) ⊕ H(x, z) ⊕ 1

f3,2(x,y, z) = xn

We note that

U2(x,y, z) =
∑

�∈{0,1,...,r}
f2,�(x,y, z),

while player 2 can influence only f2,0. Likewise,

U3(x,y, z) = f3,1(x,y, z) + f3,2(x,y, z),

while player 3 can influence only f3,1. We prove:

Weighted Boolean Formula Games 81

Lemma 7. The following conditions hold:

(C.1) Consider a vector a ∈ {0, 1}n such that for all vectors b ∈ {0, 1}n,
H(a,b) = 1 and |a| ≤ r. Then, for every pair (b, c) with b, c ∈ {0, 1}n,
(a,b, c) is a pure equilibrium for Γ〈H,r〉 with payoff vector

U(a,b, c) = 〈1, |a|, 1 + an〉 .

(C.2) Consider a vector a ∈ {0, 1}n such that there is a vector b0
a ∈ {0, 1}n with

H(a,b0
a) = 0 or |a| > r. Then, for every pair (b, c) with b, c ∈ {0, 1}n,

(a,b, c) is not a pure equilibrium for Γ〈H,r〉.
(C.3) H(x,y) ∈ Θ3-RQBF if and only if Γ〈H,r〉 has a payoff-dominant equilib-

rium.

Proof. For Condition (C.1), fix an arbitrary pair (b, c). We examine all players.
For player 1, the assumption that |a| ≤ r implies that U1(a,b, c) = 1, which
cannot be further increased. For players 2 and 3, the proof follows exactly the
proof for Condition (C.1) in Lemma 6.

It follows that (a,b, c) is a pure equilibrium with payoff vector

U(a,b, c) = 〈1, |a|, 1 + an〉 .

For Condition (C.2), fix an arbitrary pair (b, c). If |a| > r, then U1(a,b, c) =
0, and player 1 can unilaterally increase her payoff to 1 by changing her strategy
a to a strategy a′ with |a′| ≤ r; so, (a,b, c) is not a pure equilibrium. So, assume
that there is a vector b0

a ∈ {0, 1}n with H(a,b0
a) = 0. From this point, the proof

that (a,b, c) is not a pure equilibrium for Γ〈H,r〉 follows exactly for Condition
(C.1) in Lemma 6.

For Condition (C.3), assume first that H(x,y) ∈ Θ3-RQBF. Fix the lmax
a ∈ {0, 1}n such that for all vectors b ∈ {0, 1}n, H(a,b) = 1 By definition of
Θ3-RQBF, it follows that an = 1. By Condition (C.1), it follows that for every
pair (b, c), (a,b, c) is a pure equilibrium for Γ〈H,r〉 with payoff vector

U(a,b, c) = 〈1, |a|, 1 + an〉 .

We now prove that (a,b, c) is a payoff-dominant equilibrium for Γ〈H,r〉. Con-
sider any pure equilibrium (a′,b′, c′) for Γ〈H,r〉. Condition (C.2) implies that for
all vectors b′′ ∈ {0, 1}n, H(a′,b′′) = 1 and |a′| ≤ r. Condition (C.1) implies that
the payoff vector for (a′,b′, c′) is

U(a′,b′, c′) = 〈1, |a′|, 1 + a′
n〉 .

We only need to consider players 2 and 3.

– Since a is the lmax vector such that for all vectors b ∈ {0, 1}n, H(a,b) = 1,
it follows that a ≥le a′. Hence, |a| ≥ |a′| and player 2 has a dominant payoff
in (a,b, c).

– Since an = 1, an ≥ a′
n, and player 3 has a dominant payoff in (a,b, c).

82 M. Mavronicolas et al.

It follows that

〈1, |a|, 1 + an〉 ≥cw 〈1, |a′|, 1 + a′
n〉 .

Since (a′,b′, c′) was chosen as an arbitrary pure equilibrium for Γ〈H,r〉, this
implies that (a,b, c) is a payoff-dominant equilibrium for Γ〈H,r〉.

Assume now that H(x,y) �∈ Θ3-RQBF. Assume, by way of contradiction, that
Γ〈H,r〉 has a payoff-dominant equilibrium (a,b, c).

By Condition (C.2), H(a,b′) = 1 for all vectors b′ ∈ {0, 1}n. By Condition
(C.1),

U(a,b, c) = 〈1, |a|, 1 + an〉 .

Again, by Condition (C.1), (ã,b, c) is a pure equilibrium for Γ〈H,r〉, for every
vector ã ∈ {0, 1}n such that H(ã,b′) = 1 for all vectors b′ ∈ {0, 1}n. Since player
2 has a dominant payoff in (a,b, c), it follows that a is the lexmax solution to
H(a,b′) = 1 for all vectors b′ ∈ {0, 1}n.

In this case, due to the assumption that H(x,y) �∈ Θ3-RQBF, it follows that
an = 0. Hence, player 3 has payoff 1 in (a,b, c).

Recall the assumption that for all vectors b′ ∈ {0, 1}n, H(0n−11,b′) = 1. Note
also that |0n−11| = 1 ≤ r. By Condition (C.1), these imply that 〈0n−11,b, c〉
is also a pure equilibrium for Γ〈H,r〉 with payoff vector 〈1, 1, 2〉. Hence, player 3
does not have a dominant payoff in (a,b, c). A contradiction.

We conclude with a group of open problems.

Open Problem 61. Find the complexities of the following problems:

(1) WBF-PDEd(∗, k, r) (and WBF-PDEs(∗, k, r)) for k ∈ {1, 2, . . .} and r ∈
{1, 2, . . .}.

(2) BF-PDEd(m, ∗, r) (and BF-PDEs(m, ∗, r)) for m ∈ {2, 3, . . .}, r ∈ {1, 2, . . .}.
(3) WBF-PDEd(2, ∗, ∗) (and WBF-PDEs(2, ∗, ∗)).
(4) BF-PDEd(2, ∗, ∗) (and BF-PDEs(2, ∗, ∗)).

7 Open Problems

Our work raises far more interesting open problems than it answers; beyond the
concrete ones in Open Problems 51, 52 and 61, we mention a few additional here.

1. On the most concrete level, what is the complexity of other refinements of
pure equilibrium (e.g., dominating equilibrium, Pareto-optimal equilibrium,
risk-dominant equilibrium, etc.) in WBFG? What is the complexity of payoff-
dominant equilibria in MWBFG?

2. What is the complexity of mixed payoff-dominant equilibria in WBFG, or in
other classes of succinct games?

Weighted Boolean Formula Games 83

3. We identified natural refinements of pure equilibrium (including itself) that
are complete for some of the lowest levels of PH (not exceeding the third
level). Is there for any level k of PH, some natural refinement of pure equilib-
rium that is complete for ΘP

k , ΔP
k , ΣP

k or ΠP
k ? Is there some natural refinement

of pure equilibrium that is complete for PSPACE?
3. Theorem 1 identifies mutuality as a sufficient condition for a WBFG to admit

an exact potential; a corresponding necessary condition is missing.
4. Theorem 2 and Corollary 2 identify classes of congestion games that are

polynomially embeddable in WBFG and MWBFG, respectively. Which other
classes of congestion games and, in general, succinct games are so embed-
dable?

Acknowledgements. We would like to thank Paul Spirakis and Karsten Tiemann
for many helpful discussions and comments on earlier versions of this work.

References

1. Álvarez, C., Gabarró, J., Serna, M.: Equilibria problems on games: complexity
versus succinctness. J. Comput. Syst. Sci. 77(6), 1172–1197 (2011)

2. Aumann, R.J., Sorin, S.: Cooperation and bounded recall. Game. Econ. Behav.
1(1), 5–39 (1989)

3. Bacharach, M., Bernasconi, M.: An experimental study of the variable frame theory
of focal points. Game. Econ. Behav. 19(1), 1–45 (1997)

4. Bilò, V.: On satisfiability games and the power of congestion games. In: Kao, M.-Y.,
Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 231–240. Springer, Heidelberg
(2007)

5. Bilò, V., Mavronicolas, M.: The complexity of decision problems about nash equi-
libria in win-lose games. In: Serna, M. (ed.) SAGT 2012. LNCS, vol. 7615, pp.
37–48. Springer, Heidelberg (2012)

6. Blonski, M.: Characterization of pure-strategy equilibria in finite anonymous
games. J. Math. Econ. 34(2), 225–233 (2000)

7. Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J., Zanuttini, B.: Boolean games revis-
ited. In: Proceedings of the 17th European Conference on Artificial Intelligence,
Series Frontiers in Artificial Intelligence and Applications, vol. 141, pp. 265–269,
August/September 2006

8. Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J.: Compact preference representation
for boolean games. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI),
vol. 4099, pp. 41–50. Springer, Heidelberg (2006)

9. Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J., Zanuttini, B.: Compact preference
representation and boolean games. Auton. Agents Multi-Agent Syst. 18(1), 1–35
(2009)

10. Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J.: Dependencies between players in
boolean games. Int. J. Approximate Reasoning 50(6), 899–914 (2009)

11. Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J.: Effectivity functions and efficient
coalitions in boolean games. Synthese 187(1 Supplement), 73–103 (2012)

12. Brandt, F., Fischer, F., Holzer, M.: Symmetries and the complexity of pure nash
equilibrium. J. Comput. Syst. Sci. 75(3), 163–177 (2009)

84 M. Mavronicolas et al.

13. Case, J.: A class of games having pareto optimal nash equilibria. J. Optim. Theory
Appl. 13, 379–385 (1974)

14. Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of two-player nash equi-
libria. J. ACM 56(3), 14 (2009)

15. Colman, A.M., Bacharach, M.: Payoff dominance and the stackelberg heuristic.
Theory Decis. 43(1), 1–19 (1997)

16. Conitzer, V., Sandholm, T.: Complexity results about nash equilibria. Game. Econ.
Behav. 63(2), 621–641 (2008)

17. Daskalakis, C., Fabrikant, A., Papadimitriou, C.: The game world is flat: the com-
plexity of nash equilibria in succinct games. In: Bugliesi, M., Preneel, B., Sassone,
V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 513–524. Springer, Hei-
delberg (2006)

18. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

19. Daskalakis, K., Papadimitriou, C.: The complexity of games on highly regular
graphs. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 71–
82. Springer, Heidelberg (2005)

20. Dunkel, J., Schulz, A.S.: On the complexity of pure-strategy nash equilibria in
congestion and local-effect games. MatH. Oper. Res. 33(4), 851–868 (2008)

21. Dunne, P.E., van der Hoek, W.: Representation and complexity in boolean games.
In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 347–359.
Springer, Heidelberg (2004)

22. Dunne, P.E., Wooldridge, M.: Towards tractable boolean games. In: Proceedings of
the 11th International Conference on Autonomous Agents and Multiagent Systems,
vol. 2, pp. 939–946, June 2012

23. Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure nash equi-
libria. In: Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting, pp. 604–612, June 2004

24. Feigenbaum, J., Koller, D., Shor, P.: A game-theoretic classification of interac-
tive complexity classes. In: Proceedings of the 10th Annual IEEE Conference on
Structure in Complexity Theory, pp. 227–237, June 1995

25. Fischer, F., Holzer, M., Katzenbeisser, S.: The influence of neighbourhood and
choice on the complexity of finding pure nash equilibria. Inf. Process. Lett. 99(6),
239–245 (2006)

26. Fortnow, L., Impagliazzo, R., Kabanets, V., Umans, C.: On the complexity of
succinct zero-sum games. Comput. Complex. 17(3), 353–376 (2008)

27. Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable flows. Theoret. Com-
put. Sci. 348(2–3), 226–239 (2005)

28. Gabarró, J., Garćıa, A., Serna, M.: The complexity of game isomorphism. Theoret.
Comput. Sci. 412(48), 6675–6695 (2011)

29. Gairing, M., Monien, B., Tiemann, K.: Routing (un-)splittable flow in games with
player-specific linear latency functions. ACM Trans. Algorithms 7(3), 31 (2011)

30. Gale, D., Kuhn, H.W., Tucker, A.W.: On symmetric games. Contributions to the
Theory of Games. Annals of Mathematics Studies, vol. 24. Princeton University
Press, Princeton (1950)

31. Gottlob, G., Greco, G., Scarcello, F.: Pure nash equilibria: hard and easy games.
J. Artif. Intell. Res. 24, 357–406 (2005)

32. Harrenstein, P., van der Hoek, W., Meyer, J.-J., Witteveen, C.: Boolean games.
In: Proceedings of the 8th Conference on Theoretical Aspects of Rationality and
Knowledge, pp. 287–298, July 2001

Weighted Boolean Formula Games 85

33. Harrenstein, P.: Logic in conflict, Ph.D. thesis, Utrecht University (2004)
34. Harsanyi, J.C., Selten, R.: A General Theory of Equilibrium Selection in Games.

The MIT Press, Cambridge (1988)
35. Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Exact analysis of dodgson

elections: lewis carroll’s 1876 voting system is complete for parallel access to NP.
J. ACM 44(6), 806–825 (1997)

36. Howson, J.T.: Equilibria of polymatrix games(Part I). Manag. Sci. 18(5), 312–318
(1972)

37. Ianovski, E.: DValue for boolean games is EXP-Hard. In: CoRR, abs/1403.7428
(2014)

38. Ianovski, E., Ong, L.: ∃GuaranteeNash is NEXP-Hard. In: Proceedings of the 14th
International Conference on Knowledge Representation and Reasoning, July 2014

39. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J.
Comput. Syst. Sci. 37(1), 79–100 (1988)

40. Kalai, E., Samet, D.: Unanimity games and pareto optimality. Int. J. Game Theory
14(1), 41–50 (1985)

41. Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical models for game theory. In:
Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pp.
253–260, August 2001

42. Krapchenko, V.M.: Complexity of the realization of a linear function in the class
of Π-circuits. Math. Notes Acad. Sci. USSR 9(1), 21–23 (1971)

43. Krentel, M.W.: The complexity of optimization problems. J. Comput. Syst. Sci.
36(3), 490–509 (1988)

44. Leyton-Brown, K., Tennenholtz, M.: Local-effect games. In: Proceedings of the
18th International Joint Conference on Artificial Intelligence, pp. 772–780, August
2003

45. Mavronicolas, M., Milchtaich, I., Monien, B., Tiemann, K.: Congestion games with
player-specific constants. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol.
4708, pp. 633–644. Springer, Heidelberg (2007)

46. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential time. In: Proceedings of the 13th Annual IEEE
Symposium on Switching and Automata Theory, pp. 125–129, October 1972

47. Milchtaich, I.: Congestion games with player-specific payoff functions. Game. Econ.
Behav. 13(1), 111–124 (1996)

48. Monderer, D., Shapley, L.S.: Potential games. Game. Econ. Behav. 14(1), 124–143
(1996)

49. Nash, J.F.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)
50. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)
51. Papadimitriou, C.H., Roughgarden, T.: Computing correlated equilibria in multi-

player games. J. ACM 55(3), 14 (2008)
52. Papadimitriou, C.H., Zachos, S.: Two remarks on the power of counting. In:

Cremers, A.B., Kriegel, H.-P. (eds.) Theoretical Computer Science. LNCS, vol.
145, pp. 269–275. Springer, Heidelberg (1983)

53. Paterson, M., Valiant, L.G.: Circuit size is nonlinear in depth. Theoret. Comput.
Sci. 2(3), 397–400 (1976)

54. Paul, W.: A 2.5 lower bound on the combinatorial complexity of boolean functions.
SIAM J. Comput. 6(3), 427–443 (1977)

55. Rosenthal, R.W.: A class of games possessing pure strategy nash equilibria. Int. J.
Game Theory 2(1), 65–67 (1973)

56. Sahni, S.: Computationally related problems. SIAM J. Comput. 3(4), 262–279
(1974)

86 M. Mavronicolas et al.

57. Schoenebeck, G., Vadhan, S.: The computational complexity of nash equilibria in
concisely represented games. ACM Trans. Comput. Theory 4(2), 4 (2012)

58. Stockmeyer, L.J.: The polynomial time hierarchy. Theoret. Comput. Sci. 3(1), 1–22
(1976)

59. Vollmer, H., Wagner, K.W.: Complexity classes of optimization functions. Inf.
Comput. 120(2), 198–218 (1995)

60. Voorneveld, M., Borm, P., van Megan, F., Tijs, S., Facchini, G.: Congestion games
and potentials reconsidered. Int. Game Theory Rev. 1(3–4), 283–299 (1999)

61. Wagner, K.W.: More complicated questions about maxima and minima, and some
closures of NP. Theoret. Comput. Sci. 51(1–2), 53–80 (1987)

62. Wagner, K.W.: Bounded query classes. SIAM J. Comput. 19(5), 833–846 (1990)
63. Wegener, I.: The Complexity of Boolean Functions. Wiley, New York (1991)
64. Wrathall, C.: Complete sets and the polynomial time hierarchy. Theoret. Comput.

Sci. 3(1), 23–33 (1976)

On the Implementation of Combinatorial
Algorithms for the Linear Exchange Market

Kurt Mehlhorn(B)

Max-Planck-Institute for Informatics, Saarbrücken, Germany
mehlhorn@mpi-inf.mpg.de

Abstract. Duan and Mehlhorn and Duan, Garg, and Mehlhorn pre-
sented polynomial time combinatorial algorithms [DM13,DGM15] for
the computation of equilibrium prices in linear exchange markets. I am
currently implementing these algorithms. I discuss the questions that I
hope to answer through the implementation.

1 Introduction

In the linear exchange market model [Wal74] there are n agents and n goods;
agent i owns good i. Agents have preferences over goods. Let uij ∈ N≥0 be the
utility of agent i if all of good j is allocated to him. Goods are divisible. At a
certain vector p = (p1, . . . , pn) of prices, agents are only willing to spend money
on goods that give them maximum utility per unit of money. Agents are sellers
and buyers, i.e., if agent i sells his good completely, he has a budget of pi units of
money. The task is to compute prices at which the market clears, i.e., all goods
are completely sold and all money is completely spent. Formally, we want to find
a positive price vector p and a nonnegative flow of money f = (fij) such that

pi =
∑

j fij for all i money is completely spent
pj =

∑
i fij for all j goods are completely sold

fij > 0 =⇒ uij

pj
= max�

ui�

p�
agents are selfish

Fig. 1 shows an example.
The problem is solvable in polynomial time. Jain and Ye [Jai07,Ye07] gave

algorithms based on the Ellipsoid and interior point method, respectively. Duan
and Mehlhorn [DM13] provided a combinatorial algorithm which was recently
improved by Duan, Garg, and Mehlhorn [DGM15]. We review the former algo-
rithm in Sects. 2 and 3. We have recently started to implement the algorithm.
In Sect. 4 we discuss the questions that we want to address through the imple-
mentation. A detailed description of the implementation is under preparation.

2 The Algorithm

This section and the next are based on [DM13]. Each agent only buys its favorite
goods. Define the bang per buck of buyer bi to be αi = maxj uij/pj . For a price
c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 87–94, 2015.
DOI: 10.1007/978-3-319-24024-4 7

88 K. Mehlhorn

Buyers

1

12

10

5

1

1

5

4

1

Goods/Sellers GoodsBuyers

1

12

10

5

1

1

5

4

1

15 15

12 12

10 10

12

3

10

5

7

Fig. 1. The input is shown on the left. Each agent is shown twice, once in its role as
seller or owner of a good and once in his role as buyer. The utility uij is indicated
on the edge from the i-th buyer to the j-th good. A solution is shown on the right.
The prices of the goods (= budgets of the buyers) are shown inside the nodes. The
bang-for-buck edges and the money flow are shown in blue.

vector p, the equality network Np is a flow network with vertex set {s, t}∪B∪C,
where s is a source node, t is a sink node, B = {b1, . . . , bn} is the set of buyers,
and C = {c1, . . . , cn} is the set of goods, and the following edge set:

– An edge (s, bi) with capacity pi for each bi ∈ B.
– An edge (ci, t) with capacity pi for each ci ∈ C.
– An edge (bi, cj) with infinite capacity whenever uij/pj = αi. We use Ep to

denote these edges.

Our task is to find a positive price vector p such that there is a flow in which
all edges from s and to t are saturated. When this is satisfied, all goods are sold
and all of the money earned by each agent is spent on goods of maximum utility
per unit of money. With respect to a flow f , define the surplus r(bi) of a buyer
i as r(bi) = pi −∑

j fij , where fij is the amount of flow on the edge (bi, cj), and
define the surplus r(cj) of a good j as r(cj) = pj − ∑

i fij , Define the surplus
vector of buyers to be r = (r(b1), r(b2), ..., r(bn)). Also, define the total surplus
to be |r| =

∑
i r(bi), which is also

∑
j r(cj) since the total capacity from s and

to t are both equal to
∑

i pi. For convenience, we denote the surplus vector of
flow f ′ by r′. In the network corresponding to market clearing prices, the total
surplus of a maximum flow is zero.

A maximum flow f in Np is balanced if it minimizes the 2-norm ‖r‖2 of the
surplus vector of the buyers among all maximum flows. Balanced flows were
introduced in [DPSV08] and shown to be computable by n maxflow computa-
tions in Np. The equality graph may have as many as Θ(n2) edges and hence,
assuming the use of an O(nm+n2 log n) maxflow algorithm, a balanced flow can

On the Implementation of Combinatorial Algorithms 89

Set ε = 1/(8n4nU3n), where U = maxij uij ;

Set pi = 1 for all i and set f to a balanced flow in Np;

Repeat

Sort the buyers by their surpluses in decreasing order: b1, b2, ..., bn;

Find the smallest � for which r(b�)/r(b�+1) > 1 + 1/n, and
let � = n when there is no such �;

Let S = {b1, . . . , b�};
Compute x = min(xeq , x23, x24, x2).

Multiply prices of goods in Γ (S) and flows into these goods by x.

Extend f to a balanced flow (goods of surplus zero must keep surplus zero);

Until |r(B)| < ε;

Extract a linear system from Np and compute equilibrium prices from it.

Fig. 2. The algorithm

be computed with O(n4) arithmetic operations. The algorithm for computing a
balanced flow is based on the following characterization of balanced flows.

Lemma 1 [DPSV08]. A maximum flow f is balanced if for any two edges
(bi, ck) and (bj , ck) on the equality graph with fik > 0, either r(bi) = r(bj) or
(r(bi) > r(bj) and fjk = 0).

The algorithm is shown in Fig. 2. It starts with all prices pi equal to one and
a balanced flow f in Np. It works in phases. In each phase, we first number the
buyers in order of decreasing surpluses: b1, . . . , bn. Let � be minimal such that
r(b�) is by a factor of 1 + 1/n larger than r(b�+1); � = n if there is no such �. By
this choice of �, r(b�) ≥ |r(B)|/(e ·n) and r(bi) ≤ e ·r(b�) for all i is guaranteed.1

Let S = {b1, . . . , b�} and let Γ (S) = {c ∈ C | (b, c) ∈ Epfor someb ∈ S} be the
goods that are adjacent to a buyer in S in the equality graph. Since every buyer
has at least one incident edge in the equality graph, Γ (S) is non-empty. All flow
from buyers in S goes to goods in Γ (S) and all buyers in S have surplus. Thus
the goods in Γ (S) have no surplus, since the current flow is maximum, and the
demand for them at the current prices exceeds their supply.

Let S̄ = B \ S. Since the flow is balanced and the buyers in S have larger
surplus than the buyers in S̄, there is no flow from S̄ to Γ (S). We raise the
prices of the goods in Γ (S) and the flow on the edges incident to them by a
common factor x > 1. We also increase the flow from s to buyers in S such that
flow conservation holds. This give us a new price vector p′ and a new flow f ′.
Observe that the surpluses of the goods in Γ (S) stay zero. Formally,

1 Clearly b1 ≥ |r(B)|/n. Also, r(bj)/r(bj+1) ≤ 1 + 1/n for j < �, and hence r(b�) ≥
r(b1)/(1 + 1/n)−n ≥ r(b1)/e ≥ |r(B)|/(e · n).

90 K. Mehlhorn

p′
j =

{
x · pj if cj ∈ Γ (S);
pj if cj /∈ Γ (S).

(1) f ′
ij =

{
x · fij if cj ∈ Γ (S);
fij if cj /∈ Γ (S).

(2)

The changes on the edges incident to s and t are implied by flow conservation.
The change of prices and flows affects the surpluses of the buyers, some go

up and some go down.

Lemma 2 [DM13]. Given a balanced flow f in Np, a set S of buyers such that
all goods in Γ (S) are completely sold and there is no flow from S̄ to Γ (S), and a
sufficiently small parameter x > 1, the flow f ′ defined in (2) is a feasible flow in
the equality network with respect to the prices in (1). The surplus of each good
remains unchanged, and the surpluses of the buyers become:

r′(bi) =

⎧
⎪⎪⎨
⎪⎪⎩

x · r(bi) if bi ∈ S, ci ∈ Γ (S) (type 1 buyer);
(1 − x)pi + x · r(bi) if bi ∈ S, ci /∈ Γ (S) (type 2 buyer);
(x − 1)pi + r(bi) if bi /∈ S, ci ∈ Γ (S) (type 3 buyer);
r(bi) if bi /∈ S, ci /∈ Γ (S) (type 4 buyer).

Proof. See [DM13]. For the definition of the factor x, we perform the following
thought experiment. We increase the prices of the goods in Γ (S) and the flow on
the edges incident to them continuously by a common factor x until one of three
events happens: (1) a new edge enters the equality graph or (2) the surplus of a
type 2 buyer and a type 3 or 4 buyer become equal or (3) the surplus of a type 2
buyer becomes zero. The third event can only happen if S = B and hence there
are no type 3 and type 4 buyers.

The increase of prices of goods in Γ (S) makes the goods in C \ Γ (S) more
attractive to the buyers in S and hence an equality edge connecting a buyer in
S with a good in C \ Γ (S) may arise. This will happen at x = xeq(S), where

xeq(S) = min
{

uij

pj
· pk

uik
| bi ∈ S, (bi, cj) ∈ Ep, ck /∈ Γ (S)

}
.

When we increase the prices of the goods in Γ (S) by a common factor x ≤ xeq(S),
the equality edges in (S × Γ (S)) ∪ (S̄ × (C \ Γ (S))) will remain in the network.
Equality edges in S̄ × Γ (S) will disappear, but they carry no flow and hence
may disappear.

The surplus of type 1 and 3 buyers increases, the surplus of type 2 buyers
decreases, and the surplus of type 4 buyers does not change. Since the total
surplus does not change (recall that the surpluses of the goods are not affected
by the price update), the decrease in surplus of the type 2 buyers is equal to the
increase in surplus of the type 1 and 3 buyers. In particular, there are type 2
buyers. We define quantities x23(S) and x24(S) at which the surplus of a type 2
and type 3 buyer, respectively type 4 buyer, becomes equal, and a quantity x2

at which the surplus of a type 2 buyer becomes zero.

On the Implementation of Combinatorial Algorithms 91

x23(S) = min
{

pi + pj − r(bj)
pi + pj − r(bi)

bi is type 2 and bj is type 3 buyer
}

,

x24(S) = min
{

pi − r(bj)
pi − r(bi)

bi is type 2 and bj is type 4 buyer
}

,

x2(S) = min
{

pi

pi − r(bi)
bi is type 2 buyer

}
.

The quantity x2(S) is only relevant, if S = B. It guarantees that surpluses of
buyers stay nonnegative.

Lemma 3 [DM13]. With x = min(xeq(S), x23(S), x24(S), x2(S)) and S as
defined in the algorithm, f ′ is a feasible flow in Np′ .

Proof Obvious. We complete the phase by extending f ′ to a balanced flow. In
this step, we make sure that goods with surplus zero keep surplus zero. This ends
the description of the algorithm. Correctness follows from the following lemma.

Lemma 4 [DM13]. Once the surplus of a good becomes zero, it stays zero. As
long as a good has non-zero surplus, its price stays at one.

3 A Glimpse of the Analysis

The analysis uses two potential functions, namely the product P =
∏

i pi of all
prices and the 2-norm ‖r(B)‖2 of the surplus vector of the buyers.

Lemma 5 [DM13]. In the course of the algorithm, all prices stay bounded by
(nU)n.

Lemma 6 [DM13]. For a phase h, let xh > 1 be the factor by which the prices
in Γ (S) are increased. Then

∏
h

xh ≤ (nU)n2
.

Let xmax := 1 + 1
48e2n3 . Call a phase h an xmax-phase if xh ≥ xmax and call

it a balancing phase otherwise.

Lemma 7 [DM13]. The number of xmax-phases is O(n5 log(nU)).

Proof. Let T be the number of xmax-phases. In an xmax-phase, the product P of
the prices grows by at least a factor xmax. Therefore xT

max ≤ (nU)n2
.

The 2-norm of the surplus vector is used to bound the number of balancing
phases. The next lemma justifies the name.

Lemma 8 [DM13]. In a phase h with xh < xmax, the 2-norm of the surplus
vector of the buyers is reduced by a factor 1 − O(1/n3).

92 K. Mehlhorn

Lemma 9 [DM13]. Over all xmax-phases, the 2-norm of the surplus vector of
the buyers increases by at most a multiplicative factor (nU)n2

.

Lemma 10 [DM13]. The number of balancing phases is O(n5 log(nU)).

Proof. Let T be the number of balancing phases. The initial 2-norm of the surplus
vector is at most

√
n. The total multiplicative increase is at most (nU)n2

and
the total multiplicative decrease in balancing phases is at least (1 − O(1/n3))T .
The algorithm terminates once the 1-norm of the surplus vector is less than ε.
This is guaranteed if the 2-norm is less than ε/

√
n. The bound follows.

Theorem 1 [DM13]. The total number of arithmetic operations required by
the algorithm is O(n9 log(nU)).

Polynomial Time: Since we assume utilities to be integers and the algorithm uses
only the basic arithmetic operations, the computation stays within the rationals.
However, it is not clear whether the size of the rationals stays polynomially
bounded. It is conceivable that the size of the rationals doubles in each phase.

Duan and Mehlhorn guarantee polynomial time as follows. Firstly, they
approximate utilities uij by powers of 1 + 1/L, where L = 16n5(nU)n/ε =
126n5n+5U4n. Secondly, they observe that it suffices to approximate x23, x24

and x2 by a nearby power of 1 + 1/L and that only xeq needs to be com-
puted exactly. As a consequence, all prices are powers of 1 + 1/L. Since prices
are bounded by (nU)n, the exponents in the representations are between 0 and
log1+1/L(nU)n = O(nL log(nU). The bitlength of the exponents is O(n log(nU)).

Theorem 2 [DM13]. The total number of arithmetic operations required by
the algorithm is O(n9 log(nU)). Arithmetic on integers with O(n log(nU)) bits
suffices.

4 Questions

Through the implementation, we address the following questions:

1. Do the rationals really explode? Or does it suffice to keep them normalized,
i.e., to keep numerators and denominators relatively prime? For Gaussian
elimination over the rationals it is known [Edm67] that keeping the rationals
normalized suffices to control their size.

2. The known algorithm for computing a balanced flow requires up to n maxflow
computations in a graph with 2n nodes and O(n2) edges.
(a) Cycles in the equality graph can only arise if there are dependencies

between the utilities. Let bi0 , cj0 , bi1 , cj1 , . . . , bik−1 , cjk−1 , bi0 be a cycle in
the equality graph with respect to a price vector p. Then

ui�,j�−1

pj�−1

=
ui�,j�

pj�

On the Implementation of Combinatorial Algorithms 93

for all �, since bi�
is connected to cj�−1 and cj�

in the equality graph
(interpret −1 as k − 1) and hence

∏
0≤�≤k−1

ui�,j�−1 =
∏

0≤�≤k−1

ui�,j�
.

If no such dependency exists, the equality graph Ep is a tree and contains
at most 2n−1 edges. Thus the maxflow computations would be in graphs
with only a linear number of edges and special structure. Perturbation
of the utilities can guarantee that there are no dependencies. What is
the arithmetic cost of perturbation in this context? Does the rounding of
the utilities required to make the algorithm polynomial time counteract
perturbation and introduce dependencies?

(b) The algorithm for computing a balanced flow works recursively. The
divide step answers the question whether all surpluses can be made equal.
Note that the average surplus of a buyer is rave := (

∑
i∈B(pi−

∑
j fij))/n.

We set the capacity of the edge from s to bi to pi − rave and recompute
the maximum flow. If the entire flow can still be routed, all surpluses are
equal to rave in a balanced flow and we are done. Otherwise, let S be the
set of buyers and goods reachable from s in the residual graph and let
T be their complement. The nodes in S ∩ B have surplus at least rave
in a balanced flow and the nodes in B ∩ T have surplus at most rave .
One deletes all edges from buyers in T to goods in S from the equality
graph and recurses on the graphs s∪S ∪ t and s∪T ∪ t. Actually, the two
recursive calls can be combined into one as there are no edges connecting
nodes in S and nodes in T . In this way, the number of recursive calls
is equal to the recursion depth. Can one control the recursion depth, by
using a value different from rave in the divide step?
Note that the networks for the recursive calls are obtained by deleting
some edges and changing the capacities of the edges incident to s. Does
one have to start the maxflow computations from scratch or can one reuse
the results of earlier computations.

(c) Can one use parametric maxflow [GGT89] to speed up the computation?
(d) It seems that one can do with a weaker version of balanced flows, namely

1+1/(cn)-balanced flows where c is a small constant. A maximum flow is
1+1/(cn)-balanced if for any two edges (bi, ck) and (bj , ck) in the equality
graph with fik > 0, we have either r(bj) ≥ r(bi)/(1 + 1/cn)) or fjk = 0.

3. What is the behavior of the algorithm on random inputs? Are their inputs
that force the algorithm into its worst-case running time or close to the worst-
case running time.

4. Are balanced flows really needed? Garg, Duan, and Mehlhorn [DGM15] have
recently shown that the use of balanced flows can be avoided. This reduces
the complexity of a phase to O(n2). Does this theoretical improvement show
in the implementation?

5. The main loop terminates when the 1-norm of the surplus vector of the buyers
is less than ε. At this point, one can extract a linear system from the equal-
ity graph Ep. The equilibrium prices are the solution to this linear system.

94 K. Mehlhorn

Of course, one can extract a linear system from Ep at any time during the
execution and compute prices from it. Since it is easily checked whether a set
of prices is a set of equilibrium prices (one maxflow computation), it makes
sense to extract earlier. If the cost of extracting and solving the system is C,
one should extract after spending cost O(C) in the main loop. In this way
the extraction attempts can be amortized over the cost of the main loop.

6. What problem size can be solved with an O(n10) algorithm? In the worst
case? On average? Are economists interested in exact solutions to problems
of this size?

References

[DGM15] Duan, R., Garg, J., Mehlhorn, K.: A improved combinatorial algorithm for
the linear arrow-debreu marketTODO (2015). Forthcoming

[DM13] Duan, R., Mehlhorn, K.: A combinatorial polynomial algorithm for the lin-
ear arrow-debreu market. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M.,
Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 425–436. Springer,
Heidelberg (2013)

[DPSV08] Devanur, N.R., Papadimitriou, C.H., Saberi, A., Vazirani, V.V.: Market
equilibrium via a primal-dual algorithm for a convex program. J. ACM
55(5), 22:1–22:18 (2008)

[Edm67] Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res.
Nat. Bur. Stan.(B) 71, 241–245 (1967)

[GGT89] Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow
algorithm and applications. SIAM J. Comput. 18, 30–55 (1989)

[Jai07] Jain, K.: A polynomial time algorithm for computing an Arrow-Debreu
market equilibrium for linear utilities. SIAM J. Comput. 37(1), 303–318
(2007)

[Wal74] Walras, L.: Elements of Pure Economics, or the Theory of Social Wealth
(1874)

[Ye07] Ye, Y.: A path to the Arrow-Debreu competitive market equilibrium. Math.
Program. 111(1), 315–348 (2007)

Regular Contributions

On Radiocoloring Hierarchically Specified
Planar Graphs: PSPACE-completeness

and Approximations

Maria Andreou1, Dimitris Fotakis2, Vicky Papadopoulou Lesta3(B),
Sotiris Nikoletseas4, and Paul Spirakis5,6,7

1 Professional Training Centre, TC Square Ltd, Nicosia, Cyprus
maria@tcsquare.com.cy

2 Division of Computer Science, School of Electrical and Computer Engineering,
National Technical University of Athens, Athens, Greece

fotakis@cs.ntua.gr
3 Department of Computer Science and Engineering, European University Cyprus,

Egkomi, Cyprus
v.papadopoulou@euc.ac.cy

4 Computer Technology Institute and Press Diophantus (CTI) and University
of Patras, Patras, Greece

nikole@cti.gr
5 Department of Computer Science, University of Liverpool, Liverpool, UK

P.Spirakis@liverpool.ac.uk
6 Department of Computer Engineering and Informatics,

University of Patras, Patras, Greece
7 Computer Technology Institute and Press Diophantus, Patras, Greece

Abstract. Hierarchical specifications of graphs have been widely used
in many important applications, such as VLSI design, parallel program-
ming and software engineering. A well known hierarchical specification
model, considered in this work, is that of Lengauer [21,22], referred
to as L-specifications. In this paper we discuss a restriction on the
L-specifications resulting to graphs which we call Well-Separated (WS).
This class is recognized in polynomial time.

In this work we study the Radiocoloring Problem (RCP) on WS
L-specified hierarchical planar graphs. The optimization version of RCP
studied here, consists in assigning colors to the vertices of a graph, such
that any two vertices of distance at most two get different colors. The
objective here is to minimize the number of colors used.

We first show that RCP is PSPACE-complete for WS L-specified
hierarchical planar graphs. Second, we present a polynomial time
3-approximation algorithm as well as a more efficient asymptotic 10/3-
approximation algorithm for RCP on graphs of this class. We note that,

A preliminary version of this work appeared in preliminary form in the Proceedings
of the 27th International Symposium on Mathematical Foundations of Computer
Science, pp. 81–92, Vol. 2420, LNCS, Springer-Verlag, August 2002, [2].
S. Nikoletseas—This work was partially supported by FET IP Project MULTIPLEX
317532.

c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 97–132, 2015.
DOI: 10.1007/978-3-319-24024-4 8

98 M. Andreou et al.

the best currently known approximation ratio for the RCP on ordinary
(non-hierarchical) planar graphs of general degree is 5/3 asymptotically
([27,28]).

1 Introduction, Our Results and Related Work

1.1 Motivation

Many practical applications of graph theory and combinatorial optimization
in CAD systems, VLSI design, parallel programming and software engineering
involve the processing of large (but regular) objects constructed in a system-
atic manner from smaller and more manageable components. As a result, the
graphs that abstract such circuits (designs) also have a regular structure and
are defined in a systematic manner using smaller graphs. The methods for spec-
ifying such large but regular objects by small specifications are referred to as
succinct specifications. One way to succinctly represent objects is to specify the
graph hierarchically. Hierarchical specifications are more concise in describing
objects than ordinary graph representations. A well known hierarchical specifi-
cation model, considered in this work, is that of Lengauer, introduced in [21,22],
referred to as L-specifications. According to this specification, a graph is defined
by a polynomial set of graphs, each of which may contain (call) some of the
other graphs as a subgraph, in a hierarchical manner. Due to the ‘calls’ of one
subgraph to other graphss, the resulting graph obtaned by this structure might
be of exponential size compare to the set of graphs used in the specification. For
example, a binary tree with 2Ω(N) nodes can be specified using an L-specification
of size O(N).

In modern networks, Frequency Assignment Problems (FAP) have important
applications in efficient bandwidth utilization, by trying to minimize the number
(or the range) of frequencies used, in a way that however keeps the interference
of nearby transmitters at an acceptable level. Problems of assigning frequencies
in networks are usually abstracted by variations of coloring graphs. An impor-
tant version of Frequency Assignment Problems is the Radiocoloring Problem
(RCP). The radiocoloring problem (RCP), first introduced by Griggs and Yeh
[15], is the problem of assigning radio frequencies (integers) to transmitters such
that transmitters that are close (distance 2 apart) to each other receive differ-
ent frequencies and transmitters that are very close together (distance 1 apart)
receive frequencies that are at least two apart. The objective there is to minimize
the maximum integer used by the assignment (min span RCP). The term radio-
coloring is attributed to Harary [17]. The optimization version of RCP studied
here, consists in assigning colors (frequencies) to the vertices (transmitters) of a
graph (network), so that any two vertices of distance at most two get different
colors. The objective here is to minimize the number of distinct colors used (also
called min order RCP). In the sequel, since the paper concerns only min order
RCP, for simplicity we refer to it as RCP.

In this work we study RCP on L-specified hierarchical graphs. Note that
RCP is equivalent to the problem of vertex coloring the square of a graph G,

On Radiocoloring Hierarchically Specified Planar Graphs 99

G2, where G2 has the same vertex set as G and there is an edge between any
two vertices of G2 if their distance in G is at most 2. We study here planar
hierarchical graphs.

Also, our interest in coloring the square of a hierarchical planar graph is
inspired by real communication networks, especially wireless and large ones,
that may be structured in a hierarchical way and are usually planar.

1.2 Summary of Our Results

We investigate the computational complexity and provide efficient approxima-
tion algorithms for the RCP on a class of L-specified hierarchical planar graphs
which we call Well-Separated (WS) graphs. In such graphs, levels in the hier-
archy are allowed to directly connect only to their immediate descendants. In
particular:

1. We prove that the decision version of the RCP for Well-Separated L-specified
hierarchical planar graphs is PSPACE-complete.

2. We present two approximation algorithms for RCP for this class of graphs.
These algorithms offer alternative trade-offs between the quality and the effi-
ciency of the solution achieved. The first one is a simple and very efficient
10/3-approximation algorithm asymptotically, while the second one achieves
a better solution; it is a 3-approximation algorithm, but is less efficient,
although polynomial.

A critical observation about the constructions exploited in the PSPACE-
completeness proofs of this work, is that such constructions have to exhibit
some locality characteristics in order to be of polynomial time in the size of the
L-specification of the hierarchical graph. Another important issue for
the PSPACE-completeness reductions is whether an already known NP-
completeness proof for the same problem, that fulfills the desired locality
characteristics, can be modified so that to apply for a hierarchical graph G.
Unfortunately, in our case, there was no such a ‘local’ NP-completeness reduc-
tion available. Therefore, we provide a new NP-completeness reduction for the
RCP of ordinary planar graphs which exhibits locality properties and then, based
on this construction, we design the PSPACE-completeness reduction of the RCP
of L-specified hierarchical planar graphs.

As far as the algorithmic part of the paper is concerned, remark that an
approximation algorithm for hierarchically specified graphs has to compute a
feasible solution to the problem for the hierarchical graph, of size exponential
in its specification, using only time and space polynomial in its specification.
Our approximation algorithms get as input the L-specification of a hierarchical
graph and, in time and space polynomial in the size of this specification, com-
pute a feasible solution for the RCP on the hierarchical graph. Moreover, the
solution output is produced using the hierarchical specification, thus, requiring
only polynomial space to be described.

100 M. Andreou et al.

We note that the class of WS L-specified hierarchical graphs considered here
can lead to graphs that are exponentially large in the size of their specifica-
tion. The WS class is a subclass of the class of L-specified hierarchical graphs
considered in [23], called k-level-restricted graphs.

1.3 Related Work and Comparison

In a fundamental work, Lengauer and Wagner [22] proved that the following
problems are PSPACE-complete for L-specified hierarchical graphs: 3-coloring,
hamiltonian circuit and path, monotone circuit value, network flow and indepen-
dent set. For L-specified graphs, Lengauer ([21]) have given efficient algorithms
to solve several important graph theoretic problems including 2-coloring, min
spanning forest and planarity testing.

We remark that the PSPACE-completeness proof of planar 3-coloring of WS
L-specified hierarchical graphs provided in this work, is not implied by known
PSPACE-completeness results of the same problem for similar (but different)
classes of planar graphs. This is so because our PSPACE-completeness proof for
planar 3-coloring concerns a subclass studied in [24] of the L-specified hierarchi-
cal planar graphs for the same problem. Moreover, the PSPACE-completeness
proof of planar 3-coloring of [25] for L-specified hierarchical graphs which are
simultaneously planar and unit disks concerns a different class of hierarchical
planar graphs than the class of WS L-specified hierarchical planar graphs con-
sidered here.

Marathe et al. in [23,24] studied the complexity and provided approximation
schemes for several graph theoretic problems for L-specified hierarchical planar
graphs including maximum independent set, minimum vertex cover, minimum
edge dominating set, max 3SAT and max cut.

Note, however, that most of the work done so far on approximations of
PSPACE-complete problems, has basically addressed such “finding a subset”
problems and not coloring problems. The methodologies applied for such prob-
lems, such as maximum independent set in [23], do not directly apply to col-
oring problems, since they exclude from a solution some vertices of each graph
of the L-specification of the hierarchical graph, something not allowed in graph
coloring problems. To our knowledge, the only work studying approximations
to coloring problems on hierarchical graphs is the work of [25], studing a spe-
cial kind of hierarchical graphs (k-level restricted unit disk graphs) achieving a
6-approximation solution. We do not see an easy way of using their algorithm
for the radiocoloring problem studied here.

The RCP was studied in [29], called distance-2-coloring. There, it was proved
there the problem is NP-complete even for planar graphs and a 9-approximation
algorithm was presented. Note that a lower bound on the number of colors
needed in a radiocoloring assignment is the maximum degree of the graph G,
Δ(G) (or Δ for simplicity). This is so because in vertex of maximum degree, all
of its neighbors need to take distinct colors, since they are located at distance
two apart. A sequence of papers concentrated in the case of planar graphs and
showed upper bounds and approximation algorithms for RCP. van den Heuvel

On Radiocoloring Hierarchically Specified Planar Graphs 101

and McGuiness in [18] proved an upper of 2Δ + 25. Agnarsson and Halldórsson
in [1] showed a bound of �9Δ/5� + 2 for Δ ≥ 749 and �9Δ/5� + 1 for Δ ≥ 47 by
Borodin, Broersma, Glebow and van den Heuvel [7]. The best currently known
upper bound for RCP which result also to a polynomial time approximation
algorithm is due to Molloy and Salavatipour [27,28]: �5Δ/3� + 78, for all Δ.

As it concerns the min span RCP (where the objective is to minimize the
maximum color used), the problem was proved to be NP-complete even for
graphs of diameter two [11,14]. It has been proved to be NP-complete even
for planar graphs in [6,9,10]. However, exact results have been obtained for
certain special class of graphs such as trees [15], cacti, unicycles, bicycles [16].
Approximate upper bounds of the problem have been presented for other graph
families such as the bipartite graphs, outerplanar graphs, split graphs [6], chordal
graphs [30] and unigraphs [8]. A generalized version of min span RCP, called
L(p, q)-labeling, asks for an assignment of integers to the nodes of the graph so
that any two vertices of distance one get colors that differ by at least p and any
two nodes of distance two get integers that differ by at least q, that minimizes the
maximum integer used, denoted as λp,q(G). Note that L(p, q)-labeling coincides
with min order RCP when p = q = 1. For the L(p, q)-labeling problem restricted
on planar graphs, Van den Heuvel and McGuinness [18], showed a first upper
bound: λp,q(G) ≤ 2(2q −1)Δ+10p+38q −24. This bound was improved by [27]
showing that λp,q(G) ≤ q� 5

3Δ� + 18p + 77q − 18.

2 Preliminaries

Consider a simple, undirected graph G(V,E), where V denotes its vertex set
and E denotes its edge set. For any two vertices u, v ∈ V , denote as d(u, v) the
distance between u and v in G. The Radiocoloring problem is defined as follows:

Definition 1. Radiocoloring Problem: Given a graph G(V,E), find a radio-
coloring assignment of G, i.e. a coloring function ΛRCP : V → IN assigning
integers (colors) to the vertices of the graph G such that ΛRCP (u) �= ΛRCP if
d(u, v) = 2 and |ΛRCP (u) − ΛRCP (v)| ≥ 2 if d(u, v) = 1.

In this work we study an optimization version of the Radiocoloring problem
([9]), where the objective is to minimize the number of colors used. In this case,
the problem can be quivalently defined as follows (see [9] for details):

Definition 2. Min order RCP: Given a graph G(V,E), find an assignment of
G, i.e. a coloring function Λ : V → IN assigning integers (colors) to the vertices
of G such that Λ(u) �= Λ(v) if d(u, v) ≤ 2, that uses a minimum number of
distinct colors. The number of different integers in such an assignment, is called
the order of RCP on G and is denoted here by λ(G).

We remark that although the two functions ΛRCP and Λ refer to the same prob-
lem, the RCP, they are different: In function ΛRCP for any two neighbour ver-
tices u, v, we require the colors (integers) assigned to them, ΛRCP (u), ΛRCP (v),

102 M. Andreou et al.

to differ by at least two, i.e., |ΛRCP (u) − ΛRCP (u)| ≥ 2. In contrast, in min
order RCP, this restriction is relaxed; we require just ΛRCP (u) �= ΛRCP (u). For
simplicity reasons, in the sequel we refer to it as the RCP. Remark that:

Proposition 1. The min order RCP of a given graph G is equivalent to the
problem of coloring the square of the graph G, G2. G2 has the same vertex set
as G and there is an edge between any two vertices of G2 if their distance in G
is at most 2.

We study the RCP on hierarchical graphs as specified by Lengauer [21].

Definition 3 (L-specifications, [21]). An L-specification Γ = (G1, · · · , Gi,
· · · , Gn), where n is the number of levels in the specification, of a graph G is a
sequence of labeled undirected simple graphs Gi called cells. The graph Gi has mi

edges and ni vertices. The pi of the vertices are called pins. The other (ni − pi)
vertices are called inner vertices. The ri of the inner vertices are called nonter-
minals. The (ni − ri) vertices are called terminals. The remaining ni − pi − ri

vertices of Gi that are neither pins nor nonterminals are called explicit vertices.
Each pin of Gi has a unique label, its name. The pins are assumed to be

numbered from 1 to pi. Each nonterminal in Gi has two labels (v, t), a name and
a type. The type t of a nonterminal in Gi is a symbol from G1, · · · , Gi−1. The
neighbours of a nonterminal vertex must be terminals. If a nonterminal vertex v
is of type Gj in Gi, 1 ≤ j ≤ i− 1, then v has degree pj and each terminal vertex
that is a neighbor of v has a distinct label (v, l) such that 1 ≤ l ≤ pj. We say
that the neighbor of v labeled (v, l) matches the l-th pin of Gj.

See Fig. 1(a) for an example of an L-specification. Note that a terminal vertex
may be a neighbor of several nonterminal vertices. Given an L-specification Γ ,
N =

∑
1≤i≤n ni denotes the vertex number and M =

∑
1≤i≤n mi denotes the

Fig. 1. (a) An L-specification Γ = (G1, G2, G3) of a graph G and its hierarchy tree
HT (G). (b) The expansion of the graph G.

On Radiocoloring Hierarchically Specified Planar Graphs 103

edge number of Γ . The size of Γ , denoted by size(Γ), is N + M . For simplicity
reasons, we assume that nmax = max{maxi{ni}, n}.

This work considers L-specified hierarchical graphs. In the sequel, for sim-
plicity reasons we also refer to them as hierarchical graphs.

Definition 4 (Expansion of an L-specificied hierarchical graph, [21]).
Let any L-specified hierarchical graph, given by Γ = (G1, · · · , Gn). The expanded
graph E(Γ) (i.e. the graph associated with Γ) is iteratively obtained as follows:

k = 1: E(Γ) = G1.
k > 1: Repeat the following step for each nonterminal v of Gk say of the type

Gj: delete v and the edges incident on v. Insert a copy of E(Γj) by identifying
the l-th pin of E(Γj) with the node in Gk that is labeled (v, l). The inserted copy
of E(Γj) is called a subcell of Gk.

The expansion E(Γ) is the graph associated with the L-specification Γ with
vertex number N . Note that the total number of nodes in E(Γ) can be 2Ω(N).
For example, a complete binary tree with 2Ω(N) nodes can be specified using an
L-specification of size O(N).

For example, the expansion of the hierarchical graph G of Fig. 1(a) is shown
in Fig. 1(b). To each L-specification Γ = (G1, · · · , Gn), we associate a labeled
rooted unoriented tree HT (Γ) depicting the insertions of the copies of the graphs
E(Γj) (1 ≤ j ≤ n − 1), made during the construction of E(Γ) as follows:

Definition 5 (Hierarchy Tree of an L-specification, [21]). Let Γ =
(G1, · · · , Gn), be an L-specification of the graph E(Γ). The hierarchy tree of
Γ , denoted by HT (Γ), is a labeled rooted unordered tree defined as follows:

1. Let r be the root of HT (Γ). The label of r is Gn. The children of r in HT (Γ)
are in one-to-one correspondence with the nonterminal vertices of Gn as fol-
lows: The label of the child s of r in HT (Γ) corresponding to the nonterminal
vertex (v,Gj) of Gn is (v,Gj).

2. For all other vertices s of HT (Γ) and letting the label of s = (v,Gj), the
children of s in HT (Γ) are in one-to-one correspondence with the nonterminal
vertices of Gj as follows: The label of the child t of s in HT (Γ) corresponding
to the nonterminal vertex (w,Gl) of Gj is (w,Gl).

See Fig. 1(a) for an example of a hierarchical graph G and its associated
hierarchical tree HT (G).

We consider hierarchical planar graphs as studied in [21]:

Definition 6 (Strongly planar hierarchical graph, [21]). An L-specified
hierarchical graph G given by Γ = (G1, . . . , Gn) is strongly planar if E(Γ) has a
planar embedding such that for each E(Γi) all pins of it occur around a common
face and the rest of E(Γi) is completely inside this face.

In fact, we here study a subclass of strongly planar hierarchical graphs:

Definition 7 (Fully planar hierarchical graph). An L-specified strongly pla-
nar hierarchical graph G given by Γ = (G1, . . . , Gn) is fully planar if all of its
graphs Gi, 1 ≤ i ≤ n, are planar.

104 M. Andreou et al.

In the sequel, and when there is no ambiguity, we refer to fully planar hier-
archical graphs simply as hierarchical planar graphs.

Moreover, we concentrate on a class of L-specified hierarchical graphs which
we call Well-Separated (WS) graphs, defined in the sequel using the followings:

Consider an L-specified hierarchical graph G, given by Γ = (G1, . . . , Gn).
For each graph Gi (1 ≤ i ≤ n), we define the following subgraphs:

Definition 8. Inner subgraph of graph Gi, Gin i: is induced by the explicit ver-
tices of Gi not connected to any pin or nonterminal of Gi.

Definition 9. Outer-up subgraph of graph Gi, GoutUp i: is induced by the
explicit vertices of Gi connected to at least one pin of Gi.

Definition 10. Outer-down subgraph of graph Gi, GoutDown i: is induced by
the explicit vertices of Gi connected to at least one nonterminal of Gi.

For each Gi, 1 ≤ i ≤ n, let also Gfirst inner i be the subgraph of Gi obtained
by the neighbours of vertices of GoutUp i in Gi and let Glast inner i be the sub-
graph of Gi obtained by the neighbours of vertices of GoutDown i in Gi. For an
example of the subgraphs defined above for a hierarchical graph, see Fig. 2.

: outer-up vertices

: inner vertices

: outer-down
vertices

Fig. 2. An example of a graph Gi of a hierarchical graph G, considering inner, outer
up and outer down subgraphs of Gi

Remark 1. Generally, an explicit vertex of Gi might belong to both outer-up,
outer-down subgraphs of Gi. However, note that in the class of graphs considered
in this work (see the following Definition), an explicit vertex, which is not inner,
is either outer up or outer down:

Definition 11 (Well-Separated, WS). We call Well-Separated graphs the
class of L-specified hierarchical graphs of which any explicit vertex of Gi, 1 ≤ i ≤
n, belongs either to GoutDown i or GoutUp i or none of them, but not to both of
them. Moreover, any vertex of GoutDown i is located at distance at least 3 from
any vertex of GoutUp i.

On Radiocoloring Hierarchically Specified Planar Graphs 105

Observe that the WS class of hierarchical graphs is testable in time polynomial
in the size of the L-specification of a hierarchical graph.

Note that another class of L-specified hierarchical graphs, studied by Marathe
et al. [19], is defined as follows:

Definition 12 ([19]). An L-specified graph G, with Γ = (G1, . . . , Gn), is k-
level-restricted if for all edges (u; v) of Ei (Ei is the edge set of Gi), either
(1) nu and nv are the same vertex of HT (Gi), or (2) one of nu or nv is an
ancestor of the other in HT (Gi) and the length of the path between nu and nv
in HT (Gi) is no more than k.

Proposition 2. The class of WS hierarchically specified graphs is a subclass of
the k-level-restricted graphs.

Proof. A WS graph is an 1-level-restricted graph, which additionally has the
property that for each Gi, 1 ≤ i ≤ n, any outer up vertex of it is at distance at
least 3 from any outer down vertex of it. 	

The following definitions and results are needed by our approximation
algorithms.

Proposition 3. The maximum degree of an L-specified hierarchical
graph G, Δ(G), is the maximum degree of a vertex in the expansion of the
graph, E(Γ).

Definition 13 (k-outerplanar graph G, [3]). A k-outerplanar graph G is
defined recursively by taking an embedding of the planar graph G, finding the
vertices in the exterior face of the graph and removing those vertices and the
edges incident to them. Then, the remaining graph should be a (k−1)-outerplanar
graph. A 1-outerplanar graph is an outerplanar graph.

Note that every planar graph is k-outerplanar for some k. Moreover, given a
planar graph G, a k-outerplanar graph G, for which k is minimal can be found
in time polynomial to the number of vertices ([4]).

Definition 14 ([5]). The class of k-trees is recursively defined as follows:

(a) A clique of size k + 1 is a k-tree.
(b) If G(V,E) is a k-tree and k vertices v1, v2, · · · , vk induce a complete subgraph

of G, then G′ = (V
⋃{w}, E

⋃{(vi, w) : 1 ≤ i ≤ k}) is a k-tree, where w is
a new vertex not contained in G.

(c) All k-trees can be formed with rules (a) and (b).

Any subgraph of a k-tree is called partial k-tree. The minimum value of k for
which a graph is a subgraph of a k-tree is called the treewidth of the graph.

An alternative approach of defining treewidth is via the means of tree decom-
position [5]. This leads to an equivalent Definition.

Definition 15 ([5]). A tree-decomposition of a graph G(V,E) is a tree T =
(VT , ET with VT a family of subsets of V satisfying the following properties.

106 M. Andreou et al.

(i)
⋃

Xi∈VT
Xi = T

(ii) For every edge e(v, w) ∈ E, there is a node Xi ∈ VT with v, w ∈ Xi and
(iii) If node Xj lies on the path in T from node Xi to node Xl, then Xi∩Xl ⊆ Xj.

Our work utilize the following theorems on bounded treewidth graphs:

Theorem 1 ([5]). Any k-outerplanar graph is a 3k−1 bounded treewidth graph.

Theorem 2 ([31]). Let G(V,E) be a k-tree of n vertices given by its tree-
decomposition, let C be a set of colors, and let α = |C|. Then, it can be deter-
mined in polynomial time T (n, k), whether G has a radiocoloring that uses the
colors of set C, and if such a radiocoloring exists, it can found in the same time,
where T (n, k) = O(n(2α + 1)2

2(k+1)(l+2)+1
+ n3), l = 2 and n = |V |.

3 The Complexity of the Radiocoloring Problem

In this section, we study the complexity of RCP on L-specified hierarchical planar
graphs. A critical observation about the constructions utilized in the PSPACE-
completeness proofs, is that such constructions have to exhibit some locality
characteristics. That is, the new graph G′ obtained by the initial graph G in the
reduction should be computed based on local transformations applied on the
vertices or edges of each graph Gi of the L-specification of the graph G without
involving the transformation of the whole graph G. Moreover, the transformation
should be such that the graph G′

i, resulting by applying the transformation on
Gi, is the same for all appearances of Gi in the expansion of G. These properties
enable to compute graphs G′

i, 1 ≤ i ≤ n only once, and from those graphs to be
able to construct the new hierarchical graph G′ with the desired properties, in
time polynomial in the size of the L-specification of the initial graph G.

Another important issue for the PSPACE-completeness reductions is
whether an already known NP-completeness proof for the same problem, that
fulfills such locality characteristics, can be modified so that to apply for a hierar-
chical graph G. This technique has been used in previous papers to get PSPACE-
completeness results for a number of problems considered (e.g. [25]).

In our case, there was no such ‘local’ NP-completeness reduction available.
The corresponding NP-completeness reductions that both could be adapted
for the hierarchical case are the reductions of [26,29]. However, although the
reduction of [29] is local that of [26] is not. Henceforth, they can not be used to
get the PSPACE-completeness of L-specified hierarchical planar graphs.

For these reasons, we have developed a new NP-completeness proof for the
RCP of ordinary planar graphs which reduces it from the problem of 3-coloring
planar graphs. The construction satisfies the desired locality characteristics and
thus, we can utilize it to get the PSPACE-completeness proof of the RCP for
L-specified hierarchical planar graphs.

3.1 The NP-Completeness of RCP for Planar Graphs

In this section we provide a new NP-completeness proof for the problem
of radiocoloring for ordinary (non-hierarchical) planar graphs, which is ‘local’.

On Radiocoloring Hierarchically Specified Planar Graphs 107

We remark that this reduction is the only one that works for the cases where
Δ(G) < 7 (Δ(G) ≥ 3), in contrast to the only known NP-completeness proof
of [29]. In fact, we prove that even for graphs of maximum degree Δ(G) = 3,
it is NP-complete to decide whether G is 4-radiocolorable or not. Note that,
interestingly, the only graphs not included in this NP-completeness result, are
graphs that contain only lines and cycles.

Theorem 3. The following decision problem is NP-complete:
Input: A planar graph G(V,E).
Question: Is λ(G) ≤ 4?

Proof. It can be easily seen that the problem belongs to NP. Let any planar
graph G. We reduce RCP from the 3-coloring problem of planar graphs, which
is known to be NP-complete ([13]). I.e. we will construct in polynomial time
a new graph G′, which is 4-radiocolorable if and only if G is 3-colorable. The
reduction employs the component design technique.

The construction replaces every vertex u of degree du of the initial graph G
with a component, called ‘cycle node’. The cycle node obtained by a vertex of
degree du is said to be ‘a cycle node of degree du’. An instance of it is shown in
Fig. 3(a). A cycle node of degree du is constructed as follows:

1. Add a cycle of 3du vertices, called ‘outer cycle node’. Group the first three
vertices into a group named a and call them a1, a2, a3, the second triad of
vertices into a group named b and call them b1, b2, b3, end so on until the
du-th triad of it, which is named using the du-th latin letter. Call the first
vertex of each group, a1, b1, c1, . . . , as ‘first’ vertex, the second a2, b2, c2, . . . ,
as ‘second’ and the third a3, b3, c3, . . . as ‘third’.

2. For each group a, b, c, . . . of vertices of the outer cycle node, add one more
vertex, called the ‘fourth’ and label it as a4, b4, c4, . . . accordingly.

3. Now connect the fourth vertex of each group with the second (e.g. a2), and
third (e.g. a3) vertex of the group, as shown in Fig. 3.

4. For each such sequence of four vertices, add one more vertex, call it ‘fifth’
and name it as a5, b5, c5, . . . accordingly.

5. Connect the ‘fifth’ vertex of each group to the ‘first’ vertex of the group.
6. Add another cycle of vertices, call it ‘inner cycle node’. The cycle consists

of du triads of vertices as the outer cycle. The j-th group is named as the
du +j-th letter of the latin alphabet. In the example of Fig. 3 these are groups
e, f, g, h. The vertices of each group, assume one called x, are called as follows:
The middle vertex of the group is called ‘first’ and is labeled x1, the right one
(clockwise) is called ‘second’ and is labeled x2 and the left one (clockwise) is
called ‘third’ and is labeled x3.

7. Similarly to the outer cycle node, add one more vertex for each triad of the
inner cycle, call it ‘fourth’ and label it based on from which group of vertices
it is obtained by; for the example of Fig. 3 they are labeled as e4, f4, g4, h4.
Then, connect the fourth vertex (e.g. e4) of each group with the second (e.g.
e2) and the third (e.g. e3) vertex of the group. (See Fig. 3.)

108 M. Andreou et al.

8. For each group of four vertices of the outer cycle, assume the i-th, add an
edge connecting the fourth vertex (e.g.a4) of the group to the first vertex (e.g.
e1) of the i-th group of the inner cycle.

a3

a4

b1

a1
a2

b4
b2

b3

c4

c3

c1
c2

d1

d4

d2

d3

a5

b5

c5

d5

4

1
2

4
3

14

3

4

2

2

3

4

1
4

4
3

21

4

32
1

3

1

2
2

e1 e2
e4

e3
f2

f4

f3f1

h2
h4

h3

g3g4

g2

h1

g1

1

4

44

4

3

3

2 1

Fig. 3. (a) The ‘cycle node’ for a vertex of degree 4 and a 4-radiocoloring of it. (b) A
graph G with a 3-coloring and the graph G′ obtained with the resp. 4-radiocoloring.

In the sequel, we explain how the cycle node is used to construct in poly-
nomial time from any planar graph G a new planar graph G′, with the desired
properties. We consider a planar embedding of graph G. The new graph G′ is
constructed as follows (See Fig. 4 for an example):

1. Replace each vertex of degree du of the initial graph G, with a cycle node of
degree du.

2. For each vertex u of graph G, number the edges incident to u, in increasing,
clockwise, order.

3. For every edge of the initial graph e = (u, v) connecting u and v, let ui be
the number of edge e given by vertex u and let vj be the number of the edge
e given by vertex v. Then, take the fifth vertex of the ui-th group of the cycle
node of vertex u and the fifth vertex of the vj-th group of the cycle node of
vertex v and collapse them to a single vertex uv.

An example of a graph G and the new graph G′ obtained is shown in Fig. 4
(depicted in a compact way). It can easily be seen that the new graph G′ is a
planar graph. We next prove two Lemmas showing that G′ is 4-radiocolorable if
and only if the initial graph G is 3-colorable.

On Radiocoloring Hierarchically Specified Planar Graphs 109

G

G'

Fig. 4. An instance of the graph G with a 3-coloring and the new graph G′ obtained
with the respective 4-radiocoloring.

Lemma 1. If χ(G) ≤ 3 then λ(G′) ≤ 4.

Proof. Consider a 3-coloring of the initial graph G, using colors {1, 2, 3}. Let the
following radiocoloring assignment on the graph G′ using 4 colors:

For any vertex u of the initial graph colored i, i ∈ {1, 2, 3}: (i) Color the 1-st
vertices of the cycle node of vertex u in G′, (vertices a1, b1, c1, . . .) with color i.
Let j, j′ ∈ {1, 2, 3} with j �= j′, j, j′ �= i. (ii) Color all 2-nd vertices of the cycle
node of u with color j. (iii) Color all 3-rd vertices of the cycle node of u with
color j′. (iv) Color all 4-th vertices of the cycle node of u with color 4. (v) Color
all 5-th vertices with the same color as the 4-th vertices, color 4.

We now prove that the suggested radiocoloring assignment is valid. An exam-
ple for such a radiocoloring for a cycle node of degree 4 is shown in Fig. 3. It
can be easily seen that there is no conflict between any two vertices of the cycle
node.

Consider now any neighbour cycle nodes, i.e. nodes that are obtained by
neighbour vertices in G. We argue that there is no conflict between the colors of
any two vertices of the two cycle nodes. To see why, recall that the ‘fifth’ vertex,
call it f , connecting the two cycle nodes is colored 4. Also, the corresponding
‘first’ vertices of the two cycle nodes, connected to the ‘fifth’ vertex f , are colored
using colors of set {1, 2, 3}. Each of them is forbidden to take, besides the colors
of the vertices of its cycle node, also the color of the other first vertex in the other
cycle node. This color is different from its color since the two vertices took the
color that their corresponding vertices take in the 3-coloring of G. Thus, there
is no conflict between any two vertices of neighbour cycle nodes. Consequently,
the suggested radiocoloring of G′ is valid. 	

The next four claims are needed to prove that if λ(G′) ≤ 4, then χ(G) ≤ 3.

Claim 4. If λ(G′) ≤ 4 then for any cycle node u, all of its first vertices (of its
outer and inner cycle) take the same color.

Proof. Consider any radiocoloring assignment of G′. Assume that the a1-vertex
of a cycle node u is colored by j, and w.l.o.g. let j = 1. Then, we get:

– The vertices a2, a3, a4 of the first group of vertices of the outer cycle, should
take colors 2, 3, 4 (not necessarily in this order).

110 M. Andreou et al.

– Then, the first vertex of the first group of vertices of the inner cycle (e1 in the
example of Fig. 3), should get color 1.

– The first vertex of the second group of vertices of the outer cycle, b1 should
get color 1. This is because b1 is forbidden to take colors 2, 3, 4 by vertices
a2, a3, a4.

– Thus, vertices b2, b3, b4 of the second group of vertices of the outer cycle, should
take the colors 2, 3, 4 (not necessarily in this order).

– The first vertex of the second group of vertices of the inner cycle (f1 in the
example of Fig. 3), should get color 1.
Continuing in the same way for the remaining groups of vertices of the cycle
node, for a group of vertices of the outer cycle, assume one named x, we get
that:

– The 2nd, 3th and 4th vertex of group x of vertices of the outer cycle, should
take colors 2, 3, 4 (not necessarily in this order).

– Then, the first vertex of group x of vertices of the inner cycle, should get color
1.

– Also, the first vertex of the group x + 1 of vertices of the outer cycle, should
get color 1 (we use x + 1 here to denote the letter following x in the latin
alphabet). This is because this vertex is forbidden to take colors 2, 3, 4 by the
2nd, 3th and 4th vertex of the group x of vertices of the outer cycle.

We conclude that for any cycle node of the graph G′, if one first vertex is colored
j then all first vertices of it (of the outer and inner cycle of it) get the color j. 	

Claim 5. If λ(G′) ≤ 4 then for any cycle node u, all of its fourth vertices (of
its outer and inner cycle) take the same color.

Proof. Consider any radiocoloring assignment of G′. Assume that the a4-vertex
of a cycle node u is colored by j, and w.l.o.g. let j = 4. By Claim 4, we know that
all of its first vertices are colored with the same color (different than color 4),
assume 1. Furthermore, we have:

– The vertices a2, a3 of the first group of vertices of the outer cycle, should take
colors 2, 3 (not necessarily in this order).

– Then, the 2nd and 3rd vertices of the first group of vertices of the inner cycle,
(e2, e3 in the example of Fig. 3), should take colors 2, 3. This is because they
can not take colors 1, 4 by vertices e1, a4.

– The 4th vertex of the first group of vertices of the inner cycle, (e4 in the
example of Fig. 3), should take color 4. This is because it is forbidden to take
colors 1, 2, 3 of vertices e1, e2, e3.

– Then, the 2nd vertex of the second group of vertices of the inner cycle node (f2
in our example), is forbidden to take colors 1, 2 (or 3), 4 of vertices e1, e3, e4.
Thus, it can take color 3 or 2.

– The 4th vertex of the second group of vertices of the inner cycle, (f4 in the
example of Fig. 3), should take color 4. This is because it is forbidden to take
colors 1, 2, 3 of vertices f1, f2, e3.

On Radiocoloring Hierarchically Specified Planar Graphs 111

– Then, the 3rd vertex of the second group of vertices of the inner cycle node, (f3
in our example) is forbidden to take colors 1, 3 (or 2), 4 by vertices f1, f2, f4.
Thus, it can take color 3 or 2.

– Thus, the 4th vertex of the second group of vertices of the outer cycle, b4, is
forbidden to take colors 1, 2, 3 by vertices f1, f2, f3. Hence, vertex b4 can only
take color 4.
Continuing in the same way for the rest groups of vertices of the cycle node,
for a group of vertices of the outer cycle, assume one named x, we get that:

– The vertices x2, x3 of group x of vertices of the outer cycle, should take colors
2, 3 (not necessarily in this order). This is because vertices x1, x4 are colored
1, 4.

– Take the group of vertices of the inner cycle corresponding to group x. Assume
that is named x′. The 2nd and 3rd vertices of group x′, vertices x′

2, x
′
3, should

take colors 2, 3, not necessarily in this order. This is because they can not take
colors 1, 4 of vertices x′

1, x4.
– The 4th vertex of group x of vertices of the inner cycle, (x′

4), should take color
4. This is because it is forbidden to take colors 1, 2, 3 by vertices x′

1, x
′
2, x

′
3.

– Then, the 2nd vertex of group x′ +1 of vertices of the inner cycle node (x′ +1
denotes the letter following x′ in the latin alphabet), (x′ + 1)2 is forbidden to
take colors 1, 2 (or 3), 4 by vertices x′

1, x
′
3, x

′
4. Thus, it can take color 3 (or 2).

– The 4th vertex of group x′ + 1 of vertices of the inner cycle, (x′ + 1)4, should
take color 4. This is because it is forbidden to take colors 1, 2, 3 of vertices
(x′ + 1)1, (x′ + 1)2, x′

3.
– Then, the 3th vertex of group x′+1 of vertices of the inner cycle node, ((x′+1)3

in our example) is forbidden to take colors 1, 3 (or 2), 4 by vertices (x′ +
1)1, (x′ + 1)2, (x′ + 1)4. Thus, it can take color 3 (or 2).

– Thus, the 4th vertex of group x + 1 of vertices of the outer cycle, (x + 1)4, is
forbidden to take colors 1, 2, 3 by vertices (x′ + 1)1, (x′ + 1)2, (x′ + 1)3. Hence,
vertex (x + 1)4 can take only color 4.

We conclude that for any cycle node of the graph G′, if one fourth vertex is
colored j then all fourth vertices of it (of the outer and inner cycle of it) get the
color j. 	

Claim 6. If λ(G′) ≤ 4 for any cycle node u, all of its fifth vertices take the
same color and this color is the same as the color of the fourth vertices of the
cycle node.

Proof. Consider any radiocoloring assignment of G′. By Claim 4, we know that
all of its first vertices are colored with the same color, assume w.l.o.g. color 1.
Moreover, by Claim 5, we know that all of its fourth vertices are colored with the
same color (different than the color of the first vertices) assume 4. Furthermore,
we have:

– The vertices a2, a3 of the first group of vertices of the outer cycle, should take
colors 2, 3, assume a2 takes color 2 and a3 takes color 3.

112 M. Andreou et al.

– Then, the 2nd vertex of the second group of vertices of the outer cycle, b2,
should take color 2. This is because it is forbidden to take colors 1, 3, 4 by
vertices b1, a3, b4.

– The 5th vertex of the second group of vertices of the outer cycle, b5, should
take color 4. This is because it is forbidden to take colors 1, 2, 3 by vertices
b1, b2, a3.

– The 3rd vertex of the second group of vertices of the outer cycle, b3, should
take color 3. This is because it is forbidden to take colors 1, 2, 4 by vertices
b1, b2, b4.
Continuing in the same way for the rest groups of vertices of the cycle node,
for a group of vertices of the outer cycle, assume one named x, we get that:

– The 2nd vertex of group x of vertices of the outer cycle, x2, should take color 2.
This is because it is forbidden to take colors 1, 3, 4 by vertices x1, (x − 1)3, x4.

– Then, the 5th vertex of group x of vertices of the outer cycle, x5, should
take color 4. This is because it is forbidden to take colors 1, 2, 3 by vertices
x1, x2, (x − 1)3.

– The 3rd vertex of the second group of vertices of the outer cycle, x3, should
take color 3. This is because it is forbidden to take colors 1, 2, 4 by vertices
x1, x2, x4.

We conclude that for any cycle node of the graph G′, if one fifth vertex is
colored j then all fifth vertices of it (of the outer and inner cycle of it) get the
color j. 	

Claim 7. If λ(G′) ≤ 4 then all fifth vertices of all cycle nodes take the same
color.

Proof. Consider a vertex of the initial graph G and the cycle node in G′ corre-
sponding to it, let u. Let a fifth vertex of it; assume w.l.o.g. that it is colored 4.
Then, by Claim 6, all fifth vertices of the cycle node get color 4.

Consider any neighbour to u cycle node, v. The cycle nodes of the two nodes
are connected through a fifth vertex of their cycle nodes, let it be uv. By Claim
6 all fifth vertices of the cycle node v get the same color as vertex uv, i.e. 4.
Recall that vertex uv is connected to a first vertex of node u, call it u′

1 and to a
first vertex of the cycle node v, call it v′

1.
Applying the same arguments to the rest of the neighbours of u, we get that

all fifth vertices of their cycle nodes get color 4. Continuing, in the same way,
for each neighbour, we finally get that all fifth vertices of all cycle nodes of the
whole graph get the same color. 	

Lemma 2. If λ(G′) ≤ 4 then χ(G) ≤ 3.

Proof. Consider any radiocoloring of G′ using 4 colors. Consider a vertex of the
initial graph G and the cycle node in G′ corresponding to it, u. Let a fifth vertex
of it; assume w.l.o.g. that it is colored 4. Then, by Claim 7, all fifth vertices of
all cycle nodes of G′ get the same color, 4.

Since every first vertex of any cycle node of G′ is at distance one from a fifth
vertex (colored 4), it is forbidden to take color 4. Thus, any first vertex of any

On Radiocoloring Hierarchically Specified Planar Graphs 113

cycle node of G′ can take only three of the four colors of the palette, that is the
colors {1, 2, 3}. By Claim 4, all first vertices of any cycle node colored i, get the
same color i, i ∈ {1, 2, 3}.

Now return to G. Let the following coloring of G, f : Assign to each vertex u
of the graph G the color that the first vertices of the corresponding to it cycle
node take in the radiocoloring of G′ considered. We argue that this is a valid
3-coloring of the graph G. To see why observe that, as we have shown above,
all first vertices of G′ take only 3 colors. Thus, the assignment f of G uses 3
colors. Moreover, recall also that, by Claim 4, all first vertices of a cycle node
colored i get the same color i. Thus, in G′, for each cycle node u, all of it first
vertices (colored with the same color) ‘see’ the colors of the corresponding first
vertices of all neighbour cycle nodes of u. This is equivalent to the colors that
the corresponding to u vertex in G ‘see’ by all of its neighbours. Hence, since
the first vertices of G′ have no conflicts with their neighbour first vertices, there
is no conflict with the colors of any vertex in G and its neighbours. Thus, if G′

can be radiocolored with 4 colors, then there is a 3-coloring of G. 	

This completes the NP-completeness proof. 	

3.2 The PSPACE-Completeness of RCP for Hierarchical Planar
Graphs

The PSPACE-completeness reduction for the RCP of L-specified hierarchical
planar graphs, utilizes the construction of the NP-completeness proof of the
radiocoloring problem for ordinary planar graphs, given in Sect. 3.1, Theorem 3,
exploiting its locality properties in order to achieve a construction of time poly-
nomial in the size of the L-specification of the hierarchical graph.

The PSPACE-completeness proofs use the following categorization of the
edges of Gi into 3 kinds: (a) edges connecting an explicit vertex of Gi to another
explicit vertex, called explicit edges, (b) edges connecting an explicit vertex with
a pin of Gi, called pin edges, (c) edges connecting an explicit vertex of Gi with
a nonterminal called by Gi, which we call nonterminal edges.

The PSPACE-completeness of 3-coloring for hierarchical planar graphs.
In order to be able to utilize the NP-completeness reduction of Theorem 3 to
prove the PSPACE-completeness of RCP for hierarchical planar graphs, we need
to know that the 3-coloring problem of L-specified hierarchical planar graphs is
PSPACE-complete.

Theorem 8. The following decision problem is PSPACE-complete:
Input: A fully planar hierarchical graph G, given by the L-specification Γ =

(G1, . . . , Gn).
Question: Is χ(G) ≤ 3?

Proof. We adapt the NP-completeness construction of [12].
Membership in PSPACE: For a given hierarchical planar graph G one

chooses nondeterministically a color from {1, 2, 3} for every vertex of E(Γ) and

114 M. Andreou et al.

checks whether this is really a coloring of E(Γ). If this is done in a depth-first
manner in the expansion tree E(Γ), then such an algorithm can be accomplished
using polynomial space.

PSPACE-completeness: We reduce the problem of 3-coloring an L-specified
hierarchical planar graph from the 3-coloring of L-specified hierarchical general
graphs adapting the NP-completeness construction of [12]. The 3-coloring of L-
specified hierarchical general graphs is known to be PSPACE-complete ([22]).

Let any L-specified hierarchical general graph G. From the L-specification
of G, Γ = (G1, G2, . . . , Gn), we construct in polynomial time to the size of the
L-specification of G, a new L-specified hierarchical planar graph G′, defined by
Γ ′ = (G′

1, G
′
2, . . . , G

′
n).

First recall that in the transformation of [12] each edge having a crossing is
replaced by a component of Fig. 5, called ‘diamond’, where H is the subgraph
presented in the same Figure. The component has as many ‘diamonds’ as the
number of crossings of the edge.

u v

begin component sequence (1) of diamonds end component

H H H v

v

vu

u

u

x

x'

y'y

The crossover H
(diamond)

Fig. 5. The Crossover H (diamond) and the transformation of an edge to a sequence
of diamonds.

Observe also that the component that replaces an edge is not a symmetric
graph. We call the left part of the component shown in Fig. 5 as begin component,
the internal part that contains the sequence of diamonds, also shown in Fig. 5,
as sequence of diamonds and the right part of the component, shown in Fig. 5,
as end component.

Let Gi = (Vi, Ei) be any graph of the L-specification of G. For each Gi we
consider a topology such that all of its pins are located in the boundary face of
the graph.

For each graph Gi, we construct a new graph G′
i = (V ′

i , E′
i) using the follow-

ing rules:

On Radiocoloring Hierarchically Specified Planar Graphs 115

1. The graph G′
i has the same explicit and nonterminal vertices as the graph Gi.

However, the type of each nonterminal called by Gi, assume Gj , is changed
to G′

j .
2. The transformation of each edge of Gi is almost the same as that of [12].

Each kind of edges of Gi (explicit, nonterminal, pin edges) is transformed as
follows:
(a) For each explicit edge uv having i crossings, replace it by a component

of Fig. 5 having i diamonds. The begin of the component can be either
vertex u or v.

(b) For each nonterminal edge connecting an explicit vertex u with a nonter-
minal node, assume one of type Gj :
– If the edge has no crossing, then replace it by the begin component
shown in Fig. 6 (a).
– If the edge has k crossings (k ≥ 1), then replace it by a begin compo-
nent and a sequence of k − 1 diamonds as shown in Fig. 6 (b) for the case
where k = 2.
Note that in both cases, the edge connecting u to the nonterminal Gj , is
replaced by a component that has three edges connected to the nontermi-
nal Gj . As we will show in the next case (c), the pins of the nonterminal
will also be triplicated so that each such edge will match the appropriate
pin.

(c) For each pin edge connecting an explicit vertex v with a pin of Gi, p:
– If the edge has no crossing, then replace it by the end component of
Fig. 6 (c).
– If the edge has k crossings (k ≥ 1), then replace it by an end component
and a sequence of k−1 diamonds as shown in Fig. 6 (d) for the case where
k = 2.
Note that, again, in both cases, the edge connecting v to the pin p, is
replaced by a component that has three pins. In this way, the pins of G′

i

are triplicated compared to the pins of Gi.

We now prove that graphs G′
1, G

′
2, . . . , G

′
n obtained by the graphs

G1, G2, . . . , Gn of the L-specification of G, define a new L-specified hierarchi-
cal graph G′.

Consider any graph G′
i. From it, applying the constructive Definition 4, we

can get the graph E(Γ ′
i). To see why take any nonterminal G′

j called by G′
i.

Recall that by the transformation, each pin p of Gj is replaced in G′
j by three

pins p1, p2, p2. Moreover, note that each edge e of Gi connected to Gj is replaced
in G′

i by three edges e1, e2, e3 connected to G′
j . Hence, in E(Γ ′

i) every edge
connected to a nonterminal called by it, matches the appropriate pin of the
nonterminal. Finally, from G′

n applying Definition 4, we get E(Γ ′
n). Thus, in

this way, graphs G′
1, . . . , G

′
n define a new hierarchical graph G′ specified by

Γ ′ = (G′
1, . . . , G

′
n) using the L-specification. Moreover, observe that since the

transformation eliminates all crossings the new hierarchical graph obtained is a
planar graph. Finally, note that since the transformation is applied only once to
each Gi, the construction of G′ is performed in polynomial time to the size of
the L-specification of G.

116 M. Andreou et al.

Gj

v

vu

G'j
v

u

(c)

(d)

begin
component

begin component and a
sequence (1) of diamonds

end
component

end component and a
sequence (1) of diamonds

(b)

v

G'j
u

G'j
u

(a)

Fig. 6. The edge transformation of a nonterminal edge and pin edge.

Next, we prove that the new planar graph G′ obtained by G is 3-colorable if
and only if G is 3-colorable. In particular, we will show that the expansion of the
hierarchical planar graph G′, E(Γ ′) obtained by G exhibits the same properties
as the graph obtained by the expansion of G, E(Γ), when the transformation of
[12] is applied on it.

To see why, consider the expansion E(Γ ′
i) of the graph G′

i obtained by graph
Gi. This graph is the same as the corresponding graph obtained using the con-
struction of [12], except that: (1) In [12] only the edges that have a crossing are
replaced by the component of Fig. 5, while in our construction, all edges corre-
sponding to pin or nonterminal edges are replaced by the component of Fig. 5.
(2) An edge in the construction of [12] having k (k ≥ 1) crossings is replaced by
a sequence of k diamonds. In our construction it is replaced by a sequence of at
most k + 1 diamonds.

We argue that these two differences do not have any influence on the desired
properties of the new graph E(Γ ′

i) obtained. As it far as it concerns the first
difference, note that after the transformation of each such edge uv, the two
neighbour vertices u and v ‘see’ the color of the other vertex as in [12]. As far
as it concerns the second difference, note that although the diamonds of the
component might be more than those of the corresponding component in [12],
the property of the transformation still holds; that is the two neighbour vertices
u and v ‘see’ the color of the other neighbour vertex as in [12].

Since the two constructions are equivalent, we can use the same arguments
used in [12] to prove that the new hierarchical planar graph G′ is 3-colorable if
and only if the initial hierarchical graph G is 3-colorable.

Finally, we prove that the resulting L-specified graph is a fully planar hier-
archical graph. This is true because (i) For each Gi we consider a topology such
that all of its pins are located in the boundary face of the graph. Thus, in the
resulting graph the corresponding pins are also located in the boundary face of

On Radiocoloring Hierarchically Specified Planar Graphs 117

the graph. (ii) For each Gi, the transformation eliminates all crossings; hence-
forth, we get that each G′

i is a planar graph. The above two conditions prove
that the resulting L-specified hierarchical graph G′ is a fully planar graph. 	

Comment. A similar result has been proved in [25] for a restricted class of
L-specified hierarchical graphs which are simultaneously planar and unit disks.
However their reduction does not clearly address the case of strongly planar
graphs. Notice that our class is slightly different and neither a subset nor a
superset of their class.

The PSPACE-completeness of RCP for hierarchical planar graphs.
Before introducing the PSPACE-completeness Theorem, the following observa-
tion is needed. We denote by d(u)H the degree of vertex u in graph H.

Observation 1. Let any graph Gi of the L-specification of a hierarchical graph
G. Then, for any explicit vertex u in Gi, it holds that d(u)Gi

= d(u)E(Γ)

Proof. Recall Definition 4. For any explicit vertex v of Gi, any explicit edge
incident to u remains the same in E(Γ). Any pin edge incident to u in Gi, in
E(Γ) is replaced by a single edge connecting u to the corresponding vertex of a
graph that calls Gi, in every appearance of Gi in E(Γ). Thus, in this case, too,
the degree of vertex u does not change in E(Γ). 	

Theorem 9. The following decision problem is PSPACE-complete:

Input: A WS fully planar hierarchical graph G, given by the L-specification
Γ = (G1, . . . , Gn).

Question: Is λ(G) ≤ 4?

Proof. Membership in PSPACE: Similar to the PSPACE-membership of
3-coloring a hierarchical planar graph of Theorem 8.

PSPACE-completeness: We reduce the RCP for hierarchical planar graphs
from the 3-coloring of fully planar hierarchical graphs proved to be PSPACE-
complete in Theorem 8. Our reduction uses that construction of Theorem 3 used
to prove the NP-completeness of RCP for ordinary planar graphs.

Let any L-specified hierarchical planar graph G, given by Γ = (G1, . . . , Gn).
For each graph Gi = (Vi, Ei) of its L-specification we construct a new graph
G′

i = (V ′
i , E′

i) using the rules of Theorem 3:

1. Each explicit vertex u of degree du of Gi is replaced by a ‘cycle node’ of degree
du defined in Theorem 3.

2. Take each edge e = (u, v) of Gi connecting two explicit vertices u and v, and
take the corresponding fifth vertices of the cycle nodes of vertices u and v.
Collapse it to a single vertex uv connecting the corresponding ‘first’ vertices
of the two cycle nodes. See Fig. 7(a).

3. All nonterminal vertices of Gi are present in G′
i. However, the type of a

nonterminal, assume one of type Gj is changed to G′
j .

4. Take each e = (u, t) of Gi connecting an explicit vertex u to a nonterminal
vertex t called by Gi, assume of type Gj . Assume moreover, that the edge
has label (t, l), i.e. u matches the l-th pin of the graph Gj . Then, connect the

118 M. Andreou et al.

cu cv

Gj'

Gj

cu

Gj

u v

(a)

(b)

u

cu

(c)

u
p

p
first

cu : cycle node of vertex u

GjGj : nonterminal of type Gj

: pin

fifth

fifth

first

first

Fig. 7. The transformation of graph Gi to graph G′
i.

corresponding fifth vertex f of the cycle node of u to the nonterminal t and
associate it with the label (t, l) (i.e. vertex f matches the l-th pin of Gj). See
Fig. 7(b).

5. All pins vertices of Gi are present in G′
i.

6. Take each edge e = (u, p) of Gi connecting an explicit vertex u to a pin p of
Gi, numbered as the l-th. Then, remove the corresponding fifth vertex of the
cycle node of vertex u and connect the corresponding first vertex of the cycle
node to the pin p. See Fig. 7(c).

Observe that the above procedure applied on all graphs G1, G2, . . . , Gn of
G, only once for each Gi, results to a set of graphs G′

1, G
′
2, . . . , G

′
n that define

a new L-specified hierarchical graph G′, given by Γ ′ = (G′
1, G

′
2, . . . , G

′
n). To

see why note that the same graph G′
i results applying the above procedure in

any appearance of the graph Gi in the hierarchical tree HT (Γ) of G. Note also
that the graph G′

i calls the same set of terminals as Gi. Finally, observe that
the graph G′

i obtained by Gi by the above procedure has the same pins as Gi.
The next lemmas prove that the new graph is 4-radiocolorable if and only if the
initial graph is 3-colorable.

Lemma 3. If χ(G) ≤ 3 then λ(G′) ≤ 4. 	

Lemma 4. If λ(G′) ≤ 4, then χ(G) ≤ 3. 	

The two lemmas are proved using the same arguments as those in the proofs of
Lemmas 1, 2, respectively, and the observation that the expansion of the graph
G′ obtained, E(Γ ′), is the same graph as the graph obtained by the construction
of Theorem 3 when applied on the expansion of the initial hierarchical graph G.

Next, we prove that the resulting graph is a fully planar hierarchical graph:
Observe that, (i) the initial graph G is a hierarchical graph and the transfor-
mation introduces no crossings, satisfying the second condition of fully planar
hierarchical graphs, (ii) the transformation keeps the pins of the resulting graph
in the outside face of the graph, satisfying the first condition of such graphs.

On Radiocoloring Hierarchically Specified Planar Graphs 119

Finally, we prove that the resulting graph is a WS hierarchical graph: Take
any outer up vertex u of any G′

i of G′, connected to a pin p. In the worst case,
the vertex is also an outer down vertex. Let v the nonterminal connected to v.
Thus, the degree of the vertex is at least 2. By the transformation, it is replaced
by a cycle node of degree at least 2. Recall that a first vertex of the cycle node,
call it f , is connected to pin p of G′

i and a fifth vertex, call it t, of the cycle
node is connected to nonterminal v of G′

i. Observe now, that the first vertex f is
located at distance at least 4 from the fifth vertex t of the cycle node. Since, we
get the same result for each graph Gi, 1 ≤ i ≤ n, we conclude that the resulting
graph G′ is a WS fully planar hierarchical graph. 	

4 Approximations to RCP for WS Fully Planar Graphs

In this section, we present two approximation algorithms for the min order
RCP on WS fully planar hierarchical graphs: a simple and fast algorithm, that
achieves an approximation ratio of 10/3 (asymptotically), and a more sophisti-
cated one which, being still polynomial, achieves a 3-approximation ratio. These
algorithms offer alternative options that trade-off the efficiency of the algorithm
and the quality of the solution achieved. Both algorithms utilize a bottom up
methodology of radiocoloring an L-specified hierarchical planar graph G, given
by Γ = (G1, . . . , Gn). By this method the algorithms radiocolor graphs G1, G2,
and so on up to Gn in G’s specification. Actually, they compute at most n − i
radiocolorings for a subgraph of each graph Gi, 1 ≤ i ≤ n, and use these radio-
colorings for all copies of Gi in the expansion E(Γ) of G. This enables them to
run in time only polynomial to the size of the L-specification of G.

More analytically, we wish to compute only one radiocoloring assignment
for each Gi, and use this in all appearances of Gi in the expansion E(Γ) of G.
However, due to the structure of L-specified hierarchical graphs, the distance two
neighborhood of the outer vertices of each Gi, may differentiate for every call of
Gi by other graphs Gj . Henceforth, a radiocoloring for such a vertex (the outer
ones) may become invalid due to a change of the distance two neighborhood of
the vertex. Since each graph Gi may be called by at most n− i other graphs, we
need to compute at most n − i radiocolorings of those (outer) vertices.

Moreover, we need to guarantee that the different radiocolorings of the outer
part of Gi do not introduce any implication in the radiocoloring of its inner part.
By having only one radiocoloring for the inner part of Gi, we manage to have
also no implications to the radiocoloring of the subtree of Gi, HT (Gi).

Based on this design approach, both algorithms partition appropriately, each
Gi into three parts: (1) the inner part, (2) the outer up and (2) the outer down
part. Remark, that these subgraphs might be different from the inner, outer up,
outer down subgraphs of Gi defined in the Definitions 8, 9 and 10.

Then, the algorithms radiocolor the inner part of Gi only once, using, each
of them, a different method. However, both of them, group and radiocolor the
outer down part of it together with the outer up parts of the graphs called by
it, using the best known approximation algorithm.

120 M. Andreou et al.

4.1 A 10/3-Approximation Algorithm RC Approx

We first provide a simple and efficient algorithm (RC Approx) that achieves an
asymtotic 10/3-approximation for RCP on WS fully planar hierarchical graphs.
Let A1, B1 two disjoint sets of colors of size �5Δ(G)/3� + 78 each, where Δ(G)
is the maximum degree of G.

Overview of the RC Approx Algorithm: First, the algorithm defines for
each Gi its inner, outer up and outer down parts to be the inner, outer up and
outer down subgraphs Gin i, GoutUp i and GoutDown i, respectively.

Then, the algorithm radiocolors the inner part of the graph Gi using the
best known approximation algorithm i.e. the algorithm of [27,28] using the color
set A1. Finally, the algorithm radiocolors the outer down part of the graph Gi

together with the outer up parts of its children using again the best known
approximation algorithm (i.e. algorithm of [27,28]) with the color set B1. Recall
that the radiocoloring algorithm of [27,28] uses at most �5Δ(G)/3� + 78 colors.

The description of algorithm RC Approx appears in Fig. 8.

RC Approx Algorithm
For each Gi, 1 ≤ i ≤ n do:

1. Let G′
in i = GoutUp i

⋃
Gin i

⋃
GoutDown i.

2. Apply the best known radiocoloring algorithm, i.e. the algorithm of [28, 27],
for ordinary planar graphs on Gin′

i using colors of set A1. Ignore the coloring
of vertices of G′

in i that are not in Ginin i (outer up, down vertices of Gi).
3. Let Gout i = GoutDown i

⋃
∀ j called by Gi

{∪GoutUp j}. Also, let

G′
out i = Glast inner i

⋃
GoutDown i

⋃
∀ j called by Gi

{∪GoutUp j ∪
Gfirst inner j}

4. Apply the best known radiocoloring algorithm, i.e. the algorithm of [28,
27], for ordinary planar graphs on G′

out i using colors of set B1. Ignore the
coloring of vertices of G′

out i not in Gout i (last inner vertices of Gi and first
inner vertices of its children).

Fig. 8. Algorithm RC Approx

Analysis of the RC Approx algorithm

Theorem 10. Algorithm RC Approx(G) produces a radiocoloring of a WS
fully planar hierarchical graph G in time O(n5

max) and achieves a 10/3-
approximation ratio, asymptotically.

Proof. Correctness
Observe first that the algorithm, during the radiocoloring of the subgraphs of

each graph Gi, it considers ‘extensions’ of those subgraphs. E.g. in order to get a
radiocoloring of Gin i, it considers G′

in i, which contains Gin i but also subgraphs
GoutUp i and GoutDown i. This is required in order to get a valid radiocoloring

On Radiocoloring Hierarchically Specified Planar Graphs 121

of Gin i, because, a vertex of those graphs (GoutUp i and GoutDown i) may be
connected to more than one vertex of Gin i making those vertices of Gin i distance
two neighbours. Similar arguments prove that graphs G′

out i, G′
out j (Gj calls Gi)

are required in order to produce valid radiocolorings for graphs Gout i, Gout j ,
respectively.

The radiocoloring assignment for each subgraph of G is computed using the
best known radiocoloring algorithm (i..e the algorithm of [27,28]) for ordinary
planar graphs. Since these algorithms require for the radiocoloring of a graph G
with maximum degree Δ(G), at most �5Δ/3� + 78 colors, the sets A1, B1 of the
same size can be used to produce a valid radiocoloring on any subgraph of G.

We next prove that there is no conflict between any two vertices of a graph
Gi or a vertex of Gi and a nearby vertex of a graph that calls Gi or a graph that
is called by Gi. Recall that:

Each Gi is partitioned into 3 parts:

– Gup i: is radiocolored together with each graph Gj that calls Gi, and the other
outer up vertices of the graphs that are also called by Gj , graph Gout j , using
color set A1.

– Gin i: is radiocolored using color set B1.
– Gdown i: is radiocolored together with the outer up vertices of the graphs that

are called by Gi, graph Gout i, using color set A1.

Since Gup i and Gin i are radiocolored using different colors, there is no con-
flict between them. Gup i and Gdown i are radiocolored using the same set of
colors, A1. However, there is no conflict because there are located at distance at
least 3 apart by the definition of class WS of hierarchical graphs considered here.
Also, there is no conflict between Gup i (colored in Gout j) and Gin j because they
are radiocolored using different color sets. Finally, there is no conflict between
Gdown;i (colored in Gout i) and Gin j (Gj is a child of Gi) because they are
radiocolored using a different set of colors.

The above arguments prove that the RC Approx algorithm produces a valid
radiocoloring of the hierarchical planar graph G.

Performance and Approximation ratio
The algorithm for each Gi computes a radiocoloring assignment using the

best known radiocoloring algorithm ([27,28]). That algorithm require O(n2) time
for the radiocoloring of a graph of size n. Remark that when considering the outer
down vertices of Gi and their possible children, we get a subgraph of size (number
of vertices) n2

i . Thus, the radiocoloring algorithm used needs time O(n4
i). Since

this procedure is called for each Gi, 1 ≤ i ≤ n, the algorithm needs O(n5
max)

time in total.
To compute the approximation ratio of RC Approx algorithm, recall that

it uses two sets of colors of size �5Δ(G)/3� + 78 each. Observe also that the
maximum degree of the graph G, Δ(G) is a lower bound on the number of
colors needed for the radiocoloring of the graph G. Since RC Approx algorithm
uses color sets A1, B1 for the radiocoloring computed, it uses 2(�5Δ(G)/3�) +
156 colors in total. Thus, for large values of Δ the algorithm achieves a 10/3-
approximation ratio. 	

122 M. Andreou et al.

4.2 A 3-Approximation Algorithm RC Levels

Overview of the Algorithm: We provide a more sophisticated radiocolor-
ing algorithm, that achieves a 3-approximation ratio rather than 10/3, for fully
planar hierarchical graphs of class WS. The basic idea of the algorithm, called
RC Levels, is to partition the vertices of each graph Gi into outerplanar levels
using a BFS (similar to [3,20]) and define the three parts of each Gi based on
this search.

The outer up part of Gi consists of the first level of the BFS tree obtained.
Thus, it is the outer up subgraph of Gi, GoutUp i. The outer down part of Gi

consists of the graph induced by the vertices of the BFS tree of levels D up to
the end of the tree, where D is the first level of the tree having an outer down
vertex of Gi. The inner part of Gi is the rest of the graph Gi.

More analytically, the inner part of Gi is radiocolored as follows: Radiocolor
every two successive levels of the inner part of Gi optimally interchanging color
sets A,B, where |A| = |B| = OPT (G) and OPT (G) is the optimal number of
colors needed to radiocolor G. We prove that this can be achieved in polynomial
time and without any conflicts. We first show that any two successive levels,
call them a double level, is a 4-outerplanar graph. Thus, by Theorem 1, it is
a bounded treewidth graph. Consequently, applying Theorem 2, each double
level can be radiocolored optimally in polynomial time. Moreover, by the BFS
partitioning procedure, there is no conflict between double levels colored using
the same color set.

The outer down part of Gi is radiocolored together with the outer up parts of
its children using the best known approximation radiocoloring algorithm, i.e. the
asymptically 5/3-approximation algorithm of [27,28] for ordinary planar graphs,
using the color sets A and C, where |C| = |A| = OPT (G). Since the algorithm
uses only color sets A,B,C, it is a 3-approximation algorithm.

Description of the RC Levels algorithm

Partitioning and Grouping procedures The algorithm applies a number of proce-
dures in each Gi, partitioning the graph into smaller subgraphs and then radio-
color the produced subgraphs:

1. Partitioning Procedure of Gi: We partition the graph Gi into outer-
planar subgraphs, called single levels according to the following procedure: Add
a new vertex in Gi, called virtual vertex and connect it to all vertices of GoutUp i.
Note that this can be done without creating any crossings because each vertex
of GoutUp i is connected to a pin and each pin is replaced by a vertex that calls
Gi in the expansion of the hierarchical graph. Then, construct a BFS tree T
rooted on the virtual vertex. That is, starting from this vertex, find all of its
neighbours. Next, find the neighbours of those vertices, and so on. Number the
levels of the BFS tree using successive integers starting with 0 for the root. Now,
partition the vertices of Gi into levels according to their distance from the root
of the tree T . That is, a vertex which is at distance k from the root belongs to
level k. Let Mi be the number of the levels of the partition. Also, let li m the
subgraph of Gi induced on vertices of level m. Finally, remove the virtual vertex.

On Radiocoloring Hierarchically Specified Planar Graphs 123

Observation 2. The subgraph induced by vertices of level 1 resulting by the
partitioning procedure on Gi is in fact the subgraph GoutUp i.

Let Di the first level of the partition that contains a vertex of the outer down
subgraph of Gi, GoutDown i that is, Di = min{lu : u ∈ GoutDown i}, where lu is
the level of vertex u. For simplicity reasons, and where there is no confusion, in
the sequel we use the term D to refer to the level Di of Gi.

Observation 3. By the definition of class WS, at least the 2nd and the 3rd level
of the partition of Gi consist only of inner vertices.

2. Grouping Procedure: Next, we group together the levels of the parti-
tion of Gi as follows:

1. First Level Subgraph: The subgraph induced by the vertices of the first level
of the partition (outer up vertices). It is denoted by Gfirst level i.

2. Inner Levels Subgraph: The subgraph induced by the vertices of levels 2 to
level D − 1. Note that the subgraph for graphs of class WS, consists only of
inner vertices. Denote it by Ginner levels i.

3. Down Levels Subgraph: The subgraph induced by the vertices of levels D up to
the last level Mi. Note that this subgraph, for graphs of class WS, consists
only of inner and outer down vertices. Denote it by Gdown levels i.

3. Partitioning into double levels Procedure: Group together every two
successive levels of the partition of Ginner levels i as follows:
For m = 1, . . . , D−2

2 , group together levels 2m and 2m + 1 and call the sub-
graph obtained as m-th double level of Gi, denoted by Li m. If the number of
double levels is even, we extend the last odd level with the rest of the levels of
Ginner levels i, so that the number of double levels of Ginner levels i to be an odd
number.

4. Constructing extended double levels Procedure: Take the single
levels preceding and following level Li m, li 2(m−1)+1 and li 2(m+1).

We define the extended level of Li m, denoted by Lei m, to be the
subgraph induced by the vertices of Li m and their neighbours: Lei m =
li 2(m−1)+1

⋃
Li m

⋃
li 2(m+1).

Note that for the first double levelm = 1,wehaveLei 1 = GoutUp i

⋃
Li 1

⋃
li 3.

For the last double level, we have Lei m = Li 2(m−1)+1

⋃
Li m

⋃
li 2(m+1), where

m = D−2
2 .

5. Constructing the extended down-levels subgraph Procedure:
Consider the subgraph GDown Levels i of Gi. Let H the multiset of nonterminals
called by Gi. For each Gj ∈ H take the subgraphs Gfirst level j and Gfirst inner j

of Gj . Let GDi = GDown Levels i

⋃
Gj∈H{∪Gfirst level j}.

Also, let GDei = lD
⋃

GDown Levels i

⋃
Gj∈H{Gfirst level j ∪ Gfirst inner level j}.

We can now proceed with the description of the the algorithm RC Levels
appearing in Fig. 9.

124 M. Andreou et al.

RC Levels algorithm (high level description)
For each Gi, 1 ≤ i ≤ n, do:

1. Apply the partitioning Procedure on Gi. Next, apply the Grouping Procedure
of Gi.

2. Apply the partitioning into double levels Procedure on Ginner levels i.
3. Radiocolor optimally each odd (even) extended double level subgraphs,

Lei m, 1 ≤ m ≤ D−2
2

, m odd (even), together using color set B (A). Then,
ignore the coloring of the vertices of Lei m not in Li m.

4. Apply the best known radiocoloring algorithm for ordinary planar graphs,
i.e. the algorithm of [28, 27], on GDei using color sets A and C. Ignore the
colors of the vertices of GDei not in GDi.

Fig. 9. Algorithm RC Levels

Analysis of the RC Levels algorithm

Lemma 5. The colors assigned to any double level of Gi, Li m, 1 ≤ m ≤ D−2
2 ,

do not conflict with the colors of other levels of Gi or the colors of vertices of
any graph that calls Gi or which is called by Gi.

Proof. The lemma is proved by the following three claims.

Claim 11. Any vertex of a level k is at distance greater than two from any
vertex in a level > k + 2 and < k − 2 of Gi.

Proof. Assume that this is not true. That is there is a vertex u at level k which at
distance at most two from a vertex v at level k + j, j > 2 (or k − j). However,
note that vertex v should be contained in level k + 1 or k + 2 (or k − 1 or k − 2,
respectevely) according to the way the partition is constructed, a contradiction. 	

Claim 12. For any 1 < m < D−2

2 , the colors assigned to any double level of
Gi, Li m, do not conflict with the colors of other levels of Gi.

Proof. Consider any such level Li m. We study the colors of the vertices outside
Li m.

Consider a vertex of the first level of it, li 2m. Such a vertex might be at
distance one from a vertex in level li 2(m−1)+1, at distance two from a vertex at
level li 2(m−1) and at distance two from a vertex of level li 2m+2. The vertices of
levels li 2(m−1) and li 2(m−1)+1 belong to the double level Li (m−1). The vertices
of level li 2m+2 belong to the double level Li (m+1). Recall that the algorithm
radiocolors levels Li m−1, Li m and Li m+1 interchanging the set of colors A and
B. Thus, there is no conflict between the vertices of level li 2m and the vertices
of levels Li m−1 or Li m+1.

Moreover, any vertex of li 2m is at distance greater than two from any vertex
of levels li 2(m−2) or less, that is vertices of double levels Li m−2 or less. Although
the algorithm radiocolors levels Li m and Li m−2 with the same set of colors, the

On Radiocoloring Hierarchically Specified Planar Graphs 125

above observation implies that there is no conflict between a vertex in li 2m and
a vertex of levels Li m−2 or less.

Consider now a vertex of the second level of Li m, li 2m+1. Such a vertex
might be at distance one or two from the following vertices outside Li m: It
might be at distance one from a vertex of level li 2m+1, at distance two from a
vertex of level li 2(m+1)+1 and at distance two from a vertex of level li 2m−1. The
vertices of levels li 2(m+1) and li 2(m+1)+1 belong to the double level Li (m+1).
The vertices of level li 2m−1 belong to the double level Li m−1. Recall that the
algorithm radiocolors levels Li m−1, Li m and Li m+1 interchanging the set of
colors A and B. Thus, there is no conflict between the vertices of level li 2m and
the vertices of levels Li m−1 and Li m+1.

Moreover, any vertex of li 2m+1 is at distance greater than two from any
vertex of levels li 2(m+2) or greater, that is vertices of double levels Li m+2 or
greater. Although the algorithm radiocolors levels Li m and Li m+2 with the same
set of colors, the above observation implies that there is no conflict between a
vertex in li 2m and a vertex of levels Li m+2 or greater. 	

Claim 13. The colors assigned to the first and the last double level of
Ginner levels i, i.e. levels Li 1 and Li D−2

2
, do not conflict with the colors of other

levels of Gi or the colors of vertices of any graph that calls Gi or it is called by Gi.

Proof. Consider the first double level Li 1. We study the colors of the vertices
outside Li 1. Recall that the algorithm radiocolors the vertices of this double
level using color set B.

Consider the levels preceding level Li 1:
– Consider a vertex of the first level of Li 1, li 2. As far as it concerns the

levels preceding level Li 1, a vertex of li 2 might be at distance one from a vertex
in level li 1 and at distance two from a vertex of a graph Gj that calls Gi. Recall
that the algorithm radiocolors the vertices of level li 1 together with the vertices
of the graph Gj connected to them, using the sets of colors A and C. Thus, there
is no conflict between the vertices of level li 2 and the vertices of level li 1 or the
vertices of any graph Gj that calls Gi.

– Consider now a vertex of the second level of Li 1, li 3. The vertices of
previous double levels, near the vertices of level li 3 are only a subset of the
vertices at distance one or two from the vertices of level li 2. Thus, there is no
conflict between the vertices of level li 3 and the vertices of any previous level
outside it.

Consider the levels following level Li 1:
– Consider a vertex of the second level of Li 1, li 3. As far as it concerns the

next double levels, a vertex of li 3 might be at distance one from a vertex of level
li 4 and at distance two from a vertex of level li 5. The vertices of levels li 4 and
li 5 belong to the double level Li 2. Recall, that the algorithm radiocolors level
Li 1 using the set of colors B. Also, it radiocolors level Li 2 with a different set of
colors, A. Thus, again there is no conflict between the vertices of the two levels.

– Consider now a vertex of the first level of Li 1, li 2. The vertices of next
double levels, outside level Li 1, near the vertices of level li 2 are only a subset

126 M. Andreou et al.

of the vertices at distance one or two from the vertices of li 3. Thus, there is
no conflict between the vertices of level li 2 and the vertices of any next level
outside it.

Consider the last double level Li D−2
2

. We study the colors of the vertices
outside the level.

Consider the levels following level Li D−2
2

:
– Consider a vertex of the second level of Li D−2

2
, li D−1. As far as it concerns

the next double levels, such a vertex might be at distance one from a vertex of
level li D and at distance two from a vertex of level li D+1. The vertices of levels
li D and li D+1 belong to the subgraph Gdown levels i. Recall that the algorithm
radiocolors level Li D−2

2
using the set B. This is because the algorithm, if the

number of double levels is odd, then obviously uses color set B at the last double
level and otherwise (if this number is even) we are done by extending the last
odd double level with the rest of the levels of Gi. It also radiocolors the vertices
of Gdown levels i together with the first level subgraph of all graphs called by Gi

using the sets of colors A and C. Thus, there is no conflict between the vertices
of level li D−1 and the vertices of levels li D, li D+1 or greater.

– Consider now a vertex of the first level of Li D−2
2

, li D−2. The vertices of
next levels, near the vertices of level li D−2 are only a subset of the vertices at
distance one or two from the vertices of li D−1. Thus, there is no conflict between
the vertices of level li D−2 and the vertices of any next level outside it.

Consider the levels preceding level Li D−2
2

:
– Consider a vertex of the first level of Li D−2

2
, li D−2. As far as it concerns

the previous double levels, such a vertex might be at distance one from a vertex
of level li D−3 and at distance two from a vertex of level li D−4. The vertices of
levels li D−3 and li D−4 belong to the double level Li (D−2

2 −1). Recall that the
algorithm radiocolors level Li D−2

2
using the set B. It also radiocolors the vertices

of Li (D−2
2 −1) using the set A. Thus, there is no conflict between the vertices of

level li D−2 and the vertices of double levels Li (D−2
2 −1) or less.

– Consider now a vertex of the second level of Li D−2
2

, li D−1. The vertices of
previous levels, near the vertices of level li D−1 are only a subset of the vertices at
distance one or two from the vertices of li D−2. Thus, there is no conflict between
the vertices of level li D−1 and the vertices of any previous level outside it. 	

The previous 3 claims prove Lemma 5. 	

The following lemma is needed in order to manage to radiocolor optimally

each double level in polynomial time.

Lemma 6. For any double level Li m of Ginner levels i, 1 ≤ m ≤ D−2
2 the sub-

graph Lei m is a 4-outerplanar graph.

Proof. The lemma is proved by the following 3 claims.

Claim 14. The subgraph lim, 1 ≤ m ≤ D − 1 is an outerplanar graph.

Proof. By the way the partition is constructed, using a BFS tree. 	

On Radiocoloring Hierarchically Specified Planar Graphs 127

Claim 15. The subgraph Li m = li 2m

⋃
li 2m+1, for any m, 1 ≤ m ≤ D−2

2 is a
2-outerplanar graph.

Proof. The claim is proved by the way the partition is constructed, using a BFS
tree and the previous claim.

Consider the last extended level m = D−2
2 . For this case we have Li m =

li D−2

⋃
li D−1. Note that Li m does not to belong to Ginner levels i but to the

subgraph Gdown levels i. However, Li m was constructed by the partition into
levels procedure applied on Gi.Thus, by the way the levels are constructed, we
get the claim. 	

Claim 16. The subgraph Lei m = li 2(m−1)+1

⋃
Li m

⋃
li 2(m+1), for any m, 1 ≤

m ≤ D−2
2 , is a 4-outerplanar graph.

Proof. Consider any extended level m with 1 < m < D−2
2 . For this case the

claim is proved by combining the two previous claims.
Consider the first extended level m = 1. For this case we have Leim =

li 1

⋃
Li 1

⋃
li 3 = GoutUp i

⋃
Li 1

⋃
li 3. Note that GoutUp i does not belong to

Ginner levels i but to the subgraph Gfirst level i. However, GoutUp i was con-
structed by the partitioning into levels procedure applied on Gi. Thus, by the
way the levels are constructed, we get the claim.

Consider the last extended level m = D−2
2 . For this case we have Lei m =

li 2(m−1)+1

⋃
Li m

⋃
li 2(m+1) = li D−3

⋃
Li D−2

2

⋃
li D−1. Note that Li m does

not to belong to Ginner levels i but to the subgraph Gdown levels i. However, Li m

was constructed by the partition into levels procedure applied on Gi. Thus, by
the way the levels are constructed, we get the claim. 	

The previous 3 claims prove Lemma 6. 	

Lemma 7. The RC Levels algorithm radiocolors any extended double level
Lei m optimally in polynomial to the size of Gi time. This procedure produces a
valid radiocoloring of double level Lim.

Proof. Recall that RC Levels gets a radiocoloring of the vertices of Li m by
radiocoloring the extended level Lei m. In order to prove the Lemma we have
to prove that (i) the algorithm radiocolors optimally level Lei m in polynomial
time (ii) By radiocoloring Lei m, we get an optimal radiocoloring of Li m.

(i) By Claim 16 (used in the proof of Lemma 6), Lei m is a 4-outerplanar
graph. Thus, by Theorem 1, it is a bounded treewidth graph (11-bounded
treewidth graph). Hence, by Theorem 2, it can be radiocolored optimally in
polynomial time.

(ii) In order to prove that the radiocoloring of Li m resulting by the radio-
coloring of Lei m is valid, we have to prove that the radiocoloring of the vertices
of Li m is valid in Gi as far as it concerns those vertices. The subgraph Lei m

consists of the vertices of the double level Li m and their neighbours. Observe
that, the subgraph of G2

i induced by vertices of Li m is a subgraph of Le2i m.
Thus, the radiocoloring of the vertices of Lei m constitutes a valid radiocoloring
of the vertices of Li m on Gi. 	

128 M. Andreou et al.

Theorem 17. RC Levels Algorithm produces a valid radiocoloring of a WS fully
planar hierarchical graph G using at most 3·(max{OPT (G), �5Δ/3�+78}) colors,
where OPT (G) is the optimal number of colors needed for the radiocoloring of G.
It runs in O(n2

max · T (nmax, k) + n5
max) time, where T (n, k) is a polynomial time

function for the optimal radiocoloring of a k-tree of size n ([31]).

Proof. (Approximation ratio):
Consider any graph Gi in the hierarchy tree of G. The algorithm radio-

colors the down levels subgraph of Gi together with the first level subgraphs
of the graphs called by Gi (graph GDi) using color sets A and C applying
any known polynomial time radiocoloring algorithm. Employing the algorithm
of [27,28] we can compute such a radiocoloring in polynomial time using at
most �5Δ/3� + 78 colors. Hence, the sets of colors A and C of colors, with
|A| = |C| = max{�5Δ/3� + 78, OPT (G)}, used by the algorithm, are enough to
produce a valid radiocoloring algorithm for GDi.

The inner levels subgraph of Gi is radiocolored using, at the first double level
(Li 1), colors of set B, in the next double level colors of set A, etc., until the last
double level (D−2

2) which is radiocolored again using colors of set B. The first
and the last double level are colored using color set B because the algorithm, if
the number of double levels is odd, then obviously uses color set B at the last
double level and otherwise (if this number is even) we are done by extending the
last odd double level with the rest of the levels of Gi. As we showed in Lemmas
7 and 5, the radiocoloring computed of any double level is optimal and with no
conflicts with the other levels of Gi or the vertices of the graphs that are called
by it or call Gi.

But, what about the case where the inner levels subgraph consists of less
than two levels? In this case a vertex of first level subgraph of Gi may be at
distance 2 from a vertex of down levels subgraph of Gi. In this case since the
two subgraphs are radiocolored using the same sets of colors (sets A,C) there
might be conflicts between them. However, such a case does not appear in the
class WS of hierarchical graphs considered here (definition 11), since any vertex
of first level subgraph is at distance greater than two from any vertex of down
levels subgraph.

We conclude that for any graph Gi of the hierarchical graph G there is no
conflict either between any two vertices in Gi or between a vertex of Gi and a
vertex that is called by Gi or calls Gi.

Finally, since for the radiocoloring of all graphs Gi of G we use colors of
sets A,B,C, the RC Levels algorithm obtains a 3-approximation ratio for the
radiocoloring of the hierarchical planar graph G.

See Fig. 10 for a graphical illustration of the radiocoloring produced by the
algorithm RC Levels(G).

(Time complexity):
For each graph Gi we have the following computations:
The inner levels subgraph of Gi is radiocolored only once. The algorithm

radiocolors the levels of the subgraph independently using the theorem of [31]
(Theorem 2 here). Since each level is of size O(n), we require time O(n ·T (n, k))
for all levels to be optimally radiocolored. Since this procedure is called for

On Radiocoloring Hierarchically Specified Planar Graphs 129

A1

B1

A1

B1
B1B1

B1 B1

B1

A1 A1

A1
A1 A1

A1

A,C

B

A
B

A
B

B

A
B

A
B

AB

B

AB

B

AB

B

AB

B

A,C

A,C A,C

A,C A,C A,C A,C

HRC1: HRC2:

Fig. 10. The radiocoloring of a subtree of the hierarchical tree of G as specified by
algorithms RC Approx, and RC Levels. Note that for RC Approx, |A1| = |B1| =
�5Δ/3� + 78 and for RC Levels, |A| = |B| = |C| = max{�5Δ/3� + 78, OPT (G)},
where OPT (G) is the optimal number of colors needed to radioclor the graph G.

each Gi, 1 ≤ i ≤ n, the optimal radiocoloring of the levels of all graphs needs
O(n2 · T (n, k)) time in total.

The down levels subgraph of Gi is also radiocolored only once together with
the first level subgraphs of the graphs that are called by Gi using the algorithm
of [27,28]. That algorithm requires O(n2) time for the radiocoloring of a graph
of size n. Remark that when considering the down levels subgraph of Gi and the
outer up vertices of the graphs called by Gi, we get a subgraph of size (number
of vertices) n2. Thus, the radiocoloring algorithm used needs time O(n4). Since
this procedure is called for each Gi, 1 ≤ i ≤ n, the algorithm needs O(n5) time
in total.

Summing up, we get that the algorithm takes O(n2 · T (n, k) + n5) time
in total, where T (n, k) = O(n(2α + 1)2

2(k+1)(l+2)+1
+ n3), l = 2 and Δ(G) ≤ α ≤

�5Δ/3� + 78. 	

5 Discussion and Open Problems

In this work we investigated a variation of the fundamental coloring problem, i.e.
the Radiocoloring problem, on a class of hierarchically specified planar graphs,
i.e. the WS L-specified hierarchical planar graphs. In those graphs the actual
graph can be exponential to the size of its specification. We showed PSPACE-
completeness of the problem through local reductions that apply not to the whole

130 M. Andreou et al.

exponential graph, but only to its (polynomial) specification and hence can be
accomplished in polynomial time (to the size of the specification). Furthermore,
we presented approximation algorithms for the problem that run in polynomial
time. For those algorithms, we applied suitable partitioning and grouping tech-
niques on the specification of the graph, solve the radiocoloring problem locally
on those instances and then reuse those colorings for obtaining a radiocoloring of
the whole hierarchical graph of guaranteed performance compared to the opti-
mal solution. We remark that the description of the radiocoloring assignment
obtained is polynomial to the size of the specification of the graph and not the
actual exponential graph.

The work is one of the few works ([25]) presenting coloring algorithms on hier-
archically specified graphs. There are many fundamental problems that remain to
be solved on those graphs, such as coloring problems in specific families of such
graphs but also other fundamental problems such as the max clique, the traveling
salesman problem, etc.

References

1. Agnarsson, G., Halldórsson, M.M.: Coloring powers of planar graphs. SIAM J.
Discrete Math. 16(4), 651–662 (2003)

2. Andreou, M.I., Fotakis, D.A., Nikoletseas, S.E., Papadopoulou, V.G., Spi-
rakis, P.G.: On radiocoloring hierarchically specified planar graphs: PSPACE-
Completeness and approximations. In: Diks, K., Rytter, W. (eds.) MFCS 2002.
LNCS, vol. 2420, pp. 81–92. Springer, Heidelberg (2002)

3. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41, 153–180 (1994)

4. Bienstoc, D., Monma, C.L.: On the complexity of embedding planar graphs to
minimize certain distance measures. Algorithmica 5, 93–109 (1990)

5. Bodlaender, H.L.: Planar graphs with bounded treewidth. TR RUU-CS-88-14,
Department of Computer Science, University of Utrecht, The Netherlands, March
1988

6. Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: λ-Coloring of Graphs. In:
Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 395–406. Springer,
Heidelberg (2000)

7. Borodin, O.V., Broersma, H.J., Glebov, A., van den Heuvel, J.: Stars and bunches
in planar graphs. Part II: General planar graphs and colourings. CDAM Research
Report 2002–2005 (2002)

8. Calamoneri, T., Petreschi, R.: L(2, 1)-Coloring Matrogenic Graphs. In: Rajsbaum,
S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 236–247. Springer, Heidelberg (2002)

9. Fotakis, D.A., Nikoletseas, S.E., Papadopoulou, V.G., Spirakis, P.G.: NP-
completeness results and efficient approximations for radiocoloring in planar
graphs. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 363–
372. Springer, Heidelberg (2000)

10. Fotakis, D., Nikoletseas, S., Papadopoulou, V.G., Spirakis, P.G.: Radiocoloring in
planar graphs: complexity and approximations. Theoret. Comput. Sci. 340, 514–
538 (2005). Elsevier

On Radiocoloring Hierarchically Specified Planar Graphs 131

11. Fotakis, D., Pantziou, G., Pentaris, G., Spirakis, P.: Frequency assignment in
mobile and radio networks. In: Networks in Distributed Computing, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, vol. 45, pp.
73–90. American Mathematical Society, Providence (1999)

12. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph
problems. Theor. Comput. Sci. 1, 237–267 (1976)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the Theory
of NP-completeness. W.H./Freeman and Company (1979)

14. Griggs, J., Liu, D.: Minimum span channel assignments. Recent Advances in Radio
Channel Assignments, Invited Minisymposium, Discrete Mathematics (1998)

15. Griggs, J.R., Yeh, R.K.: Labeling graphs with a condition at distance 2. SIAM J.
Disc. Math. 5, 586–595 (1992)

16. Jonas, T.K.: Graph Coloring Analogues With a Condition at Distance Two: L(2,
1)- Labelings and List λ-Labelings. Ph.D. thesis, Department of Mathematics,
University of South Carolina, Columbia, SC (1993)

17. Harary, F.: Private communication to Paul Spirakis
18. Van den Heuvel, J., McGuinness, S.: Coloring the square of a planar graph. J.

Graph Theory 42(2), 110–124 (2003)
19. Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J.,

Stearns, R.E.: NC-approximation schemes for NP- and PSPACE-hard problems
for geometric graphs. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp.
468–477. Springer, Heidelberg (1994)

20. Krumke, Marathe, M.V., Ravi, S.S.: Approximation algorithms for channel assign-
ment in radio networks. In: DIALM for Mobility, 2nd International Workshop on
Discrete Algorithms and methods for Mobile Computing and Communications,
Dallas, Texas (1998)

21. Lengauer, T.: Hierarchical planarity testing. J. ACM 36(3), 474–509 (1989)
22. Lengauer, T., Wagner, K.W.: Correlation between the complexities of the of hier-

archical and hierarchical versions of graph problems. J. Comput. Syst. Sci. 44,
63–93 (1992)

23. Marathe, M.V., Hunt III, H.B., Stearns, R.E., Radhakrishnan, V.: Approximation
algorithms for PSPACE-hard hierarchically and periodically specified problems. In:
Proceedings of the 26th Annual ACM Symposium on the Theory of Computing
(STOC), pp. 468–478, May 1994. A complete version appears in SIAM Journal on
Computing 27(5), 1237–1261 (1998)

24. Marathe, H., Hunt III, H., Stearns, R., Radhakrishnan, V.: Complexity of hierachi-
cally and 1-dimensioned periodically specified problems. In: Theory and Applica-
tions, DIMACS Workshop on Satisfiability Problem (1996)

25. Marathe, M.V., Radhakrishnan, V., Hunt III, H.B., Ravi, S.S.: Hierarchically spec-
ified unit disk graphs. In: van Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 21–
32. Springer, Heidelberg (1994). Journal version appears in Theoretical Computer
Science, 174(1-2), pp. 23-65, March 1997

26. McCormick, S.T.: Optimal approximation of sparse hessians and its equivalence to
a graph coloring problem. Technical Report SOL 81–22, Department of Operations
Research, Standford University (1981)

27. Molloy, M., Salavatipour, M.R.: A bound on the chromatic number of the square
of a planar graph. J. Combin. Theory Ser. B 94, 189–213 (2005)

28. Molloy, M., Salavatipour, M.R.: Frequency channel assignment on planar networks.
In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 736–747.
Springer, Heidelberg (2002)

132 M. Andreou et al.

29. Ramanathan,S., Loyd, E.R.: The complexity of distance2-coloring. In: 4th Inter-
national Conference of Computing and information, pp. 71–74 (1992)

30. Sakai, D.: Labeling chordal graphs: distance two condition. SIAM J. Discrete Math.
7, 133–140 (1994)

31. Zhou, X., Kanari, Y., Nishizeki, T.: Generalized vertex-coloring of partial k-trees.
IEICE Trans. Foundamentals EXX-A(1) (2000)

Performance Evaluation of Routing Mechanisms
for VANETs in Urban Areas

Christos Bouras1,2(B), Vaggelis Kapoulas1,2, and Enea Tsanai2

1 Computer Technology Institute and Press “Diophantus”,
Patras, Greece

{bouras,kapoulas}@cti.gr
2 Computer Engineering and Informatics Department, University of Patras,

Patras, Greece
{bouras,kapoulas,tsanai}@ceid.upatras.gr

Abstract. Mobile Ad hoc Networks (MANETs) and especially Vehicu-
lar Ad hoc Networks (VANETs) have recently gained large interest and
their performance is heavily studied. A great challenge in VANETs, espe-
cially in an urban setting, is the routing scheme used and the subsequent
performance obtained. This work presents an experimental performance
evaluation of routing mechanisms in VANETs, using simulation, within
an urban Manhattan grid like environment. It also describes and evalu-
ates an enhancement of the Greedy Perimeter Stateless Routing (GPSR)
protocol that takes into account the motion of the vehicles and the nature
of the urban environment. The simulation results demonstrate that the
proposed enhancement to the GPSR protocol manages to significantly
increase the delivery ratio without increasing the power consumption;
nevertheless, in some cases the improvement on delivery ratio is achieved
at the expense of slightly increased end-to-end delay.

Keywords: Ad-hoc networks ·MANETs · VANETs · Routing protocols

1 Introduction

Vehicular Ad hoc Networks (VANETs) represent a special class of Mobile Ad hoc
Networks (MANETs) with unique characteristics. Similar to MANETs, VANETs
are an autonomous and self-configured wireless network that allows communica-
tions without any dependency on infrastructures or a central coordinator. The
moving rates in a VANET are generally higher than that in a typical MANET
but more predictable for nodes traveling on the same direction. This means that
nodes in a VANET moving towards the same direction in a roadway, maintain
similar speeds and thus longer radio connectivity periods than those moving
in opposite directions. Another unique characteristic of VANETs is their chal-
lenging surrounding environment that contains blocks of buildings, roadways
that limit the possible node movements and roadside infrastructures that may
provide access points to the internet along with a rich variety of services and
applications.
c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 133–153, 2015.
DOI: 10.1007/978-3-319-24024-4 9

134 C. Bouras et al.

A great challenge in VANETs is the routing performance [16]. Importing
existing MANET routing protocols directly into VANETs may lead to unsat-
isfactory network performance. Compared to MANETs, the node movement in
VANETs is more predictable allowing more effective position allocation algo-
rithms and routing protocols that benefit from the availability of the Global
Positioning System (GPS) and electronic maps. However, node density may
vary a lot due to traffic conditions. An important issue in the environment of
VANETs is the presence of buildings in rural areas which adds signal weakening
and noise. Implementing a routing protocol able to select the best possible path
which avoids passing through buildings and other obstacles in the topology is
not an easy task.

Routing in VANETs has been an important field of research the last years.
Numerous works exist which study and analyze routing in VANETs. In [9,13,15]
several routing protocols in MANETs and VANETs are being studied and cate-
gorized according to their routing strategy. A comparative performance analysis
of the Ad Hoc On-Demand Distance Vector (AODV), Destination Sequenced
Distance Vector (DSDV) and Dynamic Source Routing (DSR) protocols is con-
ducted in [1] for rural and urban scenarios. In [12], general design ideas and
components are being presented for reliable routing design and implementation
and in [8], a quantitative model for evaluating routing protocols on highway sce-
narios is proposed. In [17], three realistic radio propagation models are presented
that increase the simulation results accuracy.

A novel routing protocol for reliable vehicle to roadside Access Point (AP)
connection is proposed in [21] that uses an algorithm for predicting the wire-
less links’ lifetime. In [18], a road based VANET routing protocol is proposed
that uses real-time vehicular traffic information to form the paths and is com-
pared against existing well-known routing protocols. In [11], a cross-layer posi-
tion based routing algorithm for VANETs is presented that performs better
than the Greedy Perimeter Stateless Routing (GPSR) protocol. The algorithm,
named Cross-Layer, Weighted, Position-based Routing (CLWPR), uses informa-
tion about link layer quality and positioning from navigation.

In this paper we conduct an experimental performance evaluation of efficient
routing mechanisms in MANETs, using simulation, for the case of VANETs
within an urban environment (modeled by Manhattan grid). We also propose
an enhancement of the GPRS protocol that takes into account the motion of
the vehicle to estimate their position at future times, as well as the nature of
the urban environment (i.e. the grid, in order to favor vehicles at crossroads as
the intermediary nodes). The study compares Ad Hoc On-Demand Distance
Vector (AODV), Destination Sequenced Distance Vector (DSDV), Dynamic
Source Routing (DSR), Optimized Link State Routing (OLSR), Greedy Perime-
ter Stateless Routing (GPSR) and the above proposed modification of the GPSR,
and measures the packet delivery ratio, the end to end delay and the power con-
sumption for each routing protocol in various scenarios. The results show that
the proposed enhancement to the GPSR protocol outperforms all the other pro-
tocols in all cases.

Performance Evaluation of Routing Mechanisms 135

The remainder of the paper is organized as follows: Sect. 2 provides an
overview of the routing protocols used in MANETs and VANETs that are the
subject of study, and describes the challenges associated with VANETs in an
urban setting; Sect. 3 describes the proposed enhancement to the GPRS proto-
col (named GPRS-Modified of GPRS-M for short); Sect. 4 presents the simula-
tion setting and the reference scenario; Sect. 5 presents and discusses simulation
results; and finally Sect. 6 presents our conclusions and ideas for future work.

2 Overview of Routing in MANETs and VANETs

2.1 Routing Protocols

The routing protocols compared in this paper are briefly introduced below. The
GPSR protocol is presented in more detail to ease the understanding of the
proposed enchancement in Sect. 3.

AODV. The Ad Hoc On-Demand Distance Vector [19] routing is intended for
use by mobile nodes in an Ad Hoc network. It offers swift adaptation to dynamic
link conditions, low processing and memory overhead, low network utilization,
and determines unicast routes to destinations within the Ad Hoc network. It
uses destination sequence numbers to ensure loop freedom at all times avoiding
common problems associated with classical distance from vector protocols.

DSDV. Destination Sequenced Distance Vector routing [5] is adapted from the
conventional Routing Information Protocol (RIP) to an Ad Hoc network routing.
It adds a new attribute and sequence number to each route table entry of the
conventional RIP. Using the newly added sequence number, the mobile nodes
can distinguish stale route information from the new one, thus preventing the
formation of routing loops.

DSR. Dynamic Source Routing [7] uses source routing, that is, the source indi-
cates in a data packets sequence of intermediate nodes on the routing path. In
DSR, the query packet stores within its header the IDs of the so far traversed
intermediate nodes. The destination then retrieves the entire path from the query
packet and uses it to respond to the source. As a result, the source can establish
a path to the destination. If the destination is allowed to send multiple route
replies, the source node may receive and store multiple routes from the desti-
nation. An alternative route can be used when some link in the current route
breaks. In a network with low mobility, this is advantageous over AODV since
the alternative route can be tried before DSR initiates another flood for route
discovery.

OLSR. Optimized Link State Routing [6] operates as a table driven, proactive
protocol, i.e., exchanges topology information with other nodes of the network
regularly. Each node periodically constructs and maintains the set of neighbors

136 C. Bouras et al.

that can be reached in 1 hop and 2 hops. Based on this, the dedicated MPR algo-
rithm minimizes the number of active relays needed to cover all 2-hops neighbors.
Such relays are called Multi-Point Relays (MPR). A node forwards a packet if
and only if it has been elected as MPR by the sender node. In order to con-
struct and maintain its routing tables, OLSR periodically transmit link state
information over the MPR backbone. Upon convergence, an active route is cre-
ated at each node to reach any destination node in the network. The protocol is
particularly suited for large and dense networks, as the optimization done using
MPRs works well in this context. The larger and more dense a network, the
more optimization can be achieved compared to the classic link state algorithm.

GPSR. The Greedy Perimeter Stateless Routing [10] is based on positioning
of the routers and assumes that every node has access to a location service and
knows its position coordinates. It also assumes that the source node is aware
of the final destination nodes location. The GPSR allows routers to be nearly
stateless, and requires propagation of topology information for only 1 hop. This
means that each node need only to store information about its neighbors posi-
tions. The aim of GPSR is to take advantage of geographys properties in routing
and allow high performance in forwarding without using other information. The
GPSR operates in two modes based on the position of the index node, the neigh-
bors and the final destination.

The first mode, the “greedy mode”, is the main strategy of forwarding packets
through intermediate nodes that are considered as best next hops. As best next
hop is considered the neighbor node with the least distance from the destination.
Packets are directly forwarded to this neighbors and form a short path to the
destination based on positioning. The operation of this mode is illustrated in the
left part of Fig. 1. Although this is the main state of the GPSR, there are cases
where the density and the positioning of the nodes is such that does not allow
forwarding using this approach.

When the greedy forwarding is impossible, the algorithm recovers by rout-
ing around the perimeter of the region. This is the second forwarding mode
or else the “recovery/perimeter mode”. When entering this mode, packets are
marked for their new state and are forwarded according to the counterclock-
wise rule in relation to the source–destination line; i.e., neighboring nodes are
tried as next hops, in the order they are encountered when starting from the
source–destination line and turning around counterclockwise. The operation of
this mode is illustrated in the right part of Fig. 1 and goes on until a node closer
to the final destination than the recovery entry node is found. In the right part
of Fig. 1 the orange node is the recovery entry node that informs the source node
S about not having a neighbor with less distance to the destination D than itself.

2.2 Challenges

In an urban setting the presence of buildings in the area of the network topology
plays a crucial role on the packet delivery success rate and adds a great com-
plexity and challenge on the routing level. Buildings affect radio transmission

Performance Evaluation of Routing Mechanisms 137

Fig. 1. The Greedy and the Recovery/Perimeter modes of the Greedy Perimeter State-
less Routing.

and restrict the communication between the nodes of the VANET. The fact that
communication in VANETs takes place in the high frequency of 5GHz (which is
more-or-less the standard frequency used in VANETs) makes the communica-
tion in areas with buildings even harder. These difficulties arise from penetration
through buildings, reflections, refractions, diffractions, etc. At the same time the
relatively high speed of the nodes, the resulted increased mobility and the fre-
quent topology changes add additional challenge to the problem of establishing
routes between the nodes of the VANET. Multi-hop communication and route
maintenance in these scenarios are very challenging as links can be established
only when the nodes are within line of sight (LOS) or slightly out of LOS (e.g.,
just behind corners and close to road intersections) and possibly for a relatively
small time period as the involved vehicles may move in different directions.

As a result, the existing routing protocols are not expected to perform sat-
isfactorily; indeed, as shown in Sect. 5, their performance is rather poor. This
highlights the need to come up with solutions that take into account the urban
setting and design routing protocols that a are more suitable for it. In this direc-
tion the proposed enhancement (described in the following section) takes into
account the nodes motion information to better estimate their position at each
time, and also identifies that the crossroads are the places where nodes can be
better intermediates. Thus, it tries to select as next hop a node that, at the time
of the transmission, is estimated to be at a crossroad (i.e., the best intermediate).

3 Proposed Enhancement to GPSR

3.1 Overview of the Proposed Enhancement

The challenge for GPSR is to avoid as much as possible any route dead ends and
recovery mode entries. Our proposed implementation for propagation in an area
with buildings is based on a previous approach for optimization on highways and
areas without obstacles. In the previous approach [3], the GPSR routing protocol

138 C. Bouras et al.

was enhanced in order to estimate future positions of nodes (using their speed
and direction information) and hence select intermediate nodes that maintain
higher route lifetimes and avoid link breakages while transiting data packets.

In an open field, without taking into account the building obstacles, the
mechanism of [3] can perform at relatively high levels without the need for
further major modifications. However, in the case of an urban environment case,
the GPSR protocol with this additional mechanism can easily fall into recovery
mode and fail to reach the destination with the greedy algorithm in the first
place. Figure 2, shows two common cases where the original and the modified
GPSR greedy algorithm of [3] cannot avoid falling into recovery mode. In order to
solve this, the weight parameters of the proposed mechanism have to be changed.

Fig. 2. Two common cases where the GPSR greedy algorithm falls in recovery mode.
Left: The routes are chosen in an order from red to green as the vehicles, in the vertical
road, move and successively fall out of reach. Right: The yellow route is chosen as first
optimal path but fails to reach the destination. The green route is formed in recovery
mode (Color figure online).

A key factor for multi-hop communications in a Manhattan-like grid with
buildings seems to be any node located inside or very close to road intersections.
Road intersections can function as joints for multi hop routes that do not follow
a straight line. Figure 3, illustrates such a case.

In the new extension of the GPSR routing protocol, the neighbor nodes that
are predicted to be located for the longest time period on a road intersection (and
thus in the LOS with the index node), will be assigned less weight among the
other neighbors. The new proposed weighting algorithm assigns higher priority
to neighbor nodes moving towards the destination and those that are going to be
longer inside the next road intersection in the same time. With this approach,
the probability of keeping a route up is higher as intersections provide direct
visibility with nodes on more directions.

Performance Evaluation of Routing Mechanisms 139

Fig. 3. Multi-hop route from source (yellow node) to destination (red node). Nodes
moving in road intersections function as route connectors (Color figure online).

Figure 4, shows the formation of 3 routes while utilizing the GPSR routing.
The red route depicts the case of not including buildings on the propagation.
As expected, the signal cannot reach the next desired hop by penetrating the
building. The yellow one is the case of forming a route while utilizing the default
(and first proposed mechanism) GPSR routing. As the algorithm is greedy and
based only on current and predicted future positions, it eventually reaches a
dead end. The green route, which is formed when using the new proposed mech-
anism and giving priority on nodes located in intersections, manages to reach
the destination (red node) without falling on recovery mode.

3.2 Algorithm and Architecture

Figure 5 presents a simplified overview of the architecture of the GPSR routing
protocol with the enhanced methods and sub procedures. The top procedures
(grey color) run periodically according to the hello interval initialization. The
remainder procedures run on demand, when a packet transmission is required.

The proposed extensions and modifications include:

– GPSR hello packet header: Addition of a vector velocity field that is going to
be used for position prediction and direction determination for every neighbor
node.

– SNR Tag. Addition of a piggy back field to hello messages for the SNR value
from the MAC layer during packet receipt. This field may be used while storing
neighbors to the index neighbor table.

– Modifications and additions on the presented procedures in Fig. 4:

140 C. Bouras et al.

Fig. 4. Multi-hop route from sender (yellow node) to destination (red node). Yellow
route: Default GPSR routing. Red route: The route without the buildings propagation
model. Green route: The GPSR route formation with the new proposed extension for
scenarios with buildings (Color figure online).

Fig. 5. Enhanced GPSR architecture.

1. RouteOutput(): Calls the modified BestNeighbor()
2. Forward(): Calls the modified BestNeighbor()
3. SendPacketFromQueue(): Calls the modified BestNeighbor()
4. BestNeighbor(): Uses the modified CalculateW()
5. CalculateW(): The weight calculation process for the next hop
6. GetData(): This sub process is in fact a simplified set of implemented meth-

ods that calculate specific parameters

Performance Evaluation of Routing Mechanisms 141

The main procedures of the proposed mechanism are the BestNeighbor and
CalculateW and are executed every time a node executes the RouteOutput,
Forward or SendPacketFromQueue.

The BestNeighbor procedure iterates through all the stored nodes in the
neighbour table of the index node and executes the CalculateW for each of them.
After the weight of each neighbour node has been calculated, the procedure
compares the weight of the index node with the smallest weight found in the
neighbour table. If a node in the neighbour table has a smaller weight than the
index node, then it is defined as the best neighbour and eventually as the next
hop. In the opposite case, the procedure returns a null IP address to the caller
function and eventually the GPSR enters the recovery mode. This procedure is
presented in Algorithm 1.

Algorithm 1. Procedure BestNeighbor
procedure BestNeighbor(myPos, myVel, dstPos, dstVel)

initialW = calculateW (myPos, myVel, -, -, dstPos, dstVel);
W = calculateW (myPos, myVel, neighborTable.begin()→Pos,

neighborTable.begin()→Vel, dstPos, dstVel);
for (i = neighborTable.begin(); i != neighborTable.end(); i++) do

if (W > calculateW (myPos, myVel, i→pos, i→vel, dstPos, dstVel)) then
W = calculateW(myPos, myVel, i→pos, i→vel, dstPos, dstVel);
nextHop.addr = i→addr;

end if
if (initialW > W) then

return nextHop;
else

return IpV4Address::GetZero();
end if

end for
end procedure

The CalculateW procedure is invoked for every neighbor node of the index
node through the BestNeighbor procedure and returns the calculated weight of
the examined node based on the input routing data. The CalculateW contains 2
modes based on the LOS and NLOS situation between the source and the final
destination. The first mode is triggered when the source and destination node
are within Line Of Sight and the second when they are not. For each case, a
different calculation method of W is followed. In the first mode, the algorithm
prioritizes neighbour nodes moving in similar way (same road and direction)
with the source and destination and maintaining short future distances with
the destination. The second mode, recognises 3 priority zones where zone 1 has
the least weight and zone 3 the most. Zone1 covers areas in road intersections
while zone 2 covers the areas that are in LOS with the destination. Finally,
Zone 3 covers the remaining areas that have the least priority. See Fig. 6 for an
explanation of the two modes of the CalculateW procedure.

142 C. Bouras et al.

(a)

(b)

Fig. 6. Modes in CalculateW. (a): LOS – greatest priority (Green), medium priority
(Yellow), least priority (Red). (b): NLOS – Priority zone 1 with gradual weight (Green),
zone 2 (Blue), zone 3 (Red) (Color figure online).

CalculateW uses specific routing data in order to proceed with the weight
calculations. This data is received from the procedure GetData and is mostly
related to current and future node positions, velocities and directions. In addi-
tion, several auxiliary procedures define whether a node is located in an inter-
section and whether it is within LOS with another node. Some of these auxiliary
methods are the inIntersectionTime, inLos, inLosTime, getDirections and dt.
All these auxiliary procedures are called directly or indirectly form CalculateW.
The pseudocode of CalculateW procedure is presented in Algorithm2.

The required location data for the calculation of W is provided by the aux-
iliary GetData sub procedure which is in Algorithm3.

The previously described procedures are called when a need for packet trans-
mission occurs. Algorithm 4 presents the forward procedure of the GPSR that
calls the previously described BestNeighbor and its modified sub procedures.

The described mechanism and the integration with the GPSR routing pro-
tocol have been implemented in the NS-3 simulator. The full source code with
the implementation of the proposed routing mechanism, the propagation model
used in this work and its Pyviz extensions for NS-3 can be found in http://ru6.
cti.gr/ru6/research-areas/network-simulations.

http://ru6.cti.gr/ru6/research-areas/network-simulations
http://ru6.cti.gr/ru6/research-areas/network-simulations

Performance Evaluation of Routing Mechanisms 143

Algorithm 2. Procedure CalculateW
procedure calculateW(IndxPos, IndxVel, DstPos, DstVel, SrcPos, SrcVel)

GetData ();
W = +∞;
if (inLoS (SrcPos, DstPos)) then � /* Mode 1: Source &destination in LOS */

double w1 = 0.25, w2 = 0.1;
if (inLoS (IndxFutPos, DstFutPos)) then

if (getDirection (IndxVel) == getDirection (DstVel)) then
w1 = 0.0;

else
w1 = 0.75;

end if
end if
if (inLoS (IndxFutPos, SrcFutPos)) then

if (getDirection (IndxVel) == getDirection (SrcVel)) then
w2 = 0.0;

else
w2 = 0.01;

end if
end if
W = Node DestFutDist*(1+ w1 + w2);

else � /* Mode 2: Source & destination in NLOS */
w1 = 0.5, w2 = 2; InterSectionT = 0.0;
if (inIntersection(IndxPos, IndxVel) && ((Indx DestFutDist -

0.25*Src DstFutDist) < Src DstFutDist)) then � /* Zone 1 */
InterSectionT = inIntersectionTime (IndxPos, IndxVel);
W = Indx DestFutDist*(1-w1-InterSectionT/100);

else
if ((((Indx DestFutDist - 0.25*Src DstFutDist) < Src DstFutDist) &&

(inLoS (IndxFutPos, DstFut-Pos))) || (((Indx DestCurDist - 0.25*Src DstCurDist)
< Src DstCurDist) && (inLoS (IndxPos, DstPos)))) then � /* Zone 2 */

W = Indx DestFutDist + w2*Indx SrcFutDist;
else � /* Zone 3 */

W = 2*Indx DestFutDist + w2*Indx SrcFutDist;
end if

end if
end if
return W;

end procedure

4 Simulation Settings

4.1 Reference Scenario

In this work, the studied topology is a Manhattan grid area with blocks of build-
ings and all simulations are conducted in the network simulator NS-3. Compared
to scenarios in open space (i.e., without buildings), this scenario’s propagation

144 C. Bouras et al.

Algorithm 3. Procedure GetData
procedure GetData

SrcSpeed = sqrt(pow(SrcVel.x, 2.0) + pow(SrcVel.y, 2.0));
IndxSpeed = sqrt(pow(IndxVel.x, 2.0) + pow(IndxVel.y, 2.0));
DstSpeed = sqrt(pow(DstVel.x, 2.0) + pow(DstVel.y, 2.0));
SrcFutPos.x = SrcPos.x + SrcVel.x * dt(SrcSpeed);
SrcFutPos.y = SrcPos.y + SrcVel.y * dt(SrcSpeed);
IndxFutPos.x = IndxPos.x + IndxVel.x * dt(IndxSpeed);
IndxFutPos.y = IndxPos.y + IndxVel.y * dt(IndxSpeed);
DstFutPos.x = DstPos.x + DstVel.x * dt(DstSpeed);
DstFutPos.y = DstPos.y + DstVel.y * dt(DstSpeed);
Src DstCurDist = GetDistance (SrcPos, DstPos);
Src DstFutDist = GetDistance (SrcFutPos, DstFutPos);
Indx SrcFutDist = GetDistance (IndxFutPos, SrcFutPos);
Indx DestCurDist = GetDistance (IndxPos, DstPos);
Indx DestFutDist = GetDistance (IndxFutPos, DstFutPos);

end procedure

Algorithm 4. Procedure forward
procedure forward(packet)

myPos = locationService→GetPos(indx);
myVel = locationService→GetVel(indx);
dst = packet→GetDst();
dstPos = packet→GetDstPos();
dstVel = packet→GetDstVel();
/* Get the best next hop */
if (neighborTable.isNeighbor(dst)) then

nextHop = dst;
else

nextHop= neighborTable.BestNeighbor(myPos, myVel, dstPos, dstVel);
end if
if (nextHop.addr→isValid()) then

route→SetGateway(nextHop);
return;

else
RecoveryMode(route);
return;

end if
end procedure

model computes the effects of the buildings presence to the signal path loss in
street canyons.

In particular, the B1 – Urban micro-cell scenario of the WINNER II Channel
Models [14] is used in our tests. As described in [14], all antennas are below the
height of surrounding buildings and both Line Of Sight (LOS) and Not Line
Of Sight (NLOS) cases are modeled. The signal reaches the receiver nodes as a
result of the propagation around corners, through buildings, and between them.

Performance Evaluation of Routing Mechanisms 145

The path loss calculations of the B1 Winner Model in LOS and in NLOS can be
found in the summary table of the path-loss models, in [14].

Figure 7, shows the simulated network graph for 200 wireless ad hoc nodes
in NS-3 for the cases where buildings are absent or present in the scenario. As
seen, in the case without buildings, the resulting graph has a very large number
of links (the relevant part of the figure is difficult to see because of the number
of links) and it is very strongly connected. In the case with the buildings, the
resulting graph has a greatly reduced number of links and this already indicates
that the expected performance of the routing protocols will be much different.

Fig. 7. Network graph for 200 nodes. Left: No buildings are modeled in propagation.
Right: buildings are modeled with the 1 Winner Model.

4.2 Experiments and Parameters

For the evaluation of the studied routing protocols of this work as well as the
proposed GPSR routing protocol with the integration of the previously presented
mechanism, 2 set of simulations are conducted in the reference scenario. Each
set is conducted for 3 scenario settings. For each scenario setting, each set of
simulation is conducted for 5 different random node placements and mobility.
For the node mobility generation the BonnMotion [2] software is used. All the
network parameters and the scenario setting are presented in Table 1. Please
note, that the density of the nodes is kept almost invariant, as the number of
nodes increases with the size of the grid.

The first set of simulations is conducted to evaluate the performance of the
studied and proposed routing protocols in the case of LOS between sender and
final receiver. In this set, during the whole transmission, the sender and receiver
maintain positions within LOS. This case depicts the common case of vehicles
moving on the same road along the same direction. In order to evaluate the

146 C. Bouras et al.

Table 1. Simulation Parametes.

Network Parameters

Node Transmission Range 250m
Mac Layer IEEE 802.11p Wave
PhyMode Ofdm3mbs10MHz
Propagation Model Winner B1 Model
Packet Size 256 Bytes
Packet Interval 0.01s
Flow duration 20 sec
Application Udp UDP Server-Client

Scenario Settings

Node Average Velocity 40 km/h
Node Max Velocity 65 km/h
Node Max Pause Time (traffic light) 5 sec
Node turn probability 0.5
RoadLength 150 m
RoadWidth 20 m

Nodes Hops Grid (roads) Area (m2)

Scenario #1 50 2 - 4 3 x 3 500
Scenario #2 100 2 - 7 4 x 4 700
Scenario #3 150 3 - 10 5 x 5 800

routing performance in LOS scenarios, the sender and receiver nodes are either
stable on the opposite edges of the same road or moving in the same road of the
Manhattan grid area. The intermediate nodes are randomly placed and moving
to random directions in the grid. This set of experiments triggers the mode1 of
the proposed mechanism.

The second set of experiments evaluates the performance of the studied and
proposed routing protocols in the case of NLOS between the sender and final
receiver. In this set, during the whole transmission, the sender and receiver
maintain positions that are in NLOS. This case depicts a challenging scenario
as the sender and final receiver are located and moving on different roads for
the whole packet transmission. In this set of simulations, the sender and receiver
nodes are either stable in different roads or moving in different roads of the
Manhattan grid area. The intermediate nodes are again randomly placed and
moving to random directions in the grid. This set of experiments triggers the
mode2 and mode1 (for less common cases where the previous hop is in LOS with
the destination) of the proposed mechanism.

5 Results and Discussion

The first set of experiments has been conducted for the case where the sender
and the receiver are in a line-of-sight (i.e. they are both in the same street in the
Manhattan grid). This mostly presents the best case scenario for all algorithms

Performance Evaluation of Routing Mechanisms 147

and is used to set a base of what performance each algorithm can achieve without
complicating the examined scenario.

Figure 8 shows the average (over the different simulation runs) packet deliv-
ery ratio achieved by each routing protocol, for the case there is line-of-sight
between the sender and the receiver. In accordance with the results from [3],
the worst performer or this case is AODV, for all the different Manhattan grid
sizes. The delivery ratio of GPSR is better that the delivery ratio of the other
existing routing protocols, and this is due to the knowledge of the positions
of the neighboring nodes that the protocol takes advantage of to select as the
next hop the node closer to destination. As the existence of the buildings should
not play a major role in this case, GPSR makes good choices and maintain a
high delivery ratio. However the proposed modification to the GPSR protocol
boosts the delivery ratio quite higher than the unmodified GPSR and is the best
performer in terms of the packet delivery ratio achieved.

50 100 150
0

10

20

30

40

50

60

70

80

90

100
PDR vs Topology − LOS Scenarios

Number of Nodes

PD
R

 (%
)

AODV
DSDV
DSR
OLSR
GPSR
GPSR−M

Fig. 8. Packet delivery ratio, for the case of line-of-sight between sender and receiver.

It should be noted that the delivery ratio drops as the size of the grid and
the number of the nodes increase (maintaining almost the same node density).
This is due to the fact that with larger grids more hops are required and the
chances that there is a “gap” without intermediates, in the line-of-sight, becomes
bigger and bigger and in that case the route has to make a “detour”, which is no
longer a simple case. The effect will be more evident with the end-to-end delay.
However it is worth noting that the rate that the delivery ratio drops, as the grid
increases in size, is less for the proposed modification to the GPSR protocol.

Figure 9 shows the average (over the different simulation runs) end-to-end
delay achieved by each routing protocol, for the case there is line-of-sight between

148 C. Bouras et al.

the sender and the receiver (please note that the ordering of the routing protocols
and the grid sizes is different from the previous figure, so that larger bars do not
obscure smaller ones). It should be noted that end-to-end delay increases rapidly
with the size of the grid and the number of nodes (while node density remains
almost the same). As already mentioned this is due to the “gaps”, without nodes,
that appear in the line-of-sight and require that another route is formed that
detours the “gap”. As already hinted this is not easily done in the urban setting,
and for larger grid this case starts to look more like the case where there is no
line-of-sight between the sender and the receiver.

50 100 150
0

50

100

150

200

250

300
E2E Delay vs Topology − LOS Scenarios

Number of Nodes

E2
E

(m
s)

AODV
DSDV
DSR
OLSR
GPSR
GPSR−M

Fig. 9. End-to-end delay, for the case of line-of-sight between sender and receiver.

Having said that, for the small grid the best performer is the proposed modi-
fication to the GPSR protocol, and for the large grid the best performer is DSR.
This can be explained by the fact that the GPSR-M protocol, maintains routes
that deliver more packets even if for some of them the delay is large; i.e., there
is a tradeoff between delivery ratio and delay. Still the proposed modification
to the GPSR protocol manages to have better end-to-end delay than the rest of
the routing protocols concerned.

Figure 10 shows the average (over the different simulation runs) power con-
sumption for each routing protocol, for the case there is line-of-sight between the
sender and the receiver (again, note the ordering of the routing protocols and
the grid). The less power is consumed by the use of the DSR protocol. AODV,
OLSR, GPSR and the proposed modification to the GPSR demonstrate a similar
power usage. For the proposed modification to the GPSR protocol this means
that the modifications can provide their benefits without increasing the power
consumption.

Performance Evaluation of Routing Mechanisms 149

50 100 150
18

20

22

24

26

28

30

32

34
Energy Consumption vs Topology − LOS Scenarios

Number of Nodes

En
er

gy
 (J

)
AODV
DSDV
DSR
OLSR
GPSR
GPSR−M

Fig. 10. Power consumption, for the case of line-of-sight between sender and receiver.

50 100 150
0

10

20

30

40

50

60

70

80

90

100
PDR vs Topology − NLOS Scenarios

Number of Nodes

PD
R

 (%
)

AODV
DSDV
DSR
OLSR
GPSR
GPSR−M

Fig. 11. Packet delivery ratio, for the case there is no line-of-sight between sender and
receiver.

The second set of experiments where done for the generic (and more inter-
esting) case where there is no line-of-sight between the sender and the receiver
(i.e. they are in different streets in the Manhattan grid). This presents the most
usual case for all algorithms.

150 C. Bouras et al.

Figure 11 shows the average (over the different simulation runs) packet deliv-
ery ratio achieved by each routing protocol, for the case there is no line-of-sight
between the sender and the receiver. In this case the worst performer is DSDV,
with second-worst the GPSR protocol. However the proposed modification to
the GPSR protocol achieves more than double delivery ratio, and makes the
GPSR-M the best performer with respect to the delivery ratio. This is explained
by the fact that GPSR-M favors as intermediate nodes the vehicles that are
(at the time of the transmission) in a crossroad and are more suited to route
packets within the Manhattan grid. The original GPSR protocol greedily selects
the node closer to the destination without taking into account if packets can be
forwarded from there. As in the previous case the packet delivery ratio decreases
for all routing protocols as the grid size increases. However, the improvement
that GPSR-M achieves over the other protocols increases with the grid size (for
the large grid is almost triple of the second best).

Figure 12 shows the average (over the different simulation runs) end-to-end
delay achieved by each routing protocol, for the case there is no line-of-sight
between the sender and the receiver. The end-to-end delay of GPSR-M is on
the same level as the DSR and the AODV protocols, but the best performer
is the OLSR protocol. Still GPSR-M greatly enhances the end-to-end delay of
the GPSR protocol. As in the previous case the fact that GPSR-M has a much
greater delivery ratio impacts the average end-to-end delay.

However, the overall performance of the proposed modification to the GPSR
protocol is deemed higher than the performance of the remainder routing proto-
cols, as the delivery ratio is more important that the end-to-end delay, and the
resulting tradeoff is more than acceptable.

50 100 150
0

50

100

150

200

250

300

350
E2E Delay vs Topology − NLOS Scenarios

Number of Nodes

E2
E

(m
s)

AODV
DSDV
DSR
OLSR
GPSR
GPSR−M

Fig. 12. End-to-end delay, for the case there is no line-of-sight between sender and
receiver.

Performance Evaluation of Routing Mechanisms 151

50 100 150
18

20

22

24

26

28

30

32

34
Energy Consumption vs Topology − NLOS Scenarios

Number of Nodes

En
er

gy
 (J

)

AODV
DSDV
DSR
OLSR
GPSR
GPSR−M

Fig. 13. Power consumption, for the case of no line-of-sight between sender and
receiver.

Figure 13 shows the average (over the different simulation runs) power con-
sumption of each routing protocol, for the case there is no line-of-sight between
the sender and the receiver. Again, the less power is consumed by the use of
the DSR protocol. AODV, OLSR, GPSR and the proposed modification to the
GPSR demonstrate similar power usage. For the proposed modification to the
GPSR protocol this means that the modifications can provide their benefits
without increasing the power consumption.

The overall results demonstrate that the proposed mechanism greatly
improves the GPSR performance for both LOS and NLOS scenarios and out-
performs the other examined routing protocols. In all cases, the modified GPSR
achieved higher packet delivery ratio and maintained quite satisfactory results
even in very challenging scenarios of NLOS cases. Therefore, the proposed
enhancement is a strong contender to be implemented together with GPSR.

6 Conclusions and Future Work

In this work we presented an experimental performance evaluation of routing
mechanisms in MANETs, using simulation, for the case of VANETs within an
urban environment (modeled by Manhattan grid). We also described and evalu-
ated an enhancement of the GPRS protocol that takes into account the motion
of the vehicles to estimate their position at future times, as well as the nature
of the urban environment (i.e. the grid, in order to favor vehicles at crossroads
as the intermediary nodes).

152 C. Bouras et al.

The simulation results have demonstrated that the performance of VANETs
in an urban setting (with lots of buildings obstructing direct communications) is
not satisfactory for a wide range of routing protocols. This is due to the reduced
number of direct links that can be utilized in such a setting.

Still the proposed enhancement to the GPSR protocol manages to signifi-
cantly increase the delivery ratio without increase power consumption; never-
theless, in some cases the higher delivery ratio is achieved at the expense of
slightly increased end-to-end delay.

The main conclusion is that the characteristics of the urban setting can be
exploited in order to come up with better routing strategies. However, the limi-
tations imposed by the nature of the network topology are not clear, as it is not
clear how far the performance increase can go.

Thus, our future work includes understanding better the problem, and
proposing and evaluating new routing schemes that can perform much better
in an urban setting.

In addition, we plan to incorporate sophisticated mobility prediction algo-
rithms and mechanisms [4,20] in our work, and use these predictions to influence
and improve the routing logic.

Acknowledgment. We would like to thank Prof. Paul G. Spirakis for his valuable
guidance to our academic and professional careers.

References

1. Abbas, S.F., Chaudhry, S.R., Yasin, G.: VANET route selection in urban/rural
areas using metric base traffic analysis. In: UBICOMM 2013, The Seventh Inter-
national Conference on Mobile Ubiquitous Computing, Systems, Services and Tech-
nologies, pp. 85–91 (2013)

2. Aschenbruck, N., Ernst, R., Gerhards-Padilla, E., Schwamborn, M.: BonnMotion:
a mobility scenario generation and analysis tool. In: Proceedings of the 3rd Interna-
tional ICST Conference on Simulation Tools and Techniques (ICST), p. 51, March
2010. http://dl.acm.org/citation.cfm?id=1808143.1808207

3. Bouras, C., Kapoulas, V., Tsanai, E.: A GPSR enhancement mechanism for routing
in VANETs. In: Proceedings of the 13th International Conference on Wired &
Wireless Internet Communications (WWIC 2015), Málaga, Spain, 25–27 May 2015

4. Gavalas, D., Konstantopoulos, C., Mamalis, B., Pantziou, G.: Mobility prediction
in mobile ad-hoc networks. In: Pierre, S. (ed.) Next Generation Mobile Networks
and Ubiquitous Computing, pp. 226–240. IGI Global, Hershey (2010)

5. He, G.: Destination-sequenced distance vector (DSDV) protocol. Helsinki Univer-
sity of Technology, Networking Laboratory (2002)

6. Jacquet, P., Mühlethaler, P., Clausen, T.H., Laouiti, A., Qayyum, A., Viennot, L.:
Optimized link state routing protocol for ad hoc networks. In: IEEE International
Multi Topic Conference. pp. 62–68 (2001)

7. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks.
In: Imielinski, T., Korth, H.F. (eds.) Mobile Computing. The Kluwer International
Series in Engineering and Computer Science, vol. 353, pp. 153–181. Springer, Hei-
delberg (1996). http://www.springerlink.com/index/10.1007/b102605

http://dl.acm.org/citation.cfm?id=1808143.1808207
http://www.springerlink.com/index/10.1007/b102605

Performance Evaluation of Routing Mechanisms 153

8. Kaisser, F., Johnen, C., Vèque, V.: Quantitative model for evaluate routing pro-
tocols in a vehicular ad hoc networks on highway. In: Vehicular Networking Con-
ference (VNC 2010), pp. 330–337. IEEE (2010)

9. Kakarla, J., Sathya, S.S., Laxmi, B.G., Babu, B.R.: A survey on routing pro-
tocols and its issues in VANET. Int. J. Comput. Appl. 28(4), 38–44 (2011).
http://www.ijcaonline.org/volume28/number4/pxc3874663.pdf

10. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless net-
works. In: Proceedings of the 6th annual international conference on Mobile com-
puting and networking, pp. 243–254. ACM (2000)

11. Katsaros, K., Dianati, M., Tafazolli, R., Kernchen, R.: CLWPR - a novel cross-
layer optimized position based routing protocol for VANETs. In: IEEE Vehicular
Networking Conference (VNC), pp. 139–146 (2011)

12. Kim, J.H., Lee, S.: Reliable routing protocol for vehicular ad hoc networks. AEU-
Int. J. Electron. Commun. 65(3), 268–271 (2011)

13. Kumar, R., Dave, M.: A comparative study of various routing protocols in VANET.
arXiv preprint. arXiv:1108.2094 (2011)

14. Kyösti, P., Meinilä, J., Hentilä, L., Zhao, X., Jämsä, T., Schneider, C., Narandzić,
M., Milojević, M., Hong, A., Ylitalo, J., Holappa, V.M., Alatossava, M., Bultitude,
R., de Jong, Y., Rautiainen, T.: WINNER II Channel Models. Technical report,
EC FP6 (2007). http://www.ist-winner.org/deliverables.html

15. Lee, K.C., Lee, U., Gerla, M.: Survey of routing protocols in vehicular ad hoc
networks. In: Advances in vehicular ad-hoc networks: Developments and challenges,
pp. 149–170 (2010)

16. Maan, F., Mazhar, N.: MANET routing protocols vs mobility models: a perfor-
mance evaluation. In: 2011 Third International Conference on Ubiquitous and
Future Networks (ICUFN), pp. 179–184 (2011)

17. Martinez, F.J., Toh, C.K., Cano, J.C., Calafate, C.T., Manzoni, P.: Realistic radio
propagation models (RPMs) for VANET simulations. In: Wireless Communications
and Networking Conference (WCNC 2009), pp. 1–6. IEEE (2009)

18. Nzouonta, J., Rajgure, N., Wang, G., Borcea, C.: VANET routing on city roads
using real-time vehicular traffic information. IEEE Trans. Veh. Technol. 58(7),
3609–3626 (2009)

19. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc On-Demand Distance Vector
(AODV) Routing (2003). http://www.ietf.org/rfc/rfc3561.txt

20. Su, W., Lee, S.J., Gerla, M.: Mobility prediction and routing in
ad hoc wireless networks. Int. J. Netw. Manag. 11(1), 3–30 (2001).
http://dx.doi.org/10.1002/nem.386

21. Wan, S., Tang, J., Wolff, R.S.: Reliable routing for roadside to vehicle communica-
tions in rural areas. In: IEEE International Conference on Communications (ICC
2008), pp. 3017–3021. IEEE (2008)

http://www.ijcaonline.org/volume28/number4/pxc3874663.pdf
http://arxiv.org/abs/1108.2094
http://www.ist-winner.org/deliverables.html
http://www.ietf.org/rfc/rfc3561.txt
http://dx.doi.org/10.1002/nem.386

Pioneering the Establishment of the Foundations
of the Internet of Things

Ioannis Chatzigiannakis1,2(B)

1 Sapienza University of Rome, Rome, Italy
ichatz@dis.uniroma1.it

2 Computer Technology Institute & Press “Diophantus”,
Patras, Greece

Abstract. In the Internet of Things era, every one of over a trillion
everyday items will include at least some ability to store and process
information. And, more important, to share that information over the
global Internet with the other trillion items. In order to support this
technological evolution, among the first problems that were addressed
by the research community was that of basic network communication as
existing, conventional (Internet-like) networking approaches were either
unworkable or impractical. One of the solutions proposed is the so-called
“Support Approach” that was proposed in 2000 and rigorously studied
using a combination of theoretical and practical research. In this paper we
present the main findings and we comment on the research methodology
that led to these results.

1 The Internet of Things and Intermittent Connectivity

Many new technologies seem to arrive out of nowhere—and then, suddenly,
everyone is talking about them. That is the case with the Internet of Things
(IoT). The term was first coined by Kevin Ashton back in 1999, yet it became a
standard term in scientific conferences and research forums after about 10 years.
After 15 years, in 2014 it became a hot-topic in the business world, with numer-
ous reports presenting the business opportunities of bringing forward from the
research labs this now-stable paradigm to realize applications and services that
were impossible to develop with already existing technologies.

During this period of 15 years, various other terms were used before the
term Internet of Things became dominant. In early 2000, the Mobile Ad-hoc
Networks was the most commonly used term. A few years later, the term Wireless
Sensor Networks was introduced, and a bit later the term Pervasive Computing
appeared in the scene.

Regardless of the name and ephimeral keywords, the technological goal
remained the same: to integrate Internet and the Web with everyday objects
(such as doors, chairs, electric appliances, cars, etc.) and ultimately interconnect
the digital and physical domains. Clearly, the types of objects to be connected
with the Internet, e.g., in terms of usage, size, and numbers, is extremely diverse
thus having different computation and communication requirements. For this
c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 154–168, 2015.
DOI: 10.1007/978-3-319-24024-4 10

Pioneering the Establishment of the Foundations of the Internet of Things 155

reason, a large number of computing architectures and networking paradigms
have been proposed and different networking standards have been developed.

In most cases, the operational and performance characteristics of the
newly introduced technologies made conventional (Internet-like) networking
approaches either unworkable or impractical. Concepts of occasionally-connected
networks became common in the real-world applications developed; real-world
cases that suffer from frequent partitions and that rely on more than one diver-
gent set of protocols or protocol families.

Today these characteristics are interwined with the Internet of Things and
uniformly considered by all developers and researchers as a basic challenge. Yet
at the very beginning of the inception of the Internet of Things, this was not the
case. Paul Spirakis was among the very few visionary to predict that in order to
realize all these new types of applications we would have to address the problem
of intermittent connectivity in networks with long delays between sending and
receiving messages, or long periods of disconnection.

In 1999, Paul Spirakis commenced the study of such networks by guiding
one of his graduate students to work on this area [10]. During that time, the
most common way to establish communication was to form paths of interme-
diate nodes that lie within one another’s transmission range and could directly
communicate with each other, see e.g., [29]. The mobile nodes would have to
act as nodes and routers at the same time in order to propagate packets along
these paths. The approach of maintaining a global structure with respect to
the temporary network was a difficult problem. Since nodes constantly move,
the underlying communication graph is changing, and the nodes have to adapt
quickly to such changes and reestablish their routes. It was in 2005 when Busch
and Tirthapura [8] provided the first analysis of the performance of some charac-
teristic protocols [20,29] and shown that in some cases they require Ω

(
l2

)
time to

stabilize (where l is the number of nodes), i.e., be able to provide communication.
In 2000, the first results of Spirakis’ team was published under the title

“Analysis and Experimental Evaluation of an Innovative and Efficient Routing
Protocol for Ad-hoc Mobile Networks” [14]. Their work introduced a new commu-
nication mechanism for highly dynamic networks where the nodes are partitioned
for arbitrary periods of time. In contrast to all techniques available at that time,
the new approach proposed to utilize a (mobile) small-sized support subnetwork,
i.e., a subset of nodes that are controlled by the network and move in a coor-
dinated way acting as an intermediate storage of messages. In [15] (2001) the
innovative mechanism was shown to establish communication between any pair
of nodes in small, a-priori guaranteed expected time bounds even when the nodes
of the network are disconnected for arbitrary period of times.

In [18] different methods to organize the support subnetwork were studied and
their effect on the correctness and efficiency of the communication mechanism.
Using rigorous mathematical tools it was shown that the studied organization
schemes are correct, efficient, and totally avoid message flooding. Interestingly
they are inherently scalable to the number of nodes that comprise the network.
This was fundamentally different to other techniques introduced later on, that

156 I. Chatzigiannakis

relied on epidemic processes that required the message to reach out all nodes
of the network to guarantee the correct propagation of the information, see
e.g., [26].

Their research work concluded in 2003, after a series of research results that
established the theoretical foundations for routing in networks that experience
partitions for arbitrary durations of time. In 2008 their innovative communi-
cation technique was included in the Encyclopedia of Algorithms, published by
Springer [27], under the title “Communication in Ad Hoc Mobile Networks Using
Random Walks” [11].

Interestingly, after four years, due to the study of the Interplanetary Internet,
which focused primarily on the issue of deep space communication in high-delay
environments, these ideas were used to form the concept of Delay Tolerant Net-
working [7]. Shortly after, the paradigm introduced and studied by Spirakis et
al. was used to develop routing protocols for delay tolerant networks. In [26] the
term support subnetwork was replaced by the term Oracle-based routing to better
describe the routing mechanism in networks with frequent disconnections. Even-
tually the term DTN (Delay Tolerant Networks) became dominant and created
a sub-area of research that led in 2007 in the formation of the Delay-Tolerant
Networking Architecture under the RFC4838 [9].

2 Modeling Mobile and Dynamic Networks

Like almost all scientific fields, theoretical models are of central importance
as they influence the ability to answer fundamental questions. The choice of a
particular model usually depends on what problem is studied and what type of
algorithm is presented. In the attempt to theoretically evaluate the performance
of mobile and dynamic networks, several different models of mobile information
processing have been studied. Yet, until 1999, the vast majority of the body
of research followed the approach of slowly-changing communication graphs:
modelling nodes motions only implicitly, i.e., via a pre-assumed upper bound on
the rate of virtual link changes.

In 1998, Paul Spirakis et al. realized that the motions of the nodes are the
cause of the fragility of the virtual links and followed a completely different
approach by proposing an explicit model of motions. In a seminal work [23],
they presented the motion graph model that distinguishes explicitly between (a)
the fixed (for any algorithm) space of possible motions of the mobile nodes and
(b) the kind of motions that the nodes perform inside this space. The space of
motions is only combinatorially modelled, i.e., as a graph. Based on this new
model, in [23] they studied the problem of leader election in mobile networks.

The newly introduced model stated that the space of possible motions of the
mobile nodes is combinatorially abstracted by a motion-graph, i.e., the detailed
geometric characteristics of the motion are neglected. Each node is assumed to
have a transmission range represented by a sphere tr centered by itself. Any other
node inside tr can receive any message broadcast by this node. This sphere is
approximated by a cube tc with volume V(tc), where V(tc) < V(tr). The size

Pioneering the Establishment of the Foundations of the Internet of Things 157

of tc can be chosen in such a way that its volume V(tc) is the maximum that
preserves V(tc) < V(tr), and if a mobile node inside tc broadcasts a message,
this message is received by any other node in tc. Given that the mobile nodes
are moving in the space S, S is divided into consecutive cubes of volume V(tc).

Definition 1. The motion graph G(V,E), (|V | = n, |E| = m), which corre-
sponds to a quantization of some space S is constructed in the following way: a
vertex u ∈ G represents a cube of volume V(tc) and an edge (u, v) ∈ G exists if
the corresponding cubes are adjacent.

For an example of the quantization process see Fig. 1. The number of vertices
n, actually approximates the ratio between the volume V(S) of space S, and the
space occupied by the transmission range of a mobile node V(tr). In the extreme
case where V(S) ≈ V(tr), the transmission range of the nodes approximates
the space where they are moving and n = 1. Given the transmission range
tr, n depends linearly on the volume of space S regardless of the choice of
tc, and n = O

(V (S)
V (tr)

)
. The ratio V (S)

V (tr) is the relative motion space size and is
denoted by ρ. Since the edges of G represent neighboring polyhedra each vertex
is connected with a constant number of neighbors, which yields that m = Θ(n).
In this example where tc is a cube, G has maximum degree of six and m ≤ 6n.
Thus motion graph G is (usually) a bounded degree graph as it is derived from a
regular graph of small degree by deleting parts of it corresponding to motion or
communication obstacles. Let Δ be the maximum vertex degree of G.

(a) original network area S (b) divided in cubes (c) motion graph G

Fig. 1. The original network area S, how it is divided in consecutive cubes of volume
V(tc) and the resulting motion graph G

The motion graph model was extended in [17] to incorpotate the motion the
nodes perform during the execution of a particular application. The core idea of
the extension was that nodes’ motion is controlled by an adversary—a higher
level entity that determines the way that the nodes move. Then the application
may be aware of these motions (using some particular technology, or by simply
having the users to input their motion patterns) or can be totally unknown.

In the general case, the extension states an oblivious adversary or restricted
motion adversary, that is the adversary determines motion patterns in any possi-
ble way but independently of the distributed application executed by the nodes.
The central idea here is to exclude cases where some of nodes are deliberately
trying to maliciously affect the application (e.g., to avoid specific nodes with
central node in the application and network management).

158 I. Chatzigiannakis

For purposes of studying the efficiency of distributed applications for dynam-
ically changing networks on the average, the model extensions abstracted the
motion of the nodes by concurrent and independent random walks. Having the
mobile users move randomly, either according to uniformly distributed changes
in their directions and velocities or according to the random waypoint mobility
model by picking random destinations, was quite common at that point of time
and was used by other researchers (see e.g. [21,24]).

The key observation that led to the use of random walks was a fundumental
result of graph theory, according to which, dense graphs look like random graphs
in many of their properties. This was already noticed for expander graphs at least
by [1,3] and captured by the famous Szemeredi’s Regularity Lemma [31] (in some
sense most graphs can be approximated by random-looking graphs).

In analogy, Spirakis and his student conjectured that any set of dense (in
number) but arbitrary otherwise motions of many nodes in the motion space
can be approximated (at least with respect to their meeting and hitting times
statistics) by a set of concurrent dense random walks. But the meeting times sta-
tistics of the nodes essentially determine the virtual fragile links of any ad-hoc
network. They believed that the suggestion for adoption of concurrent random
walks as a model for input motions, was not only a tool for average case per-
formance analysis but it might in fact approximate well any mobile network of
dense motions.

3 A Network Organization Framework for Dynamic
Mobile Networks

The problem of communication among nodes of different capabilities is one of the
most fundamental problems in the Internet of Things and is at the core of many
algorithms, such as for network management, data processing and fusion, etc.
The work of Spirakis and Chatzigiannakis focused on networks that are subject
to highly dynamic structural changes created by mobility, channel fluctuations
and device failures [17,19]. These changes affect topological connectivity, occur
with high frequency and may not be predictable in advance. The problem of
establishing communication is such networks is now widely known as the problem
of Routing in Low Power and Lossy Networks and standardization efforts are
coordinated by the Internet Engineering Task Force (IETF) charter ROLL1.

The key idea of the communication framework is to take advantage of the
mobile nodes natural movement by exchanging information whenever mobile
nodes meet incidentally. This idea resembles gossip like communication protocols
where messages are spread among nodes like rumors. If we assume that the nodes
will meet often enough, and moreover, if we assume that they will not try to
avoid specific areas of the area covered by the network, then it is reasonable
to accept that eventually one of the many copies of the original message will
reach the intended receiver. During the same time of the work of Spirakis and

1 https://datatracker.ietf.org/wg/roll/charter/.

https://datatracker.ietf.org/wg/roll/charter/

Pioneering the Establishment of the Foundations of the Internet of Things 159

his team, this approach was followed by [32] where an epidemic algorithm was
designed. In their solution, messages are broadcast to all neighbors as long as
there is enough storage space to hold the copies. When there is no room in the
local storage of a node, oldest messages are evicted.

In contrast to the work of [32] and other epidemic algorithms introduced
later on in the relevant literature, the protocol framework of Spirakis et al.
removes these assumptions on the mobility patterns of the nodes. It was evident
to them that if the nodes would be spread in remote areas and they would not
move beyond these areas, then there would no way for information to reach
them, unless the application took special care of such situations. To solve this
problem, they introduced the idea to force only a small subset of the nodes to
move as per the needs of the application; they called this subset of nodes the
support of the network. The idea of a support team was eventually tested in the
field after 14 years, in 2014 as part of a project partially supported by the US
National Aeronautics and Space Administration (NASA); a team of quadcopters
was used to establish digital communication networks.

Assuming the availability of such nodes, the support nodes can be used to
provide a simple, correct and efficient strategy for communication between any
pair of nodes of the network that avoids message flooding. Actually the support
can assist by providing efficient, secure and robust network management and
organization. Interestingly, this idea creates a new class of protocols (distributed
algorithms) for ad-hoc mobile networks, which is defined as follows:

Definition 2. Non-Compulsory protocols are the ones whose execution does not
affect the movement of the mobile hosts. On the other hand, compulsory protocols
are the those that require all hosts to perform certain moves in order to ensure the
correct protocol execution. Finally, the class of ad-hoc mobile network protocols
which enforce a (small) subset of the mobile hosts to move in a certain way is
called the class of semi-compulsory protocols.

Essentially, non-compulsory protocols are gossip based protocols that try to
take advantage of the mobile hosts natural movement by exchanging informa-
tion whenever mobile hosts meet incidentally. On the other hand, Compulsory
protocols force the mobile hosts to move according to a specific scheme in order
to meet the protocol demands (i.e. meet more often, spread in a geographical
area, etc.) and speed up the spreading of messages.

Definition 3. The subset of the mobile hosts of an ad-hoc mobile network whose
motion is determined by a network protocol P is called the support Σ of P. The
part of P which indicates the way that members of Σ move and communicate is
called the support management subprotocol MΣ of P.

This definition captures network management ideas for ad-hoc mobile net-
works. The scheme of Spirakis et al. defines a support (and its management sub-
protocol) suitable not only for pairwise communication but also for a whole set
of basic problems including many-to-one communication, information spreading
and multicasting.

160 I. Chatzigiannakis

Definition 4. Consider a family of protocols, F , for a mobile ad-hoc network,
and let each protocol P in F have the same support (and the same support
management subprotocol). Then Σ is called the support of the family F .

The scheme follows the general design principle of mobile networks (with a
fixed subnetwork however) called the “two-tier” principle [25] which says that
any protocol should try to move communication and computation to the fixed
part of the network. The idea of the support Σ is a simulation of such a (skeleton)
network by moving hosts, however.

In addition, the network designer may wish that the way hosts in Σ move
(maybe coordinated) and communicate is robust (i.e. that it can tolerate failures
of hosts). In the original work of Spirakis et al., they considered permanent host
failures (i.e. stop failures). That is, once such a fault happens then the host of
the fault does not participate in the ad-hoc mobile network anymore.

Definition 5. A support management subprotocol, MΣ, is k-faults tolerant, if
it still allows the members of F (or P) to execute correctly, under the presence
of at most k permanent faults of hosts in Σ (k ≥ 1).

4 Basic Communication Algorithms for Dynamic Mobile
Networks

A basic communication problem, in dynamic mobile networks, is to send informa-
tion from some sender user, MHS , to another designated receiver user, MHR.

Let k nodes be a predefined set of nodes that become the nodes of the sup-
port. These nodes move randomly and fast enough so that they visit in suffi-
ciently short time the entire motion graph. When some node of the support is
within transmission range of a sender, it notifies the sender that it may send
its message(s). The messages are then stored “somewhere within the support
structure”. When a receiver comes within transmission range of a node of the
support, the receiver is notified that a message is “waiting” for him and the
message is then forwarded to the receiver.

Protocol 1. The “Snake” Support Motion Coordination Protocol. Let S0, S1,
. . ., Sk−1 be the members of the support and let S0 denote the leader node (pos-
sibly elected). The protocol forces S0 to perform a random walk on the motion
graph and each of the other nodes Si execute the simple protocol “move where
Si−1 was before”. When S0 is about to move, it sends a message to S1 that states
the new direction of movement. S1 will change its direction as per instructions
of S0 and will propagate the message to S2. In analogy, Si will follow the orders
of Si−1 after transmitting the new directions to Si+1. Movement orders received
by Si are positioned in a queue Qi for sequential processing. The very first move
of Si, ∀i ∈ {1, 2, . . . , k − 1} is delayed by a δ period of time.

The purpose of the random walk of the head S0 is to ensure a cover, within
some finite time, of the whole graph G without knowledge and memory, other

Pioneering the Establishment of the Foundations of the Internet of Things 161

than local, of topology details. This memoryless motion also ensures fairness,
low-overhead and inherent robustness to structural changes.

Consider the case where any sender or receiver is allowed a general, unknown
motion strategy, but its strategy is provided by a restricted motion adversary.
This means that each node not in the support either (a) executes a deterministic
motion which either stops at a vertex or cycles forever after some initial part or
(b) it executes a stochastic strategy which however is independent of the motion
of the support. The authors in [19] prove the following correctness and efficiency
results. The reader can refer to the excellent book by Aldous and Fill [2] for a
nice introduction on Makrov Chains and Random Walks.

Theorem 1. The support and the “snake” motion coordination protocol guar-
antee reliable communication between any sender-receiver (A,B) pair in finite
time, whose expected value is bounded only by a function of the relative motion
space size ρ and does not depend on the number of nodes, and is also independent
of how MHS, MHR move, provided that the mobile nodes not in the support do
not deliberately try to avoid the support.

Theorem 2. The expected communication time of the support and the “snake”
motion coordination protocol is bounded above by Θ(

√
mc) when the (optimal)

support size k =
√

2mc and c = e
e − 1u, with u being the “separation threshold

time” of the random walk on G.

Theorem 3. By having the support’s head move on a regular spanning subgraph
of G, there is an absolute constant γ > 0 such that the expected meeting time of
A (or B) and the support is bounded above by γ n2

k . Thus the protocol guarantees
a total expected communication time of Θ

(
ρ
)
, independent of the total number

of mobile nodes, and their movement.

The analysis assumes that the head S0 moves according to a continuous time
random walk of total rate 1 (rate of exit out of a node of G). If S0 moves ψ
times faster than the rest of the nodes, all the estimated times, except the inter-
support time, will be divided by ψ. Thus the expected total communication time
can be made to be as small as Θ

(
γ ρ√

ψ

)
where γ is an absolute constant. In cases

where S0 can take advantage of the network topology, all the estimated times,
except the inter-support time are improved:

Theorem 4. When the support’s head moves on a regular spanning subgraph of
G the expected meeting time of A (or B) and the support cannot be less than
(n − 1)2

2m . Since m = Θ
(
n
)
, the lower bound for the expected communication time

is Θ
(
n
)
. In this sense, the “snake” protocol’s expected communication time is

optimal, for a support size which is Θ(n).

The “on-the-average” analysis of the time-efficiency of the protocol assumes
that the motion of the mobile nodes not in the support is a random walk on the
motion graph G. The random walk of each mobile node is performed indepen-
dently of the other nodes.

162 I. Chatzigiannakis

Theorem 5. The expected communication time of the support and the “snake”
motion coordination protocol is bounded above by the formula

E(T) ≤ 2
λ2(G)

Θ

(
n

k

)
+ Θ(k)

The upper bound is minimized when k =
√

2n
λ2(G) , where λ2 is the second eigen-

value of the motion graph’s adjacency matrix.

The way the support nodes move and communicate is robust, in the sense that
it can tolerate failures of the support nodes. The types of failures of nodes consid-
ered are permanent, i.e. stop failures. Once such a fault happens, the support node
of the fault does not participate in the ad hoc mobile network anymore. A commu-
nication protocol is β-faults tolerant, if it still allows the members of the network
to communicate correctly, under the presence of at most β permanent faults of the
nodes in the support (β ≥ 1). In [19] it is shown that:

Theorem 6. The support and the “snake” motion coordination protocol is
1-fault tolerant.

4.1 Alternative Implementations of the Support

A different approach to implement Σ is to allow each member of Σ not to move in
a snake-like fashion, but to perform an independent random walk on the motion
graph G, i.e., the members of Σ can be viewed as “runners” running on G.
In other words, instead of maintaining at all times pairwise adjacency between
members of Σ, all hosts sweep the area by moving independently from each
other. When two runners meet, they exchange any information given to them by
senders encountered using a synchronization subprotocol. Similar to the snake
protocol case, the same approach is used to notify the sender that it may send
its message(s) when within communication range of a node of the support.

As presented in [13], the runners protocol does not use the idea of a (moving)
backbone subnetwork. However, all communication is still routed through the
support Σ and we expect that the size k of the support (i.e., the number of
runners) will affect performance in a more efficient way than that of the snake
approach. This expectation stems from the fact that each host will meet each
other in parallel, accelerating the spread of information (i.e., messages to be
delivered).

The design of network organization and management protocol for networks
that dynamically change in terms of network area size, structure and also in
terms of number users and needs is a challenging task. Especially when these
changes are unpredictable and not known in advance and happen in an area of
deployment which is not fixed.

Examples of such changes in the network’s area topology can result by intro-
ducing possible obstacles or by creating new paths for hosts’ movement. These
changes may have significant effect on the size and the shape of the network’s

Pioneering the Establishment of the Foundations of the Internet of Things 163

area. As an example showing the dramatic impact on the size of the area of
deployment of such changes, note that even a single connectivity change may
cut off entire parts of the network area in a permanent way.

In such highly changing networks, a “static” implementation of the runners
approach is not satisfactory, i.e. having a fixed k will not suffice. Indeed, note
that even an initially optimal runners implementation (by choosing an optimal,
as possibly implied by the analysis, number of runners) may soon become inef-
ficient, leading to big communication times (in the case where the network area
grows significantly and/or obstacles appear) or employing an unnecessarily high
number of runners (in the case where the network’s area size shrinks).

It is therefore necessary that the network protocols anticipate such changes
and modify accordingly their internal operation in order to maintain adequate
levels of service quality.

Towards this end, the adaptive-compulsory version of the support approach
is introduced. The adaptive support management protocol builds upon the “run-
ners” protocol by incorporating an adaptation protocol. Clearly such an adaptive
approach can also use the “snake” protocol (see previous section) and possibly
other support management protocols since the basic building blocks of the sup-
port are also used by the adaptive support management protocol.

The basic idea of the adaptive support protocol is that the execution of the
protocol evolves in phases of possible adaptation. In the beginning of each such
phase the protocol tries to sense the need or not for an adaptation. This is done
without assuming knowledge of the network size at any stage, since the need
for an adaptation is sensed implicitly, by taking related measurements, such
as communication times. When such measurements indicate a certain behav-
ior (i.e. communication times that progressively become significantly bigger or
smaller, respectively), the protocol adapts by respectively changing the support
size (increasing or reducing it). The adaptation is done progressively, by adding
(or removing) support members in each step of the adaptation procedure in a geo-
metrically growing fashion. This progressive adaptation allows to sense reaching
a new optimal support size, when the changes in the measured communication
times exhibit a certain limiting behavior, in the sense that further change does
not incur a significant effect on communication times anymore.

5 Exploiting the Theoretical and Practical Dimensions
of Research in Parallel

A standard scientific method for understanding complicated situations is to ana-
lyze them in a top-down, hierarchical manner. This approach also works well
for organizing a large variety of structures; that is why a similar hierarchical,
centralized approach has worked extremely well for employing computers in so
many aspects of our life.

On the other hand, our world has become increasingly complex. The resulting
challenges have become so demanding that it is impossible to ignore that a large
variety of systems have a very different structure: the stability and effectiveness

164 I. Chatzigiannakis

of our modern political, social and economic structures relies on the fact that
they are based on decentralized, distributed and self-organizing mechanisms.

The Internet of Things is a characteristic example of such an approach in
technology. We are just beginning to see the effects of turning a vast number of
heterogeneous objects into one large and decentralized network; in particular, the
large-scale effects of the interaction between hardware, software, algorithms and
data are just starting to show, and many of the resulting emerging phenomena
come as surprises, rather than by design.

Turning from centralized algorithms for individual processors (albeit locally
interacting ones) to large-scale mechanisms for decentralized and self-organizing
networks has been one of the crucial paradigm shifts of computer science and its
applications in recent years; it is analogous to shifting from studying individual
neural cells to the analysis and even the design (!) of a complex brain.

To make the Internet of Things a reality, innovative technology is being
developed at both theoretical and technological level. Advancements have been
made in the physical hardware level, embedded software in the sensor devices,
systems for future sensing applications and fundamental research in new com-
munication and networking paradigms. Although these research attempts have
been conducted in parallel, in most cases they were also done in isolation, mak-
ing it difficult to converge towards a unified global framework. Most currently
deployed solutions lack the necessary sophistication, innovation, and efficiency,
while state-of-the-art foundational approaches are often too abstract, missing a
satisfactory accuracy of important technological details and specifications.

Paul Spirakis was among the first to observe that to be effective and to
produce applicable results, it is important to encourage interaction and bridge
the gap between fundamental approaches and technological/practical solutions.
As a trully visionary researcher, he realized from the very beginning that future
research on the Internet of Things will exploit its theoretical and practical dimen-
sions in parallel via simple and efficient communication channels. It should
depend on tools and processes that follow good practices, independent of the
current available technologies, and that offer effective abstractions for future
systems. It should be based on methodologies for which the complementarity of
experimentation and analysis is always visible. In [30], for the first time, he for-
mulated the notion of distributed algorithm engineering that essentially involves
the considerable effort required to convert theoretically efficient and correct dis-
tributed algorithms to effective, robust and easily used software implementations
on a simulated or real distributed environment, usually accompanied by thor-
ough experimentation, fine-tuning and testing.

From the very beginning of this line of research, a dual approach was
followed to study the new communication paradigm for highly dynamic net-
works with intermittent connectivity. The publication of theoretical results was
always accompanied by experimental research. The first set of research results,
[14], appeared in a scientific conference on Algorithmic Engineering. The alter-
native mechanisms proposed in [18] were also studied using an experimental
methodology and the results where presented in [13]. In [16] the communication

Pioneering the Establishment of the Foundations of the Internet of Things 165

framework is further developed to support large scale deployments using a
hierarchy of support subnetworks. The experimental investigation significantly
helped to study the operation of the newly introduced communication mechanism
and understand how to fine-tune the operation of the network, e.g., in relation to
the memory available to the support subnetwork and how it affects the communi-
ation times.

The complete set of results of the experimental study was published in [19].
This publication included experiments modeling the different possible situations
regarding the geographical area covered by a dynamically changing mobile net-
work. It considered different kinds of motion graphs, unstructure (random) and
more structured ones. The experiments examined the correctness of the com-
munication framework under different operational conditions and also under
the presence of failures. It studied the message delivery delays under different
communication patterns and the inherent ability of the framework to scale in
networks of large number of nodes. It also included results from experiments that
evaluated the utilization of the support subnetwork in terms of total number of
multiple message copies stored in the support subnetwork at any given time, as
well as the message delivery rate.

The examination of the performance of the communication framework in such
detail led to the key observation that the mobility (or motion) rate of the nodes
is the parameter that dominates mostly the performance and the correctness
of the protocols regardless of the approach followed. A first attempt to exploit
this observation was presented in [12] where the communication framework was
combined with pre-existing routing protocols such as the DSR protocol [6] and
the ZRP protocol [22,28]. A protocol synthesis approach was followed towards
designing new routing protocols that achieve good results (in terms of message
delivery rates and delays) in dynamic mobile networks consisting of mobile hosts
with mixed mobility patterns. The experimental studies shown that this method
provided good results and in fact in some cases the resulting synthesized protocol
outperformed the original ones by achieving lower message delivery delays while
keeping high success rates.

This line of research was further expanded and in 2006 [4,5] it produced an
adaptive protocol framework for exploiting the usually different mobility rates
of the nodes by adopting the routing strategy during execution. The adaptation
between different strategies was based on a newly defined metric that captured
the relative mobility of the nodes. This metric was used to determine, for any
pair of origin and destination, the routing technique that best corresponded to
their mobility properties. Special care was taken for nodes remaining almost sta-
tionary or moving with high (relative) speeds. The performance of the proposed
framework was studied using experimental evaluation methodology. The results
demonstrate that the proposed adaptive framework improved, in certain cases,
the performance of the existing routing protocols.

166 I. Chatzigiannakis

6 Closing Remarks

We have presented an overview of one of the lines of research conducted by
Paul Spirakis and his team, during 1999. . . 2003 at the Computer Technology
Institute (CTI) and the University of Patras. We believe that the particular
case depicts the ability of Paul Spirakis to identify core problems of technologies
that are still in their inception, many years before they become apparent to the
scientific community. Moreover, this case is a clear indication of an almost unique
multiscientific ability to combine a broad set of techniques and methodologies
to examine a given problem. Paul Spirakis is among the most visionary thought
leader of our generation, with a great talent to inspire and guide new researchers.

References

1. Ajtai, M., Komlos, J., Szemeredi, E.: Deterministic simulation in logspace. In: 19th
Annual Symposium on Theory of Computing, ACM, 1987, pp. 132–140

2. Aldous, D., Fill, J.: Reversible markov chains and random walks on graphs (1999).
http://stat-www.berkeley.edu/users/aldous/book.html

3. Alon, N., Chung, F.R.K.: Explicit construction of linear sized tolerant networks.
Discrete Math. 72, 15–19 (1998)

4. Bamis, A., Boukerche, A., Chatzigiannakis, I., Nikoletseas, S.E.: A mobility sen-
sitive approach for efficient routing in ad hoc mobile networks. In: Alba, E.,
Chiasserini, C-F., Abu-Ghazaleh, N.B., Lo Cigno, R. (eds.) Proceedings of the 9th
International Symposium on Modeling Analysis and Simulation of Wireless and
Mobile Systems, MSWiM 2006, Terromolinos, Spain, October 2–6, pp. 357–364.
ACM (2006)

5. Bamis, A., Boukerche, A., Chatzigiannakis, I., Nikoletseas, S.E.: A mobility aware
protocol synthesis for efficient routing in ad hoc mobile networks. Comput. Netw.
52(1), 130–154 (2008)

6. Broch, J., Johnson, D.B., Maltz, D.A.: The dynamic source routing protocol for
mobile ad-hoc networks. In: Technica report, IETF, Internet Draft, December 1998.
draft-ietf-manet-dsr-01. txt

7. Burleigh, S., Hooke, A., Torgerson, L., Fall, K., Cerf, V., Durst, B., Scott, K.,
Weiss, H.: Delay-tolerant networking: an approach to interplanetary internet. IEEE
Commun. Mag. 41(6), 128–136 (2003)

8. Busch, C., Tirthapura, S.: Analysis of link reversal routing algorithms. SIAM J.
Comput. 35(2), 305–326 (2005)

9. Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, B., Scott, K., Fall, K.,
Weiss, H.: Delay-tolerant networking architecture. In: Technical report, The IETF
Trust (2007)

10. Chatzigiannakis, I.: Design and analysis of distributed algorithms for basic commu-
nication in ad-hoc mobile networks. Ph.D. dissertation, Department of Computer
Engineering and Informatics, University of Patras, Greece, May 2003

11. Chatzigiannakis, I.: Communication in ad hoc mobile networks using random
walks. Encyclopedia of Algorithms, Springer, Heidelberg (2008)

12. Chatzigiannakis, I., Kokkinos, P., Zaroliagis, C.: Synthesizing routing protocols for
ad-hoc mobile networks. In: 12th Annual International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MAS-
COTS 2004), Poster Paper, pp. 24–27 (2004)

http://stat-www.berkeley.edu/users/aldous/book.html

Pioneering the Establishment of the Foundations of the Internet of Things 167

13. Chatzigiannakis, I., Nikoletseas, S.E., Paspallis, N., Spirakis, P.G., Zaroliagis, C.D.:
An experimental study of basic communication protocols in ad-hoc mobile net-
works. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE 2001.
LNCS, vol. 2141, p. 159. Springer, Heidelberg (2001)

14. Chatzigiannakis, I., Nikoletseas, S.E., Spirakis, P.G.: Analysis and experimental
evaluation of an innovative and efficient routing protocol for ad-hoc mobile net-
works. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 99–110.
Springer, Heidelberg (2001)

15. Chatzigiannakis, I., Nikoletseas, S.E., Spirakis, P.G.: An efficient communication
strategy for Ad-hoc mobile networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol.
2180, pp. 285–299. Springer, Heidelberg (2001)

16. Chatzigiannakis, I., Nikoletseas, S., Spirakis, P.: An efficient routing protocol for
hierarchical ad-hoc mobile networks. In: 1st International Workshop on Parallel
and Distributed Computing Issues in Wireless Networks and Mobile Computing,
2001, IPDPS Workshops (2001)

17. Chatzigiannakis, I., Nikoletseas, S., Spirakis, P.: On the average and worst-case
efficiency of some new distributed communication and control algorithms for ad-
hoc mobile networks. In: 1st ACM International Annual Workshop on Principles
of Mobile Computing (POMC 2001), pp. 1–19 (2001)

18. Chatzigiannakis, I., Nikoletseas, S., Spirakis, P.: Self-organizing ad-hoc mobile net-
works: the problem of end-to-end communication. In: 20th ACM Annual Sympo-
sium on Principles of Distributed Computing (PODC 2001), pp. 320–322 (2001)

19. Chatzigiannakis, I., Nikoletseas, S., Spirakis, P.: Distributed communication algo-
rithms for ad hoc mobile networks. J. Parallel Distrib. Comput. (JPDC) 63(1),
58–74 (2003). (Special Issue on Wireless and Mobile Ad-hoc Networking and Com-
puting, edited by Boukerche, A.)

20. Gafni, E., Bertsekas, D.P.: Distributed algorithms for generating loop-free routes in
networks with frequently changing topology. IEEE Trans. Commun. 29(1), 11–18
(1981)

21. Haas, Z.J., Pearlman, M.R.: The performance of a new routing protocol for the
reconfigurable wireless networks. In: International Conference on Communications,
IEEE (1998)

22. Haas, Z.J., Pearlman, M.R: The zone routing protocol (ZRP) for ad-hoc networks.
In: Technical report, IETF, Internet Draft, June 1999. draft-zone-routing-protocol-
02. txt

23. Hatzis, K.P., Pentaris, G.P., Spirakis, P.G., Tampakas, V.T., Tan, R.B.: Funda-
mental control algorithms in mobile networks. In: 11th Annual Symposium on
Parallel Algorithms and Architectures (SPAA 1999), pp. 251–260. ACM (1999)

24. Holland, G., Vaidya, N.: Analysis of TCP performance over mobile ad hoc net-
works. In: 5th ACM/IEEE Annual International Conference on Mobile Computing
(MOBICOM 1999), pp. 219–230 (1999)

25. Imielinski, T., Korth, H.F.: Mobile Computing. Kluwer Academic Publishers, Dor-
drecht (1996)

26. Sushant, J., Kevin, F., Rabin, P., Routing in a delay tolerant network. In: Pro-
ceedings of the 2004 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (New York, NY, USA), SIGCOMM 2004,
pp. 145–158. ACM (2004)

27. Kao, M.-Y. (ed.): Encyclopedia of Algorithms. Springer, Heidelberg (2008)
28. Pearlman, M., Haas, Z.: Determining the optimal configuration for the zone routing

protocol. IEEE J. Sel. Areas Commun. 17(8), 1395–1414 (2003)

168 I. Chatzigiannakis

29. Perkins, C.E., Royer, E.M.: Ad-hoc on demand distance vector (AODV) routing.
In: 2nd IEEE Annual Workshop on Mobile Computing Systems and Applications,
1999, pp. 90–100 (1999)

30. Spirakis, P., Zaroliagis, C.: Distributed algorithm engineering. Experimental Algo-
rithmics, pp. 197–228 (2002)

31. Szemeredi, E.: Regular partitions of graphs, Colloques Internationaux C. N. R. S
260, pp. 399–401 (1976). Problemes Combinatoires et Theorie des Graphes

32. Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks.
In: Technical report, Duke University, 2000, Technical Report CS-200006 (2000)

An Optimal Parallel Algorithm for Minimum
Spanning Trees in Planar Graphs

Ka Wong Chong1 and Christos Zaroliagis2,3(B)

1 Department of Computer Science, The University of Hong-Kong,
Porfulam Road, Porfulam, Hong Kong

2 Department of Computer Engineering and Informatics,
University of Patras, 26504 Patras, Greece

zaro@ceid.upatras.gr
3 Computer Technology Institute and Press “Diophantus”, N. Kazantzaki Str.,

Patras University Campus, 26504 Patras, Greece

Abstract. We present an optimal deterministic O(n)-work parallel algo-
rithm for finding a minimum spanning tree on an n-vertex planar
graph. The algorithm runs in O(log n) time on a CRCW PRAM and
in O(log n log∗ n) time on an EREW PRAM. Our results hold for any
sparse graph that is closed under taking of minors, as well as for a class
of graphs with non-bounded genus.

1 Introduction

The minimum spanning tree problem is one of the most fundamental problems
in network optimization with a wealth of theoretical and practical applications
(see e.g., [1]). Given a connected n-vertex, m-edge undirected graph G with real
edge weights, the minimum spanning tree (MST) problem is to find a spanning
tree of minimum total weight among all spanning trees of G. The problem has
been extensively studied both in sequential and in parallel computation.

In sequential computation, the MST problem has started being investigated
as early as 1926 [4]. The currently best deterministic sequential algorithms [5,15,
27] run in almost linear time. The first two [5,15] run on the (classical) unit-cost
random access machine (RAM) model of computation, where the only operations
allowed on the edge weights are binary comparisons, while the third one [27] is
optimal and runs on the pointer machine. Better, linear-time algorithms are
known if randomization is allowed [25], or if the input graph is planar [6], or if
more powerful models of computation are used [14].

In parallel computation, the MST problem has been studied in the parallel
random access machine (PRAM) model of computation, the parallel version of
the unit-cost RAM (for more on PRAMs see e.g., [21,26]). In the parallel context,
there is a close relationship between the connected components and the MST
problem in the sense that almost all parallel algorithms for either of the prob-
lems use the hook-and-contract approach (also known as Sollin’s or Boruvka’s
approach): initially each vertex represents a component by itself. Then, every

c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 169–182, 2015.
DOI: 10.1007/978-3-319-24024-4 11

170 K.W. Chong and C. Zaroliagis

component Ci hooks to another component Cj by selecting an edge whose one
endpoint is in Ci and the other in Cj . After hooking, every (new) component is
contracted into a single vertex. The hooking and contraction steps are repeated
until there are no more edges connecting different components. While in com-
puting connected components the selection of the hooking edge can be arbitrary,
in the MST problem this selection is critical: it has to be the edge with minimum
weight. This particular difficulty usually increases the running time and/or the
work of the MST algorithms. Further, it has been shown in [24] that the MST
problem can be reduced to a connected components problem without an increase
in the time; however, the number of processors used (and hence the work) is
increased to m1+ε, for some ε > 0.

The results of [8,23] for the MST problem on the EREW PRAM came there-
fore as a surprise since they matched the corresponding connected components
bounds in [9,22]. Namely, in [23] an algorithm for the MST problem is presented
running in O(log3/2 n) time and performing O(m log3/2 n) work. In [8] this result
is improved to O(log n log log n) time and O(m log n log log n) work. Note that
both MST results used much different techniques from those used in the corre-
sponding connected components algorithms. The time for MST (and connected
components) on the EREW PRAM was ultimately reduced to O(log n) in a
breakthrough result [10] that used a new technique based on concurrent threads.
The algorithm in [10] performs O((n + m) log n) work.

On the CRCW PRAM, there is still a certain gap in the work performed
between the best deterministic connectivity algorithm [13] and the best MST
algorithm [29]. The connected components algorithm in [13] runs in O(log n)
time and performs O(mα(m,n)) work on an Arbitrary CRCW PRAM. The
MST algorithm in [29] runs in O(log n) time and performs O(m log n) work on
a Common CRCW PRAM. Previous approaches for the MST problem [2,13]
achieve similar bounds but on the much stronger Priority CRCW PRAM
model.

Optimal-work parallel MST algorithms are known only for the case where
randomization is allowed, or for the case of special classes of graphs. Regarding
the former, a randomized algorithm is presented in [11] that runs in O(log n) time
and performs O(m) work on an Arbitrary CRCW PRAM, while an EREW
PRAM algorithm with the same bounds was presented in [28]. Regarding the
latter, for very dense graphs (i.e., m = Ω(n2)) a CREW PRAM algorithm
was given in [7] that runs in O(log2 n) time and performs O(n2) work. For the
case of planar graphs, O(n)-work deterministic parallel algorithms running in
O(log n log∗ n) time on an EREW PRAM and in O(log n) time on a CRCW
PRAM were given in [18].

In this paper, we present another optimal deterministic parallel algorithm
that solves the MST problem in the important case of planar graphs. Our algo-
rithm runs in O(log n log∗ n) time on an EREW PRAM, or in O(log n) time
on an Arbitrary CRCW PRAM, and performs O(n) work. Our algorithm
matches the bounds in [18] as well as those of the best parallel algorithm for
computing connected components on the same models of computation and for
the same classes of graphs [17]. Our algorithm uses different techniques compared

An Optimal Parallel Algorithm for Minimum Spanning Trees 171

to those in [17,18] and might constitute a simpler alternative to those algorithms.
In addition, our results hold for any sparse graph that is closed under taking of
minors, as well as for a class of graphs with non-bounded genus.

The main idea of our algorithm is the following. We perform a number of
iterations (as in the hook-and-contract approach), but we maintain the prop-
erty that the graph we are dealing with has constant degree. However, after a
contraction the maximum degree of a graph may increase and hence after a few
iterations is no longer bounded by a constant. To overcome this problem, we
expand the graph into a new one with maximum degree 3 (Sect. 2). The expan-
sion is done such that an MST of the original graph can be easily found from
an MST of the expanded graph. Moreover, we can guarantee that for the graphs
considered the “contraction rate” is larger than the “expansion rate” so that the
algorithm terminates after a logarithmic number of iterations. For simplicity, we
present first our algorithm for the case of planar graphs (Sects. 3 and 4). Later
(Sect. 5) we discuss how it extends to any class of sparse graphs that is closed
under taking of minors, as well as for a class of non-bounded genus graphs.

2 Preliminaries

All graphs throughout the paper are undirected and are assumed to be given in
its adjacency list representation. Let G = (V,E) be a connected graph, where
|V | = n and |E| = m. Let also w(·) be a weight function on the edges of G and
let degG(v) denote the degree of v in G. If ∀v ∈ V , degG(v) ≤ δ, then we shall call
G a degree-δ graph. For any spanning tree T of G, we define its weight, w(T), as
the sum of the weights of all the edges in T . Then, a minimum spanning tree of
G, denoted by T ∗

G, is the one with the minimum weight. Throughout the paper
we shall not distinguish between a spanning tree T and its set of edges (unless
stated otherwise). To simplify our discussion, we make the following assumptions
concerning the minimum spanning tree problem.

A1. No two edges in G have the same weight and consequently T ∗
G is unique.

We can easily fulfill this assumption by considering the triple 〈w(e), u, v〉 as the
weight of the edge e = (u, v) in the adjacency list of u and compare edge weights
using the lexicographic order.

A2. The weight function takes values on the positive reals, i.e., w : E → IR+.
This is not a restriction, since we can always add to all edge weights in G a
sufficiently large number L > 0 to make them positive. Moreover, it is easy to
verify that the MST, say T+, found in this case is isomorphic to T ∗

G and that
w(T ∗

G) = w(T+) − (n − 1)L.
Let G′ = (V ′, E′) be a connected subgraph of G, where V ′ ⊆ V and E′ ⊆ E.

We call the edges in E′ internal edges of G′, and the edges of G with only
one endpoint in V ′ external edges of G′. Throughout the paper, the contraction
of G′ into a single vertex is an operation defined as follows: first, remove all
internal edges in G′ and all but one vertices in V ′ (the remaining vertex is the
vertex representing G′ in the contracted graph). Then, replace all multiple edges

172 K.W. Chong and C. Zaroliagis

that may have been created with the one of minimum weight. (The latter step
guarantees that the contracted graph is a simple graph.)

Let F ⊂ E be a subset of edges of G. Consider the subgraphs of G induced
by the edges in F . If every such induced subgraph is a tree, then we say the F
induces a forest in G. If a vertex v ∈ V has no edge from F incident on it, then
v induces a tree by itself.

We shall need the following well-known property of MSTs (for a proof see
e.g., [1]).

Lemma 1. Let F be a set of edges of G such that F induces a forest in G and
F ⊆ T ∗

G. Let (u, v) be the external edge of minimum weight of a tree in F . Then,
a minimum spanning tree of G contains the edge (u, v) and all edges in F .

The following properties of a planar graph will be useful later.

Lemma 2. Let G be a weighted planar graph and let F be a set of edges of G
that induce a forest in G. Then:
(i) The number of edges m in G is no more than 3n − 6.
(ii) If we contract each tree (connected component) in F into a single vertex, the
contracted graph G′ is still planar.
(iii) If F ⊆ T ∗

G, then T ∗
G = T ∗

G′ ∪ F .

Properties (i) and (ii), in the above lemma, are well-known properties of
planar graphs (see e.g., [20]). Property (iii) follows by Lemma 1.

The following concept plays a key role in our algorithm.

Definition 1. Let H be a weighted graph and let S be a subset of edges of H
that induce a forest. Then, S is said to be a (c, f(c))-connector of H if every
edge of S belongs to T ∗

H and for each tree T induced by S in H, c ≤ |T | ≤ f(c),
where |T | denotes the number of vertices in T and f(c) is a function of c. By
convention, if H has less than c vertices, then S = T ∗

H.

In all applications of the above definition, throughout the paper, c will always
be a constant. As we shall see in Sect. 4, a (c, f(c))-connector S, for constant
c, can be computed very efficiently. After contracting the trees induced by S,
the graph H is contracted by a factor of at least c. Since further each tree of
S contains at most f(c) vertices, the contraction can be done in O(1) time,
resulting in a (new) contracted graph H ′. The remaining of the edges of T ∗

H can
now be found in H ′ (according to Lemma 2 (iii)).

During the execution of our algorithm, we want to maintain the invariant
that the graph in processing satisfies the property that every vertex has degree
bounded by a fixed constant. However, it can be easily verified that after con-
tracting a graph the maximum degree may increase (i.e., the maximum degree of
H ′ may be larger than that of H). We deal with this problem by expanding the
graph. In the following, we describe a simple transformation that implements
the expansion. More precisely, the transformation takes as input a graph G and
outputs a graph H in which every vertex has degree bounded by 3. Moreover,

An Optimal Parallel Algorithm for Minimum Spanning Trees 173

the minimum spanning tree of H naturally defines the minimum spanning tree
of G (see Lemma 5 below).

The expansion transformation is defined as follows. For every vertex v of G,
if degG(v) ≤ 3, then include v and all its edges into H directly. Otherwise, if
degG(v) > 3, we create t = degG(v) − 2 new vertices, v1, v2, . . . , vt, in H. (We
alternatively say that v is split into t vertices.) Let e1, e2, . . . , et+1, et+2 be the
edges incident on v in G. Then in H, make e1 and e2 incident on v1, make ei

incident on vi−1, for 3 ≤ i ≤ t, and make et+1 and et+2 incident on vt. Finally,
add edges between vi and vi+1, for 1 ≤ i ≤ t − 1. Each of these new edges
is associated with zero weight. The expansion transformation is illustrated in
Fig. 1.

Fig. 1. A vertex v with degree 6, incident on edges a, b, c, d, e, and f , is transformed
into four vertices, v1, v2, v3, and v4. The three new edges (v1, v2), (v2, v3), and (v3, v4)
are associated with zero weight.

Lemma 3. (i) The transformation of a graph G into a degree-3 graph H can
be done in O(log d) time and O(m) work on an EREW PRAM, where d is the
maximum degree of a vertex in G.
(ii) If G is planar, then H is also planar and nh ≤ 5n − 12, where nh is the
number of vertices in H.

Proof. (i) It can be easily done using list ranking and segmented parallel prefix
computations [21].

(ii) The planarity of H is obvious. For the number of vertices in H, we have
that nh ≤ ∑

v∈G max{degG(v) − 2, 1} ≤ 2m − 2n + n = 2m − n. As m ≤ 3n − 6
(Lemma 2 (i)), we have nh ≤ 5n − 12. ��

The degree-3 graph H, resulting from this transformation, has some useful
properties which we discuss next and which allow us to find easily the MST of
G, if the MST of H is given.

Lemma 4. Every edge in H with zero weight belongs to T ∗
H.

Proof. Consider a greedy (e.g., Kruskal’s) algorithm that finds T ∗
H by selecting

edges in non-decreasing order of weight, and discards an edge if it creates a
cycle with already selected edges. (The correctness of this approach can be easily
verified using Lemma 1.) Now, all zero weight edges must be present in T ∗

H , since
their weight is smaller than those of the remaining edges in H and they do not
form any cycle. ��

174 K.W. Chong and C. Zaroliagis

Lemma 5. The edges with non-zero weight in T ∗
H are the edges of T ∗

G.

Proof. It suffices to prove that: (a) all the non-zero weight edges of T ∗
H induce a

spanning tree in G; and (b) this spanning tree is the MST of G.
To prove claim (a), first observe that in H there are nh −n edges which have

zero weight. Let X be the non-zero weight edges of T ∗
H . By Lemma 4, all the zero

weight edges of H must be in T ∗
H . Therefore, |X| = nh − 1 − (nh − n) = n − 1.

Suppose on the contrary that X does not induce a spanning tree in G. Then,
there must be a simple cycle C ⊆ X induced by X. Let u0, u1, . . . , uk−1 be
the vertices of C and e0, e1, . . . , ek−1 be its edges, where ui, 0 ≤ i ≤ k − 1, is
incident on edges e(i−1) mod k and ei mod k. By the transformation, each ui will
be split into several vertices which are connected through (a path consisting of)
the new edges with zero weight. As a result, the edges e(i−1) mod k and ei mod k

are connected through the zero weight edges in T ∗
H . Thus, there is a cycle in H

involving the edges of C and the zero weight edges of H. Since by Lemma 4 all
zero weight edges of H must be present in T ∗

H , we have that C is a cycle in H
induced by edges of T ∗

H . But this contradicts the fact that T ∗
H is a spanning tree

of H. Hence, claim (a) is proved.
We now turn to claim (b). Let TG be the spanning tree in G induced by the

non-zero weight edges of T ∗
H . Clearly, w(TG) = w(T ∗

H).
Suppose on the contrary that TG is not the minimum spanning tree and let

T ′
G be the MST in G. Then, w(T ′

G) < w(TG). By the transformation, T ′
G defines

a spanning tree TH in H consisting of all the edges of T ′
G and all the zero weight

edges of H. But then w(TH) = w(T ′
G) < w(TG) = w(T ∗

H), a contradiction to the
assumption that T ∗

H is the MST of H. This ends the proof of claim (b) and the
proof of the lemma. ��

3 The Algorithm

Our algorithm works in phases, where in each phase we find some edges of T ∗
G.

The input to Phase i is a planar degree-3 graph Gi. Initially, G is transformed
into a degree-3 graph which is the graph G0. Let T ∗

i be the minimum spanning
tree of Gi. Phase i proceeds in three steps. First, we find a (c, 2c4)-connector Si

of Gi, where c is a constant (whose value will be determined later). Each tree
induced by Si has size at most 2c4 and the non-zero weight edges of Si belong
to T ∗

G. Second, we contract each tree induced by Si in Gi into a single vertex.
Let G′

i be the contracted graph. Third, we transform G′
i into a degree-3 graph

to meet the input requirements of the next phase. A less informal description of
the algorithm follows.

Algorithm: MST-Planar
Input: A planar graph G.
Output: The minimum spanning tree, T ∗

G, of G.
1. Transform G into a degree-3 graph G0;
2. i = 0;
3. While Gi contains more than one vertex do

An Optimal Parallel Algorithm for Minimum Spanning Trees 175

(a) Find a (c, 2c4)-connector Si in Gi, where c is a constant;
(b) Contract each tree induced by Si in Gi and let G′

i be the resulting graph;
(c) Transform G′

i into a degree-3 graph Gi+1;
(d) i = i + 1;

od
4. Return the non-zero weight edges in

⋃i−1
j=0 Sj , which are the edges of T ∗

G;

We first discuss the correctness of the algorithm. Let Zi denote the set of
zero weight edges in Gi.

Lemma 6. T ∗
i = (T ∗

i+1 − Zi+1) ∪ Si = (T ∗
i+1 ∪ Si) − Zi+1.

Proof. Consider the graph G′
i which is formed by contracting the trees induced

by Si in Gi. By Lemma 2 (iii), we have that T ∗
i = T ∗

G′
i
∪Si. On the other hand, by

Lemma 5 we have that T ∗
G′

i
= T ∗

i+1 − Zi+1. Therefore, T ∗
i = (T ∗

i+1 − Zi+1) ∪ Si =
(T ∗

i+1 ∪Si)−Zi+1, where the last equality is true because Si ∩Zj = ∅ for i �= j. ��
Lemma 7. Let t be the total number of iterations of Algorithm MST-Planar.
Then, T ∗

G =
⋃t

i=0 Si − ⋃t
i=0 Zi.

Proof. By Lemma 5 we have that T ∗
G = T ∗

0 − Z0. Now, by repeated applications
of Lemma 6, we get:

T ∗
G = T ∗

0 − Z0 = ((T ∗
1 ∪ S0) − Z1) − Z0

= ((((T ∗
2 ∪ S1) − Z2) ∪ S0) − Z1) − Z0

= ((((T ∗
2 ∪ S1) ∪ S0) − Z2) − Z1) − Z0

= · · ·
= ((· · · ((T ∗

t+1 ∪ St) ∪ St−1) · · · ∪ S0) − Zt+1) − Zt) − · · ·) − Z0

=
t⋃

i=0

Si −
t⋃

i=0

Zi

where the last equality follows from the fact that T ∗
t+1 = Zt+1 = ∅ and

⋂t
i=0

Zi = ∅. ��
Hence, the correctness of Algorithm MST-Planar has been established. We

now turn to the resource bounds. We shall need the following lemma, whose
proof is given in Sect. 4.

Lemma 8. For all constant c, a (c, 2c4)-connector of a degree-3 graph G with
n vertices can be computed: (i) in O(1) time using O(n) work on a CRCW
PRAM; (ii) in O(log∗ n) time using O(n log∗ n) work on an EREW PRAM;
(iii) in O(log n) time using O(n) work on an EREW PRAM.

The transformation of the input graph G into a degree-3 graph G0, in Step 1
of the algorithm, can be done in O(log n) time and O(n) work on an EREW
PRAM (Lemma 3 (i)). Step 4 can be implemented within the same resource
bounds.

176 K.W. Chong and C. Zaroliagis

Let us now consider the resource bounds of Step 3. Let ni and n′
i denote the

number of vertices in Gi and G′
i, respectively. The bounds of Step 3(a) are given

by Lemma 8. In Step 3(b), we have first to contract each tree in Gi induced by
Si. This means that we have to remove internal edges in such a tree and replace
multiple edges between two vertices by the one with minimum weight. Since
each tree in Si has size at most 2c4, and c is a constant, Step 3(b) takes O(1)
time using O(ni) work on an EREW PRAM. Moreover, since each tree in Si has
size at least c, we have that n′

i ≤ ni/c. Note that G′
i is also a (simple) planar

graph (Lemma 3 (ii)). Finally, Step 3(c) needs O(1) time using O(ni) work on an
EREW PRAM, by Lemma 3 (i). Consequently, each iteration of the while-loop
in Step 3 is dominated by the resource bounds of Step 3(a).

To bound the number of iterations, note that by Lemma3 (ii), ni+1 ≤ 5n′
i −

12 ≤ 5ni/c − 12. Hence, by choosing c = 10, we have that ni+1 ≤ ni/2. Thus,
the number of iterations of the while-loop in Step 3 is �log n�.

Now, on a CRCW PRAM, each iteration takes O(1) time and O(ni) work,
by Lemma 8 (i). Therefore, in total Step 3 can be implemented in O(log n) time
and O(

∑�log n�
i=0 ni) = O(n) work.

Similarly, Step 3 can be implemented in O(log n log∗ n) time and O(n log∗ n)
work on an EREW PRAM, since each iteration takes O(ni log∗ n) work and
O(log∗ n) time by Lemma 8 (ii). To achieve optimal work on an EREW PRAM,
we additionally use the implementation of the (c, 2c4)-connector which runs
in O(log n) time and O(ni) work (Lemma 8 (iii)). Having these two EREW
PRAM implementations of a (c, 2c4)-connector, we apply the method given in
[19, Sect. 4] or in the proof of Theorem 5.1 in [12]: we run in the first O(log∗ n)
iterations the optimal implementation (Lemma 8 (iii)), and in the remaining iter-
ations the non-optimal one (Lemma8 (ii)). This results (again) in a running time
of O(log n log∗ n), but now a simple simulation argument (see [19, Sect. 4] or [12,
Theorem 5.1]) shows that the algorithm can be performed using only O(n) work.

We have therefore established the following.

Theorem 1. A minimum spanning tree of an n-vertex weighted planar graph G
can be found: (i) in O(log n) time and O(n) work on a CRCW PRAM; (ii) in
O(log n log∗ n) time using O(n) work on an EREW PRAM.

4 Finding a (c, f(c))-Connector in a Degree-3 Graph

In this section, we shall prove Lemma 8. Let H be a degree-3 graph with n
vertices. Recall that a (c, f(c))-connector of H is a set of edges S ⊆ T ∗

H such
that for each tree T induced by S in H c ≤ |T | ≤ f(c), where |T | denotes the
number of vertices in T and f(c) is a function of c.

Note that one should be careful in finding a (c, f(c))-connector, in the sense
that there are many simple ways to do it, but they result in a value for f(c)
which may be exponential in c. Hence, a different idea is required in order to
avoid such a huge value for f(c). In this section, we shall show how to achieve
f(c) = 2c4.

An Optimal Parallel Algorithm for Minimum Spanning Trees 177

We find the (c, f(c))-connector in two stages. In the first stage we find a set
of edges K ⊆ T ∗

H such that each tree induced by K in H contains at least c
vertices. However, there may be some trees having as many as Θ(n) vertices.
Then in the second stage, we remove some edges from K in order to break down
these “big” trees into trees of bounded size. The remaining edges in K form a
(c, f(c))-connector of G.

The first stage consists of a number of iterations, where iteration i finds a
set of edges Ki ⊆ K. Let Fi be the set of trees induced by Ki in H (where each
tree in F0 is a single vertex). The first stage of the (c, f(c))-connector algorithm
is implemented as follows.

Stage 1 of the (c, f(c))-connector algorithm:
1. i = 0; Ki = ∅; M = ∅;
2. Let Fi be the set of trees induced by Ki in H;
3. while ∃ tree T in Fi such that |T | < c do

Find the minimum-weight external edge of T and add it to M ;
Ki+1 = Ki ∪ M ; Let Fi+1 be the set of trees induced by Ki+1 in H;
M = ∅; i = i + 1;

od

Observe that each tree in Fi contains at least 2i vertices. Thus, after �log c�
iterations, every tree contains at least c vertices. Let K = K�log c�. Since only
trees with less than c vertices participate in every iteration, it follows that each
iteration can be done in O(log c) time using O(n) work. (Remark: within the
same resouce bounds we can also check whether |T | < c.) Hence, the first stage
runs in O(log2 c) time using O(n log c) work.

In the second stage, we have to remove some edges in K to obtain a (c, f(c))-
connector of H. Let T be a tree induced by K. Recall that every internal vertex
in T has degree bounded by 3 and |T | ≥ c. To find a (c, f(c))-connector of H, it
suffices to find a (c, f(c))-connector in every such tree T ; then, the union of the
(c, f(c))-connectors of every tree T is a (c, f(c))-connector of H.

The second stage consists also of a number of iterations. In each iteration we
contract a subtree of T (in a manner to be discussed). Let Ti denote T at the
beginning of the ith iteration. Initially, T0 = T and i = 0.

Every vertex v ∈ Ti represents a (contracted) connected subtree of Ti−1 and
hence of T . Let size(v) denote the number of vertices of T that v represents (i.e.,
they have been contracted into v). Since every vertex of T has degree at most
3, the degree of v in Ti is at most 3size(v) − 2(size(v) − 1) = size(v) + 2.

Let v be a vertex of Ti. Then: (i) v is called inactive if size(v) ≥ c; (ii) v is
called neutral if size(v) < c and all adjacent vertices of v are inactive; and (c) v
is called active, in all other cases. Note that the degree of an active vertex in Ti

is at most c + 1. Stage 2 is implemented as follows:

Stage 2 of the (c, f(c))-connector algorithm:
for every tree T induced by K pardo
1. i = 0; Ti = T ; Ai = {v|v ∈ Ti}; forall v ∈ Ti pardo size(v) = 1 odpar;

178 K.W. Chong and C. Zaroliagis

2. while |Ai| > 1 do
(a) Find a maximal independent set I in Ai, where Ai is the set of active

vertices in Ti;
/* Perform a selective contraction */
(b) Every u ∈ Ai − I selects one of its neighbors in I;
(c) if ∃v ∈ I that has not been selected then

v selects (arbitrarily) one of its neighbors in Ai − I;
(d) The selection process defines connected subtrees of Ti consisting of

active vertices. Then, contract each such subtree into
a single vertex z and compute size(z);

(e) Call the resulting tree Ti+1 and set i = i + 1;
od

3. Every neutral vertex in Ti selects arbitrarily one of its adjacent inactive
vertices to hook (i.e., to merge together in a single component). Contract
each such component into a single vertex and call the resulting tree Tf ;

odpar

At the end of the ith iteration, every active vertex in Ti has size at least
2i. Hence, after at most �log c� iterations there are no more active vertices.
Furthermore, the total number of active vertices that define a connected subtree
of Ti (to be contracted) is at most (c + 2) + c(c + 1) (where the first term comes
from Step 2(b) and the second term from Step 2(c)), which is c2 + 2c + 2. Since
every active vertex has size at most c − 1, we have that the size of a vertex
u ∈ Ti+1, at the beginning of the (i + 1)th iteration, is size(u) ≤ (c2 + 2c + 2)
(c − 1) = c3 + c2 − 2.

Let T�log c� be the tree at the end of Step 2. Note that every vertex in T�log c�
is either inactive or neutral, and that Tf (the tree at the end of Step 3) contains
only inactive vertices. Let v be an inactive vertex in T�log c�. Since size(v) ≤
c3 + c2 − 2, there are at most size(v) + 2 neutral vertices adjacent to it (each
of size at most c − 1). Consequently, an inactive vertex u ∈ Tf has size(u) ≤
c3+c2−2+(c3+c2)(c−1) = c4+c3−2 ≤ 2c4. Hence, every vertex u ∈ Tf satisfies
c ≤ size(u) ≤ 2c4 and represents a connected subtree U of T , where |U | = size(u).
Moreover, every edge of U belongs to T ∗

H , as a consequence of Stage 1. Therefore,
the union of all these subtrees U , or alternatively the set of edges in T − Tf ,
constitutes the required (c, f(c))-connector of T , where f(c) = 2c4.

Let us now consider the complexity of Stage 2. Observe that since T is a
tree, no multiple edges are created in every contraction of a subtree of T , and
consequently there is no need to invoke a sorting procedure to eliminate all but
one multiple edges. Hence, every contraction of a subtree of T of size p can be
done in O(log p) time and O(p) work on an EREW PRAM.

We first discuss the EREW PRAM complexity. Step 3 takes O(log c) time
and O(n log c) work over all trees T . The resource bounds of each iteration of
Step 2 are dominated by those of Step 2(a) to find a maximal independent set
in a tree. This requires (over all trees T) O(log∗ n) time and O(n log∗ n) work
[16, Theorem 4], or alternatively O(log n) time and O(n) work [17, Lemma 7].
Hence, Stage 2 runs in O(log2 c log∗ n) time and O(n log c log∗ n) work, or in
O(log2 c log n) time and O(n log c) work.

An Optimal Parallel Algorithm for Minimum Spanning Trees 179

We now turn to the CRCW PRAM complexity. Unfortunately, the maximal
independent set algorithm of [16] cannot take advantage of this model to solve
the problem faster. Instead, we use an algorithm from [3] that computes a so-
called fractional independent set. More precisely, the following result is proved in
[3, Sect. 6]: Let G be an n-vertex graph of constant degree. Then, an independent
set I such that |I| ≥ εn, where 0 < ε < 1 is a constant, can be found in O(1)
time and O(n) work on a CRCW PRAM.

Now, in Step 2(a) we do not find a maximal independent set, but a fractional
one using the algorithm of [3]. Note that in this case we cannot guarantee that at
the end of the ith iteration every active vertex has size at least 2i. However, we
can guarantee that in every iteration a constant fraction of the (remaining) active
vertices ε|Ai| perform a selective contraction. Consequently, at the beginning of
the next iteration, there are at most (1−ε)|Ai| ≤ (1−ε)|Ti| ≤ (1−ε)i|T0| active
vertices. Hence, we need �log(1

1−ε)
c� = O(log c) iterations to eliminate all active

vertices. This implies that Stage 2 can be implemented to run in O(log2 c) time
and O(n log c) work on a CRCW PRAM.

The bounds of Lemma 8 follow now from the fact that c is always a constant
in all applications of the (c, f(c))-connector algorithm with f(c) = 2c4.

5 Extensions of Our Results

Following [17], a class G of undirected graphs is called linearly contractible if: (1)
for all G in G m ≤ kn, where k is a constant; and (2) G is closed under taking
of minors, i.e., every subgraph and every elementary contraction of a graph in
G is in G. An elementary contraction of a graph G is a new graph obtained from
G by contracting two adjacent vertices u and v into a single vertex z. Examples
of the class of linearly contractible graphs are planar graphs, graphs of bounded
treewidth and graphs of bounded genus.

Observe that the only properties that our algorithm requires from a planar
graph are those stated in Lemma2 (i) and (ii), and which are included in the
above definition of the linearly contractible graphs. Hence, Lemma2 is satisfied
(in a sense) by any graph belonging to a linearly contractible class, with the
difference that part (i) now becomes m ≤ kn. This implies that the number
nh of vertices of the transformed graph (Lemma3) is now bounded by nh ≤
2m−n = (2k − 1)n. To achieve again a number of �log n� iterations of our MST
algorithm in Sect. 3, it suffices to choose c = 4k − 2 in the construction of the
(c, 2c4)-connector. We have therefore established the following.

Theorem 2. A minimum spanning tree of an n-vertex weighted graph G, drawn
from a linearly contractible class, can be found: (i) in O(log n) time and O(n)
work on a CRCW PRAM; (ii) in O(log n log∗ n) time using O(n) work on an
EREW PRAM.

We can further achieve optimal results in the case of graphs with non-
bounded genus. The idea is as follows.

180 K.W. Chong and C. Zaroliagis

Let G be a graph with genus γ. Then, m ≤ 3n + 6γ − 6 [20]. Note that when
G is contracted, the genus of the resulting graph may remain unchanged and
the total number of edges may not decrease accordingly. However, if γ is very
small compared to the number of vertices in the graph, the total number of edges
contributed by the “6γ” term is also very small. In particular, we can assume
that m ≤ 4n, when γ = o(n). Therefore, our algorithm can still work properly
for a number of iterations, as long as the condition γ = o(ni) in every iteration is
satisfied (ni being the number of vertices at iteration i), for some suitable value
of γ and choice of c. As soon as, after a particular iteration, γ ≥ ni, we switch to
another algorithm. Next we show that if γ ≤ 2

log n
log log n , the above approach gives

an optimal algorithm to compute T ∗
G. Note that 2

log n
log log n = Ω(poly log n).

We find T ∗
G in two phases. In Phase I, we run Algorithm MST-Planar up to

the ith iteration, where i = log n − log n/ log log n and we choose the constant
c to be 14. At the end of Phase I, we obtain a graph Gi+1 in which the total
number of vertices is no more than 2

log n
log log n . In Phase II, we use the algorithm of

[8] to find T ∗
i+1 in Gi+1. The edges found in the two phases form the MST of G.

Phase I takes O(log n log∗ n) time using O(n) work on an EREW PRAM, or
O(log n) time using O(n) work on a CRCW PRAM.

Phase II takes O(log n′ log log n′) time using O(m′ log n′ log log n′) work. As
n′ = 2

log n
log log n , Phase II runs in O(log n) time using no more than O(n) work on

an EREW PRAM. Thus we have established the following.

Theorem 3. A minimum spanning tree of an n-vertex weighted graph G with
genus γ ≤ 2

log n
log log n can be found: (i) in O(log n) time and O(n) work on a CRCW

PRAM; (ii) in O(log n log∗ n) time using O(n) work on an EREW PRAM.

6 Conclusions

We presented an O(n) work parallel algorithm for solving the MST problem on
planar, minor closed, and a class of non-bounded genus graphs. The algorithms
runs in O(log n log∗ n) time on an EREW PRAM and in O(log n) time on a
CRCW PRAM.

An interesting open problem is to develop a O(n)-work deterministic EREW
PRAM algorithm for these graph classes that runs in O(log n) time.

Acknowledgements. The last author is indebted to his mentor Paul Spirakis, who
taught him by example to be a scientist and who uniquely affected the shaping of his
career.

References

1. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice-Hall, Englewood
(1993)

2. Awerbuch, B., Shiloach, Y.: New connectivity and MSF algorithms for shuffle-
exchange network and PRAM. IEEE Trans. Comput. 36(10), 1258–1263 (1987)

An Optimal Parallel Algorithm for Minimum Spanning Trees 181

3. Bodlaender, H., Hagerup, T.: Parallel algorithms with optimal speedup for
bounded treewidth. SIAM J. Comput. 27(6), 1725–1746 (1998)

4. Boruvka, O.: O jistém problému minimálńım. Práca Moravské Př́ırodovědecké
Společnosti 3, 37–58 (1926)

5. Chazelle, B.: A minimum spanning tree algorithm with inverse-Ackermann type
complexity. J. ACM 47(6), 1028–1047 (2000)

6. Cheriton, D., Tarjan, R.E.: Finding minimum spanning trees. SIAM J. Comput.
5, 724–742 (1976)

7. Chin, F.Y., Lam, J., Chen, I.N.: Efficient parallel algorithms for some graph prob-
lems. Commun. ACM 25(9), 659–665 (1982)

8. Chong, K.W.: Finding minimum spanning trees on the EREW PRAM. In: Pro-
ceedings of the International Computer Symposium—ICS’96, pp. 7–14. Taiwan
(1996)

9. Chong, K.W., Lam, T.W.: Finding connected components in O(log n log log n) time
on the EREW PRAM. J. Algorithms 18, 378–402 (1995)

10. Chong, K.W., He, Y., Lam, T.W.: Concurrent threads and optimal parallel mini-
mum spanning trees algorithm. J. ACM 48(2), 297–323 (2001)

11. Cole, R., Klein, P.N., Tarjan, R.E.: Finding minimum spanning forests in logarith-
mic time and linear work using random sampling. In: Proceedings of the 8th ACM
symposium on Parallel Algorithms and Architectures (ACM), pp. 243–250 (1996)

12. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal par-
allel list ranking. Inf. Control 70, 32–53 (1986)

13. Cole, R., Vishkin, U.: Approximate and exact parallel scheduling with applications
to list, tree and graph problems. In: Proceedings of the 27th IEEE Symposium on
Foundations of Computer Science, pp. 478–491. IEEE (1986)

14. Fredman, M., Willard, D.E.: Trans-dichotomous algorithms for minimum spanning
trees and shortest paths. J. Comput. Syst. Sci. 48, 533–551 (1994)

15. Gabow, H., Galil, Z., Spencer, T., Tarjan, R.E.: Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs. Combinatorica 6(2),
109–122 (1986)

16. Goldberg, A., Plotkin, S., Shannon, G.: Parallel symmetry-breaking in sparse
graphs. SIAM J. Discrete Math. 1, 434–446 (1988)

17. Hagerup, T.: Optimal parallel algorithms on planar graphs. Inf. Comput. 84, 71–96
(1990)

18. Hagerup, T.: Optimal Parallel Computation of Minimum Spanning Forests in Pla-
nar Graphs, Technical Report 11/1990. Universität des Saarlandes, May 1990

19. Hagerup, T., Chrobak, M., Diks, K.: Optimal parallel 5-colouring of planar graphs.
SIAM J. Comput. 18(2), 288–300 (1989)

20. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)
21. JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley, Reding (1992)
22. Johnson, D.B., Metaxas, P.: Connected components in O(log3/2 |V |) parallel time

for the CREW PRAM. In: Proceeings of 32nd IEEE Symposium on Foundations
of Computer Science, pp. 688–695, IEEE (1991)

23. Johnson, D.B., Metaxas, P.: A parallel algorithm for computing minimum spanning
trees. J. Algorithms 19, 383–401 (1995)

24. Karger, D.R.: Approximating, verifying, and constructing minimum spanning trees.
Unpublished manuscript (1992)

25. Karger, D.R., Klein, P.N., Tarjan, R.E.: A randomized linear-time algorithm to
find minimum spanning trees. J. ACM 42(2), 321–328 (1995)

182 K.W. Chong and C. Zaroliagis

26. Karp, R., Ramachandran, V.: Parallel Algorithms for Shared-Memory Machines.
In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. A, pp.
869–941. Elsevier, Amsterdam (1990)

27. Pettie, S., Ramachandran, V.: An optimal minimum spanning tree algorithm. J.
ACM 49(1), 16–34 (2002)

28. Pettie, S., Ramachandran, V.: A randomized time-work optimal parallel algorithm
for finding a minimum spanning forest. SIAM J. Comput. 31(6), 1879–1895 (2002)

29. Zaroliagis, C.D.: Simple and work-efficient parallel algorithms for the minimum
spanning tree problem. Parallel Process. Lett. 7(1), 25–37 (1997)

Weighted Random Sampling over Data Streams

Pavlos S. Efraimidis(B)

Department of Electrical and Computer Engineering,
Democritus University of Thrace, Xanthi, Greece

pefraimi@ee.duth.gr

1 Introduction

The problem of random sampling calls for the selection of m random items out
of a population of size n. If all items have the same probability to be selected, the
problem is known as uniform random sampling. If each item has an associated
weight and the probability of each item to be selected is determined by these
item weights, then the problem is called weighted random sampling (WRS).

Weighted random sampling, and random sampling in general, is a funda-
mental problem with applications in several fields of computer science including
databases, data streams, data mining and randomized algorithms. Moreover,
random sampling is important in many practical problems, like market surveys,
quality control in manufacturing, statistics and on-line advertising.

There are several factors that have to be taken into account, when facing a
WRS problem. It has to be defined if the sampling procedure is with or with-
out replacement, whether the sampling procedure has to be executed over data
streams, and what the semantics of the item weights are. In this work, we present
a comprehensive treatment of WRS over data streams. In particular, we examine
the above problem parameters and describe efficient solutions for different WRS
problems that arise in each case.

• Weights. In WRS the probability of each item to be selected is determined
by its weight with respect to the weights of the other items. However, for
random sampling schemes without replacement there are at least two natural
ways to interpret the item weights. In the first case, the relative weight of
each item determines the probability that the item is in the final sample. In
the second, the weight of each item determines the probability that the item
is selected in each of the explicit or implicit item selections of the sampling
procedure. Both cases will become clear in the sequel.

• Replacement. Like other sampling procedures, the WRS procedures can be
with replacement or without replacement. In WRS with replacement, each
selected item is replaced in the main lot with an identical item, whereas in
WRS without replacement each selected item is simply removed from the
population.

• Data Streams. Random sampling is often applied to very large datasets
and in particular to data streams. In this case, the random sample has to be
generated in one pass over an initially unknown population. An elegant and

c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 183–195, 2015.
DOI: 10.1007/978-3-319-24024-4 12

184 P.S. Efraimidis

efficient approach to generate random samples from data streams is the use of
a reservoir of size m, where m is the sample size. The reservoir-based sampling
algorithms maintain the invariant that, at each step of the sampling process,
the contents of the reservoir are a valid random sample for the set of items
that have been processed up to that point. There are many random sampling
algorithms that make use of a reservoir to generate uniform random samples
over data streams [17].

• Feasibility of WRS. When considering the problem of generating a weighted
random sample in one pass over an unknown population one may doubt that
this is possible. In [1], the question whether reservoir maintenance can be
achieved in one pass with arbitrary bias functions, is stated as an open prob-
lem. In this work, we bring to the fore two algorithms [3,8] for the two, prob-
ably most important, flavors of the problem. In our view, the above results,
and especially the older one, should become more known to the databases and
algorithms communities.

• A Standard Class Implementation. Finally, we believe that the algo-
rithms for WRS over data streams can and should be part of standard class
libraries at the disposal of the contemporary algorithm or software engineer.
To this end, we design an abstract class for WRS and provide prototype
implementations of the presented algorithms in Java.

Contribution and Related Work. Random sampling is a classic, well stud-
ied field, and the volume of the corresponding literature is enormous. See for
example [11,12,14,16,17] and the references therein. These results concern uni-
form random sampling, random sampling with a reservoir (which can be used
on data streams), and weighted random sampling but not over data streams.
An efficient algorithm for weighted random sampling with a reservoir which can
support data streams is presented in [8]. Another weighted random sampling
algorithm, which is less known to the computer science community and which
uses a different interpretation for the item weights, is presented in [3]. This
algorithm, too, is efficient and can be applied to data streams.

Random sampling is still an active research field and new sampling schemes
are studied in various contexts; some indicative examples are sampling from
sliding windows [13], from distributed data streams [4,5,15], from streams with
time decay [6], independent range sampling [10], sampling on very large file
systems [9], and stratified reservoir sampling [2]. In light of the above results
(which are mainly from the data streams field), we consider the algorithms of [3]
and [8] as fundamental sampling schemes for general purpose weighted random
sampling over data streams.

In this work, we present a comprehensive treatment of general purpose
weighted random sampling (WRS) over data streams. More precisely, we identify
and examine two natural interpretations of the item weights, describe an exist-
ing algorithm for each case [3,8], discuss sampling with and without replacement
and show adaptations of the algorithms for several WRS problems and evolving
data streams. Moreover, we bring to the fore the sampling algorithm of Chao and
show how to apply the jumps technique on it. Finally, we propose an abstract

Weighted Random Sampling over Data Streams 185

class definition for weighted random sampling over data streams and present a
prototype implementation for this class.

Outline. The rest of this work is organized as follows: Notation and defini-
tions for WRS problems are presented in Sect. 2. Core algorithms for WRS are
described in Sect. 3. The treatment of representative WRS problems is described
in Sect. 4. In Sect. 5, a prototype implementation and experimental results are
presented. Finally, the role of item weights is examined in Sect. 6 and an overall
conclusion of this work is given in Sect. 7.

2 Weighted Random Sampling (WRS)

Given an instance of a WRS problem, let V denote the population of all items
and n = |V | the size of the population. In general, the size n will not be known
to the WRS algorithms. Each item vi ∈ V , for i = 1, 2, . . . , n, of the population
has an associated weight wi. The weight wi is a strictly positive real number
wi > 0 and the weights of all items are initially considered unknown. The WRS
algorithms will generate a weighted random sample of size m. If the sampling
procedure is without replacement then it must hold that m ≤ n. All items of the
population are assumed to be discrete, in the sense that they are distinguishable
but not necessarily different. The distinguishability can be trivially achieved by
assigning an increasing ID number to each item in the population, including the
replaced items (for WRS with replacement). We define the following notation to
represent the various WRS problems:

WRS − < rep > − < role >, (1)

where the first parameter specifies the replacement policy and the second para-
meter the role of the item weights.

• Parameter rep: This parameter determines if and how many times a selected
item can be replaced in the population. A value of “N” means that each
selected item is not replaced and thus it can appear in the final sample at
most once, i.e., sampling without replacement. A value of “R” means that the
sampling procedure is with replacement and, finally, an arithmetic value k,
where 1 ≤ k ≤ m, defines that each item is replaced at most k − 1 times, i.e.,
it can appear in the final sample at most k times.

• Parameter role: This parameter defines the role of the item weights in the
sampling scheme. As already noted, we consider two natural ways to interpret
item weights. In the first case, when the role has value P, the probability of
an item to be in the random sample is proportional to its relative weight. In
the second case, the role is equal to W and the relative weight determines the
probability of each item selection, if the items would be selected sequentially.

Moreover, WRS-P will denote the whole class of WRS problems where the
item weights directly determine the selection probabilities of each item, and

186 P.S. Efraimidis

WRS-W the class of WRS problems where the items weights determine the
selection probability of each item in a supposed1 sequential sampling procedure.
A summary of the notation for different WRS problems is given in Table 1.

Table 1. Notation for WRS problems.

WRS problem Notation

With replacement WRS-R

Without replacement Probabilities WRS-N-P

Weights WRS-N-W

With k − 1 replacements Weights WRS-k-W

Definition 1. ProblemWRS-R (WeightedRandomSampling withReplacement).

Input: A population of n weighted items and a size m for the random sample.
Output: A weighted random sample of size m. The probability of each item to
occupy each slot in the random sample is proportional to the relative weight of
the item, i.e., the weight of the item with respect to the total weight of all items.

Definition 2. Problem WRS-N-P (Weighted Random Sampling without
Replacement, with defined Probabilities).

Input: A population of n weighted items and a size m for the random sample.
Output: A weighted random sample of size m. The probability of each item to be
included in the random sample is proportional to its relative weight.

Intuitively, the basic principle of WRS-N-P can be shown with the following
example. Assume any two items vi and vj of the population with weights wi and
wj , respectively. Let c = wi/wj . Then the probability pi that vi is in the random
sample is equal to c pj , where pj is the probability that vj is in the random
sample. For heavy items with relative weight larger than 1/m we say that the
respective items are “infeasible”. If the inclusion probability of an infeasible item
would be proportional to its weight, then this probability would become larger
than 1, which of course is not possible. As shown in Sect. 3.1, the infeasible
items are handled in a special way that guarantees that they are selected with
probability exactly 1.

Definition 3. Problem WRS-N-W (Weighted Random Sampling without
Replacement, with defined Weights).

1 We say “supposed” because even though WRS is best described with a sequential
sampling procedure, it is not inherently sequential. Algorithm A-ES [8] which we will
use to solve WRS-W problems can be executed on sequential, parallel and distributed
settings.

Weighted Random Sampling over Data Streams 187

Input: A population of n weighted items and a size m for the random sample.
Output: A weighted random sample of size m. In each round, the probability of
every unselected item to be selected in that round is proportional to the relative
item weight with respect to the weights of all unselected items.

The definition of problem WRS-N-W is essentially the following sampling proce-
dure. Let S be the current random sample. Initially, S is empty. The m items of
the random sample are selected in m rounds. In each round, the probability for
each item in V − S to be selected is pi(k) = wi∑

sj∈V −S wj
. Using the probabilities

pi(k), an item vk is randomly selected from V − S and inserted into S. We use
two simple examples to illustrate the above defined WRS problems.

Example 1. Assume that we want to select a weighted random sample of size
m = 2 from a population of n = 4 items with weights 1, 1, 1 and 2, respectively.
For problem WRS-N-P the probability of items 1, 2 and 3 to be in the ran-
dom sample is 0.4, whereas the probability of item 4 is 0.8. For WRS-N-W the
probability of items 1, 2 and 3 to be in the random sample is 0.433, while the
probability of item 4 is 0.7.

Example 2. Assume now that we want to select m = 2 items from a population of
4 items with weights 1, 1, 1, and 4, respectively. For WRS-N-W the probability
of items 1, 2 and 3 to be in the random sample is 0.381, while the probability
of item 4 is 0.857. For WRS-N-P, however, the weights are infeasible because
the weight of item 4 is infeasible. In particular, the product m times the relative
weight of item 4 is 2 · (4/7) which is larger than 1 and cannot be used as a
probability. This case is handled by assigning with probability 1 a position of
the reservoir to item 4 and filling the other position of the reservoir randomly
with one of the remaining (feasible) items. Note that if the sampling procedure
is applied on a data stream and a fifth item, for example with weight 3, arrives,
then the instance becomes feasible with probabilities 0.2 for items 1, 2 and 3, 0.8
for item 4 and 0.6 for item 5. The possibility for infeasible problem instances or
temporary infeasible evolving problem instances over data streams is an inherent
complication of the WRS-N-P problem that has to be handled in the respective
sampling algorithms.

3 The Two Core Algorithms

The two core algorithms that we use for the WRS problems of this work
are the General Purpose Unequal Probability Sampling Plan of Chao [3] and
the Weighted Random Sampling with a Reservoir algorithm of Efraimidis and
Spirakis [8]. We provide a short description of each algorithm while more details
can be found in the respective papers.

3.1 A-Chao

The sampling plan of Chao [3], which we will call A-Chao, is a reservoir-based
sampling algorithm that processes sequentially an initially unknown population
V of weighted items.

188 P.S. Efraimidis

A typical step of algorithm A-Chao is presented in Fig. 1. When a new item
is examined, its relative weight is calculated and used to randomly decide if the
item will be inserted into the reservoir. If the item is selected, then one of the
existing items of the reservoir is uniformly selected and replaced with the new
item. The trick here is that, if the probabilities of all items in the reservoir are
already proportional to their weights, then by selecting uniformly which item to
replace, the probabilities of all items remain proportional to their weight after
the replacement.

Algorithm A-Chao (sketch)

Input : Item vk for m < k ≤ n
Output : A WRS-N-P sample of size m

1 : Calculate the probability pk = wk/(
∑k

i=1
wi) for item vk

2 : Decide randomly if vk will be inserted into the reservoir
3 : if No, do nothing. Simply increase the total weight
4 : if Yes, choose uniformly a random item from the

reservoir and replace it with vk

Fig. 1. A sketch of algorithm A-Chao. We assume that all the positions of the reservoir
are already occupied and that all item weights are feasible.

The main approach of A-Chao is simple, flexible and effective. There are
however some complications inherent to problem WRS-N-P that have to be
addressed. As shown in Example 2, an instance of WRS-N-P may temporarily
not be feasible, in case of data streams, or may not be feasible at all. This
happens when the (current) population contains one or more infeasible items,
i.e., items each of which has a relative weight greater than 1/m. The main idea to
handle this case, is to sample each infeasible item with probability 1. Thus, each
infeasible item automatically occupies a position in the reservoir. The remaining
positions are assigned with the normal procedure to the feasible items. In case
of sampling over a data stream, an initially infeasible item may later become
feasible as more items arrive. Thus, with each new item arrival the relative
weights of the infeasible items are updated and if an infeasible item becomes
feasible it is treated as such. Appropriate procedures to initialize the reservoir
and to handle the infeasible items are described in [3].

3.2 A-ES

The algorithm of Efraimidis and Spirakis [8], which we call A-ES, is a sampling
scheme for problem WRS-N-W. In A-ES, each item vi of the population V
independently generates a uniform random number ui ∈ (0, 1) and calculates
a key ki = ui

1/wi . The items that possess the m largest keys form a weighted
random sample. We will use the reservoir-based version of A-ES, where the
algorithm maintains a reservoir of size m with the items with m largest keys.

The basic principle underlying algorithm A-ES is the remark that a uniform
random variable can be “amplified” as desired by raising it to an appropriate
power (Remark 1). A high level description of algorithm A-ES is shown in Fig. 2.

Weighted Random Sampling over Data Streams 189

Remark 1 [8]. Let U1 and U2 be independent random variables with uniform
distributions in [0, 1]. If X1 = (U1)1/w1 and X2 = (U2)1/w2 , for w1, w2 > 0, then
P [X1 ≤ X2] =

w2

w1 + w2
.

Algorithm A-ES (High Level Description)

Input : A population V of n weighted items
Output : A WRS-N-W sample of size m

1: For each vi ∈ V , ui = random(0, 1) and ki = u
1
wi
i

2: Select the m items with the largest keys ki

Fig. 2. A high level description of algorithm A-ES.

3.3 Algorithm A-Chao with Jumps

A common technique to improve certain reservoir-based sampling algorithms
is to change the random experiment used in the sampling procedure. In normal
reservoir-based sampling algorithms, a random experiment is performed for each
new item to decide if it is inserted into the reservoir. In random sampling with
jumps instead, a single random experiment is used to directly decide which will
be the next item that will enter the reservoir. Since each item that is processed
will be inserted with some probability into the reservoir, the number of items
that will be skipped until the next item is selected for the reservoir, is a random
variable. In uniform random sampling it is possible to generate an exponential
jump that identifies the next item of the population that will enter the reser-
voir [7], while in [8] it is shown that exponential jumps can be used for WRS
with algorithm A-ES.

In this work, we show that a jumps approach can be used for algorithm
A-Chao too, albeit in a slightly more complicated way than for algorithm A-ES.
The reason is that in WRS-N-W the probability that an item will be the next
item that will enter the reservoir can be directly obtained from its weight and
the total weight of the items preceding it, while in WRS-N-P the respective
probabilities have to be computed.

Assume for example a typical step of algorithm A-Chao. A new item vi has
just arrived and with probability pi it will be inserted into the reservoir. The
probability that vi will not be selected, but the next item, vi+1, is selected, is
(1 − pi) pi+1. In the same way the probability that items vi and vi+1 are not
selected and that item vi+2 is selected is (1 − pi) (1 − pi+1) pi+2. Clearly, if the
stream continues with an infinite number of items then with probability 1 some
item will be the next item that will enter the reservoir. Thus, we can generate
a uniform random number uj in [0, 1] and add up the probability mass of each
new item until the accumulated probability exceeds the random number uj . The
selected item is then inserted into the reservoir with the normal procedure of
algorithm A-Chao.

190 P.S. Efraimidis

The main advantage of using jumps in reservoir-based sampling algorithms is
that, in general, the number of random number generations can be dramatically
reduced. For example, if the item weights are independent random variables with
a common distribution, then the number of random numbers is reduced from
O(n) to O(m log(n/m)), where n is the size of the population [8]. In contexts
where the computational cost for qualitative random number generation is high,
the jumps versions offer an efficient alternative for the sampling procedure. From
a semantic point of view, the sampling procedures with and without jumps are
identical.

4 Algorithms for WRS Problems

Both core algorithms, A-Chao and A-ES, are efficient and flexible and can be
used to solve fundamental but also more involved random sampling problems.
We start with basic WRS problems that are directly solved by A-Chao and
A-ES. Then, we present sampling schemes for two WRS problems with a bound
on the number of replacements and discuss the sampling problem in the presence
of stream evolution.

4.1 Basic Problems

• Problem WRS-N-P: The problem can be solved with algorithm P-Chao.
In case no infeasible items appear in the data stream, the cost to process
each item is O(1) and the total cost for the whole population is O(n). The
complexity of handling infeasible items is higher. For example, if a heap data
structure is used to manage the current infeasible items, then each infeasible
item costs O(log m). An adversary could generate a data stream where each
item would be initially (at the time it is feeded to the sampling algorithm)
infeasible and this would cause a total complexity of Θ(n log m) to process
the complete population. However, this is a rather extreme example and in
reasonable cases the total complexity is expected to be linear on n.

• Problem WRS-N-W: The problem can be solved with algorithm A-ES. The
reservoir-based implementation of the algorithm requires O(1) computational
steps for each item that is not selected and O(log m) for each item that enters
the reservoir (if, for example, the reservoir is organized as a heap). In this
case too, an adversary can prepare a sequence that will require O(n log m)
computational steps. In common cases, the cost for the complete population
will be O(n) + O(m log(n/m))O(log m), which becomes O(n) if n is large
enough with respect to m.

• Problem WRS-R: In WRS with replacement the population remains unal-
tered after each item selection. Because of this, WRS-R-P and WRS-R-W
coincide and we call the problem simply WRS-R. In the data stream version,
the problem can be solved by running concurrently m independent instances
of WRS-N-P or WRS-N-W, each with sample size m′ = 1. Both algorithms
A-Chao and A-ES in both their versions, with and without jumps, can effi-
ciently solve the problem. In most cases, the version with jumps of A-Chao or
A-ES should be the most efficient approach.

Weighted Random Sampling over Data Streams 191

k
in

st
an

ce
s

of

ea
ch

 it
em

v1 v2 v3 v4 vn-1 vn

n weighted items

Fig. 3. WRS-k-W, n weighted items with k instances of each item.

Note that sampling with replacement is not equivalent to running the exper-
iment on a population V ′ with m instances of each original item of V . The
sample space of the later experiment would be much larger than in the case
with replacement.

4.2 Sampling with a Bounded Number of Replacements

We consider weighted random sampling from populations where each item can
be replaced at most a bounded number of times (Fig. 3). An analogy would
be to randomly select m products from an automatic selling machine with n
different products and k instances of each product. The challenge is of course
that the weighted random sample has to be generated in one-pass over an initially
unknown population.

– Problem WRS-k-W: Sampling from a population of n weighted items where
each item can be selected up to k ≤ m times. The weights of the items are
used to determine the probability that each item is selected at each step.
A general solution, in the sense that each item may have its own multiplicity
ki ≤ k, is to use a pipeline of m instances of a A-ES, where each instance
will generate a weighted random sample of size 1. Note that either algorithm
A-Chao or A-ES can be used, because for samples of size 1 the outcomes of
the two algorithms are equivalent. If the first instance is at item �, then each
other instance is one item behind the previous instance. Thus, an item of the
population is first processed by instance 1, then by instance 2, etc. If at some
point the item has been selected ki times, then the item is not processed by
the remaining instances and the information up to which instance the item has
been processed is stored. If the item is replaced in a reservoir at a later step,
then it is submitted to the next instance of A-ES. Note that in this approach,
some items might be processed out of their original order. This is fine with

192 P.S. Efraimidis

algorithm A-ES (both A-ES and A-Chao remain semantically unaffected by
any ordering of the population) but may be undesirable in certain applications.

4.3 Sampling Problems in the Presence of Stream Evolution

A case of reservoir-based sampling over data streams where the more recent
items are favored in the sampling process is discussed in [1]. While the items
do not have weights and are uniformly treated, a temporal bias function is used
to increase the probability of the more recent items to belong to the random
sample. Finally, in [1], a particular biased reservoir-based sampling scheme is
proposed and the problem of efficient general biased random sampling over data
streams is stated as an open problem.

In this work, we have brought to the fore algorithms A-Chao and A-ES,
which can efficiently solve WRS over data streams where each item can have an
arbitrary weight. This should provide an affirmative answer to the open problem
posed in [1]. Moreover, the particular sampling procedure presented in [1] is a
special case of algorithm A-Chao.

Since algorithms A-Chao and A-ES can support arbitrary item weights, a
bias favoring more recent items can be encoded into the weight of the newly
arrived item or in the weights of the items already in the reservoir. Furthermore,
by using algorithms A-Chao and A-ES the sampling process in the presence of
stream evolution can also support weighted items. This way the bias of each
item may depend on the item weight and how old the item is, or on any other
factor that could be taken into account. Thus, the sampling procedure and/or
the corresponding applications in [1] can be generalized to items with arbitrary
weights and other, temporal or not, bias criteria.

The way to increase the selection probability of a newly arrived item is very
simple for both algorithms, A-Chao and A-ES.

– A-Chao: By increasing the weight of the new item.
– A-ES: By increasing the weight of the new item or decreasing the weights of

the items already in the reservoir.

5 An Abstract Data Structure for WRS

We designed an abstract class StreamSampler with the methods feedItem() and
getSample(), and a set of auxiliary classes for the weighted items to capture
the basic functionality for weighted random sampling over data streams (Fig. 4).
Then, we developed descendant classes that implement the functionality of the
StreamSampler class for algorithms A-Chao and A-ES, both with and with-
out jumps. The descendant classes are StreamSamplerChao, StreamSamplerES,
StreamSamplerESWithJumps and StreamSamplerChaoWithJumps [18].
Preliminary experiments with random populations (with uniform random item
weights) showed that all algorithms scale linear on the population size and at
most linear on the sample size. Indicative measurements are shown in Fig. 5.

Weighted Random Sampling over Data Streams 193

(abstract class)
StreamSampler

StreamSamplerChao

StreamSampler ChaoWithJumps

StreamSamplerES

StreamSamplerESWithJumps

Fig. 4. The class hierarchy for sampling over data streams.

While there is still room for optimization of the implementations of the algo-
rithms, the general behavior of the complexities is evident in the graphs. The
experiments have been performed on the Sun Java 1.6 platform running on an
Intel Core 2 Quad CPU-based PC and all measurements have been averaged
over 100 (at least) executions.

6 The Role of Weights

The problem classes WRS-P and WRS-W differ in the way the item weights
are used in the sampling procedure. In WRS-P the weights are used to directly
determine the final selection probability of each item and this probability is
easy to calculate. On the other hand, in WRS-W the item weights are used
to determine the selection probability of each item in each step of a supposed
sequential sampling procedure. In this case it is easy to study each step of the
sampling procedure, but the final selection probabilities of the items seem to be
hard to calculate. In the general case, a complex expression has to be evaluated
in order to calculate the exact inclusion probability of each item and we are
not aware of an efficient procedure to calculate this expression. An interesting
feature of random samples generated with WRS-W is that they support the
concept of order for the sampled items. The item that is selected first or simply
has the largest key (algorithm A-ES) can be assumed to take the first position,
the second largest the second position etc. The concept of order can be useful in
certain applications. We illustrate the two sampling approaches in the following
example.

Example 3. On-line advertisements. A search engine shows with the results of
each query a set of k sponsored links that are related to the search query. If
there are n sponsored links that are relevant to a query then how should the set
of k links be selected? If all sponsors have paid the same amount of money then
any uniform sampling algorithm without replacement can solve the problem. If
however, every sponsor has a different weight then how should the k items be
selected? Assuming that the k positions are equivalent in “impact”, a sponsor
who has the double weight with respect to another sponsor may expect its adver-
tisement to appear twice as often in the results. Thus, a reasonable approach

194 P.S. Efraimidis

20000 40000 60000 80000 100000
n

5

10

15

20

25

30

35
msec

A Chao with Jumps
A Chao
A ES with Jumps
A ES

(a) Measurements for m=200 and n rang-
ing from 5000 to 100000.

200

400

600m

2000
4000

6000n

0.5

1.0

1.5

2.0

2.5

msec

(b) The complexity of A-ES for m ranging
from 50 to 750 and n from 1000 to 6000.

Fig. 5. Time measurements of the WRS sampling algorithms.

would be to use algorithm A-Chao to generate a WRS-N-P of k items. If however,
the advertisement slots are ordered based on their impact, for example the first
slot may have the largest impact, the second the second largest etc., then algo-
rithm A-ES may provide the appropriate solution by generating a WRS-N-W of
k items.

When the size of the population becomes large with respect to the size of the
random sample, then the differences in the selection probabilities of the items in
WRS-P and WRS-W become less important. The reason is that if the population
is large then the change in the population because of the removed items has a
small impact and the sampling procedure converges to random sampling without
replacement. As noted earlier, in random sampling with replacement the two
sampling approaches coincide.

7 Discussion

We presented a comprehensive treatment of WRS over data streams and showed
that efficient sampling schemes exist for fundamental but also more specialized
WRS problems. The two core algorithms, A-Chao and A-ES have been proved
efficient and flexible and can be used to build more complex sampling schemes.

Acknowledgments. The present work was supported in part by the project ATLAS
(Advanced Tourism Planning), GSRT/CO-OPERATION/11SYN-10-1730, and by
national ETAA funds.

References

1. Aggarwal, C.C.: On biased reservoir sampling in the presence of stream evolution.
In: VLDB 2006: Proceedings of the 32nd International Conference on Very Large
Data Bases, pp. 607–618. VLDB Endowment (2006)

Weighted Random Sampling over Data Streams 195

2. Al-Kateb, M., Lee, B.S.: Adaptive stratified reservoir sampling over heterogeneous
data streams. Inf. Syst. 39, 199–216 (2014)

3. Chao, M.T.: A general purpose unequal probability sampling plan. Biometrika
69(3), 653–656 (1982)

4. Cormode, G., Muthukrishnan, S., Yi, K., Zhang, Q.: Optimal sampling from dis-
tributed streams. In: Proceedings of the Twenty-ninth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2010, pp. 77–86.
ACM, New York (2010)

5. Cormode, G., Muthukrishnan, S., Yi, K., Zhang, Q.: Continuous sampling from
distributed streams. J. ACM 59(2), 10:1–10:25 (2012)

6. Cormode, G., Shkapenyuk, V., Srivastava, D., Xu, B.: Forward decay: a practical
time decay model for streaming systems. In: Proceedings of the 2009 IEEE Interna-
tional Conference on Data Engineering, ICDE 2009, pp. 138–149. IEEE Computer
Society, Washington, DC (2009)

7. Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986)
8. Efraimidis, P.S., Spirakis, P.G.: Weighted random sampling with a reservoir. Inf.

Process. Lett. 97(5), 181–185 (2006)
9. Goldberg, G., Harnik, D., Sotnikov, D.: The case for sampling on very large file

systems. In: 30th Symposium on Mass Storage Systems and Technologies (MSST),
pp. 1–11, June 2014

10. Hu, X., Qiao, M., Tao, Y.: Independent range sampling. In: Proceedings of the 33rd
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 2014, pp. 246–255. ACM, New York (2014)

11. Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms, vol.
2, 2nd edn. Addison-Wesley Publishing Company, Reading (1981)

12. Li, K.-H.: Reservoir-sampling algorithms of time complexity o(n(1 + log(n/n))).
ACM Trans. Math. Softw. 20(4), 481–493 (1994)

13. Longbo, Z., Zhanhuai, L., Yiqiang, Z., Min, Y., Yang, Z.: A priority random sam-
pling algorithm for time-based sliding windows over weighted streaming data. In:
Proceedings of the 2007 ACM Symposium on Applied Computing, SAC 2007, pp.
453–456. ACM, New York (2007)

14. Olken, F.: Random sampling from databases. Ph.D. thesis, Department of Com-
puter Science, University of California at Berkeley (1993)

15. Tirthapura, S., Woodruff, D.P.: Optimal random sampling from distributed
streams revisited. In: Peleg, D. (ed.) Distributed Computing. LNCS, vol. 6950,
pp. 283–297. Springer, Heidelberg (2011)

16. Vitter, J.S.: Faster methods for random sampling. Commun. ACM 27(7), 703–718
(1984)

17. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1),
37–57 (1985)

18. WRS.: A stream sampler for weighted random sampling. https://euclid.ee.duth.
gr/demo/wrs/

https://euclid.ee.duth.gr/demo/wrs/
https://euclid.ee.duth.gr/demo/wrs/

Random Instances of Problems in NP –
Algorithms and Statistical Physics

Charilaos Efthymiou(B)

Georgia Institute of Technology, College of Computing,
266 Ferst Dr. Atlanta, 30332 Atlanta, GA, USA

cefthymiou3@mail.gatech.edu

Abstract. One of the most intriguing discoveries made by Erdös and
Rényi in the course of their investigating random graphs is the so-called
phase transition phenomenona, like the sudden emergence of the giant
component. Since then, this kind of phenomena have been observed in
many, diverse, areas of combinatorics and discrete mathematics in gen-
eral. Typically, the notion of phase transition in combinatorics is related
to a sudden change in the structural properties of a combinatorial con-
struction, e.g. a (hyper)graph, arithmetic progressions e.t.c. However,
it seems that the study of phase transitions goes much further. There
is an empirical evidence that certain phase transition phenomena play
a prominent role in the performance of algorithms for a lot of natural
computational problems. That is, phase transitions are related to the,
somehow elusive, notion of computational intractability. The last fifteen-
twenty years, there has been serious attempts to put this relation on a
mathematically rigorous basis. Our aim is to highlight some of the most
central problems that arise in this endeavor.

1 Introduction

In one or another way, our main focus is algorithms for problems in NP. NP
is a class of tremendous wealth of important natural computational problems.
Many computational problems in several application areas call for the design of
mathematical objects of various sorts (paths in graphs, solutions of equations,
traveling salesman routes and so on). Sometimes we seek the optimum among
all possible alternatives and other times we are satisfied with any object that
fits some specifications. These mathematical objects are abstractions of actual
physical objects of real-life. Hence, it is natural that in most applications the
certificates of solutions are not astronomically large in terms of the input data
while specifications are usually simple and checkable quickly. The class NP con-
sists exactly of this kind of computational problems, i.e. those whose solution
can be certified efficiently.

Many problems in NP can be cast naturally as Constraint Satisfaction Prob-
lems (CSP), e.g. graph k-colourability, k-satisfiability and many others. An
instance of CSP is defined by a set of n variables, x1, . . . , xn each of them rang-
ing over a small domain D and a set of m constraints. A constraint is a k-tuple
c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 196–222, 2015.
DOI: 10.1007/978-3-319-24024-4 13

Random Instances of Problems in NP – Algorithms and Statistical Physics 197

of variables, e.g. (x1, . . . xk), for some small k. Each constraint forbids certain
combinations of values among its variables. That is, assigning the variables of
a constraint a “forbidden” combination makes the constraint unsatisfied. Oth-
erwise, the constraint is satisfied. A CSP is satisfiable if there is at least one
assignment which satisfies all the constraints simultaneously.

One example of CSP is the “k-colourability problem”. Given a graph G =
(V,E) and a set of k-colours, the problem is to decide whether there is an
assignment of colours to the vertices such that no two adjacent vertices take on
the same colour. Following the above definition of CSP we can formulate the
k-colouring problem as follows: The set of variables corresponds to the set of
vertices V . Each variable has domain D = {1, . . . , k}, i.e. the set of colors. The
set of constraints corresponds to the set of edges E, i.e. two variables in the
constrain are not allowed to take the same value.

The task of finding a satisfiable assignment of a CSP can be accomplished
by just enumerating all the |D|n possible assignments of the variables. However,
even for moderate values of n this exponential running is impractical. Yet, for
many CSPs, no better algorithm is known.

The theory of NP-completeness established by the seminal works of Cook and
Karp in the early 1970 s enabled us to distinguish the most difficult among the
NP problems, the NP-complete problems. However, there has been only a little
evidence to illuminate the conceptual origin of their computational intractability.
That is, it is not clear why the attempts to find efficient algorithms for the
NP-complete problems have failed. On the other hand, there are many cases
in practice where instances of NP-complete problems can be solved “quickly”.
Hence computational intractability is a rather elusive phenomenon.

A major research effort over the past 40 years has been the study of random
instances of NP-complete problems, particularly random Constrains Satisfaction
Problems (rCSP). At first the main objective of this endeavor was to show that
NP-complete problems are easy “on the average”, i.e. hard instances are rare
and exceptional.

Yet in various setting rCSPs do not comply with the above picture. Random
graph colouring is a case in the point. Let G(n,m) by a graph created by choos-
ing at random a graph on n vertices and m = dn/2 edges, where d is constant.
It has been shown that in typical instances of G(n,m) χ the minimum num-
ber of colours needed for k-colouring the vertices of G(n,m) is d/(2 ln d), see
[5,21]. However, the best algorithm there exists for colouring typical instances
of G(n,m) is a very simple greedy one and requires as many as 2χ colours and
it was proposed around 40 years ago [40]. Since then there has been no other
efficient algorithm, howsoever sophisticated, that can outperform this simple
(almost naive) algorithm, in term of number of colours.

The state of affairs leads to the question whether rCSP such as random
graph colouring are computationally “hard”, at least under certain conditions.
If so, then for some very natural problems computational intractability would
be the typical behaviour, rather than a rare exception. In fact it would be easy
to generate hard problem instances. While this scenario might seem frustrating

198 C. Efthymiou

from an algorithmic perspective, it is no exaggeration to say that a proof of some
natural type of a rCSP is hard would revolutionize computational complexity
and cryptography.

From a different starting point, rCSP have been studied in statistical mechan-
ics as models of disordered systems. Starting with the work of Marc Mézard
and Giorgio Parisi in the 1980 s physicists have developed ingenious, however
mathematically highly non-rigorous ideas for the study of these objects. Over
the past decade, the ideas pioneered by Mézard and Parisi have grown into a
generic toolkit called Cavity method [57]. Cavity method makes impressively
strong predictions about fundamental properties of rCSP which seem to affect
the performance of algorithms.

Cavity method does not include any computational complexity theoretic pre-
dictions. However, the empirical performance of all known algorithms and heuris-
tics for finding satisfying assignments of rCSP instances appear to go along with
certain phase transition phenomena predicted by this method. A case in the
point is the problem of colouring we describe above. Acquiring a (2+ ε)χ colour-
ing of G(n,m) efficiently is a trivial task. On the other hand, there is not any
efficient algorithm that can (2 − ε)χ colour G(n,m). Technically speaking, the
difficulty in the later case seems to rely on the fact that the choices that are
made by some local algorithm have global impact. A folklore term that describes
this phenomenon is “freezing”, [1]. In a typical (2 − ε)χ colourings of G(n,m)
it is impossible to alter the colour assignment of a vertex and keep the colour-
ing proper. To do so, one has to change the colour assignments of a significant
number of vertices. The phenomenon of freezing is rather exceptional among the
(2 + ε)χ-colourings of G(n,m).

Of course, freezing on its own is not sufficient to provide any hardness results,
in a rigorous sense. However, it is a remarkable coincidence that all the algo-
rithms or heuristics we have for colouring a G(n,m) seem to be suffer from this
phenomenon.

1.1 Algorithms for rCSP

There is a wide variety of algorithms-heuristics applied to rCSP. A lot of them
are motivated from the study of the problem from statistical physics e.g. Glauber
Dynamics, Metropolis process [52], Belief Propagation, [62] Survey Propagation
[11] Simulated Annealing [48]. Other have more CS-Mathematical flavor, e.g.
Walksat [65], DPLL and many others.

Remark 1. We wish to distinguish the notion of heuristics from algorithm in
that, a heuristic is a method whose performance guarantees are not (mathemat-
ically) rigorously established, as opposed to the algorithms which are.

The rage of the aforementioned algorithm is by no means restricted to rCSP.
The spectrum of their applications varies from combinatorial algorithms for
approximate counting of combinatorial objects [44], computing the permanent of
a matrix [45], to optimization [48], information theory e.g. for the LDPC codes
[64], Artificial Intelligence [62] and Computer Vision [34].

Random Instances of Problems in NP – Algorithms and Statistical Physics 199

In this survey we focus mainly on algorithms which are motivated by to ideas
coming from statistical physics, e.g. algorithm dynamicses like Glauber Dynam-
ics, Metropolis process or message passing algorithms like Belief Propagation,
Survey Propagation. Especially, the algorithm dynamicses are a natural family
of algorithms since they simulate certain kinds of random walks on the solution
space of the rCSP. These algorithms are very simple, local and easy to imple-
ment. They are studied in the context of Markov Chain Monte Carlo sampling
as well as for optimization1. On the other hand, the message passing algorithms
is an attempt to turn the cavity method to an algorithm.

The behavior of all the above algorithms as well as many other algorithms
for rCSP depends heavily on phenomena predicted by the (non rigorous) the
cavity method. In particular, it seems that a prominent role in studying most
of the algorithms above plays the so called Gibbs distribution over the solutions
of a given rCSP instance. The cavity method predicts a series of phase transi-
tions regarding the structure of the Gibbs distribution which in turn affect the
empirical performance of the algorithms.

2 Predictions from Statistical Physics - “Cavity Method”

The study of phase transitions in rCSP is done with respect to a parameter
called density. Density is defined as the ratio of the number of constraints m
over the number of variables, n. The notion of phase transition implies a sudden,
usually dramatic, change in some property (or properties) of a rCSP as a result
of a relatively small change in the value of the density.

For the shake of concreteness we use the graph colouring problem to describe
the predictions from the cavity method. Very similar predictions hold for other
rCSP like independent set problem, k-SAT and many others. We should remark
that the cavity method is a generic tool whose applications go beyond the study
of rCSP. The presentations of the results are from [50].

The setting which we use to present the results is more or less standard in
the study of phase transitions. We consider the following graph-process: Start
with an empty graph on n vertices, i.e. G0. This is step 0. Given Gt−1, at step t
we “throw a random edge” into Gt−1. That is, we choose a pair of non-adjacent
vertices of Gt−1 at random and we connect them by introducing a new edge.
Then, it is standard to show that Gm is an instance of random graph G(n,m).
We denote with d the expected degree of G(n,m), which is equal to twice the
density as d = 2m/n.

In the above graph-process we study how does the set of k-colourings of Gt

evolve with t. Assume that the number of colours k is fixed. The evolution of
the set of k-colourings is w.r.t. the following phenomenon: each time t we throw
a new edge into the graph a large number of k-colourings of Gt−1 has to be
disregarded. E.g. if the new edge connects the vertices v and u, then the new
set of k-colourings should disregard all the previous k-colourings which assign v
and u the same colour.
1 As local greedy algorithms.

200 C. Efthymiou

The cavity method predicts a very exciting scenario for the evolution of the
set of k-colourings both in terms of its geometry as well as the structure of the
corresponding Gibbs distribution. Gibbs (or Boltzmann) distribution of a rCSP
is a natural distribution defined on the set of satisfying assignments. E.g. for the
k-colourings it is just the uniform distribution over all possible k-colourings of
the underlying graph (Fig. 1).

runiq(k) rrecon(k) rcond(k) rs(k) dt

Fig. 1. Geometry evolution

We start by considering the geometry first. The evolution of the geometry of
the k-colourings during the graph process is illustrated in Fig. 2. Given k there
is a set of four critical values, runiq(k), rrecon(k), rcond(k), rs(k) for the expected
degree (equiv. density) which signify 5 different phases.

The first phase is for expected degree d < runiq, this is the so-called “unique-
ness” region. There, the set of k-colourings looks like a giant “connected” ball.
By connected we mean that there is a path connecting any two k-colourings.
Two k-colourings are adjacent in the path if their hamming distance is very
small, e.g. fixed. For two colourings σ and τ their hamming distance is equal to
the number of assignments that the two colorings disagree.

As the graph process continuous to add edges into the graph, the expected
degree increases. As soon as d becomes larger than runiq we get to a new phase
the so-called “non-reconstruction”. Geometrically, this phase is not so much
different than the previous one. It is just an exponentially small fraction of
solutions that gets disconnected from the giant ball. Disconnection means that
the solutions that do not belong to the giant ball are separated from it with
linear hamming distance.

When d passes beyond a critical value rrecon we have a sudden, very dra-
matic, change in the geometry of the solution space. The space “shatters” into
exponentially many small balls. Each of the small balls contains an exponen-
tially small fraction of the k-colourings. Any two k-colourings in each ball are
connected with each other. However, any two k-colouring from different balls
are separated with linear hamming distance. This is called the “reconstruction”
region. The k-colourings within each ball are highly correlated, i.e. most of the
colour assignments are the same for all k-colourings in the ball.

Remark 2. From an algorithmic perspective, in the reconstruction region, we
have the phenomenon of frozen variables [1]. For the majority of vertices the
following is true: so as to change the assignment of a variable we need to change

Random Instances of Problems in NP – Algorithms and Statistical Physics 201

the assignments of a substantial number of vertices in the graph so as to keep
the colouring proper.

Remark 3. All the known efficient algorithms which find solutions stop to work
in the reconstruction region. In other words, given some k, there is not any
efficient algorithm which can find a k-colouring of G(n,m) if its expected degree
d > rrecon(k).

Next, there is the condensation phase. As soon as d gets d > rcond the k-
colourings start to disappear rapidly as d increases. This means that the balls
-clusters of solutions- from the previous phase start shrinking rapidly and a lot
of them disappear. From those which survive in the condensation phase, there is
only a small, constant, fraction of balls which dominates. These, constant many,
dominating balls gather a constant fraction of the k-colourings. A basic feature
of this phase is that the k-colourings are extremely correlated with each other.

Finally, as soon as d gets d > rs the k-colourings disappear, i.e. the graph is
not k-colourable any more. This is the unsatisfiability phase.

Alternatively, the cavity method considers the Gibbs distribution which is
defined as follows: We have an “energy” function H(·) from the set of assign-
ments to the positive real numbers. This function is called Hamiltonian. It is
necessary to remark that the Hamiltonian is defined for every possible assign-
ment of the variables, satisfying or not. Given H, the Gibbs distribution assigns
the configuration σ probability measure

μ(σ) =
1

Zβ
exp (−β · H(σ)) , (1)

where β is a parameter of the system and it is called inverse temperature. The
inverse temperature takes on either some real value or it is infinity. Zβ is a
normalizing quantity which is called “partition function”.

Remark 4. In a physics’ perspective, H(σ) corresponds to the “energy” that
configuration σ has. In that terms, Gibbs distribution gives greater probability
measure to the configurations with smaller energy.

For the k-colourings of a graph G, the corresponding Gibbs distribution is
defined as follows: For every assignment of colours σ ∈ [k]V (G) it holds that

H(σ) =
∑

{v,u}∈E(G)

δ(σv, σu),

where δ(σv, σu) is Kronecker’s delta function, i.e.

δ(σv, σu) =
{

1 if σv = σu

0 otherwise.

Essentially, H(σ) counts the number of monochromatic edges of G under σ.
In order to guarantee that the Gibbs distribution has support the proper

k-colourings of G only, we set β = ∞. E.g. every non proper takes probability
measure 0 while each proper k-colouring takes the same probability measure as
the other proper k-colourings.

202 C. Efthymiou

Remark 5. Studying the problem of graph colouring for general β has gathered
a lot of attention in statistical physics literature. The corresponding distribution
is also known as Potts model. In computer science the focus is mainly on the
most challenging case where β = ∞.

The study of Gibbs distribution μ mainly focuses on its spatial correlation
decay properties. Consider a small subset of vertices Λ ⊆ V (G). Roughly speak-
ing, the spatial correlation studies the difference between the projection (mar-
ginal) of Gibbs distribution on Λ and the projection of the Gibbs distribution
on Λ when we condition on the configuration of some other set Λ′ which is at
graph distance r from Λ.

So as to compare two distributions ν, ξ on some discrete space S, we use the
notion of total variation distance, denoted as ||ν − ξ||. Total variation distance
is defined as follows:

||ν − ξ|| = max
A⊆S

|ν(A) − ξ(A)|.

For a pair of distribution ν, ξ on the set of k-colourings of a graph G and
Λ ⊆ V (G), we let ||ν − ξ||Λ denote the total variation distance of the projections
of the two distributions on the vertex set Λ.

In what follows, given some vertex v and some integer r we let Bv,r denote
the set of vertices which are within graph distance r from v. We denote B̄v,r the
complement of the set Bv,r.

The different phases regarding the geometry of the configuration space cor-
respond to different spatial correlation decay properties for the corresponding
Gibbs measure μ on G(n,m). More specifically, as long as d < runiq, i.e. in the
uniqueness region, it holds that

E

[
sup

σB̄v,r

||μ(·|σB̄v,r
) − μ(·)||{v}

]
= or(1), (2)

where or(1) is a vanishing function of r. The expectation is taken w.r.t. the
graph instances.

In words, the above relation implies the following: Consider some “typical”
instance of G(n,m) with d < runiq and some “typical” vertex in that graph. Take
a random k-colouring of this graph. In this random colouring, the assignment of
the vertex v is asymptotically independent, w.r.t. r, from the colour assignments
in B̄v,r. The specific notion of independence assumes a worst case boundary
condition for B̄v,r, e.g. we take the supremum over σB̄v,r

. For this reason it is
rather strong. The condition in (2) is called Gibbs uniqueness condition.

Remark 6. Gibbs uniqueness is one of the most basic and most fundamental
properties in the study of Gibbs distribution for such models (also called “spin
systems” in statistical physics literature) see [38].

When d is in the non-reconstruction region, then (2) does not hold. There are
boundary conditions on B̄v,r which have substantial influence on the distribution

Random Instances of Problems in NP – Algorithms and Statistical Physics 203

of the colour assignment of v, regardless of r. However, there is a weaker condition
that holds,

E

⎡
⎣∑

σB̄r

μ(σB̄r
) · ||μ(·|σB̄r

) − μ(·)||{v}

⎤
⎦ = or(1). (3)

In words, the above condition implies that the colour assignment of v is asymp-
totically independent of “typical” boundary conditions on B̄v,r. That is the
boundaries conditions on B̄v,r that have great influence on the distribution of
the colouring on v are somehow exceptional under the Gibbs distribution.

When d is in the reconstruction regime the l.h.s. of (3) is bounded away from
zero. Then we have the following situation. Let S = {v1, . . . , vl} be a set of l
randomly chosen vertices, for some fixed number l > 0. Let μS and μvi

denote
the Gibbs marginals of S and the vertex vi ∈ S, respectively. Then it holds that

E

[∑
σS

∣∣∣∣∣μS(σS) −
l∏

i=1

μvi
(σvi

)

∣∣∣∣∣

]
= on(1). (4)

The above expectation is w.r.t. both graph instances and set of vertices.
In word, what the above relation implies is that the joint distribution of the

vertices in S factorizes as a product of marginals of the individual vertices in the
set. The condition implies that each of the possible combinations of colorings of
the vertices v1, . . . , vl appear in, roughly, the same number of balls of solutions.

Finally, in condensation phase, (4) does not hold. The expectation now is
bounded away from zero. This is mainly because the colouring of the vertices
v1, . . . , vl is hugely influenced by the assignments induced by the dominating
balls of solutions.

Remark 7. The spatial mixing conditions in (4) gives rise to the study of spatial
mixing properties of new probability measures, e.g. measures over the clusters.
This motivates the well known algorithm Survey Propagation [11].

2.1 Rigorous Results

The cavity method describes in a very precise way the location of all the afore-
mentioned thresholds. The most fundamental question in this context is speci-
fying the satisfiability threshold. In a separate paragraph we focus on this very
interesting subject, i.e. Sect. 3. In the rest of this short section we focus on pre-
senting some, rigorous, results which are related to predictions of the cavity
method we refer above.

In [1,16] the authors give rigorous result about geometric predictions of the
cavity method, as far as k-colouring, k-SAT, hypergraph 2 colouring and inde-
pendent set problem are regarded. These results are for predictions up to conden-
sation threshold. Also in [18,33] we show that for the k-colouring problem, the
non-reconstruction threshold is true for the case of k-colourings. In particular in

204 C. Efthymiou

[18] we show that up to condensation threshold, the Gibbs distribution over the
k-colourings of G(n,m) converges, in a specific way, to the Gibbs distribution of
the k-colouring of a Galton-Watson tree with offspring distribution 2m/n.

Also in [8] the authors prove rigorously the existence of the condensation
phase and give the precise location of the threshold for the case of k-colourings.

There is a number of papers which consider the problems not on random
graphs or random hypergraphs but on random regular graphs. It is expected
that there are a lot of similarities between regular rCSP and their random coun-
terparts. We mention some results on regular rCSP [10,17,24,25].

3 Satisfiability Thresholds

Possibly the most fundamental endeavor in the study of rCSP is to find precisely
the satisfiability threshold for the corresponding model. The existence of satisfi-
ability threshold for rCSP has been conjectured to exists few decades ago. In this
section, we provide a high level description of the approaches used for estimat-
ing this threshold. Due to the fact that random k-SAT has focused the greatest
attention, the corresponding satisfiability threshold has the best estimates so
far. Our presentation focuses on this problem.

Consider a set of n boolean variables, x1, . . . , xn. A literal is either a variable
xi or its negation. A random k-CNF formula Fn,m,k is the conjunction of m
clauses such that each clause is a disjunction of a random subset of k out the 2n
literals.

Given some random k-CNF formula Fn,m,k we let SAT(Fn,m,k) = “Fn,m,k

is satisfiable”. The satisfiability threshold conjecture stipulates that given some
fixed k, there is a critical value rs such that

Pr[SAT(Fn,m,k)] =
{

1 if m/n < rs

0 if m/n > rs

The work [35], by Freidgut, as well as further results like [3], established that
indeed there is such critical value for the satisfiability of various rCSP like k-SAT
or k-colouring.

Remark 8. The aforementioned results about the existence of satisfiability
threshold do not exclude the possibility that the threshold depends on n, i.e.
rs = rs(n).

Usually the attempt is to determine upper and lower bounds for the satisfi-
ability threshold, i.e. r−

s , r+s such that r−
s ≤ rs ≤ r+s . Ideally we would like to

have r−
s = rs = r+s . The attempts to estimate r−

s , r+s follow more or less a stan-
dard approach. Given some formula Fn,m,k we define an appropriate variable
Z = Z(F) such that Z > 0 if the formula is satisfiable and Z = 0, otherwise.
Then the aim is to show that

lim
n→∞ Pr[Z > 0] =

{
1 if m/n < r−

s

0 if m/n > r+s .

Random Instances of Problems in NP – Algorithms and Statistical Physics 205

The most natural candidate for Z is the number of satisfying assignments
of Fn,m,k. This was the case in the early attempts to get bounds for rs. For
upper bounding rs the attempt was to find the minimum possible r+s such that
E[Z] = o(1) whenever m/n > r+s . Then, non-satisfiability follows by using the
first moment method, i.e. Markov’s inequality,

Pr [Z > 0] ≤ E[Z].

This approach implies that r+s = 2k ln 2. The authors in [49] improve further on
the upper bound from the first moment and get r+s = 2k ln 2−(1+ln 2)/2+ok(1)
which is correct in the second order asymptotic term.

Someone could expect that the lower bound r−
s would follow by using the

second moment method. That is, for r−
s as big as possible to show that E[Z] → ∞,

while E[Z2] ∼ E2[Z], for any m/n < r−
s . Then, using Payley-Sigmund inequality

we could get that

Pr [Z > 0] ≥ E
2[Z]

E[Z2]
= 1 − o(1). (5)

It turns out that the use of the second moment method as we describe above
is not possible. The reason why the above does not hold is because E[Z2] =
ω(1)E2[Z]. That is, the second moment of the number of solutions of a random
k-SAT formula is asymptotically greater than the square of the first moment.
To this end, the attempt was to construct an algorithm which finds satisfying
solutions on typical instances of Fn,m,k when m/n < r−

s , i.e. show that solutions
exist by finding one.

Remark 9. In a retrospect we know that any algorithmic approach has to deal
with the reconstruction phase transition. The reconstruction threshold is much
lower, density-wise, than the satisfiability threshold.

It is elementary to see that finding a solution requires more “effort” than just
showing that one exists. Returning to the second moment approach, it turns out
that it is possible to circumvent to above problems by noting the following. The
fact that E[Z2] = ω(1)E2[Z] is mainly because the solutions of a random formula
Fn,m,k are “too correlated” with each other. In particular, the performance of
the the second moment method relies on the pairwise independence between the
solutions.

In these terms, there was a breakthrough in [4]. There the authors, developed
a new setting where they can use the second moment method to show existence
of solutions. This method turned out to be much stronger that any algorithmic
attempt. They circumvent the correlation problems by taking Z so that it counts
the size of a special subset of solutions, rather than the whole set. In particular, in
[4] the authors improve on the lower bound on satisfiability be setting Z to count
the so-called “Not-All-Equal” (NAE) satisfying assignments of Fn,m,k. A NAE
satisfying assignment stipulates that each clause should have one literal which is
satisfied and one that is not. The choice of counting the number of this kind of

206 C. Efthymiou

solutions was not a coincidence. Somehow, random pairs of NAE solutions are
pairwise independent. This new approach showed that r−

s ≥ 2k−1 ln 2 − O(1).
This result was a great improvement compared to the previous, algorithmic,
lower bound which was Ω(2k/k) [22].

In particular, the author in [4] showed that for densities up to 2k−1 ln 2−O(1)
it holds that E[Z2] ≤ C · E2[Z] for sufficiently large fixed number C > 0. This
result combined with (5) implies that a random formula Fn,m,k is satisfiable
with strictly positive probability. Then, it follows that the satisfiability holds with
probability 1 − o(1) by using standard arguments about sharp thresholds [35].

Subsequent to [4], the result in [6] estimates the satisfiability threshold up to
some quantity O(k). In particular they show that r−

s = 2k ln 2−O(k). The tech-
nique in this result apart from choosing appropriately solutions it also imposes
weights to each solution.

Further results [15,19] consider densities inside the condensation phase. This
is highly challenging as in this phase the solutions become extremely correlated.
An ingredient of the works in [15,19] is that a lot of their techniques are moti-
vated by the prediction from statistical physicist we presented in Sect. 2. This
gives even better bounds for rs, i.e. r+s − r−

s = εk where limk→∞ εk = 0. In
particular it holds

rs = 2k ln 2 − 1
2
(1 + ln 2) + εk. (6)

However, the above bound is not sufficient to show the satisfiability conjec-
ture for random k-SAT. Quite recently, the work [26] resolves the satisfiability
threshold conjecture. That is, improving on ideas from [15], the authors in [26]
find precisely the satisfiability threshold rs, which is of similar form as in (6).
The authors in [26] show that if the density deviates by o(n) around the crit-
ical value rs, then we get from almost certain satisfiability to almost certain
unsatisfiability.

Remark 10. Currently, the best algorithm find that solutions of typical instances
of k-SAT for densities up to 2k ln k/k, [14].

Estimations of the satisfiability thresholds for other rCSP problems can be
found in [20,21,23].

4 Algorithm Dynamics

One could claim that algorithm dynamics are, at least, as old as the use of
programmable computers by physicists. These kind of algorithms are studied
from computer scientists usually in the context of Markov Chain Monte Carlo
sampling and optimization. Most popular examples are Glauber Dynamics [44],
Metropolis Process [56] and Simulated Annealing [48]. These algorithms, the
dynamicses, are simple randomized processes. Mostly they simulate a certain
kind of random walk on the solution space of a given rCSP instance. To that
extent, this makes them a quite natural class of algorithms.

Random Instances of Problems in NP – Algorithms and Statistical Physics 207

Even though they are very simple, local and easy to implement, understanding
the behaviour of these dynamicses, largely, has been elusive. Analyzing their
performance is far from a trivial task. In most cases of interest, the gap between
their conjectured and their rigorously proved performance is big.

Remark 11. The physicists’ insight on this comes mainly from the analogy
between the dynamics of algorithms and the physical dynamics of systems in
nature.

Each dynamics gives rise to a well defined equilibrium distribution, which
usually is the Gibbs distribution. Given such a process, one objective is to study
the rate of convergence, i.e. how fast does the process converge to its equilibrium
distribution. Another aspect of these process involves studying them in the con-
text of optimization. That is, we view the rCSP as an optimization problem and
use the dynamics to get a solution as close to the optimal as possible.

4.1 Convergence of Glauber Dynamics

Mathematically, we model the dynamics by using finite state, (discrete time)
Markov chains. Typically, the state space Ω is the solutions of a given rCSP
instance. The transition rule of the Markov chain specifies the kind of dynamics
we use, e.g. here we consider Glauber dynamics. Typically, we focus on the cases
where the chain satisfies a set of conditions which come with the name ergodicity.
In our setting, ergodicity is equivalent to having a connected state space, i.e. the
chain can get from one state to any other state by using a sequence of transitions
such that each one of the transitions has strictly positive probability. It is well
known that an ergodic Markov chain converges to a well defined equilibrium
distribution. For the Glauber dynamics the equilibrium distribution is the Gibbs
distribution.

Remark 12. In what follows the Markov chains we consider are discrete time
ones.

For the sake of concreteness our focus is on the Glauber dynamic on the k-
colourings of G(n,m). This corresponds to a Markov chain with state space Ω the
set of proper k-colouring of G(n,m). The equilibrium distribution is the uniform
distribution over the k-colourings of the underlying graph (Gibbs distribution).

In what follows we describe, in its simples form, the Markov chain which
corresponds to Glauber dynamics. We let {Xt}t≥0 denote the state of the chain
at time t. The initial configuration X0 is, usually, an arbitrary configuration. For
every t ≥ 0, given Xt, we get to the state Xt+1 as follows:

1. Choose uniformly at random on vertex v from the set of vertices
2. Set Xt+1(w) = Xt(w), for every vertex w 	= v
3. Set Xt+1(v) according to Gibbs distribution conditional the colouring of the

rest of the graph.

208 C. Efthymiou

The last step implies that for Xt+1(v) we choose uniformly at random a colour
among those which do not appear in the neighborhood of the vertex v under Xt.

The above method of updates is called single site update since each transition
changes the colour of a single vertex. Alternatively, some can choose to update
small blocks of vertices than single vertices. This alternative for updates is known
as block dynamics. Here we consider block dynamics.

The idea is to use an algorithm to simulate the aforementioned Markov chain.
The measure of performance is the rate of convergence to the equilibrium dis-
tribution. For this we use the notion of mixing time. The mixing time is defined
as the number of transitions required from the chain to reach within total varia-
tion distance 1/e from the equilibrium distribution, regardless of its initial state.
What is desirable is to have rapid mixing. We say that a chain is rapidly mix-
ing when its mixing time is upper bounded by some polynomial of the size of
underlying graph instance.

Remark 13. For an efficient random colouring algorithm, additionally to rapid
mixing, it is necessary that we get a proper k-colouring of the underlying graph
efficiently. For the range of k we consider here, k-colouring the underlying graph
can be done efficiently by using standard methods.

The problem of establishing rapid mixing when the underlying graph is
G(n,m) is a rather interesting one. There are many ingredients into the problem
which make it challenging. The first one, and possibly the most obvious, is that
someone has to deal with the so called high degree effect. That is, there is a rel-
ative large fluctuation on the degrees of the vertices in the random graph. E.g.
it is elementary to show that typical instances of G(n,m) with fixed expected
degree d have maximum degree which is equal to Θ

(
log n

log log n

)
, while more than,

say, 99.999 % of the vertices have degree in the interval (1 ± 10−3)d. Usually the
bounds for rapid mixing in terms of k are expressed as functions of the maximum
degree, e.g. see [29,37,39,41,54,55,63,66,67]. However, from the above discus-
sion it seems natural that for the case of G(n,m) the bound for mixing time
should depend on the expected degree rather than the maximum degree. This
picture is also supported not only by non rigorous predictions but from a series
of rigorous results too, i.e. [31,61].

In what follows, we give a brief overview of the work in [31] which provides
the best bound for rapid mixing of Glauber dynamics for k-colouring2 of G(n,m)
with expected degree d = 2m/n3.

It seems natural to consider block updates rather than single vertex updates.
That is, there is a collection of appropriately defined blocks B and at each step
t the Markov chain updates the colouring of a randomly chosen block from B.
This approach relies on the observation from [27] that the effect of high degrees

2 The interested reader can find rapid mixing bound fro the hard-core model (weighted
independent sets), too.

3 The paper in [31] is for G(n, p) model for p = d/n, the result for G(n, m) follow by
using standard arguments.

Random Instances of Problems in NP – Algorithms and Statistical Physics 209

somehow diminishes when high degree vertices are away from the boundary of
their block. Devising such a block construction is a complex task. Examples of
strategies for creating blocks can also be found in [27,31,61].

The rapid mixing property of the algorithm follows from using the well-
known Path Coupling technique [13]. The technique summarizes as follows: For
the sake of brevity, assume initially that we have single site updates instead of
block dynamics. Consider any two copies of the Markov chain, i.e. at state X0, Y0,
respectively. We take arbitrary X0, Y0 on the condition that they have exactly
one disagreement, i.e. their Hamming distance H(X0, Y0) = 1. The coupling
carries out one transition of each copy of the chain. Let X1, Y1 be the colouring
after each transition, respectively. A sufficient condition for rapid mixing is to
exist a coupling such that

E[H(X1, Y1)|X0, Y0] ≤ 1 − Θ
(
n−1

)
, (7)

where the expectation is w.r.t. the coupling.
To study the path coupling technique further, assume now that for w ∈ V

we have X0(w) 	= Y (w). It is natural to use a coupling that updates the same
vertex in both copies. The cases that matter are only those where the coupling
chooses to update either the disagreeing vertex w or one of its neighbours. If the
update involves the vertex w, then, trivially, we get that X1 = Y1. This happens
with probability 1/n, where |V | = n. On the other hand, if the update involves a
neighbour of w, then X1, Y1 may have an extra disagreement. In particular, the
update of a neighbour of w generates an extra disagreement with probability at
most 1

k−Δ . Since the disagreeing vertex w has at most as many neighbours as
the maximum degree Δ, the probability of having an extra disagreement is at
most Δ

n
1

k−Δ . Taking k ≥ 2Δ + 1, it is direct that (7) is satisfied.
In our setting, we consider two copies of the chain at states X0, Y0. The states

differ only on the assignment of the vertex w. The coupling chooses uniformly
at random a block B from the set of blocks B and updates the colouring of B in
both chains. It turns out that the crucial case for proving (7) is when the outer
boundary of B is not the same for both chains, i.e. the disagreeing vertex w is
outside the block B but it is adjacent to some vertices in B. There, we need
to upper bound the expected number of disagreements, the vertices which take
different colour assignments after the update of the colouring. Note that the new
disagreements are only among the vertices of B. The construction of the blocks
in B should be such that the expected number of disagreements is minimized.

We use the well-known “disagreement percolation” coupling construction, [9]
to bound the expected number of disagreements during the update of block B.
The disagreement at the boundary of B prohibits identical coupling of X1(B)
and Y1(B). The disagreement percolation assembles the coupling in a stepwise
fashion moving away from w. Disagreements propagates into B along paths
from w. A disagreement at vertex u′ ∈ B at distance r from w propagates to a
neighbour u at distance r + 1 if X1(u) 	= Y1(u). The disagreement percolation is
dominated by an independent process such that each vertex v ∈ B is disagreeing
with probability

210 C. Efthymiou

�v =
{ 2

k−(1+α)d if degree(v) ≤ (1 + α)d
1 otherwise,

where α > 0 is some small constant and k ≥ 5.5d. The disagreement propagates
over the path L that start from w with probability at most

∏
u∈L\{w} �u. The

expected number of disagreements is at most the expected number of paths of
disagreements that start from w and propagate inside B.

Intuitively, high degree vertices are expected to have an increased contribu-
tion to the number of disagreements. Mainly this is due to the following reason:
If a high degree vertex is disagreeing, it has an increased number of neighbours
to propagate the disagreement. However, for typical G(n,m) and k ≥ 11

2 d, it
turns out that the larger the distance between a high degree vertex from w the
less probable is for the disagreement to reach it. This balances “on average” the
increased contribution that high degree vertices have. We exploit this observation
in the block construction.

To be more concrete, we introduce a weighting schema as follows: Each vertex
u, of degree degree(u) in G(n,m), is assigned weight W (u) such that

W (u) =

{
(1 + γ)−1 if degree(u) ≤ (1 + α)d

dc · degree(u) otherwise,
(8)

for appropriate real numbers α, γ, c > 0. Given the weights of the vertices, each
block B ∈ B should satisfy the following two properties:

1. B is either a tree or a unicyclic graph
2. For every path L between a vertex at the outer boundary of B and a high

degree vertex inside B it should hold that
∏

u∈L W (u) ≤ 1.

Roughly speaking, 1. guarantees that the updates can be implemented efficiently,
while 2. guarantees that the disagreement percolation coupling construction we
describe above satisfies (7). For further details on how does 2. with Path coupling
implies rapid mixing for the block updates, see in [31].

Efficient Colour Updates. For the algorithm to be efficient it is necessary that it
can implement the update of each block in B in polynomial time. In our case,
the updates can be implemented efficiently due to the fact that each block is a
tree with at most one extra edge.

It is well known that someone can take a random k-colouring of a tree of
maximum degree O(ln n) in polynomial time, as long as k is fixed. This can
be done by just using Dynamic Programming (DP) to enumerate all the k-
colourings of the tree and then choose one at random. This implies that the
Glauber dynamics, above, can update the colouring of a block when this block
is a tree.

For the case where the block is a unicyclic graph, i.e. tree with an extra edge,
it is still possible to take a random k-colouring. In this case, we consider all the
possible k(k − 1) possible colorings of the ends of the extra edge. For every such
colouring we employ DP and count, in polynomial time, the k-colourings of the

Random Instances of Problems in NP – Algorithms and Statistical Physics 211

remaining structure which now is a tree. Clearly, this implies that we can count
efficiently all the k-colouring of the unicyclic block in polynomial time. In turn,
this means that we can generate one at random.

Efficient Block Creation. Another important issue for the efficiency of the algo-
rithm is to be able to create a set of block which has the aforementioned prop-
erties. For creating such a set of blocks, we need to distinguish the vertices u
in G(n,m) such that all the paths that emanate from u are of low weight, i.e.
weight less than 1. These vertices are important for the creation of blocks and
we call them break points.

Definition 1 (Influence). For a vertex v, let P(v) denote the set of all paths
of length at most lnn

d2/5 that start from v. We call “influence” on the vertex v,
denoted as E(v), the following quantity:

E(v) = max
L∈P(v)

{∏
u∈L

W (u)

}
.

A vertex v is considered to be under no influence if E(v) ≤ 1. The vertices under
no influence are the break points. It is necessary to make the following observa-
tion: For typical instances of G(n,m), if for some vertex v the influence E(v) < 1,
then there is no path L that emanates from v such that |L| > log n/d2/5 while∏

u∈L W (u) > 1.
The break points are used to specify the boundaries of the blocks. In what

follows, a path L that does not contain break-points is called “influence path”.

Block Creation: We have two different kinds of blocks. Let C denote the set
of all cycles of length at most 4 lnn

ln5 d
in G(n,m).

1. For each C ∈ C we have a block which contains every vertex v ∈ C as well
as all the vertices that are reachable from v through an influence path that
does not use vertices of C\{v}.

2. The remaining blocks are created as follows:
(a) Pick a vertex v which is not a break point and does not belong to any

block, so far. Consider as a new block the vertex v and all the vertices
that are reachable from v through an influence path.

(b) Each vertex which does not belong to a block after steps 1 and 2.a can
only be a break point. Each break point becomes a single vertex block.

For typical instances of G(n,m), the above construction gives rise to a set of
blocks B such that each block in the set is a tree with at most one extra edge. This
follows mainly because the influence paths considered during the construction
are rather short, while the graph G(n,m) is locally either tree-like or unicyclic.

The challenging part for creating the blocks is to distinguish which vertices
are the break points. This can be done in polynomial time due to the following
reasons: (A) We need to check the weight of relatively short paths around each
vertex i.e. length l0 = ln n/d2/5. (B) The structure within distance lnn/d2/5

around each vertex, in typical instances of G(n,m), is a tree with at most one

212 C. Efthymiou

extra edge. This means that we need to check only polynomially many paths
around each vertex so as to decide if it is a break point or not. For further
details see in [31].

Main Result. With probability 1−o(1) over the instances of G(n,m) the following
is true: The graph admits a block partition B as we describe above. The Glauber
block dynamics, with set of blocks B, over the k-colourings of G(n,m) has rapid
mixing for any fixed k ≥ 5.5d.

Concluding Remarks - Cavity Method’s Perspective. It is an empirical fact that
the rate of convergence of the Glauber dynamics is hugely affected by the phase
transitions predicted by the cavity method. As far as the k-colourings problem is
regarded, the picture seems to be as follows: In the uniqueness region, the dynam-
ics has rapid mixing regardless of its initial state. In the non-reconstruction
region the state space is not connected, which implies that the chain is non-
ergodic. However, restricting the dynamics on the colourings of the giant ball
(which includes all but an exponentially small fraction of colourings) we expect
to have rapid mixing. On the other hand, in subsequent phases, i.e. from the
reconstruction phase and on, there is no ergodicity at all4.

It wouldn’t be far fetched to conjecture that the spatial mixing conditions
in (2) and (3) imply rapid mixing for the Glauber dynamics in the way we
describe above. How this can be established for G(n,m) remains a challenging
open problem.

4.2 Dynamics and Optimization

For certain cases (e.g. [1,16]) it has been proven that from the reconstruction
phase and on, the dynamicses do not converge fast, or they do not converge at
all. It could seem that this behaviour limits the applicability of the dynamics.
It turns out that this is not the case. There is a wealth of different kind of
problems that the dynamics may find applications. The new setting now is the
optimization problems.

The general framework is the following one: we consider a set of configura-
tions and some cost function. The dynamics starts from some “easily accessible”
configuration. Then, iteratively it tries to get to a better configuration, i.e. bet-
ter w.r.t to the cost function. A set of different rearrangement operations can
be applied until some configuration that improves the cost function is discov-
ered. The rearranged configuration then becomes the new configuration of the
dynamics. The process is continued until no further improvements can be found5.

For the shake of exposition we shift problem by considering the independent
set problem, instead of k-colouring. That is, we consider the problem of finding
4 There are cases where the dynamics remains ergodic beyond non-reconstruction, e.g.

hard-core model. In these cases the non-ergodicity is substituted by “low conduc-
tance”, which implies slow mixing.

5 Since this search usually gets stuck in a local but not a global optimum, it is cus-
tomary to carry out the process several times, starting from different configurations,
and save the best result.

Random Instances of Problems in NP – Algorithms and Statistical Physics 213

an independent set6 of a graph G of a specific size k. For the cases where the
underlying graph is G(n,m), the Metropolis process [56] has been proposed for
solution [43]. This problem is closely related to the problem of finding (hidden)
cliques in random graphs [7].

Let us give a brief description of the Metropolis process. There is a parameter
λ ≥ 1, called fugacity. Given a graph G the state space of the process is the set
of all independent sets of G. The process is a discrete time one. Let It be the
state at step t. Given It we get It+1 as follows:

1. Choose a vertex v ∈ G uniformly at random.
2. If v /∈ It but also v’s neighbour do not belong in It, then It+1 = It ∪ {v}
3. If v ∈ It, then

(a) with probability 1/λ set It+1 = It\{v}, i.e. remove v from It

(b) with probability 1 − 1/λ set It+1 = It

The process above always converges to an equilibrium distribution μ which
assigns to each independent set σ probability measure μ(σ) such that

μ(σ) = Z−1λ|σ|,

where |σ| is the cardinality of σ and Z is a normalizing quantity. The above
Gibbs distribution is also known as the Hard-Core model with underlying graph
G. We have seen the normalizing quantity Z in Sect. 2 under the name partition
function.

In particular, for the case of G(n,m), someone can control to a great precision
the size of the independent set that the process is going to be in its equilibrium.
That is, the independent sets of a specific size dominate the equilibrium measure.
Clearly, one could get a large independent set by setting λ appropriately and
run the Metropolis process and wait until the process gets close to equilibrium.

Unfortunately the above approach for finding large independent sets is far
from efficient. It is well known that the size of maximum independent set of
G(n,m) is 2n ln d/d, e.g. see [23]. The independent sets which correspond to the
“reconstruction” region are those of size bigger than half the maximum, i.e. of
size (1+ε)n ln d/d. It does not come as a surprise that when we set λ so as to the
equilibrium measure is dominated by independent sets of size (1+ε)n ln d/d, the
mixing time is exponential in n. This follows by just using geometric arguments
like conductance as in [16,43].

It seems that waiting for the process to converge rapidly is asking too much!
From optimization’s perspective, Metropolis process can be seen as a greedy,
randomized algorithm which backtracks. I.e. it is a reminiscent of the famous
Karp-Sipser algorithm [46], with backtracking (step 3(a)). Backtracking helps
the process to get unstuck from a local maxima. It is natural to ask what is the
probability for the process to hit a large independent set, within a not so long
period of time, e.g. within polynomially many number of transitions. It seems

6 Independent set of a graph is any subset of its vertices which do not span any edge
with each other.

214 C. Efthymiou

that the choice of the initial configuration is important for the performance of
the process. To analyze the process in this setting we need to study its behaviour
when it is in away from equilibrium.

It is not hard to draw a parallel between the abstract description of the opti-
mization process we presented and the example of Metropolis process. Of course
one does not need to restrict only on the Metropolis process, there are many
alternatives e.g. Simulated Annealing [48]. Even though the idea of using such
dynamics for combinatorial optimization goes back many decades, the perfor-
mance of these algorithms is not so well understood.

The recent developments in the cavity method, provide explanations (to a
certain extent) and hints about the behaviour of the algorithms above. However,
it seems that their analysis calls for an approach somehow complementary to
what the cavity method provides. Essentially we need to analyzing the drift of
these processes as the evolve in their configuration space. Interestingly, the new
questions call for a more elaborate description of the geometry than what we
get from cavity method.

5 Algorithms Beyond Dynamics

Spatial mixing expresses in a very specific way a notion of locality about the
Gibbs distribution. The promise of locality we get from conditions such as (2),
(3) makes it natural to ask whether we can use them for novel algorithms which
achieve the same objectives as the Monte Carlo ones. In this section we discuss
exactly this prospect.

The spatial mixing conditions in (2), (3) suggest that there is a weak depen-
dence between the colour assignment of some vertex v and colouring of relatively
distant vertices. E.g. the Gibbs marginal of the colour assignment of a vertex v
is a “local quantity”. The algorithmic question now is, how can we use this “local
quantities” to create an approximate sample of the Gibbs distribution. Or, even
if this is not possible, how can we compute arithmetically good approximations
of marginals of the Gibbs distribution7.

The above question motivated, recently, many new algorithms, mostly non
Monte Carlo ones. In a sense, these new algorithms seem to be “more determinis-
tic” than their Monte Carlo counterparts. Usually the approximation guarantees
they achieve are weaker. On the other hand, they tend to be more robust, e.g.
they do not require conditions like ergodicity e.t.c. Furthermore, they tend to
be more susceptible to analysis. Our focus is on two different categories of algo-
rithms of these kinds. The first involves a combinatorial one while the second
involves numerical.

5.1 Combinatorial Algorithms

In what follows we provide a high level description of an algorithm, introduced in
[30], for approximate random colourings of G(n,m)8. The best bound in terms of
7 Somehow the problem of computing marginals turns out to be easier than sampling.
8 The algorithm in [30] is for the related G(n, p) where p = d/n. result for G(n, m)

follows by just using standard arguments.

Random Instances of Problems in NP – Algorithms and Statistical Physics 215

k for this algorithm is k = (1 + ε)d and appears in [32]. This is the best efficient
algorithm for approximate sampling colourings of G(n,m) in terms of minimum
number of colours required.

It is well known that the typically the structure of G(n,m) is highly complex.
This is the reason why random colouring typical instances of G(n,m) is a highly
non trivial computational task. The idea now is the following: First, remove edges
of the input instance of G(n,m) until it becomes so simple that we can take a
random colouring the resulting graph in polynomial time. Then, we rebuild the
graph by adding iteratively the edges we deleted in the first place. Additionally,
every time we add a new edge we update the colouring. I.e. whenever a new edge
is inserted some vertices’ colour assignments is updated so that the resulting
colouring remains random9. The algorithm is efficient because the updates are
implemented efficiently.

So as to give a high level description of the algorithm, first we need to intro-
duce the notion of switching colouring. For this we define the disagreement graph.
Consider a fixed graph G and let v be a distinguished vertex in G. Let σ be a
k-colouring of G and let some colour q 	= σ(v). Under the colouring σ, we denote
by Vσ(v), Vq the colour classes of σ(v), and q, respectively. We call disagreement
graph Qσ(v),q the maximal, connected, induced subgraph of G which includes v
and vertices only from the set Vσv

∪ Vq. E.g. in Fig. 2, the disagreement graph
QB,G is the one with the fat lines.

Definition 2 (switching). Consider G, v, σ and q as specified above. The “q-
switching of σ” corresponds to the proper colouring of G which is derived by
exchanging the assignments in the two colour classes in Qσv,q.

Figure 3 illustrates a switching of the colouring in Fig. 2. Observe that the colour-
ing in Fig. 3 differs from the colouring in Fig. 2 to that we have exchanged the two
colour classes of the subgraph with the fat lines. We would like to emphasize that
the q-switching of any proper colouring of G is always a proper colouring too.

v

u

R

R

R

G
G

G

G

B

B

B

B

R

R

R

Fig. 2. “Disagreement graph”.

v

u

R

R

R

R

G

G G

G

B
B

B B

Fig. 3. “g-switching”.

Now, we proceed with a high level description of the algorithm. The input is
an instance of G(n,m) with expected degree d and k, the numbers of colours.

9 To be more precise the colour remains asymptotically random.

216 C. Efthymiou

The algorithm is as follows:

Set Up: We construct a sequence G0, . . . , Gr such that every Gi is a subgraph
of G(n,m). The graph Gr is identical to G(n,m). Each Gi is derived by deleting
from Gi+1 the edge {vi, ui}. This edge is chosen at random among those which
do not belong to a short cycle of Gi+1. We call short, any cycle of length less
than (log n)/(9 log d). G0 is the graph we get when there are no other edges to
delete.
With probability 1−n−Ω(1), over the instances of G(n,m), G0 is very simple, in
terms of its component structure. In particular, each component of G0 is either
an isolated vertex, or an isolated simple cycle. It is standard to show how to
colour randomly G0 in polynomial number of step, i.e. use Dynamic Programing
see [32]. Assuming that we deal with such an instance, the algorithm works as
follows:

The Updates: Take a random colouring of G0. Let Y0 be that colouring.
Colour the rest graphs according to the following inductive rule: Given that Gi

is coloured Yi, so as to get Yi+1, the colouring for the graph Gi+1 we distinguish
two cases

Case (a): Under Yi (the colouring of Gi) the vertices vi and ui are assigned
different colours, i.e. Yi(vi) 	= Y (ui).

Case (b): Under Yi the vertices vi and ui are assigned the same colour, i.e.
Yi(vi) = Y (ui).

In the first case, we just set Yi+1 = Yi, i.e. Gi+1 gets the same colouring as Gi.
In the second case, we choose q uniformly at random among all the colours but
Yi(vi). Then we set Yi+1 equal to the q-switching of Yi. The q-switching is w.r.t.
the vertex vi.

With the above, we finish the high level description of the algorithm.
The reader may have observed that the switching does not necessarily provide

a k-colouring where the assignments of vi and ui are different. That is, it may
be that both vertices vi, ui belong to the disagreement graph. Then, after the
q-switching of Yi the colour assignments of vi and ui remain the same. It turns
out that this situation is rare as long as k ≥ (1 + ε)d. For such k, most of the
times, after the q-switching the vertices vi, ui get different colour assignments.
The approximate nature of the algorithm amounts exactly to the fact that on
some, rare, occasions the switching somehow fails.

Remark 14. For k ≤ d our analysis cannot guarantee that the switching fails
only on rare occasions.

Main Result. Let k ≥ (1 + ε)d, for fixed ε > 0 and sufficiently large d. With
probability 1−o(1) over the input instances G(n,m) with expected degree d, the
above algorithm returns, in polynomial time, a k-colouring whose distribution ν
has the following property

Random Instances of Problems in NP – Algorithms and Statistical Physics 217

||ν − μ||TV ≤ n−Ω(1),

where μ is the Gibbs distribution of the input graph.

Remark 15. For the MCMC algorithms, the more we allow the algorithm to run
the smaller the error at the out gets. The the error of the above algorithm is
a vanishing function of n which does not depend on the execution time of the
algorithm.

The success of the algorithm relies on the fact that, at each iteration, the
recolouring takes place only on a restricted part of the graph. In particular,
what we want to have is that the colouring of a single vertex should have a
vanishing effect on the distribution of the colouring of distant vertices. This
condition is equivalent to non-reconstruction condition. Somehow the algorithm
in [30] is the first sampling algorithm whose accuracy is proved to depend on
non-reconstruction. Actually this relation is immediate.

The fact that the algorithm, in its current form, requires (1 + ε)d colours
while non-reconstruction holds for (1 + ε)d/ ln d implies that there is room for
improvement. The current approach does not seem to take full advantage of the
of the spatial mixing condition required due to its update rule, i.e. an improved,
rule is required.

Another very interesting direction for study is to investigate whether the
ideas in [30] can be exploited for different models, like hard core model (weighted
independent sets), random k-SAT e.t.c. The main difference between colouring
and the other models is that colouring is, somehow, symmetric and this helps
the algorithm (the update rule).

5.2 Numerical Algorithms - Message Passing

This category includes the well known Belief Propagation (BP) [62] and Survey
Propagation (SP) [11] algorithms. Both of them belongs to the family of the
so-called message passing algorithms. BP is closely related to sum-product algo-
rithms from information theory [51]. We should mention that the applicability
of message passing algorithm goes far beyond the algorithmic theory of r-CSP.
They are widely used in information theory e.g. for the so-called LDPC codes,
e.g. [64], in Artificial Intelligence e.g. [62] Computer Vision, e.g. [34], and many
other areas.

In our context, BP and SP can be viewed as an attempt to turn the cavity
method into an efficient algorithm. Roughly speaking, their basic objective is the
following one: There is a target distribution, typically, a Gibbs distribution (or
a “Gibbs-like” distribution). W.l.o.g. in what follows, the reader may very well
consider the Gibbs distribution over the k-colouring. The algorithm computes
numerically approximations of marginals of the target distribution. In order to
do so it performs a certain kind of fixed point computations. The accuracy of
these computations depends heavily on certain spatial mixing properties of the
target distribution.

218 C. Efthymiou

In more standard terms, BP (and SP) computes marginals by using dynamic
programming (DP). DP is a basic and widely known technique for computations
which is based on the divide and conquer principle. So as the message pass-
ing algorithm to use dynamics programing it exploits the fact that the typical
instances of rCSP, locally, look tree-like. Of course the global structure is way
more complicated than a tree. The idea is that spatial mixing properties of the
target distribution, somehow, prevents the rest of the graph to affect too much
the computations of the marginals.

An additional feature of the message passing algorithms is that they compute
the dynamic program in parallel for every variable. Somehow, the results of the
local computations travel among variables of the same constrains by using the
so-called messages10.

Worst case spatial mixing conditions such as uniqueness somehow suffices to
show that the algorithm converges, i.e. computes with reasonable accuracy the
marginals. In particular this happens regardless of the initial conditions of the
dynamic program. It is believed that this is the case when weaker spatial mixing
conditions hold, like non-reconstruction. However, for weaker conditions it is not
straightforward what is the behaviour of the algorithm. It seems that the initial
conditions of the algorithm may be very influential on the convergence. That
is, it is not clear whether there is something that prevents things go “wrong”
when the algorithm starts from some “bad” initial condition. The hope is that
somehow every vertex tries to compute the correct marginal and somehow this
help the rest vertices to compute more accurately their marginals and so on.
What is the exact behaviour of the algorithm is not well understood yet.

As far as SP is regarded the study of its behaviour seems even more challeng-
ing. It is supposed that it computes marginals from reconstruction region and on.
The target distribution is considered w.r.t. clusters of solutions (not the actual
solutions as the Gibbs distribution does). The hypothesis is that SP is sufficiently
accurate due to certain spatial mixing conditions of its target distribution.

Of course, the study of message passing algorithm in the context of rCSP
goes much further. E.g. it can consider the so-called dissemination processes.
This means that we assign each variable iteratively by using marginals that are
computed by the algorithm. That is, at each iteration the, say, BP computes
Gibbs marginals. Then we pick one vertex and assign it a value according to
the marginal the algorithm has computed. In the next iteration the algorithm
repeats the computations with the value of this variable fixed. This process
is even more complicate to analyze as as we need to establish spatial mixing
conditions when some variables have fixed values (not necessarily according to
Gibbs distribution).

Acknowledgement. Most of the material in the introduction come from discussions
with Amin Coja-Oghlan. For this reason I would like to thank him.

10 This justifies the name message passing algorithm.

Random Instances of Problems in NP – Algorithms and Statistical Physics 219

References

1. Achlioptas, D., Coja-Oghlan, A.: Algorithmic Barriers from Phase Transitions. In:
Proceedings of 49th IEEE Symposium on Foundations of Computer Science, FOCS
(2008)

2. Achlioptas, D., Coja-Oghlan, A., Ricci-Tersenghi, F.: On the solution-space geome-
try of random constraint satisfaction problems. Random Struct. Algorithms 38(3),
251–268 (2011)

3. Achlioptas, D., Friedgut, E.: A sharp threshold for k-colorability. Random Struct.
Algorithms 14(1), 63–70 (1999)

4. Achlioptas, D., Moore, C.: Random k-SAT: two moments suffice to cross a sharp
threshold. SIAM J. Comput. 36(3), 740–762 (2006)

5. Achlioptas, D., Naor, A.: The two possible values of the chromatic number of a
random graph. Ann. Math. 162(3), 1333–1349 (2005)

6. Achlioptas, D., Peres, Y.: The threshold for random k-SAT is 2k log 2 − O(k). J.
AMS 17, 947–973 (2004)

7. Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a random
graph. In: Proceedings of 9th ACM-SIAM Symposium on Discrete Algorithms,
SODA 1998 (1998)

8. Bapst, V., Coja-Oghlan, A., Hetterich, S., Rassmann, F., Vilenchik, D.: The con-
densation phase transition in random graph coloring. In: proceedings of APPROX-
RANDOM 2014, pp. 449–464 (2014)

9. van den Berg, J., Maes, C.: Disagreement percolation in the study of Markov fields.
Ann. Probab. 22, 749–763 (1994)

10. Bhatnagar, N., Sly, A., Tetali, P.: Decay of Correlations for the Hardcore Model
on the d-regular Random Graph. http://arxiv.org/abs/1405.6160

11. Braunstein, A., Mézard, A., Zecchina, R.: Survey propagation: an algorithm for
satisfiability. Random Struct. Algorithms 27, 201–226 (2004)

12. Brightwell, G., Winkler, P.: A second threshold for the hard-core model on a Bethe
lattice. Random Struct. Algorithms 24, 303–314 (2004)

13. Bubley, R., Dyer, M.: Path coupling: a technique for proving rapid mixing in
markov chains. In: proceedings of 38th FOCS, pp 223–231 (1997)

14. Coja-Oghlan, A.: A Better Algorithm for Random k-SAT. In: proceedings of
ICALP (1) 2009: 292–303. SIAM J. Comput. 39(7) 2823–2864 (2010)

15. Coja-Oghlan, A.: The asymptotic k-SAT threshold. In: proceedings of STOC 2014:
804–813 (2014)

16. Coja-Oghlan, A., Efthymiou, C.: On independent sets in Random Graphs. In:
Proceedings of 22nd ACM-SIAM Symposium on Discrete Algorithms, SODA 2011,
pp 136–144 (2011)

17. Coja-Oghlan, A., Efthymiou, C., Hetterich, S.: On the chromatic number of random
regular graphs. http://arxiv.org/abs/1308.4287

18. Coja-Oghlan, A., Efthymiou, C., Jaafari, N.: Local convergence of random graph
colorings. http://arxiv.org/abs/1501.06301

19. Coja-Oghlan, A., Panagiotou, K.: Going after the k-SAT threshold. In: procedings
of STOC 2013: 705–714 (2013)

20. Coja-Oghlan, A., Panagiotou, K.: Catching the k-NAESAT threshold. In: proceed-
ings of STOC 2012: 899–908 (2012)

21. Coja-Oghlan, A., Vilenchik, D.: Chasing the k-colorability threshold. In: Proceed-
ings of 54th IEEE Symposium on Foundations of Computer Science, FOCS 2013,
pp 380–389 (2013)

http://arxiv.org/abs/1405.6160
http://arxiv.org/abs/1308.4287
http://arxiv.org/abs/1501.06301

220 C. Efthymiou

22. Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In: Proceedings
of the 33rd Annual IEEE Symposium on Foundations of Computer Science, pp.
620–627 (1992)

23. Dani, V., Moore, C.: Independent sets in random graphs from the weighted second
moment method. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.)
RANDOM 2011 and APPROX 2011. LNCS, vol. 6845, pp. 472–482. Springer,
Heidelberg (2011)

24. Ding, J., Sly, A., Sun, N.: Maximum independent sets on random regular graphs.
http://arxiv.org/abs/1310.4787

25. Ding, J., Sly, A., Sun, N.: Satisfiability threshold for random regular NAE-SAT.
In: proceendings of STOC 2014: 814–822 (2014)

26. Ding, J., Sly, A., Sun, N.: Proof of the satisfiability conjecture for large k. To
appear in STOC 2015 (2015)

27. Dyer, M., Flaxman, A., Frieze, A.M., Vigoda, E.: Random colouring sparse random
graphs with fewer colours than the maximum degree. Random Struct. Algorithms
29, 450–465 (2006)

28. Dyer, M.E., Frieze, A.M.: The solution of some random np-hard problems in poly-
nomial expected time. J. Algorithms 10(4), 451–489 (1989)

29. Dyer, M., Frieze, A.M., Hayes, A., Vigoda, E.: Randomly colouring constant degree
graphs. In proceedings of 45th FOCS, pp 582–589 (2004)

30. Efthymiou, C.: A simple algorithm for random colouring G(n, d/n) using (2 + ε)d
colours. In: Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2012 (2012)

31. Efthymiou, C.: MCMC sampling colourings and independent sets of G(n, d/n) near
the uniqueness threshold. In: proceedings of Symposium on Discrete Algorithms,
SODA (2014)

32. Efthymiou, C.: Switching colouring of G(n,d/n) for sampling up to gibbs unique-
ness threshold. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp.
371–381. Springer, Heidelberg (2014)

33. Efthymiou, C.: Reconstruction/Non-reconstruction Thresholds for Colourings of
General Galton-Watson Trees. CoRR abs/1406.3617 (2014)

34. Freeman, W.T., Paztor, E.C., Carmichael, O.T.: Learning low-level vision. Int. J.
Comput. Vis. 40, 25–47 (2000)

35. Friedgut, E.: Necessary and sufficient conditions for sharp thresholds of graph
properties, and the k-SAT problem. J. Amer. Math. Soc. 12, 1017–1054 (1999)

36. Frieze, A.M.: On the independence number of random graphs. Discrete Math.
81(183), 171–175 (1990)

37. Frieze, A.M., Vera, J.: On randomly colouring locally sparse graphs. Discrete Math.
& Theor. Comput. Sci. 8(1), 121–128 (2006)

38. Georgii, H.O.: Gibbs Measures and Phase Transitions, de Gruyter Stud. Math. 9,
de Gruyter, Berlin (1988)

39. Goldberg, L.A., Martin, R.A., Paterson, M.: Strong spatial mixing with fewer colors
for lattice graphs. SIAM J. Comput. 35(2), 486–517 (2005)

40. Grimmett, G.R., McDiarmid, C.J.H.: On colouring random graphs. Math. Proc.
Camb. Phil. Soc. 77(02), 313–332 (1975)

41. Hayes, T., Vera, J., Vigoda, E.: Randomly coloring planar graphs with fewer colors
than the maximum degree. In: proceedings of 39th STOC, pp 450–458 (2007)

42. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning
trees. Oper. Res. 18(6), 1138–1162 (1970)

43. Jerrum, M.R.: Large cliques elude the Metropolis process. Random Struct. Algo-
rithms 3, 347–359 (1992)

http://arxiv.org/abs/1310.4787

Random Instances of Problems in NP – Algorithms and Statistical Physics 221

44. Jerrum, M.R., Sinclair, A.: The Markov chain Monte Carlo method: an approach to
approximate counting and integration. In: Approximation Algorithms for NP-hard
Problems, (Dorit Hochbaum, ed.), PWS (1996)

45. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm
for the permanent of a matrix with non-negative entries. J. ACM 51(4), 671–697
(2004)

46. Karp, R., Sipser, M.: Maximum matchings in sparse random graphs. In: proceed-
ings of FOCS 1981, pp. 364 375 (1981)

47. Kelly, F.P.: Loss networks. Ann. Appl. Probab. 1(3), 319–378 (1991)
48. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimisation by simulated annealing. Sci-

ence 220, 671–680 (1983)
49. Kirousis, L.M., Kranakis, E., Krizanc, D., Stamatiou, Y.C.: Approximating the

unsatisfiability threshold of random formulas. Random Struct. Algor. 12(3), 253–
269 (1998)

50. Krzakala, F., Montanari, A., Ricci-Tersenghi, F., Semerjianc, G., Zdeborova, L.:
Gibbs states and the set of solutions of random constraint satisfaction problems.
Proc. Natl. Acad. Sci. 104, 10318–10323 (2007)

51. Kschischang, F., Frey, B., Loeliger, H.A.: Factor graphs and the sum-product algo-
rithm. IEEE Trans. Inf. Theory 47, 498519 (2001)

52. Levin, D., Peres, Y., Wilmer, E.: Markov Chains and Mixing Times. American
Mathematical Society (2008)

53. Lovász, L., Vempala, S.: Simulated annealing in convex bodies and an O ∗ (n4)
volume algorithm. In: Proceedings of the 44th IEEE Foundations of Computer
Science (FOCS 2003) (2003). Also in JCSS (FOCS 2003 special issue)

54. Lucier, B., Molloy, M., Peres, Y.: The Glauber Dynamics for Colourings of Bounded
Degree Trees. In: proceedings of RANDOM 2009, pp 631–645 (2009)

55. Martinelli, F., Sinclair, A., Weitz, D.: Fast mixing for independent sets, colorings
and other models on trees. In: proceedings of 15th SODA, pp 456–465 (2004)

56. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–
1092 (1953)

57. Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random
satisfiability problems. Science 297(5582), 812–815 (2002)

58. Molloy, M.: The Glauber dynamics on the colourings of a graph with large girth
and maximum degree. SIAM J. Comput. 33, 721–737 (2004)

59. Montanari, A., Restrepo, R., Tetali, P.: Reconstruction and clustering in random
constraint satisfaction problems. SIAM J. Discrete Math. 25(2), 771–808 (2011)

60. Montanari, A., Shah, D.: Counting good truth assignments of random k-SAT for-
mulae. In: proceedings of the 18th Annual ACM-SIAM, SODA 2007, pp 1255–1264
(2007)

61. Mossel, E., Sly, A.: Gibbs rapidly samples colorings of Gn,d/n. J. Probab. Theory
Relat. fields 148, 1–2 (2010)

62. Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible infer-
ence. Morgan-Kaufmann, Palo Alto (1988)

63. Restrepo, R., Stefankovic, D., Vera, J.C., Vigoda, E., Yang, L.: Phase transition
for glauber dynamics for independent sets on regular trees. In: proceedings SODA
2011, pp 945–956 (2011)

64. Richardson, T., Urbanke, R.: The capacity of low-density parity check codes under
message passing deconding. IEEE Trans. Inf. Theory 47, 599–618 (2001)

222 C. Efthymiou

65. Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In: proceedings of Symposium on Foundations of Computer Science, FOCS
1999, pp 410–419 (1999)

66. Tetali, P., Vera, J.C., Vigoda, E., Yang, L.: Phase transition for the mixing time
of the glauber dynamics for coloring regular trees. In: proceedings of SODA 2010,
pp 1646–1656 (2010)

67. Vigoda, E.: Improved bounds for sampling colorings. J. Math. Phys. 41(3), 1555–
1569 (2000). A preliminary version appears in FOCS 1999

A Selective Tour Through Congestion Games

Dimitris Fotakis(B)

Division of Computer Science, School of Electrical and Computer Engineering,
National Technical University of Athens, 15780 Athens, Greece

fotakis@cs.ntua.gr

Abstract. We give a sketchy and mostly informal overview of research
on algorithmic properties of congestion games in the last ten years. We
discuss existence of potential functions and pure Nash equilibria in games
with weighted players, simple and fast algorithms that reach a pure Nash
equilibrium, and efficient approaches to improving the Price of Anarchy.

1 Introduction

Congestion games and their different variants and generalizations provide an ele-
gant model for competitive resource allocation in large-scale telecommunication
and transportation networks and have been the subject of intensive research in
Algorithmic Game Theory. In an atomic congestion game, a finite set of non-
cooperative players, each controlling an unsplittable amount of traffic demand,
compete over a finite set of resources. All players using a resource experience a
delay given by a non-negative and non-decreasing function of the resource’s load.
Among a given set of resource subsets (or strategies), each player selects one self-
ishly trying to minimize her individual delay, that is the sum of the delays on
the resources in the chosen strategy. A natural solution concept is that of a pure
Nash equilibrium, a configuration where no player can decrease her individual
delay by unilaterally switching to a different strategy. In other applications, we
consider non-atomic congestion games (or selfish routing games) where the traf-
fic demand is divided among an infinite number of players, each controlling an
infinitesimal amount of traffic. Then, the Nash equilibrium is essentially unique,
under mild assumptions on the delay functions, and all players use strategies of
equal minimum delay at equilibrium.

The prevailing research questions about algorithmic properties of congestion
games have to do either with establishing the existence of pure Nash equilibria
and of potential functions for variants and generalizations of atomic games (see
e.g., [23,29,30,34,47]), or with bounding the convergence time to a pure Nash
equilibrium if the players select their strategies in a selfish and decentralized

This work was supported by the project Algorithmic Game Theory, co-financed
by the European Union (European Social Fund—ESF) and Greek national funds,
through the Operational Program “Education and Lifelong Learning”, under the
research funding program Thales.

c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 223–241, 2015.
DOI: 10.1007/978-3-319-24024-4 14

224 D. Fotakis

fashion (see e.g., [1,22,23,26,27,29,47]), or with quantifying and mitigating the
inefficiency due to the players’ selfish behavior using the Price of Anarchy (see
e.g., [2,6,11,13,14,17,21,22,24,29,33,41,43,44,49]).

As for several other areas of Theoretical Computer Science, Paul Spirakis
has contributed interesting and significant results in all the three directions
above. On the occasion of Paul’s 60th birthday, I took the opportunity to write
this (highly biased and selective) survey on algorithmic properties of conges-
tion games that focuses either on our joint work with Paul (and with a few
other dear friends) or on research work that has been directly inspired by Paul’s
contribution in the area.

It was a sort of an obvious choice for me, since Paul was the person who
introduced me to the main research questions about algorithmic properties of
congestion games. In fall 2001, when I was a postdoc and Paul was a distin-
guished visiting scientist at Max-Planck Institut für Informatik, in Saarbrücken,
Paul insisted that we should start working together on congestion games on par-
allel links with linear delays and weighted players (a.k.a. load balancing games).
As our first problem, he proposed us to investigate the existence and efficient
computation of pure Nash equilibria and the conjecture that the mixed Nash
equilibrium with full support (a.k.a. the fully-mixed equilibrium) maximizes the
Price of Anarchy for the objective of maximum delay of the players (the latter
was motivated by Paul’s previous work in [40,44]). Fotakis et al. [29] was the
result of this effort and the beginning of a fruitful and really enjoyable collabo-
ration with Paul (and also with Spyros, Alexis, Vasilis, Thanasis and others) on
algorithmic properties of congestion games. Back in Patras, in fall 2003, Paul,
Spyros and I started looking at potential functions for congestion games with
weighted players and simple algorithms for efficient computation of pure Nash
equilibria (the motivation came from [19,46]). What happened next is described
in the following pages. Paul, thank you for everything and happy birthday!

1.1 Organization

After a formal definition of atomic and non-atomic congestion games and related
notions (Sect. 2), we discuss existence of potential functions for atomic games
with weighted players (Sect. 3). Next, we show how a pure Nash equilibrium
can be reached, using simple and natural algorithms, after as many steps as the
number of players in series-parallel and extension-parallel networks (Sect. 4). In
the final part, we bound the Price of Anarchy for atomic congestion games
on extension-parallel networks (Sect. 5.1) and discuss how we can use tolls
(Sect. 5.2), Stackelberg routing (Sect. 5.3) and the Braess paradox (Sect. 5.4)
to improve the Price of Anarchy of congestion games. With the exception of the
results about the Braess paradox, which apply to non-atomic congestion games,
we mostly focus on algorithmic properties of atomic congestion games.

2 Congestion Games and Nash Equilibria

An atomic congestion game consists of a finite set N = {1, . . . , n} of players, a
finite set E = {e1, . . . , em} of edges (or resources), a strategy space Σi ⊆ 2E \{∅}

A Selective Tour Through Congestion Games 225

for each player i, and a non-negative and non-decreasing delay function de(x)
associated with each edge e. A congestion game has weighted players if there is
a positive weight wi associated with each player i. Otherwise, the players are
unweighted and we have that wi = 1 for each player i. Throughout this survey,
we assume that the players are unweighted, unless stated otherwise. A congestion
game has symmetric strategies if all players share a common strategy space Σ. A
congestion game is symmetric if it is unweighted and has symmetric strategies.
A congestion game is linear if every edge e is associated with a linear delay
function de(x) = aex + be, with ae, be ≥ 0.

In many parts of this survey, we consider symmetric network congestion
games. Then, the players’ strategies are determined by a directed network
G(V,E) with a distinguished origin o and destination t (a.k.a. an o− t network).
The common strategy space of the players is the set of (simple) o − t paths in
G, denoted P. To be consistent with the definition of strategies as edge subsets,
we regard paths as sets of edges. An o − t network is a parallel-link network if
each path in P consists of a single edge. Hence, in congestion games on parallel
links the players’ common strategy space consists of m singleton strategies, one
for each edge.

A configuration is a tuple s = (s1, . . . , sn) consisting of a strategy si ∈ Σi

for each player i. For every edge e, we let se = |{i ∈ N : e ∈ si}| denote the
congestion (or load) induced on e by s. If the congestion game has weighted
players, e’s load in s is se =

∑
i:e∈si

wi . Given a congestion game on a directed
network G, a configuration s is acyclic if there is no directed cycle in G with
positive load on all its edges. For a configuration s and a path p ∈ P, we let
smin

p = mine∈p{se} denote the minimum load on some edge of p.

Pure Nash Equilibrium. The individual delay (or cost) of player i in the
configuration s is ci(s) =

∑
e∈si

de(se). A configuration s is a pure Nash equi-
librium if no player can improve her individual delay by unilaterally changing
her strategy. Formally, s is a pure Nash equilibrium if for every player i and all
strategies s′

i ∈ Σi, ci(s) ≤ ci(s−i, s
′
i).

2.1 Price of Anarchy and Price of Stability

We evaluate configurations using the objective of (weighted) total delay. The
(weighted) total delay C(s) of a configuration s in a congestion game (with
weighted players) is the (weighted) sum of players’ individual delays in s, namely

C(s) =
∑
i∈N

wici(s) =
∑
e∈E

sede(se) .

The optimal configuration, usually denoted o, achieves a minimum (weighted)
total delay C(o) among all configurations.

The Price of Anarchy (PoA) of a congestion game is the maximum ratio
C(s)/C(o) over all pure Nash equilibria s of the game. The Price of Stability
(PoS) is the minimum ratio C(s)/C(o) over all pure Nash equilibria s of the
game. In words, the Price of Anarchy (resp. the Price of Stability) is equal to

226 D. Fotakis

C(s)/C(o), where s is the pure Nash equilibrium of maximum (resp. minimum)
total delay. The Price of Anarchy (resp. the Price of Stability) for a class of
congestion games is the maximum PoA (resp. PoS) of any game in this class.

2.2 Potential Functions and Best Responses

A function Φ that assigns a non-negative number Φ(s) to each configuration s
is an exact (resp. weighted) potential function if when a player i moves from
her current strategy si to a new strategy s′

i ∈ Σi, the difference in the potential
value equals the difference in the individual delay of player i (resp. times some
function of i’s weight wi). Namely, Φ is an exact potential function if

Φ(s−i, s
′
i) − Φ(s) = ci(s−i, s

′
i) − ci(s) .

If a game admits an (exact or weighted) potential function, its pure Nash equi-
libria correspond to the local minima of the potential function.

Rosenthal [48] proved that the pure Nash equilibria of an (unweighted) con-
gestion game correspond to the local optima of the following potential function

Φ(s) =
∑
e∈E

se∑
k=1

de(k) .

Hence every congestion game admits at least one pure Nash equilibrium (and
possibly many of them). For symmetric network congestion games with general
delay functions, Fabrikant, Papadimitriou and Talwar [19] proved that the global
minimum of the potential function Φ, and thus a pure Nash equilibrium, can be
computed in polynomial time by a min-cost flow computation.

A strategy si ∈ Σi is a best response of player i to a configuration s−i of the
remaining players if for all strategies s′

i ∈ Σi, ci(s−i, si) ≤ ci(s−i, s
′
i). A strategy

s′
i ∈ Σi is an improvement move of player i in a configuration s if ci(s−i, s

′
i) <

ci(s). For a congestion game that admits a potential function, every improvement
move decreases the potential value. Therefore, the Nash dynamics, namely, any
sequence of improvement moves, converges to a pure Nash equilibrium in a finite
number of steps.

2.3 Non-atomic Congestion Games

In non-atomic congestion games (or selfish routing games), the number of play-
ers is infinite and each player controls an infinitesimal amount of traffic. Unless
stated otherwise, we assume that the traffic rate is r = 1. For simplicity and
convenience, when we consider non-atomic congestion games, we focus on sym-
metric games on an o−t network G. Everything else is defined as above, with the
important difference that since the number of players is infinite, a configuration
s should be regarded now as a flow s = (sp)p∈P that assigns an amount of traffic
sp ≥ 0 to each path p so that

∑
p∈P sp = r.

A Selective Tour Through Congestion Games 227

The delay on each path p ∈ P in a configuration s is dp(s) =
∑

e∈p de(se).
A configuration s is a Nash equilibrium if it routes all traffic on minimum delay
paths, i.e., if for every path p with sp > 0, and every path p′, dp(s) ≤ dp′(s).
Hence, in a Nash equilibrium s, all players incur the same delay D(s) =
minp:sp>0 dp(f) and the total delay is C(s) = rD(s).

Since the equivalent of Rosenthal’s potential function is convex for non-
atomic games, the Nash equilibrium is essentially unique (under mild assump-
tions on the delay functions). Therefore, the Price of Anarchy and the Price of
Stability coincide and are equal to C(s)/C(o), where s is the Nash equilibrium
configuration and o is the configuration of minimum total delay.

3 Potential Functions for Weighted Players

In [46], Monderer and Shapley presented conditions for the acyclicity of Nash
dynamics and for the existence of pure Nash equilibria in non-cooperative games.
Most of these conditions are naturally associated with potential functions and
their generalizations. One of the most interesting results in [46] is that every
finite non-cooperative game with an exact potential function is isomorphic to a
congestion game. Motivated by [46], we investigated in [30] which classes of con-
gestions games with weighted players admit a potential function and to which
extent we can generalize existence of pure Nash equilibria on parallel-link games
with weighted players [29]. We proved that linear congestion games with weighted
players admit a weighted potential function that naturally generalizes the poten-
tial function of Rosenthal. Hence, any sequence of improvement moves converges
to a pure Nash equilibrium.

Theorem 1 ([30]). Every linear congestion game with weighted players admits
a weighted potential function and thus, a pure Nash equilibrium.

Proof. The intuition is that Rosenthal’s potential can be generalized to weighted
players if the order of the players in the sum of their delays does not make any
difference (just as in the case of unweighted players). So, any deviating player can
be considered as the last player in the sum. This holds for linear delay functions,
since their derivative is constant.

Formally, let s be any configuration of a linear congestion game with weighted
players. We let

U(s) =
∑
i∈N

wi

∑
e∈si

(aewi + be)

be the weighted total delay of the players in s, if each player was alone in the
game. We also recall that

C(s) =
∑
i∈N

wici(s) =
∑
i∈N

wi

∑
e∈si

(aese + be) =
∑
e∈E

se(aese + be)

is the weighted total delay of the players in configuration s.

228 D. Fotakis

We next show that Φ(s) = (C(s) + U(s))/2 is a weighted potential function
(note that for unweighted players and linear delays, Φ(s) becomes Rosenthal’s
potential). To this end, we let i be some player switching from her strategy si in
s to a different strategy s′

i and let s′ = (s−i, s
′
i) be the resulting configuration.

We observe that

U(s′) − U(s) = wi

∑
e∈s′

i\si

(aewi + be) − wi

∑
e∈si\s′

i

(aewi + be)

and that

C(s′) − C(s) = wi

∑
e∈s′

i\si

[ae(2se + wi) + be] − wi

∑
e∈si\s′

i

[ae(2se − wi) + be] .

Using that for all e ∈ s′
i \ si, s′

e = se + wi, that for all e ∈ si \ s′
i, s′

e = se − wi,
and that for all e ∈ s′

i ∩ si, s′
e = se, we conclude that

Φ(s′) − Φ(s) = (C(s′) − C(s) + U(s′) − U(s))/2

= wi

∑
e∈s′

i\si

[ae(se + wi) + be] − wi

∑
e∈si\s′

i

(aese + be)

= wi(ci(s′) − ci(s)) .

Therefore, Φ(s) = (C(s) + U(s))/2 is a weighted potential function for linear
congestion games with weighted players. �	

The potential function of Theorem 1 is versatile and works for several other
generalizations of linear congestions games, by appropriately adapting U in each
case. It works e.g., for linear congestion games with static coalitions of players
[27, Sect. 6], for linear congestion games in a social context of surplus collabora-
tion [5], and for graphical linear games with weighted players [23].

In [30], we proved that Theorem 1 is essentially best possible, in the sense
that (i) congestion games with weighted players and linear delays are not exact
potential games, and that (ii) there is a simple congestion game with only two
weighted players and delay functions that are either linear or 2-wise linear which
admits neither a generalized potential function nor a pure Nash equilibrium.

Shortly after [30], Panagopoulou and Spirakis [47] presented a weighted
potential function for congestion games with weighted players and delays given
by an exponential function. Subsequently, Harks, Klimm and Möhring [34] sig-
nificantly strengthened the negative result of [30] by proving that for congestion
games with weighted players even the slightest deviation from the settings that
guarantee weighted potential functions in [30,47] leads to games that do not
admit weighted potentials.

4 Reaching a Pure Nash Equilibrium

The existence of a potential function for congestion games and for linear con-
gestion games with weighted players implies that any sequence of improve-
ment moves converges to a pure Nash equilibrium. Nevertheless, Fabrikant,

A Selective Tour Through Congestion Games 229

Papadimitriou and Talwar [19] proved that it is PLS-complete to compute a
pure Nash equilibrium in symmetric congestion games and in non-symmetric
network congestion games. PLS-completeness holds even if the delay functions
are linear. Moreover, Ackermann, Röglin and Vöcking [1] proved that in symmet-
ric network congestion games with linear delays, where a pure Nash equilibrium
can be computed in polynomial time by min-cost flow techniques, there are
instances and initial configurations from which any best response sequence is
exponentially long. On the positive side, [1] proved that in asymmetric conges-
tion games with general delays, best response dynamics converges fast to a pure
Nash equilibrium if (and essentially only if) the strategy space of each player is
a matroid.

4.1 Series-Parallel Networks

For symmetric network congestion games, the matroid property corresponds to
very simple networks consisting of bunches of parallel links connected in series.
Trying to identify some more general classes of symmetric network congestion
games where natural and efficient algorithms reach a pure Nash equilibrium,
we considered, in [31], series-parallel networks and the so-called Greedy Best
Response approach. We recall that an o−t network is series-parallel if it consists
of either a single edge (o, t) or two series-parallel networks composed either in
series or in parallel.

Greedy Best Response, or GBR in brief, considers the players one-by-one
in an arbitrary order. Each player adopts her best response strategy given the
strategies of the previous players. The choice is irrevocable, in the sense that no
player can switch to a different strategy afterwards. We proved that for series-
parallel networks, GBR maintains a pure Nash equilibrium. Namely, after a new
player selects her strategy, the other players do not have an incentive to deviate.

Theorem 2 ([31]). Greedy Best Response applied to symmetric congestion
games on series-parallel networks with general delays maintains a pure Nash
equilibrium in time O(nm log m).

In [31], we show that for any non-series-parallel network, we can select linear
edge delays so that GBR does not maintain a pure Nash equilibrium even for two
players. Moreover, we prove that Theorem 2 can be generalized to congestion
games with weighted players that satisfy the common best response property,
namely that all players agree on their best responses with respect to any given
collection of edge loads.

4.2 Extension-Parallel Networks

An interesting generalization of congestion games on parallel links is that of
symmetric games on extension-parallel networks. An o − t network is extension-
parallel if it consists of either (i) a single edge (o, t), or (ii) a single edge and
an extension-parallel network composed in series, or (iii) two extension-parallel

230 D. Fotakis

networks composed in parallel. An interesting property of extension-parallel net-
works is that they have linearly independent o − t paths, in the sense that every
o − t path contains at least one edge not belonging to any other o − t path (and
thus, it is not possible to express a path as the symmetric difference of some
other paths, see [35,45]).

In [22], we proved that for symmetric congestion games on extension-parallel
networks1, each player moves at most once in any sequence of best response
moves. More formally, we show the following:

Lemma 1 ([22]). For a symmetric congestion game on an extension-parallel
network, let s be the current configuration and let i be a player switching from
her current strategy si to her best response s′

i. Then, for every player j whose
current strategy sj is a best response to s, sj remains a best response of j to the
new configuration s′ = (s−i, s

′
i).

Lemma 1 directly implies that in extension-parallel networks, the best
response dynamics converges to a pure Nash equilibrium in at most n steps. One
can also show that the following theorem is essentially best possible, in the sense
that it does not hold for any generalization of extension-parallel networks.

Theorem 3 ([22]). For any n-player symmetric congestion game on an
extension-parallel network, every sequence of best response moves converges to a
pure Nash equilibrium in at most n steps.

5 The Price of Anarchy and How to Deal with It

Since the seminal paper of Koutsoupias and Papadimitriou [41], the Price of
Anarchy of both atomic and non-atomic congestion games has been investigated
extensively. Lücking et al. [43] were the first to consider the PoA of atomic
congestion games for the objective of total delay. The proved that for parallel-link
games with linear delays, the PoA is 4/3. For parallel-link games with polynomial
delays of degree d, Gairing et al. [33] proved that the PoA is at most d + 1.
Awerbuch, Azar and Epstein [6] and Christodoulou and Koutsoupias [13] proved
independently that the PoA of congestion games is 5/2 for linear delays and dΘ(d)

for polynomial delays of degree d. Subsequently, Aland et al. [2] obtained exact
bounds on the PoA of congestion games with polynomial delays.

For non-atomic congestion games, Roughgarden [49] proved that the PoA
is independent of the strategy space and equal to ρ(D), where ρ depends on
the class of delay functions D only. Specifically, for a non-negative and non-
decreasing function d(x),

ρ(d) = sup
x≥y≥0

xd(x)
yd(y) + (x − y)d(x)

.

1 Note that matroid congestion games and congestion games on extension-parallel net-
works have a different combinatorial structure and may have quite different prop-
erties. E.g., a network consisting of two parallel-link networks composed in series is
not extension-parallel, but corresponds to a symmetric matroid congestion game.

A Selective Tour Through Congestion Games 231

For a non-empty class D of delay functions, ρ(D) = supd∈D ρ(d). For example, ρ

is equal to 4/3 for linear delays, to 27+6
√
3

23 for quadratic delays and to Θ(d/ ln d)
for polynomial delays of degree d. Subsequently, Correa, Schulz, and Stier-Moses
[17] introduced the quantities β(d) = 1 − 1/ρ(d) and β(D) = 1 − 1/ρ(D), as
alternatives to ρ(d) and ρ(D), respectively, and gave a simple and elegant proof
of the same bound.

The general picture is that the PoA of atomic congestion games can be quite
large and there is a considerable gap between the PoA of atomic and non-atomic
congestion games. In fact, for polynomial delays of degree d, this gap is expo-
nential in d. Therefore, it is natural to ask about possible ways of improving
the PoA of atomic congestion games either to 1 or at least close to the PoA
of non-atomic congestion games. Moreover, it is interesting to investigate pos-
sible approaches to further improving the PoA of non-atomic congestion games
without expensive changes in the structure of the game.

5.1 The Price of Anarchy for Extension-Parallel Networks

A possible approach to improving the PoA of atomic congestion games is to
consider special classes of networks. In contrast to non-atomic games, where the
PoA is independent of the strategy space, the PoA of atomic games crucially
depends on it (e.g., the PoA of linear congestion games is 4/3 for parallel-links
[43] and 5/2 in general [6,13]). In this direction, we [21] and Caragiannis et al.
[11] proved independently that the PoA of atomic congestion games on parallel
links with delay functions in class D is at most ρ(D), i.e., it is bounded from
above by the PoA of non-atomic congestion games.

Theorem 4 ([11,21]). The Price of Anarchy of atomic congestion games on
parallel links with delay functions in class D is at most ρ(D).

Proof. We consider a congestion game on a set E of parallel links with delay
functions {de(x)}e∈E ⊆ D. Let o be the optimal configuration, and let s be the
pure Nash equilibrium of maximum total delay. For every link e ∈ E,

sede(se) = oede(se) + (se − oe)de(se)
≤ oede(oe) + β(D)sede(se) + (se − oe)de(se) , (1)

where the inequality follows from the definitions of β(d) and β(D).
For every link e with oe > se,

sede(se) = oede(oe) − oede(oe) + sede(se)
≤ oede(oe) − (oe − se)de(se + 1) . (2)

The inequality follows from de(se) ≤ de(se +1) and de(se +1) ≤ de(oe), because
the delays are non-decreasing and se + 1 ≤ oe.

Now, let us assume that the following holds:
∑

e:se>oe

(se − oe)de(se) ≤
∑

e:oe>se

(oe − se)de(se + 1) . (3)

232 D. Fotakis

Then, using (1), for links e with se ≥ oe, using (2), for links e with oe > se, and
employing (3), we obtain that:

C(s) ≤
∑
e∈E

oede(oe) + β(D)
∑

e:se≥oe

sede(se)+

∑
e:se>oe

(se − oe)de(se) −
∑

e:oe>se

(oe − se)de(se + 1)

≤ C(o) + β(D)C(s) .

Therefore, C(s) ≤ (1−β(D))−1C(o) = ρ(D)C(o), i.e., the PoA is at most ρ(D).
For parallel-link games, (3) is an immediate consequence of the pure Nash

equilibrium condition. Formally, since s is a pure Nash equilibrium, for every
link e with se > oe (which implies that se ≥ 1) and every link e′,

de(se) ≤ de′(se′ + 1) .

Then, (3) follows from the fact that
∑

e:se>oe

(se − oe) =
∑

e:oe>se

(oe − se) ,

because in parallel-link networks,
∑

e∈E se =
∑

e∈E oe . �	
We observe that in the proof of Theorem 4, the assumption of parallel-link

networks is used only to establish (3). Everything else holds for general sym-
metric congestion games. Therefore, the upper bound of ρ(D) on the PoA (or,
more generally, on the inefficiency of a pure Nash equilibrium s) holds if the
strategy space and the selected configuration s are such that (3) is satisfied. In
[22], we observed that if we regard configurations s and o as flows, (3) essen-
tially states that switching from s to o does not increase the value of Rosenthal’s
potential function. Intuitively, in such cases, one can reduce (3) to the absence
of a negative cost cycle in the circulation o − s with Rosenthal’s potential as a
cost function. Based on this intuition, one can show that for symmetric network
congestion games, (3) holds if s is a minimizer of Rosenthal’s potential function.
Then, we immediately obtain that:

Theorem 5 ([4,22]). For any symmetric network congestion game with delay
functions in class D, the Price of Stability is at most ρ(D).

Moreover, in [22,35], it is shown that if the network is extension-parallel, any
pure Nash equilibrium is a minimizer of Rosenthal’s potential function. There-
fore, the PoA of symmetric congestion games on extension-parallel networks is
bounded from above by the PoA of non-atomic congestion games.

Theorem 6 ([22]). For symmetric network congestion games on extension-
parallel networks with delay functions in class D, the Price of Anarchy is at
most ρ(D).

In [22], we presented a congestion game with 3 players on a simple series-
parallel network with linear delays and PoA equal to 15/11 > 4/3, i.e., larger
than the PoA of non-atomic congestion games with linear delays.

A Selective Tour Through Congestion Games 233

5.2 Optimal Tolls for Atomic Congestion Games

With the PoA of (atomic and non-atomic) congestion games very well under-
stood, a few natural approaches to reducing it have been investigated. A strong
approach is to introduce economic incentives, usually modeled as edge-dependent
per-unit-of-traffic tolls, that influence the players’ selfish choices and induce the
optimal configuration as a pure Nash equilibrium (and in the ideal case, as the
unique pure Nash equilibrium) of the modified game with tolls.

In a modified congestion game with tolls t = (te)e∈E , the individual cost of a
player i in configuration s is equal to c′

i(s) =
∑

e∈si
(de(se)+te), i.e., equal to the

total delay through the edges in her strategy si plus the tolls for using the edges
in si. Nash equilibria are now defined with respect to the modified costs c′

i(s)
that also account for include tolls. However, most of the literature assumes that
the tolls are refundable to the players and thus, do not affect the social cost.
Therefore, each configuration s is evaluated by (and the PoA is defined with
respect to) the total delay C(s) =

∑
e∈E sede(se) of the players in s. The goal

in this research direction is to find a set of moderate and efficiently computable
optimal tolls, under which the Nash equilibria of the modified game coincide
with the optimal configuration o.

Existence and efficient computation of optimal tolls for non-atomic conges-
tion games have been investigated extensively. A classical result is that the
optimal configuration o is realized as the Nash equilibrium of a non-atomic
congestion game with marginal cost tolls [8]. If the delay functions are differen-
tiable, the marginal cost toll of each edge e is te = oed

′
e(oe), where d′

e(x) denotes
the first derivative of de(x). Cole, Dodis, and Roughgarden [16] considered het-
erogeneous players, who may have different valuations of time (delay) in terms
of money (toll), and established the existence of optimal tolls for non-atomic
symmetric network congestion games through a non-costructive proof based on
Brouwer’s fixed point theorem. Subsequently, Fleischer, Jain, and Mahdian [20]
and Karakostas and Kolliopoulos [37] proved independently that the existence of
optimal tolls for non-atomic congestion games with heterogeneous players follows
directly from Linear Programming duality. Therefore, optimal tolls can be com-
puted efficiently by solving a Linear Program. These results (and essentially all
known results about existence and efficient computation of tolls for non-atomic
games) crucially depend on uniqueness of the Nash equilibrium.

For atomic congestion games, that may admit many different pure Nash
equilibria, one has to distinguish between the case where a set of tolls weakly
enforces the optimal configuration o, in the sense that o is realized as some pure
Nash equilibrium of the modified game with tolls, and the case where a set of
tolls strongly enforces o, in the sense that o is realized as the unique pure Nash
equilibrium of the modified game with tolls.

Caragiannis, Kaklamanis, and Kanellopoulos [12] considered atomic conges-
tion games with linear delays and homogeneous players and investigated exis-
tence of optimal tolls and how much tolls can improve the Price of Anarchy. They
presented a simple non-symmetric congestion game for which the PoA remains
at least 6/5 under any set of tolls. Therefore, they proved that non-symmetric

234 D. Fotakis

congestion games do not necessarily admit strongly optimal tolls. On the positive
side, [12] presented (i) a set of strongly optimal tolls for linear congestion games
on parallel links, and (ii) efficiently computable tolls that reduce to the PoA to
2 for linear games with arbitrary strategies (and even with weighted players).

Motivated by [12], we investigated in [32] the existence of optimal tolls for
symmetric atomic network congestion games with homogeneous players and gen-
eral delay functions. In [32], we presented a natural toll mechanism, called cost-
balancing tolls, which are motivated by the optimal tolls for non-atomic games
in [20,37]. A set of cost-balancing tolls for a given configuration turns every
path with positive load on its edges into a minimum cost path (the optimal tolls
for linear games on parallel links in [12] are also based on the same principle).
Formally, a set of tolls t is cost-balancing for a configuration s if for every path
p ∈ P with smin

p > 0 and every path p′ ∈ P,
∑
e∈p

(de(se) + te) ≤
∑
e∈p′

(de(se) + te) .

Essentially by definition, any given configuration s is induced as a pure Nash
equilibrium of the modified congestion game with cost-balancing tolls for s. We
proved that every acyclic configuration s admits cost-balancing tolls. Moreover,
the computation of cost-balancing tolls for s naturally reduces to a longest path
computation from the origin in the subnetwork used by s. Using the fact that
the optimal configuration o in symmetric network congestion games is acyclic,
we proved the following.

Theorem 7 ([32]). For every symmetric network congestion game, the optimal
configuration o is weakly enforceable by cost-balancing tolls t for o, which satisfy
the following properties:

(a) Given the optimal configuration o, t is computed in time linear in the size
of the network.

(b) The maximum toll on any edge is at most tmax = δ+maxp∈P
∑

e∈p de(n), for
any δ > 0. Every edge with toll tmax is not used in any pure Nash equilibrium
of the modified game with tolls.

(c) The total amount of tolls paid by any player in any pure Nash equilibrium
of the modified game with tolls does not exceed maxp:omin

p >0

∑
e∈p de(oe).

In [32], we gave a simple example where the optimal configuration cannot
be weakly enforced by tolls substantially smaller than the cost-balancing tolls
of Theorem 7. Therefore, there are symmetric network games where tolls as
large as cost-balancing tolls are also necessary for weakly enforcing the optimal
configuration. In [28], we generalized Theorem 7 and proved that cost-balancing
tolls exist and can be computed efficiently even for heterogeneous players.

The main result of [32] is that for symmetric congestion games on series-
parallel networks with increasing delay functions, the optimal configuration is
strongly enforceable by the corresponding cost-balancing tolls. Therefore, sym-
metric congestion games on series-parallel networks with increasing delays admit
a set of moderate optimal tolls computable in linear time.

A Selective Tour Through Congestion Games 235

Theorem 8 ([32]). Every symmetric congestion game on a series-parallel net-
work with increasing delay functions admits a set of strongly optimal tolls with
the properties (a), (b), and (c) of Theorem 7.

Interestingly, games on series-parallel networks admit many different pure
Nash equilibria in general. However, games on series-parallel networks with cost-
balancing tolls admit an essentially unique pure Nash equilibrium that coincides
with the optimal configuration!

If the network is not series-parallel, cost-balancing tolls may not strongly
enforce the optimal solution even for linear delay functions. Moreover, Theorem 8
cannot be generalized to heterogeneous players. In [28], we presented a simple
congestion game on parallel links with linear delay functions and heterogeneous
players for which the PoA remains at least 28/27 under any set of tolls.

Given the existence of efficiently computable strongly optimal tolls for con-
gestion games on series-parallel networks, it is natural to ask for optimal tolls
that minimize some objective function (e.g. the sum of tolls, the maximum toll,
etc.) on the amount of tolls charged to the players. In [32], we proved that even
for 2-player linear congestion games on series-parallel networks, it is NP-hard to
distinguish between the case where the optimal configuration is the unique pure
Nash equilibrium (and thus, tolls only serve to increase the players’ disutility)
and the case where there is another pure Nash equilibrium of total delay at least
6/5 times the optimal total delay (and hence some tolls are required to strongly
enforce the optimal configuration).

An intriguing problem that remains open in this research direction is whether
strongly optimal tolls exist for symmetric network congestion games with homo-
geneous players.

5.3 Stackelberg Routing

A different simple and appealing approach to reducing the PoA is Stackelberg
routing [39]. The idea is to exploit a small fraction of centrally routed (a.k.a. coor-
dinated) players to improve the quality of the Nash equilibrium reached by the
remaining selfish players. A Stackelberg policy is an algorithm that determines
the strategies of the coordinated players. Given the strategies of (and the con-
gestion caused by) the coordinated players, the selfish players lead the system
to a configuration where they are at a pure Nash equilibrium. Our goal is to find
a Stackelberg policy of minimum Price of Anarchy, that is the worst-case ratio
of the total delay of all (coordinated and selfish) players at a Nash equilibrium
for the selfish players to the optimal total delay. The PoA of a given Stackelberg
strategy is a non-increasing function of the fraction of coordinated players, usu-
ally denoted by α, and ideally is given by a continuous curve decreasing from
the value of PoA if all players are selfish to 1 if all players are coordinated.

There has been a significant volume of work on the PoA of Stackelberg rout-
ing in non-atomic congestion games. For non-atomic linear games on parallel
links, Roughgarden [50] proved that it is NP-hard to compute an optimal Stack-
elberg configuration for a given fraction of coordinated players. To deal with

236 D. Fotakis

NP-hardness, he proposed two “heuristic” Stackelberg policies, called Scale
and Largest Latency First (LLF), and investigated their worst-case PoA as
a function of the fraction α of coordinated players. Scale simply employs the
optimal configuration scaled by α. LLF assigns the coordinated players to the
largest cost strategies in the optimal configuration. Roughgarden proved that
the PoA of LLF on parallel links is 1/α for general delay functions and 4/(3+α)
for linear delays.

Swamy [52] and independently Correa and Stier-Moses [18] proved that the
PoA of LLF is at most 1+1/α for series-parallel networks with general delay func-
tions. Moreover, Swamy proved that the PoA of LLF is at most α+(1−α)ρ(D)
for parallel links with delay functions in class D. The best known upper and
lower bounds on the PoA of LLF and Scale for non-atomic congestion games
on general networks with linear and polynomial delays are due to Karakostas
and Kolliopoulos [38]. An upper bound for Scale with linear delays in [38] is
4(1 − α2/4)/3. Other upper bounds for Scale and the upper bounds for LLF
are rather too complicated for stating (and explaining) them in this survey.

In [21], we investigated the PoA of Scale and LLF for atomic congestion
games on general networks with linear delays and on parallel-links with general
delay functions. We proved that the PoA of LLF is at most min{(20 − 11α)/8,
(3 − 2α +

√
5 − 4α)/2} and at least 5(2 − α)/(4 + α). For Scale, we proved

that the PoA is at most max{(5 − 3α)/2, (5 − 4α)/(3 − 2α)}. These bounds are
continuous functions of α and drop from 5/2 to 1, as α grows from 0 to 1. For
parallel-link games, we prove that the PoA of LLF matches that for non-atomic
games on parallel links, i.e., it is at most 1/α for general delays and at most
α + (1 − α)ρ(D) for delay functions in class D.

The general picture is that for parallel-link networks with general delays
and for general networks with polynomial delays, the coordinated players can be
allocated so that the PoA decreases smoothly as the fraction α of the coordinated
players increases. Unfortunately, there are non-atomic games on o − t networks
with delay functions chosen so that the PoA cannot be bounded by any function
of α under any Stackelberg configuration [9].

In a different and also very interesting research direction, Kaporis and
Spirakis [36] introduced the price of optimum, namely the smallest fraction of
coordinated players required to induce an optimal configuration. They presented
efficient algorithms for computing the price of optimum in Stackelberg routing
for non-atomic games on parallel links and on general o − t networks. An inter-
esting consequence of their work is that there are instances where enforcing the
optimal configuration may require a large fraction of the coordinated traffic to
be sacrificed through slower paths, since optimal configurations can be quite
unfair with respect to the players’ individual delay.

5.4 Approximate Network Design for Non-Atomic Games

A simple, albeit counterintuitive, way of improving the Price of Anarchy is to
exploit the essence of the Braess paradox [10], namely the fact that removing
some network edges may improve the players’ delay at equilibrium (see Fig. 1

A Selective Tour Through Congestion Games 237

d1 x x

d5 x x

d2 x

d4 x

d1 x x

d5 x x

d2 x

d4 x

d3 x

v

s

w

t s

v

w

t

Fig. 1. (a) The optimal total delay is 3/2, achieved by splitting the traffic among the
paths (s, v, t) and (s, w, t). In the Nash equilibrium, all traffic goes through the path
(s, v, w, t) and has delay 2. This gives a PoA of 4/3. (b) If we remove the edge (v, w),
the Nash equilibrium coincides with the optimal configuration. Hence the network on
the left is paradox-ridden, and the network on the right is its best subnetwork.

for a non-atomic congestion game suffering from the paradox). Since Braess’s
paradox have been studied mostly for non-atomic symmetric network congestion
games, we restrict our attention to such games throughout this section.

Focusing on understanding to which extent the PoA can be improved by
exploiting the Braess paradox, Roughgarden [51], introduced the optimization
problem of the best subnetwork (a.k.a. network design). Namely, given a non-
atomic symmetric network congestion game, to compute the subnetwork induced
by edge deletions that minimizes the players’ delay at Nash equilibrium (we recall
that for non-atomic games, the Nash equilibrium is unique and all players incur
the same delay in it). Roughgarden proved that it is NP-hard not only to find
the best subnetwork, but also to compute any meaningful approximation to the
equilibrium delay on the best subnetwork. In particular, he proved that even
for linear delays, it is NP-hard to distinguish between paradox-free instances,
where edge removal cannot improve the equilibrium delay, and paradox-ridden
instances, where the total equilibrium delay on the best subnetwork is equal
to the optimal total delay on the original network. Furthermore, Roughgarden
proved that for any ε > 0, it is NP-hard to approximate the equilibrium delay
on the best subnetwork within a factor of 4/3 − ε for linear delays, and within a
factor of �|V |/2� −ε for general delays, where |V | is the number of nodes in the
network. Hence, the only general algorithm for approximating the equilibrium
delay on the best subnetwork is the trivial one, which does not remove any
edges from the network. This algorithm achieves an approximation ratio of 4/3
for linear delays and of �|V |/2� for general delays.

Despite the strong and discouraging results of [51], we proved, in [24], that
paradox-ridden instances of the best subnetwork problem can be recognized in
polynomial time for networks with strictly increasing linear delay functions. The
idea is that if the delay functions are linear and strictly increasing, then the
optimal configuration is unique. Therefore, a non-atomic game is paradox-ridden
if and only if the unique optimal configuration is a Nash equilibrium for the
subnetwork consisting of the edges used by it. In [24], we further generalized
this result using properties of Linear Programming and proved the following.

238 D. Fotakis

Theorem 9 ([24]). Given a non-atomic symmetric network game with linear
delays and at most a constant number of constant delay edges, we can recognize
in polynomial time whether it is Braess’s-paradox-ridden instance or not.

If the network is not paradox-ridden, we sought, in [24], for nontrivial spe-
cial cases that allow for an efficient approximation of the best subnetwork. For
networks with polynomially many o − t paths, each of polylogarithmic length,
and arbitrary linear delays, we presented a subexponential-time approximation
scheme for the equilibrium delay of the best subnetwork. For any ε > 0, the
algorithm computes a subnetwork and an ε-Nash equilibrium2 in it so that the
players’ delays are within an additive term of ε/2 from the equilibrium delay on
the best subnetwork. The running time is exponential in poly(log m)/ε2. The
analysis is based on an application of the Probabilistic Method, motivated by
Althöfer’s Sparsification Lemma [3] and its application to the computation of
approximate Nash equilibria for bimatrix games [42]. In particular, we apply the
Probabilistic Method and show that any configuration admits an ε-approximate
“sparse” configuration that assigns traffic only to O(log m/ε2) paths.

In a subsequent work [25], we presented a subexponential-time approximation
for the best subnetwork in sparse random networks. The motivation came from
the works of Valiant and Roughgarden [53] and Chung and Young [15], who
proved that the Braess paradox occurs with high probability in random Gn,p

networks with p = Ω(ln n/n), i.e., just greater than the connectivity threshold,
and linear delays drawn independently from a natural probability distribution.
Our result in [25] is essentially an approximation scheme for a class of so-called
good instances, which includes the random instances of [15,53] as a special case.
Namely, given a good instance and any constant ε > 0, we compute a configura-
tion that (i) is an ε-Nash equilibrium for the subnetwork consisting of the edges
used by it, and (ii) has maximum delay no greater than (1+ ε)D∗ + ε, where D∗

is the equilibrium delay on the best subnetwork.
Our main contribution in [25] is a polynomial-time approximation-preserving

reduction of the best subnetwork problem for a good o − t network G to a best
subnetwork problem for a 0-delay simplified network G0. The latter is a layered
network obtained from G if we keep only o, t and their immediate neighbors,
and connect all neighbors of o and t by direct edges of 0 delay. In [25], we proved
that the equilibrium delay of the best subnetwork does not increase when we
consider the 0-delay simplified network G0. Although this may sound reasonable,
one should be very careful because decreasing edge delays to 0 may trigger the
Braess paradox (e.g., starting from the network in Fig. 1.a with d̂3(x) = 1 and
decreasing it to d3(x) = 0 is just another way of triggering the paradox). Given
the 0-latency simplified network G0, we can employ the approximation scheme
of [24] and approximate the best subnetwork problem on G0.

The final (and crucial) step of the approximation preserving reduction of
[25] is to start with the solution to the best subnetwork problem for the 0-delay

2 For some ε > 0, a configuration s is an ε-Nash equilibrium if for every path p with
sp > 0 and every path p′, dp(s) ≤ dp′(s) + ε.

A Selective Tour Through Congestion Games 239

simplified network and extend it to a solution to the best subnetwork problem for
the original good network G. In [25], we show how to “simulate” 0-delay edges
by low delay paths in the original good network G. Intuitively, this is possible
because due to the expansion properties and the random delay functions of G, the
intermediate subnetwork of G, connecting the neighbors of o to the neighbors
of t, essentially behaves as a complete bipartite network with 0-delay edges.
Interestingly, this is also the key step in the approach of [15,53], showing that
the Braess paradox occurs in good networks with high probability. Hence, one
could say that the reason that the Braess paradox exists in good networks is the
very same reason that the paradox can be efficiently approximated.

Since the approximation preserving reduction above runs in polynomial time,
we could replace the subexponential-time approximation scheme of [24], for
approximating the best subnetwork on the 0-delay simplified network G0, with
an improved approximation scheme based on the generalization of Althöfer’s
Sparsification Lemma presented in [7]. We believe that this approach could lead
to a polynomial-time approximation scheme for many interesting classes of good
instances.

References

1. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structre
on congestion games. J. Assoc. Comput. Mach. 55(6), 1–22 (2008)

2. Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact price
of anarchy for polynomial congestion games. SIAM J. Comput. 40(5), 1211–1233
(2011)

3. Althöfer, I.: On sparse approximations to randomized strategies and convex com-
binations. Linear Algebra Appl. 99, 339–355 (1994)

4. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T.,
Roughgarden, T.: The price of stability for network design with fair cost allocation.
SIAM J. Comput. 38(4), 1602–1623 (2008)

5. Ashlagi, I., Krysta, P., Tennenholtz, M.: Social context games. In:
Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 675–
683. Springer, Heidelberg (2008)

6. Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In:
Proceedings of the 37th ACM Symposium on Theory of Computing (STOC 2005),
pp. 57–66 (2005)

7. Barman, S.: Approximating Carathéodory’s theorem and nash equilibria. In: Pro-
ceedings of the 47th ACM Symposium on Theory of Computing (STOC 2015)
(2015)

8. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Trans-
portation. Yale University Press, New Haven (1956)

9. Bonifaci, V., Harks, T., Schäfer, G.: Stackelberg routing in arbitrary networks.
Math. Oper. Res. 35(2), 330–346 (2010)

10. Braess, D.: Über ein paradox aus der Verkehrsplanung. Unternehmensforschung
12, 258–268 (1968)

11. Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.:
Tight bounds for selfish and greedy load balancing. Algorithmica 61(3), 606–637
(2011)

240 D. Fotakis

12. Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Taxes for linear atomic conges-
tion games. ACM Trans. Algorithms 7(1), 13 (2010)

13. Christodoulou, G., Koutsoupias, E.: The Price of anarchy of finite congestion
games. In: Proceedings of the 37th ACM Symposium on Theory of Computing
(STOC 2005), pp. 67–73 (2005)

14. Christodoulou, G., Koutsoupias, E., Spirakis, P.G.: On the performance of approx-
imate equilibria in congestion games. Algorithmica 61(1), 116–140 (2011)

15. Chung, F., Young, S.J.: Braess’s paradox in large sparse graphs. In: Saberi, A.
(ed.) WINE 2010. LNCS, vol. 6484, pp. 194–208. Springer, Heidelberg (2010)

16. Cole, R., Dodis, Y., Roughgarden, T.: How much can taxes help selfish routing?
J. Comput. Syst. Sci. 72(3), 444–467 (2006)

17. Correa, J.R., Schulz, A.S., Stier, N.E.: Moses. selfish routing in capacitated net-
works. Math. Oper. Res. 29(4), 961–976 (2004)

18. Correa, J.R., Stier-Moses, N.E.: Stackelberg Routing in Atomic Network Games.
In: Technical report DRO-2007-03, Columbia Business School (2007)

19. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure nash equilib-
ria. In: Proceedings of the 36th ACM Symposium on Theory of Computing (STOC
2004), pp. 604–612 (2004)

20. Fleischer, L., Jain, K., Mahdian, M.: Tolls for heterogeneous selfish users in mul-
ticommodity networks and generalized congestion games. In: Proceedings of the
45th IEEE Symposium on Foundations of Computer Science (FOCS 2004), pp.
277–285 (2004)

21. Fotakis, D.: Stackelberg strategies for atomic congestion games. Theory Comput.
Syst. 47(1), 218–249 (2010)

22. Fotakis, D.: Congestion games with linearly independent paths: convergence time
and price of anarchy. Theory Comput. Syst. 47(1), 113–136 (2010)

23. Fotakis, D., Gkatzelis, V., Kaporis, A.C., Spirakis, P.G.: The impact of social
ignorance on weighted congestion games. Theory Comput. Syst. 50(3), 559–578
(2012)

24. Fotakis, D., Kaporis, A.C., Spirakis, P.G.: Efficient methods for selfish network
design. Theor. Comput. Sci. 448, 9–20 (2012)

25. Fotakis, D., Kaporis, A.C., Lianeas, T., Spirakis, P.G.: Resolving braess’s paradox
in random networks. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol.
8289, pp. 188–201. Springer, Heidelberg (2013)

26. Fotakis, D., Kaporis, A.C., Spirakis, P.G.: Atomic congestion games: fast, myopic
and concurrent. Theory Comput. Syst. 47(1), 38–59 (2010)

27. Fotakis, D., Kaporis, A.C., Spirakis, P.G.: Efficient methods for selfish network
design. Theor. Comput. Sci. 448, 9–20 (2012)

28. Fotakis, D., Karakostas, G., Kolliopoulos, S.G.: On the existence of optimal taxes
for network congestion games with heterogeneous users. In: Kontogiannis, S.,
Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 162–173.
Springer, Heidelberg (2010)

29. Fotakis, D., Kontogiannis, S.C., Koutsoupias, E., Mavronicolas, M., Spirakis, P.G.:
The structure and complexity of Nash equilibria for a selfish routing game. Theor.
Comput. Sci. 410(36), 3305–3326 (2009)

30. Fotakis, D., Kontogiannis, S.C., Spirakis, P.G.: Selfish unsplittable flows. Theor.
Comput. Sci. 348, 226–239 (2005)

31. Fotakis, D.A., Kontogiannis, S.C., Spirakis, P.G.: Symmetry in network conges-
tion games: pure equilibria and anarchy cost. In: Erlebach, T., Persinao, G. (eds.)
WAOA 2005. LNCS, vol. 3879, pp. 161–175. Springer, Heidelberg (2006)

A Selective Tour Through Congestion Games 241

32. Fotakis, D., Spirakis, P.G.: Cost-balancing tolls for atomic network congestion
games. Internet Math. 5(4), 343–363 (2008)

33. Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: Nash equilibria
in discrete routing games with convex latency functions. J. Comput. Syst. Sci.
74(7), 1199–1225 (2008)

34. Harks, T., Klimm, M., Möhring, R.H.: Characterizing the existence of potential
functions in weighted congestion games. Theory Comput. Syst. 49(1), 46–70 (2011)

35. Holzman, R., Law-Yone, N.: (Lev-tov). Network structure and strong equilibrium
in route selection games. Math. Soc. Sci. 46, 193–205 (2003)

36. Kaporis, A.C., Spirakis, P.G.: The price of optimum in Stackelberg games on
arbitrary single commodity networks and latency functions. Theor. Comput. Sci.
410(8–10), 745–755 (2009)

37. Karakostas, G., Kolliopoulos, S.: Edge pricing of multicommodity networks for
heterogeneous selfish users. In: Proceedings of the 45th IEEE Symposium on Foun-
dations of Computer Science (FOCS 2004), pp. 268–276 (2004)

38. Karakostas, G., Kolliopoulos, S.: Stackelberg strategies for selfish routing in general
multicommodity networks. Algorithmica 53(1), 132–153 (2009)

39. Korilis, Y.A., Lazar, A.A., Orda, A.: Achieving network optima using Stackelberg
routing strategies. IEEE/ACM Trans. Networking 5(1), 161–173 (1997)

40. Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate equilibria and ball
fusion. Theory Comput. Syst. 36, 683–693 (2003)

41. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. Comput. Sci. Rev.
3(2), 65–69 (2009)

42. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies.
In: Proceedings of the 4th ACM Conference on Electronic Commerce (EC 2003),
pp. 36–41 (2003)

43. Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A new model for selfish
routing. Theor. Comput. Sci. 406(3), 187–206 (2008)

44. Mavronicolas, M., Spirakis, P.G.: The price of selfish routing. Algorithmica 48(1),
91–126 (2007)

45. Milchtaich, I.: Network topology and the efficiency of equilibrium. Games Econ.
Behav. 57, 321–346 (2006)

46. Monderer, D., Shapley, L.: Potential games. Games Econ. Behav. 14, 124–143
(1996)

47. Panagopoulou, P.N., Spirakis, P.G.: Algorithms for pure Nash equilibria in
weighted congestion games. ACM J. Exp. Algorithmics 11, 1–19 (2006)

48. Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. Int. J.
Game Theory 2, 65–67 (1973)

49. Roughgarden, T.: The price of anarchy is independent of the network topology. In:
Proceedings of the 34th ACM Symposium on Theory of Computing (STOC 2002),
pp. 428–437 (2002)

50. Roughgarden, T.: Stackelberg scheduling strategies. SIAM J. Comput. 33(2), 332–
350 (2004)

51. Roughgarden, T.: On the severity of Braess’s paradox: designing networks for selfish
users is hard. J. Comput. Syst. Sci. 72(5), 922–953 (2006)

52. Swamy, C.: The effectiveness of stackelberg strategies and tolls for network con-
gestion games. In: Proceedings of the 18th ACM-SIAM Symposium on Discrete
Algorithms (SODA 2007), pp. 1133–1142 (2007)

53. Valiant, G., Roughgarden, T.: Braess’s paradox in large random graphs. Random
Struct. Algorithms 37(4), 495–515 (2010)

Data-Streaming and Concurrent Data-Object
Co-design: Overview and Algorithmic Challenges

Vincenzo Gulisano, Yiannis Nikolakopoulos, Marina Papatriantafilou(B),
and Philippas Tsigas

Chalmers University of Technology, Gothenburg, Sweden
ptrianta@chalmers.se

Abstract. Processing big volumes of data generated on-line, implies
needs to carry out computations on-the-fly, in the streams of data. In
parallel data-stream computing, the underlying data objects can provide
the means for exchanging the data so that the communication and the
work imbalance between the concurrent threads performing the com-
putation are reduced, while the pipeline parallelism is enhanced. By
shedding light on the concurrent data objects and their role as artic-
ulation points in data-stream processing, we place some cornerstones
to analyze the problems, propose appropriate new data structures suit-
able for a set of functions and identify new key challenges to improve
data-stream processing through co-design with fine-grain efficient syn-
chronization combined with the data exchange.

It is interesting to point out that research in distributed computing
on multiprocessor efficient and consistent data sharing through fine-grain
synchronization emerged from questions in concurrent database-related
research; approximately three decades since then, it is interesting to see
several returns of the fruits of this expedition, helping with the new
problems in the massive-data research domain, with applications in e.g.
cyberphysical systems.

Keywords: Concurrent data structures · Data-streaming · Stream
processing engines · In-memory data analysis

1 Introduction

Concurrent data objects are commonly described as implementations of Abstract
Data Types (ADTs) shared by concurrent execution threads or processes. ADTs
form abstractions of high re-usability across different applications and provide
structured access to the data through their interface. The goals of the algorithmic
implementation are about correctness and minimal complexity overhead of data-
access, modification and retrieval.

One of the challenges in parallel and concurrent programs and applications,
that also applies to their data objects, stems from the communication overhead,
which needs to be minimized, too — besides the computational complexity—, so
as to ensure that the underlying system’s parallelism is properly utilized. Conse-
quently, concurrent data structures need to integrate communication patterns,
c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 242–260, 2015.
DOI: 10.1007/978-3-319-24024-4 15

Data-Streaming and Concurrent Data-Object Co-design 243

besides access patterns, that will serve the needs of the application domain that
they will be used in.

In the journey from traditional methods for implementing shared objects
through mutual exclusion to lock-free or wait-free algorithmic implementa-
tions, motivation and boost came from research communities focusing on the
analysis and exploration of data. Nearly concurrently with the very important
foundational steps in formalization of concurrency requirements in database-
transactions [44,45,52], there came ideas of allowing concurrency in shared data
object algorithmic implementations; e.g. first through proposing to safely allow
read-only operations to execute concurrently with each-other in [14], later on
with the seminal step by Lamport in [33], providing algorithms that allow concur-
rent reading and writing without assuming process synchrony or mutual exclu-
sion, while also guaranteeing safety properties of the values obtained.

The above are all the more important in the new era of cyberphysical systems,
with needs for computationally- and energy-efficient systems to analyse the big
streams of data and extract useful information [18–20]. While the leveraging of
concurrent algorithmic implementation of shared data objects might have been
limited by the earlier times nature of analysis needs by applications —based on
stored-data, rather than in-memory data— we now are in an era where data
is generated in massive rates —e.g. by cyberphysical systems— and where in-
memory analysis is needed to cope with such rates. Leveraging the concurrent
data objects that best fit the needs of an application in a concurrent environment
is a key issue, as highlighted by Michael in the “Balancing act of choosing non-
blocking features” [40]. Moreover, quoting from [3], “Not having to read from the
disk and write computation results back saves hours to days of scientific work,
giving scientists more time to investigate the data”. To process data in such a
fashion, data-streaming is one of the new computation methodologies that have
been proposed [2,5,8,9,21,25]. In data streaming, continuous queries, defined
as Directed Acyclic Graphs (DAGs) of interconnected operators, are executed
by Stream Processing Engines (SPEs) that process incoming data and produce
results in a continuous fashion, without the necessity of storing the data. As
highlighted in [16], parallelism is a necessity due to the low-latency and high-
throughput requirements of such continuous real-time complex processing of
increasingly large data volumes.

What are the shared objects that meet the needs of concurrent data stream-
ing applications is an important issue that has only recently been brought for
addressing in the literature [13]. By shedding light on the data structures, these
recent findings place essential cornerstones in this study avenue and identify new
key challenges to improve data streaming. In other words, what we observe is
that in the journey where big data and concurrent data transactions meet con-
current data objects, there is a new crossing: data and computation meet in new
forms and with new needs. In-memory, close-to-source analysis of data can pro-
vide useful information and services in cyberphysical systems. Data-streaming is
significant in this context [20]. Concurrent data objects are a means to enhance
the data streaming parallelism as needed, while new data objects and interfaces
are required to be defined to meet the needs of data streaming.

244 V. Gulisano et al.

Outline of the Paper. In the rest of this paper we outline the key points
in the aforementioned findings, emphasizing the role of concurrent data objects
serving as articulation points in data streaming and stream processing engines
in particular. We highlight new challenges and the benefits that can be brought
by the co-design of data stream processing and concurrent object co-design.

Section 2 provides a short overview of the evolution of concurrency in shared
objects algorithmic implementations. Section 3 provides an introduction to data
streaming and the requirements in synchronization and determinism in data
processing. Subsequently, Sects. 4 and 5 elaborate on architectural aspects of
Stream Processing Engines and the challenges in parallelization, in connection
to the way that concurrent threads process and exchange data, in order to meet
the above requirements. Section 6 introduces a new abstract data type, whose
concurrent lock-free and linearizable implementation can allow threads to work
efficiently in an asynchronous fashion and meet the requirements for synchroniza-
tion and determinism in data stream processing. Section 7 provides an example
evaluation of possible throughput and latency improvements in data streaming,
by the use of the new shared object and its concurrent algorithmic implemen-
tation. Section 8 concludes with a discussion, pointing out also directions for
further research.

2 Concurrent object Algorithmic Implementations -
Preliminaries

As discussed in Sect. 1, shared objects have been traditionally implemented
through mutual exclusion. The first steps in introducing true concurrency in
shared object implementations [14,33] can be characterized as ideas and results
that opened a big avenue in research. Setting the foundations for arguing about
concurrency in shared object implementations that allowed concurrent access
became an important next goal. In this context, we can find Lamport’s definitions
[34] of shared object implementations with progress guarantees (wait-freeness)
and safety properties (safeness, regularity, atomicity) of such, describing the
data consistency. The latter were proposed to formulate requirements for the
object constructions and assumptions of the underlying system description. It
was argued that they can e.g. describe consistency guarantees of asynchronous
hardware. Related here is also the work by Misra [42], formulating axioms for
memory access in asynchronous hardware systems, and by Lynch and Tuttle [38]
setting foundations for hierarchical correctness proofs for distributed algorithms
through automata and executions on them. Another significant step has been
the formulation of linearizabilty as correctness condition for concurrent objects,
by Herlihy and Wing [31].

For ease of reference, we paraphrase here the definitions of some of the key
terms, that are also used later in the paper. A wait-free object implementa-
tion ensures that any operation on the object can complete in bounded number
of steps, independently of other contending processes. A relaxed condition is
lock-freedom: a lock-free object implementation ensures that at least one of the

Data-Streaming and Concurrent Data-Object Co-design 245

contending operations makes progress in a finite number of its own steps. These
properties are often referred to in the literature as non-blocking. An implemen-
tation of an object is linearizable if each operation execution appears to take
effect at some point (linearization point) between its invocation and response;
thus, given an execution of concurrent operations and by using the lineariza-
tion points, it should be able to define a total order of the operations, which is
consistent with their real-time ordering and their effects are consistent with the
sequential semantics of the data structure.

Following the foundations, there was a “movement” in the scientific commu-
nity, providing challenging algorithmic implementations of shared data objects
allowing concurrency and guaranteeing a variety of safety properties (lineariz-
ability or weaker forms) and progress properties (e.g. wait-freeness, lock-freeness,
obstruction-freeness); we refer the reader to [6,11,29,37] and references therein,
for overview and more detailed presentations of key results.

In parallel, the hardware point of view is also worthwhile to comment on.
At the first stages, the concept of asynchronous parallel hardware was mainly
studied from a theoretical point of view, with the exception of some elegant
efforts such as the work by the group of Ebergen [15,46]. Similar has been the
perspective of massive parallelism, until the relatively recent era of multicore and
manycore systems in hardware. The latter triggered a new “movement”, that
brought changes including the consideration of new abstractions, most notably
the one of transactional memory [28,47] as well as the deeper consideration of
asynchronous hardware [26]. This evolution makes the need for asynchronous
concurrent implementations of shared objects even more significant.

3 Data Streaming - Preliminaries

In this section, we introduce basic concepts of the data streaming processing
paradigm. We also illustrate them through a sample data streaming continuous
query that analyzes traffic gathered from the SoundCloud [48] social network.
Besides, we overview the evolution of Stream Processing Engines (SPEs) from
centralized to parallel-distributed ones, also introducing the definition of deter-
ministic processing (also referred to as semantic transparency [22]).

Data Streaming Model. A data stream S is an unbounded sequence of tuples
sharing a given schema composed by attributes 〈ts, A1, A2, . . . , An〉. We refer to
attribute Ai of tuple t as t.Ai. Attribute t.ts represents the time when the tuple
is created. As common in the literature [12], we assume that tuples generated
by a given data source and delivered through the same data stream have non-
decreasing ts values. We also suppose data sources have clocks that are well-
synchronized using a clock synchronization protocol like NTP [41].

Table 1 presents a sample schema, composed of four attributes, for tuples car-
rying comments (exchanged by users in relation to songs) from the SoundCloud
platform.

It should be noted that tuples belonging to the same logical data stream,
sharing the same schema and carrying similar information (e.g., comments about

246 V. Gulisano et al.

Table 1. Sample tuple schema.

Attribute Content

ts The creation timestamp of the tuple

user The user commenting a song

song The song to which the comment refers to

comment The comment itself

songs, as in Table 1), might be delivered by multiple distinct physical streams
(e.g., generated by crawlers running at different physical nodes). As we explain in
the following, such distinction plays an important role if tuples must be processed
deterministically. In the remainder, we refer to logical streams simply as streams,
specifying explicitly when physical streams are in focus.

In the data streaming model, input tuples coming from one or multiple input
streams are consumed by Continuous Queries (or simply queries in the follow-
ing), which subsequently produce one or more output streams. A query, defined
as a directed acyclic graph (DAG) with additional input and output edges, pro-
duces results “continuously” while consuming input tuples. Vertexes represent
operators that consume tuples (from at least one input stream) and produce out-
put tuples (for at least one output stream). Edges define how input and output
tuples flow among the operators of a query.

Data Streaming Operators. Data streaming operators, the base unit used to
process and produce tuples, are classified depending on whether they maintain
a state that evolves accordingly with the input tuples being processed. State-
less operators such as Map, Filter and Union do not maintain such a state and
perform a one-by-one processing of input tuples. On the other hand, stateful
operators such as Aggregate and Join maintain a state and process multiple
input tuples in order to produce one output tuple. Due to the unbounded nature
of data streams, stateful computations are usually performed over sliding win-
dows covering portions of the input tuples. Time based windows are defined over
period of times (e.g., tuples received in the last 10 min) while tuple based win-
dows are defined over the number of stored tuples (e.g., last 50 received tuples).

Continuous Query Example. Let us take a look at a sample continuous query
that consumes the tuples sharing the schema presented in Table 1 to count the
number of positive comments (i.e., comments containing certain predefined key-
words) exchanged by users in relation to each song. As presented in Fig. 11, the
query is composed by three operators.

An initial Map operator transforms each comment (attribute comment into
a stream of words typed by users in relation to songs. Its resulting output stream
schema is composed by attributes 〈ts, song, word〉. Subsequently, a Filter oper-
ator is used to forward only the words that belong to a given subset of positive
1 Tuples shown in this example are not extracted from SoundCloud, but handcrafted

for the specific example.

Data-Streaming and Concurrent Data-Object Co-design 247

Fig. 1. Sample query that consumes tuples sharing the schema in Table 1 and counts
the number of positive comments exchanged by users in relation to each song.

words (e.g., nice, great or fantastic). The output tuples produced by this opera-
tor share the same schema of its input tuples. Finally, an Aggregate operator is
used to count, for each song, how many positive words are received over a sliding
window of 10 min and to produce a new result every 2 min.

3.1 Parallel Data Streaming and Deterministic Processing

As emphasized in [16], real-time continuous processing of large volumes of data
demand for low-latency and high throughput processing. During the last decade,
such increasing demand drove the evolution of SPEs from centralized [2,5,9] to
distributed [1] and to parallel-distributed ones [17,22,23]. As shown in Fig. 2
(in relation to the sample query of Fig. 1), queries are entirely deployed and
run by exactly one SPE instance when the latter is centralized. By providing
inter-operator parallelism, distributed SPEs allow for the execution of different
operators belonging to the same query at different SPE instances. Finally, by
providing intra-operator parallelism, parallel-distributed SPEs also allow for a
single operator to be executed at multiple SPE instances. For simplicity, the
figure shows distinct SPE instances running at distinct physical machines. Nev-
ertheless, multiple SPE instances can be deployed within the same physical node
(e.g., to leverage multi-core architectures).

248 V. Gulisano et al.

Distributed SPE

Centralized SPE

Parallel-Distributed SPE

Map Filter Aggregate

Map Filter Aggregate

Map Filter Aggregate

Fig. 2. Evolution of Stream Processing Engines from centralized to distributed and to
parallel-distributed ones.

The parallel execution of data streaming operators (and thus of the queries
they compose) is the only means for a single operator to avoid to get overloaded
because of its volume of input data; the latter would of course be unwanted as it
would degrade the performance of the entire data streaming query. Challenging
aspects in the design and implementation of parallel data streaming operators
do not only aim at improving their performance, but also aim at preserving their
semantic.

Definition 1. [22,23] The property of semantic transparency or deterministim
in parallel stream processing guarantees that, by consuming the tuples delivered
by a given set of physical input streams, a parallel operator produces exactly the
same output that would be produced by its centralized counterpart.

As explained in [13], a condition to enforce deterministic processing for the
operators of a query is to process tuples delivered by distinct physical streams
in timestamp-order (that is, to process them deterministically independently of
their inter-arrival times). In the context of parallel-distributed SPEs, the distinct
physical input streams of an operator do not only refer to the physical streams
generated by distinct sources, but also to the distinct physical streams gener-
ated by the multiple instances of a parallel operator. In the example in Fig. 1,
distinct physical streams could be delivered to the Map operator by distinct
sources, while distinct physical streams could be delivered to the aggregate from
the multiple SPE instances running the Filter operator in parallel. In [12], the
authors introduce the concept of ready tuple as follows:

Data-Streaming and Concurrent Data-Object Co-design 249

Definition 2. Let tji be the i-th tuple in timestamp-sorted physical stream j.
Tuple tji is ready to be processed if tji .ts ≤ mergets, where mergets is the min-
imum among the latest timestamps from each timestamp-sorted physical stream
j, i.e. mergets = minj{maxi(t

j
i .ts)}

Based on this definition, deterministic processing is enforced if operators con-
sume timestamp-sorted ready tuples from their physical input streams.

It should be noticed that the way in which input tuples are distinguished
between the ones that are ready and the ones that are not is not orthogonal to
the data structures used to maintain such tuples. Näıve solutions that rely on
data structures oblivious to the concept of ready tuples bound the parallelism
and concurrency degree of the analysis, usually incur in high processing costs
and introduce processing bottlenecks. On the other hand, streaming-aware data
structures enable for finer-grained and scalable cooperation among the different
threads operating on them, as we will explain in Sect. 5.

4 Inter-thread Communication in SPEs Architecture

In this section, we present the common architecture of a SPE, focusing especially
on the data structures defined for each SPE instance to maintain the tuples being
consumed and produced in a deterministic fashion and the threads operating
on them. For the clarity of the discussion, we illustrate the architecture of a
SPE considering a single query consuming one input stream and producing one
output stream, and do not overview the data structures internal to the query’s
operators (maintaining partial computations and windows). While overviewing
the architecture, we also discuss its limitations motivating the discussion that
follows, in Sect. 5.

Common SPE Architecture. The common architecture of a SPE (presented
in Fig. 3) usually defines three main modules, which we refer to as Min, Mproc

and Mout[1,2,22,36]2. Module Min maintains the queues in which tuples from a
given set of physical input streams I1, . . . , In are collected from the network. The
collection of such tuples is usually performed by a dedicated thread, which we
refer to as Tin, running the add method. Tuples from each physical input stream
can be maintained at individual queues [22,23] or concurrent data structures
such as the LMAX Disruptor [50] (as for the Storm [36] SPE).

Tuples stored at Min are subsequently copied to Mproc and consumed by the
different data streaming operators composing the query run by the SPE. More
concretely, a dedicated thread Tproc:

1. copies the tuples from each physical input stream (method copy),

2 Complementary modules, not in the scope of this discussion, might be defined for
features such as fault tolerance, scheduling, balancing or self-provisioning and self-
decommissioning.

250 V. Gulisano et al.

2. merges the timestamp-sorted physical streams into a single timestamp-sorted
logical stream of tuples in order for the query to process tuples deterministi-
cally (method merge),

3. processes them (method process) and, finally,
4. stores the resulting output tuples in a dedicated queue (method store).

Each time an output tuple is produced, a dedicated thread Tout copies it to
the queue maintained at the Mout module (method copy) and, finally, forwards
it to other SPE instances or to the external user applications (method forward)3.

Query

In1

...

InN

...

Min

...

Mproc Mout

Out

add copy merge
process

store output copy forward

Tin Tproc Tout

Query

Physical data stream

Continuous query

Sorted queue of tuples from
one physical data stream

LEGEND

Basic Architecture

Fig. 3. Basic architecture of a SPE, presenting the different modules and threads oper-
ating on them.

Enforcing Deterministic Processing. As presented in Fig. 3, the execution
of the method process is preceded by the execution of the method merge for
thread Tproc. The merging of the physical streams referring to the same logical
stream of tuples fed to the query is performed in order to enforce deterministic
process (as discussed in Sect. 3.1). The merging of the physical input streams can
happen in different ways. On one hand, each new tuple from a physical stream
Ii can be compared with the ones previously received from any physical stream
Ij |j �= i in order to identify the ready tuples and process them. Such aggressive
merging, performed by operators such as the Transparent Input Merger [22]
or the SUnion operator [7], results in low processing latency, as each tuple is
processed as soon as it becomes ready. On the other hand, the tuples from the
different physical streams can also be sorted periodically, by using punctuation
tuples [49] or by performing the sorting each time a given time period expires.
3 Depending on how the data structures in modules Min, Mproc and Mout are defined,

locking mechanism can be in place, as in [23].

Data-Streaming and Concurrent Data-Object Co-design 251

With respect to the output tuples produced by the query running at the SPE,
the method forward is executed by exactly one thread in order for the output
tuples to be delivered in timestamp order to the following SPE instance or to
the end user application.

Shortcomings. The architecture outlined above results in several shortcomings,
as we explain in the following.

First, by keeping dedicated threads for the different stages, it is prone to
unbalanced work (and thus does not leverage at their full potential the available
threads). As it can be observed, threads Tin and Tout perform a reduced set of
methods (add , copy and forward) with respect to thread Tout. Moreover, such
operations are light when compared with computational intensive operations
such as merge and process (the latter depending on the number of operators
composing the query run by the SPE).

Secondly, copy operations are performed by both the Tin and Tout threads
in order to retrieve the tuples from their preceding modules. As discussed in [4],
the copies required to maintain tuples at different queues incur in a significant
cost, which in turns affects the performance of the SPE.

Finally, independently of whether tuples are sorted periodically or upon
reception of each new incoming tuple, the merging techniques proposed in the
literature [7,22] usually have a processing cost that grows linearly in the num-
ber of physical streams being merged. Moreover, the merging itself constitutes a
potential bottleneck for the entire system (whose throughput is bounded by the
speed with which input tuples can be merged) and it limits the pipelining of the
operations performed by the different threads. That is, independently of the rate
at which input tuples are retrieved by thread Tin, as long as available tuples are
not merged, no tuple can be processed by thread Tproc and, consequently, no
new result can be forwarded by the thread Tout.

5 Leveraging Concurrent Data Structures in SPEs

As we discuss in this section, three main actions can be undertaken to balance
the work of the different threads running within a SPE instance and thus enhance
its inner concurrency and maximize its performance. As we complement in our
evaluation, such actions result in a significant performance improvement for the
throughput of a SPE.

Switch from Inter-module to Intra-module Data Access. The first action
towards an improved architecture is for modules to share the data structures
where tuples retrieved from the network are maintained before being fed to
the query. While the thread(s) operating on such modules can be in charge
of different tasks (either retrieving tuples from the network or consume input
tuples), the joint access prevents unnecessary copies of tuples across modules Min

and Mproc. In this context, fine-grained synchronization mechanisms should be
defined for threads Min and Mproc intercommunication.

252 V. Gulisano et al.

A) Shared and Concurrent access to input tuples

B) Shared and concurrent access to input and output tuples

Query

In1

...

InN

Min Mproc Mout

Out

add
merge

process store output copy forward

Tin Tproc Tout

Query

In1

...

InN

Min Mproc Mout

Out

store output forward

Tout

add
merge

process

Tproc …Tproc

Query

Physical data stream

Continuous query

Sorted queue of tuples from
one physical data stream

Sorted queue of tuples from
one logical data stream

LEGEND

Fig. 4. SPE architectures leveraging concurrent data structures.

Merge Physical Streams Concurrently. As discussed in Sect. 3.1, the tuples
delivered by timestamp-sorted physical input stream streams of a query must be
merged and fed in timestamp order in order to enforce deterministic processing.
Hence, the second action is to enable for the merging of tuples delivered by
physical streams to happen concurrently with their processing (as presented
in Fig. 4A). This approach provides a better balancing of the threads work by
shifting the merge operation to thread Tin.

Consume Logical Streams Concurrently. The third action aims at over-
coming the potential bottleneck caused by merging the tuples delivered by the
distinct physical input streams. This can be achieved by relying on a concurrent
data structure that not only enables for concurrent addition of tuples (being
merged) and retrieval of tuples (being processed), but also allows for such oper-
ations to be performed by arbitrarily number of processing threads. Such an
architecture allows the parallelism degree of a SPE instance to grow beyond the
number of threads usually defined by the latter. In such a case, though, the
synchronization is no only required for the merging of input tuples, but also for
the merging of output ones (as presented in Fig. 4B). That is, since multiple
physical output streams are produced by the processing threads running at the

Data-Streaming and Concurrent Data-Object Co-design 253

SPE, the former must be merged deterministically into a single logical stream.
As we explain in [12,24], the way in which input tuples are processed by the
different threads depends on the semantics of the operators running at the SPE
instance.

6 ScaleGate: A Novel, Concurrency- and Streaming-
Aware Data Object

As discussed in Sect. 5, a shared data structure that enables for concurrent addi-
tion and merging of tuples delivered by multiple physical streams, while also
allowing for an arbitrary number of threads to retrieve ready tuples in timestamp
order, is the key to balance the workload of an arbitrary number of processing
threads running in a SPE instance. In the following, we overview such a data
structure, ScaleGate, focusing on its functionality and core ideas and also pre-
senting its interface. We refer the reader to [24] for its implementation details.

Overview and Interface. The common architecture of SPEs outlined in
Sect. 4, can be seen as a pipeline where data is continuously produced, processed
and consumed across the different stages, in this case the three main modules.
In a parallel implementation, each computational thread associated with one or
more modules will communicate with the rest by accessing and/or modifying the
shared data structures, which are the focal point of this section. The ideal con-
current data structures should organize the data so that the communication cost
and computational complexity of each access is minimized while the parallelism
within the modules and the overall system efficiency is maximized. Moreover,
this should be done under an interface that provides semantics that enhance the
parallelism across modules.

ScaleGate is a recently proposed abstract data type that becomes a cor-
nerstone in achieving the parallelization challenges presented in the previous
section. ScaleGate guarantees properties essential for concurrently merging phys-
ical streams at the articulation points where data and threads meet, while it inte-
grates the necessary synchronization for allowing multiple threads to consume
ready tuples concurrently. It allows for an arbitrary number of timestamp-sorted
streams, each delivered by a source thread, to be merged into a timestamp-sorted
stream of ready tuples (Definition 2). At the same time, it allows for an arbitrary
number of reader threads to consume in timestamp order all the ready tuples of
the resulting timestamp-sorted stream. ScaleGate integrates, in a decentralized
manner, the necessary communication between the source and reader threads
in order to decide whether a tuple is ready or not. The interface of ScaleGate
provides the following methods:

– addTuple(timestamp,tuple,sourceID): which allows a tuple from the source
thread sourceID to be merged by ScaleGate in the resulting timestamp-sorted
stream of ready tuples.

254 V. Gulisano et al.

– getNextReadyTuple(readerID): which provides to the calling reader thread read-
erID the next earliest ready tuple that has not been yet consumed by the
former.

Algorithmic Design for Concurrent Implementation of ScaleGate . As
explained earlier in the paper, synchronization is one of the fundamental design
considerations for a concurrent data structure implementation. Lock-free (a.k.a.
non-blocking) implementations ensure system-wide progress, by guaranteeing at
least one of the threads operating on the data structure to make progress inde-
pendently of the behavior of other threads. Following the expectations based
on their basic properties, such implementations demonstrate higher scalability
and better fairness when compared with coarse- or fine-grain locking mecha-
nisms [10,35,39]. This behavior remains across several multiprocessor hardware
architectures, with varying characteristics such as uniform/non-uniform memory
access, or memory hierarchies. All the above contribute to the choice in [24], for
lock-free algorithmic implementation of the ScaleGate.

A basic requirement for an algorithmic implementation of the ScaleGate is
to maintain items in a sorted manner. Tree-like implementations, especially bal-
anced ones, have not been proven efficient in concurrent environments due to the
strong dependencies that appear in balancing operations [30]. On the contrary,
shared concurrent skip lists [27,51] have been used extensively for such require-
ments. In a nutshell, skip lists maintain a sorted linked list of elements (e.g.,
tuples), while allowing for probabilistically logarithmic concurrent insertions of
new elements and the concurrent deletion of existing ones. This is made possible
by multiple levels (pointers), for each element, that act as shortcuts for quickly
locating the appropriate insertion position of a new element. The number of
additional levels for each element is chosen randomly during its allocation.

Inspired by skip lists, the ScaleGate algoritmic implementation incorporates
a multi-level pointer mechanism adapted to its requirements. Such adaption aims
at enabling fine-grained synchronization that boosts parallelism and is carried
out (1) by making ScaleGate inherently aware of the concept of ready tuples
and (2) by exploiting the specific access patterns of ready tuples (e.g. consumed
in timestamp order by the threads executing the queries) and thus allowing for
a more lightweight implementation than the general purpose delete operations
of skip lists (such operations carry a considerable overhead in the respective
implementations).

Claim. The concurrent implementation of ScaleGate in [12,24] follows the above
elements and satisfies strong safety and liveness requirements, namely lineariz-
ability and lock-freedom. Also, as shown in [12,24], ScaleGate enables determin-
istic execution of data streaming operators.

7 Evaluation Study

In this section we describe an experimental study of how concurrent data struc-
tures can enhance the performance of SPE by finer-grained synchronization

Data-Streaming and Concurrent Data-Object Co-design 255

among the threads operating on the tuples. This is not meant to be a thor-
ough evaluation of the proposed data structure and stream processing engine
designs. Some detailed experimental studies for a range of operators and input
streams that vary in character and volumes can be found in [12,13,24].

In particular, here we show an evaluation of the performance for the query
introduced in Sect. 3, in different SPE architectures presented in Figs. 3 and 4.
More concretely, we measure both their per-tuple processing time (in µs) and
overall throughput (in tuples/second, t/s). We begin by discussing the evalua-
tion setup.

Experiment Setup

This evaluation study has been run with a workstation equipped with a 2.0 GHz
Intel Xeon E5-2650 (16 cores over 2 sockets) and 64 GB of memory. The different
data structures and modules of SPEs’ architectures have been implemented in
Java. We use a dataset, which we refer to as SC, collected from the online
audio distribution platform SoundCloud from a subset of approximately 40, 000
users exchanging comments about 250, 000 songs between 2007 and 2013. Tuples
contain comments sent by users in relation to songs and are composed by the
attributes 〈ts, user, song, comment〉.

We fed tuples from the SC dataset into the query presented in Sect. 3, which
counts the number of positive comments (a comment is considered as positive if
it contains keywords such as nice, great, fantastic and so on) in relation to each
song given a window of size 10 min and advance 2 min. In all the experiments,
we assume input tuples are delivered to the query by 20 distinct physical input
streams.

We refer to the basic architecture (Fig. 3), the architecture defining shared
and concurrent access to the input tuples (Fig. 4A) and the one defining shared
and concurrent access for both input and output tuples (Fig. 4B) as architectures
A1, A2 and A3, respectively. In all the experiments, we measure the average per-
tuple processing time based on the operation performed by threads Tin and Tproc

in the different architectures. Subsequently, we compute the maximum expected
throughput based on such per-tuple processing time. Since both threads Tin and
Tproc perform the same operations for architecture A3, we refer to the threads as
T1 and T2 in all the experiments. All the presented results are averaged over 100
runs. In all the experiments, we do not take into account the per-tuple processing
time incurred by the thread Tout in order to forward each output tuple to the
following SPE instance or the external end-user application.

Illustrative Outcome and Discussion. In the following, we present the
results for the three different setups we considered, namely A1, A2 and A3.
Results about the per-tuple processing time are summarized in Fig. 5 while
throughput results are summarized in Fig. 6.

Architecture A1 (Fig. 3). In the first experiment, we consider the SPE architec-
ture presented in Fig. 3, in which thread Tin is in charge of the add operation
while thread Tproc is in charge of the copy , merge, process and store operations.

256 V. Gulisano et al.

Fig. 5. Per-tuple average processing time for threads T1 and T2 and the different archi-
tectures A1, A2 and A3.

Fig. 6. Throughput achieved by the different architectures A1, A2 and A3.

As presented in Fig. 5 and explained in Sect. 4, the two threads are heavily
unbalanced. Thread Tin is responsible for a single, lightweight operation which
on average takes 0.2 ms to be run. At the same time, thread Tproc is responsible
for merge sorting all the input tuples and process them, which on average takes
6.9 ms (that is, the per-tuple processing time for thread Tproc is 35 times higher
than the one for thread tone). For such a setup, the operations run by thread
Tproc result in a bottleneck of the system, allowing for a maximum throughput
of 150, 000 t/s.

Architecture A2 (Fig. 4A). For this architecture, the merge operation is now per-
formed by thread Tin rather than Tproc. While the work between the two threads
is still unbalanced, it can be observed that thread Tin per-tuple processing now

Data-Streaming and Concurrent Data-Object Co-design 257

grows to approx 3.5 ms while thread Tproc per-tuple processing time decreases
to 4.8 ms. As a result, while still containing a bottleneck, this setup allows for
an increased throughput, up to 200, 000 t/s (thus increasing the baseline A1

throughput by 33 %).

Architecture A3 (Fig. 4B). For this architecture, the operations add , copy , merge,
process and store are not partitioned among the two threads Tin and Tproc

but rather executed (all of them) by both threads in a parallel and concurrent
fashion. As we explained in Sect. 5, while such an architecture requires extra
synchronization in order for the output tuples produced by each thread to be
merged into a single logical stream (in order to enforce deterministic process-
ing), it allows for the parallel and concurrent execution of an arbitrary number
of processing threads (as long as the merging of their output tuples does not
constitute a bottleneck).

As presented in Fig. 5, the per-tuple processing time incurred by both threads
grows to approximately 8.7 ms. As only one of them is needed in order to process
a tuple and each of them is able to process 115000 t/s, independently from the
other, the overall throughput of the system grows to 230000 t/s (thus increasing
the baseline A1 throughput by more than 50 %).

Overview Comment. The significant improvements are achieved through more
balanced work among the threads and the possibility for each thread to make
progress asynchronously and nearly independent of the progress of the other
threads. These are enabled through theScaleGate concurrent object, as expected.

8 Conclusions

In this paper we give an overview of the motivation and the idea of co-design
of data stream processing and concurrent data structures. We point out that
abstract data types and their concurrent implementations play a key role in
data streaming efficiency and we give examples of newly proposed ones that can
offer significant benefits. Symmetrically, we show that stream processing designs
can benefit significantly by awareness of the concurrency in the “articulation”
points, where data and computation “meet”. This is all the more important
given the needs for processing in the continuously increasing data volumes in
e.g. cyber-physical systems [20], where data streaming becomes a must in order
to extract efficiently useful information from the data and justify the existence
of these systems.

Continued research in this new space is expected to have significant impact,
both from the point of view of concurrent algorithmic challenges that are brought
in, as well as from the point of view of usefulness in actual applications’ needs.
Possible topics include efficiency and consistency (and their trade-offs) in the
context of intra-node and inter-node concurrency for data streaming operators,
as well as in the context of operations such as range queries, possibly through
snapshots or iterations on these objects [32,43]; the analysis of data transfor-
mation pipelines (with a query) given the progress properties of the concurrent

258 V. Gulisano et al.

object implementations; new abstract data types and efficient concurrent imple-
mentations that can improve such pipelines.

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang,
J.-H., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y.,
Zdonik, S.B.: The design of the borealis stream processing engine. In: CIDR, pp.
277–289 (2005)

2. Abadi, D.J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S.,
Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: a new model and architecture
for data stream management. VLDB J. 12, 12–139 (2003)

3. Ailamaki, A., Kantere, V., Dash, D.: Managing scientific data. Commun. ACM
53(6), 68–78 (2010)

4. Akram, S., Marazakis, M., Bilas, A.: Understanding and improving the cost of
scaling distributed event processing. In: Proceedings of the 6th ACM International
Conference on Distributed Event-Based Systems, DEBS 2012, pp. 290–301. ACM,
New York (2012)

5. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R.,
Srivastava, U., Widom, J.: Stream: the stanford data stream management system.
Book chapter (2004)

6. Attiya, H., Welch, J.: Distributed Computing: Fundamentals. Simulations and
Advanced Topics, Wiley Online Library (2004)

7. Balazinska, M., Balakrishnan, H., Madden, S.R., Stonebraker, M.: Fault-tolerance
in the Borealis distributed stream processing system. ACM Trans. Database Syst.
33(1), 3 (2008)

8. Callau-Zori, M., Jiménez-Peris, R., Gulisano, V., Papatriantafilou, M., Fu, Z.,
Patiño Mart́ınez, M.: Stone: a stream-based ddos defense framework. In: Proceed-
ings of the 28th Annual ACM Symposium on Applied Computing, SAC 2013, pp.
807–812. ACM (2013)

9. Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G.,
Stonebraker, M., Tatbul, N., Zdonik, S.: Monitoring streams: a new class of data
management applications. In: Proceedings of the 28th International Conference on
Very Large Data Bases, VLDB 2002. VLDB Endowment (2002)

10. Cederman, D., Chatterjee, B., Nguyen, N., Nikolakopoulos, Y., Papatriantafilou,
M., Tsigas, P.: A study of the behavior of synchronization methods in commonly
used languages and systems. In: IEEE 27th International Symposium on Parallel
and Distributed Processing (IPDPS) (2013)

11. Cederman, D., Gidenstam, A., Ha, P., Sundell, H., Papatriantafilou, M., Tsigas,
P.: Lock-free concurrent data structures (2013). arXiv:1302.2757

12. Cederman, D., Gulisano, V., Nikolakopoulos, Y., Papatriantafilou, M., Tsigas, P.:
Concurrent data structures for efficient streaming aggregation. Technical report,
Chalmers University of Technology (2013)

13. Cederman, D., Gulisano, V., Nikolakopoulos, Y., Papatriantafilou, M., Tsigas, P.:
Brief announcement: concurrent data structures for efficient streaming aggregation.
In: Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2014, pp. 76–78 (2014)

14. Courtois, P.-J., Heymans, F., Parnas, D.L.: Concurrent control with readers and
writers. Commun. ACM 14(10), 667–668 (1971)

http://arxiv.org/abs/1302.2757

Data-Streaming and Concurrent Data-Object Co-design 259

15. Ebergen, J.: Circuits without clocks: what makes them tick? In: Papatriantafilou,
M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 2–2. Springer, Heidelberg
(2004)

16. Gedik, B., Bordawekar, R.R., Philip, S.Y.: Cell Join: a parallel stream join operator
for the cell processor. VLDB J. 18, 501–519 (2009)

17. Gulisano, V.: StreamCloud: An Elastic Parallel-Distributed Stream Processing
Engine. Ph.D. thesis, Universidad Politécnica de Madrid (2012)

18. Gulisano, V., Almgren, M., Papatriantafilou, M.: Metis: a two-tier intrusion detec-
tion system for advanced metering infrastructures. In: Proceedings of the 5th Inter-
national Conference on Future Energy Systems, e-Energy 2014, pp. 211–212. ACM
(2014)

19. Gulisano, V., Almgren, M., Papatriantafilou, M.: Online and scalable data valida-
tion in advanced metering infrastructures. In: Innovative Smart Grid Technologies
Conference Europe (ISGT-Europe), 2014 IEEE PES, pp. 1–6 (2014)

20. Gulisano, V., Almgren, M., Papatriantafilou, M.: When smart cities meet big data.
ERCIM News. Smart Cities, p. 40 (2014)

21. Gulisano, V., Jimenez-Peris, R., Patiño-Martinez, M., Soriente, C., Valduriez, P.:
A big data platform for large scale event processing. ERCIM News 2012(89), 2
(2012)

22. Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Soriente, C., Valduriez, P.:
Streamcloud: an elastic and scalable data streaming system. IEEE Trans. Parallel
Distrib. Syst. 99 (2012)

23. Gulisano, V., Jiménez-Peris, R., Patiño-Mart́ınez, M., Valduriez, P.: Streamcloud:
a large scale data streaming system. In: ICDCS 2010: International Conference on
Distributed Computing Systems (2010)

24. Gulisano, V., Nikolakopoulos, Y., Papatriantafilou, M., Tsigas, P.: ScaleJoin: a
deterministic, disjoint-parallel and skew-resilient stream join enabled by concurrent
data structures. Technical report, Chalmers University of Technology (2014)

25. Gulisano, V., Nikolakopoulos, Y., Walulya, I., Papatriantafilou, M., Tsigas, P.:
DEBS grand challenge: deterministic real-time analytics of geospatial data streams
through scalegate objects. In: DEBS 2015: the 9th ACM International Conference
on Distributed Event-Based Systems (2015)

26. Hardavellas, N., Ferdman, M., Falsafi, B., Ailamaki, A.: Toward dark silicon in
servers. IEEE Micro. 31(EPFL-ARTICLE-168285), 6–15 (2011)

27. Herlihy, M.P., Lev, Y., Luchangco, V., Shavit, N.N.: A simple optimistic skiplist
algorithm. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp.
124–138. Springer, Heidelberg (2007)

28. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture, ISCA 1993, pp. 289–300. ACM, New York (1993)

29. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan
Kaufmann, Boston (2008)

30. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Elsevier, Revised
Reprint (2012)

31. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

32. Kirousis, L.M., Spirakis, P.G., Tsigas, P.: Reading many variables in one atomic
operation: solutions with linear or sublinear complexity. IEEE Trans. Parallel Dis-
trib. Syst. 5(7), 688–696 (1994)

33. Lamport, L.: Concurrent reading and writing. Commun. ACM 20(11), 806–811
(1977)

260 V. Gulisano et al.

34. Lamport, L.: On interprocess communication. Part I: basic formalism. Distrib.
Comput. 1(2), 77–85 (1986)

35. Liu, Y., Zhang, K., Spear, M.: Dynamic-sized nonblocking hash tables. In: Pro-
ceedings of the 2014 ACM Symposium on Principles of Distributed Computing,
PODC 2014. ACM (2014)

36. LMax Disruptor. https://lmax-exchange.github.io/disruptor/
37. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
38. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-

rithms. In: Proceedings of the Sixth Annual ACM Symposium on Principles of Dis-
tributed Computing, Vancouver, British Columbia, Canada, August 10–12, 1987,
pp. 137–151 (1987)

39. Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets.
In: Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA 2002. ACM (2002)

40. Michael, M.M.: The balancing act of choosing nonblocking features. Commun.
ACM 56(9), 46–53 (2013)

41. Mills, D.L.: A brief history of ntp time: memoirs of an internet timekeeper. Comput.
Commun. Rev. 33, 9–21 (2003)

42. Misra, J.: Axioms for memory access in asynchronous hardware systems. ACM
Trans. Program. Lang. Syst. 8(1), 142–153 (1986)

43. Nikolakopoulos, Y., Gidenstam, A., Papatriantafilou, M., Tsigas, P.: A consistency
framework for iteration operations in concurrent data structures. In: IEEE 29th
International Symposium on Parallel and Distributed Processing (IPDPS) (2015)

44. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26(4), 631–653 (1979)

45. Papadimitriou, C.H.: The Theory of Database Concurrency Control. Computer
Science Press, Rockville (1986)

46. Papatriantafilou, M., Hunel, P. (eds.): OPODIS 2003. LNCS, vol. 3144. Springer,
Heidelberg (2004)

47. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC 1995, pp. 204–213. ACM, New York (1995)

48. SoundCloud. https://soundcloud.com/
49. Srivastava, U., Widom, J.: Flexible time management in data stream systems. In:

Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, pp. 263–274. ACM, New York (2004)

50. Storm project. http://storm.incubator.apache.org/
51. Sundell, H., Tsigas, P.: Fast and lock-free concurrent priority queues for multi-

thread systems. J. Parallel Distrib. Comput. 65, 609–627 (2005)
52. Tuzhilin, A., Spirakis, P.G.: A semantic approach to correctness of concurrent

transaction executions. In: Proceedings of the Fourth ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems, PODS 1985, pp. 85–95. ACM,
New York (1985)

https://lmax-exchange.github.io/disruptor/
https://soundcloud.com/
http://storm.incubator.apache.org/

Stability in Heterogeneous Dynamic Multimedia
Networks

Dimitrios Koukopoulos(B)

Department of Cultural Heritage Management and New Technologies,
University of Patras, 30100 Agrinio, Greece

dkoukopoulos@upatras.gr

Abstract. Internet and other multimedia packet-switched networks are
heterogeneous due to the simultaneous running (composition) of different
contention-resolution protocols over different network hosts and the exis-
tence of various types of network links. Also, real networks are dynamic
in their nature due to intentional or unintentional changes on network
link service rates or tra nsient link failures. Our interest is focused on
FIFO compositions with other contention-resolution protocols due to the
FIFO popularity for offering best-effort services in packet-switched net-
works. A packet-switched network is stable, if the number of packets in
the network remains bounded at all times against any adversary. We use
an enhanced adversarial framework that is based on an adversary that
controls packet injection rates, along with packet paths, and manipu-
lates link slowdowns or capacities. Within this framework, we study the
impact of specific compositions of FIFO with other protocols on the net-
work stability using as a test-bed specific network topologies which have
been proved forbidden for stability for a single protocol, fixed link slow-
downs/capacities and packet paths without repeated links/edges. Our
results suggest that the instability behavior of a network using FIFO com-
positions under adversarial attacks, that dynamically change link slow-
downs/capacities, is not only maintained, but, also, may become worse
than in the case of attacks that do not change slowdowns/capacities or
when a single protocol, like FIFO, is employed on all network queues
for contention-resolution. We believe that this study can advance the
research for the provision of trustworthy heterogeneous networks.

1 Introduction

Motivation-Objectives. The provision of efficient multimedia content distribution
services to the consumers/end-users is a necessity in today’s large-scale multi-
media networks like Internet. The goal for efficient multimedia services should
be two-fold. High-speed network infrastructure should be combined with relia-
bility and robustness against adversarial attacks, even worst-case ones. Modern
multimedia networks should handle efficiently changing loading conditions due

This research is dedicated to my teacher Prof. Spirakis, who contributed decisively
to the formation of my academic personality, in honor of his 60th birthday.

c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 261–280, 2015.
DOI: 10.1007/978-3-319-24024-4 16

262 D. Koukopoulos

to versatile data loads or passing changes in network topology due to network
link failures. A reliable multimedia network must be capable to support commu-
nication services, even if network links face service rate fluctuations or failures.
The most common adversarial attacks that may lead a network to performance
degradation due to service rate fluctuations or transient link failures are denial of
service attacks. Such attacks flood the network (or a subnetwork) with dummy
packets preventing end-users from having access to the network services [29,31].
Multimedia network administrators should be given suitable tools in order to
handle such dangers. The degree of robustness of multimedia networks to such
dangers could be considered as a measure of trustworthiness for those networks.
Successively, highly-trustworthy multimedia networks will improve user confi-
dence that the network will be able to provide the required service to satisfy
user needs.

A network condition that is closely related to the robustness of a net-
work infrastructure against worst-case adversarial attacks is stability. Stability
requires that the number of packets in the network remains bounded at all times
by a constant against any adversary [10]. There is a number of factors that
affect this constant: packet injection rate into the network, initial number of
network packets at the beginning of network operation, network topology, link
slowdown (which is the time delay an outgoing packet suffers on a link), link
capacity (which is the rate at which a link forwards outgoing packets) and pro-
tocol or composition of protocols used for contention resolution in the network
queues [10,11,23]. However, it is not sure that those factors are the only ones
that affect stability. Therefore, it is not easy to study the stability behavior of
multimedia networks, even if they are small ones.

Here, we aim at studying the stability of large-scale heterogeneous dynamic
multimedia networks, such as the Internet. Internet is heterogeneous and
dynamic in its nature due to its ability to support multiple contention-resolution
protocols running on different network hosts and multiple network links with
varying service rates (wired, satellite, mobile, etc.) that can suffer from link fail-
ures [16]. We are further interested in the investigation of networks that use
compositions of FIFO with other contention-resolution protocols on their queues
because FIFO is very popular in packet-switched networks due to its simplicity.
A very natural question that arises in such common settings of multimedia net-
works concerns the degradation of network stability under adversarial attacks
that change dynamically network link slowdowns/capacities. The study of stabil-
ity in multimedia networks which use compositions of FIFO with other protocols
for contention resolution on their queues and suffer from adversarial attacks
that change dynamically link slowdowns/capacities can help to establish design
criteria for the implementation of trustworthy networks.

Framework. We adopt a model of worst-case continuous packet arrivals, originally
proposed in [10] and termed Adversarial Queuing Model (AQM) [10]. Roughly
speaking, AQM views the operation of a packet-switched communication net-
work as a game between an adversary and a contention-resolution protocol or a
composition of protocols. At each time step, the adversary may inject a set of

Stability in Heterogeneous Dynamic Multimedia Networks 263

packets into some nodes with predetermined paths. When more than one pack-
ets wish to cross a link during a time step and only one should be forwarded,
we have a conflict and a greedy contention-resolution protocol is employed to
resolve it. The power of the adversary is the manipulation of packet injection
rate r (0 < r ≤ 1). However there is a restriction to injection rate manipulation.
The adversary should inject into the network at most r|I| packets with paths
that contain any particular edge in any time interval I.

It is well motivated to consider that one packet can cross a network link in a
single time step assuming that all network links are identical and there are not
link failures. However, this is not common in large-scale packet-switched mul-
timedia networks, like Internet, due to the variety of their network links. Also,
real networks, like Internet, often suffer from link failures due to natural disas-
ters, human or malicious software action (like hacker attacks or denial of service
attacks) or by unintentional software failures. In order to model this reality, it
is well motivated to allow the dynamic change of network link slowdowns or
capacities. In particular, for the efficient handling of network link failures, we
assume an adversarial model where a slowdown is assigned to each network link.
A model that satisfies this condition has been proposed by Borodin et al. in [11].
Here we adopt the weakest possible model of dynamically changing slowdowns
of the models implied in [11] as in [17]. According to [17], each link slowdown
takes on values in the two-valued set of integers {1,D} for D > 1. The assign-
ing of slowdown D to a link can be considered approximately as a link failure,
while the assigning of unit slowdown to a link can be considered as the proper
service rate.

Furthermore, the realization of the variety of links in a large network moti-
vates the assignment of a capacity to each link [11]. Here, we adopt the weakest
possible model of dynamically changing capacities of the models implied in [11]
as proposed by Prof. Spirakis team in [25]. According to [25] each link capacity
takes on values in the two-valued set of integers {1,C} for C > 1. This assump-
tion realizes the condition where a link guarantees a minimum service rate in
the worst case and a maximum service rate in the most optimistic case.

Prof. Spirakis team initiated the subfield of study concerning the stability
behavior of contention-resolution protocol compositions in [23]. In this work,
we focus on how FIFO compositions with other protocols affect the stability
behavior of heterogeneous multimedia networks where packets are injected with
predetermined fixed paths (that do not contain repeated links, but they can
contain repeated nodes) against adversarial attacks that dynamic change link
slowdowns/capacities. The study of the stability behavior of networks where
packets are injected into paths without repeated links/edges was an interesting
subfield initiated in [4]. In particular, it has been shown that the family of
undirected-path universally stable graphs is minor-closed and that there exists
a finite set of basic undirected graphs such that a graph is stable, if and only if
it does not contain any of the graphs of that set as a minor [4]. We believe that
establishing specific criteria from such a study promotes the trustworthiness of
a heterogeneous multimedia network.

264 D. Koukopoulos

We say that a contention-resolution protocol (or a composition of protocols) P
is stable on a network G against an adversary A of rate r, if there is a constant B
for which the number of packets in the network is bounded at all times by B [10].
On the other hand, we say that a protocol (or a composition of protocols) P is
universally stable, if it is stable against any adversary of rate less than 1 and on
any network [10]. We also say that a network G is universally stable, if any greedy
protocol is stable against any adversary of rate less than 1 on G [10]. According
to [1], a directed network graph where packets are injected in paths that do not
contain repeated links/edges, but they can contain repeated nodes/vertices, is
universally stable, if and only if it does not contain as subgraph any graph that is
obtained by replacing any edge of the graphs U1 or U2 by disjoint directed paths
(Fig. 1). The graphs U1 and U2 are called forbidden subgraphs for universal
stability [1]. Network graphs U1 and U2 have been proved unstable when a single
contention-resolution protocol resolves packet conflicts on network queues under
AQM attacks (where link slowdowns/or capacities are unit) [1].

Fig. 1. Forbidden subgraphs for universal stability [1].

Here, we consider greedy contention-resolution protocols on network queues.
In particular, we consider FIFO (First-In-First-Out), NTG (Nearest-To-Go) and
LIS (Longest-in-System) protocols. FIFO protocol gives priority to the earliest
arrived packet at the queue when a queue faces packet conflict. NTG protocol
gives priority to the nearest packet to its destination when a queue faces a packet
conflict. LIS protocol gives priority to the least recently injected packet into the
network when a queue faces a packet conflict. As far as the stability behavior of
those protocols is concerned, FIFO and NTG protocols have been proved unstable
in AQM model, while LIS protocol has been proved universally stable in AQM
model [4]. Here, we assume FIFO as tie breaking rule for the protocols in order
to be unambiguously defined.

Contribution and Comparison. The contribution of this work is two-fold. First,
it focuses on the study of the stability behavior of multimedia networks that
use compositions of FIFO with other contention-resolution protocols (LIS, NTG)
and face adversarial attacks that change dynamically network link slowdowns
between two values, unit and a high slowdown D > 1. Second, it studies the
stability behavior of multimedia networks which face adversarial attacks that
change dynamically network link capacities between two values, unit and a

Stability in Heterogeneous Dynamic Multimedia Networks 265

high capacity C > 1 under the protocol composition (FIFO, NTG, LIS). This
study permits the comparison of the network stability results obtained under the
two dynamic network models and the traditional AQM model [10]. We adopt
as a test-bed the set of forbidden subgraphs U1 and U2 for universal stability
(Fig. 1) [1]. We apply on these network structures specific adversarial construc-
tions that lead them to instability when these adversarial constructions are com-
bined with the use of specific protocol compositions on different network queues.
Especially, we consider specific compositions of FIFO with any of NTG and LIS
protocols or both of them on the queues of network subgraphs U1 and U2 when
link slowdowns change dynamically. Furthermore, we study the behavior of pro-
tocol composition (FIFO, NTG, LIS) on U1 and U2 when link capacities change
dynamically.

From our results we can conjecture that when protocol compositions of FIFO
with NTG and LIS protocols are employed on different network queues of U1 and
U2 under adversarial attacks that change link slowdowns, the instability behavior
of U1 and U2 becomes very bad. Actually, our results suggest that the instability
behavior of U1 and U2 in such conditions can be even worse comparing to the
case those network structures face AQM attacks either a single protocol [1] or
a protocol composition is used for contention-resolution on network queues [20].
The same conjecture holds on the case of protocol composition (FIFO, NTG,
LIS) on U1 and U2 when link capacities change dynamically. However, there
is an exception concerning network U2 for protocol composition (FIFO, NTG)
and dynamically changing link slowdowns where the instability injection rate
bound is greater than the case of unit slowdowns [1,20]. On the other hand,
comparing the theoretical instability results for the protocol composition (FIFO,
NTG, LIS) on U1 and U2 for both dynamic models we can conclude that the
U1 and U2 networks face similar instability behavior in both cases. However,
the experimental evaluation of the two dynamic models in Sect. 6 shows that
the instability behavior of U1 and U2 for the same protocol composition (FIFO,
NTG, LIS) on the same network queues and for the same injection rate into the
networks is worse in the case of dynamically changing link capacities than in
the case of dynamically changing link slowdowns. That is the total number of
packets on network queues increases faster in the case of changing link capacities
than in the case of changing slowdowns.

More specifically, we proved lower instability bounds on the injection rate for
networks U1 and U2 when protocol compositions (FIFO, NTG), (FIFO, LIS) and
(FIFO, NTG, LIS) are employed on network queues and link slowdowns change
dynamically than the corresponding instability bounds for AQM model specified
in [1] (r ≥ 0.841) where only a single protocol is applied on U1 and U2 (Theorems 1,
and 3–6). Furthermore, in [20] it has been proved that the protocol composition
(FIFO, NTG) leads U1 and U2 to instability for r ≥ 0.841 (U1) and r ≥ 0.867 (U2)
under AQM attacks. Here the instability behavior of the protocol composition
(FIFO, NTG) is even worse on U1 when it faces attacks that change dynamically
link slowdowns leading to instability for r ≥ 0.794 (Theorem 1). On the other
hand, we show the instability behavior of U2 under the composition (FIFO, NTG)

266 D. Koukopoulos

when link slowdowns change dynamically for r ≥ 0.893 (Theorem 2). In [18], the
stability behavior of U1 and U2 is examined when link capacities change dynam-
ically and protocol compositions (FIFO, NTG) and (FIFO, LIS) are employed on
network queues. Here, we extend this study investigating the instability behavior
of U1 and U2 for the composition of three protocols (FIFO, NTG, LIS) when link
capacities change dynamically.

It is interesting to stress that U2 has been proved stable when only FIFO is
used for contention resolution on all network queues under AQM attacks [32].
However U2 has been proved unstable when a specific composition of FIFO and
NTG protocols are used for resolving packet conflicts on different network queues
under AQM attacks [20]. Here we show that the instability behavior of U2 holds
for the protocol composition (FIFO, NTG) under attacks that change link slow-
downs (Theorem 2). Also, although LIS is a universally stable protocol [4] when
it is composed with FIFO for content-resolution on different network queues on
U2 it leads the network to worst instability behavior (Theorem 4) comparing
to the case FIFO is composed with a protocol which is not universally stable
like NTG under attacks that change link slowdowns (Theorem 2). This implies
that the composition of a universally stable protocol with a non-universally sta-
ble protocol on different queues of the same network may lead the network to
worse instability behavior comparing to the case we apply a composition of two
contention-resolution protocols (which are not universally stable) on different
network queues under attacks that change dynamically link slowdowns. Also, as
far as the instability behavior of U1 and U2 is concerned when protocol com-
position (FIFO, NTG, LIS) is employed on network queues under attacks that
change link capacities, we proved lower instability bounds on the injection rate
(Theorems 7 and 8) than the corresponding instability bounds for AQM model
specified in [1] where only a single contention-resolution protocol is applied on
network queues. Those instability bounds (Theorems 7 and 8) are the same as in
the case of dynamically changing link slowdowns. Finally, we present an experi-
mental evaluation of the stability behavior of the set of forbidden subgraphs for
universal stability for any composition of FIFO with LIS and NTG protocols under
attacks that change dynamically link slowdowns and the specific composition of
(FIFO, LIS, NTG) under attacks that change link capacities.

Roadmap. The paper is organized as follows: In Sect. 2, some related works
regarding intrusion attacks, adversarial environments and stability results are
discussed. Section 3 presents theoretical framework definitions. Section 4 demon-
strates the instability behavior of FIFO protocol compositions under adversarial
attacks that change dynamically network link slowdowns. Section 5 shows the
instability behavior of a specific FIFO composition with other protocols when
it is applied on the set of forbidden network subgraphs for universal stabil-
ity under attacks that change dynamically link capacities. Section 6 makes an
experimental evaluation of the stability behavior of FIFO protocol compositions
under dynamic attacks. Finally, Sect. 7 makes some concluding remarks along
with proposals for future research directions.

Stability in Heterogeneous Dynamic Multimedia Networks 267

2 Related Work

Intrusion Attacks. Adversarial environments can be used to model intrusion
attacks as an intruder can behave like an adversary that tries to change net-
work environment parameters concerning network link slowdowns or capacities,
packet injection rate or the used contention-resolution protocols. In particular,
adversarial attacks act as denial of service attacks flooding the network with
dummy packets in order to overload the network. The study of intrusion detec-
tion and the proposal of methods for guaranteed quality service against various
attacks received a lot of interest [31,33].

Adversarial Environments. A lot of adversarial environments related to network
stability behavior have been proposed in the literature [3,9–14]. However, in
the community of stability, Adversarial Queueing Model [10] received a lot of
interest in the study of network performance issues as a more realistic model
that replaces traditional stochastic assumptions made in Queuing Theory by
more robust, worst-case ones [1,4,10,17,20,23,27].

Stability Results. Due to the popularity of FIFO, the investigation of its stabil-
ity behavior when it is used alone or in compositions with other protocols against
various adversarial models occupied many research works [3,7,8,14,15,18,28,32].
The universal stability of various natural greedy protocols (LIS) and the insta-
bility of other protocols (NTG, FIFO) under AQM model were proved in [4].
The first result concerning the stability of FIFO protocol was presented in [15].
The issue of composing distributed protocols to obtain other protocols, and the
properties of the resulting (composed) protocols, has a rich record in Distributed
Computing Theory [30]. In [17] the stability of networks that use compositions
of NTG with LIS protocols for contention-resolution is studied because these
protocols are commonly-used on simple networks and their stability has been
investigated in many adversarial environments [4,11,21,27].

The impact of network structure on the stability behavior of greedy protocols
was studied in detail by Prof. Spirakis team [22]. The stability behavior of for-
bidden subgraphs for universal stability was studied in [1] presenting instability
lower bounds of 0.841 for U1 and U2 under a single protocol and in [20] present-
ing instability lower bounds of 0.841 for U1 and 0.794 for U2 when NTG protocol
is composed with LIS protocol on different network queues under AQM attacks.
Also, the stability behavior of forbidden subgraphs for universal stability was
studied in [20] presenting instability lower bounds of 0.841 for U1 and 0.867 for U2

when NTG protocol is composed with FIFO protocol on different network queues
under AQM attacks. In [24] performance and stability bounds for dynamic net-
works have been presented. Instability behavior of networks with quasi-static
link capacities has been investigated in [25,26]. Also, dynamic adversarial attacks
were investigated in [11,17,19,21,26]. In [21,26] the stability behavior of forbid-
den subgraphs U1 and U2 is examined when protocol NTG-U-LIS is employed on
network queues and link slowdowns or capacities change dynamically. Especially,
the stability of heterogeneous multimedia networks under adversarial attacks
dynamically changing network link slowdowns/capacities was studied in [17,19].

268 D. Koukopoulos

In particular, [17,19] study the stability behavior of networks when different
compositions of contention-resolution protocols NTG, LIS and FFS (Furthest-
From-Source) are composed on top of them under adversarial attacks that change
dynamically network link slowdowns/capacities. In [19] the study of the stability
behavior of the protocol compositions of NTG with any of LIS and FFS or both
of them uses as a test-bed a specific set of network structures called forbidden
subgraphs for simple-path universal stability (packets are injected in paths that
cannot contain repeated edges or vertices) [1]. Furthermore, stability in adver-
sarial environments where networks face node and link failures was studied in [2].
Systematic simulation studies of network stability behavior have been presented
recently in [5,6].

3 Theoretical Framework

Our study of the stability of heterogeneous multimedia dynamic networks fol-
lows the definitions of the adversarial model in [10]. According to [10] a routing
network is modelled by a directed graph G on n vertices and m edges. Each
vertex of G represents a communication switch (node), and each edge of G repre-
sents a link between two switches. In each node, there is a queue associated with
each outgoing link. Time proceeds in discrete time steps. Queues store packets.
Packets are injected into the network with a route. A packet route is a simple
directed path in G. When a packet wants to travel along an edge e at a par-
ticular time step, but it is not forwarded, it waits in the queue for the edge e.
We say that a packet p requires an edge e at time t, if the edge e lies on the
path from its position to its destination at t. We call system a triple of the form
〈G,A,P〉 where G is a network, A is an adversary and P is the used composition
of protocols on the network queues.

However, the adversarial model in [10] assumes unit link capacities and slow-
downs. Here, we study dynamic networks with varying link slowdowns as in [11],
but we address the weakest possible model of changing slowdowns (AQMDS
model) as in [17]. Edges can have different integer slowdowns, which may or
may not vary over time. De(t) denotes the slowdown of the edge e at time step t.
When we use De(t) for an edge e, we mean that if a packet p is scheduled to
traverse the edge e at time t, then packet p completes the traversal of e at time
t + De(t) and during this time interval, no other packet can be scheduled on e.
We assume that D > 1 is an integer parameter. The slowdown of any edge e at
any time step t can get only two values 1 and D. Denote w ≥ 1 an arbitrary
positive integer. For any network edge e and any sequence of w consecutive time
steps, N(w, e) is the number of paths injected by the adversary during w time
steps requiring to traverse e. For any constant injection rate r, 0 < r ≤ 1, an
adversary injects packets such that for every edge e and every sequence τ of w
consecutive time steps, N(τ, e) ≤ r

∑
t∈τ

1
De(t)

.
Also, we study dynamic networks with varying link capacities as in [11], but

we adopt the weakest possible adversarial model of changing capacities (AQMDC
model) as in [25]. Ce(t) denotes the capacity of the edge e at time step t.

Stability in Heterogeneous Dynamic Multimedia Networks 269

When we use Ce(t) for an edge e, we mean that the edge e can simultane-
ously forwards up to Ce(t) packets at time t. We assume that C > 1 is an integer
parameter. The capacity of any edge e at any time step t can get only two values
1 and C. Denote w ≥ 1 an arbitrary positive integer. For any network edge e and
any sequence of w time steps, N(w, e) is the number of paths injected by the
adversary during w time steps requiring to traverse e. For any constant injection
rate r (0 < r ≤ 1), an adversary injects packets such that for every edge e and
every sequence τ of w consecutive steps, N(τ, e) ≤ r

∑
t∈τ Ce(t) .

In the adversarial constructions we study here for proving instability, we split
time into phases. In each phase, we consider consecutive non-overlapping time
rounds. Each phase is split into the same number of time rounds. During the
same round of any phase the adversarial strategy is the same. We use inductive
arguments to show that the number of packets into the network queues increases
forever. This network condition is sufficient to guarantee instability. Our induc-
tive hypothesis is based on the assumption of an initial network configuration of
specific number of packets in specific network queues with predetermined paths
at the beginning of a phase. The induction step we prove is that at the end of the
phase there will be more packets in the same network queues than at the phase
beginning. Determining the adversarial strategy in every round of the phase we
prove the induction step. Therefore, network instability is shown applying this
inductive argument repeatedly.

4 Instability of FIFO Protocol Compositions Under
AQMDS Model

First we examine whether the composition (FIFO, NTG) is stable on the network
U1 (Fig. 1) under the AQMDS model. We show:

Theorem 1. Let r = 0.8. For the network U1 there is an adversary A of
rate r that can change the link slowdowns of U1 between {1, D > 1000} such
that the system 〈Ul,A, (FIFO,NTG)〉 is unstable. When D → ∞ the system
〈Ul,A, (FIFO,NTG)〉 is unstable for r ≥ 0.794.

Proof. The queue of the edge e uses FIFO protocol, while the queues of the edges
f and g use NTG protocol.

Inductive Hypothesis: At the beginning of phase j, there are sj packets (called S
packet set) that are queued in the queues of the edges f, e requiring to traverse
the edge g.

Induction Step: At the beginning of phase j + 1, there will be sj+1 > sj packets
that will be queued in the queues of the edges f, e requiring to traverse the
edge g.

We will construct an adversary A such that the induction step will hold.
Then, we will prove that the induction step holds in order to ensure that the
inductive hypothesis will hold at the beginning of the next phase j + 1 with an

270 D. Koukopoulos

increased value of sj , sj+1 > sj . During phase j the adversary plays four rounds
of packet injections as follows:

Round 1: It lasts |T1| = sj time steps. During this round all the network edges
have unit slowdown. The adversary injects in the queue of the edge g a set X of
|X| = r|T1| packets with path g, f . The packets of the set S delay the packets
of the set X in the queue g. Therefore, X packets remain at queue g at the end
of this round.

Round 2: It lasts |T2| = rsj time steps. During this round all the network
edges have unit slowdown. The adversary injects a set Y of |Y | = r|T2| packets
in the queue of the edge g requiring to traverse the edges g, e and a set Z of
|Z| = r|T2| packets in the queue of the edge f requiring to traverse the edge f .
The X packets delay the Y packets in the queue of the edge g and the Z packets
in the queue of the edge f . All the Y packets remain in g. In the queue of the
edge f a set Z1 of |Z1| = r|T2| packets remain wanting to traverse the edge f .

Round 3: It lasts |T3| = r2sj time steps. During this round the edge e has
high slowdown D, while all the other network edges have unit slowdown. The
adversary injects a set Z2 of |Z2| = r|T3| packets in the queue of the edge f
requiring to traverse the edges f, g. The packets of the set Z1 delay the packets
of Z2 in the queue of the edge f . Furthermore, the packets of Y are delayed in e
due to the high slowdown of the edge e during this round. Thus, the remaining
Y packets in the queue of the edge e at the end of this round is a set Y 1 of
|Y 1| = |Y | − |T3|/D packets.

Round 4: It lasts |T4| = |Y 1| time steps. During this round the edge f has
high slowdown D, while all the other edges have unit slowdown. The adversary
injects a set Z3 of |Z3| = r|T4| packets in the queue of the edge e requiring
to traverse the edges e, g. The Y 1 packets delay the Z3 packets in the queue e.
Moreover, the packets of Z2 are delayed in f because edge f has high slowdown
during this round. Therefore, the packets of Z2 in the queue of the edge f at the
end of this round can be considered as a set Z4 of |Z4| = |Z2|− |T4|/D packets.
Thus, the number of packets in the queues of the edges f, e requiring to traverse
the edge g at the end of this round is sj+1 = |Z3| + |Z4|.

In order to have instability, we must have sj+1 > sj . Replacing sj+1 and
sj in the previous inequality we take r3 − r4/D + r3 − (r2 − (r3/D))/D > 1.
The inequality holds for D = 1000 and r = 0.8. When D → ∞, it holds that
1/Dk → 0 for all k ≥ 1. Then, the inequality gives 2r3 − 1 > 0 which is true for
r ≥ 0.794. This argument can be repeated for an infinite and unbounded number
of phases ensuring that the number of packets in the queues of the edges f, e
requiring to traverse the edge g at the end of a phase is larger than at the phase
beginning. �	

Now, we consider the network U2 (Fig. 1). Theorem 2 is proved similarly
to Theorem 1. To prove the instability of the system 〈U2,A′

, (FIFO,NTG)〉, we
assume that the queue of the edge e2 uses FIFO protocol and the rest of the
queues use NTG protocol. We split time into phases where each phase consists
of four distinguished and consecutive time rounds.

Stability in Heterogeneous Dynamic Multimedia Networks 271

Inductive Hypothesis: At the beginning of phase j, there are sj packets (called S
packet set) that are queued in the queues of the edges e2, e4 requiring to traverse
the edge e1.

Induction Step: At the beginning of phase j + 1, there will be sj+1 > sj packets
that will be queued in the queues of the edges e2, e4 requiring to traverse the
edge e1.

The adversarial strategy during a phase j follows:

Round 1: It lasts |T1| = sj time steps. During this round all the network edges
have unit slowdown. The adversary injects in the queue of the edge e1 a set X
of |X| = r|T1| packets wanting to traverse the edges e1, e2, e3. The packets of
the set S delay the packets of the set X in the queue of the edge e1. Therefore,
X packets remain at the queue of the edge e1 at the end of this round.

Round 2: It lasts |T2| = rsj time steps. During this round all the network edges
have unit slowdown. The adversary injects a set Y of |Y | = r|T2| packets in the
queue of the edge e2 requiring to traverse the edge e2 and a set Z of |Z| = r|T2|
packets in the queue of the edge e3 requiring to traverse the edges e3, e4. X and
Y arrive simultaneously at the edge e2. Thus, |X ′| = |X|

|X|+|Y | |T2| packets of X

will manage to traverse edge e2 towards e3. X ′ packets will delay Z packets at
e3. Thus, a number of |Z ′| = |Z| − (|T2| − |X ′|) will remain at e3 wanting to
traverse the edges e3, e4 at the end of this round. Moreover, at the end of this
round r2sj packets will remain at the queue of the edge e2.

Round 3: It lasts |T3| = r2sj time steps. During this round the edge e2 has
high slowdown D, while all the other edges have unit slowdown. The adversary
injects a set Z1 of |Z1| = r|T3| packets in the queue of the edge e4 requiring
to traverse the edges e4, e1. Z ′ packets delay Z1 packets at edge e4. At the end
of this round |Z1′| = |Z1| − (|T3| − |Z ′|) packets will remain at e4 wanting to
traverse the edges e4, e1. Moreover, a set K of |K| = |Y | − |T3|

D packets will
remain at e2 at the end of this round.

Round 4: It lasts |T4| = |Y | − |T3|
D time steps. During this round the edge

e4 has high slowdown D, while all the other edges have unit slowdown and the
adversary injects a set Z2 of |Z2| = r|T4| packets in the queue of the edge e2
requiring to traverse the edges e2, e1. At the end of this round K packets delay
Z2 packets at queue e2 and |Z1′|− |T4|

D packets will remain at queue e4 wanting
to traverse e4, e1.

Theorem 2. Let r = 0.9. For the network U2 there is an adversary A′
of

rate r that can change the link slowdowns of U2 between {1, D > 1000} such
that the system 〈U2,A′

, (FIFO,NTG)〉 is unstable. When D → ∞ the system
〈U2,A′

, (FIFO,NTG)〉 is unstable for r ≥ 0.893.

Now, we consider the network U1 (Fig. 1) under protocol composition (FIFO,
LIS). Then, similarly to Theorem 1, we can prove Theorem 3.

Adversary’s Strategy in Network U1. For the system 〈U1,A1, (FIFO, LIS)〉 the
queue of the edge e uses FIFO protocol and the queues of the rest edges use LIS

272 D. Koukopoulos

protocol. The strategy of the adversary is the same as the adversary’s strategy
in the system 〈U1,A1, (FIFO,NTG)〉 (Theorem 1).

Theorem 3. Let r = 0.8. For the network U1 there is an adversary A1 of
rate r that can change the link slowdowns of U1 between {1, D > 1000} such
that the system 〈U1,A1, (FIFO, LIS)〉 is unstable. When D → ∞ the system
〈U1,A1, (FIFO, LIS)〉 is unstable for r ≥ 0.794.

Now, we consider the network U2 (Fig. 1) under composition (FIFO, LIS).

Adversary’s Strategy in Network U2. For the system 〈U2,A2, (FIFO, LIS)〉 the
queue of the edge e4 uses FIFO protocol and the queues of the rest edges use
LIS protocol. We consider that each phase consists of three distinguished time
rounds.

Inductive Hypothesis: At the beginning of phase j, there are sj packets (called S
packet set) that are queued in the queues of the edges e2, e3 requiring to traverse
the edge e1 and the edges e4, e1 correspondingly.

Induction Step: At the beginning of phase j + 1, there will be sj+1 > sj packets
that will be queued in the queues of the edges e2, e3 requiring to traverse the
edge e1 and the edges e4, e1 correspondingly.

The adversary’s strategy during a phase j follows:

Round 1: It lasts |T1| = sj time steps. During this round all the network edges
have unit slowdown and the adversary injects in the queue of the edge e1 a set
X of |X| = r|T1| packets wanting to traverse the edges e1, e2, e3. The packets of
the set S delay the packets of the set X in the queue of the edge e1. Therefore,
X packets remain at the queue of the edge e1 at the end of this round.

Round 2: It lasts |T2| = r|T1| time steps. During this round all the network
edges have unit slowdown and the adversary injects a set Y of |Y | = r|T2|
packets in the queue of the edge e2 requiring to traverse the edges e2, e1 and a
set Z of |Z| = r|T2| packets in the queue of the edge e3 requiring to traverse
the edges e3, e4. The X packets delay the Y packets in the queue of the edge e2
and the Z packets in the queue of the edge e3. All the Y packets remain in e2,
and all the Z packets remain in e3.

Round 3: It lasts |T3| = r|T2| time steps. During this round the edge e2 has
high slowdown D, while all the other edges have unit slowdown and the adversary
injects a set Z1 of |Z1| = r|T3| packets in the queue of the edge e3 requiring
to traverse the edges e3, e4, e1. Z1 packets are delayed in the queue of the e3.
Also, at the end of this round a set Y ′ of |Y ′| = |Y | − |T3|

D packets will remain
at queue e2 wanting to traverse the edges e2, e1.

Theorem 4. Let r = 0.76. For the network U2 there is an adversary A2 of
rate r that can change the link slowdowns of U2 between {1, D > 1000} such
that the system 〈U2,A2, (FIFO, LIS)〉 is unstable. When D → ∞ the system
〈U2,A2, (FIFO, LIS)〉 is unstable for r ≥ 0.755.

Stability in Heterogeneous Dynamic Multimedia Networks 273

Now, we consider the network U1 (Fig. 1) under protocol composition (FIFO,
NTG, LIS). Then, similarly to Theorems 1 and 3 we can prove Theorem 5.

Adversary’s Strategy in Network U1. For the system 〈U1,A1, (FIFO,NTG, LIS)〉
the queue of the edge g uses LIS protocol, f uses NTG protocol and the queue
of the edge e uses FIFO protocol. The strategy of the adversary is the same
in this system as the adversary’s strategy in the systems 〈U1,A1, (FIFO,NTG)〉
(Theorem 1) and 〈U1,A1, (FIFO, LIS)〉 (Theorem 3).

Theorem 5. Let r = 0.8. For the network U1 there is an adversary A1 of
rate r that can change the link slowdowns of U1 between {1, D > 1000} such
that the system 〈U1,A1, (FIFO,NTG, LIS)〉 is unstable. When D → ∞ the system
〈U1,A1, (FIFO,NTG, LIS)〉 is unstable for r ≥ 0.794.

Now, we consider the network U2 (Fig. 1) under protocol composition (FIFO,
NTG, LIS). Then, similarly to Theorem 4 we can prove Theorem 6.

Adversary’s Strategy in Network U2. For the system 〈U2,A2, (FIFO,NTG, LIS)〉
the queue of the edge e4 uses FIFO protocol, the queue of the edge e1 uses NTG
protocol and the queues of the rest edges use LIS protocol. The strategy of the
adversary is the same in this system as the adversary’s strategy in the system
〈U1,A1, (FIFO, LIS)〉 (Theorem 4).

Theorem 6. Let r = 0.76. For the network U2 there is an adversary A2 of
rate r that can change the link slowdowns of U2 between {1, D > 1000} such
that the system 〈U2,A2, (FIFO,NTG, LIS)〉 is unstable. When D → ∞ the system
〈U2,A2, (FIFO,NTG, LIS)〉 is unstable for r ≥ 0.755.

We should mention that the higher link slowdown in all the above theorems
is D > 1000. For values of D less than 1000 the instability injection rates are
higher than the obtained ones.

5 Instability of a FIFO Composition with Other Protocols
Under AQMDC Model

In order to compare the instability behaviour of networks using compositions of
FIFO with other greedy protocols in other dynamic environment concepts, we
consider the stability behaviour of the composition of FIFO with NTG and LIS
protocols when network link capacities can vary dynamically (AQMDC model).
As a test-bed we use the set of forbidden subgraphs for universal stability U1

and U2 [1]. First we examine whether the composition (FIFO, NTG, LIS) is stable
on the network U1 (Fig. 1). We show:

Theorem 7. Let r = 0.8. For the network U1 there is an adversary A1 of
rate r that can change the link capacities of U1 between {1, C > 1000} such
that the system 〈U1,A1, (FIFO,NTG, LIS)〉 is unstable. When C → ∞ the system
〈U1,A1, (FIFO,NTG, LIS)〉 is unstable for r ≥ 0.794.

274 D. Koukopoulos

Proof. The queue of the edge e uses FIFO protocol, the queue of the edge g uses
LIS protocol and the queue of the edge f uses NTG protocol.

Inductive Hypothesis: At the beginning of phase j, there are sj packets (called S
packet set) that are queued in the queues of the edges f, e requiring to traverse
the edge g.

Induction Step: At the beginning of phase j + 1, there will be sj+1 > sj packets
that will be queued in the queues of the edges f, e requiring to traverse the
edge g.

We will construct an adversary A1 such that the induction step will hold.
Then, we will prove that the induction step holds in order to ensure that the
inductive hypothesis will hold at the beginning of the next phase j + 1 with an
increased value of sj , sj+1 > sj . During phase j the adversary plays four rounds
of packet injections as follows:

Round 1: It lasts |T1| = sj/C time steps. During this round all the network
edges have high capacity C. The adversary injects in the queue of the edge g a
set X of |X| = rC|T1| packets with path g, f . The packets of the set S delay the
packets of the set X in the queue g. Therefore, X packets remain at queue g at
the end of this round.

Round 2: It lasts |T2| = rsj/C time steps. During this round all the network
edges have high capacity C. The adversary injects a set Y of |Y | = rC|T2| packets
in the queue of the edge g requiring to traverse the edges g, e and a set Z of
|Z| = rC|T2| packets in the queue of the edge f requiring to traverse the edge f .
The X packets delay the Y packets in the queue of the edge g and the Z packets
in the queue of the edge f . All the Y packets remain in g. In the queue of the
edge f a set Z1 of |Z1| = rC|T2| packets remain wanting to traverse the edge f .

Round 3: It lasts |T3| = r2sj/C time steps. During this round the edge e
has unit capacity, while all the other network edges have high capacity C. The
adversary injects a set Z2 of |Z2| = rC|T3| packets in the queue of the edge f
requiring to traverse the edges f, g. The packets of the set Z1 delay the packets
of Z2 in the queue of the edge f . Furthermore, the packets of Y are delayed in
e due to the unit capacity of the edge e during this round. Thus, the remaining
Y packets in the queue of the edge e at the end of this round is a set Y 1 of
|Y 1| = |Y | − |T3| packets.

Round 4: It lasts |T4| = |Y 1|/C time steps. During this round the edge f has
unit capacity, while all the other edges have high capacity C. The adversary
injects a set Z3 of |Z3| = rC|T4| packets in the queue of the edge e requiring
to traverse the edges e, g. The Y 1 packets delay the Z3 packets in the queue e.
Moreover, the packets of Z2 are delayed in f because edge f has unit capacity
during this round. Therefore, the packets of Z2 in the queue of the edge f at the
end of this round can be considered as a set Z4 of |Z4| = |Z2| − |T4| packets.
Thus, the number of packets in the queues of the edges f, e requiring to traverse
the edge g at the end of this round is sj+1 = |Z3| + |Z4|.

Stability in Heterogeneous Dynamic Multimedia Networks 275

In order to have instability, we must have sj+1 > sj . Replacing sj+1 and
sj in the previous inequality we take r3(2 − (1/C)) − r2((C − 1)/C2) > 1. The
inequality holds for C = 1000 and r = 0.8. When C → ∞, it holds that 1/Ck → 0
for all k ≥ 1. Then, the inequality gives 2r3 − 1 > 0 which is true for r ≥ 0.794.
This argument can be repeated for an infinite and unbounded number of phases
ensuring that the number of packets in the queues of the edges f, e requiring to
traverse g at the end of a phase is larger than at the phase beginning. �	

Now, we consider the network U2 (Fig. 1) under protocol composition (FIFO,
NTG, LIS).

Adversary’s Strategy in Network U2. For the system 〈U2,A2, (FIFO,NTG, LIS)〉
the queue of the edge e4 uses FIFO protocol, the queue of the edge e1 uses NTG
protocol and the queues of the rest edges use LIS protocol. We consider that
each phase consists of three distinguished time rounds.

Inductive Hypothesis: At the beginning of phase j, there are sj packets (called S
packet set) that are queued in the queues of the edges e2, e3 requiring to traverse
the edge e1 and the edges e4, e1 correspondingly.

Induction Step: At the beginning of phase j + 1, there will be sj+1 > sj packets
that will be queued in the queues of the edges e2, e3 requiring to traverse the
edge e1 and the edges e4, e1 correspondingly.

The adversary’s strategy during a phase j follows:

Round 1: It lasts |T1| = sj/C time steps. During this round all the network
edges have high capacity C and the adversary injects in the queue of the edge
e1 a set X of |X| = rC|T1| packets wanting to traverse the edges e1, e2, e3. The
packets of the set S delay the packets of the set X in the queue of the edge
e1. Therefore, X packets remain at the queue of the edge e1 at the end of this
round.

Round 2: It lasts |T2| = r|T1| time steps. During this round all the network
edges have high capacity C and the adversary injects a set Y of |Y | = rC|T2|
packets in the queue of the edge e2 requiring to traverse the edges e2, e1 and a
set Z of |Z| = rC|T2| packets in the queue of the edge e3 requiring to traverse
the edges e3, e4. The X packets delay the Y packets in the queue of the edge e2
and the Z packets in the queue of the edge e3. All the Y packets remain in e2,
and all the Z packets remain in e3.

Round 3: It lasts |T3| = r|T2| time steps. During this round the edge e2 has
unit capacity, while all the other edges have high capacity C and the adversary
injects a set Z1 of |Z1| = rC|T3| packets in the queue of the edge e3 requiring
to traverse the edges e3, e4, e1. Z1 packets are delayed in the queue of the e3.

Theorem 8. Let r = 0.76. For the network U2 there is an adversary A2 of
rate r that can change the link capacities of U2 between {1, C > 1000} such
that the system 〈U2,A2, (FIFO,NTG, LIS)〉 is unstable. When C → ∞ the system
〈U2,A2, (FIFO,NTG, LIS)〉 is unstable for r ≥ 0.755.

276 D. Koukopoulos

Fig. 2. Instability curves for FIFO, NTG and LIS compositions under AQMDS attacks.

We should mention that the maximum link capacity in all the above theorems
is C > 1000. For values of C less than 1000 the instability injection rates are
higher than the obtained ones.

6 Experimental Evaluation

For the evaluation of our theoretical results concerning the stability behavior of
heterogeneous networks where FIFO compositions with other protocols are used
for content-resolution on network queues under AQMDS and AQMDC attacks,
we carried out an experimental study. This study uses as a test-bed the set
of forbidden subgraphs for universal stability when packets are injected with
paths without repeated edges [1] (Fig. 1). The experiments were conducted on
a Windows box (Windows 7, Pentium III at 2.33 GHz, with 2 GB memory at
133 MHz) using C++ Builder ver. The experiments have been implemented as
C++ classes by using C++ Builder. We assume that initially there are s0 = 1000
packets in the system in all our experiments. Furthermore, our experiments are
executed for 80 phases. We focus our interest on the evolution of the total number
of packets on all the network queues in successive phases for the compositions of
FIFO with any of LIS and NTG protocols under AQMDS attacks. Moreover, we

Stability in Heterogeneous Dynamic Multimedia Networks 277

are interested in the evolution of the total number of packets on all the network
queues in successive phases for the specific composition (FIFO, LIS, NTG) under
AQMDC attacks.

Figure 2 illustrates our experiments, considering the worst injection rate we
estimated with respect to the instability, for the compositions of FIFO, with LIS
and NTG protocols on forbidden subgraphs for universal stability under AQMDS
attacks (x-axis coordinates correspond to time phases, while y-axis coordinates
correspond to number of packets in the system). The results of our experiments
agree with the theoretical results. Figure 2a and c depict the total number of
packets into the queues of U1 and U2 for (FIFO, NTG), (FIFO, LIS) and (FIFO,
LIS, NTG) compositions when link slowdowns are unit. Figure 2b depicts the
total number of packets into the queues of U1 for two values of high slowdown
D > 1 for any composition of FIFO with LIS and NTG. Figure 2d depicts the
total number of packets into the queues of U2 for high slowdown D = 1000 for
any composition of FIFO with LIS and NTG.

Fig. 3. Instability curves for (FIFO, NTG, LIS)composition under AQMDC attacks.

Figure 3 illustrates our experiments, considering the worst injection rate we
estimated with respect to the instability, for the specific composition of (FIFO,
NTG, LIS) on forbidden subgraphs for universal stability under AQMDC attacks
(x-axis coordinates correspond to time phases, while y-axis coordinates corre-
spond to number of packets in the system). The results of our experiments agree

278 D. Koukopoulos

with the theoretical results. Figure 3a and c depict the total number of pack-
ets into the queues of U1 and U2 for (FIFO, LIS, NTG) composition when link
capacities are unit. Figure 2b depicts the total number of packets into the queues
of U1 for two values of high capacity C > 1 and the composition (FIFO, NTG,
LIS). Figure 2d depicts the total number of packets into the queues of U2 for
high capacity C = 1000 and the same protocol composition.

Especially, when we use unit link slowdowns (unit link capacities) the net-
work is stable for the compositions of FIFO with LIS and NTG protocols (for
the composition (FIFO, NTG, LIS)), while for high slowdown (capacity) D > 1
(C > 1) the network is unstable. Those results show that the instability proper-
ties of the set of forbidden subgraphs for universal stability in AQM model are
maintained, even though we use a protocol composition for contention resolution
on different network queues under AQMDS attacks (AQMDC attacks).

7 Conclusions

We studied the impact of adversarial attacks that change dynamically link slow-
downs/capacities on the instability behavior of packet-switched networks when
they use specific compositions of FIFO with other greedy protocols for resolving
packet conflicts on network links. We proved that the set of forbidden sub-
graphs for universal stability under a single protocol on the AQM model [1]
maintain their instability behavior for any composition of FIFO with LIS and
NTG protocols under AQMDS attacks and for the protocol composition (FIFO,
NTG, LIS) under AQMDC attacks. We feel that this study gives a better under-
standing to how an adversary/intruder can exploit the degrading of link slow-
downs/capacities of a large-scale heterogeneous multimedia network in order to
jeopardize network performance. A careful inspection of the instability proofs
of the compositions of FIFO with LIS and NTG under AQMDS and AQMDC
attacks reveals that they also hold in the more general model of [11]. These
results imply some kind of collapse of powerful models [11] to weaker models
(AQMDS and AQMDC). Furthermore, it is very interesting that the compo-
sition of a not universally stable protocol like FIFO with a universally stable
protocol like LIS under AQMDS attacks does not improve the stability behavior
of a network (Theorem 4). Actually the network could become more unstable
than in the case of a composition of two not universally stable protocols like
FIFO and NTG (Theorem 2). Also, the protocol composition (FIFO, NTG, LIS)
under AQMDC attacks has the same instability behavior as the same protocol
composition under AQMDS attacks. An open question for future work is the
impact on network stability of adversarial attacks that can change dynamically
network topology. Also, another question is whether there are specific networks
where an unstable FIFO composition can be stable.

Stability in Heterogeneous Dynamic Multimedia Networks 279

References

1. Alvarez, C., Blesa, M., Serna, M.: A characterization of universal stability in the
adversarial queuing model. SIAM J. Comput. 34, 41–66 (2004)

2. Alvarez, C., Blesa, M., Serna, M.: The robustness of stability under link and node
failures. Theor. Comput. Sci. 412, 6855–6878 (2011)

3. Andrews, M.: Instability of FIFO in the permanent sessions model at arbitrarily
small network loads. ACM Trans. Algorithms 5(3), 1–29 (2009)

4. Andrews, M., Awerbuch, B., Fernández, A., Kleinberg, J., Leighton, T., Liu, Z.:
Universal stability results for greedy contention-resolution protocols. J. ACM 48,
39–69 (2001)

5. Berger, D., Karsten, M., Schmitt, J.: On the relevance of adversarial queueing
theory in practice. In: Proceedings of the ACM International Conference on Mea-
surement and Modeling of Computer Systems, pp. 343–354 (2014)

6. Berger, D., Karsten, M., Schmitt, J.: Simulation of adversarial scenarios in
OMNeT++: putting adversarial queueing theory from its head to feet. In: Proceed-
ings of the 6th International ICST Conference on Simulation Tools and Techniques,
pp. 291–298 (2013)

7. Bhattacharjiee, R., Goel, A., Lotker, Z.: Instability of FIFO at arbitrarily low rates
in the adversarial queueing model. SIAM J. Comput. 34(2), 318–332 (2005)

8. Blesa, M.J.: Deciding stability in packet-switched FIFO networks under the adver-
sarial queuing model in polynomial time,. In: Fraigniaud, P. (ed.) DISC 2005.
LNCS, vol. 3724, pp. 429–441. Springer, Heidelberg (2005)

9. Blesa, M., Calzada, D., Fernandez, A., Lopez, L.: Adversarial queueing model for
continuous network dynamics. Theory Comput. Syst. 44, 304–331 (2009)

10. Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., Williamson, D.: Adversarial
queueing theory. J. ACM 48, 13–38 (2001)

11. Borodin, A., Ostrovsky, R., Rabani, Y.: Stability preserving transformations:
packet routing networks with edge capacities and speeds. In: Proceedings of the
12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 601–610 (2001)

12. Chlebus, B.S., Cholvi, V., Kowalski, D.R.: Stability of adversarial routing with
feedback. In: Gramoli, V., Guerraoui, R. (eds.) NETYS 2013. LNCS, vol. 7853,
pp. 206–220. Springer, Heidelberg (2013)

13. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the mul-
tiple access channel. ACM Trans. Algorithms 8(1), article 5 (2012). doi:10.1145/
2071379.2071384

14. Cholvi, V., Echague, J., Fernandez, A.: Stability of FIFO networks under adver-
sarial models: state of the art, computer networks. Int. J. Comput. Telecommun.
Netw. 51(15), 4460–4474 (2007)

15. Diaz, J., Koukopoulos, D., Nikoletseas, S., Serna, M., Spirakis, P., Thilikos, D.:
Stability and non-stability of the FIFO protocol. In: Proceedings of the 13th Annual
ACM Symposium on Parallel Algorithms and Architectures, pp. 48–52 (2001)

16. Floyd, S., Paxson, V.: Difficulties in simulating the Internet. IEEE/ACM Trans.
Netw. 9, 392–403 (2001)

17. Koukopoulos, D.: Instability behaviour of heterogeneous multimedia networks
under dynamic adversarial attacks. J. Math. Comput. Model. 57, 2671–2684 (2013)

18. Koukopoulos, D.: The impact of FIFO compositions with other protocols on the
stability of multimedia networks facing dynamic adversarial attacks. In: Proceed-
ings of the 5th International Conference on Multimedia Information Networking
and Security, pp. 575–578 (2013)

http://dx.doi.org/10.1145/2071379.2071384
http://dx.doi.org/10.1145/2071379.2071384

280 D. Koukopoulos

19. Koukopoulos, D.: The impact of dynamic adversarial attacks on the stability of
heterogeneous multimedia networks. J. Comput. Commun. 33, 1695–1706 (2010)

20. Koukopoulos, D.: Stability in heterogeneous multimedia networks under adversar-
ial attacks. J. Univ. Comput. Sci. 14(2), 444–464 (2009)

21. Koukopoulos, D.: The impact of dynamic link slowdowns on network stability.
In: Proceedings of the 8th International Symposium on Parallel Architectures,
Algorithms and Networks, pp. 340–345 (2005)

22. Koukopoulos, D., Mavronicolas, M., Nikoletseas, S., Spirakis, P.: The impact of
network structure on the stability of greedy protocols. Theory Comput. Syst. 38,
425–460 (2005)

23. Koukopoulos, D., Mavronicolas, M., Nikoletseas, S., Spirakis, P.: On the stability
of compositions of universally stable, greedy, contention-resolution protocols. In:
Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 88–102. Springer, Heidelberg
(2002)

24. Koukopoulos, D., Mavronikolas, M., Spirakis, P.: Performance and stability bounds
for dynamic networks. J. Parallel Distrib. Comput. 67, 386–399 (2007)

25. Koukopoulos, D., Mavronikolas, M., Spirakis, P.: The increase of the instability
of networks due to quasi-static link capacities. J. Theor. Comput. Sci. 381, 44–56
(2007)

26. Koukopoulos, D., Mavronicolas, M., Spirakis, P.: Instability of networks with quasi-
static link capacities. In: Proceedings of the 10th International Colloquium on
Structural Information and Communication Complexity, pp. 179–194 (2003)

27. Koukopoulos, D.K., Nikolopoulos, S.D.: Heterogenous networks can be unstable
at arbitrarily low injection rates. In: Calamoneri, T., Finocchi, I., Italiano, G.F.
(eds.) CIAC 2006. LNCS, vol. 3998, pp. 93–104. Springer, Heidelberg (2006)

28. Koukopoulos, D.K., Nikoletseas, S.E., Spirakis, P.G.: Stability issues in heteroge-
neous and fifo networks under the adversarial queueing model. In: Monien, B.,
Prasanna, V.K., Vajapeyam, S. (eds.) HiPC 2001. LNCS, vol. 2228, pp. 3–14.
Springer, Heidelberg (2001)

29. Levine, D., Kessler, G.: Denial of service attacks. In: Kabay, M., Bosworth, S.
(eds.) Computer Security Handbook, 4th edn. Wiley, New York (2002)

30. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
31. Moore, D., Shannon, C., Brown, D., Voelker, G., Savage, S.: Inferring Internet

denial-of-service activity. ACM Trans. Comput. Syst. 24(2), 115–139 (2006)
32. Weinard, M.: Deciding the FIFO stability of networks in polynomial time. In:

Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998,
pp. 81–92. Springer, Heidelberg (2006)

33. Yau, D., Lui, J., Liang, F., Yam, Y.: Defending against distributed denial-of-service
attacks with max-min fair server-centric router throttles. IEEE/ACM Trans. Netw.
13(1), 29–42 (2005)

Advances in the Parallelization
of the Simplex Method

Basilis Mamalis(B) and Grammati Pantziou

Department of Informatics, Technological Educational Institute of Athens,
Athens, Greece

{vmamalis,pantziou}@teiath.gr

Abstract. The simplex method has been successfully used in solving
linear programming problems for many years. Parallel approaches for the
simplex method have been extensively studied in the literature due to the
intensive computations required, especially for the solution of large linear
problems (LPs). In this paper, first a detailed overview is given of the
parallelization attempts concerning the standard and the revised simplex
method made to date. Next, some of the most recent and significant
relevant attempts are selected and presented in more detail along with
experimental results. The latter include some impressive results obtained
for the revised simplex method over a modern supercomputer, as well as
the recent advances in GPU-based related attempts.

Keywords: Linear programming · Simplex method · Parallel computing

1 Introduction

Linear programming (LP) is probably the most important and well studied opti-
mization technique. The simplex method has been successfully used for solving
linear programming problems for many years [1]. Parallel approaches for the
simplex method have been extensively studied in the literature due to the inten-
sive computations required [2]. Most research has been focused on the revised
simplex method since it takes advantage of the sparsity that is inherent in most
linear programming applications.

The revised method is advantageous for problems with a high aspect ratio;
that is, for problems with many more columns than rows. However, there have
not been seen many parallel implementations of the revised method that scale
well [2]. On the other hand, the standard method is more efficient for dense
linear problems and it can be easily converted to a parallel version with satis-
factory speedup values and good scalability (e.g. [3–5,11–13]). However, lately,
some alternative very promising efforts have also been made with regard to the
parallelization of the revised method, based either on the block angular structure
(or decomposition) of the initially transformed problems or on the dual form of
the revised simplex, which is the most preferable one nowadays [6–8]. Two other
(a little earlier) valuable attempts over specific variants of the simplex method
c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 281–307, 2015.
DOI: 10.1007/978-3-319-24024-4 17

282 B. Mamalis and G. Pantziou

have also been presented in [14,15], and they have led to quite satisfactory results
for large scale problems.

With regard to the hardware architectures used, earlier work focused mainly
on more complex, and more tightly coupled, networking structures than a cluster
or a network of workstations, which became a quite familiar alternative later on.
Hall and McKinnon [9] and Shu [10] worked on parallel revised methods over
known supercomputer environments (like Cray T3D). Thomadakis and Liu [11]
worked on the standard method utilizing the MP-1 and MP-2 MasPar. Eckstein
et al. [12] showed in the context of the parallel connection machine CM-2 that
the iteration time for the parallel revised method tended to be significantly
higher than for the parallel full tableau method even when the revised method
is implemented very carefully. Stunkel [13] found a way to parallelize both the
revised and standard methods so that both obtained a similar advantage in
the context of the parallel Intel iPSC hypercube. Some more recent works on the
standard simplex parallelization [16–18] address the significant influence of the
number of columns and rows (aspect ratio) of an LP problem when a distributed-
memory architecture is used, and achieve particularly high speedup values over
modern (hybrid) cluster architectures, mainly following the column-based data
distribution scheme [3,4,16–18].

Studying the literature one can notice that the standard (tableau-based) sim-
plex method has been efficiently parallelized many times in the past with good
speedup factors ranging from tens to up to a thousand. However, without using
expensive parallel computing resources, its performance is inferior to a good
sparsity-exploiting sequential implementation of the revised simplex method.
On the other hand, the parallelization of the revised simplex method has not
been very efficient and therefore there has been less success in terms of speedup
with respect to the standard method. Indeed, since scalable speedup for general
large sparse LP problems appears unachievable, the revised simplex method has
been considered unsuitable for parallelization. However, since it corresponds to
the computationally efficient serial technique, any improvement in performance
due to exploiting parallelism in the revised simplex method is a worthwhile goal.

In the above context, throughout this paper we first try to give a detailed
overview of the research attempts made till now with respect to the paralleliza-
tion of the various variants of the simplex method, mainly distinguishing between
the standard and the revised form. Next, we describe in more detail three of the
most recent and important related attempts: (a) one presenting the efficient par-
allelization of the dual revised simplex method [6,7] which is considered as the
most efficient and preferred variant of the simplex method nowadays, (b) one
demonstrating the capability of efficiently solving large-scale stochastic LP prob-
lems with the revised simplex method, and gaining particularly high speedups
(over the Clp serial solver) when implemented on a modern high-performance
supercomputer [8], and (c) one presenting a notably efficient, highly scalable
with almost linear speed-up implementation of the standard simplex method
over a modern hybrid hardware architecture with high-speed inteconnection
network and different alternatives in the software platforms used (MPI and MPI-
3 Shared Memory vs. MPI and OpenMP) [16–18]. Finally, we explore separately

Advances in the Parallelization of the Simplex Method 283

the corresponding approaches contributed to date with the use of the CPU-GPU
model trying to exploit the massive parallelism capabilities offered by the mod-
ern graphic processing units; which is one of the hottest topics in almost all the
research fields of parallel computing nowadays.

Furthermore, our work can be seen as a thorough update of the survey given
in [2], which is the most recent complete survey in simplex parallelization. We
first summarize the most valuable works done till the end of 2010’s (an inter-
val which is covered in more details in [2]), and then we focus on the signifi-
cant advances made during the last five years when the emerging technologies in
hardware architectures (hybrid supercomputers, modern multicore architectures,
hpc clusters, GPU computing etc.) have offered the potential for even greater
achievements in response times and speedup performance. Especially, the rapid
evolution of multicore technology has pushed the research in designing suitable
parallelization schemes that can effectively exploit the increased computation
capability of these modern hardware architectures. The first truly parallel com-
mercial simplex solvers over multicore desktop architectures have also appeared
recently (e.g. [42]), achieving significant improvements against purely sequential
solultions for several kinds of LPs.

The rest of the paper is organized as follows. In Sect. 2 the necessary back-
ground with regard to the simplex method and its variants is given. In Sect. 3
the detailed overview of the research work made till now on the parallelization
of the simplex method is presented. In Sects. 4, 5 and 6 the main achievements
with respect to the three selected recent research attempts described in the pre-
vious paragraph, are stated respectively. In Sect. 7 the most recent approaches
based on the CPU-GPU model are briefly presented, whereas Sect. 8 concludes
the paper.

2 Background

In linear programming problems, the goal is to minimize (or maximize) a linear
function of real variables over a region defined by linear constraints. In the stan-
dard form, it can be expressed as shown in Table 1 (full tableau representation),
where A is an m×n matrix, x is an n-dimensional design variable vector, c is the
price vector, b is the right-hand side vector of the constraints m-dimensional)
vector of the constraints, and T denotes transposition.

Based on the full tableau representation, the basic steps of the standard
simplex method can be summarized (without loss of generality) as follows:

Step 0: Initialization: Start with a feasible basic solution and construct the
corresponding tableau.

Step 1: Choice of the entering variable: Find the winning column i.e., the one
having the larger negative coefficient of the objective function.

Step 2: Choice of the leaving variable: Find the winning row by appling the
min ratio test to the elements of the winning column and choose the row
number with the min ratio.

284 B. Mamalis and G. Pantziou

Table 1. Standard simplex method with full tableau representation

Standard Full Tableau x1 x2 ... xn xn+1 ... xn+m z

Simplex Method −c1 −c2 ... −cn 0 ... 0 1 0

Minimize z = cTx xn+1 a11 a12 ... a1n 1 ... 0 0 b1

s.t. Ax = b xn+2 a21 a22 ... a2n 0 ... 0 0 b2

x ≥ 0

xn+m am1 am2 ... amn 0 ... 1 0 bm

Step 3: Pivoting: Construct the next tableau by performing pivoting in the
previous tableau rows based on the new pivot row found in step 2.

Step 4: Repeat the above steps until the best solution is found or the problem
gets unbounded.

2.1 The Primal Revised Simplex Method

The revised simplex method performs the same steps as the tableau method but
does not keep the tableau as an aid. Rather, whenever the algorithm requires
a number from the tableau it is computed from one of several matrix equa-
tions, often involving the inverse of the basis. The data for the algorithm are the
matrices A, c and b defining the original problem, the number of variables and
constraints, n and m, and a record of the current basic and nonbasic variables.
The basis matrix B is a square matrix composed of the columns from A corre-
sponding to the m basic variables, whereas the columns of A corresponding to
the n−m nonbasic variables form the matrix N . The computational components
of the primal revised simplex method are presented in Fig. 1 [2].

CHUZC: Scan ĉN for a good candidate q to enter the basis.

FTRAN: Form the pivotal column âq = B−1aq, where aq is column q of A.

CHUZR: Scan the ratios b̂i/âiq for the row p to leave the basis.

Update b̂ = b̂ − αâq, where α = b̂p/âpq.

BTRAN: Form πp = B−T ep.

PRICE: Form the pivotal row âp = NTπp.

Update ĉN = ĉN − βâp, where β = ĉq/âpq.

If {growth in representation of B} then

INVERT: Form a new representation of B−1.

else

UPDATE: Update the representation of B−1 due to the basis change.

end if

Fig. 1. Operations in an iteration of the primal simplex method

Advances in the Parallelization of the Simplex Method 285

At the beginning of an iteration, it is assumed that the vector of reduced
costs ĉN and the vector b̂ of values of the basic variables are known, that b̂ is
feasible (nonnegative), and that a representation of B−1 is available. The first
operation is CHUZC (choose column), which scans the (weighted) reduced costs
to determine a good candidate q to enter the basis. The pivotal column âq is
formed by using the representation of B−1 in an operation referred to as FTRAN
(forward transformation). The CHUZR (choose row) operation determines the
variable to leave the basis, with p being used to denote the index of the row in
which the leaving variable occurred, referred to as the pivotal row. As a result, a
basis change is said to have occurred and the vector b̂ is then updated adequately.
Before the next iteration can be performed, one must update also the reduced
costs (BTRAN and PRICE) and obtain a representation of the new matrix B−1

(UPDATE). Periodically, it is either more efficient or necessary for numerical
stability to find a new representation of B−1 using the INVERT operation.

2.2 The Dual Revised Simplex Method

While the primal simplex has been historically more important, it is now widely
accepted that the dual variant (the dual simplex method) generally has superior
performance. Dual simplex is often the default algorithm in commercial solvers,
and it is also used inside branch-and-bound algorithms. Given an initial partition
and corresponding values for the basic and nonbasic primal and dual variables,
the dual simplex method aims to find an optimal solution of by maintaining dual
feasibility and seeking primal feasibility. Thus optimality is achieved when the
basic variables b̂ are non-negative. The computational components of the dual
revised simplex method are illustrated in Fig. 2 [8], where the same data are
assumed to be known at the beginning of an iteration. The first operation is
CHUZR which scans the (weighted) basic variables to determine a good candi-
date to leave the basis, with p being used to denote the index of the row in which
the leaving variable occurs. The pivotal row âTp is then formed via BTRAN and
PRICE operations. The CHUZC operation determines the variable q to enter
the basis. In order to update the vector b̂ , it is necessary to form the pivotal
column âq with an FTRAN operation.

3 Overview of Simplex Parallelization

The approaches contributed till now to the literature with regard to the par-
allelization of the simplex method can be naturally classified according to the
variant of the simplex method that is considered and the extent to which sparsity
is exploited. It should be noticed that parallel implementations of the simplex
variants that are more efficient as a mean of solving large sparse LP problems
are less successful in terms of speed-up. Conversely, the simplex variants that are
generally less efficient achieve the best speed-up. A few of the parallel schemes
discussed below offered good speed-up relative to efficient coeval serial solvers.
However, some parallel techniques are only now seen as being inefficient in the

286 B. Mamalis and G. Pantziou

CHUZR: Scan b̂ for the row p of a good candidate to leave the basis.

BTRAN: Form πp = B−T ep.

PRICE: Form the pivotal row âT
p = πT

p N .

CHUZC: Scan the ratios ĉj/âpj for the row q to enter the basis.

Update ĉN = ĉN − βâp, where β = ĉq/âpq.

FTRAN: Form the pivotal column âq = B−1aq, where aq is column q of A.

Update b̂ = b̂ − αâq, where α = b̂p/âpq.

If {growth in representation of B} then

INVERT: Form a new representation of B−1.

else

UPDATE: Update the representation of B−1 due to the basis change.

end if

Fig. 2. Operations in an iteration of the dual simplex method

light of serial revised simplex techniques that either were not sufficiently known
at the time or were developed subsequently. In the following two paragraphs the
reader may find a brief analysis of the most representative parallelization efforts
of the standard and revised simplex methods, whereas Tables 2 and 3 summarize
the most significant of these efforts.

3.1 Parallelizing the Standard Simplex Method

There are many parallel implementations of the dense standard simplex method
as well as of the revised simplex method with a dense explicit inverse. The
simple data structures involved and the potential for linear speed-ups make
them attractive implementation exercises either on shared memory machines
or over distributed memory parallel environments. However, for solving general
large sparse LP problems, the serial inefficiency of these implementations is such
that only with a massive number of parallel processes they could conceivably
compete with a good sparsity-exploiting serial implementation of the revised
simplex method.

Some of the most known early works on parallelizing the standard simplex
method can be found in [13,19–22]. Most of them focus on the possible data
distribution and communication schemes, with implementations limited to small
numbers of processes on distributed memory machines. The work of Stunkel [13]
should be considered the most successful among them. He implemented both the
dense standard simplex method and the revised simplex method with a dense
inverse on a 16-processor Intel hypercube, achieving a speed-up of between 8
and 12 for small problem instances from the Netlib test set.

A few years later, two other valuable approaches were presented [23,24] with
similar achievements. Cvetanovic et al. [23] report a speed-up of 12 when solving
two small problem instances using the standard simplex method, a result that is

Advances in the Parallelization of the Simplex Method 287

notable for being achieved on a 16-processor shared memory machine. Luo and
Reijns [24] obtained also satisfactory speedups of more than 12 on 16 transputers
when using the revised simplex method with a dense inverse to solve modest
Netlib test linear problems.

In the following years until 2000s, the first attempts over massively parallel
computers appeared, with Eckstein et al. [12] and Thomadakis and Liu [11] con-
tributing the most known and competent relevant works and implementations.
Eckstein et al. [12] parallelized the standard simplex method and the revised sim-
plex method with a dense inverse on the massively parallel Connection Machine
CM-2 and CM-5, incorporating the steepest edge pricing strategy directly within
their standard simplex implementation. As a consequence of using steepest edge
weights and the expand procedure, this implementation is notable for its numeri-
cal stability, an issue that has rarely been considered in parallel implementations
of the simplex method. Further details can be found in [25]. When solving a range
of larger Netlib problems and very dense machine learning problems, speedups
of between 1.6 and 1.8 were achieved when doubling the number of processors.
They also presented results which indicated that the performance of their imple-
mentation was generally superior to MINOS (a well-known serial simplex solver),
particularly for the denser problems. Thomadakis and Liu [11] also used steepest
edge in their implementation of the standard simplex method on MasPar MP-1
and MP-2 machines. Solving a range of large, apparently randomly-generated
problems, they achieved a speed-up of up to three orders of magnitude on the
128×128 processor MP-2.

During the next many years (till now) only a few significant new attempts and
implementations were made with regard to the parallelization of the standard
simplex method. Among them, a quite valuable theoretical work on parallel
implementations of the standard simplex method with steepest edge, and its
practical implementation on modest numbers of processors has been presented
by Yarmish in [3,40]. The work in [3] has also led to high parallel efficiency
and corresponding scalability for large-scale problems, whereas it has also been
compared to MINOS, and it has been shown to be highly competitive even for
very low density problems. Reports of small-scale parallel implementations also
continue to appear. Relatively recently, Badr et al. [4] presented results for an
implementation on eight processors, achieving a speed-up of five when solving
small random dense LP problems.

A substantial difference between the two above attempts ([3] and [4]) was the
way the simplex tableau is distributed among the processors. Either a column
distribution scheme or a row distribution scheme may be applied, depending on
several parameters (relative number of rows and columns, total size of the prob-
lem, target hardware environment details etc.). The most recent works following
the column distribution scheme which is the most popular and widely used for
practical problems, were by Yarmish et al. [3] as well as by Qin et al. [5]. On
the other hand, the work of Badr et al. [4] referred above, followed the row
distribution scheme and presented a well-designed and relatively efficient imple-
mentation on eight loosely coupled processors. Furthermore, a comprehensive

288 B. Mamalis and G. Pantziou

Table 2. Standard simplex - representative parallelization efforts

Authors Hardware platform Speedup

Stunkel [13] (1988) 16-processor Intel Hypercube Between 8 and 12 for small Netlib

problems

Eckstein et al. [12] (1995) CM-2 and CM-5 with thousands of

processors

Between 1.6 and 1.8 when doubling

the number of processors - superior

to MINOS

Thomadakis and Liu [11] (1996) MP-1 and MP-2 (128×128 proces-

sor MP-2)

Up to 1000 on large random LPs

Yarmish et al. [3] (2009) 7 workstations - Fast Ethernet On iteration speed: up to ∼ 7 for

random high-aspect ratio LPs

Mamalis et al. [16–18] (2011–14) 8-nodes Myrinet-connected Intel

Xeon cluster - 4 × 4 quad-core Intel

with gigabit ethernet

On iteration speed: up to ∼ 8 for

random and Netlib LPs with high-

aspect ratio - 11.5 to 15.2 for large

LPs of all kinds

study and comparison of both the above data distribution schemes, as well as
the corresponding implementations over high-performance cluster (distributed
memory or hybrid) environments achieving particularly high speedup values are
given in the recent works of Mamalis et al. [16–18]. The key points and achieve-
ments of the latter are presented in more details in Sect. 6.

3.2 Parallelizing the Revised Simplex Method

Undoubtedly, the real challenge in developing a parallel simplex implementation
of general practical value is to exploit parallelism when using a variant of the
revised method with sparse matrix algebra techniques. Only then the resulting
solver could be competitive to a good serial implementation when solving general
large sparse LP problems using a realistic number of processors. Efficient serial
simplex solvers are based on the revised simplex method with a factored inverse
since the practical LP problems whose solution poses a computational challenge
are large and sparse. For such problems, the superiority of the revised simplex
method over the known serial standard simplex schemes is clear and obvious. It
follows that the only scope for developing a really worthwhile parallel simplex
solver is to identify how the revised simplex method with a factored inverse may
be parallelized. The natural data parallelism of the PRICE operation has been
exploited by most authors. Several researchers have also considered the data
parallelism in other computational components, whereas others have studied
the extent to which task parallelism can be exploited by overlapping operations
that are then executed either in serial or, in the case of PRICE, by exploiting
data parallelism.

The first worth telling research attempts were contributed by Pfefferkorn
and Tomlin [26] and Helgason et al. [27]. In [26] the authors were the first to
discuss how parallelism could be exploited in each computational component
of the revised simplex method. On the other hand, in [27] the authors trying
to contribute new ideas, beyond the classics, discussed the scope for paralleliz-
ing FTRAN and BTRAN operations based on the relatively unknown quadrant

Advances in the Parallelization of the Simplex Method 289

interlocking factorization technique. Further, McKinnon and Plab [28] consid-
ered how data parallelism could be exploited in FTRAN operation for both
dense and sparse right-hand sides. They also investigated how the Markowitz
criterion could be modified in order to increase the potential for exploiting data
parallelism in subsequent FTRAN operations.

The first attempt to exploit task parallelism in the revised simplex method
was reported by Ho and Sundarraj [29]. In addition to the natural data paral-
lelism of the PRICE operation, Ho and Sundarraj identified that the INVERT
operation can be overlapped with simplex iterations. The performance of Ho
and Sundarrajs implementation, on an Intel iPSC/2 and Sequent Balance 8000,
was quite promising, however limited in accordance with Amdahls law (since
only some parts of the whole algorithm were parallelized). On a set of small
Netlib and proprietary problems, they report an average saving of 33 % over the
corresponding serial solution time.

The next ambitious implementation that attempted to exploit full data par-
allelism over the revised simplex method was that of Shu [10]. It was based on a
parallel triangularization phase for the INVERT operation, a distributed sparse
LU decomposition of the basis matrix for parallel FTRAN and BTRAN opera-
tions, as well as a typical parallelization of the PRICE operation. However, no
significant speed-up was achieved in the corresponding experimental tests.

In the following years till now, the most known and notable corresponding
atttempts were contributed by Hall and McKinnon [9,41]. Their first parallel
revised simplex scheme was ASYNPLEX [9]. This corresponds to a variant of
the revised simplex method in which reduced costs are computed directly. ASYN-
PLEX was implemented on a Cray T3D and it was tested using four modest but
representative Netlib test problems. Using between 8 and 12 processors to per-
form simplex iterations, the iteration speed was increased by a factor of about 5
in all cases. However, the increase in the number of iterations required to solve
the problem led to a speed-up in solution time ranging from 2.4 to 4.8. Hall and
McKinnons second parallel scheme was PARSMI [41]. This was developed in an
attempt to address the deficiencies of ASYNPLEX. In order to make realistic
comparisons with good serial solvers, PARSMI updates the reduced costs and
uses Devex pricing. As the authors state, the implementation of PARSMI was
a highly complex programming task, magnified by the fact that communica-
tion times are not deterministic and the order of arrival of messages determined
the operation of the program. Programming difficulties, together with numerical
instability meant that the implementation was never reliable. In the very limited
results that were obtained on modest Netlib problems, using eight processors,
the speed-up in iteration speed was between 2.2 and 2.4 (leading to a speedup
in solution time between 1.7 and 1.9).

As it can be seen, all attempts to exploit parallelism in the revised simplex
method have focused on the primal simplex method. The dual simplex method,
which is much more efficient for many LP problems has not been addressed a lot
in terms of parallelization. However, as it is explained in more detail in [2,30],
there is one important distinction between the primal and dual simplex methods

290 B. Mamalis and G. Pantziou

which has the potential to cause significant differences in parallel performance.
In the primal simplex method the PRICE operation is restricted to just a subset
of the non-basic variables, whereas, in the dual simplex method, especially for
problems with very large column/row ratios the completely dominant cost is
due to the PRICE operation. Hence its parallelization can be expected to yield
a significant improvement in performance over that of the efficient serial dual
simplex solvers. Bixby and Martin [30] were the first to investigate the scope
for parallelism in the dual revised simplex method and chose to parallelize only
those operations whose cost is related to the number of columns in the problem,
that is the PRICE operation, the dual ratio test and the update of the dual
variables. They implemented the dual simplex method on several architectures;
however using the full Netlib set, no significant gain in performance was obtained.
The latter was a normal behavior since few problems in the Netlib set have
significantly more columns than rows. Focusing on this kind of problems and
using up to four processors on an IBM SP2, a quite satisfactory speedup was
observed, ranging from 1 to 3.

Till recently, no other valuable attempts have been made to parallelize the
dual revised simplex method, thus making the one that immediately follows
(Huangfu and Hall [6,7], Sect. 4) a distinguished one. Another significant parallel
implementation using the revised simplex method that deserves to be presented
separately (see Sect. 5) has also been recently achieved by Lubin et al. [8],
demonstrating the capability of solving large scale stochastic LP problems in
acceptable times within the computing environment of a supercomputer.

4 Recent Advances on the Parallelization of the Dual
Revised Simplex Method

As mentioned in the previous sections, for sparse LP problems the revised (either
primal or dual) simplex method is generally preferred against the simplex method

Table 3. Revised simplex - representative parallelization efforts

Authors Hardware platform Speedup

Ho and Sundarraj [29] (1994) Intel iPSC/2 and Sequent Balance

8000 (primal simplex)

1.5 on average for medium sized

Netlib and other LPs

Hall and McKinnon [9] (1998) Cray T3D (8 to 12 processors) (pri-

mal simplex)

Between 2.5 and 4.8 on medium

sized Netlib LPs (∼ 5 on iteration

speed)

Bixby and Martin [30] (2000) Different platforms - 4 pr. on a IBM

SP2 (dual simplex)

Between 1 and 3 on high-aspect

ratio Netlib LPs

Huangfu and Hall [6,7] (2012–14) 8 cores of a 16xIntel Xeon E5620

(dual suboptimization)

> 2 on average for test LPs of all

kinds (max of 3.5), 1.5 on average

over regular dual simplex, compa-

rable to Cplex & Clp

Lubin et al. [8] (2013) a 320x8-node cluster with Infini-

Band and a Blue Gene/P supercom-

puter with 40960 nodes (both pri-

mal and dual)

On iteration speed: ∼ 100 over Clp

when using 16 nodes (128 cores) for

large-scale two-stage stochastic LP

problems

Advances in the Parallelization of the Simplex Method 291

in its standard form since it permits the sparsity of the problem to be exploited.
This is achieved using techniques for decomposing sparse matrices and solv-
ing hyper-sparse linear systems. Also important for the dual revised simplex
method are advanced algorithmic variants introduced in the 1990s, particularly
dual steepest-edge (DSE) pricing and the bound flipping ratio test (BFRT).
These led to significant performance improvements and resulted in the dual sim-
plex algorithm being preferred. However, for many years now, although the dual
revised method is regarded as the most preferable and efficient, no practical
parallel implementations appeared in this context. Towards the above direction,
the authors in [6,7] introduce two novel parallel dual simplex solvers for general
large scale sparse linear programming problems, over standard desktop architec-
tures. The first approach extends a relatively unknown pivoting strategy called
suboptimization and exploits parallelism across multiple iterations. The second
approach exploits purely single iteration parallelism. Computational results show
that the performance of the first approach is comparable with the world-leading
commercial simplex solvers, and that the second approach complements the first
one, in achieving speedup when it results in slowdown.

Moreover, in the past, parallel implementations generally used dedicated high
performance computers to achieve the best performance. Now that every desk-
top computer is a multi-core machine, any speedup is desirable in terms of solu-
tion time reduction for daily use. In this direction, the authors have chosen to
use relatively standard architecture to perform computational experiments with
very good results. It should certainly be considered as one of the most valuable
practical attempts during the last decade with respect to the general-purpose
parallelization of the revised simplex method.1

4.1 Design and Implementation (Key Issues)

As reported in Sect. 2, the dual simplex algorithm solves an LP problem itera-
tively by seeking primal feasibility while maintaining dual feasibility. Considering
the operations within each iteration (as given in Fig. 2), there is immediate scope
for data parallelization within CHUZR, PRICE, CHUZC and most of the update
operations since they require independent operations for each (nonzero) compo-
nent of a vector. Additionally, the scope for task parallelism by overlapping the
execution of the sub-operations within FTRAN was considered by Bixby and
Martin but rejected as being disadvantageous computationally. On the other
hand, Huangfu and Hall [6,7] have based their implementation on the technique
of suboptimization, which is is one of the oldest variants of the revised simplex
method and consists of a major-minor iteration scheme [7]. Within the primal
revised simplex method, suboptimization performs minor iterations of the stan-
dard primal simplex method using small subsets of columns from the reduced
1 Note also that the techniques applied in the proposed approaches, have been the

basis for the integration of FICO Xpress parallel solver [42], which was the first
commercial parallel simplex solver and has been regarded quite faster than the pre-
existing ones in various kinds of large-scale LPs.

292 B. Mamalis and G. Pantziou

coefficient matrix B−1A. Suboptimization for the dual simplex method was first
set out by Rosander [31]. It performs minor operations of the standard dual
simplex method, applied to small subsets of rows from B−1A. Originally, subop-
timization was proposed mainly as a pivoting scheme for achieving better pivot
choices and advantageous data affinity. In modern revised simplex implementa-
tions, the DSE and BFRT are together regarded as the best pivotal rules and
the idea of suboptimization has been naturally forgotten. However, in terms of
parallelization, suboptimization is attractive because it certainly provides more
scope for parallelization.

In the design and implementation of the first proposed approach, the authors
extend the suboptimization scheme of [31], incorporating (serial) algorithmic
techniques and exploiting parallelism across multiple iterations. The main sub-
optimization steps (the exact mathematical formulation can be found in [7]) in
each iteration include (a) the major optimality test, (b) the minor initialization
step, (c) the minor iterations step consisting of of three basic sub-operations
i.e., the minor optimality test, the minor ratio test and the minor update step,
and (d) the major update step. Based on the above decomposition, the authors
apply extensively data parallelism (mainly with respect to the various vector-
based operations met) in almost all steps. Specifically, vector-based operations
are met (and can be efficiently parallelized) on both the major optimality test
and the major update step, whereas the minor initialization step offers a good
opportunity for task parallelization. With regard to the composite minor iter-
ations step, data parallelism is applied on the minor ratio test with respect to
the PRICE operation and the first part of CHUZC operations, as well as on the
minor update step (vector-based update operations).

In their second parallel implementation the authors introduce a relative sim-
ple approach to exploiting parallelism within a single iteration of the dual revised
simplex method. The relevant approach is a significant development of the work
of Bixby and Martin [30] who parallelized only the PRICE, CHUZC and update-
dual operations, having rejected the task parallelism of FTRAN sub-operations
as being computationally disadvantageous. The mixed parallelization scheme of
this implementation can be found in more details in [7].

4.2 Experimental Results

The experimental performance of the two parallelization approaches described
above has been tested using a reference set consisting of 30 problems. Most of
these LP problems are taken from a comprehensive list of various representative
LP problems maintained by Mittelmann [32]. The problems in this reference
set reflect the wide spread of LP properties and revised simplex characteristics,
including the dimension of the linear systems (number of rows and columns),
the density of the coefficient matrix (average number of non-zeros per column),
and the extent to which they exhibit hyper-sparsity.

The performance of both approaches has been measured using experiments
performed on a workstation with 16 (Intel Xeon E5620, 2.4 GHz) cores, using 8

Advances in the Parallelization of the Simplex Method 293

of the cores for the parallel calculations. With respect to the results obtained for
the first approach, the main observations can be summarized as follows:

– For most of the problems included in the reference set, the speedup compared
to its sequential version is more than 2 (with a geometric mean of 2.23). The
best speedup obtained was equal to 3.50.

– When compared to the regular dual simplex method, the sequential version
of the proposed implementation is generally less efficient (about 30 % slower).
As a consequence, the overall (true) speedup is somewhat restricted, resulting
in a mean speedup of about 1.5.

– It is also worth mentioning that the instances of better speedup (greater than
the average) correspond largely to the sparse LP problems.

The above results are satisfactory since they refer to a general-case reference
set with all kinds of problems. Furthermore, the worst performances are associ-
ated with dense LP problems, whereas the achieved performance when solving
hyper-sparse LP problems is moderate but relatively stable. As it is also clearly
indicated in the original paper [7], the performance of the proposed approach is
comparable with the dual simplex implementation of CPLEX, a world-leading
commercial dual revised simplex solver, and clearly superior to that of CLP, the
world’s leading open-source solver. On the other hand, the results obtained for
the second approach can be summarized as follows:

– The overall performance is quite worse than that of the first approach. An
average speedup of 1.13 has been achieved, with a maximum value of 2.05.

– The worst cases are associated with the hyper-sparse LP problems where, in
most cases, it results in a slowdown.

– However, when applied to dense LP problems, the performance is moderate
and relative stable. This is especially so for those instances where the first
approach exhibits a slowdown.

In summary, the second approach is a straightforward parallelization approach
which exploits purely single iteration parallelism and achieves relatively poor
speedup for general LP problems. However, it is frequently complementary to the
first approach in achieving speedup when the latter results in slowdown. Overall,
the authors in this paper have introduced the design and development of a novel
parallel dual revised simplex method implementation framework, which has been
measured to provide an average speedup of 1.5 for general large scale sparse
linear programming problems, over standard desktop architectures. Although
this is not particularly high, the resulting performance of the first approach is
comparable to the dual simplex implementation of CPLEX.

5 Parallel Distributed-Memory Simplex for Large-Scale
Stochastic LP Problems

The parallel implementation of the revised simplex method for several special
cases of linear programming problems may often be implemented quite more

294 B. Mamalis and G. Pantziou

efficiently than in the general case due to the special structure of these prob-
lems [2]. Seeking towards that direction (special-purpose parallel revised simplex
solvers) one of the most impressive works made recently was the one presented
in [8]. In this work the authors present a parallelization of the revised simplex
method for large extensive forms of two-stage stochastic linear programming
(LP) problems, which can be considered one of the most interesting special
cases of linear programming problems (due to their very large size as well as
their significance in real life). These problems have been considered too large
to solve with the simplex method; instead, decomposition approaches based on
Benders decomposition or, more recently, interior point methods are generally
used. However, these approaches do not provide optimal basic solutions. The
present approach exploits the dual block-angular structure of these problems
inside the linear algebra of the revised simplex method in a manner suitable for
high-performance distributed-memory clusters or supercomputers. While this
paper focuses on stochastic LPs, the work is applicable to all problems with a
dual block-angular structure. The whole implementation is competitive in serial
with highly efficient simplex solvers and achieves significant relative speed-ups
when executed in parallel. Additionally, very large problems with hundreds of
millions of variables have been successfully solved to optimality.

Moreover, as the authors claim, this is the largest-scale parallel sparsity-
exploiting revised simplex implementation that has been developed to date and
the first truly distributed solver. It is built on novel analysis of the linear algebra
for dual block-angular LP problems when solved by using the revised simplex
method and a novel parallel scheme for applying product-form updates.2

5.1 Design and Implementation (Key Issues)

More concretely, the proposed parallelization approach is based on the revised
simplex method for linear programming (LP) problems with a special structure
which is known as dual block angular or block angular with linking columns [8].
This structure commonly arises in stochastic optimization as the extensive form
or deterministic equivalent of two-stage stochastic linear programs [33]. Linear
programs with block-angular structure, both primal and dual, occur in a wide
array of applications, and this structure can also be identified within general
LPs. They are typically met in the form given below:

minimize cT0 x0 + cT1 x1 + cT2 x2 + . . . + cTNxN

subject to Ax0 = b0,
T1x0 + W1x1 = b1,
T2x0 + W2x2 = b2,

...
. . .

...
TNx0 + WNxN = bN ,
x0 ≥ 0, x1 ≥ 0, x2 ≥ 0, . . . , xN ≥ 0

2 Note also that this paper has received recently the COAP (Computational Opti-
mization and Applications) journal Best Paper Award for year 2013.

Advances in the Parallelization of the Simplex Method 295

Borrowing the terminology from stochastic optimization, the vector x0 is
supposed to contain the first-stage variables and the vectors x1, ... , xN the
second-stage variables. On the other hand, the matrices W1,W2, ..., WN contain
the coefficients of the second-stage constraints, and the matrices T1, T2, ..., TN

those of the linking constraints.
With regard to the distribution of data across the parallel processes, the

authors have adopted a carefully designed allocation scheme as follows: Given
a set of P MPI processes and N ≥ P scenarios or second-stage blocks, on
the initialization, each second-stage block is assigned to a single MPI process.
All data, iterates, and computations relating to the first stage are duplicated
in each process. The second-stage data (i.e., Wi, Ti, ci, and bi), iterates, and
computations are only stored in and performed by their assigned process. If a
scenario is not assigned to a process, this process stores no data pertaining to
the scenario, not even the basic/nonbasic states of its variables.

Then, the authors proceed with the first (and probably the most important)
step of their solution, i.e., the factorizing of the basis matrix. Accordingly, one
has to form an invertible representation of the basis matrix B. This is performed
in efficient sparsity-exploiting codes by forming a sparse LU factorization of the
basis matrix. These factors are formed in parallel via the following steps:

– Perform partial sparse Gaussian elimination on each second-stage block.
– Collect and duplicate the necessary terms across processes.
– In each process, form and factor the first-stage block.

The first step may be performed in parallel for each second-stage block (since
they have been evenly distributed to the multiple processes). In the second
step the results are collected and duplicated in each parallel process by using
MPI Allgather() function, and in the third step, each process factors its local
copy of the first-stage block. If then an LU factorization of the first-stage block
is performed, this entire procedure could be viewed as forming an LU factoriza-
tion of B through a restricted sequence of pivot choices. The remaining linear
system is now trivial to solve towards the final solution. Appropriate paral-
lelization is being applied in all the following necessary steps (solving linear
systems. matrix-vector product, updating the inverse etc.) by the means of some
of the well-known collective communication functions of MPI (MPI Bcast(),
MPI Allgather(), MPI Allreduce() etc.) [8].

5.2 Experimental Results

The proposed approach (PIPS-S) was evaluated experimentally with the use of
two powerful distributed memory architectures available at Argonne National
Laboratory (ANL):

– Fusion is a 320-node cluster with an InfiniBand QDR interconnect; each node
has two 2.6 GHz Xeon processors (total 8 cores). Most nodes have 36 GB of
RAM, while a small number of them offer 96 GB of RAM.

296 B. Mamalis and G. Pantziou

– Intrepid is a Blue Gene/P (BG/P) supercomputer with 40,960 nodes with a
custom high-performance interconnect. Each BG/P node has a quad-core 850
MHz PowerPC processor with 2 GB of RAM.

Using suitable stochastic LP test problems, the authors present results of three
different scales by varying the number of scenarios. Part of the measurements
i.e. the ones for SSN and Storm problems which exhibit the best performance,
are presented in Table 4. First, the authors consider instances that could be
solved on a modern desktop from scratch, that is, from an all-slack starting
basis. These large-scale instances (with 110 million total variables) serve both to
compare the serial efficiency of PIPS-S with that of a modern simplex code and
to investigate the potential for parallel speedup on problems of this size. The
main observations can be summarized as follows:

– Clp is faster than PIPS-S in serial on all instances; however, the total number
of iterations performed by PIPS-S is consistent with the number of iterations
performed by Clp.

– Significant parallel speedups are observed in all cases; as an example PIPS-S
is 5 and 8 times faster than Clp for SSN and Storm respectively when using
four nodes (32 cores).

– The speedups obtained on some other instances are smaller, possibly because
of the smaller number of scenarios and the larger dimensions of the first stage.

Next, some quite larger instances with 20–40 million total variables are con-
sidered. The high memory nodes of the Fusion cluster with 96 GB of RAM were
required for these tests. Given the long times to solution for the smaller instances
solved in the previous section, it is impractical to solve these larger instances
from scratch. Instead, the authors proceed using advanced or near-optimal start-
ing bases in two different contexts. The corresponding results can be summarized
as follows:

– Clp remains faster in serial than PIPS-S on these instances, although by a
smaller factor than before.

– The parallel scalability of PIPS-S is almost ideal (>90 % parallel efficiency) up
to 4 nodes (32 cores) and continues to scale well up to 16 nodes (128 cores).
Scaling from 16 nodes to 32 nodes is poor.

– On 16 nodes, the iteration speed of PIPS-S is about 100 times better than
that of Clp for Storm and 70 times better than that of Clp for SSN.

Finally, the authors report on the solution of a very large instance with 8,192
scenarios. This instance has 463,113,276 variables and 486,899,712 constraints.
An advanced starting basis was generated from 4,096 scenarios, not included
in the execution time. This problem requires approximately 1 TB of RAM to
solve, requiring a minimum of 512 Blue Gene/P nodes; however, results are only
available for runs with 1,024 nodes or more because of execution time limits.
The derived solution time was around 6 h on 1024 nodes (2048 cores), 5 h on
2048 nodes (4096 cores), and 4.5 h on 4096 nodes (8192 cores). While scaling
performance is poor on these large numbers of nodes, this test demonstrates the

Advances in the Parallelization of the Simplex Method 297

Table 4. Part of the experimental results of [8]

Test problem Solver Nodes Cores Time (sec.) Iter/sec.

Solves from scratch using dual simplex

Storm Clp 1 1 133,047 50.4

PIPS-S 1 1 385,825 16.5

1 8 52,948 119.8

4 32 15,667 405.2

SSN Clp 1 1 12,619 93.1

PIPS-S 1 1 58,425 17.5

1 8 7,788 135.5

4 32 1,931 542.1

Solves from advanced starting basis using primal simplex

Storm Clp 1 1 7,537 2.2

PIPS-S 1 1 7,184 1.3

2 16 137 47.6

16 128 35.5 216.6

32 256 25.2 260.4

SSN Clp 1 1 50,737 2.0

PIPS-S 1 1 427,648 0.8

2 16 9,550 22.9

16 128 1,481 143.3

32 256 1,117 180.0

capability of PIPS-S to solve instances considered far too large to solve today
with commercial solvers.

6 Revisiting the Parallelization of Standard Full Tableau
Simplex Method

The fact that a parallel simplex solver based on the standard (full tableau) rep-
resentation may be practical only for dense LP problems and may not easily be
competitive to the fast serial revised simplex solvers of nowadays unless it uses
expensive parallel computing resources, has naturally led to less corresponding
efforts in the literature during the last years. However, any new intuitive corre-
sponding study and relevant implementation would still be worthwhile as far as it
achieves either particularly high speedups in absolute values (which also usually
means competitive solution times to the ones of the serial solvers) or particularly
high efficiency values combined with correspondingly high scalability. The latter
has the potential to lead to even higher speedups and competitive solution times
when executing to architectures with larger number of processors/cores.

298 B. Mamalis and G. Pantziou

One of the most recent and worth mentioning relevant attempts combining
sufficient theoretical study and results with a relevant particularly efficient par-
allel implementation of the standard simplex method, was the one presented by
Yarmish et al. [3]. The corresponding implementation has led to very satisfactory
speedup values, whereas it has also been compared to MINOS (a well-known ser-
ial revised simplex solver), and it has been shown to be highly competitive, even
for very low density problems. Moreover, together with the work of Badr et al. [4],
they are the most recent works that put on the table the significant influence of
the number of columns and rows of an LP problem when a distributed memory
architecture is used. Being inspired by the motivation and the results of the above
two research attempts, as well as by the means of the current technology (either
in terms of high-speed network connections or in terms of powerful hybrid hard-
ware architectures and corresponding hybrid software solutions), in [16–18] the
authors present two very promising relevant approaches with regard to simplex
parallelization in its standard (full tableau) form.

First, in [16,17] the authors present a highly scalable parallel implementation
framework designed for distributed memory (message passing) environments.
Two basic data distribution schemes have been implemented, a column-based
one and a row-based distribution scheme, in order to measure the influence
of each distribution method over LP problems with different aspect ratio and
compare their performance with other works in the literature. They have exper-
imentally evaluated their implementations over a considerably powerful parallel
environment; a linux-cluster of 8 (16 threads) Xeon processors connected via a
dedicated (low latency) Myrinet network interface. They have tested and com-
pared the two implementation schemes among each other, as well as to the
corresponding implementations of [3,4] referred above. Both schemes lead to
particularly high speed-up and efficiency values for typical test LPs, that are
considerably better in all cases than the ones achieved by the corresponding
implementations of [3,4].

Next, in [18] the authors focus on the modern hybrid hardware architec-
tures (distributed memory/cluster environments with multicore nodes) of nowa-
days, and they involve several different software alternatives on the paralleliza-
tion of the standard simplex method with the column-based data distribution
scheme. Specifically, they present relevant implementations combining pure MPI,
OpenMP and MPI 3.0 Shared Memory support. They compare their approaches
among each other for variable number of nodes/cores and problem size, as well
as to the approach presented in [3]. The experiments have been performed over
a hybrid parallel environment which consists of up to 4 quad-core processors
(making a total of 16 cores) connected via Gigabit ethernet interface. All the
evaluated parallelization schemes have led to particularly high speed-up and effi-
ciency values, whereas the corresponding values for the hybrid MPI+OpenMP
based scheme (which is proved to be the most efficient) are considerably better
in all cases than the ones achieved in the work of [3].

Advances in the Parallelization of the Simplex Method 299

6.1 Design and Implementation (Key Issues)

As mentioned above the most efficient implementations presented in [16–18]
have followed the column-based distribution for spreading the initial tableau
to all the processors. This is a relatively straightforward parallelization scheme
within the standard simplex method which involves dividing up the columns of
the simplex table among all the processors and it is theoretically regarded as the
most effective one in the general case. Following this scheme all the computation
parts except step 2 of the basic (sequential) algorithm (presented in Sect. 2),
are fully parallelized. Additionally, this form of parallelization looks as the most
natural choice since in most practical problems the number of columns is larger
than the number of rows. The basic steps of the algorithm are given below:

Step 0: The simplex table is shared among the processors by columns. Also,
the right-hand constraints vector is broadcasted to all processors.

Step 1: Each processor searches in its local part and chooses the locally best
candidate column the one with the larger negative coefficient in the objective
function part (local contribution for the global determination of the entering
variable).

Step 2: The local results are gathered in parallel and the winning processor i.e.,
the one with the larger negative coefficient among all, is found and globally
known. At the end of this step each processor will know which processor is
the winner and has the global column choice.

Step 3: The processor with the winning column (entering variable) computes
the leaving variable (winning row) using the minimum ratio test over all the
winning columns elements.

Step 4: The same (winning) processor then broadcasts the winning column as
well as the winning rows id to all processors.

Step 5: Each processor performs (in parallel) on its own part (columns) of the
table all the calculations required for the global rows pivoting, based on the
pivot data received during step 4.

Step 6: The above steps are repeated until the best solution is found or the
problem gets unbounded.

A relevant, row-based, distribution scheme has also been implemented and stud-
ied in comparison to the one stated above (see [17] for more details). Based on
the above step by step decomposition three different parallelization schemes were
designed and implemented as follows:

a. Pure MPI implementation.
The well-known MPI collective communication functions MPI Scatter,
MPI Bcast and MPI Reduce/Allreduce (with or without MAXLOC/MINLOC
operators) were appropriately used for the efficient implementation of the data
communication required by steps 0, 2 and 4 of the parallel algorithm.

b. Hybrid MPI+OpenMP implementation.
Appropriately built parallel for constructs were used for the efficient thread-
based parallelization of the loops implied by steps 1, 3 and 5. Especially with

300 B. Mamalis and G. Pantziou

regard to the parallelization of steps 1 (in cooperation with step 2) and 3, in
order to optimize the parallel implementation of the corresponding procedures,
the newly added min/max reduction operators of OpenMP API specification for
C/C++ were used. Also, with regard to the parallelization of step 5, in order
to achieve even distribution of computations to the working threads, collapse-
based nested parallelism is used in combination with dynamic scheduling pol-
icy. Beyond the OpenMP-based parallelization inside each node, the well-known
MPI collective communication functions were also used for the communication
between the network connected nodes as in pure MPI implementation.

c. Hybrid MPI+MPI Shared Memory implementation.
The corresponding shared memory support functions of MPI 3.0 (mainly: MPI
Comm split type, MPI Win allocate shared and MPI Win shared query) as well
as the syncronization primitives MPI Win fence, MPI Win lock/unlock and
MPI Accumulate were used for the efficient implementation of all the data com-
munication (the initial and intermediate data sharing as well as the computation
of minimum/maximum values) required by steps 0, 2, 3 and 4 of the parallel
algorithm over the multiple cores of each node. The well-known MPI collective
communication functions were used for the communication between the network
connected nodes as in pure MPI implementation.

6.2 Experimental Results

First, in order to compare their approach to the one of Yarmish et al. [3] (which
is also based on the column-based distribution scheme) the authors have run on
their Myrinet-connected linux-cluster platform their basic implementation over
the large size (1000x5000) linear problem presented there [3], with the same char-
acteristics, and they have measured the execution time per iteration for 1, 2 up
to 8 processors. This problem is a large-scale problem with many more columns
than rows, so it is expected to have good speedup with the use of the column
distribution scheme. Note also that the parallel platform used in the experiments
of [3] consisted of 7 dedicated processors (the exact configuration is not men-
tioned) connected via Fast Ethernet network interface. The corresponding results
(in terms of speedup and efficiency measures based on the execution time per
iteration) for varying number of processors are presented in Table 5. Observing
the results of Table 5, firstly it can easily be noticed that the execution times (in
one or more processors) of the algorithm in [17] are much better than the ones
of [3], which however was expected due to the fact that the test platform is quite
more powerful than the platform of [3]. The most important, the achieved speed-
up values are also better than the ones achieved in [3]. Furthermore, observing
the corresponding efficiency values in the last column someone can easily notice
the high scalability (higher and smoother than in [3]) achieved. Note also that
the achieved speedup remains very high (close to the maximum/speedup = 7.92,
efficiency = 99.0 %) even for 8 processors.

Additionally, in other experimental measurements in the same platform (as
presented in [17]), the authors compare the performance of their two different

Advances in the Parallelization of the Simplex Method 301

Table 5. Comparing to the implementation of [3]

P Yarmish et al. [3] Mamalis et al. [17]

#proc Time/iter Sp = T1/TP Ep = Sp/P (%) Time/iter Sp = T1/TP Ep = Sp/P (%)

1 0.61328 1.00 100.0 0.27344 1.00 100.0

2 0.31150 1.97 98.4 0.13713 1.99 99.7

3 0.21724 2.82 94.1 0.09225 2.96 98.8

4 0.15496 3.96 98.9 0.06877 3.98 99.5

5 0.13114 4.68 93.5 0.05592 4.89 97.8

6 0.10658 5.75 95.9 0.04636 5.90 98.3

7 0.09128 6.72 96.0 0.03958 6.91 98.7

8 0.03453 7.92 99.0

data distribution schemes (column-based vs. row-based) among each other (with
the use of a suitable subset of NETLIB test linear problems of varying sizes),
concluding to two basic remarks: (a) the column-based distribution scheme is
clearly superior in most cases, however (b) there are several cases that one should
choose the row-based distribution scheme instead mainly for small sized problems
with almost equal number of rows and columns or greater number of rows. The
high scalability of the column-based distribution scheme over sixteen processors
(threads) is also demonstrated in relevant experiments for very large-scale prob-
lems. Furthermore, the authors notice that the influence of having more columns
than rows in favor of the column distribution scheme is greater than the influ-
ence of having more rows than columns in favor of the row distribution scheme;
which means that the communication overhead caused by the parallelization of
the row distribution scheme is more significant in the general case than the one
caused by the parallelization of the column distribution scheme.

Similarly, the authors in [17] have also run corresponding exeperiments on
their hybrid hardware platform (4x4 quad-core processors connected with Giga-
bit Ethernet), in order to compare the performance of their two different hybrid
parallelization schemes among each other (MPI+OpenMP vs. MPI+MPI 3.0
Shared Memory support), with use of another suitable subset of the NETLIB
test linear problems of varying sizes. The corresponding results (speedup and
efficiency values for 8 and 16 processors/cores - two quad-core processors and
four quad-core processors, respectively) are presented in Table 6, and they can
be summarized as follows:

– The achieved speed-up and efficiency values of the hybrid MPI+OpenMP
implementation are better than the ones of the hybrid MPI+MPI 3.0 Shared
Memory implementation, in all cases.

– However the achieved values for the MPI+MPI 3.0 Shared Memory imple-
mentation are also particularly high and competitive (up to 90% efficiency for
medium-sized problems on eight cores).

– More concretely, for linear problems of small size the corresponding measure-
ments are almost the same (slightly better for the MPI+OpenMP approach),
whereas for problems of larger size the difference is quite clear.

302 B. Mamalis and G. Pantziou

Overall, one can say that the shared window allocation mechanism of MPI
3.0 offers a very good alternative (with almost equivalent results to the
MPI+OpenMP approach) for shared memory parallelization when the shared
data are of relatively small/medium scale, however it cannot scale up the same
well (for large windows and large number of cores) due to internal protocol lim-
itations and management costs, especially in applications where some kind of
synchronization is required. Finally, in order to further validate the high effi-
ciency and scalability of the hybrid MPI+OpenMP parallelization scheme, in
more representative (closer to the real word) cases, the authors have also per-
formed corresponding experiments for large and very large NETLIB problems.
The corresponding measuremnets are shown for 2 up to 16 processors/cores in
Table 7. One can easily observe the following:

– The efficiency values decrease with the increase of the number of processors.
However, this decrease is quite slow, and both the speedup and efficiency
values remain high (≥80%) even for 16 cores, in all cases.

– Particularly high efficiency values (almost linear speedup) are achieved for
all the high aspect ratio problems (e.g. see the values for problems FIT2P,
80BAU3B and QAP15 where the efficiency even for 16 processors/cores is
over 90% - a particularly high value for realistic problems).

7 GPU-Based Simplex Parallelization Efforts

The computational power provided by the massive parallelism of modern graph-
ics processing units (GPUs) has moved increasingly into focus over the past few
years. However, in the area of simplex parallelization for several reasons (similar
to the ones discussed for the conventional CPU-only parallelization) there have

Table 6. Comparing the two hybrid schemes

Linear Problems MPI+OpenMP MPI+MPI 3.0 SM

2 × 4 cores 4 × 4 cores 2 × 4 cores 4 × 4 cores

Sp Ep (%) Sp Ep (%) Sp Ep (%) Sp Ep (%)

SC50A (50 × 48) 4.89 61.1 6.50 40.6 4.85 60.6 6.40 40.0

SHARE2B (96 × 79) 5.59 69.8 8.24 51.5 5.49 68.6 8.00 50.0

SC105 (105 × 103) 5.81 72.6 8.78 54.9 5.69 71.1 8.50 53.1

BRANDY (220 × 249) 7.00 87.5 12.17 76.1 6.60 82.5 10.63 66.5

AGG (488 × 163) 6.76 84.5 12.11 75.7 6.38 79.8 11.27 70.4

AGG2 (516 × 302) 7.00 87.5 12.89 80.5 6.58 82.3 11.99 74.9

BANDM (305 × 472) 7.42 92.8 13.61 85.0 6.82 85.3 12.03 75.2

SCFXM3 (990 × 1371) 7.60 95.0 14.38 89.9 7.16 89.5 13.05 81.5

Advances in the Parallelization of the Simplex Method 303

Table 7. Speed-up & efficiency for large problems

Linear Problems 2× 1 cores 2× 2 cores 2× 4 cores 4× 4 cores

Sp Ep (%) Sp Ep (%) Sp Ep (%) Sp Ep (%)

FIT2P (3000× 13525) 1.977 98.9 3.94 98.5 7.80 97.5 15.24 95.3

80BAU3B (2263× 9799) 1.969 98.5 3.91 97.8 7.72 96.5 14.92 93.3

QAP15 (6330× 22275) 1.963 98.2 3.89 97.3 7.62 95.3 14.47 90.5

MAROS-R7 (3136× 9408) 1.957 97.9 3.87 96.8 7.54 94.3 14.12 88.3

QAP12 (3192× 8856) 1.953 97.7 3.86 96.5 7.50 93.8 13.97 87.3

DFL001 (6071× 12230) 1.945 97.3 3.85 96.3 7.50 93.8 14.04 87.8

GREENBEA (2392× 5405) 1.949 97.5 3.84 96.0 7.40 92.5 13.59 84.9

STOCFOR3 (16675× 15695) 1.925 96.3 3.79 94.8 7.23 90.4 12.80 80.0

not been noticed as many relevant attempts as one would expect. As a conse-
quence, no parallel GPU-based implementation of the simplex algorithm has yet
offered significantly better performance relative to an efficient sequential simplex
solver; at least not in all types of LPs (sparse or dense, randomly generated or
benchmark etc.). Certainly, some quite significant progress (and corresponding
comparative results, satisfactory speedup values etc.) has been achieved at least
for dense LP problems.

The quite strict model of parallelization, the limited development tools,
and the limited processing element/core speed are some of the basic disadvan-
tages comparing to the conventional model. The relatively slow memory transfer
between CPU and GPU is also a significant drawback when a fully combined
processing model is to be adopted. So, although the modern GPUs offer thou-
sands of processing cores, the revised simplex method remains difficult to be
efficiently parallelized and give satisfactory/competitive results compared to the
existing serial solvers, whereas a GPU-based parallel version of the standard
simplex method remains to be practical only for dense problems and with mul-
tiple computing resources (i.e. multiple GPUs). Furthermore, no corresponding
GPU-accelerated implementation has been reported on a supercomputer. In the
above context, we present the most recent and worth telling corresponding works
in the next paragraphs.

Spampinato and Elster have proposed in [34] a parallel implementation of the
revised Simplex method for LP on GPU with NVIDIA CUBLAS and NVIDIA
LAPACK libraries. Tests were carried out on randomly generated LP problems
of at most 2000 variables and 2000 constraints. The implementation showed a
maximum speedup of 2.5 on a NVIDIA GTX 280 GPU as compared with sequen-
tial implementation on CPU with Intel Core2 Quad 2.83 GHz. Bieling, Peschlow
and Martini have proposed in [35] another implementation of the revised Sim-
plex method on GPU. This implementation permits one to speed up solution
with a maximum factor of 18 in single precision on a NVIDIA GeForce 9600 GT
GPU card as compared with GLPK solver run on Intel Core 2 Duo 3 GHz CPU.

304 B. Mamalis and G. Pantziou

Lalami et al. [36] have presented a parallel implementation via CUDA of
the standard Simplex algorithm on CPU-GPU systems for dense LP problems.
Experiments carried out on a CPU with 3 GHz Xeon Quadro INTEL processor
and a GTX 260 GPU card have shown substantial speedup of 12.5 in double pre-
cision. Double precision implementation is used in order to improve the quality
of solutions. The authors have also extended their work on a multi-GPU imple-
mentation [37] and their computational results on randomly generated dense
problems showed a maximum speedup of 24.5. The experiments were performed
with use of two Tesla C2050 boards.

Meyer et al. [38] proposed a mono- and a multi-GPU implementation of the
tableau simplex algorithm and compared their implementation with the serial
Clp solver. Their implementation outperformed Clp solver on large sparse LPs.
Both these papers [37,38] that extend their approach to multiple GPUs, have
dealt with a complete implementation of the simplex algorithm on the GPUs
including the pivoting and the selection of the entering and leaving variables in
order to avoid extra communication between the CPU and the GPUs. In multi-
GPU computing several decomposition schemes can be adopted. An horizon-
tal decomposition distributes the constraints on the different GPUs. A vertical
decomposition distributes the variables of the LP problem on the GPUs. Finally,
one may consider also tiles. The choice of a decomposition scheme has important
consequences on the resulting communication pattern and multi-GPU efficacy.
A decomposition based on tiles may appear scalable; it nevertheless necessitates
many communications between GPUs. In [38], the authors have adopted a ver-
tical decomposition in order to have less communication between GPUs. An
horizontal decomposition has been adopted in [37].

Finally, Ploskas and Samaras [39] propose two efficient GPU-based imple-
mentations of the revised simplex algorithm and a primal-dual exterior point
simplex algorithm. Both parallel algorithms have been implemented in MAT-
LAB using MATLABs Parallel Computing Toolbox. Computational results on
randomly generated sparse and dense linear programming problems and on a
set of benchmark problems (netlib, kennington, meszaros) are also presented.
The results show that the primal-dual exterior point simplex implementation
achieves a quite satisfactory speedup (2.3 on average) over MATLABs interior
point method for the set of benchmark LPs and much greater speedups for the
randomly generated LPs. However, the corresponding results (and the speedups
obtained) for the revised simplex implementation, although quite good for ran-
domly generated dense LPs, they were significantly inferior in the general case
to the ones referred above for the exterior point method.

As it can be seen, although the general feeling is that the overall research work
in GPU-based simplex parallelization has not yet led to significant achievements
in the general case (especially for sparse problems in comparison with serial
solvers), worth telling improvements have been noticed in the case of dense LP
problems. Also as GPUs are rapidly evolving, we can certainly expect for such
implementations a great improvement of performances in the near future.

Advances in the Parallelization of the Simplex Method 305

8 Conclusion

A number of valuable recent works in the parallelization of the simplex method
are presented throughout this paper. A detailed overview is also given, includ-
ing the recent advances in GPU-based simplex parallelization efforts. Naturally,
most of the parallelization attempts made the last years refer to the revised
simplex method, however a parallel implementation based on the standard sim-
plex method could also be practical for dense problems if powerful/expensive
computing resources are used. The difficulty of implementing a parallel sim-
plex solver that could be significantly faster than (or at least highly competitive
to) the existing commercial serial solvers in all cases remains an issue. Indeed
the most impressive recent work in the literature refers to the utilization of the
revised simplex method for solving large-scale stochastic LP problems, achieving
speed-up values more than 100 over the Clp serial simplex solver when imple-
mented on a supercomputer. The efficient parallelization of the dual revised
method exploiting the scope of parallelization offered by the technique of sub-
optimization, should also be considered a significant contribution. Moreover, all
the corresponding results (either the older ones or the most recent ones) defi-
nitely outline the fact that there isn’t an appropriate parallel solver for all kinds
of LPs. As a consequence, a valuable piece of future research should probably
be the design of some kind of metasolver, that given an LP would automatically
propose/select the most efficient parallel solver.

References

1. Murty, K.: Linear Programming. Wiley, New York (1983)
2. Hall, J.A.: Towards a practical parallelization of the simplex method. Comput.

Manag. Sci. 7(2), 139–170 (2010)
3. Yarmish, G., Slyke, R.V.: A distributed scaleable simplex method. J. Supercomput.

49(3), 373–381 (2009)
4. Badr, E.S., Moussa, M., Paparrizos, K., Samaras, N., Sifaleras, A.: Some Compu-

tational Results on MPI Parallel Implementation of Dense Simplex Method. World
Academy of Science, Engineering and Technology (WASET), vol. 23, pp. 778–781
(2008)

5. Qin, J., Nguyen, D.T.: A parallel-vector simplex algorithm on distributed-memory
computers. Struct. Optim. 11(3), 260–262 (1996)

6. Hall, J., Huangfu, Q.: A high performance dual revised simplex solver. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011,
Part I. LNCS, vol. 7203, pp. 143–151. Springer, Heidelberg (2012)

7. Huangfu, Q., Hall, J.A.: Parallelizing the dual revised simplex method. Technical
report ERGO-14-011 (2014). http://www.maths.ed.ac.uk/hall/Publications.html

8. Lubin, M., Hall, J.A., Petra, C.G., Anitescu, M.: Parallel distributed-memory sim-
plex for large-scale stochastic LP problems. Comput. Optim. Appl. 55(3), 571–596
(2013)

9. Hall, J.A., McKinnon, K.: ASYNPLEX an asynchronous parallel revised simplex
algorithm. Ann. Oper. Res. 81, 27–49 (1998)

10. Shu, W.: Parallel implementation of a sparse simplex algorithm on MIMD distrib-
uted memory computers. J. Parallel Distrib. Comput. 31(1), 2540 (1995)

http://www.maths.ed.ac.uk/hall/Publications.html

306 B. Mamalis and G. Pantziou

11. Thomadakis M.E., Liu, J.C.: An efficient steepest-edge simplex algorithm for SIMD
computers. In: Proceedings of the International Conference on Supercomputing
(ICS 96), Philadelphia, pp. 286–293 (1996)

12. Eckstein, J., Boduroglu, I., Polymenakos, L., Goldfarb, D.: Data-parallel imple-
mentations of dense simplex methods on the connection machine CM-2. ORSA J.
Comput. 7(4), 402–416 (1995)

13. Stunkel, C.B.: Linear optimization via message-based parallel processing. In: Pro-
ceedings of International Conference on Parallel Processing (ICPP), Pennsylvania,
pp. 264–271 (1988)

14. Klabjan, D., Johnson, L.E., Nemhauser, L.G.: A parallel primal-dual simplex algo-
rithm. Oper. Res. Lett. 27(2), 47–55 (2000)

15. Maros, I., Mitra, G.: Investigating the sparse simplex method on a distributed
memory multiprocessor. Parallel Comput. 26(1), 151–170 (2000)

16. Mamalis, B., Pantziou, G., Dimitropoulos, G., Kremmydas, D.: Reexamining the
parallelization schemes for standard full tableau simplex method on distributed
memory environments. In: Proceedings of the 10th IASTED PDCN (Parallel and
Distributed Computing and Networks) Conference, Innsbruck, Austria, pp. 115–
123 (2011)

17. Mamalis, B., Pantziou, G., Dimitropoulos, G., Kremmydas, D.: Highly scalable
parallelization of standard simplex method on a myrinet connected cluster plat-
form. ACTA Intl. J. Comput. Appl. 35(4), 152–161 (2013)

18. Mamalis, B., Perlitis, M.: Hybrid parallelization of standard full tableau simplex
method with MPI and OpenMP. In: Proceedings of the 18th Panhellenic Confer-
ence in Informatics (PCI 2014), ACM ICPS, October 2–4, Athens, Greece, pp. 1–6
(2014)

19. Finkel, R.A.: Large-grain parallelism: three case studies. In: Jamieson, L.H., Gan-
non, D., Douglas, R.J. (eds.) The Characteristics of Parallel Algorithms, pp. 21–63.
MIT Press, Cambridge (1987)

20. Boffey, T.B., Hay, R.: Implementing parallel simplex algorithms. In: CONPAR 88,
p. 169176. Cambridge University Press, Cambridge (1989)

21. Babaev, D.A., Mardanov, S.S.: A parallel algorithm for solving linear programming
problems. ZhVychislitelnoi Matematiki Matematicheskoi Fiziki 31(1), 8695 (1991)

22. Agrawal, A., Blelloch, G.E., Krawitz, R.L., Phillips, C.A.: Four vectormatrix prim-
itives. In: ACM Symposium on Parallel Algorithms and Architectures, pp. 292–302
(1989)

23. Cvetanovic, Z., Freedman, E.G., Nofsinger, C.: Efficient decomposition and perfor-
mance of parallel PDE, FFT, Monte-Carlo simulations, simplex, and sparse solvers.
J. Supercomput. 5, 1938 (1991)

24. Luo, J., Reijns, G.L.: Linear programming on transputers. In: van Leeuwen, J.
(ed.) Algorithms, Software, Architecture. IFIP Transactions A (Computer Science
and Technology), pp. 525–534. Elsevier, Amsterdam (1992)

25. Boduroglu, I.: Scalable massively parallel simplex algorithms for block-structured
linear programs. Ph.D. thesis, GSAS, Columbia University, New York (1997)

26. Pfefferkorn, C.E., Tomlin, J.A.: Design of a linear programming system for the
ILLIAC IV. Technical report SOL 76–8. Systems Optimization Laboratory, Stan-
ford University (1976)

27. Helgason, R.V., Kennington, L.J., Zaki, H.A.: A parallelisation of the simplex
method. Ann. Oper. Res. 14, 1740 (1988)

28. McKinnon, K., Plab, F.: An upper bound on parallelism in the forward transfor-
mation within the revised simplex method. Technical report, Department of Math-
ematics and Statistics, University of Edinburgh (1997)

Advances in the Parallelization of the Simplex Method 307

29. Ho, J.K., Sundarraj, R.P.: On the efficacy of distributed simplex algorithms for
linear programming. Comput. Optim. Appl. 3(4), 349363 (1994)

30. Bixby, R.E., Martin, A.: Parallelizing the dual simplex method. INFORMS J. Com-
put. 12, 4556 (2000)

31. Rosander, R.: Multiple pricing and suboptimization in dual linear programming
algorithms. Math. Program. Study 4, 108–117 (1975)

32. Mittelmann, H.: Benchmarks for optimization software (2014). http://plato.la.asu.
edu/bench.html. Accessed 30 July 2014

33. Birge, J., Louveaux, F.: Introduction to Stochastic Programming. Springer Series
in Operations Research and Financial Engineering, 2nd edn. Springer, New York
(2011)

34. Spampinato, D.G., Elster, A.C.: Linear optimization on modern GPUs. In: Pro-
ceedings of the 23rd IEEE IPDPS09 Conference, Rome, Italy (2009)

35. Bieling, J., Peschlow, P., Martini, P.: An efficient GPU implementation of the
revised simplex method. In: Proceedings of the 24th IEEE International Parallel
and Distributed Processing Symposium, (IPDPS 2010), Atlanta (2010)

36. Lalami, M.E., Boyer, V., El-Baz, D.: Efficient Implementation of the simplex
method on a CPU-GPU system. In: IEEE International Parallel and Distributed
Processing Symposium, pp. 1994–2001 (2011)

37. Lalami, M.E., El-Baz, D., Boyer, V.: Multi GPU implementation of the simplex
algorithm. In: Proceedings of the 2011 IEEE 13th International Conference on
High Performance Computing and Communications (HPCC), Banff, pp. 179–186
(2011)

38. Meyer, X., Albuquerque, P., Chopard, B.: A multi-GPU implementation and per-
formance model for the standard simplex method. In: Proceedings of the 1st Inter-
national Symposium and 10th Bal-kan Conference on Operational Research, Thes-
saloniki, Greece, pp. 312–319 (2011)

39. Ploskas, N., Samaras, N.: Efficient GPU-based implementations of simplex type
algorithms. Appl. Math. Comput. 250, 552570 (2015)

40. Yarmish, G.: A distributed implementation of the simplex method. Ph.D. thesis,
Polytechnic University, Brooklyn (2001)

41. Hall, J.A., McKinnon, K.: PARSMI: a parallel revised simplex algorithm incorpo-
rating minor iterations and Devex pricing. In: Madsen, K., Olesen, D., Waśniewski,
J., Dongarra, J. (eds.) PARA 1996. LNCS, vol. 1184, pp. 67–76. Springer, Heidel-
berg (1996)

42. FICO Xpress Optimization Suite, A parallel simplex solver (2014). http://www.
fico.com/en/products/fico-xpress-optimization-suite

http://plato.la.asu.edu/bench.html
http://plato.la.asu.edu/bench.html
http://www.fico.com/en/products/fico-xpress-optimization-suite
http://www.fico.com/en/products/fico-xpress-optimization-suite

An Introduction to Temporal Graphs:
An Algorithmic Perspective

Othon Michail(B)

Computer Technology Institute & Press “Diophantus” (CTI),
N. Kazantzaki Str., Patras University Campus, Rio, P.O. Box 1382,

26504 Patras, Greece
michailo@cti.gr

Abstract. A temporal graph is, informally speaking, a graph that
changes with time. When time is discrete and only the relationships
between the participating entities may change and not the entities them-
selves, a temporal graph may be viewed as a sequence G1, G2 . . . , Gl of
static graphs over the same (static) set of nodes V . Though static graphs
have been extensively studied, for their temporal generalization we are
still far from having a concrete set of structural and algorithmic princi-
ples. Recent research shows that many graph properties and problems
become radically different and usually substantially more difficult when
an extra time dimension in added to them. Moreover, there is already
a rich and rapidly growing set of modern systems and applications that
can be naturally modeled and studied via temporal graphs. This, further
motivates the need for the development of a temporal extension of graph
theory. We survey here recent results on temporal graphs and temporal
graph problems that have appeared in the Computer Science community.

1 Introduction

The conception and development of graph theory is probably one of the most
important achievements of mathematics and combinatorics of the last few cen-
turies. Its applications are inexhaustible and ubiquitous. Almost every scientific
domain, from mathematics and computer science to chemistry and biology, is
a natural source of problems of outstanding importance that can be naturally
modeled and studied by graphs. The 1736 paper of Euler on the Seven Bridges of
Königsberg problem is regarded as the first formal treatment of a graph-theoretic
problem. Till then, graph theory has found applications in electrical networks,
theoretical chemistry, social network analysis, computer networks (like the Inter-
net) and distributed systems, to name a few, and has also revealed some of the
most outstanding problems of modern mathematics like the four color theorem
and the traveling salesman problem.

Supported in part by the project “Foundations of Dynamic Distributed Computing
Systems” (FOCUS) which is implemented under the “ARISTEIA” Action of the
Operational Programme “Education and Lifelong Learning” and is co-funded by the
European Union (European Social Fund) and Greek National Resources.

c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 308–343, 2015.
DOI: 10.1007/978-3-319-24024-4 18

An Introduction to Temporal Graphs: An Algorithmic Perspective 309

Graphs simply represent a set of objects and a set of pairwise relations
between them. It is very common, and shows up in many applications, the
pairwise relations to come with some additional information. For example, in
a graph representing a set of cities and the available roads from each city to
the others, the additional information of an edge (C1, C2) could be the average
time it takes to drive from city C1 to city C2. In a graph representing bonding
between atoms in a molecule, edges could also have an additional bond order
or bond strength information. Such applications can be modeled by weighted
or, more generally, by labeled graphs, in which edges (and in some cases also
nodes) are assigned values from some domain, like the set of natural numbers.
An example of a classical, very rich, and well-studied area of labeled graphs is
the area of graph coloring [57].

Temporal graphs (also known as dynamic, evolving [24], or time-varying
[16,26] graphs) can be informally described as graphs that change with time.
In terms of modeling, they can be thought of as a special case of labeled graphs,
where labels capture some measure of time. Inversely, it is also true that any
property of a graph labeled from a discrete set of labels corresponds to some tem-
poral property if interpreted appropriately. For example, a proper edge-coloring,
i.e. a coloring of the edges in which no two adjacent edges share a common color,
corresponds to a temporal graph in which no two adjacent edges share a common
time-label, i.e. no two adjacent edges ever appear at the same time. Still, the
time notion and the rich domain of modern applications motivating its incorpo-
ration to graphs, gives rise to a brand new set of challenging, important, and
practical problems that could not have been observed from the more abstract
perspective of labeled graphs.

Though the formal treatment of temporal graphs is still in its infancy, there is
already a huge identified set of applications and research domains that motivate
it and that could benefit from the development of a concrete set of results, tools,
and techniques for temporal graphs. A great variety of both modern and tra-
ditional networks such as information and communication networks, social net-
works, transportation networks, and several physical systems can be naturally
modeled as temporal graphs. In fact, this is true for almost any network with
a dynamic topology. Most modern communication networks, such as mobile ad-
hoc, sensor, peer-to-peer, opportunistic, and delay-tolerant networks, are inher-
ently dynamic. In social networks, the topology usually represents the social
connections between a group of individuals and it changes as the social relation-
ships between the individuals are updated, or as individuals leave or enter the
group. In a transportation network, there is usually some fixed network of routes
and a set of transportation units moving over these routes and dynamicity refers
to the change of the positions of the transportation units in the network as time
passes. Physical systems of interest may include several systems of interacting
particles or molecules reacting in a well-mixed solution. Temporal relationships
and temporal ordering of events are also present in the study of epidemics, where
a group of individuals (or computing entities) come into contact with each other
and we want to study the spread of an infectious disease (or a computer virus)
in the population.

310 O. Michail

A very rich motivating domain is that of distributed computing systems that
are inherently dynamic. The growing interest in such systems has been mainly
driven by the advent of low-cost wireless communication devices and the develop-
ment of efficient wireless communication protocols. Apart from the huge amount
of work that has been devoted to applications, there is also a steadily growing
concrete set of foundational work. A notable set of works has studied (distrib-
uted) computation in worst-case dynamic networks in which the topology may
change arbitrarily from round to round subject to some constraints that allow for
bounded end-to-end communication [5,21,41,52,53,59]. Population protocols [3]
and variants [49,50,55] are collections of finite-state agents that move passively,
according to the dynamicity of the environment, and interact in pairs when they
come close to each other. The goal is typically for the population to compute
(i.e. agree on) something useful or construct a desired network or structure in such
an adversarial setting. Another interesting direction assumes that the dynamicity
of the network is a result of randomness (this is also the case sometimes in pop-
ulation protocols). Here the interest is on determining “good” properties of the
dynamic network that hold with high probability (abbreviated w.h.p. and mean-
ing with probability at least 1 − 1/nc for some constant c ≥ 1), such as small
(temporal) diameter, and on designing protocols for distributed tasks [6,17]. In
all the above subjects, there is always some sort of underlying temporal graph
either assumed or implied. For introductory texts on the above lines of research
in dynamic distributed networks the reader is referred to [16,42,51,65].

Though static graphs1 have been extensively studied, for their temporal gen-
eralization we are still far from having a concrete set of structural and algorithmic
principles. Additionally, it is not yet clear how is the complexity of combinatorial
optimization problems affected by introducing to them a notion of time. In an
early but serious attempt to answer this question, Orlin [60] observed that many
dynamic languages derived from NP-complete languages can be shown to be
PSPACE-complete. Among the other few things that we do know, is that the
max-flow min-cut theorem holds with unit capacities for time-respecting paths
[9]. Additionally, Kempe et al. [36] proved that, in temporal graphs, the clas-
sical formulation of Menger’s theorem is violated and the computation of the
number of node-disjoint s-z paths becomes NP-complete. A reformulation of
Menger’s theorem which is valid for all temporal graphs was recently achieved
in [46]. These results are discussed in Sect. 3. Recently, building on the distrib-
uted online dynamic network model of [41], Dutta et al. [21], among other things,
presented offline centralized algorithms for the k-token dissemination problem.
In k-token dissemination, there are k distinct pieces of information (tokens)
that are initially present in some distributed processes and the problem is to
disseminate all the k tokens to all the processes in the dynamic network, under
the constraint that one token can go through an edge per round. These results,
motivated by distributed computing systems, are presented in Sect. 4.

1 In this article, we use “static” to refer to classical graphs. This is plausible as the
opposite of “dynamic” that is also commonly used for temporal graphs. In any case,
the terminology is still very far from being standard.

An Introduction to Temporal Graphs: An Algorithmic Perspective 311

Another important problem is that of designing an efficient temporal graph
given some requirements that the graph should meet. This problem was recently
studied in [46], where the authors introduced several interesting cost minimiza-
tion parameters for optimal temporal network design. One of the parameters is
the temporality of a graph G, in which the goal is to create a temporal version
of G minimizing the maximum number of labels of an edge, and the other is the
temporal cost of G, in which the goal is to minimize the total number of labels
used. Optimization of these parameters is performed subject to some connectiv-
ity constraint. They proved several upper and lower bounds for the temporality
of some very basic graph families such as rings, directed acyclic graphs, and
trees, as well as a trade-off between the temporality and the maximum label of
rings. Furthermore, they gave a generic method for computing a lower bound of
the temporality of an arbitrary graph with respect to (abbreviated w.r.t.) the
constraint of preserving a time-respecting analogue of every simple path of G.
Finally, they proved that computing the temporal cost w.r.t. the constraint of
preserving at least one time-respecting path from u to v whenever v is reachable
from u in G, is APX-hard. Most of these results are discussed in Sect. 5.

Other recent papers have focused on understanding the complexity and pro-
viding algorithms for temporal versions of classical graph problems. For example,
the authors of [56] considered temporal analogues of traveling salesman problems
(TSP) in temporal graphs, and in the way also introduced and studied tempo-
ral versions of other fundamental problems like Maximum Matching, Path
Packing, Max-TSP, and Minimum Cycle Cover. One such version of TSP
is the problem of exploring the nodes of a temporal graph as soon as possible.
In contrast to the positive results known for the static case strong inapproxima-
bility results can be proved for the dynamic case [23,56]. Still, there is room for
positive results for interesting special cases [23]. Another such problem is the
Temporal Traveling Salesman Problem with Costs One and Two
(abbreviated TTSP(1,2)), a temporal analogue of TSP(1,2), in which the tem-
poral graph is a complete weighted graph with edge-costs from {1, 2} and the
cost of an edge may vary from instance to instance [56]. The goal is to find a
minimum cost temporal TSP tour. Several polynomial-time approximation algo-
rithms have been proved for TTSP(1,2) [56]. The best approximation is (1.7+ε)
for the generic TTSP(1,2) and (13/8+ε) for its interesting special case in which
the lifetime of the temporal graph is restricted to n. These and related results
are presented in Sect. 6.

Additionally, there are works that have considered random temporal graphs,
in which the labels are chosen according to some probability distribution. We
give a brief introduction to such models in Sect. 8. Moreover, Sect. 2 provides all
necessary preliminaries and definitions and also a first discussion on temporal
paths and Sect. 7 discusses a temporal graph model in which the availability
times of the edges are provided by a set of linear functions.

As is always the case, not all interesting results and material could fit in a
single document. We list here some of them. Holme and Saramäki [32] give an
extensive overview of the literature related to temporal networks from a diverge

312 O. Michail

range of scientific domains. Harary and Gupta [30] discuss applications of tem-
poral graphs and highlight the great importance of a systematic treatment of the
subject. Kostakos [39] uses temporal graphs to represent real datasets, shows how
to derive various node metrics like average temporal proximity, average geodesic
proximity and temporal availability, and also gives a static representation of a
temporal graph (similar to the static expansion that we discuss in Sect. 2). Avin
et al. [6] studied the cover time of a simple random walk on Markovian dynamic
graphs and proved that, in great contrast to being always polynomial in static
graphs, it is exponential in some dynamic graphs. Clementi et al. [17] studied the
flooding time (also known as information dissemination; see a similar problem
discussed in Sect. 4) in the following type of edge-markovian dynamic graphs: if
an edge exists at time t then, at time t + 1, it disappears with probability q,
and if instead the edge does not exist at time t, then it appears at time t + 1
with probability p. There are also several papers that have focused on temporal
graphs in which every instance of the graph is drawn independently at random
according to some distribution [18,31,35,63] (the last three did it in the context
of dynamic gossip-based mechanisms), e.g. according to G(n, p). A model related
to random temporal graphs, is the random phone-call model, in which each node,
at each step, can communicate with a random neighbour [20,33]. Other authors
[25,67] have assumed that an edge may be available for a whole time-interval
[t1, t2] or several such intervals, and not just for discrete moments, or that it has
time-dependent travel-times [38]. Aaron et al. [1] studied the Dynamic Map
Visitation problem, in which a team of agents must visit a collection of crit-
ical locations as quickly as possible in a dynamic environment. Kontogiannis
et al. [37], among other things, presented oracles for providing time-dependent
min-cost route plans and conducted their experimental evaluation on a data set
of the city of Berlin.

2 Modeling and Basic Properties

When time is assumed to be discrete, a temporal graph (or digraph) is just a
static graph (or digraph) G = (V,E) with every edge e ∈ E labeled with zero
or more natural numbers. The labels of an edge may be viewed as the times at
which the the edge is available. For example, an edge with no labels is never
available while, on the other hand, an edge with labels all the even natural
numbers is available every even time. Labels could correspond to seconds, days,
years, or could even correspond to some artificial discrete measure of time under
consideration.

There are several ways of modeling formally discrete temporal graphs. One
is to consider an underlying static graph G = (V,E) together with a labeling
λ : E → 2IN of G assigning to every edge of G a (possibly empty) set of natural
numbers, called labels. Then the temporal graph of G with respect to λ is denoted
by λ(G). This notation is particularly useful when one wants to explicitly refer
to and study properties of the labels of the temporal graph. For example, the
multiset of all labels of λ(G) can be denoted by λ(E), their cardinality is defined

An Introduction to Temporal Graphs: An Algorithmic Perspective 313

as |λ| =
∑

e∈E |λ(e)|, and the maximum and minimum label assigned to the
whole temporal graph as λmax = max{l ∈ λ(E)} and λmin = min{l ∈ λ(E)},
respectively. Moreover, we define the age (or lifetime) of a temporal graph λ(G)
as α(λ) = λmax − λmin + 1 (or simply α when clear from context). Note that in
case λmin = 1 then we have α(λ) = λmax.

Another, often convenient, notation of a temporal graph D is as an ordered
pair of disjoint sets (V,A) such that A ⊆ (

V
2

) × IN in case of a graph and with(
V
2

)
replaced by V 2\{(u, u) : u ∈ V } in case of a digraph. The set A is called the

set of time-edges. A can also be used to refer to the structure of the temporal
graph at a particular time. In particular, A(t) = {e : (e, t) ∈ A} is the (possibly
empty) set of all edges that appear in the temporal graph at time t. In turn,
A(t) can be used to define a snapshot of the temporal graph D at time t, which
is usually called the t-th instance of D, and is the static graph D(t) = (V,A(t)).
So, it becomes evident that a temporal graph may also be viewed as a sequence
of static graphs (G1, G2, . . . , Gλmax).

Finally, it is typically very useful to expand in time the whole temporal graph
and obtain an equivalent static graph without losing any information. The reason
for doing this is mainly because static graphs are much better understood and
there is a rich set of well established tools and techniques for them. So, a common
approach to solve a problem concerning temporal graphs is to first express the
given temporal graph as a static graph and then try to apply or adjust one of
the existing tools that works on static graphs. Formally, the static expansion
of a temporal graph D = (V,A) is a DAG H = (S,E) defined as follows. If
V = {u1, u2, . . . , un} then S = {uij : λmin − 1 ≤ i ≤ λmax, 1 ≤ j ≤ n} and
E = {(u(i−1)j , uij′) : λmin ≤ i ≤ λmax and j = j′ or (uj , uj′) ∈ A(i)}. In words,
for every discrete moment we create a copy of V representing the instance of
the nodes at that time (called time-nodes). We may imagine the moments as
levels or rows from top to bottom, every level containing a copy of V . Then we
add outgoing edges from time-nodes of one level only to time-nodes of the level
below it. In particular, we connect a time-node u(i−1)j to its own subsequent
copy uij and to every time-node uij′ s.t. (uj , uj′) is an edge of the temporal
graph at time i. Observe that the above construction includes all possible vertical
edges from a node to its own subsequent instance. These edges express the fact
that nodes are usually not oblivious and can preserve their on history in time
(modeled like propagating information to themselves). Nevertheless, depending
on the application, these edges may some times be omitted.

2.1 Journeys

As is the case in static graphs, the notion of a path is one of the most central notions
of a temporal graph, however it has to be redefined to take time into account.
A temporal (or time-respecting) walk W of a temporal graph D = (V,A) is an
alternating sequence of nodes and times (u1, t1, u2, t2, . . . , uk−1, tk−1, uk) where
(uiui+1, ti) ∈ A, for all 1 ≤ i ≤ k − 1, and ti < ti+1, for all 1 ≤ i ≤ k − 2. We
call tk−1 − t1 +1 the duration (or temporal length) of the walk W , t1 its departure
time and tk−1 its arrival time. A journey (or temporal/time-respecting path) J is

314 O. Michail

a temporal walk with pairwise distinct nodes. In words, a journey of D is a path
of the underlying static graph of D that uses strictly increasing edge-labels. A
u-v journey J is called foremost from time t ∈ IN if it departs after time t and
its arrival time is minimized. The temporal distance from a node u at time t to a
node v is defined as the duration of a foremost u-v journey from time t. We say
that a temporal graph D = (V,A) has temporal (or dynamic) diameter d, if d
is the minimum integer for which it holds that the temporal distance from every
time-node (u, t) ∈ V × {0, 1, . . . , α − d} to every node v ∈ V is at most d.

A nice property of foremost journeys is that they can be computed efficiently.
In particular there is an algorithm that, given a source node s ∈ V and a time
tstart, computes for all w ∈ V \{s} a foremost s-w journey from time tstart

[46,47]. The running time of the algorithm is O(nα3(λ) + |λ|), where n here
and throughout this article denotes the number of nodes of the temporal graph.
It is worth mentioning that this algorithm takes as input the whole temporal
graph D. Such algorithms are known as offline algorithms in contrast to online
algorithms to which the temporal graph is revealed on the fly. The algorithm
is essentially a temporal translation of the breadth-first search (BFS) algorithm
(see e.g. [19] p. 531) with path length replaced by path arrival time. For every
time t, the algorithm picks one after the other all nodes that have been already
reached (initially only the source node s) and inspects all edges that are incident
to that node at time t. If a time-edge (e, t) leads to a node w that has not yet
been reached, then (e, t) is picked as an edge of a foremost journey from the
source to w. This greedy algorithm is correct for the same reason that the BFS
algorithm is correct. An immediate way to see this is by considering the static
expansion of the temporal graph. The algorithm begins from the upper copy
(i.e. at level 0) of the source in the static expansion and essentially executes the
following slight variation of BFS: at step i+1, given the set R of already reached
nodes at level i, the algorithm first follows all vertical edges leaving R in order
to reach in one step the (i + 1)-th copy of each node in R, and then inspects all
diagonal edges leaving R to discover new reachabilities. The algorithm outputs
as a foremost journey to a node u, the directed path of time-edges by which it
first reached the column of u (vertical edges are interpreted as waiting on the
corresponding node). The above algorithm computes a shortest path to each
column of the static expansion. Correctness follows from the fact that shortest
paths to columns are equivalent to foremost journeys to the nodes corresponding
to the columns.

3 Connectivity and Menger’s Theorem

Assume that we are given a static graph G and a source node s and a sink
node z of G.2 Two paths from s to z are called node-disjoint if they have only
the nodes s and z in common. Menger’s theorem [45], which is the analogue of
the max-flow min-cut theorem for undirected graphs, is one of the most basic
2 The sink is usually denoted by t in the literature. We use z instead as we reserve t

to refer to time moments.

An Introduction to Temporal Graphs: An Algorithmic Perspective 315

theorems in the theory of graph connectivity. It states that the maximum number
of node-disjoint s-z paths is equal to the minimum number of nodes that must be
removed in order to separate s from z (see also [12] p. 75).

It was first observed in [9] and then further studied in [36] that this funda-
mental theorem of static graphs, is violated in temporal graphs if we keep its
original formulation and only require it to hold for journeys instead of paths. In
fact, the violation holds even for a very special case of temporal graphs, those in
which every edge has at most one label, which are known as single-labeled tem-
poral graphs (as opposed to the more general multi-labeled temporal graphs that
we have discussed so far). Even in such temporal graphs, the maximum num-
ber of node-disjoint journeys from s to z can be strictly less than the minimum
number of nodes whose deletion leaves no s-z journey. For a simple example,
observe in Fig. 1 that there are no two node-disjoint journeys from s to z but
after deleting any one node (other than s or z) there still remains a s-z journey.
To see this, notice that every journey has to visit at least two of the inner-nodes
u2, u3, u4. If u2 is one of them, then a vertical obstacle is introduced which can-
not be avoided by any other journey. If u2 is not, then the only disjoint path
remaining is (s, u2, z) which is not a journey. On the other hand, any set of
two inner vertices has a s-z journey going through them implying that any s-z
separator must have size at least 2. As shown in [36], this construction can be
generalized to a single-labeled graph with 2k − 1 inner nodes in which: (i) every
s-z journey visits at least k of these nodes, ensuring again that there are no two
node-disjoint s-z journeys and (ii) there is a journey through any set of k inner
nodes, ensuring that every s-z separator must have size at least k.

u2

u4

u5

u3

u1 2 6

7

3

4

5

1

s = = z

Fig. 1. A counterexample of Menger’s theorem for temporal graphs (adopted from
[36]). Each edge has a single time-label indicating its availability time.

On the positive side, the violation does not hold if we replace node-disjointness
by edge-disjointness and node removals by edge removals. In particular, it was
proved in [9] that for single-labeled temporal graphs, the maximum number of
edge-disjoint journeys from s to z is equal to the minimum number of edges whose
deletion leaves no s-z journey, that is, that the max-flow min-cut theorem of static
graphs holds with unit capacities for journeys in single-labeled temporal graphs.
The construction (which we adopt from [36]) is simply an ad-hoc static expan-
sion for the special case of single-labeled temporal graphs. Let G = (V,E) be the

316 O. Michail

underlying graph of an undirected single-labeled temporal graph. We construct
a labeled directed graph G′ = (V ′, E′) as follows. for every {u, v} ∈ E we add
in G′ two new nodes x and y and the directed edges (u, x), (v, x), (y, u), (y, v),
(x, y). Then we relax all labels required so that there is sufficient “room” (w.r.t.
time) to introduce (by labeling the new edges) both a (u, x, y, v) journey and a
(v, x, y, u) journey. The goal is to be able to both move by a journey from u
to v and from v to u in G′. An easy way to do this is the following: if t is
the label of {u, v}, then we can label (u, x), (x, y), (y, v) by (t.1, t.2, t.3), where
t.1 < t.2 < t.3, and similarly for (v, x), (x, y), (y, u). Then we construct a static
directed graph G′′ = (V ′′, E′′) as follows: For every u ∈ V let y1, y2, . . . , yi, . . .
be its incoming edges and x1, x2, . . . , xj , . . . its outgoing edges. We want to pre-
serve only the time-respecting y, u, x traversals. To this end, for each one of the
(yi, u) edges we introduce a node wi and the edge (yi, wi) and for each one of the
(u, xi) edges we introduce a node vj and the edge (vj , xj) and we delete node u.
Finally, we introduce the edge (wi, vj) iff (yi, u), (u, xj) is time-respecting. This
reduction preserves edge-disjointness and sizes of edge separators and if we add
a super-source and a super-sink to G′′ the max-flow min-cut theorem for static
directed graphs yields the aforementioned result. Another interesting thing is
that reachability in G under journeys corresponds to (path) reachability in G′′

so that we can use BFS on G′′ to answer questions about foremost journeys in
G, as we did with the static expansion in Sect. 2.1.

Fortunately, the above important negative result concerning Menger’s theo-
rem has a turnaround. In particular, it was proved in [46] that if one reformulates
Menger’s theorem in a way that takes time into account then a very natural
temporal analogue of Menger’s theorem is obtained, which is valid for all (multi-
labeled) temporal networks. The idea is to replace in the original formulation
node-disjointness by node departure time disjointness (or out-disjointness) and
node removals by node departure times removals. When we say that we remove
node departure time (u, t) we mean that we remove all edges leaving u at time t,
i.e. we remove label t from all (u, v) edges (for all v ∈ V). So, when we ask “how
many node departure times are needed to separate two nodes s and z?” we mean
how many node departure times must be selected so that after the removal of
all the corresponding time-edges the resulting temporal graph has no s-z jour-
ney (note that this is a different question from how many time-edges must be
removed and, in fact, the latter question does not result in a Menger’s analogue).
Two journeys are called out-disjoint if they never leave from the same node at
the same time (see Fig. 2 for an example).

Theorem 1 (Menger’s Temporal Analogue [46]). Take any temporal graph
λ(G), where G = (V,E), with two distinguished nodes s and z. The maximum
number of out-disjoint journeys from s to z is equal to the minimum number of
node departure times needed to separate s from z.

The idea is to take the static expansion H = (S,A) of λ(G) and,
for each time-node uij with at least two outgoing edges to nodes different
than ui+1j, add a new node wij and the edges (uij , wij) and (wij , u(i+1)j1),

An Introduction to Temporal Graphs: An Algorithmic Perspective 317

u1

u3

u2

u4s = = z

1,2

3

3

4,5

2,3

1 2

2

3

4

3 5

Fig. 2. An example of a temporal graph. The dashed curves highlight the directions of
three out-disjoint journeys from s to z. The labels used by each of these journeys are
indicated by the labels that are enclosed in boxes.

(wij , u(i+1)j2), . . . , (wij , u(i+1)jk). Then define an edge capacity function c : A →
{1, λmax} as follows: edges (uij , u(i+1)j) take capacity λmax and all other edges
take capacity 1. The theorem follows by observing that the maximum u01-uλmaxn

flow is equal to the minimum of the capacity of a u01-uλmaxn cut, the maximum
number of out-disjoint journeys from s to z is equal to the maximum u01-uλmaxn

flow, and the minimum number of node departure times needed to separate s
from z is equal to the minimum of the capacity of a u01-uλmaxn cut. See also
Fig. 3 for an illustration.

4 Dissemination and Gathering of Information

A natural application domain of temporal graphs is that of gossiping and in
general of information dissemination, mainly by a distributed set of entities
(e.g. a group of people or a set of distributed processes). Two early such examples
were the telephone problem [8] and the minimum broadcast time problem [64]. In
both, the goal is to transmit some information to every participant of the sys-
tem, while minimizing some measure of communication or time. A more modern
setting, but in the same spirit, comes from the very young area of distributed
computing in highly dynamic networks [16,41,42,52,53,59].

There are n nodes. In this context, nodes represent distributed processes.
Note, however, that most of the results that we will discuss, concern centralized
algorithms (and in case of lower bounds, these immediately hold for distributed
algorithms as well). The nodes communicate with other nodes in discrete rounds
by interchanging messages. In every round, an adversary scheduler selects a set
of edges between the nodes and every node may communicate with its current
neighbors, as selected by the adversary, usually by broadcasting a single mes-
sage to be delivered to all its neighbors. So, the dynamic topology behaves as

318 O. Michail

u01

u11

u21

u31

u41

u02

u12

u22

u32

u42

u03

u13

u23

u33

u43

u04

u14

u24

u34

u44

u51 u52 u53 u54

s

z

(a)

t = 5

t = 4

t = 3

t = 2

t = 1

u01

u11

u21

u31

u41

u02

u12

u22

u32

u42

u03

u13

u23

u33

u43

u04

u14

u24

u34

u44

u51 u52 u53 u54

s

z

w22

(b)

u01

u11

u21

u31

u41

u02

u12

u22

u32

u42

u03

u13

u23

u33

u43

u04

u14

u24

u34

u44

u51 u52 u53 u54

s

z

w22

5

5

5

5

5

5 5 5

5

5

5

5

5

5

5

5

5

5

5

5

1

1
1

1

11
1

1

1

(c)

t = 5

t = 4

t = 3

t = 2

t = 1

u01

u11

u21

u31

u41

u02

u12

u22

u32

u42

u03

u13

u23

u33

u43

u04

u14

u24

u34

u44

u51 u52 u53 u54

s

z

w22

1

1

1

1

2

1

1

1

1

1

1

1

1 2

(d)

Fig. 3. (a) The static expansion of a temporal graph. Here, only two edges leave from
the same node at the same time: (u22, u33) and (u22, u34). (b) Adding a new node w22

and three new edges. This we ensures that a node departure time can be removed by
removing a single diagonal edge: removing edge (u22, w22) removes all possible depar-
tures from u22. This ensures that separation of s and z by node-departure times is
equivalent to separation by a usual static cut. (c) Adding capacities to the edges.
Vertical edges take capacity λmax = 5 and diagonal edges take capacity 1. (d) The
maximum number of out-disjoint journeys from s to z is equal to the maximum flow
from s to z and both are equal to 3.

An Introduction to Temporal Graphs: An Algorithmic Perspective 319

a discrete temporal graph where the i-th instance of the graph is the topology
selected by the adversary in round i. The main difference, compared to the set-
ting of the previous sections, is that now (in all results that we will discuss in
this section, apart from the last one) the topology is revealed to the algorithms
in an online and totally unpredictable way. An interesting special case of tem-
poral graphs consists of those temporal graphs that have connected instances.
A temporal graph D is called continuously connected (also known as 1-interval
connected) if D(t) is connected for all times t ≥ 1 [41,59]. Such temporal graphs
have some very useful properties concerning information propagation in a dis-
tributed setting, like, for example, that if all nodes broadcast in every round
all information that they have heard so far, then in every round at least one
more node learns something new, which implies that a piece of information can
in principle be disseminated in at most n − 1 rounds. Naturally, the problem
of information dissemination becomes much more interesting and challenging if
we do not allow nodes to transmit an unlimited amount of information in every
round, that is, if we restrict the size of the messages that they can transmit.

An interesting problem of token dissemination in such a setting, called the
k-token dissemination problem, was introduced and first studied in [41]. In this
problem there is a domain of tokens T , each node is assigned a subset of the
tokens, and a total of k distinct tokens is assigned to the nodes. The goal is for an
algorithm (centralized or distributed) to organize the communication between
the nodes in such a way that, under any dynamic topology (from those described
above), each node eventually terminates and outputs (i.e. has learned) all k
tokens. In particular, the focus here is on token-forwarding algorithms. Such
an algorithm is quite restricted in that, in every round r and for every node
u, it only picks a single token from those already known by u (or the empty
token ⊥) and this token will be delivered to all the current neighbors of u by
a single broadcast transmission. Token-forwarding algorithms are simple, easy
to implement, typically incur low overhead, and have been extensively studied
in static networks [43,62]. We will present now a lower bound from [41] on
the number of rounds for token dissemination, that holds even for centralized
token forwarding algorithms. Such centralized algorithms are allowed to see and
remember the whole state and history of the entire network, but they have to
make their selection of tokens to be forwarded without knowing what topology
will be scheduled by the adversary in the current round. So, first the algorithm
selects and then the adversary reveals the topology, taking into account the
algorithm’s selection. For simplicity, it may be assumed that each of the k tokens
is assigned initially to exactly one (distinct) node.

Theorem 2 [41]. Any deterministic centralized algorithm for k-token dissem-
ination in continuously connected temporal graphs requires at least Ω(n log k)
rounds to complete in the worst case.

The idea behind the proof is to define a potential function that charges by
1/(k − i) the i-th token learned by each node. So, for example, the first token
learned by a node comes at a cheap price of 1/k while the last token learned

320 O. Michail

costs 1. The initial total potential is 1, because k nodes have obtained their first
token each, and the final potential (i.e. when all nodes have learned all k tokens)
is n · Hk = Θ(n log k). Then it suffices to present an adversarial schedule, i.e.
a continuously connected temporal graph, that forces any algorithm to achieve
in every round at most a bounded increase in potential. The topology of a
round can be summarized as follows. First we select all edges that contribute
no cost, called free edges. An edge {u, v} is free if the token transmitted by u
is already known by v and vice versa. The free edges partition the nodes into l
components C1, C2, . . . , Cl. We pick a representative vi from each component Ci.
It remains to construct a connected graph over the vis. An observation is that
each vi transmits a distinct token ti, otherwise at least two of them should have
been connected by a free edge (because two nodes interchanging the same token
cannot learn anything new). The idea is to further partition the representatives
into a small set of nodes that know many tokens each and a large set of nodes
that know few tokens each. We can call the nodes that know many tokens the
expensive ones, because according to the above potential function a new token
at a node that already knows a lot of tokens comes at a high price, and similarly
we call those nodes that know few tokens the cheap ones. In particular, a node
is expensive if it is missing at most l/6 tokens and cheap otherwise. Roughly, a
cheap node learns a new token at the low cost of at most 6/l, because the cost
of a token is inversely proportional to the number of missing tokens before the
token’s arrival. First we connect the cheap nodes by an arbitrary line. As there
are at most l such nodes and each one of them obtains at most two new tokens
(because it has at most two neighbors on the line and each node transmits a
single token), the total cost of this component is at most 12, that is, bounded
as desired. It remains to connect the expensive nodes. It can be shown that
there is a way to match each expensive node to a distinct cheap node (i.e. by
constructing a matching between the expensive and the cheap nodes), so that
no expensive node learns a new token. So, the only additional cost is that of
the new tokens that cheap nodes obtain from expensive nodes. This additional
cost is roughly at most 6, so the total cost have been shown to be bounded by
a small constant as required. It is worth mentioning that [41], apart from the
above lower bound, also proposed a simple distributed algorithm for k-token
dissemination that needs O(nk) rounds in the worst case to deliver all tokens.

The above lower bound can be further improved by exploiting the proba-
bilistic method [21]. In particular it can be shown that any randomized token-
forwarding algorithm (centralized or distributed) for k-token dissemination needs
Ω(nk/ log n) rounds. This lower bound is within a logarithmic factor of the O(nk)
upper bound of [41]. As is quite commonly the case in probabilistic results, the
interesting machinery used to establish the lower bound is in the analysis and
not in the construction itself. Now all the representatives of the connected com-
ponents formed by the free edges are connected arbitrarily by a line. The idea is
to first prove the bound w.h.p. over an initial token distribution, in which each
of the nodes receives each of the k tokens independently with probability 3/4.
It can be shown in this case that, w.h.p. over the initial assignment of tokens,

An Introduction to Temporal Graphs: An Algorithmic Perspective 321

in every round there are at most O(log n) new token deliveries and an overall
of Ω(nk) new token deliveries must occur for the protocol to complete. Finally,
it can be shown via the probabilistic method, that, in fact, any initial token
distribution can be reduced to the above distribution for which the bound holds.
The above lower bounding technique, based on the probabilistic method, was
applied in [28] to several variations of k-token dissemination. For example, if the
nodes are allowed to transmit b ≤ k tokens instead of only one token in every
round, then it can be proved that any randomized token-forwarding algorithm
requires Ω(n + nk/(b2 log n log log n)) rounds.

In [21], also offline token forwarding algorithms were designed, that is, algo-
rithms provided the whole dynamic topology in advance. One of the problems
that they studied, was that of delivering all tokens to a given sink node z as
fast as possible, called the gathering problem. We now present a lemma from [21]
concerning this problem, mainly because its proof constitutes a nice application
of the temporal analogue of Menger’s theorem presented in Sect. 3 (the simplified
proof via Menger’s temporal analogue is from [46]).

Lemma 1 [21]. Let there be k ≤ n tokens at given source nodes and let z be an
arbitrary node. Then, if the temporal graph D is continuously connected, all the
tokens can be delivered to z, using local broadcasts, in O(n) rounds.

Let S = {s1, s2, . . . , sh} be the set of source nodes, let N(si) be the number
of tokens of source node si and let the age of the temporal graph be n+k = O(n).
It suffices to prove that there are at least k out-disjoint journeys from S to any
given z, such that N(si) of these journeys leave from each source node si. Then,
all tokens can be forwarded in parallel, each on one of these journeys, without
conflicting with each other in an outgoing transmission and, as the age is O(n),
they all arrive at z in O(n) rounds. To show the existence of k out-disjoint
journeys, we create a supersource node s and connect it to the source node with
token i (assuming an arbitrary ordering of the tokens from 1 to k) by an edge
labeled i. Then we shift the rest of the temporal graph in time, by increasing
all other edge labels by k. The new temporal graph D′ has asymptotically the
same age as the original and all properties have been preserved. Now, it suffices
to show that there are at least k out-disjoint journeys from s to z, because
the k edges of s respect the N(si)’s. Due to Menger’s temporal analogue, it is
equivalent to show that at least k departure times must be removed to separate
s from z. Indeed, any removal of fewer than k departure times must leave at
least n rounds during which all departure times are available (because, due to
shifting by k, the age of D′ is n+2k). Due to the fact that the original temporal
graph is connected in every round, n rounds guarantee the existence of a journey
from s to z.

5 Design Problems

So far, we have mainly presented problems in which a temporal graph is provided
somehow (either in an offline or an online way) and the goal is to solve a problem

322 O. Michail

on that graph. Another possibility is when one wants to design a desired temporal
graph. In most cases, such a temporal graph cannot be arbitrary, but it has to
satisfy some properties prescribed by the underlying application. This design
problem was introduced and studied in [46] (and its full version [47]). An abstract
definition of the problem is that we are given an underlying (di)graph G and we
are asked to assign labels to the edges of G so that the resulting temporal graph
λ(G) minimizes some parameter while satisfying some connectivity property.
The parameters studied in [46] were the maximum number of labels of an edge,
called the temporality, and the total number of labels, called the temporal cost.
The connectivity properties of [46] had to do with the preservation of a subset
of the paths of G in time-respecting versions. For example, we might want to
preserve all reachabilities between nodes defined by G, in the sense that for
every pair of nodes u, v such that there is a path from u to v in G there must
be a temporal path from u to v in λ(G). Another such property is to guarantee
in λ(G) time-respecting versions of all possible paths of G. All these can be
thought of as trying to preserve a connectivity property of a static graph in the
temporal dimension while trying to minimize some cost measure of the resulting
temporal graph.

The provided graph G represents some given static specifications, for exam-
ple the available roads between a set of cities or the available routes of buses in
the city center. In scheduling problems it is very common to have such a static
specification and to want to organize a temporal schedule on it, for example to
specify the precise time at which a bus should pass from a particular bus stop
while guaranteeing that every possible pair of stops are connected by a route.
Furthermore, it is very common that any such solution should at the same time
take into account some notion of cost. Minimizing cost parameters may be cru-
cial as, in most real networks, making a connection available and maintaining
its availability does not come for free. For example, in wireless sensor networks
the cost of making edges available is directly related to the power consumption
of keeping nodes awake, of broadcasting, of listening the wireless channel, and of
resolving the resulting communication collisions. The same holds for transporta-
tion networks where the goal is to achieve good connectivity properties with as
few transportation units as possible.

For an example, imagine that we are given a directed ring u1, u2, . . . , un and
we want to assign labels to its edges so that the resulting temporal graph has
a journey for every simple path of the ring and at the same time minimizes the
maximum number of labels of an edge. In more technical terms, we want to
determine or bound the temporality of the ring subject to the all paths property.
It is worth mentioning that the temporality (and the temporal cost) is defined
as the minimum possible achievable value that satisfies the property, as, for
example, is also the case for the chromatic number of a graph, which is defined
as the minimum number of colors that can properly color a graph. Looking at
Fig. 4, it is immediate to observe that an increasing sequence of labels on the
edges of path P1 implies a decreasing pair of labels on edges (un−1, un) and
(u1, u2). On the other hand, path P2 uses first (un−1, un) and then (u1, u2) thus

An Introduction to Temporal Graphs: An Algorithmic Perspective 323

it requires an increasing pair of labels on these edges. It follows that in order
to preserve both P1 and P2 we have to use a second label on at least one of
these two edges, thus the temporality is at least 2. Next, consider the labeling
that assigns to each edge (ui, ui+1) the labels {i, n + i}, where 1 ≤ i ≤ n and
un+1 = u1. It is not hard to see that this labeling preserves all simple paths of
the ring. Since the maximum number of labels that it assigns to an edge is 2,
we conclude that the temporality is also at most 2. Taking both bounds into
account, we may conclude that the temporality of preserving all simple paths of
a directed ring is 2. Moreover, it holds that the temporality of graph G is lower
bounded by the maximum temporality of its subgraphs, because if a labeling
preserves all paths of G then it has to preserve all paths of any subgraph of G,
paying every time the temporality of the subgraph. So, for example, if the input
graph G contains a directed ring then the temporality of G must be at least 2
(and could be higher depending on the structure of the rest of the graph).

u1

u2

u3u4

u5

un−1

un

P1

P2

Fig. 4. Path P2 forces a second label to appear on either (un−1, un) or (u1, u2).

Rings have very small temporality w.r.t. the all paths property, however
there is a large family of graphs with even smaller. This is the family of directed
acyclic graphs (DAGs). DAGs have the very convenient property that they can
be topologically sorted. In fact, DAGs are the only digraphs that satisfy this
property. A topological sort of a digraph G is a linear ordering of its nodes such
that if G contains an edge (u, v) then u appears before v in the ordering. So,
we can order the nodes from left to right and have all edges pointing to the
right. Now, we can assign to the nodes the indices 1, 2, . . . , n in ascending order
from left to right and then assign to each edge the label of its tail, as shown
in Fig. 5. In this way, every edge obtains exactly one label and every path of G
has been converted to a journey, because every path moves from left to right
thus always moves to greater node indices. As these indices are also the labels
of the corresponding edges, the path has strictly increasing labels which makes
it a journey. This, together with the fact that the temporality is at least 1 in all

324 O. Michail

1
2 4

5

6u1 u2 u3 u4 u5 u6 u7

1

2

3

3

Fig. 5. A topological sort of a DAG. Edges are labeled by the indices of their tails
(which are strictly increasing from left to right) and this labeling converts every possible
path of the dag to a journey. For example, (u1, u2, u3, u5, u7) is a journey because its
labels (1, 2, 3, 5) are strictly increasing.

graphs with non-empty edge sets, shows that the temporality of any DAG w.r.t.
the all paths property is 1.

In both of the above examples, all paths could be preserved by using very few
labels per edge. One may immediately wonder whether converting all paths to
journeys can always be achieved with few labels per edge, e.g. a constant number
of labels. However, a more careful look at the previous examples may provide a
first indication that this is not the case. In particular, the ring example suggests
that cycles can cause an increase of temporality, compared to graphs without
cycles, like DAGs. Of course, a single ring only provides a very elementary expo-
sition of this phenomenon, however as proved in [46], this core observation can
be extended to give a quite general method for lower bounding the temporality.
The idea is to identify a subset of the edges of G such that, for every possible
permutation of these edges, G has a path following the direction of the permuta-
tion. Such subsets of edges, with many interleaved cycles, are called edge-kernels
(see Fig. 6 for an example) and it can be proved that the preservation of all
paths of an edge-kernel on k edges yields a temporality of at least k. To see this,
consider an edge-kernel K = {e1, e2, . . . , ek} and order increasingly the labels of
each edge. Now take an edge with maximum first label, move from it to an edge
of maximum second label between the remaining edges, then move from this to
an edge of maximum third label between the remaining edges, and so on. All
these moves can be performed because K is an edge-kernel, thus there is a path
no matter which permutation of the edges we choose. As in step i we are on the
edge e with maximum i-th label, we cannot use the 1st, 2nd, . . ., i-th labels of
the next edge to continue the journey because none of these can be greater than
the i-th label of e. So, we must necessarily use the (i + 1)-th label of the next
edge, which by induction shows that in order to go through the k-th edge in this
particular permutation we need to use a kth label on that edge.

Also, as stated above, the temporality of a graph w.r.t to the all paths prop-
erty is always lower bounded by the temporality of any of its subgraphs. As a
consequence, we can obtain a lower bound on the temporality of a graph or of a
whole graph family by identifying a large edge-kernel in it. For a simple appli-
cation of this method, it is possible to show that in order to preserve all paths
of a complete digraph, at least �n/2	 labels are required on some edge. This
is done by showing that complete digraphs have an edge-kernel of size �n/2	.
Moreover, it is possible to construct a planar graph containing an edge-kernel

An Introduction to Temporal Graphs: An Algorithmic Perspective 325

e1 e2 e3

Fig. 6. The graph consists of the solid and dashed edges. The long curves highlight
some of the paths that the graph defines. Edges e1, e2, and e3 constitute an edge-kernel
of the graph, because for every possible permutation of these edges the graph has a
directed path (one of those highlighted in the figure) that traverses the edges in the
order defined by the permutation. As a result, at least 3 labels must be assigned on an
edge in order to preserve a temporal analogue of every possible path.

of size Ω(n1/3), which yields that there exist planar graphs with temporality at
least Ω(n1/3). It is worth noting that the absence of a large edge-kernel does not
necessarily imply small temporality. In fact, it is an interesting open problem
whether there are other structural properties of the underlying graph that could
cause a growth of the temporality.

The above show that preserving all paths in time can be very costly in sev-
eral cases. On the other hand, preserving only the reachabilities can always be
achieved inexpensively. In particular, it can be proved that for every strongly
connected digraph G, we can preserve a journey from u to v for every u, v for
which there exists a path from u to v in G, by using at most two labels per edge
[46]. Recall the crucial difference: now it suffices to preserve a single path from
all possible paths that go from u to v. The result is proved by picking any node
u and considering an in-tree rooted at u. We then label the edges of each level
i, counting from the leaves, with label i, so that all paths of the tree become
time-respecting (this also follows from the fact that the tree is a DAG so, as
we discussed previously, all of its paths can be preserved with a single label per
edge). Next we consider an out-tree rooted at u and we label that tree inversely,
i.e. from the root to the leaves, and beginning with the label i + 1. The first
tree has a journey from every node to u arriving by time i and the second tree
has a journey from u to every other node beginning at time i + 1. This shows
that there is a journey from every node to every other node. Moreover, this was
achieved by using at most two labels per edge because every edge of the in-tree
has a single label and every edge of the out-tree has a single label and an edge
is in the worst case used by both trees, in which case it is assigned two labels.
Furthermore, it can be proved that the temporality w.r.t. reachabilities of any
digraph G is upper bounded by the maximum temporality of its strongly con-
nected components. But we just saw that each component needs at most two
labels, thus it follows that two labels per edge are sufficient for preserving all
reachabilities of any digraph G.

326 O. Michail

Finally, we should mention an interesting relation between the temporality
and the age of a temporal graph. In particular, restricting the maximum label
that the labeling is allowed to use makes the temporality grow. For an intuition
why this happens, consider the case in which there are many maximum length
shortest paths between different pairs of nodes that all must be necessarily be
preserved in order to preserve the reachabilities. Now if it happens that all of
them pass through the same edge e but use e at many different times, then e
must necessarily have many different labels, one for each of these paths. A simple
example to further appreciate this is given in Fig. 7. In that figure, each ui-vi path
is a unique shortest path between ui and vi and has additionally length equal to
the diameter (i.e. it is also a maximum one), so we must necessarily preserve all
5 ui-vi paths. Note now that each ui-vi path passes through e via its i-th edge.
Each of these paths can only be preserved without violating d(G) by assigning
the labels 1, 2, . . . , d(G), however note that then edge e must necessarily have
all labels 1, 2, . . . , d(G). To see this, notice simply that if any label i is missing
from e then there is some maximum shortest path that goes through e at step
i. As i is missing it cannot arrive sooner than time d(G) + 1 which violates
the preservation of the diameter. Additionally, the following trade-off for the
particular case of a ring can be proved [46]: If G is a directed ring and the age
is (n − 1) + k, then the temporality of preserving all paths is Θ(n/k), when
1 ≤ k ≤ n − 1, and n − 1, when k = 0.

6 Temporal Versions of Other Standard Graph Problems:
Complexity and Solutions

Though it is not yet clear how is the complexity of combinatorial optimization
problems affected by introducing to them a notion of time, still there is evidence
that complexity increases significantly and that totally novel solutions have to

u1

u2

u3

u4

u5

v5

v1

v2

v3

v4

Fig. 7. In this example, restricting the maximum label to be at most equal to the
diameter d(G) forces the temporality to be at least d(G).

An Introduction to Temporal Graphs: An Algorithmic Perspective 327

be developed in several cases. In an early but serious attempt to answer the
above question, Orlin [60] observed that many dynamic languages derived from
NP-complete languages can be shown to be PSPACE-complete. This increase
in complexity has been also reported in [10,67]. For example, [10] studied the
computation of multicast trees minimizing the overall transmission time and to
this end proved that it is NP-complete to compute strongly connected com-
ponents in temporal graphs. Important evidence to this direction comes also
from the rich literature on labeled graphs, a more general model than temporal
graphs, with different motivation, and usually interested in different problems
than those resulting when the labels are explicitly regarded as time moments.
Several papers in this direction have considered labeled versions of polynomial-
time solvable problems, in which the goal is to minimize/maximize the number
of labels used by a solution. For example, the first labeled problem introduced in
the literature was the Labeled Minimum Spanning Tree problem, which has
several applications in communication network design. This problem is NP-hard
and many complexity and approximability results have been proposed (see e.g.
[14,40]). On the other hand, the Labeled Maximum Spanning Tree prob-
lem has been shown polynomial in [14]. In [15], the authors proved that the
Labeled Minimum Path problem is NP-hard and provided some exact and
approximation algorithms. In [58], it was proved that the Labeled Perfect
Matching problem in bipartite graphs is APX-complete (see also [66] for a
related problem).

A primary example of this phenomenon, of significant increase in complexity
when extending a combinatorial optimization problem in time, is the fundamen-
tal Maximum Matching problem. In its static version, we are given a graph
G = (V,E) and we must compute a maximum cardinality set of edges such that
no two of them share an endpoint. Maximum Matching can be solved in poly-
nomial time by the famous Edmonds’ algorithm [22] (the time is O(

√|V | · |E|)
by the algorithm of [48]). Now consider the following temporal version of the
problem, called Temporal Matching in [56]. In this problem, we are given a
temporal graph D = (V,A) and we are asked to decide whether there is a maxi-
mum matching M of the underlying static graph of D that can be made temporal
by selecting a single label l ∈ λ(e) for every edge e ∈ M . For a single-labeled
matching to be temporal it suffices to guarantee that no two of its edges have
the same label. Temporal Matching was proved in [56] to be NP-complete.
Then the problem of computing a maximum cardinality temporal matching is
immediately NP-hard, because if we could compute such a maximum tempo-
ral matching in polynomial time, we could then compare its cardinality to the
cardinality of a maximum static matching and decide Temporal Matching in
polynomial time. NP-completeness of Temporal Matching can be proved by
the sequence of polynomial-time reductions: Balanced 3SAT ≤P Balanced
Union Labeled Matching ≤P Temporal Matching. In Balanced 3SAT,
which is known to be NP-complete, every variable xi appears ni times negated
and ni times non-negated and in Balanced Union Labeled Matching we
are given a bipartite graph G = ((X,Y), E), labels L = {1, 2, ..., h}, and a label-
ing λ : E → 2L, every node ui ∈ X has precisely two neighbors vij ∈ Y , and

328 O. Michail

additionally both edges of ui have the same number of labels, and we must decide
whether there is a maximum matching M of G s.t.

⋃
e∈M λ(e) = L [56].

Another interesting problem is the Temporal Exploration problem [56].
In this problem, we are given a temporal graph and the goal is to visit all nodes of
the temporal graph by a temporal walk, that possibly revisits nodes, minimizing
the arrival time. The version of this problem for static graphs is well-known as
Graphic TSP. Though, in the static case, the decision version of the problem,
asking whether a given graph is explorable, can be solved in linear time, in the
temporal case it becomes NP-complete. Additionally, in the static case, there
is a (3/2 − ε)-approximation for undirected graphs [27] and a O(log n/ log log n)
for directed [4].

In contrast to these, it was proved in [56] that there exists some constant
c > 0 such that Temporal Exploration cannot be approximated within cn
unless P = NP, by presenting a gap introducing reduction from Hampath.
Additionally, it was proved that even the special case in which every instance
of the temporal graph is connected, cannot be approximated within (2 − ε), for
every constant ε > 0, unless P = NP. The reduction is from Hampath (input
graph G, source s). The constructed temporal graph D consists of three strongly
connected static graphs T1, T2, and T3 persisting for the intervals [1, n1 − 1],
[n1, n2 − 1], and [n2, 2n2 + n1], respectively (it will be helpful at this point to
look at Fig. 8). We can restrict attention to instances of Hampath of order at
least 2/ε, without affecting its NP-completeness. We also set n2 = n2

1 + n1 (in
fact, we can set n2 equal to any polynomial-time computable function of n1). If
G is hamiltonian, then for the arrival time, OPT, of an optimum exploration it
holds that OPT = n1 + n2 − 1 = n2

1 + 2n1 − 1 while if G is not hamiltonian,
then OPT ≥ 2n2 + 1 = 2(n2

1 + n1) + 1 > 2(n2
1 + n1), which can be shown to

introduce the desired (2−ε) gap. This negative result has been recently improved
by Erlebach et al. [23] to O(n1−ε) for any ε > 0. In the same work, an explicit
construction of continuously connected temporal graphs that require Θ(n2) steps
to be explored was also given.

On the positive side, it is not hard to show that in continuously connected
temporal graphs, Temporal Exploration can be approximated within the
temporal diameter of the temporal graph [56]. In [23], the authors additionally
studied the Temporal Exploration problem in other interesting restricted
families of temporal graphs, like temporal graphs in which the underlying graph
has treewidth k (a work explicitly concerned with the treewidth of temporal
graphs and its relation to the treewidth of static graphs is [44]), is a 2 × n grid,
a cycle, a cycle with a chord, or a bounded-degree planar graph, for which they
provided upper bounds on exploration time. See also [26] for another study of the
exploration problem in temporal graphs with periodic edge-availabilities, from a
distributed computing perspective.

Another demanding problem that becomes even more challenging in its tem-
poral version is the famous Traveling Salesman Problem, in which a graph
with non-negative costs on its edge is provided and the goal is to find a tour
visiting every node exactly once (called a TSP tour), of minimum total cost.

An Introduction to Temporal Graphs: An Algorithmic Perspective 329

G1 = G

s

V2

steps [1, n1 − 1]

(a)

V1

V2

steps [n1, n2 − 1]

(b)

V1

V2

steps [n2, 2n2 + n1]

s

(c)

Fig. 8. The temporal graph constructed by the reduction. (a) T1 (b) T2 (c) T3

In one version of the problem, introduced in [56], the digraph remains static and
complete throughout its lifetime but now each edge is assigned a cost that may
change from instance to instance. So, the dynamicity has now been transferred
from the topology to the costs of the edges. The goal is to find (by an offline cen-
tralized algorithm) a temporal TSP tour of minimum total cost, where the cost

330 O. Michail

of a tour is the sum of the costs of the time-edges that it traverses. The authors of
[56] introduced and studied the special case of this problem in which the costs are
chosen from the set {1, 2}. In particular, there is a cost function c : A → {1, 2}
assigning a cost to every time-edge of the temporal graph (see Fig. 9 for an
illustration). This is called the Temporal Traveling Salesman Problem
with Costs One and Two and abbreviated TTSP(1,2). Now observe that
the famous (static) ATSP(1,2) problem is a special case of TTSP(1,2) when the
lifetime of the temporal graph D = (V,A) is restricted to n and c(e, t) = c(e, t′)
for all edges e and times t, t′. This immediately implies that TTSP(1,2) is also
APX-hard [61] and cannot be approximated within any factor less than 207/206
[34] and the same holds for the interesting special case of TTSP(1,2) with lifetime
restricted to n, that we will also discuss.

In the static case, one easily obtains a (3/2)-factor approximation for
ATSP(1,2) by computing a perfect matching maximizing the number of ones
and then patching the edges together arbitrarily. This works well, because such
a minimum cost perfect matching can be computed in polynomial time in the
static case by Edmonds’ algorithm [22] and its cost is at most half the cost of an
optimum TSP tour, as the latter consists of two perfect matchings. The 3/2 fac-
tor follows because the remaining n/2 edges that are added during the patching
process cost at most n, which, in turn, is another lower bound to the cost of the
optimum TSP tour. This was one of the first algorithms known for ATSP(1,2).
Other approaches have improved the factor to the best currently known 5/4 [11].
Unfortunately, as we already discussed in the beginning of this section, even the
apparently simple task of computing a matching maximizing the number of ones
is not that easy in temporal graphs. A simple modification of those arguments
yields that the problem remains NP-hard if we require consecutive labels (in an
increasing ordering) of the matching to have a time difference of at least two.
Such time-gaps are necessary for constructing a time-respecting patching of the
edges of the matching. In particular, if two consecutive edges of the matching
had a smaller time difference, then the patching-edge would share time with at
least one of them and the resulting tour would not have strictly increasing labels.

Our inability to compute a temporal matching in polynomial time, still does
not exclude the possibility to find good approximations for it and then hope to
be able to use them for obtaining good approximations for TTSP(1,2). Two main
approaches were followed in [56]. One was to reduce the problem to Maximum
Independent Set (MIS) in (k+1)-claw free graphs and the other was to reduce
it to k′-Set Packing, for some k and k′ to be determined. The first approach
gives a (7/4 + ε)-approximation (= 1.75 + ε) for the generic TTSP(1,2) and
a (12/7 + ε)-approximation (≈ 1.71 + ε) for the special case of TTSP(1,2) in
which the lifetime is restricted to n (the latter is obtained by approximating a
temporal path packing instead of a matching). The second approach improves
these to 1.7 + ε for the general case and to 13/8 + ε = 1.625 + ε when the
lifetime is n. In all the above cases, ε > 0 is a small constant (not necessarily
the same in all cases) adopted from the factors of the approximation algorithms
for independent set and set packing.

An Introduction to Temporal Graphs: An Algorithmic Perspective 331

t = 1

u1 u2

u4 u3

1

2

2 2

1

2

t = 2

u1 u2

u4 u3

2

1

2 1

2

1

t = 3

u1 u2

u4 u3

2

1

2 2

2

2

t = 4

u1 u2

u4 u3

1

1

2 1

1

1

t = 5

u1 u2

u4 u3

1

1

2 2

1

2

t = 6

u1 u2

u4 u3

2

1

1 1

1

2

Fig. 9. An instance of TTSP(1,2) consisting of a complete temporal graph D = (V, A),
where V = {u1, u2, u3, u4}, and a cost function c : A → {1, 2} which is presented by the
corresponding costs on the edges. For simplicity, D is an undirected temporal graph.
Observe that the cost of an edge may change many times, e.g. the cost of u2u3 changes
5 times while of u1u4 changes only once. Here, the lifetime of the temporal graph is
6 and it is greater than |V |. The gray arcs and the nodes filled gray (meaning that
the tour does not make a move and remains on the same node for that step) represent
the TTSP tour (u1, 1, u2, 2, u3, 3, u4, 6, u1) that has cost 4 = |V | and therefore it is an
optimum TTSP tour.

We summarize now how the first of these approximations works. Consider
the static expansion H = (S,E) of D and an edge e = (u(i−1)j , uij′) ∈ E.
There are three types of conflicts, each defining a set of edges that cannot be
taken together with e in a temporal matching (with only unit time differences):
(i) Edges of the same row as e, because these violate the unit time difference
constraint (ii) edges of the same column as u(i−1)j , because these share a node
with e, thus violate the condition of constructing a matching, and (iii) edges of
the same column as uij′ , for the same reason as (ii). Next consider the graph of
edge conflicts G = (E,K), where (e1, e2) ∈ K iff e1 and e2 satisfy some of the
above constraints (observe that the node set of G is equal to the edge set of the
static expansion H). Observe that temporal matchings of D are now equivalent
to independent sets of G. Moreover, G is 4-claw free meaning that there is no
4-independent set in the neighborhood of any node. To see that it is 4-claw free,
take any e ∈ E and any set {e1, e2, e3, e4} of four neighbors of e in G. There
are only 3 constraints thus at least two of the neighbors, say ei and ej , must
be connected to e by the same constraint. But then ei and ej must also satisfy
the same constraint with each other thus they are also connected by an edge
in G. Now, from [29], there is a factor of 3/5 for MIS in 4-claw free graphs,
which implies a (3/5)-approximation algorithm for temporal matchings. Simple
modifications of the above arguments yield a 1

2+ε -approximation algorithm for

332 O. Michail

temporal matchings with time-differences at least two. Additionally, it can be
proved that a (1/c)-factor approximation for the latter problem implies a (2 −
1
2c)-factor approximation for TTSP(1,2). All these together, yield a (7/4 + ε)-
approximation algorithm for TTSP(1, 2) [56].

An immediate question, which is currently open, is whether there is a (3/2)-
factor approximation algorithm either for the general TTSP(1,2) or for its special
case with lifetime restricted to n (the reader may have observed that in the tem-
poral case we have not yet achieved even the simplest factor of the static case).

7 Linear Availabilities

An interesting family of temporal graphs consists of those temporal graphs whose
availability times are provided by some succinct representation. This could for
example be a function, which we discuss here, or a probability distribution, which
we discuss in the next section.

Such an example of a temporal graph in which a set of functions describes
the availability times of the edges is the following (for other studies on periodi-
cally varying temporal graphs the reader is encouraged to consult [16,26,60] and
references therein). The underlying graph is a complete static graph G = (V,E).
Each e ∈ E has an associated linear function of the form fe(x) = aex+be, where
x, ae, be ∈ IN≥0. For example, if an edge e has fe(x) = 3x+4, then it is available
at times 4, 7, 10, 13, 16, Clearly, the temporal graph that we obtain in this
manner is D = (V,A) where A(r) = {e ∈ E : fe(x) = r for some x ∈ IN}. If we
are additionally provided with a lifetime l of the temporal graph then we just
restrict E(r) to r ≤ l.

The above provides an immediate way for obtaining the rth instance for any
r. For every e ∈ E, the rth instance contains edge e iff (r − be)/ae is integer. It
is important to note that, in the above family of temporal graphs, algorithmic
solutions that depend at least linearly on the lifetime l are not acceptable. The
reason is that the lifetime l is provided in binary so a linear dependence on
l grows exponentially in the binary representation of l. Foremost journeys in
such graphs can be easily computed by a variation of the algorithm discussed in
Sect. 2.1.

Now consider the following problem. We are given two edges e1 and e2 with
corresponding functions fe1(x) = a1x + b1 and fe2(x) = a2x + b2 and we are
asked to determine whether there is some instance having both edges, that is, to
determine whether there exist x1 and x2 s.t. fe1(x1) = fe2(x2) ⇔ a1x1 + b1 =
a2x2 + b2 ⇔ a1x1 = a2x2 + (b2 − b1). So, in fact, we are seeking for a x2 s.t.
a1 | a2x2 + (b2 − b1) (where ‘|’ reads as “divides”) and we have reduced our
problem to the problem of determining whether c | ax + b for some x. Now
imagine a right oriented ring of c nodes numbered 0, 1, . . . , c − 1. Consider a
process beginning from node b (mod c) and making clockwise jumps of length
a in each round (where a round corresponds to an increment of x by 1). We
have that the process falls at some point on node 0 iff c | ax + b for some x.
Viewed in this way, our problem is equivalent to checking whether ax + b ≡ 0

An Introduction to Temporal Graphs: An Algorithmic Perspective 333

(mod c) is solvable for the unknown x. This, in turn, may easily take the form
ax ≡ b′ (mod c) (given that −b ≡ b′ (mod c)) for a > 0 and c > 0 (equalities to 0
correspond to trivial cases of our original problem). Clearly, we have reduced our
problem to the problem of detecting whether a modular linear equation admits
a solution which is well-known to be solvable in polynomial time. In particular,
a modular linear equation ax ≡ b′ (mod c) has a solution iff gcd(a, c) | b′ (see
e.g. [19], Corollary 31.21, p. 869). Additionally, by solving the equation we can
find all solutions modulo c in O(log c + gcd(a, c)) arithmetic operations (see e.g.
[19], p. 871).

Note that in the case where b1 = b2 = 0 then the answer to the problem is
always “yes” as a1x1 = a2x2 trivially holds for x1 = a2 and x2 = a1 (provided
that a1a2 does not exceed the lifetime of the network if a lifetime is specified).
In particular, if we are asked to determine the foremost instance containing both
edges then this reduces to the computation of lcm(a1, a2) (where lcm is the least
common multiple) which in turn reduces to the computation of gcd(a1, a2) by
the equation lcm(a1, a2) = |a1a2|/ gcd(a1, a2).

Now let us slightly simplify our model in order to obtain a solution to a more
generic version of the above problem. We restrict the edge functions aix + bi

so that bi < ai, e.g. 7x + 4. Then clearly, each such function corresponds to
the whole equivalence subclass of IN modulo ai containing bi, that is, [bi]ai

=
{bi + xai : x ∈ IN}. So, for example, 7x + 4 corresponds to {4, 11, 18, 25, . . .}
in contrast to 7x + 11 that was allowed before and would just give the subset
{11, 18, 25, . . .} of the actual class. Consider now the following problem: “We are
given a subset E′ of the edge set E and we want to determine whether there is
some instance of the temporal graph containing all edges in E′”. For simplicity,
number the edges in E′ from 1 to k. Formally, we want to determine the existence
of some time t s.t., for all i ∈ {1, 2, . . . , k}, there exists xi s.t. t = aixi + bi, or
equivalently, t ≡ bi (mod ai). Clearly, we have arrived at a set of simultaneous
linear congruences and we can now apply the following known results.

Theorem 3 (see e.g. [7], Theorem 5.5.5, p. 106). The system of congru-
ences t ≡ bi (mod ai), 1 ≤ i ≤ k, has a solution iff bi ≡ bj (mod gcd(ai, aj))
for all i = j. If the solution exists, it is unique modulo lcm(a1, a2, . . . , ak).

Corollary 1 (see e.g. [7], Corollary 5.5.6, p. 106). Let a1, a2, . . . , ak be
integers, each ≥ 2, and define a = a1a2 · · · ak, and a′ = lcm(a1, a2, . . . , ak).
Given the system S of congruences t ≡ bi (mod ai), 1 ≤ i ≤ k, we can determine
if S has a solution, using O(lg2 a) bit operations, and if so, we can find the unique
solution modulo a′, using O(lg2 a) bit operations.

We may now return to the original formulation of our model in which aix+bi

does not necessarily satisfy bi < ai. First keep in mind that tmin = maxi∈E′{bi}
is the minimum time for every edge from E′ to appear at least once (in fact,
at that time, the last edge of E′ appears). So we cannot hope to have them
all in one instance sooner than this. Now notice that aix + bi is equivalent to
aix

′ + (bi mod ai) for x′ ≥ �bi/ai	; for example, 7x + 15 is equivalent to 7x′ + 1
for x′ ≥ 2. In this manner, we obtain an equivalent setting in which again bi < ai

334 O. Michail

for all i but additionally for every i we have a constraint on x of the form x ≥ qi.
We may now ignore the constraints and apply Theorem 3 to determine whether
there is a solution to the new set of congruences as there is a solution that
satisfies the constraints iff there is one if we ignore the constraints (the reason
being that the constraints together form a finite lower bound while there is an
infinite number of solutions). If there is a solution it will be a unique solution
modulo lcm(a1, a2, . . . , ak) corresponding to an infinite number of solutions if
expanded. From these solutions we just have to keep those that are not less than
tmin (in case we want to find the actual solutions to the system).

8 Random Temporal Graphs

Another model of temporal graphs with succinct representation, is the model of
random temporal graphs. Consider the case in which each edge (of an underlying
clique) just picks independently and uniformly at random a single time-label
from [r] = {1, 2, . . . , r}. So it gets label t ∈ [r] with probability p = r−1. We
mainly present here a set of unpublished results concerning this model, jointly
developed by the author of the present article and Paul Spirakis in 2012. We also
discuss results from [2], which is a very recent paper concerned with the same
issue.

We first calculate the probability that given a specific path (u1, u2, . . . , uk+1)
of length k a journey appears on this path. We begin with the directed
case. First, let us obtain a weak but elegant upper bound. Partition [r] into
R1 = {1, . . . , �r/2	} and R2 = {�r/2	 + 1, . . . , r}. Clearly, P(journey) ≤
P(no R2R1 occurs) as any journey assignment cannot have two consecutive selec-
tions s.t. the first one is from R2 and the second from R1. So, it suffices to
calculate P(no R2R1 occurs). Notice that the assignments in which no R2R1

occurs are of the form (R1)i(R2)j for i + j = k, e.g. R1R1R2R2R2 and there
are k + 1 of them. In contrast, all possible assignments are 2k correspond-
ing to all possible ways to choose k times with repetition from {R1, R2}. So,
P(no R2R1 occurs) = k/2k (as all assignments are equiprobable, with proba-
bility 2−k) and we conclude that P(journey) ≤ k/2k, which, interestingly, is
independent of r; e.g. for k = 6 we get a probability of at most 0.09375 for a
journey of length 6 to appear.

For any specific assignment of labels t1, t2, . . . , tk of this path, where ti ∈ [r]
([r] = {1, 2, . . . , r}), the probability that this specific assignment occurs is simply
pk. So, all possible assignments are equiprobable and we get

P(journey) =
strictly increasing assignments

all possible assignments
=

(
r
k

)
rk

,

where
(

r
k

)
follows from the fact that any strictly increasing assignment is just

a unique selection of k labels from the r available and any such selection cor-
responds to a unique strictly increasing assignment. So, for example, for k = 2
and r = 10 we get a probability of 9/20 which is a little smaller than 1/2 as
expected, due to the fact that there is an equal number of strictly increasing

An Introduction to Temporal Graphs: An Algorithmic Perspective 335

and strictly decreasing assignments but we also loose all remaining assignments
which in this case are only the ties (that is, those for which t1 = t2).

Now it is easy to compute the expected number of journeys of length k. Let
S be the set of all directed paths of length k and let Yp be an indicator random
variable which is 1 if a journey appears on a specific p ∈ S and 0 otherwise.
Let also Xk be a random variable giving the number of journeys of length k.
Clearly, E(Xk) = E(

∑
p∈S Yp) =

∑
p∈S E(Yp) = |S| · P(a journey appears on a

specific path of length k) = n(n − 1) · · · (n − k)
(

r
k

)
r−k ≥ (n − k)k

(
r
k

)
r−k. Now,

if we set n ≥ r/
(

r
k

)(1/k) + k, we get E(X) ≥ 1. A simpler, but weaker, formula
can be obtained by requiring n ≥ r + k. In this case, we get E(X) ≥ (

r
k

)
. So, for

example, a long journey of size k = n/2 that uses all available labels is expected
to appear provided that n ≥ 2r (to see this, simply set k = r).

We will now try to obtain bounds on the probability that a journey of length
k appears on a random temporal graph. Let us begin from a simple case, namely
the one in which k = 4, that is, we want to calculate the probability that
a journey of length 4 appears. Let the r.v. X be the number of journeys of
length 4 and let Xp be an indicator for path p ∈ S, where S is the set of
all paths of length 4. Denote n(n − 1) · · · (n − k) by (n)k+1 First note that
E(X) = (n)5

(
r
4

)
r−4 = Θ(n5) and clearly goes to ∞ for every r. However, we

cannot yet conclude that P(4 − journey) is also large. To show this we shall
apply the second moment method. We will make use of Chebyshev’s inequality
P(X = 0) ≤ Var(X)/[E(X)]2 and of the following well-known theorem:

Theorem 4 [54]. Suppose X =
∑n

i=1 Xi, where Xi is an indicator for event
Ai. Then,

Var(X) ≤ E(X) +
∑

i

P[Ai]
∑
j:j∼i

P(Aj | Ai)

︸ ︷︷ ︸
Δi

,

where i ∼ j denotes that i depends on j. Moreover, if Δi ≤ Δ for all i, then

Var(X) ≤ E(X)(1 + Δ).

So, in our case, we need to estimate Δp =
∑

p′∼p P(Ap′ | Ap). If we show
that Δp ≤ Δ for all p ∈ S then we will have that Var(X) ≤ E(X)(1 + Δ). If
we additionally manage to show that Δ/E(X) = o(1), then Δ = o(E(X)) which
tells us that Var(X) = o([E(X)]2). Putting this back to Chebyshev’s inequality
we get that P(X = 0) = o(1) as needed.

So, let us try to bound Δp appropriately. Clearly, p′ cannot be a journey if it
visits some edges of p in inverse order (than the one they have on p). Intuitively,
the two paths must have the same orientation. We distinguish cases based on
the number of edges shared by the two paths. First of all, note that if p′ and p
have precisely i edges in common then P(Ap′ | Ap) ≤ (

r
k−i

)
/rk−i which becomes(

r
4−i

)
/r4−i in our case. The reason is that the k − i edges of p′ that are not

shared with p must at least obtain an increasing labeling. If we also had taken
into account that that labeling should be consistent to the labels of the shared

336 O. Michail

edges then this would decrease the probability. So we just use an upper bound
which is sufficient for our purposes.

Case 1: 1 shared edge. If a single edge is shared then there are k
(
n−k+1

k−1

)
(k − 1)!4 = 16 · 3!

(
n−5
3

)
different paths p′ achieving this as there are k ways

to choose the shared edge,
(
n−k+1

k−1

)
to choose the missing nodes (nodes of p′

not shared with p), (k − 1)! ways to order those nodes, and, in this particular
example, 4 ways to arrange the nodes w.r.t. the shared edge. In particular, we
can put all nodes before the shared edge, all nodes after, 2 nodes before and 1
node after, or 1 node before and 2 nodes after. We conclude that the probability
that

∑
|p′∩p|=1 P(Ap′ | Ap) ≤ 16 · 3!

(
n−5
3

)(
r
3

)
/r3 = O(n3).

Case 2: 2 shared edges. In this case, we can have all possible
(
k
2

)
=

(
4
2

)
2-sharings. Let us denote by e1, e2, e3, e4 the edges of p. For the sharings (e1, e2),
(e2, e3), and (e3, e4) we get in total 3

(
n−k−1

k−2

)
(k − 2)!4 = 24

(
n−5
2

)
paths. For

(e1, e3), (e2, e4) we get 2(n − k − 1) = 2(n − 5). For (e1, e4) we get (n − 5) in
case we connect the 2 edges by an intermediate node (i.e. go from the head of
e1 to some u not in p and then form u to the tail of e4) and 2(n − 5) in case
we connect e1 directly to e4 and use an external node either before or after, so
in total 3(n−5) paths. Putting these all together we get

∑
|p′∩p|=2 P(Ap′ | Ap) ≤

[24
(
n−5
2

)
+ 5(n − 5)]

(
r
2

)
/r2 = O(n2).

Case 3: 3 shared edges. Here there are just 2 choices for the 3 shared edges,
namely (e1, e2, e3) and (e2, e3, e4), the reason being that if the edges are not
consecutive then a fourth edge must be necessarily shared and the 2 paths
would coincide. As there are (n − k − 1) ways to choose the missing node and
2 ways to arrange that node we get 2(n − k − 1)2 = 4(n − 5) and consequently∑

|p′∩p|=3 P(Ap′ | Ap) ≤ 4(n − 5)
(
r
1

)
/r1 = O(n).

So, we have Δp ≤ Δ = O(n3) and Δ/E(X) = O(n3)/Θ(n5) = o(1)
which applied to Theorem 4 gives Var(X) ≤ E(X)(1 + Δ) = o([E(X)]2) and
this in turn applied to Chebyshev’s inequality gives the desired P(X = 0) ≤
Var(X)/[E(X)]2 = o(1). We conclude that:

Theorem 5 [54]. For all r ≥ 4, almost all random temporal graphs contain a
journey of length 4.

Now let us turn back to our initial (n)k+1

(
r
k

)
r−k formula of E(X) (which

holds for all k). This gives E(X) ≥ (n)k+1/kk, which, for all k = o(n) and all
r ≥ k, goes to ∞ as n grows. We will now try to generalize the ideas developed in
the k = 4 case to show that for any not too large k almost all random temporal
graphs contain a journey of length k. Take again a path p of length k and another
path p′ of length k that shares i edges with p. We will count rather crudely but
in a sufficient way for our purposes. As again the shared edges can be uniquely
oriented in the order they appear on p, there are at most

(
k
i

)
ways to choose

the shared edges (at most because some selections force more than i sharings to
occur). Counting the tail of the first edge and the head of every edge, these i
edges occupy at least i + 1 nodes, so at most k + 1 − i − 1 = k − i nodes are
missing from p′ and thus there are at most

(
n−k−1

k−i

)
ways to choose those nodes.

An Introduction to Temporal Graphs: An Algorithmic Perspective 337

Moreover there are at most (k − i)! ways to permute them on p′. Finally, we
have to place those nodes relative to the i shared edges. In the worst case, the i
edges define i+1 slots that can be occupied by the nodes in

(
k−i+(i+1)−1

(i+1)−1

)
=

(
k
i

)

ways. In total, we have N =
(
k
i

)2(n−k−1
k−i

)
(k − i)!

(
k
i

)
different paths and the

corresponding probability is

∑
|p′∩p|=i

P(Ap′ | Ap) ≤ N

(
r

k − i

)
/rk−i ≤

(
k

i

)2(
n − k − 1

k − i

)

≤
(

k2

i

)(
n − k − 1

k − i

)
.

So we have that

Δp =
k−1∑
i=1

∑
|p′∩p|=i

P(Ap′ | Ap) ≤
k∑

i=0

(
k2

i

)(
n − k − 1

k − i

)

=
(

n + k2 − k − 1
k

)
≤

(
n + k2

k

)
= Δ.

The first equality follows from the Chu-Vandermonde identity
∑k

i=0

(
m
i

)(
z

k−i

)
=(

m+z
k

)
by setting z = n − k − 1 and m = k2 as needed in our case.

Thus, we have Δ =
(
n+k2

k

)
and for k2 = o(n) we have Δ ∼ (n)k/k!. At

the same time we have E(X) = (n)k+1

(
r
k

)
/rk ∼ (n)k+1/k! (for large r), thus

Δ/E(X) ∼ (n)k/(n)k+1 = o(1) as needed. So we have Var(X) = o([E(X)]2) and
we again get that P(X = 0) ≤ Var(X)/[E(X)]2 = o(1). Captured in a theorem:

Theorem 6 [54]. For all k = o(
√

n) and all r = Ω(n), almost all random
temporal graphs contain a journey of length k.

However, there seems to be some room for improvements if one counts more
carefully.

Now take any two nodes s and t in V . We want to estimate the arrival time
of a foremost journey from s to t. Let X be the random variable of the arrival
time of the foremost s-t journey. Let us focus on P(X ≤ 2). Denote by l(u, v)
the label chosen by edge (u, v). Given a specific node u ∈ V \{s, t} we have that
P(l(s, u) = 1 or l(u, t) = 2) = 1 − P(l(s, u) = 1 and l(u, t) = 2) = 1 − r−2. Thus,
P(∀u ∈ V \{s, t} : l(s, u) = 1 or l(u, t) = 2) = (1 − r−2)n−2 We have:

P(X ≤ 2) = 1 − P(X > 2)
= 1 − P(l(s, t) /∈ {1, 2})P(∀u ∈ V \{s, t} : l(s, u) = 1 or l(u, t) = 2)

= 1 − r − 2
r

(1 − r−2)n−2

≥ 1 − (1 − r−2)n−2

≥ 1 − e−(n−2)/r2
, for n ≥ 2 and r >

√
n − 1.

338 O. Michail

So, even if r = Θ(
√

n) we have that P(X ≤ 2) → 1−1/ec (for some constant
c ≤ 1) as n goes to infinity, so we have a constant probability of arriving by time
2 at t. Clearly, for smaller values of r (smaller w.r.t. n) we get even better chances
of arriving early. For another example, let n = 104 and r =

√
n/ log n = 25. As

P(X ≤ 2) is almost equal to 1 − (1 − r−2)n−2 we get that it is almost equal to
1 in this particular case. For even greater r, e.g. r =

√
n = 100, we still go very

close to 1.
The following proposition gives a bound on the temporal diameter of undi-

rected random temporal graphs, by exploiting well-known results of the Erdös-
Renyi (G(n, p)) model (cf. [13]).

Proposition 1 [54]. Almost no temporal graph has temporal diameter less than
[(ln n + c + o(1))/n]r.

To see this, observe that if k < [(ln n + c + o(1))/n]r then p = k/r <
(ln n + c + o(1))/n. Consider now the temporal subgraph consisting only of the
first k labels [k] = {1, 2, . . . , k}. By the connectivity threshold of the static
G(n, p) model this subgraph is almost surely disconnected implying that almost
surely the temporal diameter is greater than k.

So, for example, if r = O(n) almost no temporal graph has temporal diameter
o(log n). Note, however, that the above argument is not sufficient to show that
almost every temporal graph has temporal diameter at least [(ln n+c+o(1))/n]r.
Though it shows that in almost every graph the subgraph consisting of the labels
[k], for k ≥ �r(ln n + c + o(1))/n� is connected, it does not tell us whether
that connectivity also implies temporal connectivity (that is, the existence of
journeys).

We should also mention that [2] studied the temporal diameter of the directed
random temporal graph model for the case of r = n, and proved that it is Θ(log n)
w.h.p. and in expectation. In fact, they showed that information dissemination is
very fast w.h.p. even in this hostile network with regard to availability. Moreover,
they showed that the temporal diameter of the clique is crucially affected by the
clique’s lifetime, α, e.g., when α is asymptotically larger than the number of
vertices, n, then the temporal diameter must be Ω(α

n log n). They also defined
the Price of Randomness metric in order to capture the cost to pay per link
and guarantee temporal reachability of all node-pairs by local random available
times w.h.p.

The idea of [2] to establish that the temporal diameter is O(log n) is as
follows. Given an instance of such a random temporal clique, the authors pick any
source node s and any sink node t and present an algorithm trying to construct
a journey from s arriving at t at most by time O(log n). The algorithm expands
two fronts, one beginning from s and moving forward (in fact, an out-tree rooted
at s) and one from t moving backward (an in-tree rooted at t). Beginning from
s, all neighbors that can be reached in one step in the interval (0, c1 log n], are
visited. Next the front moves on to all neighbors of the previous front that can be
reached in one step in the interval (c1 log n, c1 log n + c2]. The process continues
in the same way, every time replacing the current front by all its neighbors that

An Introduction to Temporal Graphs: An Algorithmic Perspective 339

can be reached in the next c2 steps. A similar backward process is executed
from t. These processes are executed for d = Θ(log n) steps resulting in the
final front of s and the final front of t. Note that the front of t begins from the
interval (2c1 log n + (2d − 1)c2, 2c1 log n + 2dc2] and every time subtracts a c2.
Finally, the algorithm tries to find an edge from the final front of s to the final
front of t with the appropriate label in order to connect the journey from s to
the journey to t in a time-respecting way and obtain the desired s-t journey
of duration Θ(log n) (determined by the interval of the first front of t, and in
particular by 2c1 log n + 2dc2). Via probabilistic analysis it can be proved that,
with probability at least 1 − 1/n3, the final front of s consists of Θ(

√
n) nodes

and that the same holds for the front of t. Moreover, it can be proved that again
with probability at least 1 − 1/n3 the desired edge for the final front of s to the
final front of t exists, and thus we can conclude that there is a probability of
at least 1 − 3/n3 of getting from s to t by a journey arriving at most by time
Θ(log n). Finally, it suffices to observe that the probability that there exists a
pair of nodes s, t ∈ V for which the algorithm fails is less than n2(3/n3) = 3/n,
thus with probability at least (1 − 3/n) the temporal diameter is O(log n), as
required.

References

1. Aaron, E., Krizanc, D., Meyerson, E.: DMVP: foremost waypoint coverage of time-
varying graphs. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747,
pp. 29–41. Springer, Heidelberg (2014)

2. Akrida, E.C., Gasieniec, L., Mertzios, G.B., Spirakis, P.G.: Ephemeral networks
with random availability of links: Diameter and connectivity. In: Proceedings of
the 26th ACM symposium on Parallelism in algorithms and architectures (SPAA),
pp. 267–276. ACM (2014)

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18, 235–253
(2006)

4. Asadpour, A., Goemans, M.X., Madry, A., Gharan, S.O., Saberi, A.: An
O(log n/ log log n)-approximation algorithm for the asymmetric traveling sales-
man problem. In: Proceedings of the Twenty-First Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 379–389. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA (2010). http://dl.acm.org/citation.
cfm?id=1873601.1873633

5. Augustine, J., Pandurangan, G., Robinson, P., Upfal, E.: Towards robust and
efficient computation in dynamic peer-to-peer networks. In: Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 551–569. SIAM (2012)

6. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover
time of a simple random walk on evolving graphs). In: Aceto, L., Damg̊ard, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

7. Bach, E., Shallit, J.: Algorithmic Number Theory. Efficient algorithms, vol. 1. MIT
press, Cambridge (1996)

http://dl.acm.org/citation.cfm?id=1873601.1873633
http://dl.acm.org/citation.cfm?id=1873601.1873633

340 O. Michail

8. Baker, B., Shostak, R.: Gossips and telephones. Discrete Math. 2(3), 191–193
(1972)

9. Berman, K.A.: Vulnerability of scheduled networks and a generalization of
Menger’s theorem. Networks 28(3), 125–134 (1996)

10. Bhadra, S., Ferreira, A.: Complexity of connected components in evolving graphs
and the computation of multicast trees in dynamic networks. In: Pierre, S.,
Barbeau, M., An, H.-C. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp.
259–270. Springer, Heidelberg (2003)

11. Bläser, M.: A 3/4-approximation algorithm for maximum ATSP with weights zero
and one. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004
and APPROX 2004. LNCS, vol. 3122, pp. 61–71. Springer, Heidelberg (2004)

12. Bollobás, B.: Modern Graph Theory. Graduate Texts in Mathematics. Springer,
Heidelberg (1998). (Corrected edition, July 1, 1998)

13. Bollobás, B.: Random Graphs. Cambridge Studies in Advanced Mathematics, 2nd
edn. Cambridge University Press, Cambridge (2001)

14. Broersma, H., Li, X.: Spanning trees with many or few colors in edge-colored
graphs. Discuss. Math. Graph Theory 17(2), 259–269 (1997)

15. Broersma, H., Li, X., Woeginger, G., Zhang, S.: Paths and cycles in colored graphs.
Australas. J. Comb. 31, 299–311 (2005)

16. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emerg. Distrib. Syst. 27(5), 387–408 (2012)

17. Clementi, A.E., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time
in edge-markovian dynamic graphs. In: Proceedings of the 27th ACM Symposium
on Principles of Distributed Computing (PODC), pp. 213–222 (2008). http://doi.
acm.org/10.1145/1400751.1400781

18. Clementi, A.E., Pasquale, F., Monti, A., Silvestri, R.: Communication in dynamic
radio networks. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on
Principles of Distributed Computing (PODC), pp. 205–214. ACM (2007)

19. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press and McGraw-Hill Book Company, Cambridge (2001)

20. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance.
In: Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed
Computing (PODC), pp. 1–12. ACM (1987)

21. Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z., Viola, E.: On the complexity
of information spreading in dynamic networks. In: Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
717–736. SIAM (2013)

22. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)
23. Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. In:

Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9134, pp. 444–455. Springer, Heidelberg (2015)

24. Ferreira, A.: Building a reference combinatorial model for manets. IEEE Netw.
18(5), 24–29 (2004)

25. Fleischer, L., Tardos, É.: Efficient continuous-time dynamic network flow algo-
rithms. Oper. Res. Lett. 23(3), 71–80 (1998)

26. Flocchini, P., Mans, B., Santoro, N.: Exploration of periodically varying graphs. In:
Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 534–543.
Springer, Heidelberg (2009)

http://doi.acm.org/10.1145/1400751.1400781
http://doi.acm.org/10.1145/1400751.1400781

An Introduction to Temporal Graphs: An Algorithmic Perspective 341

27. Gharan, S.O., Saberi, A., Singh, M.: A randomized rounding approach to the trav-
eling salesman problem. In: Proceedings of the IEEE 52nd Annual Symposium on
Foundations of Computer Science (FOCS), pp. 550–559. IEEE Computer Society,
Washington, DC (2011). http://dx.doi.org/10.1109/FOCS.2011.80

28. Haeupler, B., Kuhn, F.: Lower bounds on information dissemination in dynamic
networks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 166–180.
Springer, Heidelberg (2012)

29. Halldórsson, M.M.: Approximating discrete collections via local improvements. In:
Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 160–169. Society for Industrial and Applied Mathematics (1995)

30. Harary, F., Gupta, G.: Dynamic graph models. Math. Comput. Model. 25(7),
79–87 (1997)

31. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and
broadcasting in communication networks. Networks 18(4), 319–349 (1988)

32. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
33. Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spread-

ing. In: Proceedings of the IEEE 41st Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 565–574. IEEE (2000)

34. Karpinski, M., Schmied, R.: On improved inapproximability results for the shortest
superstring and related problems. In: Proceedings of 19th CATS, pp. 27–36 (2013)

35. Kempe, D., Kleinberg, J.: Protocols and impossibility results for gossip-based com-
munication mechanisms. In: Proceedings of the IEEE 43rd Annual Symposium on
Foundations of Computer Science (FOCS), pp. 471–480. IEEE (2002)

36. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for
temporal networks. In: Proceedings of the 32nd annual ACM symposium on Theory
of computing (STOC), pp. 504–513 (2000). http://doi.acm.org/10.1145/335305.
335364

37. Kontogiannis, S., Michalopoulos, G., Papastavrou, G., Paraskevopoulos, A.,
Wagner, D., Zaroliagis, C.: Analysis and experimental evaluation of time-dependent
distance oracles. In: Proceedings of the Seventeenth Workshop on Algorithm Engi-
neering and Experiments (ALENEX), pp. 147–158 (2015)

38. Kontogiannis, S., Zaroliagis, C.: Distance oracles for time-dependent networks.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014.
LNCS, vol. 8572, pp. 713–725. Springer, Heidelberg (2014)

39. Kostakos, V.: Temporal graphs. Phys. A Stat. Mech. Appl. 388(6), 1007–1023
(2009)

40. Krumke, S.O., Wirth, H.C.: On the minimum label spanning tree problem. Inf.
Process. Lett. 66(2), 81–85 (1998)

41. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic net-
works. In: Proceedings of the 42nd ACM symposium on Theory of Comput-
ing (STOC), pp. 513–522. ACM, New York (2010). http://doi.acm.org/10.1145/
1806689.1806760

42. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT News
42, 82–96 (2011). http://doi.acm.org/10.1145/1959045.1959064 (Distributed Com-
puting Column, Editor: Idit Keidar)

43. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures, vol. 188.
Morgan Kaufmann, San Francisco (1992)

44. Mans, B., Mathieson, L.: On the treewidth of dynamic graphs. In: Du, D.-Z.,
Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 349–360. Springer,
Heidelberg (2013)

http://dx.doi.org/10.1109/FOCS.2011.80
http://doi.acm.org/10.1145/335305.335364
http://doi.acm.org/10.1145/335305.335364
http://doi.acm.org/10.1145/1806689.1806760
http://doi.acm.org/10.1145/1806689.1806760
http://doi.acm.org/10.1145/1959045.1959064

342 O. Michail

45. Menger, K.: Zur allgemeinen kurventheorie. Fundamenta Mathematicae 10(1),
96–115 (1927)

46. Mertzios, G.B., Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Temporal network
optimization subject to connectivity constraints. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966,
pp. 657–668. Springer, Heidelberg (2013)

47. Mertzios, G.B., Michail, O., Spirakis, P.G.: Temporal network optimization subject
to connectivity constraints. CoRR abs/1502.04382 (2015), full version of [MMCS13]

48. Micali, S., Vazirani, V.V.: An O(
√|V |·|E|) algorithm for finding maximum match-

ing in general graphs. In: Proceedings of the IEEE 21st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 17–27. IEEE (1980)

49. Michail, O.: Terminating distributed construction of shapes and patterns in a fair
solution of automata. In: Proceedings of the 34th ACM Symposium on Principles
of Distributed Computing (PODC) (2015) (to appear)

50. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population proto-
cols. Theor. Comput. Sci. 412(22), 2434–2450 (2011). http://dx.doi.org/10.1016/
j.tcs.2011.02.003

51. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: New Models for Population Pro-
tocols. In: ynch, N.A. (ed.) Synthesis Lectures on Distributed Computing Theory.
Morgan and Claypool (2011)

52. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Naming and counting in anony-
mous unknown dynamic networks. In: Higashino, T., Katayama, Y., Masuzawa, T.,
Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255,
pp. 281–295. Springer, Heidelberg (2013)

53. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Causality, influence, and computa-
tion in possibly disconnected synchronous dynamic networks. J. Parallel Distrib.
Comput. 74(1), 2016–2026 (2014)

54. Michail, O., Spirakis, P.G.: Unpublished work on random temporal graphs (2012)
55. Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed stable

network construction. In: Proceedings of the 33rd ACM Symposium on Principles
of Distributed Computing (PODC), pp. 76–85. ACM (2014). http://doi.acm.org/
10.1145/2611462.2611466

56. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. In:
Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS,
vol. 8635, pp. 553–564. Springer, Heidelberg (2014)

57. Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method, vol. 23.
Springer, Heidelberg (2002)

58. Monnot, J.: The labeled perfect matching in bipartite graphs. Inf. Process. Lett.
96(3), 81–88 (2005)

59. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs.
In: Proceedings of the 2005 Joint Workshop on Foundations of Mobile Comput-
ing (DIALM-POMC), pp. 104–110 (2005). http://doi.acm.org/10.1145/1080810.
1080828

60. Orlin, J.B.: The complexity of dynamic languages and dynamic optimization prob-
lems. In: Proceedings of the 13th Annual ACM Symposium on Theory of Comput-
ing (STOC), pp. 218–227. ACM (1981)

61. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with
distances one and two. Math. Oper. Res. 18(1), 1–11 (1993)

62. Peleg, D.: Distributed computing: a locality-sensitive approach. SIAM Monographs
on Discrete Mathematics and Applications, p. 5 (2000)

http://dx.doi.org/10.1016/j.tcs.2011.02.003
http://dx.doi.org/10.1016/j.tcs.2011.02.003
http://doi.acm.org/10.1145/2611462.2611466
http://doi.acm.org/10.1145/2611462.2611466
http://doi.acm.org/10.1145/1080810.1080828
http://doi.acm.org/10.1145/1080810.1080828

An Introduction to Temporal Graphs: An Algorithmic Perspective 343

63. Pittel, B.: On spreading a rumor. SIAM J. Appl. Math. 47(1), 213–223 (1987)
64. Ravi, R.: Rapid rumor ramification: approximating the minimum broadcast time.

In: Proceedings of the IEEE 35th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 202–213. IEEE (1994)

65. Scheideler, C.: Models and techniques for communication in dynamic networks.
In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, p. 27. Springer,
Heidelberg (2002)

66. Tanimoto, S.L., Itai, A., Rodeh, M.: Some matching problems for bipartite graphs.
J. ACM 25(4), 517–525 (1978)

67. Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost jour-
neys in dynamic networks. Int. J. Found. Comput. Sci. 14(02), 267–285 (2003)

Random Surfing Without Teleportation

Athanasios N. Nikolakopoulos1,2 and John D. Garofalakis1,2(B)

1 Computer Engineering and Informatics Department, University of Patras,
Patras, Greece

{nikolako,garofala}@ceid.upatras.gr
2 CTI and Press “Diophantus”, Patras, Greece

Abstract. In the standard Random Surfer Model, the teleportation
matrix is necessary to ensure that the final PageRank vector is well-
defined. The introduction of this matrix, however, results in serious prob-
lems and imposes fundamental limitations to the quality of the ranking
vectors. In this work, building on the recently proposed NCDawareRank
framework, we exploit the decomposition of the underlying space into
blocks, and we derive easy to check necessary and sufficient conditions
for random surfing without teleportation.

Keywords: Link analysis · Ranking · PageRank · Teleportation · Non-
negative matrices · Decomposability

1 Introduction and Motivation

The astonishing amount of information available on the Web and the highly
variable quality of its content generate the need for an absolute measure of
importance for Web pages, that can be used to improve the performance of Web
search. Link Analysis algorithms such as the celebrated PageRank, try to answer
this need by using the link structure of the Web to assign authoritative weights
to the pages [16].

PageRank’s approach is based on the assumption that links convey human
endorsement. For example, the existence of a link from page 3 to page 7 in
Fig. 1(a) is seen as a testimonial of the importance of page 7. Furthermore, the
amount of importance conferred to page 7 is proportional to the importance
of page 3 and inversely proportional to the number of pages 3 links to. In their
original paper, Page et al. [16] imagined of a random surfer who, with probability
α follows the links of a Web page, and with probability 1−α jumps to a different
page uniformly at random. Then, following this metaphor, the overall importance
of a page was defined to be equal to the fraction of time this random surfer spends
on it, in the long run.

Formulating PageRank’s basic idea with a mathematical model, involves
viewing the Web as a directed graph with Web pages as vertices and hyper-
links as edges. Given this graph, we can construct a row-normalized hyperlink
matrix H, whose element [H]uv is one over the outdegree of u if there is a link

c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 344–357, 2015.
DOI: 10.1007/978-3-319-24024-4 19

Random Surfing Without Teleportation 345

1

3

2

5

4 7

6

(a) PageRank

1

3

2

5

4 7

6

(b) NCDawareRank

Fig. 1. In the left figure we see a tiny graph as viewed by PageRank and in the right,
the same graph as viewed by NCDawareRank. Same colored nodes belong to the same
block and are considered related according to a given criterion.

from u to v, or zero otherwise. The matter of dangling nodes is fixed with some
sort of stochasticity adjustment, thereby transforming the initial matrix H, to
a stochastic matrix.

A second adjustment is needed to certify that the final matrix is irreducible
and aperiodic, so that it possesses a unique positive stationary probability dis-
tribution. That is ensured by the introduction of the damping factor α and a
teleportation matrix E, usually defined by E = 1

neeᵀ. The resulting matrix is
given by:

G = αH + (1 − α)E (1)

PageRank vector is the unique stationary distribution of the Markov chain cor-
responding to matrix G.

The choice of the damping factor has received much attention since it deter-
mines the fraction of the importance of a node that is propagated through the
edges rather than scattered throughout the graph via the teleportation matrix.
Obviously, picking a very small damping factor ignores the link structure of
the graph and results in uninformative ranking vectors. On the other hand,
setting the damping factor very close to one, causes a number of serious prob-
lems. From a computational perspective, as α → 1, the number of iterations
till convergence to the PageRank vector grows prohibitively, and also makes
the computation of the rankings numerically ill-conditioned [11,12]. Moreover,
from a qualitative point of view, various studies indicate that damping factors
close to 1 result into counterintuitive ranking vectors where all the PageRank
gets concentrated mostly in irrelevant nodes, while the Web’s core component is
assigned null rank [1,4,5,13]. Finally, the very existence of the damping factor
and the related teleportation matrix “opens the door” to direct manipulation of
the ranking score through link spamming [6,8].

346 A.N. Nikolakopoulos and J.D. Garofalakis

In the literature there have been proposed several ranking methods that
try to address these issues. Boldi [3] proposed an algorithm that eliminates
PageRank’s dependency on the arbitrarily chosen parameter α by integrating
the ranking vector over the entire range of possible damping factors. Baeza-Yates
et al. [2] introduced a family of link based ranking algorithms parametrised by
the selection of a damping function that describes how rapidly the importance of
paths decays as the path length increases. Constantine and Gleich [6] proposed
a ranking method that considers the influence of a population of random surfers,
each choosing its own damping factor from a probability distribution.

All the above methods attack the problem from the damping factor point
of view, while taking the teleportation matrix as granted. Nikolakopoulos and
Garofalakis [13], on the other hand, focus on the teleportation model itself.
Building on the intuition behind Nearly Decomposable Systems [7,19,20], the
authors proposed NCDawareRank ; a novel ranking framework that generalizes
and refines PageRank by enriching the teleportation model in a computation-
ally efficient way. NCDawareRank decomposes the underlying space into NCD
blocks, and uses these blocks to define indirect relations between the nodes in the
graph (Fig. 1(b)) which lead to the introduction of a new inter-level proximity
component. A comprehensive set of experiments done by the authors using real
snapshots of the Web Graph showed that the introduction of this decomposi-
tion alleviates the negative effects of uniform teleportation and produces ranking
vectors that display low sensitivity to sparsity and, at the same time, exhibit
resistance to direct manipulation through link spamming (see the discussion in
Sects. 4.2 and 4.3 in [13] for further details). However, albeit reducing some of its
negative effects, NCDawareRank model also includes the standard teleportation
matrix as a purely mathematical necessity. But, is it?

The main questions we try to address in this work are the following: Is it
possible to discard the uniform teleportation altogether? And if so, under which
conditions? Thankfully, the answer is yes. In particular, we show that, the defin-
ition of the NCD blocks, can be enough to ensure the production of well defined
ranking vectors without resorting to uniform teleportation. The criterion for this
to be true is expressed solely in term of properties of the proposed decomposi-
tion, which makes it very easy to check and at the same time gives insight that
can lead to better decompositions for the particular ranking problems under
consideration.

The rest of the paper is organized as follows: After discussing NCDawar-
eRank model (Sect. 2) we derive sufficient and necessary conditions under which
the inter-level proximity matrix enables us to discard the teleportation matrix
completely (Sect. 3.2). In Sect. 4, we generalize NCDawareRank model, in order
to allow the definition of overlapping blocks without compromising its theoreti-
cal and computational properties. Finally, in Sect. 5 we discuss future direction
and conclude this work.

Random Surfing Without Teleportation 347

2 NCDawareRank Model

Before we proceed to our main result, we present here the basic definitions behind
the NCDawareRank model. Our presentation follows the one given in [13].

2.1 Notation

All vectors are represented by bold lower case letters and they are column vectors
(e.g., π). All matrices are represented by bold upper case letters (e.g., P). The
ith row and jth column of matrix P are denoted pᵀ

i and pj , respectively. The
ijth element of matrix P is denoted [P]ij . We use Diag(ω) to denote the matrix
having vector ω on its diagonal, and zeros elsewhere. We use calligraphic letters
to denote sets (e.g., U ,V). [1, n] is used to denote the set of integers {1, 2, . . . , n}.
Finally, symbol � is used in definition statements.

2.2 Definitions

Let U be a set of nodes (e.g. the universe of Web pages) and denote n � |U|.
Consider a node u in U . We denote Gu to be the set of nodes that can be visited
in a single step from u. Clearly, du � |Gu| is the out-degree of u, i.e. the number
of outgoing edges of u.

We consider a partition of the underlying space U that defines a decompo-
sition:

M � {D1, . . . ,DK} (2)

such that, Dk �= ∅, for all k in [1,K].
Each set DI is referred to as an NCD Block, and its elements are considered

related according to a given criterion, chosen for the particular ranking problem
(e.g. the partition of the set of Web Pages into websites).

We define Mu to be the set of proximal nodes of u, i.e. the union of the
NCD blocks that contain u and the nodes it links to. Formally, the set Mu is
defined by:

Mu �
⋃

w∈(u∪Gu)

D(w) (3)

where D(u) is used to denote the unique block that includes node u. Finally, Nu

denotes the number of different blocks in Mu.

Hyperlink Matrix. The hyperlink matrix H, as in the standard PageRank
Model, is a row normalized version of the adjacency matrix induced by the
graph, and its uvth element is defined as follows:

[H]uv �
{

1
du

if v ∈ Gu

0 otherwise
(4)

Matrix H is assumed to be a row-stochastic matrix. The matter of dangling
nodes (i.e. nodes with no outgoing edges) is considered fixed through some
sort of stochasticity adjustment.

348 A.N. Nikolakopoulos and J.D. Garofalakis

Inter-Level Proximity Matrix. The Inter-Level Proximity matrix M is cre-
ated to depict the interlevel connections between the nodes in the graph. In
particular, each row of matrix M denotes a probability vector mᵀ

u, that dis-
tributes evenly its mass between the Nu blocks of Mu, and then, uniformly
to the included nodes of each block. Formally, the uvth element of matrix
M, that relates the node u with node v, is defined as

[M]uv �
{ 1

Nu|D(v)| if v ∈ Mu

0 otherwise
(5)

From the definition of the NCD blocks and the proximal sets, it is clear that
whenever the number of blocks is smaller than the number of nodes in the
graph, i.e. K < n, matrix M is necessarily low-rank; in fact, a closer look
at the Definitions (3) and (5) above, suggests that matrix M admits a very
useful factorization, which was shown in [13] to ensure the tractability of the
resulting model. In particular, matrix M can be expressed as a product of 2
extremely sparse matrices, R and A, defined below.
Matrix A ∈ R

K×n is defined as follows:

A �

⎡
⎢⎢⎢⎢⎢⎢⎣

eᵀ
|D1| 0 0 · · · 0
0 eᵀ

|D2| 0 · · · 0
0 0 eᵀ

|D3| · · · 0
...

...
...

. . . 0
0 0 0 · · · eᵀ

|DK |

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

where eᵀ
|Dk| denotes a row vector in R

|Dk| whose elements are all 1. Now,
using the diagonal matrix Δ:

Δ � Diag
([|D1| |D2| · · · |DK |]) (7)

and a row normalized matrix Γ ∈ R
n×K , whose rows correspond to nodes

and columns to blocks and its elements are given by

[Γ]ij �
{

1
Nu

if Dj ∈ Mui

0 otherwise
(8)

we can define the matrix R as follows:

R � ΓΔ−1 (9)

Using (6) and (9), it is straight forward to verify that:

M = RA (10)
R ∈ R

n×K A ∈ R
K×n

As pointed out by the authors [13], this factorization can lead to significant
advantages in realistic scenarios, in terms of both storage and computability
(see [13], Sect. 3.2.1).

Random Surfing Without Teleportation 349

Teleportation Matrix. Finally, NCDawareRank model also includes a tele-
portation matrix E,

E � evᵀ (11)

where, v > 0 such that vᵀe = 1. The introduction of this matrix, can be seen
as a remedy to ensure that the underlying Markov chain, corresponding to
the final matrix, is irreducible and aperiodic and thus has a unique positive
stationary probability distribution [13].

The resulting matrix which we denote P is expressed by:

P = ηH + μM + (1 − η − μ)E (12)

Parameter η controls the fraction of importance delivered to the outgoing edges
and parameter μ controls the fraction of importance that will be propagated to
the proximal nodes. In order to ensure the irreducibility and aperiodicity of the
final stochastic matrix in the general case, η +μ must be less than 1. This leaves
1 − η − μ of importance scattered throughout the graph through matrix E.

Remark 1. PageRank can be seen within NCDawareRank model in two different
ways:

– when there is only one block containing all the nodes – where matrix M
collapses into the standard uniform teleportation matrix:

M ≡ 1
n
eeᵀ ⇒

P = ηH + (1 − η)
1
n
eeᵀ (13)

– when we have n singleton NCD blocks – a case where the inter-level proximity
matrix coincides with the hyperlink matrix H:

M ≡ Hᵀ ⇒
P = (η + μ)H + (1 − η − μ)

1
n
eeᵀ (14)

3 Necessary and Sufficient Conditions for Random
Surfing Without Teleportation

Although in the general case the teleportation matrix is required to ensure the
final stochastic matrix produces a well defined ranking vector, in this Section
we show that NCDawareRank model carries the possibility of discarding matrix
E altogether. Before we proceed to the proof of our main result (Sect. 3.2) we
present here the necessary preliminary definitions and theorems.

350 A.N. Nikolakopoulos and J.D. Garofalakis

3.1 Preliminaries

Definition 1 (Irreducibility). An n × n non-negative matrix P is called irre-
ducible if for every pair of indices i, j ∈ [1, n], there exists a positive integer
m ≡ m(i, j) such that [Pm]ij > 0. The class of all non-negative irreducible
matrices is denoted I.

Definition 2 (Period). The period of an index i ∈ [1, n] is defined to be the
greatest common divisor of all positive integers m such that [Pm]ii > 0.

Proposition 1 (Periodicity as a Matrix Property). For an irreducible
matrix, the period of every index is the same and is referred to as the period
of the matrix.

Definition 3 (Primitivity). An irreducible matrix with period d = 1, is called
primitive. The important subclass of all primitive matrices will be denoted P.

Finally, we give here, without proof, the following fundamental result of the
theory of non-negative matrices1.

Theorem 1 (Perron-Frobenius Theorem for Primitive Matrices
[9,17]). Suppose T is an n×n non-negative primitive matrix. Then, there exists
an eigenvalue r such that:

(a) r is real and positive,
(b) with r can be associated strictly positive left and right eigenvectors,
(c) r > |λ| for any eigenvalue λ �= r
(d) the eigenvectors associated with r are unique to constant multiples,
(e) if 0 ≤ B ≤ T and β is an eigenvalue of B, then |β| ≤ r. Moreover,

|β| = r =⇒ B = T (15)

(f) r is a simple root of the characteristic equation of T.

3.2 NCDawareRank Primitivity Criterion

Mathematically, in the standard PageRank model the introduction of the tele-
portation matrix can be seen as a primitivity adjustment of the final stochastic
matrix. Indeed, the hyperlink matrix is typically reducible [12,16], so if the tele-
portation matrix had not existed the PageRank vector would not be well defined.

In the general case, the same holds for NCDawareRank, as well. However,
for suitable decompositions of the underlying graph, matrix M opens the door
for achieving primitivity without resorting to the uninformative teleportation
matrix. Here, we show that this “suitability” of the decompositions can, in fact,
be reflected on the properties of a low dimensional Indicator Matrix defined
below:
1 For thorough treatment of the theory as well as proofs to several formulations of the

Perron-Frobenius theorem the interested reader can see [18].

Random Surfing Without Teleportation 351

Definition 4 (Indicator Matrix). For every decomposition M, we define an
Indicator Matrix W ∈ R

K×K designed to capture the inter-block relations of
the underlying graph. Concretely, matrix W is defined as follows:

W � AR, (16)

where A,R are the factors of the inter-level proximity matrix M.

Clearly, whenever [W]IJ is positive, there exists a node u ∈ DI such that
DJ ∈ Mu. Intuitively, one can see that a positive element in matrix W implies
the existence of possible inter-level “random surfing paths” between the nodes
belonging to the corresponding blocks. Thus, if the indicator matrix W is irre-
ducible, these paths exist between every pair of nodes in the graph, which makes
the stochastic matrix M also irreducible.

In fact, in the following theorem we show that the irreducibility of matrix
W is enough to certify the primitivity of the final NCDawareRank matrix, P.
Then, just choosing positive numbers η, μ that sum to one, leads to a well defined
ranking vector produced by an NCDawareRank model without a teleportation
component.

Theorem 2 (Primitivity Criterion). The NCDawareRank matrix P = ηH+
μM, with η and μ positive real numbers such that η + μ = 1, is primitive if and
only if the indicator matrix W is irreducible. Concretely, P ∈ P ⇐⇒ W ∈ I.

Proof. We will first prove that

W ∈ I =⇒ P ∈ P (17)

First notice that whenever matrix W is irreducible then it is also primitive.
In particular, it is known that when a non-negative irreducible matrix has at
least one positive diagonal element, then it is also primitive. In case of matrix
W, notice that by the definition of the proximal sets and matrices A,R, we
get that [W]ii > 0 for every i in [1,K]. Thus, the irreducibility of the indicator
matrix ensures its primitivity also. Formally, we have

W ∈ I =⇒ W ∈ P (18)

Now if the indicator matrix W is primitive the same is true for the inter-level
proximity matrix M. We prove this in the following lemma.

Lemma 1. The primitivity of the indicator matrix W implies the primitivity of
the inter-level proximity matrix M, defined over the same decomposition, i.e.

W ∈ P =⇒ M ∈ P (19)

Proof. It suffices to show that there exists a number m, such that for every pair
of indices i, j, [Mm]ij > 0 holds. Or equivalently there exists a positive integer
m such that Mm is a positive matrix (see [18]).

352 A.N. Nikolakopoulos and J.D. Garofalakis

This can be seen easily using the factorization of matrix M given above. In
particular, since W ∈ P, there exists a positive integer k such that Wk > 0.
Now, if we choose m = k + 1, we get:

Mm = (RA)k+1

= (RA)(RA) · · · (RA)︸ ︷︷ ︸
k+1 times

= R (AR)(AR) · · · (AR)︸ ︷︷ ︸
k times

A

= RWkA (20)

However, matrix Wk is positive and since every row of matrix R and every
column of matrix A are – by definition – non-zero, the final matrix, Mm, is also
positive. Thus, M ∈ P, and the proof is complete.
�

Now, in order to get the primitivity of the final stochastic matrix P, we
use the following useful lemma which shows that any convex combination of
stochastic matrices that contains at least one primitive matrix, is also primitive.

Lemma 2. Let A be a primitive stochastic matrix and B1,B2, . . . ,Bn stochas-
tic matrices, then matrix

C = αA + β1B1 + · · · + βnBn

where α > 0 and β1, . . . , βn ≥ 0 such that α + β1 + · · · + βn = 1 is a primitive
stochastic matrix.

Proof. Clearly matrix C is stochastic as a convex combination of stochastic
matrices (see [10]). For the primitivity part it suffices to show that there exists a
natural number, m, such that Cm > 0. This can be seen very easily. In particular,
since matrix A ∈ P, there exists a number k such that every element in Ak is
positive.

Consider the matrix Cm:

Cm = (αA + β1B1 + · · · + βnBn)m

= αmAm + (sum of non-negative matrices) (21)

Now letting m = k, we get that every element of matrix Ck is strictly positive,
which completes the proof.
�

As we have seen, when W ∈ I, matrix M is primitive. Furthermore, M
and H are by definition stochastic. Thus, Lemma2 applies and we get that the
NCDawareRank matrix P, is also primitive. In conclusion, we have shown that:

W ∈ I =⇒ W ∈ P =⇒ M ∈ P =⇒ P ∈ P (22)

which proves the reverse direction of the theorem.

Random Surfing Without Teleportation 353

To prove the forward direction (i.e. P ∈ P =⇒ W ∈ I) it suffices to show
that whenever matrix W is reducible, matrix P is also reducible (and thus, not
primitive [18]). First observe that when matrix W is reducible the same holds
for matrix M.

Lemma 3. The reducibility of the indicator matrix W implies the reducibility
of the inter-level proximity matrix M. Concretely,

W /∈ J =⇒ M /∈ J (23)

Proof. Assume that matrix W is reducible. Then, there exists a permutation
matrix Π such that ΠWΠᵀ has the form

[
X Z
0 Y

]
(24)

where X,Y are square matrices [18]. Notice that a similar block upper diagonal
form can be then achieved for matrix M. In particular, the existence of the block
zero matrix in (24), together with the definition of matrices A,R ensures the
existence of a set of blocks, that have the property none of their including nodes
to have outgoing edges to the rest of the nodes in the graph2. Thus, organizing
the rows and columns of matrix M such that these nodes are assigned the last
indices, results in a matrix M that has a similarly block upper diagonal form.
This makes M reducible too.
�

Thus, we only need to show that the reducibility of matrix M implies the
reducibility of matrix P also. This can arise from the fact that by definition

[M]ij = 0 =⇒ [H]ij = 0. (25)

So, the permutation matrix that brings M in the form of (24), has exactly the
same effect on matrix H. Similarly the final stochastic matrix P has the same
block upper diagonal form as a sum of matrices H and M. This makes matrix
P reducible and hence non-primitive.

Therefore, we have shown that W /∈ P =⇒ P /∈ J, which is equivalent to

P ∈ P =⇒ W ∈ J (26)

Putting everything together, we see that both directions of our theorem have
been established. Thus we get,

P ∈ P ⇐⇒ W ∈ J (27)

and our proof is complete.
�
Now, when the stochastic matrix P is primitive, from the Perron-Frobenius

theorem it follows that its largest eigenvalue – which is equal to 1 – is unique
2 notice that if this was not the case, there would be a nonzero element in the block

below the diagonal necessarily.

354 A.N. Nikolakopoulos and J.D. Garofalakis

and it can be associated with strictly positive left and right eigenvectors. There-
fore, under the conditions of Theorem2, the ranking vector produced by the
NCDawareRank model – which is defined to be the stationary distribution of the
stochastic matrix P: (a) is uniquely determined as the (normalized) left eigen-
vector of P that corresponds to the eigenvalue 1 and, (b) its support includes
every node in the underlying graph. The following corollary, summarizes the
result.

Corollary 1. When the indicator matrix W is irreducible, the ranking vector
produced by NCDawareRank with P = ηH+μM, where η, μ positive real numbers
such that η+μ = 1 holds, denotes a well defined distribution that assigns positive
ranking to every node in the graph.

4 Generalizing the NCDawareRank Model

4.1 The Case of Overlapping Blocks

In our discussion so far, we assumed that the block decomposition defines a
partition of the underlying space. However, in many realistic ranking scenarios
it would be useful to be able to allow the blocks to overlap. For example, if one
wants to produce top N lists of movies for a ranking-based recommender system,
using NCDawareRank, a very intuitive criterion for decomposition would be
the one depicting the categorization of movies into genres [14]. Of course, such
a decomposition naturally results in overlapping blocks, since a movie usually
belongs to more than one genres.

Fortunately, the factorization of the inter-level proximity matrix, paves the
path towards a straight forward generalization, that inherits all the useful math-
ematical properties and computational characteristics of the standard NCDawar-
eRank model.

In particular, it suffices to modify the definition of decompositions as indexed
families of non-empty sets

M̂ � {D̂1, . . . , D̂K} (28)

that collectively cover the underlying space, i.e.

U =
K⋃

k=1

D̂k (29)

and to change slightly the definitions of the:

– Proximal Sets:
M̂u �

⋃

w∈(u∪Gu),w∈D̂k

D̂k (30)

Random Surfing Without Teleportation 355

– Inter-Level Proximity Matrix:

[M̂]uv �
∑

Dk∈M̂u,v∈D̂k

1
Nu|D̂k|

(31)

– Factor Matrices A,R: We first define a matrix X, whose jkth element is 1,
if vj ∈ M̂k and zero otherwise. Then, if R̂, Â denote the row-normalized
versions of X and Xᵀ respectively, matrix M̂ can be expressed as:

M̂ = R̂Â, R̂ ∈ R
n×K , Â ∈ R

K×n. (32)

Remark 2. Notice that the Inter-Level Proximity Matrix above is a well defined
stochastic matrix, for every possible decomposition. Its stochasticity can arise
immediately from the row normalization of matrices R̂, Â, together with the fact
that matrix X does not have zero rows (the existence of a zero row in matrix X
implies U �= ⋃K

k=1 D̂k, which contradicts the definition of M̂) neither columns
(since the sets comprising M̂ are defined to be non-empty).

Remark 3. Also notice that our primitivity criterion given by Theorem2, applies
in the overlapping case too, since our proof made no assumption for mutual exclu-
siveness for the NCD-blocks. In fact, it is intuitively evident that overlapping
blocks promote the irreducibility of the indicator matrix W.

5 Discussion and Future Work

In this work, using an approach based on the theory of non-negative matrices,
we study NCDawareRank’s inter-level proximity model and we derive neces-
sary and sufficient conditions, under which the underlying decomposition alone
could result in a well defined ranking vector – eliminating the need for uniform
teleportation. Our goals here were mainly theoretical. However, our first find-
ings in applying this “no teleportation” approach in realistic problems suggest
that the conditions for primitivity are not prohibitively restrictive, especially
if the criterion behind the definition of the decomposition implies overlapping
blocks [14,15].

A very exciting direction we are currently pursuing involves the spectral
implications of the absence of the teleportation matrix. In particular, a very
interesting problem would be to determine bounds of the subdominant eigen-
value of the stochastic matrix P = ηH + μM, when the indicator matrix W
is irreducible. Another important direction would be to proceed to randomized
definitions of blocks that satisfy the primitivity criterion and to test the effect
on the quality of the ranking vector.

In conclusion, we believe that our results, suggest that the NCDawareRank
model presents a promising approach towards generalizing and enriching the
standard random surfer model, and also carries the potential of providing an
intuitive alternative teleportation scheme to the many applications of PageRank
in hierarchical or otherwise specially structured graphs.

356 A.N. Nikolakopoulos and J.D. Garofalakis

References

1. Avrachenkov, K., Litvak, N., Pham, K.S.: Distribution of pagerank mass among
principle components of the web. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007.
LNCS, vol. 4863, pp. 16–28. Springer, Heidelberg (2007)

2. Baeza-Yates, R., Boldi, P., Castillo, C.: Generic damping functions for propa-
gating importance in link-based ranking. Internet Math. 3(4), 445–478 (2006).
http://dx.doi.org/10.1080/15427951.2006.10129134

3. Boldi, P.: Totalrank: ranking without damping. In: Special Interest Tracks and
Posters of the 14th International Conference on World Wide Web, WWW
2005, pp. 898–899. ACM, New York (2005). http://doi.acm.org/10.1145/1062745.
1062787

4. Boldi, P., Santini, M., Vigna, S.: A deeper investigation of pagerank as a func-
tion of the damping factor. In: Frommer, A., Mahoney, M.W., Szyld, D.B.
(eds.) Web Information Retrieval and Linear Algebra Algorithms, 11-16 February
2007, Dagstuhl Seminar Proceedings, vol. 07071, Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2007).
http://drops.dagstuhl.de/opus/volltexte/2007/1072

5. Boldi, P., Santini, M., Vigna, S.: Pagerank: functional dependencies. ACM Trans.
Inf. Syst. 27(4), 1–23 (2009). http://doi.acm.org/10.1145/1629096.1629097

6. Constantine, P.G., Gleich, D.F.: Random alpha pagerank. Internet Math. 6(2),
189–236 (2009). http://dx.doi.org/10.1080/15427951.2009.10129185

7. Courtois, P.J.: On time and space decomposition of complex structures. Commun.
ACM 28(6), 590–603 (1985). http://doi.acm.org/10.1145/988672.988714

8. Eiron, N., McCurley, K.S., Tomlin, J.A.: Ranking the web frontier. In: Proceedings
of the 13th International Conference on World Wide Web, WWW 2004, pp. 309–
318. ACM, New York (2004). http://doi.acm.org/10.1145/988672.988714

9. Frobenius, G.: Üeber matrizen aus positiven elementen i and ii. Sitzungsber.
Preuss. Akad. Wiss, Berlin (1908)

10. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press,
Cambridge (2012)

11. Kamvar, S., Haveliwala, T.: The condition number of the pagerank problem (2003)
12. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of

Search Engine Rankings. Princeton University Press, Princeton (2011)
13. Nikolakopoulos, A.N., Garofalakis, J.D.: NCDawareRank: a novel ranking method

that exploits the decomposable structure of the web. In: Proceedings of the
Sixth ACM International Conference on Web Search and Data Mining, WSDM
2013, pp. 143–152. ACM, New York (2013). http://doi.acm.org/10.1145/2433396.
2433415

14. Nikolakopoulos, A.N., Garofalakis, J.D.: NCDREC: a decomposability inspired
framework for top-n recommendation. In: 2014 IEEE/WIC/ACM International
Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies
(IAT), Warsaw, Poland, 11–14 August 2014 - Volume II, pp. 183–190. IEEE (2014).
http://dx.doi.org/10.1109/WI-IAT.2014.32

15. Nikolakopoulos, A.N., Kouneli, M.A., Garofalakis, J.D.: Hierarchical itemspace
rank: exploiting hierarchy to alleviate sparsity in ranking-based recommen-
dation. Neurocomputing 163, 126–136 (2015). http://www.sciencedirect.com/
science/article/pii/S0925231215002180

16. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web (1999)

http://dx.doi.org/10.1080/15427951.2006.10129134
http://doi.acm.org/10.1145/1062745.1062787
http://doi.acm.org/10.1145/1062745.1062787
http://drops.dagstuhl.de/opus/volltexte/2007/1072
http://doi.acm.org/10.1145/1629096.1629097
http://dx.doi.org/10.1080/15427951.2009.10129185
http://doi.acm.org/10.1145/988672.988714
http://doi.acm.org/10.1145/988672.988714
http://doi.acm.org/10.1145/2433396.2433415
http://doi.acm.org/10.1145/2433396.2433415
http://dx.doi.org/10.1109/WI-IAT.2014.32
http://www.sciencedirect.com/science/article/pii/S0925231215002180
http://www.sciencedirect.com/science/article/pii/S0925231215002180

Random Surfing Without Teleportation 357

17. Perron, O.: Zur theorie der matrices. Mathematische Annalen 64(2), 248–263
(1907)

18. Seneta, E.: Non-negative matrices and markov chains. Springer Series in Statistics.
Springer, New York (2006)

19. Simon, H.A.: The Sciences of the Artificial, vol. 136. MIT press, Cambridge (1996)
20. Simon, H.A., Ando, A.: Aggregation of variables in dynamic systems. Econometrica

J. Econometric Soc. 29, 111–138 (1961)

Of Concurrent Data Structures and Iterations

Yiannis Nikolakopoulos1, Anders Gidenstam2,
Marina Papatriantafilou1(B), and Philippas Tsigas1

1 Chalmers University of Technology, Gothenburg, Sweden
{ioaniko,ptrianta,tsigas}@chalmers.se

2 University of Bor̊as, Bor̊as, Sweden
anders.gidenstam@hb.se

Abstract. Bulk operations on data structures are widely used both on
user-level but also on programming language level. Iterations are a good
example of such bulk operations. In the sequential setting iterations are
easy to design on top of an algorithmic construction of a data struc-
ture and is not considered as a challenge. In a concurrent environment,
such as a multicore system, the situation is completely different and the
issue of extending concurrent data structure designs to support iteration
operations opens new research challenges in concurrent algorithmic data
structure implementations, with respect to consistency and efficiency. In
this paper we take a journey through this young and evolving research
topic. More precisely we describe recent advances in the area together
with an overview of iteration implementations that have appeared in the
research literature as well as in widely-used programming environments
and we outline a range of application targets and challenging future
directions.

Keywords: Iteration · Consistency · Lock-free · Concurrent data struc-
tures · In-memory computation · Range-queries

1 Introduction

Algorithms + Data Structures = Programs. Wirths book title [43] has become a
famous quote and almost a synonym of what the essential components of a com-
puter program are. It shows how data structures are a crucial part of designing
and implementing efficient algorithms. An ideal data structure implementation
minimizes the complexity of specific access patterns to data that an algorithm
requires and integrates it to the data structure’s Application Programming Inter-
face (API) (e.g. FIFO queues, LIFO stacks, heaps).

Concurrent Data Structures

The above requirements are even more pronounced when shifting to a concur-
rent environment, involving multiple processing entities and units of execution.
The shared memory model requires mechanisms to ensure the integrity of the
c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 358–369, 2015.
DOI: 10.1007/978-3-319-24024-4 20

Of Concurrent Data Structures and Iterations 359

data, which can be accessed and modified by several threads or processes. Fur-
thermore, the access patterns to the data may be more complex and involve
multiple actors with different synchronization needs e.g. getting access to data
under some specific synchronization related conditions. The research commu-
nity has been studying and providing algorithmic designs and implementations
of shared memory data structures, including simple designs that incorporate
coarse-grain locking, more complex fine-grain locking techniques, non-blocking
implementations and flat combining synchronization techniques [9,15,21,24,40].

The different implementations and methodologies provide a variety of per-
formance guarantees in several quantitative and qualitative metrics, such as
throughput, scalability and fairness [8] and may comply with a variety of correct-
ness, consistency and progress requirements, thus introducing interesting trade-
offs. Balancing amongst all these requirements according to the needs of the
applications that use the data structure, remains a key research and implemen-
tation issue as is also emphasized recently by Michael [32].

As with any object in a concurrent environment [17], the algorithmic design
and implementation of operations provided by shared memory data structures
introduces several challenges regarding the correctness requirements and the pro-
vided consistency of the operations. The standard definitions that have prevailed
in the literature regarding correctness conditions of non-blocking implementa-
tions are sequential consistency [28] and linearizability [25]. These consistency
specifications have been the main models used in the research literature for argu-
ing about the correctness of parallel and concurrent programs in shared memory
systems. In the data structure context there has been a plethora of concurrent
implementations using them, cf. [9,24] and references therein.

Extended API in Concurrent Data Structures

Given the increasing interest and use-cases of concurrent data structures, imple-
mentations of them appear as part of wide spread programming frameworks
[1–3] (Java, .NET, TBB), either in the language or at the library level. In
such cases the API of the data structure is usually complemented with addi-
tional methods serving other parts of the programming framework like inher-
itance reasons, compatibility or extended functionality. As an example, Java’s
ConcurrentLinkedQueue, part of the java.util.concurrent package, is an
implementation based on Michael and Scott’s lock-free queue [33]. The API in
this case, besides the initialize, enqueue and dequeue methods that a queue
usually has, is extended with a variety of operations including peek, remove,
size, contains, toArray, addAll and iterator. The question that natu-
rally arises is whether the existing consistency specifications are adequate in
describing the desired functionality of this extended API.

Specifically, an interesting subset of the above is bulk operations, i.e. “meta”
operations that consist of a number of operations on the data structure, or a
number of primitive operations on sub-components of the data structure. A typ-
ical example is iteration operations – or enumeration as commonly called, where
the goal is to gain access to all the items stored in the underlying data structure,

360 Y. Nikolakopoulos et al.

usually in a sequential way, without exposing the internal data structure repre-
sentation. They are usually provided through the use of constructs like iterators,
enumerators or generators.

Iterations in Sequential Programming

Iterations have been widely supported in object oriented languages in a sequen-
tial context. They were used as building blocks for other language functionalities
(e.g. [4,41]), as well as for user level convenience, e.g. to create constructs that
would assign values to a for-loop. Watt [41] characterizes iterators as object-
based and control-based. The former log the state of the traversal in a separate
data structure. According to this state the next steps of the iteration are decided
and the new state is updated as they proceed. Algorithm1 shows a simple itera-
tor of single-linked list based FIFO queue. No special language support is needed
in this case, but the iterator implementation gets more difficult the more com-
plex the main data structure is. Control-based iterators rely on specific language
constructs (e.g. yield and suspend) that abstract the previous mechanism and
assign values to a loop variable, saving the iterator state until another value is
needed.

Algorithm 1. Sequential iteration of a FIFO single-linked list based queue.
currentNode ← Head.next
while currentNode.next �= NULL do

currentNode ← currentNode.next

Iterations in Concurrent Data Structures: Challenging Issues

Typically, none of the above constructs would take concurrency under consid-
eration. In fact, even the iteration semantics may change when shifting to a
concurrent execution. For example, protecting the state of an iteration might
come in contrast with the goals of a concurrent system. In data structure imple-
mentations, the goal is to allow operations from multiple units of execution to
execute concurrently, through fine-grain synchronization or lock-free/wait-free
methods [24], enabling to utilize the system parallelism with anticipated ben-
efits in throughput and latency (i.e. operations may execute on different cores
simultaneously).

Moreover, such concurrent implementations introduce non-trivial trade-offs
among the performance throughput, the consistency and ease-of-use by the pro-
grammer. Strong consistency guarantees like linearizability [25] and sequential
consistency [28] are preferred by the programmer using the data structure. On
the other hand, they usually come at a cost of larger algorithmic complexity
in the design of the data structure. Some implementations in contemporary
programming environments (cf. Sect. 4) provide weaker consistency, but with
properties that either are unclear or do not match definitions in the literature.

Of Concurrent Data Structures and Iterations 361

The trade-offs above, along with the fact that iterations are bulk opera-
tions on the data structures, raise questions on the cost of iteration operations
under specific consistency requirements in a concurrent implementation. How
can concurrency-related behavior be characterized through consistency specifi-
cations? Do strong consistency properties have to be expensive and what are the
alternatives, if any?

A problem that relates with bulk operations and iterations, is that of acquir-
ing a snapshot of a shared memory register [5,14,16,27]. The similarity comes
in terms of applying bulk read operations on a shared register where multiple
processes write, in order to achieve a desired level of consistency for a snapshot to
be returned. Consistency specifications for snapshot objects have evolved from
context-specific atomicity and correctness criteria [5], to generally applicable
definitions such as linearizability or relaxed guarantees like time-lapse proper-
ties [13,27].

Paper Outline

In the rest of this article we describe recent advances in problems related with
iteration operations in concurrent data structures. Section 2 gives a brief descrip-
tion of the shared memory model. Section 3 describes the necessary consistency
definitions for iteration operations, as formed by the authors of this paper in
recent work [35]. Section 4 provides an overview of iteration implementations
that have appeared in the research literature as well as in widely-used program-
ming environments. Section 5 associates iteration operations with related bulk
operations in current and upcoming systems; that section also outlines possible
questions for future work.

2 System Model

We consider the asynchronous shared memory model commonly used in the
literature, where a set of processes communicates via reading and writing in
shared memory, as also used in earlier work on concurrent iterations [34,35].
The model allows to provide concurrent implementations of a container abstract
data type (ADT) that represents a collection of items, including a set of update
operations that modify the collection according to its specification.

A concurrent ADT implementation can satisfy different progress guaran-
tees. Below we describe the standard definitions in the literature [22–24]: Wait-
freedom ensures that any process can complete an operation in a finite number of
its own steps, independently of any other process. An implementation is bounded
wait-free if there exists a bound on the number of steps any process takes to com-
plete an operation. In a lock-free object implementation it is ensured that at least
one of the contending operations makes progress in a finite number of its own
steps. It is common in lock-free implementations of ADTs that an operation is
implemented through fail-retry loops: a retry needs to take place due to one
or more interfering operations among the contending ones. A weaker guarantee

362 Y. Nikolakopoulos et al.

is obstruction freedom: progress is only ensured for any process that eventually
runs in isolation, i.e. in absence of interferences from other operations.

We define a run ρ (or history) as an execution of an arbitrary number of
operations on the ADT according to the respective protocol that implements
the ADT. For each update operation a of an ADT that exists in a run ρ, we
call its duration the time interval [sa, fa], where sa and fa are the starting and
finishing times of a. Thus, a precedence relation → is defined over the operations,
which is a strict partial order. For two operations a and b, a → b means that
fa occurs before sb. If two operations can not be compared under →, they are
concurrent and we say that they overlap. In this work, we consider only runs
of complete executions, where there are no pending operations. A sequential
history ρ, is one where no operations overlap. We denote a prefix of a sequential
history ρ ending with an operation a, as prefρ(a). We define stateρ(a) as the
postcondition of the ADT after the operation a, i.e. the items that exist in the
collection after the execution of a in ρ.

A history is linearizable [25] if it is equivalent to a sequential history that
includes the same operations and the total order of the sequential operations
respects the partial order →. The equivalent sequential history is also called a
linearization σ. Thus, a run ρ of a linearizable ADT implementation induces a
set of total orders, that extend the partial order → in a compatible way with the
sequential semantics of the ADT. For each linearization σ of ρ, the respective
total order is denoted as ⇒σ. As in the sequential case, for every operation a in
a linearizable run ρ we respectively define stateσ(a) as the postcondition of the
ADT after operation a, in a prefix of some linearization σ of ρ that ends with a.
In this notation we will drop the parameter σ when it is clear from the context.

For a given linearizable ADT implementation consider the set of all its pos-
sible states; a state S from this set is defined to be valid with respect to a lin-
earizable execution ρ, if ∃ a linearization σ of ρ such that there exists a prefσ(a)
and S = stateσ(a).

The ADT includes update operations that can add or remove items in the
collection in accordance to the specification of the ADT. We extend the ADT
and linearizable implementations of them, and add iteration operations that will
return a state of the ADT and in particular the items that are contained in it,
with the following sequential specification:

Definition 1. [35] In a sequential execution ρ, a valid iteration Itr returns the
items contained in stateρ(a), where a is the latest update operation preceding Itr,
i.e. Itr : stateρ(a),where a → Itr ∧ � update operation a′ s.t. a → a′ → Itr.

Given a run ρ, we can define the reduced run ρ̃, that does not include the
iteration operations.

3 Framework of Consistency Definitions for Concurrent
Iterations

This section presents consistency definitions for iteration operations described
in [34,35], building on the consistency-related definitions by Lamport [29] and

Of Concurrent Data Structures and Iterations 363

Herlihy and Wing [25]. In the following it is assumed that the reduced run ρ̃
that does not include the iteration operations is linearizable and thus for each
linearization σ of ρ̃ the respective ⇒σ is defined.

Definition 2. (i) Safeness: An iteration operation Itr ∈ ρ, not overlapping
with any other operation in ρ̃, is safe if it returns a valid state S = stateσ(a)
for some linearization σ of ρ̃ and some operation a, such that: Itr � a and
� update operation a′ : a ⇒σ a′ → Itr. If Itr is overlapping with any operations
of ρ̃, it can return any arbitrary state of the object.
(ii) Regularity: An iteration operation Itr∈ρ, possibly overlapping with some
a∈ρ̃, is regular if it returns a valid state S = stateσ(a) for some linearization σ
of ρ̃ and some operation a, such that: Itr � a and � update operation a′ : a ⇒σ

a′ → Itr, i.e. S is neither “future” nor “overwritten”.
(iii) Monotonicity: For any two iteration operations Itr1, Itr2 that return valid
states stateσ(a1) and stateσ(a2) respectively for some linearization σ of ρ̃, if
Itr1 → Itr2, then a1 ⇒σ a2 or a1 = a2.1

(iv) Linearizability: Itr is linearizable if it is regular and the run ρ is equiv-
alent to some sequential history, that includes the same operations, whose total
order respects the partial order of the original run ρ.

Definition 3. Weak regularity: Let an iteration operation Itr ∈ ρ and the
reduced linearizable run ρ̃. Let a be the latest update operation finished before
sItr, and prefσ(a) the respective prefix for some linearization σ of ρ̃. A weakly
regular Itr returns a state S such that S = stateτ (b), for some operation b in
a run τ = prefσ(a) ∪ ops[sItr,fItr], that extends the prefσ(a) with ops[sItr,fItr],
i.e. an arbitrary number of operations that are overlapping with the execution
interval [sItr, fItr].

Informally, we can see that a safe iteration implementation guarantees recent
and valid returned states only in the case that it does not overlap with any mod-
ification operations. Otherwise any arbitrary state can be returned (e.g. empty).
A regular iteration improves by guaranteeing a valid and “not future” state
to be returned even in the present of concurrent modifications. However, there
is no restriction on a regular iteration implementation on whether to actually
include in the returned state the effect of one (or more) overlapping modifica-
tion operations. Thus regularity can allow relaxed enough implementations for
the following example to occur: let Itr1 an instance of a regular iteration, and
an overlapping modification operation a. It is interesting to note that another
regular Itr2, such that Itr1 → Itr2 but Itr2 still overlapping a, might return a
different state – even preceding– from the one returned by Itr1 (if for example
Itr1 includes the effect of a in its state). Monotonicity is an additional property
that can clarify such behavior and the combination with regularity can guarantee

1 Dwork et al. [13] in the context of composite registers used two notions of monotonic-
ity, for scans and for updates. Notice that a regular Itr also satisfies the monotonicity
of updates property, i.e. for two linearized updates, an Itr that “observes” the effects
of the latter update, should also “observe” the effects of the preceding update.

364 Y. Nikolakopoulos et al.

linearizability for “single-scanner” iterations (cf. Theorem 1 [35]). Finally, itera-
tion implementations in contemporary programming environments (cf. Sect. 4),
motivate the need for a weaker definition between safeness and regularity. Weak
regularity essentially allows to include or ignore any of the overlapping modifi-
cation operations, regardless of their respective linearization order.

Correctness conditions related to the above were recently presented by
Lev-ari et al. [30], where regularity is extended for single-writer data struc-
tures under read-write concurrency. The authors show similar intuition for their
respective regularity definition, while they motivate the need for even weaker
conditions as the ones presented above [34].

4 An Overview of Iteration Algorithms
and Implementations

In the Resarch Literature of Parallel and Distributed Algorithms

Ctrie. The first design of a concurrent data structure that integrated an iter-
ation operation was presented by Prokopec et al. [39]. They present Ctrie, a
concurrent lock-free hash trie, that besides the usual lookup, insert and remove
operations, supports a snapshot operation upon which iteration and size oper-
ations are built. Ctrie is designed partially as a persistent data structure [36]
with immutable states, and the snapshot operation relies on the fact that modi-
fication operations will create a newer generation of the data structure content,
while the snapshot retains access to the previous one. Thus, the snapshot is
considered constant-time (O(1)), while the updating of the trie to the newer
generation is delegated to the update operations, increasing their constant fac-
tor. Nevertheless, to guarantee linearizability, strong synchronization primitives
are still required. The authors suggest a variation of a Double-Compare-Single-
Swap (RDCSS) software primitive [20], to make sure that no concurrent updates
will occur while the generation is changing.

Iterators on Sets. Iteration operations in ordered linked-list based implementa-
tions of sets were presented by Petrank and Timnat [37]. The authors build on
Jayanti’s single scanner snapshot algorithm on composite registers [26], which
provides only scan and update operations for the individual registers. They
extend it to accommodate multiple iterators as well as the necessary insert,
delete and contains operations that the set semantics require. Their method
includes an object that holds a list of pointers to nodes in the main data struc-
ture and a list of reports of operations that happened during the basic traversal.
The commutativity properties of the set semantics are exploited, allowing the
snapshot operation to linearize before the linearization points of insert operations
that occurred during the traversal. The iteration operation has a complexity of
O(n+r · log(r)), where r is the size of the report list and n is the size of the main
linked list traversed. However, the latter may dynamically increase by updates
interfering the iteration.

Of Concurrent Data Structures and Iterations 365

Iterators in Parallel Collections. Prokopec et al. [38] present a different approach
on iterators in collection data structures. They do not address issues of iterations
concurrently with modification operations, but focus on the parallelization of
iteration operations instead. They develop a framework for parallel programming
patterns such as map-reduce or parallel looping for bulk operations, and abstract
it by using splitters. These are abstractions for iteration operations that can be
used from different threads to give access to disjoint parts of the data structure.

Iteration Consistency and the Queue Test-case. A set of consistency specifi-
cations for iteration operations (cf. Sect. 3) is proposed by the authors of the
present article in [34,35]. The aforementioned work further presents an explo-
ration of the algorithmic design space for iteration operations in shared lock-free
queues and provide a set of constructions of iteration operations satisfying the
consistency properties. Weakly regular iterations are presented based on simple
traversals of the queue and by exploiting the inherent structural properties of
the linked-list based queues. They are also compared with similar implemen-
tations that exist in Java’s concurrency library [2]. The authors point out and
study the trade-offs on achieving linearizable iteration implementations between
the overhead of the bulk operation and possible support (helping) by the native
operations of the data structure. Linearizable iterations can be achieved by typi-
cal read-validate techniques that may starve, providing only obstruction-freedom.
Concurrent modification operations can help the iteration operation by marking
nodes of the queue with appropriate timestamp information. Thus, linearizable
iteration algorithms that provide wait-free progress guarantees can be designed,
with the use of synchronization software primitives like multi-word compare and
swap [20]. The reason is that due to the non-commutative nature of the queue’s
native operations, inconsistencies between the time of insertion and the respec-
tive timestamp have to be eliminated.

In Contemporary Programming Environments

Programming frameworks, such as Intel’s Thread Building Blocks for C++
(TBB), Java and the .NET platform, include, in their standard libraries, collec-
tion data structures that support concurrent operations. These collections often
support iteration over their contents while other operations may concurrently
change the data structure. What kind of consistency do they offer?

Java: The standard library of the Java Platform Standard Edition 72 [2] con-
tains a number of concurrent collection or container data types that support iter-
ation over their contents concurrently with operations that modify them. The
documentation classifies the consistency of an iteration of a particular container
data type as either snapshot style, described as capturing the state of the con-
tainer at the point in time the iterator was created, or weakly consistent, for the
ConcurrentLinkedQueue described as “returning elements reflecting the state of

2 Version 1.7.0 09.

366 Y. Nikolakopoulos et al.

the queue at some point at or since the creation of the iterator” and similarly for
other data structures. A study of the source code for the ConcurrentLinkedQueue
reveals that the description is not entirely accurate: the result may be a mixture
of the states that occur during the iteration and can include items removed early
during the interval together with items added late, i.e. not reflecting the state at
any particular point in time.

.NET: The .NET 4.5 Framework Class library [3] contains a number of
concurrent container data structures. All of them support iteration of their
contents concurrently with operations that modify them. The library documen-
tation classifies what an iteration of a particular container type provides as
either a moment-in-time snapshot or not a moment-in-time snapshot. The con-
tainer types ConcurrentBag, ConcurrentQueue and ConcurrentStack provide
moment-in-time snapshots while the ConcurrentDictionary type does not. For
the latter it is stated that the contents exposed during the iteration may contain
modifications made to the dictionary after the iteration started.

Intel Threading Building Blocks: It is a library for parallel programming in
C++ [1] that contains a number of concurrent container data structures, some
of which support iterations concurrently with other operations on the container.
The support is limited to a subset of their operations; only three, namely con-
current unordered map, concurrent unordered set and concurrent vector
support insertion concurrently with iteration, but do not promise any particular
level of consistency.

In summary, Java’s snapshot style and .NET’s moment-in-time snapshots can
be expected to be linearizable (or nearly so). The consistency of Java’s weakly
consistent iterators varies in detail for each implementation, and the unspecified
thread-safe iterators in .NET and TBB are weakly regular.

5 Possible Applications and Research Questions

Iterations form the basis of operations that meet challenges in many of the
new, demanding applications in concurrent environments. In the era of Big Data
and the Internet of Things, in-memory analytics are becoming more and more
important, and parallelism and concurrency are essential tools.

Map and filter operations can in fact be built upon iterations, as also shown
in Prokopec et al. [38]. Paradigms of such operations, running over large evolving
data sets concurrently with other operations, may be proved valuable for real-
time analytics.

In the latest version of Java, the stream API is introduced. The idea is to
allow parallel programming patterns such as map-reduce computations to run
on streams of data that may even be unbounded. As a source of a stream, either
another stream is allowed or a collection data structure, possibly concurrent.
Streams from the latter are built by using bulk operations that are a general-
ization of iterations, called spliterators. For most of the concurrent collections
they provide weak consistency guarantees (as in Definition 3), and they allow
also parallelization (similar to the concept of [38]).

Of Concurrent Data Structures and Iterations 367

Range queries or partial iterations for in-memory processing is another exam-
ple where iterations are useful. Essentially, range queries can be viewed as par-
tial iterations inside a data structure. Traditionally in the database domain,
data structures supporting range queries [42] were introduced to handle search
queries of multiple multi-dimensional records. Examples of today’s use cases
are On-Line Analytical Processing systems [11,12]. These delineate algorithmic
and consistency challenges for concurrent data structures. Avni et al. [6] explore
designs of data structures supporting range queries, based on transactional mem-
ory support. Brown and Avni [7] present a non-blocking k-ary search tree that
supports linearizable range queries, achieving only obstruction-freedom though.
Partial iterations on concurrency- and application-aware data objects, such as
e.g. sets, flat-sets and data-streaming-oriented objects [10,18,19,31], can prove
very useful in this direction as well.

The questions in this domain are challenging, ranging from consistency defini-
tions that are useful for applications, to algorithmic implementations that enable
possibilities for the programmers to smoothly manage efficiency and consistency
trade-offs that manifest in applications. It is expected that the consistency frame-
work [35] will be useful for several types of such bulk operations in a wide range of
concurrent objects, as it incorporates definitions across several levels of strength,
that build on each-other. Besides the weakly regular constructions that already
map to some state of the art implementations, regular iteration implementations
are expected to balance consistency and performance trade-offs, and thus form
a challenging direction for future work.

Acknowledgements. The research leading to these results has been partially sup-
ported by the European Union Seventh Framework Programme (FP7/2007-2013)
through the EXCESS Project (www.excess-project.eu) under grant agreement 611183
and by the Swedish Research Council (Vetenskapsr̊adet) project “Fine-grain synchro-
nization in parallel programming”, contract nr. 2010-4801.

References

1. Intel threading building blocks documentation. http://software.intel.com/
sites/products/documentation/doclib/tbb sa/help/index.htm. Accessed on 27
November 2012

2. Java platform standard edition 7 documentation. http://docs.oracle.com/javase/
7/docs/index.html. Accessed on 06 December 2012

3. .NET framework class library documentation. http://msdn.microsoft.com/en-us/
library/gg145045.aspx. Accessed on 10 May 2013

4. Python v2.7.5 documentation. http://docs.python.org/2/library/itertools.html.
Accessed on 10 September 2013

5. Anderson, J.H.: Multi-writer composite registers. Distrib. Comput. 7(4), 175–195
(1994)

6. Avni, H., Shavit, N., Suissa, A.: Leaplist: lessons learned in designing TM-
supported range queries. In: Proceedings of the 2013 ACM Symposium on Princi-
ples of Distributed Computing, PODC 2013, pp. 299–308. ACM, New York, NY,
USA (2013)

http://www.excess-project.eu
http://software.intel.com/sites/products/documentation/doclib/tbb_sa/help/index.htm
http://software.intel.com/sites/products/documentation/doclib/tbb_sa/help/index.htm
http://docs.oracle.com/javase/7/docs/index.html
http://docs.oracle.com/javase/7/docs/index.html
http://msdn.microsoft.com/en-us/library/gg145045.aspx
http://msdn.microsoft.com/en-us/library/gg145045.aspx
http://docs.python.org/2/library/itertools.html

368 Y. Nikolakopoulos et al.

7. Brown, T., Avni, H.: Range queries in non-blocking k -ary search trees. In: Baldoni,
R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 31–45.
Springer, Heidelberg (2012)

8. Cederman, D., Chatterjee, B., Nguyen, N., Nikolakopoulos, Y., Papatriantafilou,
M., Tsigas, P.: A study of the behavior of synchronization methods in commonly
used languages and systems. In: 2013 IEEE 27th International Symposium on
Parallel & Distributed Processing (IPDPS), pp. 1309–1320, May 2013

9. Cederman, D., Gidenstam, A., Ha, P., Sundell, H., Papatriantafilou, M., Tsigas,
P.: Lock-free concurrent data structures. arXiv:1302.2757 [cs], February 2013

10. Cederman, D., Gulisano, V., Nikolakopoulos, Y., Papatriantafilou, M., Tsigas, P.:
Brief announcement: concurrent data structures for efficient streaming aggregation.
In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2014, pp. 76–78 (2014)

11. Dehne, F., Kong, Q., Rau-Chaplin, A., Zaboli, H., Zhou, R.: A distributed tree data
structure for real-time OLAP on cloud architectures. In: 2013 IEEE International
Conference on Big Data, pp. 499–505, October 2013

12. Dehne, F., Zaboli, H.: Parallel real-time OLAP on multi-core processors. In: Pro-
ceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (ccgrid 2012), pp. 588–594 (2012)

13. Dwork, C., Herlihy, M., Plotkin, S., Waarts, O.: Time-lapse snapshots. SIAM J.
Comput. 28(5), 1848–1874 (1999)

14. Fatourou, P., Fich, F.E., Ruppert, E.: Time-space tradeoffs for implementations
of snapshots. In: Proceedings of the Thirty-eighth Annual ACM Symposium on
Theory of Computing, STOC 2006, pp. 169–178, ACM, New York, NY, USA (2006)

15. Fatourou, P., Kallimanis, N.D.: Revisiting the combining synchronization tech-
nique. SIGPLAN Not. 47(8), 257–266 (2012)

16. Fich, F.E.: How hard is it to take a snapshot? In: Vojtáš, P., Bieliková, M.,
Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 28–37.
Springer, Heidelberg (2005)

17. Gidenstam, A., Koldehofe, B., Papatriantafilou, M., Tsigas, P.: Scalable group
communication supporting configurable levels of consistency. Concurrency Com-
put: Pract. Experience 25(5), 649–671 (2013)

18. Gidenstam, A., Papatriantafilou, M., Tsigas, P.: NBmalloc: allocating memory in
a lock-free manner. Algorithmica 58(2), 304–338 (2010)

19. Gulisano, V., Nikolakopoulos, Y., Papatriantafilou, M., Tsigas, P.: ScaleJoin: a
deterministic, disjoint-parallel and skew-resilient stream join enabled by concurrent
data structures. Technical Report, Chalmers University of Technology (2014)

20. Harris, T.L., Fraser, K., Pratt, I.A.: A practical multi-word compare-and-swap
operation. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 265–279. Springer,
Heidelberg (2002)

21. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the
synchronization-parallelism tradeoff. In: Proceedings of the Twenty-second Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2010, pp.
355–364. ACM, New York, NY, USA (2010)

22. Herlihy, M.: Wait-free synchronization. ACM Trans. Prog. Lang. Syst. 13(1), 124–
149 (1991)

23. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: double-
ended queues as an example. In: ICDCS 2003, IEEE Computer Society (2003)

24. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan
Kaufmann, Burlington (2008)

http://arxiv.org/abs/1302.2757

Of Concurrent Data Structures and Iterations 369

25. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Prog. Lang. Syst. 12(3), 463–492 (1990)

26. Jayanti, P.: An optimal multi-writer snapshot algorithm. In: Proceedings of the
Thirty-seventh Annual ACM Symposium on Theory of Computing, STOC 2005,
pp. 723–732. ACM, New York, NY, USA (2005)

27. Kirousis, L., Spirakis, P., Tsigas, P.: Reading many variables in one atomic oper-
ation: solutions with linear or sublinear complexity. IEEE Trans. Parallel Distrib.
Syst. 5(7), 688–696 (1994)

28. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Transactions on Computers C–28(9), 690–691 (1979)

29. Lamport, L.: On interprocess communication. Distrib. Comput. 1(2), 86–101
(1986)

30. Lev-Ari, K., Chockler, G., Keidar, I.: On correctness of data structures under reads-
write concurrency. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 273–287.
Springer, Heidelberg (2014)

31. Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets.
In: Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA 2002, ACM (2002)

32. Michael, M.M.: The balancing act of choosing nonblocking features. Commun.
ACM 56(9), 46–53 (2013)

33. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the Fifteenth Annual ACM Sym-
posium on Principles of Distributed Computing, PODC 1996, pp. 267–275. ACM,
New York, NY, USA (1996)

34. Nikolakopoulos, Y., Gidenstam, A., Papatriantafilou, M., Tsigas, P.: Enhancing
concurrent data structures with concurrent iteration operations: consistency and
algorithms. Technical report, Chalmers University of Technology (2013)

35. Nikolakopoulos, Y., Gidenstam, A., Papatriantafilou, M., Tsigas, P.: A consis-
tency framework for iteration operations in concurrent data structures. In: 2015
IEEE 29th International Symposium on Parallel & Distributed Processing (IPDPS)
(2015)

36. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press,
New York (1999)

37. Petrank, E., Timnat, S.: Lock-free data-structure iterators. In: Afek, Y. (ed.) DISC
2013. LNCS, vol. 8205, pp. 224–238. Springer, Heidelberg (2013)

38. Prokopec, A., Bagwell, P., Rompf, T., Odersky, M.: A generic parallel collection
framework. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part II.
LNCS, vol. 6853, pp. 136–147. Springer, Heidelberg (2011)

39. Prokopec, A., Bronson, N.G., Bagwell, P., Odersky, M.: Concurrent tries with
efficient non-blocking snapshots. In: PPoPP 2012, pp. 151–160. ACM (2012)

40. Sundell, H., Tsigas, P.: NOBLE: a non-blocking inter-process communication
library. In: Proceedings of the 6th Workshop on Languages, Compilers and Run-
time Systems for Scalable Computers, Lecture Notes in Computer Science. Springer
Verlag (2002)

41. Watt, S.M.: A technique for generic iteration and its optimization. In: Proceedings
of the 2006 ACM SIGPLAN Workshop on Generic programming, WGP 2006, pp.
76–86. ACM (2006)

42. Willard, D.E.: New data structures for orthogonal range queries. SIAM J. Comput.
14(1), 232–253 (1985)

43. Wirth, N.: Algorithms + Data Structures = Programs. Prentice Hall PTR, Upper
Saddle River (1978)

On Some Combinatorial Properties
of Random Intersection Graphs

Sotiris E. Nikoletseas1,2 and Christoforos L. Raptopoulos2(B)

1 Computer Engineering and Informatics Department,
University of Patras, Patras, Greece

nikole@cti.gr
2 Computer Technology Institute and Press “Diophantus”,

Patras, Greece
raptopox@ceid.upatras.gr

Abstract. In this paper, we consider a simple, yet general family of ran-
dom graph models, namely Random Intersection Graphs (RIGs), which
are motivated by applications in secure sensor networks, social networks
and many more. In such models there is a universe M of labels and
each one of n vertices selects a random subset of M. Two vertices are
connected if and only if their corresponding subsets of labels intersect.
In particular, we briefly review the state of the art and we present key
results from our research on the field, that highlight and take advantage
of the intricacies and special structure of random intersection graphs.
Finally, we present in more detail a particular result from our research,
which concerns maximum cliques in the uniform random intersection
graphs model (in which every vertex selects each label independently
with some probability p), namely the Single Label Clique Theorem.

1 Introduction and Motivation

Random graphs, introduced by P. Erdős and A. Rényi in 1959, still attract a
huge amount of research in the communities of Theoretical Computer Science,
Algorithms, Graph Theory, Discrete Mathematics and Statistical Physics. This
continuing interest is due to the fact that, besides their mathematical beauty,
such graphs are very important, since they can model interactions and faults in
networks and also serve as typical inputs for an average case analysis of algo-
rithms. The modeling effort concerning random graphs has to show a plethora
of random graph models; some of them have quite elaborate definitions and are
quite general, in the sense that they can simulate many other known distribu-
tions on graphs by carefully tuning their parameters.

In this report, we consider a simple, yet general family of models, namely
Random Intersection Graphs (RIGs). In such models there is a universe M of
labels and each one of n vertices selects a random subset of M. Two vertices are
connected if and only if their corresponding subsets of labels intersect.

Random intersection graphs have been used in various applications includ-
ing secure sensor networks [4,25,27], social networks [6,26], clustering [6], and
c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 370–383, 2015.
DOI: 10.1007/978-3-319-24024-4 21

On Some Combinatorial Properties of Random Intersection Graphs 371

cryptanalysis [3]. An important application of random intersection graphs is to
model the topologies of secure wireless sensor networks employing the Chan-
Perrig-Song key predistribution scheme [7], which is widely recognized as an
appropriate solution to secure communications between sensors. In such a key
predistribution scheme for an n-size sensor network, prior to deployment, each
sensor is assigned a set of distinct cryptographic keys selected at random from
the same key pool containing m different keys. After deployment, two sensors
establish secure communication if and only if they have some key(s) in common,
and this gives rise to communication graphs that look like random intersection
graphs. Furthermore, random intersection graphs are relevant to and capture
quite nicely social networking. Indeed, a social network is a structure made of
nodes tied by one or more specific types of interdependency, such as values,
visions, financial exchange, friends, conflicts, web links etc. Other applications
may include oblivious resource sharing in a distributed setting, interactions of
mobile agents traversing the web, social networking etc. Even epidemiological
phenomena (like spread of disease between individuals with common character-
istics in a population) tend to be more accurately captured by this “proximity-
sensitive” family of random graphs.

1.1 Definitions and a First Look at RIGs

Random intersection graphs were introduced by M. Karoński, E.R. Sheinerman
and K.B. Singer-Cohen [12] and K.B. Singer-Cohen [23]. The formal definition
of the model is given below:

Definition 1 (Uniform Random Intersection Graph - Gn,m,p [12,23]).
Consider a universe M = {1, 2, . . . ,m} of labels and a set of n vertices V .
Assign independently to each vertex v ∈ V a subset Sv of M, choosing each
element i ∈ M independently with probability p and draw an edge between two
vertices v �= u if and only if Sv ∩ Su �= ∅. The resulting graph is an instance
Gn,m,p of the uniform random intersection graphs model.

In this model we also denote by Li the set of vertices that have chosen label
i ∈ M . Given Gn,m,p, we will refer to {Li, i ∈ M} as its label representation. It is
often convenient to view the label representation as a bipartite graph with vertex
set V ∪ M and edge set {(v, i) : i ∈ Sv} = {(v, i) : v ∈ Li}. We refer to this
graph as the bipartite random graph Bn,m,p associated to Gn,m,p. Notice that
the associated bipartite graph is uniquely defined by the label representation.

It follows from the definition of the model the (unconditioned) probability
that a specific edge exists is 1 − (1 − p2)m. Therefore, if mp2 goes to infinity
with n, then this probability goes to 1. We can thus restrict the range of the
parameters to the “interesting” range where mp2 = O(1) (i.e. the range of values
for which the unconditioned probability that an edge exists does not go to 1).
Furthermore, as is usual in the literature, we assume that the number of labels
is some power of the number of vertices, i.e. m = nα, for some α > 0.

372 S.E. Nikoletseas and C.L. Raptopoulos

It is worth mentioning that the edges in Gn,m,p are not independent. In par-
ticular, there is a strictly positive dependence between the existence of two edges
that share an endpoint (i.e. Pr(∃{u, v}|∃{u,w}) > Pr(∃{u, v})). This dependence
is stronger the smaller the number of labels M includes, while it seems to fade
away as the number of labels increases. In fact, by using a coupling technique,
the authors in [9] prove the equivalence (measured in terms of total variation dis-
tance) of uniform random intersection graphs and Erdős-Rényi random graphs,
when m = nα, α > 6. This bound on the number of labels was improved in [21],
by showing equivalence of sharp threshold functions among the two models for
α ≥ 3. These results show that random intersection graphs are quite general and
that known techniques for random graphs can be used in the analysis of uniform
random intersection graphs with a large number of labels.

The similarity between uniform random intersection graphs and Erdős-Rényi
random graphs vanishes as the number of labels m decreases below the number
of vertices n (i.e. m = nα, for α ≤ 1). This dichotomy was initially pointed out
in [23], through the investigation of connectivity of Gn,m,p. In particular, it was

proved that the connectivity threshold for α > 1 is
√

ln n
nm , but it is ln n

m (i.e. quite
larger) for α ≤ 1. Therefore, the mean number of edges just above connectivity
is approximately 1

2n ln n when α > 1 (which is equal to the mean number of
edges just above the connectivity threshold for Erdős-Rényi random graphs),
but it is larger by at least a factor of lnn when α ≤ 1. Other dichotomy results
of similar flavor were pointed out in the investigation of the (unconditioned)
vertex degree distribution by D. Stark [24], through the analysis of a suitable
generating function, and in the investigation of the distribution of the number
of isolated vertices by Y. Shang [22].

In this work, we present part of our research that is related to both combi-
natorial and algorithmic properties of uniform random intersection graphs, but
also of other, related models that are included in the family of random intersec-
tion graphs. In particular, we note that by selecting the label set of each vertex
using a different distribution, we get random intersection graphs models whose
statistical behavior can vary considerably from that of Gn,m,p. Two of these
models are the following: (a) In the General Random Intersection Graphs
Model Gn,m,p [16], where p = [p1, p2, . . . , pm], the label set Sv of a vertex v is
formed by choosing independently each label i with probability pi. (b) In the
Regular Random Intersection Graphs Model Gn,m,λ [11], where λ ∈ N,
the label set of a vertex is chosen independently, uniformly at random for the
set of all subsets of M of cardinality λ. Finally, it is worth noting that there are
other equally important generalizations of the uniform model of RIGs, perhaps
most notably the random s-intersection graphs model [26], in which two vertices
are connected if and only if they share at least s elements of M (where s is a
fixed, predefined integer).

On Some Combinatorial Properties of Random Intersection Graphs 373

2 An Overview of Selected Combinatorial Problems

Below we provide a brief presentation of some results on RIGs obtained by our
team. We also give a general description of the techniques used; some of these
techniques highlight and take advantage of the intricacies and special structure
of random intersection graphs, while others are adapted from the field of Erdős-
Rényi random graphs.

2.1 Independent Sets

The problem of the existence and efficient construction of large independent sets
in general random intersection graphs is considered in [16]. Concerning existence,
exact formulae are derived for the expectation and variance of the number of
independent sets of any size, by using a vertex contraction technique. This tech-
nique involves the characterization of the statistical behavior of an independent
set of any size and highlights an asymmetry in the edge appearance rule of ran-
dom intersection graphs. In particular, it is shown that the probability that any
fixed label i is chosen by some vertex in a k-size S with no edges is exactly

kpi

1+(k−1)pi
. On the other hand, there is no closed formula for the respective prob-

ability when there is at least one edge between the k vertices (or even when the
set S is complete)! The special structure of random intersection graphs is also
used in the design of efficient algorithms for constructing quite large independent
sets in uniform random intersection graphs. By analysis, it is proved that the
approximation guarantees of algorithms using the label representation of ran-
dom intersection graphs are superior to that of well known greedy algorithms
for independent sets when applied to instances of Gn,m,p.

2.2 Hamilton Cycles

In [20], the authors investigate the existence and efficient construction of Hamil-
ton cycles in uniform random intersection graphs. In particular, for the case
m = nα, α > 1 the authors first prove a general result that allows one to apply
(with the same probability of success) any algorithm that finds a Hamilton cycle
with high probability in a Gn,M random graph (i.e. a graph chosen equiprobably
form the space of all graphs with M edges). The proof is done by using a sim-
ple coupling argument. A more complex coupling was given in [8], resulting in
a more accurate characterization of the threshold function for Hamiltonicity in
Gn,m,p for the whole range of values of α. From an algorithmic perspective, the
authors in [20] provide an expected polynomial time algorithm for the case where
m = O

(√
n

ln n

)
and p is constant. For the more general case where m = o

(
n

ln n

)
they propose a label exposure greedy algorithm that succeeds in finding a Hamil-
ton cycle in Gn,m,p with high probability, even when the probability of label
selection is just above the connectivity threshold.

374 S.E. Nikoletseas and C.L. Raptopoulos

2.3 Coloring

In [14], the problem of coloring the vertices of Gn,m,p is investigated (see also
[2]). For the case where the number of labels is less than the number of vertices
and mp ≥ ln2 n (i.e. a factor lnn above the connectivity threshold of uniform
random intersection graphs), a polynomial time algorithm is proposed for finding
a proper coloring Gn,m,p. The algorithm is greedy-like and it is proved that it

takes O
(

n2mp2

ln n

)
time, while using Θ

(
nmp2

ln n

)
different colors. Furthermore, by

using a one sided coupling to the regular random intersection graphs model
Gn,m,λ with λ ∼ mp, and using an upper bound on its independence number
from [18], it is shown that the number of colors used by the proposed algorithm
is optimal up to constant factors.

To complement this result, the authors in [14] prove that when mp < β ln n,
for some small constant β, only np colors are needed in order to color n − o(n)
vertices of Gn,m,p whp. This means that even for quite dense instances, using
the same number of colors as those needed to properly color the clique induced
by any label suffices to color almost all of the vertices of Gn,m,p. For the proof,
the authors explore a combination of ideas from [10] and [13]. In particular, a
martingale {Xt}t≥0 is defined, so that Xn is equal to the maximum subset of
vertices that can be properly colored using a predefined number of colors k.
Then, by providing an appropriate lower bound on the probability that there is
a sufficiently large subset of vertices that can be split in k independent sets of
roughly the same size, and then using Azuma’s Inequality for martingales, the
authors provide a lower bound on E[Xn] and also show that the actual value
Xn is highly concentrated around its mean value.

Finally, due to the similarities that the Gn,m,p model has to the process of
generating random hypergraphs, [14] includes a comparison of the problem of
finding a proper coloring for Gn,m,p to that of coloring hypergraphs so that no
edge is monochromatic. In contrast to the first problem, it is proved that only
two colors suffice for the second problem. Furthermore, by using the method of
conditional expectations (see [19]) an algorithm can be derived that finds the
desired coloring in polynomial time.

2.4 Expansion and Random Walks

The edge expansion and the cover time of uniform random intersection graphs is
investigated in [15]. In particular, by using first moment arguments, the authors
first prove that Gn,m,p is an expander whp when the number of labels is less than
the number of vertices, even when p is just above the connectivity threshold (i.e.
p = (1 + o(1))τc, where τc is the connectivity threshold). Second, the authors
show that random walks on the vertices of random intersection graphs are whp
rapidly mixing, i.e. the time until the random walk is sufficiently close to its
steady state distribution (namely its mixing time [1]) is logarithmic on n. The
proof is based on upper bounding the second eigenvalue of the random walk on
Gn,m,p through coupling of the original Markov Chain describing the random
walk to another Markov Chain on an associated random bipartite graph whose

On Some Combinatorial Properties of Random Intersection Graphs 375

conductance properties are appropriate. Finally, the authors prove that the cover
time of the random walk on Gn,m,p, when m = nα, α < 1 and p is at least 5 times
the connectivity threshold is Θ(n log n), which is optimal up to a constant. The
proof is based on a general theorem of Cooper and Frieze [5]; the authors prove
that the degree and spectrum requirements of the theorem hold whp in the case
of uniform random intersection graphs. The authors also claim that their proof
also carries over to the case of smaller values for p, but the technical difficulty
for proving the degree requirements of the theorem of [5] increases.

3 Maximum Cliques

In this section, we present in more detail a particular result from our work [17]
on maximum cliques in the uniform random intersection graphs model Gn,m,p,
namely the Single Label Clique Theorem (cf. Theorem 1). Its proof includes a
coupling to a graph model where edges appear independently and in which we can
bound the size of the maximum clique by well known probabilistic techniques.
The Single Label Clique Theorem roughly states that when the number of labels
is less than the number of vertices, any large enough clique in a random instance
of Gn,m,p is formed by a single label. This statement may seem obvious when p
is small, but it is hard to imagine that it still holds for all “interesting” values

for p. Indeed, when p = o
(√

1
nm

)
, by slightly modifying an argument of [2],

one can see that Gn,m,p almost surely has no cycle of size k ≥ 3 whose edges
are formed by k distinct labels (alternatively, the intersection graph produced
by reversing the roles of labels and vertices is a tree). On the other hand, for
larger p a random instance of Gn,m,p is far from perfect1 and the techniques of
[2] do not apply. By using the Single Label Clique Theorem, a tight bound on
the clique number of Gn,m,p is proved, in the case where m = nα, α < 1. A
lower bound in the special case where mp2 is constant, was given in [23]. We
considerably broaden this range of values to also include vanishing values for
mp2 and also provide an asymptotically tight upper bound.

We first provide some concentration results concerning the number of vertices
that have chosen a particular label and the number of labels that have been
chosen by a particular vertex.

Lemma 1. Let Gn,m,p be a random instance of the random intersection graphs

model with m = nα, 0 < α < 1 and p = Ω
(√

1
nm

)
. Then the following hold:

A. Let Li be the set of vertices that have chosen label i ∈ M. Then

Pr(∃i ∈ M : ||Li| − np| ≥ 3
√

np ln n) ≤ 1
n3

→ 0. (1)

1 A perfect graph is a graph in which the chromatic number of every induced subgraph
equals the size of the largest clique of that subgraph. Consequently, the clique number
of a perfect graph is equal to its chromatic number.

376 S.E. Nikoletseas and C.L. Raptopoulos

B. Let also Sv denote the set of labels that were chosen by vertex v. Then

Pr(∃v ∈ V : |Sv| > mp + 3
√

mp ln m + ln n) → 0. (2)

Proof. For the first part, fix a label i ∈ M. Notice that |Li| is a binomial random
variable with parameters n, p, i.e. |Li| ∼ B(n, p). By Chernoff bounds, for any
t ≥ 0, we have that

Pr(||Li| − np| ≥ t) ≤ e
− t2

2(np+ t
3) + e− t2

2np .

Setting t = 3
√

np ln n and noting that t = o(np), we then have that Pr(||Li| −
np| ≥ 3

√
np ln n) ≤ e−4 ln n and the lemma follows from Boole’s inequality.

For the second part, fix a vertex v. Notice that |Sv| is a binomial random
variable with parameters m, p, i.e. |Sv| ∼ B(m, p). By Chernoff bounds, for any
δ ≥ 0, we have that

Pr(|Sv| > (1 + δ)mp) <

(
eδ

(1 + δ)(1+δ)

)mp

.

Setting δ = 1
mp (3

√
mp ln m+ln n) and using Boole’s inequality we get the desired

result. �

Notice that the above lemma provides a lower bound on the clique number.
However, a clique in Gn,m,p can be formed by combining more than one label.
Clearly, a clique Q which is not formed by a single label will need at least 3
labels, since 2 labels cannot cover all the edges needed for Q to be a clique. In
the discussion below, we will provide a much larger lower bound on the number
of labels needed to form a clique Q of size |Q| ∼ np which is not formed by a
single label. The following definition will be useful.

Definition 2. Denote by Ay,x the event that there are two disjoint sets of ver-
tices V1, V2 ⊂ V , where |V1| = y and |V2| = x such that the following hold:

1. All vertices in V1 have chosen some label l0, i.e. l0 ∈ ∩u∈V1Su.
2. None of the vertices in V2 has chosen l0, i.e. l0 /∈ ∪v∈V2Sv.
3. Every vertex in V1 is connected to every vertex in V2.

As a warm-up, we prove the following technical lemma, which is a first indi-
cation that in a Gn,m,p graph, whp we cannot have y too large and x too small
at the same time. This lemma will also be used as a starting step in the proof
of our main theorem.

Lemma 2. Let Gn,m,p be a random instance of the random intersection graphs

model with m = nα, 0 < α < 1 and p = Ω
(√

1
nm

)
and mp2 = O(1). Then, for

any y ≥ np
(
1 − o

(
1

ln n

))
, Pr(Ay,1) = o(1).

On Some Combinatorial Properties of Random Intersection Graphs 377

Proof. Fix a particular label l0, a subset V1 of the vertices having chosen l0 (i.e.
V1 ⊂ Ll0) and a vertex v /∈ Ll0 . The probability that v is connected to all vertices
in V1 is exactly

p(V1, v)
def
=

m−1∑
k=1

(
m − 1

k

)
pk(1 − p)m−k−1(1 − (1 − p)k)y. (3)

Indeed, pk(1 − p)m−k−1 is the probability that v has chosen k specific labels
different from l0 and 1 − (1 − p)k the probability that a specific vertex in V1 has
chosen at least one of those labels (so that it is connected to v).

By Boole’s and Markov’s inequality we then have that

Pr(Ay,1) ≤ m

(|Ll0 |
y

)
(n − |Ll0 |)p(V1, v) (4)

By Lemma 1, for any vertex v, we have that |Sv| ≤ (1+o(1))mp+ln n whp. Since
(1−(1−p)k)y is increasing in k and also

(
m−1

k

)
pk(1−p)m−k−1 is maximum around

mp, we conclude that the maximum of
(
m−1

k

)
pk(1 − p)m−k−1(1 − (1 − p)k)y for

k ∈ {1 . . . (1+o(1))mp} is attained at some index k′ = (1+o(1))mp. Therefore,

Pr(Ay,1) ≤ m2n

(|Ll0 |
y

)(
m − 1

k′

)
pk′

(1 − p)m−k′−1(1 − (1 − p)k′
)y + o(1) (5)

≤ m2n

(|Ll0 |
y

)
(1 − (1 − p)k′

)y + o(1) (6)

where the o(1) term corresponds to the error term from Lemma 1. Using now
the fact that (by the expansion of the natural logarithm) (1−p)

1
p = e

1
p ln (1−p) =

e−∑∞
j=1

pj−1

j ≥ e−1−∑∞
j=2 pj−1

= e−1− p
1−p ≥ e−1.1, for any p → 0, we have that

Pr(Ay,1) ≤ m2n

(|Ll0 |
y

)
(1 − e−2mp2

)y + o(1) (7)

= m2n

(|Ll0 |
|Ll0 | − y

)
(1 − e−2mp2

)y + o(1) (8)

≤ m2n(|Ll0 |)|Ll0 |−y(1 − e−2mp2
)y + o(1). (9)

For any y ≥ |Ll0 |
(
1 − o

(
1

ln n

))
, we then have that Pr(Ay,1) → 0. But by

Lemma 1 we have also that |Ll0 | ≤ np
(
1 + o

(
1

ln n

))
, which completes the

proof. �
The above lemma has the following alternative interpretation, which will be
useful in the sequence:

Corollary 1. Let Gn,m,p be a random instance of the random intersection graphs

model with m = nα, 0 < α < 1, p = Ω
(√

1
nm

)
and mp2 = O(1). Let also Q

be a clique in Gn,m,p that is not formed by a single label and also |Q| ∼ np.
If l0 ∈ M is any label chosen by some vertex v ∈ Q, then there is a positive
constant c′ < 1−α

2 , such that whp there are at least nc′
vertices in Q that have

not chosen l0.

378 S.E. Nikoletseas and C.L. Raptopoulos

Proof. Notice that, by assumption, np = Ω(n
1−α

2). Therefore, for any positive
c′ < 1−α

2 , we have that nc′
= o

(
np

ln2 n

)
. The result then follows by Lemma 2. �

We now strengthen the above analysis by using the following simple observation:
For a set of vertices V2 and k ≥ 2, let S

(k)
V2

⊆ M denote the set of labels that
have been chosen by at least k of the vertices in V2. Then the probability that
every vertex of a set of vertices V1 is connected to every vertex in V2 is at most

p(V1, V2) ≤
(

|S(2)
V2

|p + (1 − p)|S(2)
V2

| ∏
v∈V2

(
1 − (1 − p)|Sv−S

(2)
V2

|
))y

(10)

≤
(

|S(2)
V2

|p +
∏

v∈V2

(
1 − (1 − p)|Sv|

))y

(11)

Indeed, the first of the above inequalities corresponds to the probability that
each vertex in V2 either choses one of the labels shared by at least two vertices
in V2, or it is connected to all vertices in V2 by using labels chosen by exactly
one vertex in V2.

Lemma 3. Let Gn,m,p be a random instance of the random intersection graphs

model with m = nα, 0 < α < 1, p = Ω
(√

1
nm

)
and mp2 = O(1). Let also

x = 1
pε , for some positive constant ε < 1 that can be as small as possible. Then,

for any y ≥ np1+c, where 0 < c < 1−α
1+α is a constant, we have Pr(Ay,x) = o(1).

Proof. Fix a set V2 of x vertices. We first give an upper bound on the size of S
(2)
V2

.

Towards this end, let X = |S(2)
V2

| and notice that X is binomially distributed with
parameters m, p̂ = 1 − (1 − p)x − xp(1 − p)x−1. Since, by assumption xp → 0,
we have that p̂ ≤ x2p2

2 . Therefore X is stochastically dominated by a binomial

random variable Y ∼ B
(
m, x2p2

2

)
.

By Chernoff bounds we then have, for any t ≥ 0,

Pr
(

X >
mx2p2

2
+ t

)
≤ e

− t2

2
(

mx2p2
2 + t

3

)

(12)

Set t = 1
p2ε+ε′ , where ε′ is a positive constant that can be as small as possible.

Since mp2 = O(1), we have that t = ω
(

mx2p2

2

)
. By Boole’s inequality then, the

probability that there is a subset V2 of x vertices that has |S(2)
V2

| > mx2p2

2 + x2

pε′

is at most
nxe

− 1
3p2ε+ε′ = o(1). (13)

Now that we have an upper bound on the size of S
(2)
V2

that holds whp, notice
that by the second part of Lemma 1 and the fact that mp2 = O(1), whp we have

∏
v∈V2

(
1 − (1 − p)|Sv|

)
≤ 1

2Θ(x)
= o(|S(2)

V2
|p). (14)

On Some Combinatorial Properties of Random Intersection Graphs 379

Therefore, by (11), we have that p(V1, V2) ≤ (2|S(2)
V2

|p)|V1|. By Boole’s and
Markov’s inequality we then have that

Pr(Ay,x) ≤ m

(|Ll0 |
y

)
nxp(V1, V2) (15)

≤ m

(|Ll0 |
y

)
nx(2|S(2)

V2
|p)y + o(1) (16)

≤ m

(|Ll0 |
y

)
nx

(
2p1−−2ε−ε′)y

+ o(1) (17)

where the o(1) term corresponds to the error terms from Lemma 1 and Eq. (13).
Using now the first part of Lemma 1 and an upper bound for the binomial coef-
ficient we have

Pr(Ay,x) ≤ m

(
8np

y

)y

nx
(
p1−−2ε−ε′)y

+ o(1). (18)

Setting y = np1+c, for any positive constant c < 1−α
1+α , we have (y ≥ 1 and also)

that Pr(Ay,x) = o(1). This completes the proof. �
Lemma 3 has the following interpretation:

Corollary 2. Let Gn,m,p be a random instance of the random intersection graphs

model with m = nα, 0 < α < 1, p = Ω
(√

1
nm

)
and mp2 = O(1). Let also Q be

a clique in Gn,m,p that is not formed by a single label and also |Q| ∼ np. Then
whp, for any label l0 ∈ M, we have that |Q ∩ Ll0 | ≤ np1+c, where 0 < c < 1−α

1+α
is a constant.

In particular, if Q is not formed by a single label, then whp it is formed by
at least 1

pc distinct labels.

Proof. By Corollary 1, if Q is not formed by a single label, then given any label
l0 ∈ M which is chosen by some vertex v ∈ Q, there is a positive constant
c′ < 1−α

2 , such that whp there are at least nc′
vertices in Q that have not chosen

l0. Therefore, we can apply Lemma 3 using any ε < 2c′
1+α . More specifically, for

any such ε we have Pr(Anp1+c, 1
pε

) = o(1).
Additionally, this implies that whp if Q is not formed by a single label, it

needs at least np
np1+c = 1

pc distinct labels. This is also a lower bound on the
number of labels needed by a vertex v in order to connect to all vertices in Q. �
Before presenting the proof of our main theorem, we prove the following useful
lemma, which states that if a large clique is not formed by a single label, then it
must contain a quite large clique Q′ whose edges are formed by distinct labels.

Lemma 4. Let Gn,m,p be a random instance of the random intersection graphs

model with m = nα, 0 < α < 1, p = Ω
(√

1
nm

)
and mp2 = O(1). Let also Q

be any clique in Gn,m,p that is not formed by a single label and also |Q| ∼ np.
Then whp, Q contains a clique Q′ whose edges are formed by distinct labels and
whose size is at least p− c

2 , for any positive constant c < 1−α
1+α .

380 S.E. Nikoletseas and C.L. Raptopoulos

Proof. Let Q′ be a subset of Q which is maximal with respect to the following
property P: “to each pair of vertices u �= v in Q′ we can assign a distinct label
l, such that l ∈ Su ∩ Sv”.

Consider now the set of vertices W = {w : Sw ∩ S
(2)
Q′ �= 0}, namely the set

of vertices that share a label with at least 2 vertices in Q′ (note that Q′ ⊆ W ,
because every pair of vertices in Q is connected). Since Q′ is maximal, the set
Q − W must be the empty set. Indeed, if z ∈ Q − W , then (bearing in mind
that Q is a clique) z can be connected to each vertex in Q′ using distinct labels,
which are also different from those already used to connect pairs of vertices
in Q′. Therefore, Q′ ∪ {z} would also have property P, which contradicts the
maximality of Q′.

By Corollary 2 now, we have that |W | ≤ |S(2)
Q′ |np1+c, where 0 < c < 1−α

1+α is a

constant. Furthermore, by Eq. (13), we have that |S(2)
Q′ | ≤ m|Q′|2p2

2 + |Q′|2
pε′ whp,

for any ε′ > 0 that can be as small as possible. Combining the above, and since
mp2 = O(1), we have that

|W | ≤ np1+c|Q′|2
(1 + o(1))pε′ . (19)

Consequently, the requirement Q − W = ∅ translates to

|Q| − np1+c|Q′|2
(1 + o(1))pε′ ≤ 0 (20)

or equivalently

|Q′| ≥
√

|Q|
(1 + o(1))np1+c−ε′ . (21)

Bearing in mind that |Q| ∼ np and that ε′ > 0 can be as small as possible, this
completes the proof. �

We now present our main theorem.

Theorem 1 (Single Label Clique Theorem). Let Gn,m,p be a random
instance of the random intersection graphs model with m = nα, 0 < α < 1
and mp2 = O(1). Then whp, any clique Q of size |Q| ∼ np in Gn,m,p is formed
by a single label. In particular, the maximum clique is formed by a single label.

Proof. We first note that, as discussed in the beginning of Sect. 3, when p =

o
(√

1
nm

)
, by slightly modifying an argument of [2] (in particular Lemma 5

there), we can see that Gn,m,p almost surely has no cycle of size k ≥ 3 whose
edges are formed by k distinct labels. Therefore, the maximum clique of Gn,m,p

when p = o
(√

1
nm

)
, is formed by exactly one label and our theorem holds.

Consequently, we will assume w.l.o.g. for the remainder of the proof that p =

Ω
(√

1
nm

)
.

On Some Combinatorial Properties of Random Intersection Graphs 381

Let Q be a clique of size |Q| ∼ np in Gn,m,p. By Lemma 4, if Q is not formed
by a single label, then Gn,m,p must contain a clique Q′ whose edges are formed

by distinct labels and whose size is at least β
def
= p− c

2 , for any positive constant
c < 1−α

1+α . Notice also that, given the existence of any x edges, the (conditional)
probability that another edge is formed using a different label from those already
used by the x edges is at most 1 − (1 − p2)m−x ≤ 1 − (1 − p2)m. By the union
bound then, the probability that such a Q′ exists in Gn,m,p is at most

Pr{Q’ exists in Gn,m,p} ≤ nβ
(
1 − (1 − p2)m

)(β
2) (22)

≤ nβ(1 − e−1.1mp2
)(

β
2) (23)

≤ eβ ln n−(β
2)e−1.1mp2

= eβ ln n−Θ(β2) = o(1) (24)

where in the second inequality we used the fact that (1 − p2)
1

p2 ≥ e−1.1, for any
p → 0 (for the proof of an identical fact see the proof of Lemma2). Therefore,
whp Q′ does not exist in Gn,m,p, which completes the proof. �

Notice that, by Theorem 1, the maximum clique in Gn,m,p with m = nα, 0 <
α < 1 and mp2 = O(1) must be one of the sets Ll, l ∈ M. Therefore, the clique
number of Gn,m,p can be bounded using the first part of Lemma1. In particular,

Corollary 3. Let Gn,m,p be a random instance of the random intersection graphs

model with m = nα, 0 < α < 1, p = Ω
(√

1
nm

)
and mp2 = O(1). Then, whp the

maximum clique Q of Gn,m,p satisfies |Q| ∼ np.

4 Epilogue

We discussed here progress made by our team on the Random Intersection
Graphs (RIGs) Model. The topic is still new and many more properties await
to be discovered especially for the General (non-Uniform) version of RIGs. Such
graphs (and other new graph classes) are motivated by modern technology, and
thus, some combinatorial results and algorithmic properties may become useful
in order to understand and exploit emerging networks nowadays.

Acknowledgment. This paper is devoted to our mentor Paul Spirakis, on the occa-
sion of his 60th birthday. It was Paul who pointed out to us the very interesting model
of Random Intersection Graphs and inspired us to work, as a team, on its exploration.

References

1. Aldous, D., Fill, J.A.: Reversible Markov Chains and Random Walks on Graphs.
Unfinished monograph, recompiled (2014). Accessed on http://www.stat.berkeley.
edu/∼aldous/RWG/book.html

http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html

382 S.E. Nikoletseas and C.L. Raptopoulos

2. Behrisch, M., Taraz, A., Ueckerdt, M.: Coloring random intersection graphs and
complex networks. SIAM J. Discrete Math. 23, 288–299 (2008)

3. Blackburn, S., Stinson, D., Upadhyay, J.: On the complexity of the herding attack
and some related attacks on hash functions. Des. Codes Crypt. 64(1–2), 171–193
(2012)

4. Bloznelis, M., Jaworski, J., Rybarczyk, K.: Component evolution in a secure wire-
less sensor network. Networks 53, 19–26 (2009)

5. Cooper, C., Frieze, A.: The cover time of sparse random graphs. Random Struct.
Algorithms 30, 1–16 (2007)

6. Deijfen, M., Kets, W.: Random intersection graphs with tunable degree distribution
and clustering. Probab. Eng. Inform. Sci. 23, 661–674 (2009)

7. Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor
networks. In: Proceedings of the IEEE Symposium on Security and Privacy (2003)

8. Efthymiou, C., Spirakis, P.G.: Sharp thresholds for Hamiltonicity in random inter-
section graphs. Theor. Comput. Sci. 411(40–42), 3714–3730 (2010)

9. Fill, J.A., Sheinerman, E.R., Singer-Cohen, K.B.: Random intersection graphs
when m = ω(n): an equivalence theorem relating the evolution of the G(n, m, p)
and G(n, p) models. Random Struct. Algorithms 16(2), 156–176 (2000)

10. Frieze, A.: On the Independence Number of Random Graphs. Disc. Math. 81,
171–175 (1990)

11. Godehardt, E., Jaworski, J.: Two models of random intersection graphs for classifi-
cation. In: Opitz, O., Schwaiger, M. (eds.) Exploratory Data Analysis in Empirical
Research. Studies in Classification, Data Analysis, and Knowledge Organization,
pp. 67–82. Springer, Heidelberg (2002)

12. Karoński, M., Sheinerman, E.R., Singer-Cohen, K.B.: On random intersection
graphs: the subgraph problem. Comb. Probab. Comput. j. 8, 131–159 (1999)

13. �Luczak, T.: The chromatic number of random graphs. Combinatorica 11(1), 45–54
(2005)

14. Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: Colouring non-sparse random
intersection graphs. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol.
5734, pp. 600–611. Springer, Heidelberg (2009)

15. Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: Expander properties and the
cover time of random intersection graphs. Theor. Comput. Sci. 410(50), 5261–
5272 (2009)

16. Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: Large independent sets in general
random intersection graphs. Theor. Comput. Sci. 406, 215–224 (2008)

17. Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: Maximum cliques in graphs with
small intersection number and random intersection graphs. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 728–739. Springer,
Heidelberg (2012)

18. Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: On the independence number and
hamiltonicity of uniform random intersection graphs. Theor. Comput. Sci. 412(48),
6750–6760 (2011)

19. Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method. Springer,
Heidelberg (2002)

20. Raptopoulos, C., Spirakis, P.G.: Simple and efficient greedy algorithms for hamil-
ton cycles in random intersection graphs. In: Deng, X., Du, D.-Z. (eds.) ISAAC
2005. LNCS, vol. 3827, pp. 493–504. Springer, Heidelberg (2005)

21. Rybarczyk, K.: Equivalence of a random intersection graph and G(n, p). Random
Struct. Algorithms 38(1–2), 205–234 (2011)

On Some Combinatorial Properties of Random Intersection Graphs 383

22. Shang, Y.: On the isolated vertices and connectivity in random intersection graphs.
Int. J. Comb. 2011. Article ID 872703 (2011). doi:10.1155/2011/872703

23. Singer-Cohen, K.B.: Random Intersection Graphs. Ph.D. thesis, John Hopkins Uni-
versity (1995)

24. Stark, D.: The vertex degree distribution of random intersection graphs. Random
Struct. Algorithms 24(3), 249–258 (2004)

25. Yağan, O., Makowski, A.M.: Zero-one laws for connectivity in random key graphs.
IEEE Trans. Inf. Theor. 58(5), 2983–2999 (2012)

26. Zhao, J., Yağan, O., Gligor, V.: On k-connectivity and minimum vertex
degree in random s-intersection graphs. Arxiv e-prints (2014). Accessed on
http://arxiv.org/pdf/1409.6021v3.pdf

27. Zhao, J., Yağan, O., Gligor, V.: On the strengths of connectivity and robustness
in general random intersection graphs. In: Proceedings of the IEEE Conference on
Decision and Control (CDC), December 2014

http://dx.doi.org/10.1155/2011/872703
http://arxiv.org/pdf/1409.6021v3.pdf

Efficient Equilibrium Concepts
in Non-cooperative Network Formation

Panagiota N. Panagopoulou(B)

Computer Technology Institute and Press “Diophantus”, Patras, Greece
panagopp@cti.gr

Abstract. We review here some recently proposed models of non-coope-
rative network creation games where the nodes of a network perform edge
swaps in order to improve their communication costs. Our focus is on
examining the structure of stable (equilibrium) networks that correspond
to efficient notions of equilibria, in the sense that the nodes of the network
are able to decide which links to add and which to remove in order to
achieve a minimal cost, given the strategies of the other nodes. We also
review results on the capability of the network nodes of converging into
an equilibrium network by performing local selfish improvement steps.

1 Introduction

Large scale networks, such as the Internet, are built, maintained and used by
selfish entities, all of whom aim at optimizing their own cost and quality of net-
work usage. This suggests that such individual entities will have an incentive to
form connections with others to shape the network in ways that are advanta-
geous to themselves. A network creation game specifies a set of players, the link
formation actions available to each player and the payoffs to each player from
the networks that arise out of the link formation action profiles adopted by the
players. There are many potential models of network creation games that can
be considered, depending on which individuals have the decision power to form
or delete a link (i.e., which subset of nodes forms the set of players, and what
are their available strategies), as well as on the specification of the payoff allo-
cation rule (i.e., what is the cost of forming or deleting a link and under which
objectives do the selfish individuals evaluate the quality of a network).

The study of network creation games focuses on strategically stable or equilib-
rium networks, i.e., networks where there are no incentives for individual players
to form or delete links and thereby alter the network. We are interested in both
static and dynamic properties of equilibrium networks. Static properties include
the structure (i.e., the topologies) of equilibrium networks, while, on the other

This work was partially supported by the European Social Fund and Greek national
funds through the research funding program Thales on “Algorithmic Game Theory”
and by the EU ERC Project “ALGAME”.

c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 384–395, 2015.
DOI: 10.1007/978-3-319-24024-4 22

Efficient Equilibrium Concepts in Non-cooperative Network Formation 385

hand, dynamic properties of equilibrium networks specify whether (and how
fast) selfish players can actually converge into a stable network and thus find a
desired equilibrium.

Fabrikant et al. [4] introduced a simple network formation game, where each
player is identified with a node, and each node can choose to create a link
between itself and any subset of other nodes. Each link requires a fixed cost
α > 0 to be built, and each player has two competing goals: to pay for as few
links as possible, and to minimize the distance to all other players in the resulting
network. In particular, the objective of each player is to minimize the sum of
costs of the links created by herself plus the sum of distances to all other nodes
of the resulting network. In such a setting, the network is in equilibrium if no
node can improve its objective cost by deleting and/or creating any subset of
incident links.

This model of a network creation game is simple enough, while it captures
the flexibility of nodes to create and delete links as well as the trade-off between
the cost of creating links and the cost of reaching the other nodes of the network.
However, it has a main drawback: it is NP-hard to compute a best response of a
node. That is, a (computationally bounded) node cannot decide which links to
add and which to remove in order to achieve a minimal cost, given the strategies
of the other nodes. This implies that the players of the game can not even decide
whether they are in equilibrium or not, which further implies that the nodes are
incapable of converging into an equilibrium network by performing local selfish
improvements.

In view of the above drawback, Alon et al. [2] proposed a simpler model,
namely the basic network creation game. In this game the nodes are significantly
less flexible in creating and deleting links: in particular, a node can only swap an
existing link with another, i.e., delete an incident link and create a new incident
link. Alon et al. [2] considered two different objectives for the nodes, yielding
two versions of a basic network creation game: In the sum version, the cost of a
node is the sum of its distances to all other nodes, while in the max version the
cost of a node is the greatest distance between itself and any other node (i.e.,
the eccentricity of the node, using graph-theoretic terminology). A network is
in swap equilibrium if no node can decrease its cost by deleting an incident link
and creating a new one. With this restriction on the available strategies of each
node, it is easy to see that swap equilibria (under either cost objective) can be
detected in polynomial time: each node simply has to check each possible swap
of a non-neighboring node with a neighboring one.

The asymmetric basic network creation game, introduced in [6], is similar to
the basic game of [2], but here the ownership of a link plays a crucial role: only
the single owner of a link is allowed to swap the link. In the greedy buy basic
network creation game, introduced in [8], nodes have more freedom to act: a
node is allowed to buy (at some cost α) or to delete or to swap one own link. It
is assumed that nodes behave greedily, in the sense that they compute the best
augmentation, deletion or swap by trying all possibilities and re-computing the
incurred cost. This greedy behavior naturally leads to a new solution concept, the

386 P.N. Panagopoulou

greedy equilibrium, in which no node can decrease her cost by buying, deleting,
or swapping a link.

Even though the model of [2] and its extensions of [6,8] are more basic than
the model of [4] (in the sense that better responses can be determined in polyno-
mial time), they still rely on the fact that each vertex/player has global knowl-
edge of the graph, which is needed to compute its cost function. In view of the
above, a new swap-based network creation game was presented in [7], in which
selfish costs depend on the immediate neighborhood of each vertex/player. In
particular, the profit of each vertex is defined to be the sum of the degrees of
its neighbors, which is also related to the number of paths of length two from
that vertex. This model tends to capture selfish behavior that appears in large
distributed systems of computationally bounded selfish entities. One of the inter-
esting observations for this model is that vertices have a tendency to connect to
high degree vertices.

Note that all the above notions of equilibria can be detected easily in polyno-
mial time, in the sense that deciding whether a given state is an equilibrium can
be solved in polynomial time: simply try every possible edge swap and deletion.
Thus these equilibria are more natural for computationally bounded vertices.

2 Notation and Graph-Theoretic Background

Let G = (V,E) be an undirected graph. For a vertex v ∈ V , we denote by NG(v)
the set of neighbors of v in G. We will denote by ΔG the maximum degree of
a vertex of G, i.e., ΔG = maxv∈V deg(v), where deg(v) = |NG(v)|. For any two
vertices v, u ∈ V we will denote by distG(u, v) = distG(v, u) the length of a
shortest path between u and v in G. We denote by diam(G) the diameter of G,
defined as

diam(G) = max
u∈V,v∈V

distG(u, v).

The local diameter DG(v) of a vertex v is the maximum distance between v
and any other vertex: DG(v) = maxu∈V distG(u, v). For any vertex v ∈ V we
will denote by WG(v) the sum of distances of all vertices from v in G, i.e.,
WG(v) =

∑
u∈V distG(u, v). If the graph is disconnected, then we define WG(v)

to be infinite.
A graph is deletion-critical if deleting any single edge strictly increases the

local diameter of both of its endpoints. A graph is insertion-stable if inserting
any single edge does not decrease the local diameter of either endpoint.

Following the notation in [2], for any vertex u ∈ V and any k, we will denote
by Bu(k) the k-vicinity of u, i.e. Bu(k) = {w : dist(w, u) ≤ k}. We will omit the
subscripts G in the above notation if the graph is understood from the context.

3 The Basic Network Creation Game

We will first describe more formally the model of basic network creation games
proposed in [2]. We are given an undirected graph G = (V,E), where each vertex

Efficient Equilibrium Concepts in Non-cooperative Network Formation 387

corresponds to a player. A player can perform “edge swaps”, i.e., replace an
incident existing edge with another incident edge. More formally, let u ∈ NG(v)
and w /∈ NG(v). Then, the edge swap (u,w) of v removes the edge {v, u} and
creates the edge {v, w}. Therefore, the set of pure strategies of player v ∈ V in
graph G is SG(v) = {NG(v) × {V \ {NG(v) ∪ {v}}}}. Observe that the set of
pure strategies of a player depends on the current graph G and that an edge
swap performed by a player modifies the graph. We denote by Gsv

the graph
obtained from G when player v performs the edge swap sv ∈ SG(v).

The connection cost of player v ∈ V is the sum of distances between v
and all other vertices, i.e., equals WG(v). We say that a graph is in swap sum
equilibrium if no player (vertex) can improve her connection cost by performing
an edge swap.

Definition 1. The graph G = (V,E) is in swap sum equilibrium if for all v ∈ V ,
WG(v) ≤ WGsv

(v) for all sv ∈ SG(v).

We say that a graph is in swap max equilibrium if no vertex can improve her local
diameter by performing an edge swap, and, furthermore, deleting an incident
edge strictly increases the local diameter of a vertex.

Definition 2. The graph G = (V,E) is in swap max equilibrium if it is deletion-
critical and, for all v ∈ V , DG(v) ≤ DGsv

(v) for all sv ∈ SG(v).

Note that, if a graph is both insertion-stable and deletion-critical, then it is
certainly in max equilibrium.

Structure of Equilibria. For the sum version, it is shown in [2] that there is essen-
tially only one equilibrium tree. In particular, if a graph in swap sum equilibrium
is a tree, then it has diameter at most 2, and thus is a star.

In contrast to the sum version, trees in swap max equilibrium can have diam-
eter as high as 3. However, this diameter is the maximum possible. To prove this,
[2] showed that, in any graph in swap max equilibrium, (i) the local diameters
of any two nodes differ by at most 1 and (ii) if the equilibrium graph has a
cut vertex v, then only one connected component of G − v can have a vertex of
distance more than 1 from v. Therefore, there are two families of max equilib-
rium trees: stars (of diameter 2) and “double-stars” (of diameter 3). To be in
max equilibrium, the latter type must have at least two leaves attached to each
star root.

For the sum version and general topologies of equilibrium graphs, an upper
bound of 2O(

√
log n) on the diameter of equilibrium graphs is proven in [2]. Fur-

thermore, it is conjectured that the diameter of sum equilibrium graphs is poly-
logarithmic, and interesting evidence for this conjecture is offered. Note that the
best known lower bound on the diameter is 3 (this claim appears in [2]; a correct
proof is provided in [1]).

For the max version and general equilibrium graphs, a strong lower bound of
Ω(

√
n) on the diameter of graphs which are both insertion-stable and deletion-

critical, which are graphs in swap max equilibrium, is given. In [2] it is also
shown how to construct graphs that are both deletion-critical and stable under

388 P.N. Panagopoulou

k insertions, meaning that the graph is stable when the vertex is permitted to
change any k (incident) edges. A lower bound of Ω(n1/(k+1)) is proven in this
case, giving a smooth trade-off between diameter and computational power. In
the extreme case of k = Θ(log n/ log log n), the lower bound becomes Ω(log n).

For the sum version of the basic network creation model, [7] provided a new,
structural property of equilibrium graphs, which roughly states that for any two
vertices of degree greater than 1, the majority of the rest of the vertices are almost
equidistant from them. The proof uses the probabilistic method, combined with
some basic properties of equilibrium graphs. In particular, if G is a graph in
swap sum equilibrium with n vertices, then the following hold:

(i) Let u, v be any two vertices of degree greater than 1. Then, there are at least
two paths from u to v such that the first edge on each path is different.

(ii) If G has a vertex of degree 2, then diam(G) ≤ 9.

For any two vertices u, v and a randomly chosen vertex Z ∈ V − {u, v} of a
graph G = (V,E), let Du,v(Z) = |dist(u,Z) − dist(v, Z)|. Namely, Du,v(Z) is
the random variable of the absolute difference of the distance of Z from u, v. In
[7] it is shown that, for any two vertices u, v of degree greater than 1 in a graph
in swap sum equilibrium, we have that E[Du,v(Z)] ≤ 3.

These structural results of graphs in swap sum equilibrium can be seen as
a stronger “skewness” property like the one defined by the authors in [2] (see
Sect. 5 in that paper). In fact, [7] shows how we can prove upper bounds on the
diameter of equilibrium graphs in terms of the size of the largest k-vicinity, for
any k ≥ 1 and in terms of the number of edges. This partially settles positively
the conjecture of [2] (that equilibria graphs have poly-logarithmic diameter),
in the cases (a) of graphs that have a vertex with large k-vicinity (including
graphs with sufficiently large maximum degree) and (b) of graphs which are
dense enough. In particular, for an equilibrium graph G = (V,E), the following
hold:

1. Let Δ(k) = maxu |Bu(k)|. Then diam(G) ≤ 6n
Δ(k) + 2 + 4k, for any k > 0.

2. If the maximum degree G is such that Δ ≥ n
logl n

, for some l > 0, then

diam(G) = O(logl n).
3. diam(G) ≤ 6n2

e(G)+n
2

+ 4.

4. If the number of edges m of G satisfies m ≥ n2

logl n
, for some l > 0, then

diam(G) ≤ O(logl n).

4 The Asymmetric Basic Network Creation Game

The asymmetric swap basic network creation game, introduced by Mihalák and
Schlegel [6], is similar to the basic game originally defined in [2], but here the
ownership of an edge plays a crucial role: each edge is owned by only one of
its endpoints, and only the owner of an edge is allowed to swap the edge in
any state of the process. However, independent of the ownership, edges are still

Efficient Equilibrium Concepts in Non-cooperative Network Formation 389

two-way. The corresponding stable networks of this modified version are called
asymmetric swap sum (or max) equilibria.

In particular, a graph where every edge is owned by one of its endpoints is
said to be in asymmetric swap equilibrium, if no vertex v can delete its own edge
{v, w} and add a new edge {v, w′} and thereby decrease the sum of distances
from v to all other vertices. While the structure and the quality of equilibrium
networks is still not fully understood, [6] provide further (partial) insights for
this open problem. First, it is shown that every asymmetric swap equilibrium
has at most one (non-trivial) 2-edge-connected component. Second, a logarithmic
upper bound on the diameter of an asymmetric swap equilibrium is proven for
the case that the minimum degree of the unique 2-edge-connected component is
at least nε, for ε > 4 log 3

log n .
As pointed out in [6], the concept of asymmetric swap equilibrium concept

generalizes and unifies some other equilibrium concepts for network creation
games (as the network creation game of [4] and the bounded-budget network
creation game of [3]). The authors in [6] use their results to settle the conjecture
of [2], concerning the diameter of sum equilibrium graphs, in the case where the
minimum degree of an induced subgraph of the equilibrium graph is at least nε,
for some ε mentioned above.

5 The Greedy Buy Basic Network Creation Game

The greedy buy basic network creation game was introduced and analyzed in [8].
There, greedy equilibria are introduced as a new solution concept for network
creation games. This solution concept is based on the idea that players prefer
greedy refinements of their current strategy (network architecture) over a strat-
egy change which involves a radical re-design of their infrastructure. Further-
more, greedy equilibria represent solutions efficiently computed by very simple,
computationally limited vertices.

In the greedy buy basic network creation game, vertices have more freedom
to act as compared to the basic game of [2]. In particular, vertices check three
simple ways to improve their current infrastructure: (i) greedy augmentation,
which is the creation of one new own link, at some fixed cost α, (ii) greedy
deletion, which is the removal of one own link, and (iii) greedy swap, which is a
swap of one own link.

There are again two versions of the game, depending on the way we define
the cost of a vertex in a network configuration: in the sum version, each vertex
tries to minimize the sum of her shortest path lengths to all other vertices in
the network, while in the max version, vertices try to minimize their maximum
shortest path distance to any other network vertex.

Definition 3. A graph G is in greedy equilibrium if no vertex in G can decrease
her cost by buying, deleting or swapping one own edge.

390 P.N. Panagopoulou

The Quality of Greedy Equilibria. Lenzner [8] analyzed the stability of solutions
found by greedily playing vertices. For the sum version it is shown that, despite
the fact that greedy strategy changes may be sub-optimal from the point of view
of a vertex, greedy equilibria capture Nash equilibria on trees. That is, in any
tree network which is in greedy equilibrium, no vertex can decrease her cost by
performing any strategy change, i.e., create and/or delete any possible subset of
edges. For general networks it is proven that any network in greedy equilibrium
is in 3-approximate Nash equilibrium, i.e., no vertex can decrease its cost by a
factor of 3 or more by performing any strategy change . Furthermore, a lower
bound of 3/2 is provided for this approximation ratio. This shows that greedy
play almost suffices to create perfectly stable networks.

For the max version, it is shown in [8] that these games have a strong non-
local flavor which yields diminished stability. Even greedy equilibrium trees may
be susceptible to non-greedy improving strategy changes. However, susceptible
trees can be fully characterized and it is shown that their stability is very close
to being perfect. Specifically, any greedy equilibrium star is shown to be in
2-approximate Nash equilibrium and that any greedy equilibrium trees having
larger diameter is in 6/5-approximate Nash equilibrium. A matching lower bound
for both cases is given. For non-tree networks in greedy equilibrium the picture
changes drastically. For greedy equilibrium networks having a very small α, the
approximation ratio is related to their diameter and a lower bound of 4 is proven.
For α ≥ 1, it is shown that there are non-tree networks in greedy equilibrium,
which are only in Ω(n)-approximate Nash equilibrium.

6 The Local Cost Basic Network Creation Game

Even though the model of [2] is more basic than the model of [4] (in the sense
that better responses can be determined in polynomial time), it still relies on
the fact that each vertex/player has global knowledge of the graph, which is
needed to compute its cost function. Furthermore, it is so far unknown how
an equilibrium can be reached in a distributed, uncoordinated manner, starting
from any initial graph configuration. In many cases though, especially for large-
scale networks like the Internet, there is no coordination between nodes and
only local information is at their immediate disposal. As an example, imagine a
social network consisting of selfish individuals that can form relations between
each other and each one measures its strength inside the population in terms
of how well connected it is (so that, for example, it can receive as much infor-
mation as possible from the overall network). Assuming that each individual’s
computational and perception capabilities are finite, each individual will only be
able to assess its strength using incomplete, local information about the network
(i.e., its immediate neighborhood). Investigating stable states of such systems
could potentially reveal information on how groups and communities are formed
inside a social network, and why certain structures appear.

In view of the above, another swap-based network creation game was pre-
sented in [7], in which selfish costs depend on the immediate neighborhood of

Efficient Equilibrium Concepts in Non-cooperative Network Formation 391

each vertex/player. In particular, for each vertex, we define its profit to be the
sum of the degrees of its neighbors, which is also related to the number of paths
of length two from that vertex. This model tends to capture selfish behavior
that appears in large distributed systems of computationally bounded selfish
entities. One of the interesting observations for this model is that vertices have
a tendency to connect to high degree vertices. This may serve as yet another
interpretation of the fact that structures of large dynamic networks have many
similarities with power law and preferential attachment graphs. In particular,
we prove that, unlike the model of [2], this network creation game admits an
exact potential, and also that any equilibrium graph contains an n-vertex star
as a spanning subgraph. The existence of a potential function implies that better
response dynamics always converge to an equilibrium graph within a polynomial
number of steps in the number of vertices. Furthermore, we consider a case where
vertices can only acquire limited knowledge concerning non-neighboring vertices
and we show that we can reach equilibrium in expected polynomial time.

We now define the local cost basic network creation game, which is simpler
than the model of [2] and also admits an exact potential. Let G = (V,E) be any
undirected graph with n nodes. Again, as in the model of [2], the players can be
identified as the set of vertices of the graph, and any player u ∈ V can swap one
of its incident edges (which defines the set of available actions for each player).
In contrast to [2] however, the payoff of a vertex depends only on the structure
of its immediate neighborhood and not on the entire network. In particular, we
define the profit of u ∈ V in G as γG(u) =

∑
v∈NG(u) degG(v), i.e., the profit of

u is the sum of the degrees of its neighbors. (A natural generalization would be
to consider nodes at distance at most k from u.)

Structure of Equilibria. A profitable swap is an edge swap that improves
(increases) the profit of the vertex that performs it. Notice that an arbitrary
sequence of profitable swaps (by nodes v1, v2, . . .) actually transforms the initial
graph through a sequence of configuration graphs G0, G1, G2, We will write
Gi

vi→ Gi+1 and mean that configuration Gi produces configuration Gi+1 by a
selfish swap by vertex vi. Vertex vi is called deviator in configuration Gi.

Definition 4. A graph G is a local cost swap equilibrium configuration if no
vertex can perform a selfish (improving) swap.

In [7] it is shown that, if G is a local cost swap equilibrium configuration, then
it contains an n-vertex star as a spanning subgraph. This follows from the fact
that a vertex u does not have a profitable swap in G when degG(v) > degG(w),
for any v ∈ NG(u) and w /∈ NG(u). This means that u connects to all vertices
of maximum degree. Moreover, either all vertices are connected to all vertices
of maximum degree (in which case the graph contains an n-vertex star as a
spanning subgraph), or there is some vertex u not connected to at least one
vertex w of maximum degree. In the latter case, u can benefit from swapping
one of its edges to connect to w and thus increase the maximum degree.

392 P.N. Panagopoulou

7 Dynamics of Equilibria

We have seen that equilibrium networks in the models of basic network creation
games we have presented have, in general, desirable properties, such as small
diameter, which make them attractive for the decentralized creation of overlay
networks. However, an algorithm for finding such equilibrium networks is not
obvious. These games can be thought of as sequential move games, in order to
analyze whether (uncoordinated) selfish play eventually converges to an equilib-
rium state: in each step, some single player (vertex) performs a myopic selfish
improving move (better reply). So, in every step, some vertex myopically modi-
fies the network infrastructure to better suit her needs. Clearly, if at some step
in the process no vertex wants to modify her part of the network, then a stable
network has emerged.

7.1 Symmetric, Asymmetric, and Greedy Swap Equilibria

The dynamics of the (symmetric) basic network creation game, the asymmetric
swap game, and the greedy buy game, as well as the original version of network
creation games defined in [4], are studied in [5].

For the basic network creation game of [2], it is shown that, if the initial
network is a tree on n nodes, then the network creation process is guaranteed
to converge in O(n3) steps for both the sum and the max versions. By enforcing
best (instead of just better) responses on trees, this process can be sped up
significantly to O(n) steps. The same move policy with best responses yields
a significant speed-up in the max version as well, where an upper bound of
Θ(n log n) steps is proven. Moreover, it is shown that these results carry over to
the asymmetric swap basic network creation game on trees in both the sum and
the max version.

These positive results for initial networks which are trees are in contrast to
several strong negative results on general networks. In particular, for both the
asymmetric and the symmetric cases and both the sum and the max versions
on general networks, it is not guaranteed that the selfish improvement process
converges if vertices repeatedly perform best possible improving moves and, even
worse, no move policy can enforce convergence.

7.2 Local Cost Swap Equilibria

In contrast to the above described negative results, the local cost basic network
creation game admits an exact potential function, as shown in [7]. This directly
implies that, no matter what the initial network configuration is, and no matter
what the move policy is, i.e., for any selfish improvement sequence, the process
is guaranteed to converge to an equilibrium graph.

In particular, the function Φ(G) = 1
2

∑
v∈V (G) degG(v)2 is an exact potential

for the game. Consider a profitable swap performed by vertex u, which swaps
edge {u, v} ∈ E(G) with edge {u,w} /∈ E(G) and let G′ be the resulting graph.
Then the following are true: (a) degG′(u) = degG(u), (b) degG′(v) = degG(v)−1,

Efficient Equilibrium Concepts in Non-cooperative Network Formation 393

(c) degG′(w) = degG(w) + 1 and (d) the degree of any other vertex remains
unchanged. Therefore

γG′(u) − γG(u) =
∑

z∈NG′ (u)

degG′(z) −
∑

z∈NG(u)

degG(z)

= degG(w) + 1 − degG(v).

The corresponding change in the value of the function Φ(·) is then

Φ(G′) − Φ(G) =
1
2

(
degG′(v)2 + degG′(w)2

) − 1
2

(
degG(v)2 − degG(w)2

)

= degG(w) − degG(v) + 1
= γG′(u) − γG(u)

which proves that Φ(·) is an exact potential for the game.
The existence of the potential function ensures that an equilibrium graph

can be found in at most O(n3) time steps (egde swaps), starting from any initial
graph. However, in order for a vertex u to compute a better response (i.e., a
profitable swap), it requires information about the degree from all non-adjacent
vertices in the graph, i.e., all v ∈ V \NG(u). In many cases though, especially for
large-scale networks like the Internet, it is inefficient to acquire such information
about all the nodes in the network. On the other hand, we can assume that
any vertex u can get such information for a limited (e.g., constant) number of
non-neighboring nodes by asking an oracle. In this setup the following holds:

If any vertex u can obtain information about the degree of c ≥ 1 ran-
domly chosen non-neighboring vertices, then the local cost basic network
creation game can converge in an equilibrium graph in a polynomial
expected number of steps.

The above result was proven in [7] who defined the following procedure: Starting
with the initial graph configuration G0 = (V0, E0), at any time t ≥ 1, select a
vertex u uniformly at random from V and then ask the oracle to reveal the
degrees of c randomly chosen non-neighbors of u (we assume that u knows the
degrees of its neighbors), namely v1, . . . vc ∈ Vt−1 − NGt−1(u). If one of the
vertices among v1, . . . , vc has degree equal to or larger than the degree of some
neighboring vertex of u in Gt, then u performs a profitable swap. Otherwise, it
does nothing. The resulting graph will be denoted by Gt = (Vt, Et).

If at any time step t, Gt is not an equilibrium graph, then there must be
at least one profitable swap. In particular, there exist vertices u, v, w such that
w ∈ NGt

(u), v /∈ NGt
(u) and degGt

(w) ≤ degGt
(v). The probability that u

is selected and also v is among the randomly chosen non-neighbors of u is at
least c

n2 .
Consider now the stochastic process {Xt}t≥0, where

Xt =
1
2

∑
z∈Vt

degGt
(z)2.

394 P.N. Panagopoulou

Notice then that, provided Gt is not an equilibrium graph, Pr(Xt+1 ≥ Xt +1) ≥
c

n2 and also Pr(Xt+1 = Xt) = 1 − Pr(Xt+1 ≥ Xt + 1). Notice also that the
absorbing states of the stochastic process {Xt}t≥0 correspond to equilibrium
graphs, and we have 0 ≤ Xt ≤ n3

2 for any t and in particular, for any equilibrium
graph Gt.

From the above, we conclude that the number of steps needed for {Xt}t≥0

to reach an absorbing state is stochastically dominated by a geometrically dis-
tributed random variable Geom

(
n3

2 , c
n2

)
. Therefore, the mean number of steps

needed for absorption is at most n5

2c . Also note that we can decide whether the
procedure described above has reached an equilibrium graph with high proba-
bility. Indeed, if after at least Ω(n3) steps no swap has occurred, then by the
Markov inequality, we can correctly (positively) decide whether we have reached
equilibrium with probability at least 1 − O

(
1
n

)
.

8 Conclusions and Open Issues

In contrast to the well-studied general network formation games as in [4], the
basic network creation games described here try to avoid (i) the dependence to
the parameter α which captures the cost required to build a link and (ii) the
NP-hardness to compute a best response of a node. The downside of this app-
roach is that the swap equilibrium concepts are rather weak solution concepts,
in the sense that nodes are less flexible to create and delete links, and much
stronger structural properties are to be expected for equilibrium networks. It
would be interesting to define and analyze other equilibrium concepts that allow
the creation and deletion of more than one link at a time, while preserving, as
much as possible, the nice properties of swap equilibria.

As already mentioned, it is conjectured in [2] that networks in sum swap
equilibrium have poly-logarithmic diameter. Poly-logarithmic upper bounds on
the diameter of swap sum equilibrium graphs that are either dense enough or
have large k-vicinity have been proved, thus partially settling positively this
conjecture for these cases. It remains open whether we can use the full power
of this result to provide more general and stronger bounds on the diameter of
graphs in swap sum equilibrium.

Finally, it would be interesting to extend the local costs model, so that the
profit for each vertex depends on the structure of its k-vicinity, instead of its
direct neighborhood only.

References

1. Alon, N., Demaine, E.D., Hajiaghayi, M., Kanellopoulos, P., Leighton, T.: Cor-
rection: basic network creation games. SIAM J. Discrete Math. 28(3), 1638–1640
(2014)

2. Alon, N., Demaine, E.D., Hajiaghayi, M., Leighton, T.: Basic network creation
games. In: Proceedings of the 22nd ACM symposium on Parallelism in Algorithms
and Architectures (SPAA), pp. 106–113. ACM, New York (2010). (Also in SIAM
Journal on Discrete Mathematics, vol. 27(2), pp. 656–668, 2013)

Efficient Equilibrium Concepts in Non-cooperative Network Formation 395

3. Ehsani, S., Fazli, M., Mehrabian, A., Sadeghian Sadeghabad, S., Safari, M.,
Saghafian, M., ShokatFadaee, S.: On a bounded budget network creation game.
In: Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pp. 207–214 (2011)

4. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a net-
work creation game. In: Proceedings of the 22nd Annual Symposium on Principles
of Distributed Computing, pp. 347–351, Boston, Massachusetts (2003)

5. Kawald, B., Lenzner, P.: On dynamics in selfish network creation. In: Proceedings of
the 25th Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA 2013), pp. 83–92 (2013)

6. Mihalák, M., Schlegel, J.C.: Asymmetric swap-equilibrium: a unifying equilibrium
concept for network creation games. In: Rovan, B., Sassone, V., Widmayer, P. (eds.)
MFCS 2012. LNCS, vol. 7464, pp. 693–704. Springer, Heidelberg (2012)

7. Nikoletseas, S., Panagopoulou, P., Raptopoulos, C., Spirakis, P.G.: On the structure
of equilibria in basic network formation. In: G ↪asieniec, L., Wolter, F. (eds.) FCT
2013. LNCS, vol. 8070, pp. 259–270. Springer, Heidelberg (2013)

8. Lenzner, P.: Greedy selfish network creation. In: Goldberg, P.W. (ed.) WINE 2012.
LNCS, vol. 7695, pp. 142–155. Springer, Heidelberg (2012)

Simple Parallel Algorithms for Dynamic
Range Products

Christos Zaroliagis1,2(B)

1 Department of Computer Engineering and Informatics,
University of Patras, 26504 Patras, Greece

2 Computer Technology Institute and Press “Diophantus”, N. Kazantzaki Str.,
Patras University Campus, 26504 Patras, Greece

zaro@ceid.upatras.gr

Abstract. We consider here the problem of answering range product
queries on an n-node unrooted tree labelled with elements of a semigroup
provided with an associative operator only. We present simple parallel
dynamic algorithms for one of the weakest models of parallel computation
(EREW PRAM). Our main result is an algorithm which answers a query
in O(α(n)) time using a single processor after O(log n)-time and O(n)-
work preprocessing, where α(n) is the inverse of Ackermann’s function.
The data structures set up during preprocessing are updated in O(log n)
time and O(nβ) work, for any (arbitrarily small) constant 0 < β < 1,
after a dynamic change in the label of a tree node.

1 Introduction

Developing algorithms for solving fundamental problems in parallel computing,
except for being an important challenge by itself, flags the beginning of my
collaboration with Paul Spirakis. Paul firmly believes that studying and solving
fundamental problems, as well as possessing a solid theoretical background, is
the key to the solution of virtually any problem. This belief has been the true
motivation for most of my work, including the current one.

1.1 The Problem

We consider the following fundamental problem. Suppose we are given a semi-
group (S, ◦), i.e., a set S of elements with an associative operator ◦ on them,
which is the only available one. Assume also that the product x ◦ y between
any two elements x, y ∈ S can be computed in O(1) time. Let s1, s2, ..., sn be
elements of S. We want to preprocess the sequence s1, s2, ..., sn, such that sub-
sequently range queries can be efficiently answered. A range query specifies two
indices i, j, where 1 ≤ i ≤ j ≤ n, and asks for the product si ◦si+1◦· · ·◦sj−1◦sj .
This problem is known as the linear range product problem.

Similarly, the tree range product problem is defined as follows. Let T be an
n-node unrooted tree, where every node of T is labelled (or associated) with an
element of S. We want to efficiently preprocess T such that, given any two nodes
c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 396–407, 2015.
DOI: 10.1007/978-3-319-24024-4 23

Simple Parallel Algorithms for Dynamic Range Products 397

u, v of T , the product of the labels associated with the nodes lying on the path
from u to v is computed as fast as possible. (Labels can also be associated with
edges of T rather than nodes. But it is easy to see that this is a special case
of the problem considered here with labels on nodes.) It is clear that the linear
range product problem is a special case of the tree range product problem, where
the tree is simply a path of n nodes.

In this paper, we investigate the parallel complexity of the dynamic version
of the tree range product problem. In this setting, the labels of the nodes may
change. After a change in a node label, we would like to update the data struc-
tures already computed during preprocessing as efficiently as possible, without
recomputing everything from scratch and without sacrificing the query time.

1.2 Applications

The tree range product problem, as well as its dynamic version, has applications
to all problems that can be expressed as products of labels along paths in a tree.
Along with its special case (the linear range product problem), they appear to be
fundamental in many theoretical applications [2] (e.g., addition in unbounded-
fan-in circuits, range minima, merging two sorted sequences of elements) and
also to applications of a particular practical importance. We mention below
some of them.

Network Communication. Consider a network connecting various sites using a
spanning tree topology. Assume also that each link of the network has a specified
capacity. Each time two sites want to communicate, they have to know the max-
imum size of a message that can be sent. This maximum message size is equal to
the minimum capacity along the tree path connecting the two sites. Moreover,
the knowledge of maximum message size is even more important when a com-
munication link between two sites is replaced by another one with a different
capacity. (This may happen because of a link failure, or because at a certain time
some different link is used.) This problem reduces to the dynamic range product
problem on a tree, whose edges are labelled with elements of a semigroup (S, ◦)
and S, ◦ are the set of reals and the minimum operator, respectively.

Matrix-Chain Multiplication Problem. Given a chain of n matrices A1, A2, ..., An,
where matrix Ai, 1 ≤ i ≤ n, has dimension pi−1 × pi, we want to fully parenthe-
size the product A1A2...An such that the total number of scalar multiplications is
minimized. This problem is solved by dynamic programming (see [6], Chap. 15),
where the problem reduces to determining the minimum cost of a parenthesiza-
tion of AiAi+1...Aj , for any pair 1 ≤ i < j ≤ n. If matrices Ak and Ak+1,
1 ≤ k ≤ n, are also free to change their common dimension pk, then clearly
the dynamic matrix-chain multiplication problem reduces to the dynamic linear
range product one.

Information Retrieval in Databases. Usually queries in a relational database
correspond to a selection of tuples (satisfying a particular condition) from an
existing relation, or from a relation generated by some relational algebra oper-
ators most of which are associative [7]. In both cases, the selection of tuples

398 C. Zaroliagis

corresponds to an appropriate linear range product query made to the relation.
Since values of fields in tuples change dynamically as data are updated, the same
database query may result in a different selection of tuples when it is performed
after such an update. Hence, an efficient solution of the dynamic linear range
product problem appears to be fundamental here. Note also that the problem of
generating a new relation by applying associative algebra operators on existing
relations, reduces to the above mentioned matrix-chain multiplication problem,
and is of particular importance in database query optimization [7,11].

1.3 Our Contribution and Related Work

In sequential computation, an efficient solution to the static tree range product
problem was given independently in [1,5]. Their algorithms perform an O(n)
time and space preprocessing of the tree T and then any range product query
is answered in O(α(n)) time, where α(n) is the inverse of Ackermann’s function
which is a very slowly growing function with n. The algorithm presented in [1]
can be also optimally parallelized on the EREW PRAM model of computation
[1,8]. It performs an O(log n)-time and O(n)-work preprocessing of T , such that
afterwards a range query is answered in O(α(n)) time using a single processor.

In this paper, we present simple and efficient parallel algorithms, on the
EREW PRAM model, for the dynamic tree range product problem. Our algo-
rithms answer a range product query in O(α(n)) time, after an O(log n)-time
and O(n)-work preprocessing of T . The data structures set up during preprocess-
ing can be updated, after the modification in the value of some node label, in
O(log n) time and O(nβ) work, for any constant 0 < β < 1. Furthermore, we give
a trade-off between query time and the work required for an update. With O(nβ)
update work, the query time is O(α(n)); decreasing the update work towards
O(log n), degrades the query time to logarithmic. It is worth mentioning here
that our parallel algorithms imply a sequential dynamic algorithm for the tree
range product problem with O(n) time and space preprocessing, O(α(n)) query
time and O(nβ) update time.

Our method is based on the following result: given an n-node binary tree T ,
partition T into Θ(n/m) node-disjoint connected components, 1 ≤ m ≤ n, such
that each component is of size at most m and is connected to the rest of the tree
with at most 3 edges. In [4], a very simple algorithm is given that achieves such
a partition in O(log n) time using O(n) work on an EREW PRAM.

The main idea of our approach is the following. Based on the above tree
partitioning result, we partition the tree into a small number of subtrees with
disjoint node sets such that each subtree is connected with the rest of the tree
with at most 3 edges. Then, we construct another tree, called the condensed tree,
by shrinking each subtree into a tree of O(1) size. The sizes of the subtrees are
chosen so that the subtrees and the condensed tree have size O(

√
n). We then

construct data structures for answering range product queries on each subtree
and on the condensed tree. This enables us to answer range product queries on
the initial tree. Since the node sets are disjoint, a change in a node label affects
the data structure of only one subtree. Then, we update the data structures

Simple Parallel Algorithms for Dynamic Range Products 399

of this subtree and of the condensed tree, both of which are smaller than the
original tree. Applying this idea recursively yields the trade-off between update
work and query time.

We note that our approach is a generalization of a method presented in
[3,4] for solving dynamic shortest path problems on digraphs of small treewidth.
However, the approach in [3,4] introduces large constants and a different analysis
is needed in order to reduce them substantially and thus being able to provide
the (above mentioned) update vs. query trade-off.

2 Tree Partitioning

For the sake of completeness, we present in this section the tree-partitioning
result in [4], which will be used for the solution of the dynamic tree range product
problem.

Definition 1. A (c, d,m)-partition of an n-node binary tree T , where 1 ≤ m ≤
n and c, d are positive integer constants, is a node-partition of T into at least
n/m and at most dn/m connected components such that each component has at
most m nodes and is connected to the rest of the tree through at most c edges,
called the outgoing edges of the component.

We give an algorithm which is a variant of the well-known parallel tree contrac-
tion algorithm (see e.g., [9]). Assign a weight of 1 to each node in the tree. By
adding a leaf (with weight 0) as a child to each node that has one child, we obtain
a tree in which each node is a leaf or has two children. Number the leaves of the
tree from left to right using the Euler tour technique [9]. From now on assume
that we have a tree with weights on the nodes adding up to n, in which each
internal node has two children, and in which some of the leaves are numbered
from left to right. Our algorithm for obtaining the desired partition performs a
number of rounds. Each round (consisting of three steps) forms groups of nodes
which, at the end, will give the components. The algorithm is as follows:

ALGORITHM Binary-Tree-Partition

Repeat the following steps (round) log n times.

1. In parallel, for each odd numbered leaf that is a left child, if the sum of the
weights of the leaf, its parent and its sibling is at most m, then shrink the
edges connecting the leaf and its sibling to their parent. Assign the parent a
weight equal to the sum of the weights of the three nodes. If the sibling is
a leaf, it is even numbered. Assign this number to the parent (which is now
a leaf in the modified tree). If the sum of the weights exceeds m, then delete
the numbers (if they exist) from the leaf and the sibling.

2. Repeat step 1 for each odd numbered leaf that is a right child.
3. After these two steps, all the numbered leaves in the tree have an even number.

Divide each of these numbers by 2.

END.

400 C. Zaroliagis

In order to implement the above algorithm – as well as the subsequent ones –
on an EREW PRAM, we make the following conventions for the input-output
representation. We assume that algorithm Binary-Tree-Partition has its input
tree specified as a linked structure in n contiguous memory cells. The algorithm
produces its output in O(n) contiguous memory cells, divided into contiguous
blocks, each block containing one of the connected components in the same linked
format, and one final block containing the compressed tree (i.e., the tree at the
end of the shrinking process) in a linked format.

The aforementioned input-output representation can be easily accomplished
using standard EREW PRAM methods [9] using O(log n) time and O(n) work,
which we now describe briefly. Let q be the number of nodes in the compressed
tree. By assigning the preorder number to each node in the compressed tree, we
can assign a unique number between 1 and q to each connected subtree. Then,
by solving a prefix summation problem on q elements, where the i-th element
is the number of nodes in subtree i, we can allocate contiguous memory blocks
for the various subtrees. It remains to copy the subtrees into the appropriate
blocks. Since each node in the compressed tree knows the memory addresses
allocated for its subtree, by reversing the shrinking process we can assign a
unique memory address in the appropriate block to each node in a subtree. Now
it is a simple matter for each node to copy itself into this address, and duplicate
its link structure.

Theorem 1. Given any 1 ≤ m ≤ n, a (3, 8,m)-partition of an n-node binary
tree T can be computed in O(log n) time using O(n) work on an EREW PRAM.

Proof. It is not hard to see that after the i-th iteration, at most l/2i leaves have
numbers, where l is the initial number of leaves. Thus, at the end, there are
no numbered leaves. Throughout, the following invariant is maintained: if a leaf
does not have a number, then the weights of the leaf, its parent and sibling add
up to more than m. (Note that such a leaf will not participate in any subsequent
iteration.) Call such a triple of leaf, parent and sibling an overweight group.

Each non-numbered leaf is contained in some overweight group, and no node
can belong to more than two overweight groups. Thus, the sum of the weights of
all the overweight groups is at most 2n, hence the number of overweight groups is
at most 2n/m. Since each overweight group contains at most two non-numbered
nodes, the total number of non-numbered leaves at the end is 4n/m. Since each
internal node has two children, the total number of nodes remaining in the tree
is at most 8n/m.

Each node v in the remaining tree is associated with the connected subtree
induced by the nodes that were shrunk into v in the above process. These are
the required groups. It is easy to see that v has a weight equal to the number
of nodes in the associated subtree. Since this weight is at most m, there are at
least n/m such connected subtrees. Also, as shown above, there are no more than
8n/m connected subtrees. It follows from the construction that each subtree is
connected to the rest of the tree through at most 3 edges which are incident on
at most 2 nodes of the subtree.

Simple Parallel Algorithms for Dynamic Range Products 401

The complexity bounds follow by the aforementioned input-output represen-
tation of the input tree and the fact that the algorithm is a variant of the parallel
tree contraction algorithm [9]. ��

3 Dynamic Range Products

In this section, we shall give our algorithms and data structures for the dynamic
version of the tree range product problem. Our solution is based on the tree-
partitioning result presented in the previous section.

For a function f let f (1)(n) = f(n); f (i)(n) = f(f (i−1)(n)), i > 1. Define
I0(n) = �n

2 	 and Ik(n) = min{j | I
(j)
k−1(n) ≤ 1}, k ≥ 1. The functions Ik(n)

decrease rapidly as k increases, in particular, I1(n) = �log n	 and I2(n) = log∗ n.
Define α(n) = min{j | Ij(n) ≤ 1}.

Recall the assumptions made for the semigroup (S, ◦) in Sect. 1. As in [1], we
also assume that S has a unit element. (Otherwise, we can simply add such an
element to S.) The following has been proved in [1,8].

Theorem 2. Let T be an n-node unrooted tree such that each node is labelled
with an element from a semigroup (S, ◦). Then, the following hold on an EREW
PRAM: (i) for each k ≥ 1, after O(log n)-time and O(nIk(n))-work preprocess-
ing, the product of labels along any path in the tree can be computed in O(k) time
using a single processor; and (ii) after O(log n)-time and O(n)-work preprocess-
ing, the product of labels along any path in the tree can be computed in O(α(n))
time using a single processor.

In the following, we shall denote by �(u) the label of a node u. We define
P [�(u), �(v)] to be the product of the elements associated with the nodes lying
on the path from u to v in a tree T . If u and v are the same node, then the
above product is defined to be equal to �(u) or �(v). For a node w of T , we shall
denote by lc(w) (resp. rc(w)) its left (resp. right) child in T .

We shall consider first the case where the given labelled tree T is rooted and
binary. At the end of the section we shall discuss how the general case is handled.
Note that it suffices to give a data structure for answering range product queries
between any two nodes u, v of T when u is a descendant of v (called upward
query), or vice versa (called downward query). Since otherwise, let w be the
lowest common ancestor of u and v in T and w.l.o.g. assume that u (resp. v)
is a descendant of lc(w) (resp. rc(w)). The path, in T , between u and v passes
through w. Hence, P [�(u), �(v)] = P [�(u), �(lc(w))] ◦ �(w) ◦P [�(rc(w)), �(v)], i.e.,
it reduces to the problem of computing an upward and a downward range query.
(Note that we have to consider separately upward and downward range queries,
since the operator ◦ may not be commutative.)

Assume we are given a (3, 8,m)-partition of an n-node binary tree T into
connected components Ti, 1 ≤ i ≤ 8n/m. From the construction of the partition,
it is clear that each component Ti will either have one or three outgoing edges.
We use the following notation for certain nodes of the components. If Ti has only
one outgoing edge, we shall refer to the single node incident on that edge as xi.

402 C. Zaroliagis

If Ti has three outgoing edges, we shall refer to the two nodes of Ti incident on
these edges as xi and yi, where xi will be the one closest to the root of T . Note
that in this latter case: (a) xi is incident on one outgoing edge and yi on the
other two outgoing edges; (b) yi is a descendant of lc(xi) or rc(xi).

Now, we construct a binary tree T ′, called the upward condensed tree of T , as
follows. Replace each Ti in T by a subtree on nodes xi and yi, and edge (xi, yi)
(if yi exists). Node xi in T ′ has label �′(xi) = �(xi). Node yi (if exists) has label
�′(yi) = P [�(yi), �(lc(xi))] or �′(yi) = P [�(yi), �(rc(xi))], depending whether yi is
a descendant of lc(xi) or rc(xi).

We can similarly construct a downward condensed tree T ′′. In T ′′, node xi

will again have label �(xi). Node yi (if exists) will have label P [�(lc(xi)), �(yi)]
(resp. P [�(rc(xi)), �(yi)]) if it is a descendant of lc(xi) (resp. rc(xi)).

The next lemma shows that the above constructions can be done optimally
on an EREW PRAM.

Lemma 1. Both condensed trees of a labelled rooted n-node binary tree can be
constructed in O(log n) time using O(n) work on an EREW PRAM.

Proof. We shall show how the upward condensed tree T ′ is constructed. The
construction of the downward condensed tree is similar. Having the (3, 8,m)-
partition of T into q connected components and using the input-output repre-
sentation described in Sect. 2, we can find in O(1) time the nodes xi and yi for
each component Ti, by assigning one processor per each node of T . Then, we
allocate an array A of 2q contiguous memory cells for T ′. Each xi and yi is copied
into the position 2(i − 1) + 1 and 2(i − 1) + 2 of A, respectively, for 1 ≤ i ≤ q. It
remains only to establish the parent-child relationships in T ′. By the construc-
tion, node yi knows immediately its parent xi in T ′. Hence, it remains only to
inform xi for its parent in T ′. But this can be done using the data structure
of T . All the above take O(1) time and O(n) work on an EREW PRAM. The
bounds now follow from Theorem 1. ��
The next lemma shows how a (3, 8,m)-partition of T and its upward condensed
tree can be used to answer upward range product queries in T .

Lemma 2. Assume we are given a (3, 8,m)-partition of an n-node labelled
rooted binary tree T into connected components Ti, 1 ≤ i ≤ 8n/m, and let T ′ be
its upward condensed tree. If T ′ and all Ti’s are provided with a data structure
for answering upward range product queries, then: (i) We can answer correctly
upward range product queries in T . (ii) If the label of a node w in T is changed,
and w belongs also to component Ti, then an updating to the data structures of
T ′ and Ti suffices to continue answering correctly upward range product queries
in T .

Proof. (i) Let u be a descendant of v in T . We want to show that P [�(u), �(v)]
is computed correctly using the data structures of T ′ and Ti’s. If both u and
v belong to the same component Ti, then clearly the data structure of Ti gives
the correct range product. Therefore, assume that u ∈ Ti and v ∈ Tj , i �= j.

Simple Parallel Algorithms for Dynamic Range Products 403

W.l.o.g. assume also that yj , which is an ancestor of xi, is a descendant of lc(v).
(The case where yj is a descendant of rc(v) is similar.)

Consider now the components Tp and Tq such that yp is the parent of
xi and xq is the child of yj . From the associativity of ◦, we have that
P [�(u), �(v)] = P [�(u), �(xi)] ◦ P [�(yp), �(xq)] ◦ P [�(yj), �(v)]. Clearly, the range
products P [�(u), �(xi)] and P [�(yj), �(v)] can be obtained from the data struc-
tures of Ti and Tj respectively. In the special case where either yp, xq, yj and v
coincide, or yp, xq, xi and u coincide, we make the convention that P [�(yp), �(xq)],
in the above product, is equal to the unit element of S.

Hence, to complete the proof, it suffices to show that P [�(yp), �(xq)] =
PT ′ [�′(yp), �′(xq)], where the RHS product is taken from T ′ and yp �= xq (other-
wise the proof is trivial). The proof goes by induction on the number t of nodes
in the path from yp to xq in T ′.

Consider first the basis case, t = 0. This means that p = q, and
P [�(yp), �(xq)] = P [�(yp), �(xp)] = P [�(yp), �(lc(xp))] ◦ �(xp) = �′(yp) ◦ �′(xp) =
PT ′ [�′(yp), �′(xq)], by the construction of T ′ and the fact that xp and xq are the
same nodes.

For the induction hypothesis, assume that P [�(yp), �(xq)] = PT ′ [�′(yp),
�′(xq)], if the path contains at most t − 1 nodes.

For the induction step, let the path contain t nodes. Then P [�(yp), �(xq)] =
P [�(yp), �(xr)] ◦ P [�(yq), �(xq)], where xr is the child of yq that belongs to com-
ponent Tr. By the induction hypothesis, P [�(yp), �(xr)] = PT ′ [�′(yp), �′(xr)]. By
the associativity of ◦, P [�(yq), �(xq)] = P [�(yq), �(lc(xq))] ◦ �(xq). But from the
construction of T ′ we have, P [�(yq), �(lc(xq))]◦�(xq) = PT ′ [�′(yq), �′(xq)]. There-
fore, P [�(yp), �(xq)] = PT ′ [�′(yp), �′(xr)] ◦ PT ′ [�′(yq), �′(xq)] = PT ′ [�′(yp), �′(xq)],
as required.

(ii) We have just shown that if we have built data structures for all of Ti’s
and for T ′, we can correctly answer upward queries in T ′. Therefore, it is clear
that updating these data structures such that upward queries can be answered
correctly in all Ti’s and in T ′, is sufficient to answer correctly upward range
queries in T . Hence, it remains to argue that we need to update only one of
the components, namely the one, say Ti, which contains the node w whose label
�(w) has changed. But this follows immediately from the fact that all Ti’s are
node-disjoint, thus changing the label �(w) of w in Ti does not affect any range
product query in some Tj , i �= j, and therefore its data structure. ��
The following definition will facilitate the presentation of our results.

Definition 2. Let DS(T, {PW , PT }, {UW , UT }, Q) be a dynamic data structure
for the range product problem on a tree T , where O(PW) (resp. O(PT)) is the
preprocessing work and space (resp. time) to be set up, O(UW) (resp. O(UT)) is
the work (resp. time) to update it after a modification in the value of an element
associated with a tree node, and O(Q) is the time to answer a product query
using a single processor.

The next lemma gives the bounds, and its proof explains the construction, of
our dynamic data structures for the tree range product problem.

404 C. Zaroliagis

Lemma 3. Let T be an n-node binary tree. Then, for each k ≥ 1 and any
integer r ≥ 0, there exist dynamic data structures for the upward range product
problem on T , with the following characteristics on an EREW PRAM:

(i) DS(T, {(r + 1)n − √
n, 2 log n + 8r}, {c(r)n(1/2)r , 2 log n + 8r}, 3rα(n));

(ii) DS(T, {((r + 1)n − √
n)Ik(n), 2 log n + 8r}, {c(r)n(1/2)r , 2 log n + 8r}, 3rk),

where c(0) = 1 and c(r) = c(r − 1)[1 + 16(1/2)r−1
] for r ≥ 1.

Proof. We shall prove part (i). Part (ii) can be proved similarly. The proof
proceeds by induction on r. If r = 0, then the update time exceeds the pre-
processing and hence the static data structure of Theorem 2 suffices. In the fol-
lowing, we shall use the notation D(T, n, r) for DS(T, {(r + 1)n − √

n, 2 log n +
8r}, {c(r)n(1/2)r , 2 log n + 8r}, 3rα(n)). Assume that the theorem holds for any
value smaller than r. We shall show how D(T, n, r) is constructed.

We first costruct a (3, 8,
√

n)-partition of T and an upward condensed tree
T ′. Let T1, T2, ..., Tq,

√
n ≤ q ≤ 8

√
n, be the connected components of T , each

one of size ni = |V (Ti)| =
√

n and connected with the rest of T through at most
3 edges. Also,

∑q
i=1 ni = n, and T ′ has n′ = |V (T ′)| ≤ 2q ≤ 16

√
n nodes.

The data structure for D(T, n, r) consists of the following: D(Ti, ni, r − 1),
for each 1 ≤ i ≤ q, which enables us to answer upward range product queries
in Ti, and D(T ′, n′, r − 1) which enables us to answer upward range product
queries in T ′. By Lemma 2, maintaining these data structures is sufficient to
answer correctly upward range product queries in T . Since in the same Lemma,
we also showed how an upward query is answered having these data structures,
it remains to argue here only for the resource bounds.

The time and work required for the preprocessing is equal to the time and
work required for constructing: (1) the (3, 8,

√
n)-partition of T and the upward

condensed tree T ′, and (2) the dynamic data structures of Ti’s and T ′ induc-
tively. By Theorem 1 and Lemma 1, the total preprocessing work PW (n, r) is
bounded by

PW (n, r) ≤ n +
q∑

i=1

PW (ni, r − 1) + PW (n′, r − 1).

By the induction hypothesis, we have

PW (n, r) ≤ n +
q∑

i=1

(rni − √
n) + rn′ − √

n ≤ (r + 1)n − √
n.

Similarly, the preprocessing time PT (n, r) is

PT (n, r) ≤ log n + max{PT (ni, r − 1), PT (n′, r − 1)}
≤ log n + max{2 log ni + 8(r − 1), 2 log n′ + 8(r − 1)}
≤ 2 log n + 8r

The time and work required for the update operation is the time and work to
update D(Ti, ni, r − 1) and D(T ′, n′, r − 1). Using a similar argument as above,

Simple Parallel Algorithms for Dynamic Range Products 405

we can show that the time required for an update is 2 log n + 8r. The work
UW (n, r) required for an update is

UW (n, r) ≤ UW (ni, r − 1) + UW (n′, r − 1)

which, by the induction hypothesis, gives:

UW (n, r) ≤ c(r − 1)n(1/2)r−1

i + c(r − 1)(n′)(1/2)r−1

= c(r − 1)n(1/2)r [1 + 16(1/2)r−1
]

= c(r)n(1/2)r .

Finally, the query time Q(n, r) is bounded by

Q(n, r) ≤ 2Q(ni, r − 1) + Q(n′, r − 1)

where the first term corresponds to the time required for querying the data
structures of the components in which the two nodes belong to, and the last
term corresponds to the time required for querying in T ′. By the induction
hypothesis, this gives

Q(n, r) ≤ 2(3r−1α(ni)) + (3r−1α(n′)) ≤ 3rα(n).

Thus, we can construct D(T, n, r) in the claimed bounds and hence complet-
ing the induction. ��
Remark 1. Using symmetric arguments, we can prove similar Lemmata to 2
and 3 for answering downward range product queries in a labelled rooted binary
tree, using the downward condensed tree T ′′.

We are now ready to give our main theorem.

Theorem 3. Let T be an n-node unrooted tree such that each node is labelled
with an element from a semigroup (S, ◦). Then, for each k ≥ 1 and any integer
r ≥ 0, there exist dynamic data structures for the range product problem on T ,
with the following characteristics on an EREW PRAM:

(i) DS(T, {(r + 1)n − √
n, 2 log n + 8r}, {c(r)n(1/2)r , 2 log n + 8r}, 3rα(n));

(ii) DS(T, {((r + 1)n − √
n)Ik(n), 2 log n + 8r}, {c(r)n(1/2)r , 2 log n + 8r}, 3rk),

where c(0) = 1 and c(r) = c(r − 1)[1 + 16(1/2)r−1
] for r ≥ 1.

Proof. If T is unrooted, then we root it arbitrarily. If T is not binary, we convert
it into a rooted binary tree, in the standard way, by adding dummy nodes. To
these dummy nodes added, we associate the unit element of S. Note that the
total number of nodes is at most 2n. We then preprocess the tree (using e.g., the
algorithm of [10]) such that lowest common ancestor queries can be answered in
O(1) time. All the above will cost O(log n) time and O(n) work on an EREW
PRAM using standard techniques (see e.g., [9]). After the above preprocessing,
it follows by Lemmata 2 and 3 and Remark 1, that we can dynamically answer
upward and downward range product queries in T . From the discussion in the
beginning of Sect. 3, it follows that if we can answer upward and downward range
product queries, then we can answer any range product query in T . The bounds
follow easily by the above discussion and Lemma 3. ��

406 C. Zaroliagis

An immediate consequence of Theorem 3 is a continuous trade-off between
preprocessing, query, and update bounds, depending on the particular choice of
r. For instance, choosing r = − log β, where 0 < β < 1 is any (arbitrarily small)
constant, we get the following.

Corollary 1. Let k ≥ 1 be any constant integer and let 0 < β < 1 be any
(arbitrarily small) constant. The dynamic range product problem, on an n-node
unrooted tree T , can be solved by constructing the following data structures on
an EREW PRAM:

(i) DS(T, {n, log n}, {nβ , log n}, α(n));
(ii) DS(T, {nIk(n), log n}, {nβ , log n}, k).

On the other hand, we may let r vary with n. For instance, choosing r =
log log n, we have the following.

Corollary 2. Let k ≥ 1 be any constant integer and let 0 < β < 1 be any
arbitrarily small constant. The dynamic range product problem, on an n-node
unrooted tree T , can be solved by constructing the following data structures on
an EREW PRAM:

(i) DS(T, {n log log n, log n}, {log n, log n}, α(n) log1.6 n);
(ii) DS(T, {nIk(n) log log n, log n}, {log n, log n}, k log1.6 n).

4 Conclusions

We have presented here simple and efficient dynamic algorithms for the tree
range product problem that run on the weakest PRAM model. The dynamic
tree range product problem appears to be a fundamental subproblem in many
applications, as discussed in Sect. 1. We believe that our solution to this problem
will help in the dynamization of graph problems which make use of tree data
structures.

References

1. Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product
queries, Technical Report No. 71/87, Tel-Aviv University (1987)

2. Chaudhuri, S., Hagerup, T.: Prefix graphs and their applications. In: Mayr, Ernst
W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 206–218.
Springer, Heidelberg (1995)

3. Chaudhuri, S., Zaroliagis, C.: Shortest paths in digraphs of small treewidth. Part
I: sequential algorithms. Algorithmica 27(3), 212–226 (2000)

4. Chaudhuri, S., Zaroliagis, C.: Shortest paths in digraphs of small treewidth. Part
II: optimal parallel algorithms. Theor. Comput. Sci. 203(2), 205–223 (1998)

5. Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Algo-
rithmica 2, 337–361 (1987)

6. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd
edn. The MIT Press, Cambridge (2009)

Simple Parallel Algorithms for Dynamic Range Products 407

7. Date, C.J.: An Introduction to Database Systems, Vol. I, 5th edn. Addison-Wesley,
Reading (1991)

8. Hagerup, T.: Parallel preprocessing for path queries without concurrent reading.
Inf. Comput. 158, 18–28 (2000)

9. JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley, Reading (1992)
10. Schieber, B., Vishkin, U.: On finding lowest common ancestors: simplification and

parallelization. SIAM J. Comput. 17(6), 1253–1262 (1988)
11. Ullman, J.D.: Principles of Database and Knowledge-base Systems, Vol. II. Com-

puter Science Press, Rockville (1989)

Author Index

Andreou, Maria 97

Bouras, Christos 133

Chatzigiannakis, Ioannis 3, 154
Chong, Ka Wong 169

Dolev, Shlomi 25, 33

Efraimidis, Pavlos S. 183
Efthymiou, Charilaos 196

Fotakis, Dimitris 3, 97, 223

Garofalakis, John D. 344
Gidenstam, Anders 358
Gulisano, Vincenzo 242

Kapoulas, Vaggelis 133
Kontogiannis, Spyros 3
Koukopoulos, Dimitrios 261

Lesta, Vicky Papadopoulou 97

Mamalis, Basilis 281
Mavronicolas, Marios 49

Mehlhorn, Kurt 87
Michail, Othon 3, 308
Monien, Burkhard 49

Nikolakopoulos, Athanasios N. 344
Nikolakopoulos, Yiannis 242, 358
Nikoletseas, Sotiris E. 3, 97, 370

Panagopoulou, Panagiota N. 33, 384
Pantziou, Grammati 3, 281
Papadimitriou, Christos H. 27
Papatriantafilou, Marina 29, 242, 358

Rabie, Mikaël 33
Raptopoulos, Christoforos L. 370

Schiller, Elad M. 33
Spirakis, Paul G. 33, 97

Tsanai, Enea 133
Tsigas, Philippas 242, 358

Wagner, Klaus W. 49

Zaroliagis, Christos 3, 169, 396

	Preface
	Acknowledgements
	List of Contributors
	Contents
	Part I
	A Glimpse at Paul G. Spirakis
	1 Introduction
	2 Childhood, Education and Career
	3 Teaching, Mentoring, and Publications
	4 Awards and Distinctions
	5 Research
	5.1 Probabilistic and Randomized Algorithms
	5.2 Parallel Algorithms and Complexity
	5.3 Networks and Distributed Computing
	5.4 Internet, Mobile, and Evolution Networks
	5.5 Algorithmic Game Theory
	5.6 Population Protocols and Temporal Graphs

	6 Other Professional Activities
	7 Contributions to the Scientific Community
	8 Personal
	9 Epilogue
	References

	The Reality Game Theory Imposes (Short Summary)
	References

	On Neural Networks and Paul Spirakis
	Concurrency, Parallelism, Asynchrony and Life
	Invited Talks
	Rationality Authority for Provable Rational Behavior
	1 Introduction
	2 Preliminaries
	3 Verifying a Nash Equilibrium Using Coq
	4 Provable Rationality Using Interactive Proofs
	5 Equilibrium Consultant with Provable Advices
	6 On-line Network Congestion Games
	7 Discussions
	References

	Weighted Boolean Formula Games
	1 Introduction
	1.1 Succinct Games and Equilibria Problems
	1.2 Weighted Boolean Formula Games
	1.3 Summary of Results and Significance
	1.4 Related Work and Comparison
	1.5 Road Map

	2 Framework and Background
	2.1 Notation
	2.2 Games and Equilibria
	2.3 Isomorphisms and Monomorphisms
	2.4 Potential Games and Classes of Congestion Games
	2.5 Complexity Theory

	3 Weighted Boolean Formula Games
	3.1 Definition
	3.2 Decision and Search Problems

	4 Mutual Weighted Boolean Formula Games
	5 Pure Equilibria
	6 Payoff-Dominant Equilibria
	6.1 Upper Bounds
	6.2 Completeness Results

	7 Open Problems
	References

	On the Implementation of Combinatorial Algorithms for the Linear Exchange Market
	1 Introduction
	2 The Algorithm
	3 A Glimpse of the Analysis
	4 Questions
	References

	Regular Contributions
	On Radiocoloring Hierarchically Specified Planar Graphs: PSPACE-completeness and Approximations
	1 Introduction, Our Results and Related Work
	1.1 Motivation
	1.2 Summary of Our Results
	1.3 Related Work and Comparison

	2 Preliminaries
	3 The Complexity of the Radiocoloring Problem
	3.1 The NP-Completeness of RCP for Planar Graphs
	3.2 The PSPACE-Completeness of RCP for Hierarchical Planar Graphs

	4 Approximations to RCP for WS Fully Planar Graphs
	4.1 A 10/3-Approximation Algorithm RC_Approx
	4.2 A 3-Approximation Algorithm RC_Levels

	5 Discussion and Open Problems
	References

	Performance Evaluation of Routing Mechanisms for VANETs in Urban Areas
	1 Introduction
	2 Overview of Routing in MANETs and VANETs
	2.1 Routing Protocols
	2.2 Challenges

	3 Proposed Enhancement to GPSR
	3.1 Overview of the Proposed Enhancement
	3.2 Algorithm and Architecture

	4 Simulation Settings
	4.1 Reference Scenario
	4.2 Experiments and Parameters

	5 Results and Discussion
	6 Conclusions and Future Work
	References

	Pioneering the Establishment of the Foundations of the Internet of Things
	1 The Internet of Things and Intermittent Connectivity
	2 Modeling Mobile and Dynamic Networks
	3 A Network Organization Framework for Dynamic Mobile Networks
	4 Basic Communication Algorithms for Dynamic Mobile Networks
	4.1 Alternative Implementations of the Support

	5 Exploiting the Theoretical and Practical Dimensions of Research in Parallel
	6 Closing Remarks
	References

	An Optimal Parallel Algorithm for Minimum Spanning Trees in Planar Graphs
	1 Introduction
	2 Preliminaries
	3 The Algorithm
	4 Finding a (c,f(c))-Connector in a Degree-3 Graph
	5 Extensions of Our Results
	6 Conclusions
	References

	Weighted Random Sampling over Data Streams
	1 Introduction
	2 Weighted Random Sampling (WRS)
	3 The Two Core Algorithms
	3.1 A-Chao
	3.2 A-ES
	3.3 Algorithm A-Chao with Jumps

	4 Algorithms for WRS Problems
	4.1 Basic Problems
	4.2 Sampling with a Bounded Number of Replacements
	4.3 Sampling Problems in the Presence of Stream Evolution

	5 An Abstract Data Structure for WRS
	6 The Role of Weights
	7 Discussion
	References

	Random Instances of Problems in NP -- Algorithms and Statistical Physics
	1 Introduction
	1.1 Algorithms for rCSP

	2 Predictions from Statistical Physics - ``Cavity Method''
	2.1 Rigorous Results

	3 Satisfiability Thresholds
	4 Algorithm Dynamics
	4.1 Convergence of Glauber Dynamics
	4.2 Dynamics and Optimization

	5 Algorithms Beyond Dynamics
	5.1 Combinatorial Algorithms
	5.2 Numerical Algorithms - Message Passing

	References

	A Selective Tour Through Congestion Games
	1 Introduction
	1.1 Organization

	2 Congestion Games and Nash Equilibria
	2.1 Price of Anarchy and Price of Stability
	2.2 Potential Functions and Best Responses
	2.3 Non-atomic Congestion Games

	3 Potential Functions for Weighted Players
	4 Reaching a Pure Nash Equilibrium
	4.1 Series-Parallel Networks
	4.2 Extension-Parallel Networks

	5 The Price of Anarchy and How to Deal with It
	5.1 The Price of Anarchy for Extension-Parallel Networks
	5.2 Optimal Tolls for Atomic Congestion Games
	5.3 Stackelberg Routing
	5.4 Approximate Network Design for Non-Atomic Games

	References

	Data-Streaming and Concurrent Data-Object Co-design: Overview and Algorithmic Challenges
	1 Introduction
	2 Concurrent object Algorithmic Implementations - Preliminaries
	3 Data Streaming - Preliminaries
	3.1 Parallel Data Streaming and Deterministic Processing

	4 Inter-thread Communication in SPEs Architecture
	5 Leveraging Concurrent Data Structures in SPEs
	6 ScaleGate: A Novel, Concurrency- and Streaming-Aware Data Object
	7 Evaluation Study
	8 Conclusions
	References

	Stability in Heterogeneous Dynamic Multimedia Networks
	1 Introduction
	2 Related Work
	3 Theoretical Framework
	4 Instability of FIFO Protocol Compositions Under AQMDS Model
	5 Instability of a FIFO Composition with Other Protocols Under AQMDC Model
	6 Experimental Evaluation
	7 Conclusions
	References

	Advances in the Parallelization of the Simplex Method
	1 Introduction
	2 Background
	2.1 The Primal Revised Simplex Method
	2.2 The Dual Revised Simplex Method

	3 Overview of Simplex Parallelization
	3.1 Parallelizing the Standard Simplex Method
	3.2 Parallelizing the Revised Simplex Method

	4 Recent Advances on the Parallelization of the Dual Revised Simplex Method
	4.1 Design and Implementation (Key Issues)
	4.2 Experimental Results

	5 Parallel Distributed-Memory Simplex for Large-Scale Stochastic LP Problems
	5.1 Design and Implementation (Key Issues)
	5.2 Experimental Results

	6 Revisiting the Parallelization of Standard Full Tableau Simplex Method
	6.1 Design and Implementation (Key Issues)
	6.2 Experimental Results

	7 GPU-Based Simplex Parallelization Efforts
	8 Conclusion
	References

	An Introduction to Temporal Graphs: An Algorithmic Perspective
	1 Introduction
	2 Modeling and Basic Properties
	2.1 Journeys

	3 Connectivity and Menger's Theorem
	4 Dissemination and Gathering of Information
	5 Design Problems
	6 Temporal Versions of Other Standard Graph Problems: Complexity and Solutions
	7 Linear Availabilities
	8 Random Temporal Graphs
	References

	Random Surfing Without Teleportation
	1 Introduction and Motivation
	2 NCDawareRank Model
	2.1 Notation
	2.2 Definitions

	3 Necessary and Sufficient Conditions for Random Surfing Without Teleportation
	3.1 Preliminaries
	3.2 NCDawareRank Primitivity Criterion

	4 Generalizing the NCDawareRank Model
	4.1 The Case of Overlapping Blocks

	5 Discussion and Future Work
	References

	Of Concurrent Data Structures and Iterations
	1 Introduction
	2 System Model
	3 Framework of Consistency Definitions for Concurrent Iterations
	4 An Overview of Iteration Algorithms and Implementations
	5 Possible Applications and Research Questions
	References

	On Some Combinatorial Properties of Random Intersection Graphs
	1 Introduction and Motivation
	1.1 Definitions and a First Look at RIGs

	2 An Overview of Selected Combinatorial Problems
	2.1 Independent Sets
	2.2 Hamilton Cycles
	2.3 Coloring
	2.4 Expansion and Random Walks

	3 Maximum Cliques
	4 Epilogue
	References

	Efficient Equilibrium Concepts in Non-cooperative Network Formation
	1 Introduction
	2 Notation and Graph-Theoretic Background
	3 The Basic Network Creation Game
	4 The Asymmetric Basic Network Creation Game
	5 The Greedy Buy Basic Network Creation Game
	6 The Local Cost Basic Network Creation Game
	7 Dynamics of Equilibria
	7.1 Symmetric, Asymmetric, and Greedy Swap Equilibria
	7.2 Local Cost Swap Equilibria

	8 Conclusions and Open Issues
	References

	Simple Parallel Algorithms for Dynamic Range Products
	1 Introduction
	1.1 The Problem
	1.2 Applications
	1.3 Our Contribution and Related Work

	2 Tree Partitioning
	3 Dynamic Range Products
	4 Conclusions
	References

	Author Index

