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Abstract. This paper tackles the problem of interpolating reduced data
Qm = {qi}mi=0 obtained by sampling an unknown curve γ in arbitrary eu-
clidean space. The interpolation knots Tm = {ti}mi=0 satisfying γ(ti) = qi
are assumed to be unknown (non-parametric interpolation). Upon select-
ing a specific numerical scheme γ̂ (here a piecewise-quadratic γ̂ = γ̂2),
one needs to supplement Qm with knots’ estimates {t̂i}mi=0 ≈ {ti}mi=0. A
common choice of {t̂λi }mi=0 (λ ∈ [0, 1]) frequently used in curve modeling
and data fitting (e.g. in computer graphics and vision or in computer
aided design) is called exponential parameterizations (see, e.g., [11] or
[16]). Recent results in [8] and [14] show that γ̂2 combined with expo-
nential parameterization yields (in trajectory estimation) either linear
α(λ) = 1 (λ ∈ [0, 1)) or cubic α(1) = 3 convergence orders, once Qm

gets progressively denser. The asymtototics proved in [8] relies on the
extra assumptions requiring γ̂2 to be reparameterizable to the domain
of γ. Indeed, as shown in [14], a natural candidate ψ for such a repa-
rameterization meets this criterion only for λ = 1, whereas the latter
(see [8]) may not hold for the remaining λ ∈ [0, 1) (which e.g. brings
difficulty in length estimation of γ by using γ̂). Our paper fills out this
gap and establishes sufficient conditions imposed on Tm to render ψ a
genuine reparameterization with λ ∈ [0, 1) (see Th. 4). The derivation of
a such a condition involves theoretical analysis and symbolic computa-
tion, and this constitutes a novel contribution of the present work. The
numerical tests verifying whether ψ indeed is a reparameterization (for
λ ∈ [0, 1) and for more-or-less uniform samplings Tm) are also performed.
The sharpness of the asymptotics in question is additionally confirmed
with the aid of numerical tests.

1 Introduction

Sampled data points γ(ti) = qi with ({ti}mi=0, Qm) form a pair of a so-called non-
reduced data. It is required here that ti < ti+1 and qi �= qi+1 hold. In addition, we
assume that γ : [0, T ] → En (with 0 < T < ∞) is sufficiently smooth (specified
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later) and that it defines a regular curve (i.e. γ̇(t) �= 0). In order to approximate
the curve γ with an arbitrary interpolant γ̄: [0, T ] → En it is necessary to assume
that the knots fulfill the admissibility condition (denoted as {ti}mi=0 ∈ V m

G ):

lim
m→∞ δm = 0, where δm = max

0≤i≤m−1
(ti+1 − ti). (1)

This paper discusses a special subfamily of admissible samplings V m
mol ⊂ V m

G

called more-or-less uniform samplings (see e.g. [7]) defined as:

βδm ≤ ti+1 − ti ≤ δm, (2)

for some β ∈ (0, 1]. Note that the left inequality in (2) excludes samplings with
distance between consecutive knots smaller than βδm. On the other hand the
right inequality in (2) holds automatically due to (1).

For Tm unknown, a proper choice of guessed knots {t̂i}mi=0 ≈ {ti}mi=0 is stip-
ulated by enforcing the convergence of the selected interpolant γ̂ (satisfying
γ̂(t̂i) = qi) to the unknown curve γ with possibly fast orders. Recall that we
choose here γ̂ = γ̂2 as a Lagrange piecewise-quadratic interpolant fitting consec-
utive triples of points from Qm. At best the resulting asymptotics in trajectory
estimation by any interpolant γ̂ (and thus in particular by γ̂2) should match
the asymptotics derived for the corresponding classical parametric interpolant γ̄
(here a piecewise-quadratic γ̄ = γ̃2) based on non-reduced data ({ti}mi=0, Qm),
with Tm specified. The next section outlines the existing results on interpolating
reduced data and formulates a research task for this paper (see Th. 4).

2 Problem Formulation and Motivation

Recall that the family Fδm : [0, T ] → En satisfies Fδm = O(δαm) if ‖Fδm‖ = O(δαm),
where ‖ · ‖ denotes the euclidean norm and α ∈ IR. By well-known convention,
the latter guarantees the existence of constants K > 0 and δ̄ > 0 (independent
on m) such that ‖Fδm‖ ≤ Kδαm, for all δm ∈ (0, δ̄).

A standard result for non-reduced data ({ti}mi=0, Qm) combined with piecewise
r-degree polynomial γ̄ = γ̃r reads (see e.g. [7] or [1]):

Theorem 1. Let γ ∈ Cr+1 be a regular curve γ : [0, T ] → En. Assume that the
knot parameters {ti}mi=0 ∈ V m

G are given. Then a piecewise r-degree Lagrange
polynomial γ̃r used with {ti}mi=0 known, yields a sharp estimate for the trajectory
estimation γ̃r = γ +O(δr+1

m ).

In particular, piecewise-quadratics γ̃2 or piecewise-cubics γ̃3 render cubic or
quartic orders in Th. 1, respectively. In various applications in computer graphics
and vision (e.g. image segmentation or curve modeling), engineering or physics
(trajectory estimation) or medical image processing (e.g. in medical diagnosis) a
common situation is to deal exclusively with the reduced data Qm (see e.g. [11],
[5], [16] or [3]). Any fitting scheme based on Qm requires, in the first step to
determine the respective substitutes {t̂i}mi=0 (i.e. external knots) approximating



262 R. Kozera and L. Noakes

somehow the internal knots {ti}mi=0. One particular family of {t̂i}mi=0 ≈ {ti}mi=0

commonly used for curve modeling is the so-called exponential parameterization
(see e.g. [11] or [12]):

t̂0 = 0, t̂i+1 = t̂i + ‖qi+1 − qi‖λ, (3)

where 0 ≤ λ ≤ 1 and i = 0, 1, . . . ,m−1. The special cases of λ ∈ {1, 0.5, 0}, yield
the so-called cumulative chords, centripetal, and blind uniform parameterizations
of external knots, respectively. We denote a piecewise degree-r polynomial based
on (3) and Qm as γ̂ = γ̂r : [0, T̂ ] → En, where T̂ =

∑m−1
i=0 ‖qi+1 − qi‖λ. In order

to establish the asymptotics in difference between the curve γ and any non-
parametric interpolant γ̂, a reparameterization ψ : [0, T ] → [0, T̂ ] synchronizing
both domains of γ and γ̂r is needed. As mentioned above, the case when λ = 0
transforms (3) into to blind uniform guesses (with no regard to the distribution of
Qm) with t̂i = i. For r = 2 and λ = 0 the linear convergence rate (i.e. α(0) = 1) in
trajectory estimation was originally proved in [15]. A faster convergence follows
if λ = 1 is assumed to (3). This yields the so-called cumulative chords (see e.g.
[11] or [16]) satisfying t̂0 = 0 and t̂i+1 = t̂i + ‖qi+1 − qi‖ for i = 0, 1, . . . ,m− 1.
Such a choice of {t̂i}mi=0 incorporates the geometry ofQm and consequently offers
much better approximation orders α(1) (at least for r = 2, 3) as opposed to the
case of λ = 0. Indeed the following holds (see [14]):

Theorem 2. Suppose γ is a regular Ck curve in En, where k � r + 1 and
r = 2, 3 sampled according to (1). Let γ̂r : [0, T̂ ] → En be the cumulative chord
piecewise degree-r interpolant defined by Qm and (3) with λ = 1. Then there is
a piecewise-Cr reparameterization ψ : [0, T ] → [0, T̂ ] with γ̂r ◦ ψ = γ +O(δr+1

m ).

Visibly, for r = 2 and λ = 1 the order α(1) = 3 determined by Th. 2 improves
by 2 the order α(0) = 1. In addition, at least for r = 2, 3 both asymptotics
established in Th. 2 (for λ = 1) and Th. 1 coincide. Recent result in [8] (for
r = 2) extends the above two special cases of α(0) = 1 and α(1) = 3 to the
entire family of exponential parameterizations (3), i.e. to all λ ∈ [0, 1]. As proved
in [8], for arbitrary more-or-less uniform samplings (2) combined with (3) any
choice of λ ∈ [0, 1) does not improve the asymptotics in γ approximation by γ̂2.
In fact a linear convergence order α(λ) = 1 holds for all λ ∈ [0, 1) and r = 2:

Theorem 3. Suppose γ is a regular C3 curve in En sampled more-or-less uni-
formly (2). Let γ̂2 : [0, T̂ ] → En be the piecewise-quadratic interpolant defined
by Qm and (3) (with λ ∈ [0, 1]). Then for a special candidate of a piecewise-C∞

reparameterization ψ : [0, T ] → [0, T̂ =
∑m−1

i=0 ‖qi+1 − qi‖λ] and λ ∈ [0, 1) we
have γ̂2◦ψ = γ+O(δm). In addition, for either {ti}mi=0 uniform or λ = 1 and (1),
ψ is a piecewise-C∞ reparameterization for which we have γ̂2 ◦ ψ = γ +O(δ3m).

Th. 3 yields an unexpected left-hand side discontinuity in α(λ) at λ = 1.
Indeed by Th. 3 the order α(λ) = 1 (for λ ∈ [0, 1)) jumps abruptly to α(1) = 3.
As demonstrated in [8], opposite to the cumulative chords the natural candidate
for a reparametrization, i.e a piecewise-quadratic ψ = {ψi}m−2

i=0 with quadratic
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ψi : [ti, ti+2] → [t̂i, t̂i+2] satisfying ψi(ti+j) = t̂i+j (for j = 0, 1, 2, see also
(3)) may not render an injective function for the remaining λ ∈ [0, 1). Note
that ψ : [0, T ] → [0, T̂ ] invoked in Th. 3 is defined as a track-sum of ψi, where
i = 0, 2, 4, . . . ,m−2. For various applications like e.g. length estimation of the 2D
object in medical image processing or correct trajectory tracking it is vital that
ψ is a reparameterization. Therefore in this paper, we formulate and substantiate
sufficient conditions imposed on samplings {ti}mi=0 to render ψi (and thus ψ) a
genuine (in fact here a piecewise C∞) reparameterization.

Note first that any admissible sampling (including a more-or-less uniform one)
can be characterized by (for arbitrary m and 0 ≤ i ≤ m):

ti+1 − ti = Mimδm and ti+2 − ti+1 = Nimδm, (4)

where 0 < Mim, Nim ≤ 1. Our main result (complementing Th. 3) reads as
follows:

Theorem 4. Let the assumptions from Th. 3 hold. Suppose that sampling {ti}mi=0

(see (4)) fulfills both inequalities determined by (12) and (13) for a fixed λ0 ∈
[0, 1). Then, each quadratic ψi : [ti, ti+2] → [t̂i, t̂i+2] is asymptotically (i.e. for
sufficiently large m) a reparameterization, with {t̂i}mi=0 defined according to (3).
In addition, the latter holds asymptotically for all exponential parameterizations
(3) with λ ∈ [λ0, 1). Finally, if β determining a more-or-less uniformity (2) sat-
isfies β >

√
2−1, then ψ is asymptotically a reparameterization for all λ ∈ [0, 1].

In this paper an analytical proof of Th. 4 is given. In addition, both (12) and
(13) are interpreted with the aid of symbolic computation in Mathematica and
geometrical argument. In practice the first condition (12) is not easy to check.
Consequently, a stronger condition (16) is proposed, which can easily be checked
by symbolic computation. The verification of (16) (as opposed to (12)) is simpler
(at least for symbolic computation) and its satisfaction yields both (12) and (13).
Again further geometrical insight is given. The entire procedure for determining
whether a given ψ is a reparameterization is illustrated in the closing section
of this paper. The experimental results (performed in Mathematica) of testing
this procedure on various samplings and curves are also presented. Finally, the
sharpness of the asymptotics derived in Th. 3 is numerically confirmed. Note
also that sufficient conditions for ψ to be a reparameterization specified in Th.
4 complement Th. 3.

3 Main Result

Proof. (i) We prove now Th. 4 (by recalling first [8]). Let ψi : [ti, ti+2] = Ii →
[t̂i, t̂i+2] = Îi, be the quadratic polynomial satisfying interpolation conditions
ψi(ti+j) = t̂i+j (for j = 0, 1, 2) with t̂i defined as in (3). The track-sum of
{ψi}m−2

i=0 (for i = 0, 2, 4 . . .m − 2) defines a piecewise-C∞ mapping ψ : [0, T ] →
[0, T̂ ]. The Newton Interpolation Formula (see [1]) over each Ii yields ψi(t) =
ψi[ti] + ψi[ti, ti+1](t− ti) + ψi[ti, ti+1, ti+2](t− ti)(t− ti+1), and therefore

ψ
(1)
i (t) = ψi[ti, ti+1] + (2t− ti+1 − ti)ψi[ti, ti+1, ti+2]. (5)
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By [8], for more-or-less uniform samplings {ti}mi=0 ∈ V m
mol we have (for k = 0, 1):

ψi[ti+k, ti+k+1] = (ti+k+1 − ti+k)
−1+λ +O((ti+k+1 − ti+k)

1+λ),

ψi[ti, ti+1, ti+2] =
(ti+2 − ti+1)

−1+λ − (ti+1 − ti)
−1+λ

ti+2 − ti
+O(δλm). (6)

(ii) We pass now to the main contribution of this paper (namely, a proof of

Th. 4). For ψi to be a reparameterization we need ψ
(1)
i > 0 over Ii. Taking into

account that ψ
(1)
i (t) is affine, it is sufficient to show that both ψ

(1)
i (ti) > 0 and

ψ
(1)
i (ti+2) > 0 hold, asymptotically. In doing so, by (5) we arrive at:

ψ
(1)
i (ti) = ψi[ti, ti+1] + (ti − ti+1)ψi[ti, ti+1, ti+2],

ψ
(1)
i (ti+2) = ψi[ti, ti+2] + [(ti+2 − ti+1) + (ti+2 − ti)]ψi[ti, ti+1, ti+2]. (7)

We find now sufficient condition under which both inequalities ψ
(1)
i (ti) > 0

and ψ
(1)
i (ti+2) > 0 are satisfied asymptotically. By (1), the consecutive knots’

differences determined in (4) yield Mim = O(1) and Nim = O(1) (in fact here
0 < Mim ≤ 1 and 0 < Nim ≤ 1). Coupling (4) with (6) gives

ψi[ti, ti+1] = M−1+λ
im δ−1+λ

m +O(δ1+λ
m ),

ψi[ti+1, ti+2] = N−1+λ
im δ−1+λ

m +O(δ1+λ
m ). (8)

Since 0 < Mim, Nim ≤ 1, we have Mθ
im = O(1) and Nθ

im = O(1) for each
θ ≥ 0 (here θ = 1 + λ). The latter (with θ = λ) together with (4), (6), and
0 < (ti+j+1 − ti+j)(ti+2 − ti) < 1, for j = 0, 1 yield that ψi[ti, ti+1, ti+2]

=
N−1+λ

im δ−1+λ
m −M−1+λ

im δ−1+λ
m

(Mim +Nim)δm
+

O((ti+2 − ti+1)
1+λ) +O((ti+2 − ti+1)

1+λ)

ti+2 − ti

=
N−1+λ

im δ−1+λ
m −M−1+λ

im δ−1+λ
m

(Mim +Nim)δm
+O(δλm). (9)

Combining (9) with (7), (8), Mim = O(1) and Nim = O(1) leads to

ψ
(1)
i (ti) = δ−1+λ

m

(

M−1+λ
im − Mim

Mim +Nim
(N−1+λ

im −M−1+λ
im )

)

+O(δ1+λ
m ),

ψ
(1)
i (ti+2) = δ−1+λ

m

(

M−1+λ
im +

(

1 +
Nim

Mim +Nim

)

(N−1+λ
im −M−1+λ

im )

)

+O(δ1+λ
m ). (10)

In order to ensure now that both ψ
(1)
i (ti) > 0 and ψ

(1)
i (ti+2) > 0 hold asymp-

totically, it is sufficient to assume firstly that:

ρ1(Mim, Nim) = M−1+λ
im − Mim

Mim +Nim
(N−1+λ

im −M−1+λ
im ),
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ρ2(Mim, Nim) = M−1+λ
im +

(

1 +
Nim

Mim +Nim

)

(N−1+λ
im −M−1+λ

im ), (11)

are positive and secondly that there exist constants α1 < 2, α2 < 2, K1 > 0 and
K2 > 0 such that asymptotically we have:

ρ1(Mim, Nim) ≥ K1δ
α1
m and ρ2(Mim, Nim) ≥ K2δ

α2
m . (12)

Condition (12) ensures that asymptotically the slowest components in (10) are
of order less than λ + 1, which combined with the (11) results (for sufficiently
large m) in positive derivatives of ψi at both ends of each Ii (and thus over
entire Ii). As it turns out, the positivity of the expressions in (11) has a simple
geometrical interpretation easily verifiable for any specific samplings {ti}mi=0 and
λ ∈ [0, 1). Indeed, upon simple algebraic manipulations both inequalities from
(11) are reducible to:

2 +
Nim

Mim
>

(
Nim

Mim

)−1+λ

and

(
Nim

Mim

)−1+λ

> 1−
1 + Nim

Mim

2Nim

Mim
+ 1

. (13)

The system of two non-linear inequalities (13) in two independent variables can
be solved by adopting one of two following geometrically driven approaches:

a) The first method relies on homogeneous substitution x = (Nim/Mim) > 0
applied to both inequalities (13) which in turn leads into:

f(x) = 2 + x > g(x) = x−1+λ and g(x) > h(x) = 1− 1 + x

2x+ 1
. (14)

Plotting f(x) > g(x) (e.g. in Mathematica) yields for each λ ∈ [0, 1) an interval
(aλ,∞), where 0 < aλ < 1 (here f(aλ) = g(aλ)). Similarly, upon plotting
g(x) > h(x) for each λ ∈ [0, 1) we obtain an interval (0, bλ), where bλ > 1 (here
g(bλ) = h(bλ)). Thus a non-empty intersection of (aλ,∞) and (0, bλ) renders an
admissible interval for samplings {ti}mi=0 from (4) with (Nim/Mim) ∈ (aλ, bλ)
(see Figure 1, when λ = 0.1 is used). Table 1 (called here a look-up table) lists
admissible intervals (aλ, bλ) (for λ ∈ [0, 1)) which are numerically computed by
finding the sole roots of either f(x) − g(x) = 0 or g(x) − h(x) = 0, with the
aid of Mathematica’s NSolve function. Given λ ∈ [0, 1), the existence of at least
one pair of intersection points (aλ, bλ) results from the Darboux Theorem upon
calculating the limits of f, g and h at the ends of the interval (0,+∞). On the
other hand, the uniqueness of (aλ, bλ) follows from the strict monotonicity of f ,
g and h. Of course for λ ∈ [0, 1) we have aλ < 1, since f(1)− g(1) = 2 > 0 and
limx→0+(f(x)− g(x)) = −∞.

The next observation inferable from the graphs of f , g and h reads (for λ ∈
[0, 1) as:

0 ≤ λ1 < λ2 < 1 then 0 < aλ2 < aλ1 < 1 and 1 < bλ1 < bλ2 . (15)

Note that it suffices to substantiate (15) only for aλ as the other ones follow from
the formula aλ = (1/bλ) (hence also aλ < bλ) which is easily verifiable upon using
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Fig. 1. An admissible interval for (Nim/Mim) ∈ (aλ, bλ) = (0.381, 2.622) and λ = 0.1.

(14). The inequality aλ2 < aλ1 follows either by an indirect argument or upon
resorting to the implicit function theorem. Indeed for the function i(λ, a) =
2 + a − a−1+λ (with (λ, a) ∈ [0, 1) × (0,∞)), the equation i(λ, a) = 0 (since
(∂i/∂a)(λ, a) = 1 + (1 − λ)a−2+λ > 0 does not vanish) determines aλ = a(λ)
whose derivative satisfies a′(λ) = (a−1+λ ln(a))/(1 + (1 − λ)a−2+λ) < 0, as 0 <
a < 1. Thus aλ = a(λ) is strictly decreasing. Note also that if λn = (1−cn) → 1−

(where cn → 0+) then aλn → 0+. Indeed by monotonicity of aλn and aλn ≥ 0
the sequence aλn is convergent with limn→∞ aλn = g ≥ 0. Taking into account
(14) we have 2 + aλn = e−cn ln(aλn ). The latter, if g �= 0 yields g = −1, a
contradiction. Thus since λn was chosen arbitrary, we arrived at (as bλ = 1/aλ))
aλ=1− = limλ→1− aλ = 0+ and bλ=1− = limλ→1− bλ = +∞. A simple inspection
of (14) shows that aλ=0 =

√
2−1 and bλ=0 = (1/(

√
2−1)) = 1+

√
2. In addition

as proved above aλ=1− = 0+ and bλ=1− = +∞.
Hence x0 ∈ (aλ0 , bλ0) ensures that x0 ∈ (aλ, bλ) for all [λ0, 1). The latter in

fact follows for all λ ∈ [λ0, 1] as the case of λ = 1 always renders ψ a reparame-
terization (see [8] or [14]).

A particular candidate for λ0 can be found e.g. upon inspecting a look-up Table
1. In order to accept vaster class of admissible exponential parameterizations
yielding ψ as a reparameterization, the look-up table, should in practice contain
the intervals (aλ, bλ) computed for a denser increment of λ ∈ [0, 1), preferably
equal to 0.01. This can be achieved by extending Table 1 to more entries upon
again invoking Mathematica package.

Recall that more-or-less uniform samplings (2) satisfy β ≤ x = Nim/Mim ≤
(1/β). Consequently, given the β is known a priori, if both inequalities β >
aλ0 and (1/β) < bλ0 hold, then ψ is asymptotically a reparametrization for all
λ ∈ [λ0, 1) (and also for λ ∈ [λ0, 1]). In particular, if β > aλ=0 =

√
2 − 1 and

(1/β) < bλ=0 =
√
2 + 1, which both hold for β >

√
2 − 1, then ψ defines a

genuine piecewise C∞ reparameterization for each λ ∈ [0, 1] defining (3). For
such more-or-less uniform samplings no support of the look-up table is required.

b) Alternatively (to get more geometrical insight into (13)), for any fixed
λ ∈ [0, 1) one solves both inequalities from (11) over the domain [0, 1] × [0, 1]
with the aid of symbolic computation (i.e. with the Mathematica RegionPlot
function). The geometrical plots of 2D admissible zone Aλ (see e.g. shaded areas
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Table 1. Numerically computed admissible intervals (aλ, bλ) for various λ ∈ [0, 1)

λ = 0.0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4

(0.414,2.414) (0,381,2.622) (0.345,2,901) (0.304,3.294) (0.257,3.885)

λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9

(0.216,4.865) (0.148,6.761) (0.086, 11.599) (0.029,34.394) (0.001,1028.990)

in Fig. 2) admits any sampling pairs (x, y) = (Mim, Nim) ∈ Aλ, for different
λ ∈ [0, 1] rendering ψi asymptotically a reparameterization. Note that for ar-
bitrary more-or-less uniform samplings (and any fixed λ ∈ [0, 1) in exponential
parameterization (3)) an admissible zone for (Mim, Nim) is in fact a sub-square
[β, 1]2 ⊂ [0, 1]2, where 0 < β ≤ 1 is defined as in (2). A straightforward verifi-
cation shows that for λ = 1 both equations in (11) are satisfied and therefore

A1 = [0, 1]× [0, 1]. The case when λ = 0 reduces (11) into 1
x − x

x+y

(
1
y − 1

x

)
> 0

and 1
y +

(
1 + x

x+y

)(
1
y − 1

x

)
> 0, which in turn become y2 − x2 + 2xy > 0 and

x2 − y2 + 2xy > 0, thus yielding A0 = {(x, y) ∈ [0, 1]2 : y > (
√
2 − 1)x, y <

(1/(
√
2 − 1))x = (

√
2 + 1)x}. The latter corresponds to a0 and b0 computed

above. The symmetry of Aλ for other λ ∈ (0, 1) with respect to line y = x (as
expected due to aλ = (1/bλ)) is illustrated in Figure 2 for λ ∈ {0, 0.5, 0.7}. No-
ticeably symbolic computation by RegionPlot shows that Aλ1 ⊂ Aλ2 for λ1 < λ2,
where λi ∈ [0, 1]. The latter follows also independently from (15).

Since for samplings (2) we have β ≤ (x/y) ≤ (1/β) and β ≤ (y/x) ≤ (1/β),
the pair (Mim, Nim) belongs to the set B = {(x, y) ∈ [0, 1]2 : y ≤ β−1x, y ≥ βx}.
Hence if B ⊂ Aλ0 then B ⊂ Aλ, for all λ ∈ [λ0, 1]. This renders ψ asymptotically
a piecewise C∞ reparameteriztion for all λ ∈ [λ0, 1]. In particular, the latter
holds for all λ ∈ [0, 1] given B ⊂ A0 (since then A0 ⊂ Aλ). �

Unfortunately, the verification of condition (12) is harder and each time de-
mands an extra analysis. To circumvent this difficulty, a stronger condition guar-
anteeing the fulfillment of both (11) and (12) is proposed below. More precisely,
one assumes here the existence of two positive number (σ1, σ2) independent on

a) b) c)

Fig. 2. The plots of 2D admissible zones Aλ, for: a) λ = 0, b) λ = 0.5 and c) λ = 0.7
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m, i and λ ∈ [λ0, 1] satisfying the following two inequalities (at least asymptot-
ically):

ρ1(Mim, Nim) ≥ σ1 > 0 and ρ2(Mim, Nim) ≥ σ2 > 0. (16)

Evidently, the satisfaction of (16) implies that (11) and (12) hold which in turn
yields ψi as a reparameterization for λ ∈ [λ0, 1]. Geometrically, any pair of
σ = (σ1, σ2) introduces an extra buffer zone in corrected 2D admissible regions
Aσ

λ this time by making the left-hand sides in (11) stay away from zero, which
is enforced by (16). The practical procedure to determine whether ψi indeed is
a reparameterization relies on fixing σ = (σ1, σ2) and performing Mathematica
symbolic calculation with RegionPlot function to plot Aσ

λ for incremented λ.
If there exists λ0 such that a given family of more-or-less uniform samplings
satisfies (Mim, Nim) ∈ Aσ

λ for all λ ∈ [λ0, 1], then condition (16) follows. One
can also vary σ and repeat the above procedure in a search for smaller value of
λ0.

The mathematical argument to solve (13) is extendable to (16) (with σ =
σ1 = σ2) if extra assumptions on samplings Tm are made. This ultimately leads
to the shifted inequalities f(x) > g(x) + σ and g(x)− σ > h(x) similar to those
already discussed from (14). However, the latter exceeds the scope of this paper.

4 Experiments

The tests are conducted in Mathematica 9.0 (see [17]) on a 2.4GHZ Intel Core
2 Duo computer with 8GB RAM. Note that since T =

∑m
i=1(ti+1 − ti) ≤ mδm

the following holds m−α = O(δαm) for α > 0. Hence, the verification of the
asymptotics expressed in terms of O(δαm) can be examined in terms of O(1/mα)
asymptotics. For a regular curve γ : [0, T ] → En, λ ∈ [0, 1] and m varying
between mmin ≤ m ≤ mmax, the error for γ estimation over [ti, ti+2] reads

Ei
m = sup

t∈[ti,ti+2]

‖(γ̂2,i ◦ψi)(t)−γ(t)‖ = maxt∈[ti,ti+2]‖(γ̂2,i ◦ψi)(t)−γ(t)‖, (17)

as Ẽi
m(t) = ‖(γ̂2,i ◦ ψi)(t) − γ(t)‖ ≥ 0 is continuous over each sub-interval

[ti, ti+2] ⊂ [0, T ]. The maximal value Em of Ẽm(t) (the track-sum of Ẽi
m(t)),

for each m = 2k (here k = 1, 2, 3, . . . ,m/2) is found by using Mathematica
optimization built-in functions Maximize or FindMinimum (the latter applied
to −Ẽm(t)). Since deg(γ̂2) = 2, the number of interpolation points {qi}mi=0 is
odd i.e. m = 2k. The Mathematica built-in functions LinearModelFit calculates
the coefficient ᾱ(λ) from the computed regression line y(x) = ᾱ(λ)x + b on
pairs of points {(log(m),− log(Em))}mmax

m=mmin
(see [7]). In order to test that ψi is

asymptotically a parameterization (for a fixed λ ∈ [0, 1)), it suffices to show that
both constraints (Mim/Nim) ∈ (aλ, bλ) and (12) are fulfilled for sufficiently large
m. Recall that, the second condition can be replaced by a stronger one formulated
in (16). In the event of difficulties in verification of the above two conditions,

one may test in practice (for large m = mmax) both inequalities ψ
(1)
i (ti) > 0
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and ψ
(1)
i (ti+2) > 0 which should hold over each sub-interval [ti, ti+2]. Evidently,

such an approach only partially alleviates the problem, as it relies on the implicit
assumption that both inequalities hold asymptotically i.e. for sufficiently largem.
The next two examples confirm numerically the sharpness of Th. 3 and illustrate
our procedure designed to determine when ψ is a piecewise C∞ parameterization.

Example 1. Let a regular spatial curve in E3 be a quadratic elliptical helix:

γh(t) = (2 cos(t), sin(t), t2), (18)

with t ∈ [0, 2π], be sampled more-or-less uniformly (2) (with β = (1/3)) as:

ti =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2πi
m if i even,

2πi
m + π

m if i = 4k + 1,

2πi
m − π

m if i = 4k + 3.

(19)

Figure 3 shows a plot of γh sampled in accordance with (19) for m = 22. Note
that here δm = (3π/m) and over each segment [ti, ti+2] we either have ti+1−ti =
δm and ti+2 − ti+1 = (1/3)δm or ti+1 − ti = (1/3)δm and ti+2 − ti+1 = δm. This
results only in two pairs (M1, N1) = (1, 1/3) and (M2, N2) = (1/3, 1) which are
independent of m. The inequality β = (1/3) >

√
2 − 1 from Th. 4 does not

hold and thus the look-up Table 1 is used which yields (N1/M1) = (1/3) ∈
(a0.3, b0.3) = (0.304, 3.294) and (N2/M2) = 3 ∈ (a0.3, b0.3). Thus (11) holds
for all λ ∈ [0.3, 1). In fact there exists exactly one λe ≈ 0.3 such that for all
λ ∈ [λe, 1) all intervals (aλ, bλ) are admissible. To test the first condition in (12)
we solve (with respect to λ) two equations ρ1(M1, N1) = 0 and ρ1(M2, N2) = 0.
Indeed, for ρ1(M1, N1) = 0 we have

1λ−1 − 1

1 + 1
3

((
1

3

)λ−1

− 1λ−1

)

= 0 ≡
(
7

9

)

=

(
1

3

)λ

.

Fig. 3. The plot of the hellix γh from (18) sampled according to (19), for m = 22
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The latter separates λe =
ln(9)−ln(7)

ln(3) ≈ 0.2287 from the admissible interval [0.3, 1)

while m → ∞. Similarly, for ρ1(M2, N2) = 0 we obtain

(
1

3

)λ−1

−
1
3

1
3 + 1

(

1λ−1 −
(
1

3

)λ−1
)

= 0 ≡
(

1

15

)

=

(
1

3

)λ

.

This gives another λe = ln(15)
ln(3) ≈ 2.465 /∈ [0, 1) separated from [0.3, 1), while

m → ∞. Similarly, ρ2(M1, N1) = 0 becomes

1λ−1 +

(

1 +
1
3

1 + 1
3

)((
1

3

)λ−1

− 1λ−1

)

= 0 ≡
(

1

15

)

=

(
1

3

)λ

.

As previously, λe ≈ 2.465 /∈ [0, 1) and also is separated from [0.3, 1) for m → ∞.
Finally, ρ2(M2, N2) = 0 transforms into:

(
1

3

)λ−1

+

(

1 +
1

1 + 1
3

)(

1λ−1 −
(
1

3

)λ−1
)

= 0 ≡
(
7

9

)

=

(
1

3

)λ

.

Similarly, λe ≈ 0.2287 ∈ [0, 1) is separated from [0.3, 1), while m → ∞. As both
ρ1 and ρ2 are continuous over (Mim, Nim) ∈ [β, 1]× [β, 1], a small separation of
(11) away from zero by introducing σ = (σ1, σ2) (see (16)) should still keep the
shifted λσ

e away from [0.3, 1). This is illustrated in Fig. 4 with the aid of Region-
Plot function visualizing 2D admissible zone A0.3 against the buffer admissible
zones Aσ

λ, with σ1 = σ2 = 0.01 and λ ∈ {0.3, 0.5, 0.7, 08}. Note that similarly to
Aλ we also have Aσ

λ1
⊂ Aσ

λ1
for λ2 > λ1.

A linear regression to approximate α(λ) is used here with mmin = 101 ≤ m ≤
mmax = 121. The computed estimates ᾱ(λ) ≈ α(λ) for various λ ∈ [0, 1] are
shown in Table 2. Visibly the sharpness of Th. 3 is experimentally confirmed.
Note that the asymptotics established in Th. 3 holds for any λ ∈ [0, 1] without
actually assuming ψi to be a reparameterization. However, the latter is vital
in approximating length of γ or if one-two-one local correspondence between
interpolant γ̂2 and the curve γ is required. �

Table 2. Estimated ᾱ(λ) ≈ α(λ), for γh and (19) interpolated by γ̂2 with λ ∈ [0, 1]

λ = 0.00 λ = 0.10 λ = 0.33 λ = 0.50 λ = 0.70 λ = 0.90 λ = 1.00

1.001 1.000 1.001 0.999 1.001 1.058 2.931

Example 2. Consider a planar regular convex spiral γsp : [0, 5π] → E2

γsp(t) = ((6π − t) cos(t), (6π − t) sin(t)) (20)

sampled first as in (19). Figure 5 a) illustrates the curve γsp sampled along
(19) with Q22. Evidently, the same conclusion as reached in the last example,
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a) b) c)

d) e)

Fig. 4. The plots of admissible zones: a) A0.3 b)-e) bufferA
0.01
λ for λ ∈ {0.3, 0.5, 0.7, 0.9}

all containing samplings (19) (represented by two red dots)

a) b)

Fig. 5. The plot of γsp from (20) sampled according to: a) (19) and b) (21), for m = 22

Table 3. Estimated ᾱ(λ) ≈ α(λ) = 1 for γsp and (19) interpolated by γ̂2 with λ ∈ [0, 1]

λ = 0.00 λ = 0.10 λ = 0.33 λ = 0.50 λ = 0.70 λ = 0.90 λ = 1.00

0.980 0.982 1.012 1.021 1.009 1.619 2.997
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applies here as it merely depends on specific sampling and λ. For the numerical
approximation of α(λ) a linear regression is used with 101 ≤ m ≤ 121. The
results from Table 3 confirm sharpness of the asymptotics established in Th. 3.

Finally, we admit another more-or-less uniform sampling (2) (where β =
(1/5)):

ti =
5πi

m
+

(−1)i+15π

3m
, (21)

with t0 = 0 and tm = 5π - see Figure 5 b). The generic sub-interval [ti, ti+2]
(with i even) yields ti+1 − ti = 5·5π

3m = 1 · δm and ti+2 − ti+1 = 5π
3m = 1

5δm.
Thus (Mim, Nim) = (1, 15 ) and therefore (Nim/Mim) = (1/5) ∈ (a0.6, b0.6) =
(0.148, 6.761) - see Table 1. Thus condition (11) holds for λ ∈ [0.6, 1).

Note that if a look-up table resolution on λ is increased, then a better esti-
mate of λ0 can be obtained. As in Example 1, one searches now for λ enforcing
ρ1(1, (1/5)) = 0 and ρ2(1, (1/5)) = 0. In doing so, we first obtain

1λ−1 − 1

1 + 1
5

((
1

5

)λ−1

− 1λ−1

)

= 0 ≡
(

9

20

)

=

(
1

5

)λ

.

Hence λe = ln(20)−ln(9)
ln(5) ≈ 0.4961 ∈ [0, 1) is separated from [0.6, 1) for m → ∞.

Similarly, ρ2(1, (1/5)) = 0 amounts to

1λ−1 +

(

1 +
1
5

1 + 1
5

)((
1

5

)λ−1

− 1λ−1

)

= 0 ≡
(

1

35

)

=

(
1

5

)λ

.

The latter gives λe =
ln(35)
ln(5) ≈ 2.2090 /∈ [0, 1) which is separated from [0.6, 1) when

m → ∞. Again, as both ρ1 and ρ2 are continuous over (Mim, Nim) ∈ [β, 1]× [β, 1]
a small separation of (11) away from zero by introducing σ = (σ1, σ2) (see (16))
should still keep the shifted λσ

e away from [0.6, 1). This effect is illustrated with
the aid RegionPlot function to visualize 2D admissible zone A0.6 against buffer
admissible zones Aσ

λ, with σ1 = σ2 = 0.01 and different λ ∈ {0.6, 0.7, 0.8, 0.9}.
Again, as in the case of Aλ, we have A

σ
λ1

⊂ Aσ
λ2

for λ1 < λ2.
For the numerical approximation of α(λ) a linear regression is used again with

101 ≤ m ≤ 121. Table 4 contains numerical estimates of α(λ) = 1 for various
λ ∈ [0, 1). Visibly the results confirm the sharpness of the asymptptics derived
in Th. 3. �

Table 4. Estimated ᾱ(λ, 0) ≈ α(λ, 0) = 1 (with λ ∈ [0, 1)) and ᾱ(1, 0) ≈ α(1, 0) = 3
for γsp and sampling (21) interpolated by γ̂2 with λ ∈ [0, 1]

λ = 0.00 λ = 0.10 λ = 0.33 λ = 0.50 λ = 0.70 λ = 0.90 λ = 1.00

0.990 0.990 0.991 0.998 1.020 1.320 3.000
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a) b) c)

d) e)

Fig. 6. The plots of admissible zones: a) A0.6 b)-e) bufferA
0.01
λ for λ ∈ {0.6, 0.7, 0.8, 0.9}

all containing samplings (21) (represented by single red dot)

5 Conclusions

This work supplements Th. 3 (see [8]) concerning the asymptotics in trajectory
estimation via piecewise-quadratic interpolation γ̂2 : [0, T̂ ] → En based on re-
duced data Qm and exponential parameterization (3). The curve γ : [0, T ] → En

is assumed to be sampled more-or-less uniformly (2) for λ ∈ [0, 1) and sam-
pled along (1) for λ = 1. Th. 3 assumes the existence of a reparameterization
ψ : [0, T ] → [0, T̂ ] between γ and γ̂2. This paper formulates sufficient conditions
imposed on samplings (2) and λ ∈ [0, 1) to guarantee that ψ̇ > 0 - see Th. 4
and (16). Recall that for λ = 1, a quadratic ψ defines a reparameterization (see
[8]). The analysis performed here and the accompanying procedure is supported
by the geometrical insight, symbolic computation and numerical verification of
both Th. 3 and Th. 4. A possible extension of this work is to invoke smooth
interpolation schemes (see [1]) combined with reduced data and exponential pa-
rameterization (see [11]). Certain clues may be found in [4], where complete C2

splines [1] are dealt with λ = 1 to establish the fourth orders of convergence
in trajectory and length estimation. In general for length estimation (as well
as for the genuine trajectory tracking) the mapping ψ needs to be a reparame-
terization (see also [7]). The analysis of C1 interpolation for reduced data with
cumulative chords can be found in [7] or [9]. Some applications and theory on
non-parametric interpolation can be found e.g., in [11], [7] or [5]. Related work
on other knots’ parameterizations are discussed in [11], [12], [6], [13] and [2].
Finally, we should point out that one can also consider the other subfamilies of
admissible samplings (1) different than more-or-less uniform (2). One of them
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introduces so-called ε-uniform samplings (see e.g. [15]). Recent result [10] shows
(among all) that for such samplings combined with reduced data Qm and ex-
ponential parametrization (3), the quadratic ψ used in proving Th. 4 defines a
genuine piecewise C∞ reparameterization for each λ ∈ [0, 1]). In addition, the
latter yields faster convergence orders in γ̂2 ◦ψ−γ as opposed to those in Th. 3.
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