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Abstract. We present new symbolic-numeric algorithms for solving
the Schrödinger equation describing the scattering problem and res-
onance states. The boundary-value problems are formulated and dis-
cretized using the finite element method with interpolating Hermite
polynomials, which provide the required continuity of the derivatives
of the approximated solutions. The efficiency of the algorithms and pro-
grams implemented in the Maple computer algebra system is demon-
strated by analysing the scattering problems and resonance states for
the Schrödinger equation with continuous (piecewise continuous) real
(complex) potentials like single (double) barrier (well).

1 Introduction

High-accuracy efficient algorithms and programs for solving boundary-value
problems are presently indispensable for studying important mathematical mod-
els, describing wave propagation in smoothly irregular waveguides, tunnelling
and channelling of compound quantum systems through multidimensional poten-
tial barriers, photoionization, photoabsorption, and transport in atomic, molec-
ular, and quantum-dimensional semiconductor systems [1–15].

For this class of problems not only the solution itself, but also its first deriva-
tive must be continuous, which is of particular importance in the case of quantum-
dimensional semiconductor systems and smoothly irregular waveguides, described
by partial differential equations with piecewise-continuous coefficient functions
[2, 16–18]. As shown by the example of solving an eigenvalue problem for the
Schrödinger equation [19], the required continuity of the derivatives can be effi-
ciently implemented in the approximating numerical solution on a finite-element
grid using the Hermite interpolating elements [17, 20]. The reduction of the initial
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boundary-value problems to the corresponding algebraic problems is a cumber-
some problem of the Finite Element Method using high-order approximation.
The generation of the local functions using the high-order Hermite interpolation
polynomials and the elements of mass and stiffness matrices is performed in the
analytic form using the algorithm elaborated by the authors and implemented in
CAS Maple. Using CAS Maple is a key point of the approach. Now it is possible
to work with multiprocessor computers that implement parallel computations of
algebraic problem with high-dimension matrices using the LinearAlgebra pack-
age of CAS Maple. Moreover, in our previous paper [19] we also used the symbolic
algorithm to generate Fortran routines that allow the solution of the general-
ized algebraic eigenvalue problem with high-dimension matrices for real-valued
potentials. Further development of this approach for solving the scattering prob-
lem and calculating the resonance metastable states for real-valued and complex
potentials is an important problem that constitutes the goal of the present paper.

In this paper we present a new approach to the study of the resonance scatter-
ing problem and the metastable states for both continuous and piecewise contin-
uous real-valued and complex potentials. The discretization of the corresponding
boundary-value problem reformulated in terms of symmetric quadratic function-
als is implemented using the Hermite interpolation polynomials which provide
the required continuity of the derivatives of the approximated solutions. The
continuity of the approximate solutions derivatives is the key point in the prob-
lems of quantum mechanics, waveguide theory, etc. For the scattering problem
with the fixed real energy value E=�E, �E>0 we formulate the boundary-value
problem for the Schrödinger equation in the finite interval |z|≤|zmax| with the
conditions of the third kind at the boundary points of the interval and construct
the appropriate variational functional. The asymptotic solutions of the scatter-
ing problem at |zmax| ≤ |z| < ∞ comprise the incident wave and the unknown
amplitudes of transmitted T (E) and reflected R(E) waves, which are calculated
together with the desired numerical solution in the finite interval and its logarith-
mic derivatives at the boundary points of the interval. To calculate the resonance
state with the unknown complex eigenvalue of energy Er=�Er+ı�Er, �Er>0,
�E<0 we formulate the boundary-value problem for the Schrödinger equation
in the finite interval with the conditions of the third kind at the boundary points
of the interval and construct the appropriate variational functional. In contrast
to the scattering problem, in the asymptotic solutions of this problem the am-
plitude of the incident waves is zero, i.e., only the outgoing waves are present,
exp(ı

√
Er|z|), that meet the radiation condition [23] and are considered within

the sufficiently large but finite interval |z|≤|zmax|.
The constructed stiffness and mass matrices for the variational functionals,

comprising the boundary conditions of the first, second, or third kind, are used
to formulate the generalized algebraic eigenvalue problem. To calculate the res-
onance states with unknown complex energy eigenvalues Er we use the Newton
iteration scheme, in which the initial approximation is chosen as the solution of
the scattering problem with the boundary conditions of the third kind and the
real values of energy E=�E>0, close to the resonance ones, Er=�Er+ı�Er,
and corresponding to the maximal value of the transmission coefficient |T (E)|2.
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We also used the appropriate solutions of the eigenvalue problem with the bound-
ary conditions of the first or the second kind.

The efficiency (the order of approximation with respect to the finite element
grid step) and the capability of time saving (the execution time for the Maple
algorithms for banded matrices with the dimension up to 300) is demonstrated
by the test calculations of scattering and resonance states for the Schrödinger
equation with continuous (piecewise continuous) real (complex) barrier (double
barrier) or well (double well) potential functions.

The paper is organized as follows. In Section 2 the formulation of the boundary-
value problems with the boundary conditions of the first, second, and third kind
is presented, as well as the appropriate variational functionals. Sections 3 presents
the finite-element schemewith theHermite interpolating polynomials anddescribes
the algorithm of reducing the boundary-value problems to the algebraic ones. Sec-
tion 4 is devoted to test calculations that demonstrate the efficiency and time-
saving capability of the proposed computational schemes, implemented as a Maple
program. In the Conclusion we discuss the results and the possible applications of
the proposed computational schemes and computer programs.

2 Formulation of Boundary-Value Problems

Consider the second-order differential equation with respect to the unknown
function Φ(z) in the interval z ∈ Ωz = (zmin, zmax) [19]

(D−2E)Φ(z) = 0, D = − 1

f1(z)

∂

∂z
f2(z)

∂

∂z
+ V (z). (1)

The coefficient functions f1(z) > 0, f2(z) > 0 and the real or complex potential
function V (z) are assumed to be continuous and to possess derivatives up to the
order κmax−1 ≥ 1 in the domain z ∈ Ω̄z = [zmin, zmax]. Alternative assumptions
for piecewise continuous functions will be also considered below.

Depending on the physical problem, the desired solution is to obey the appro-
priate boundary conditions at the end points zmin and zmax of the interval Ω̄z:

(I) : Φm(zt) = 0, t = min and/or max, (2)
(II) : dΦm(z)/dz

∣
∣
z=zt= 0, t = min and/or max, (3)

(III) : dΦm(z)/dz
∣
∣
z=zt= R(zt)Φm(zt), t = min and/ormax . (4)

The solution of the boundary-value problem can be reduced to the determi-
nation of the stationary point (or minimal value) of the variational functional
[21]

Ξ(Φ,E, zmin, zmax)≡
∫ zmax

zmin

Φ(z) (D−2E)Φ(z)f1(z)dz = Π(Φ,E, zmin, zmax) + C,

C = −f2(z
max)Φ(zmax)R(zmax)Φ(zmax) + f2(z

min)Φ(zmin)R(zmin)Φ(zmin),
(5)

where Π(Φ,E, zmin, zmax) is the symmetric functional
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Fig. 1. Real (solid line) and imaginary (dotted line) parts of the eigenfunctions Φ+
1 (z),

Φ−
1 (z) and Φ1(z) with eigenvalues E±

1 and E1, respectively, given in Table 1.

Π(Φ,E, zmin, zmax) =

∫ zmax

zmin

[

f2(z)dΦ(z)/dzdΦ(z)/dz (6)

+f1(z)Φ(z)V (z)Φ(z)−f1(z)2EΦ(z)Φ(z)
]

dz.

Problem 1. For bound states the eigenfunctions are considered that obey the
boundary conditions of the second kind (3) or the first kind (2) for R(z) = 0 or
R(z) → ∞ in the functional (5), (6), respectively.

In the case (a) of the complex potential and complex eigenvalues Em =
�Em + ı�Em the eigenfunctions Φm(z) obey the normalization and orthogo-
nality conditions

〈Φm|Φm′〉 =
∫ zmax

zmin

Φm(z)Φm′(z)f1(z)dz = δmm′ . (7)

In the case (b) of the real eigenvalues Em, i.e., Em = E∗
m, �E = 0, the

left-hand function Φm(z) in the scalar product (7) and the functional (5), (6) is
replaced with the complex conjugate function Φ∗

m(z), corresponding to the same
eigenvalue E∗

m = Em.
Problem 2. For solving the scattering problem with fixed real eigenvalues E

the eigenfunctions Φ(E, z) are to satisfy the boundary conditions of the third
kind (4). The asymptotic solutions of the scattering problem at |zmax| ≤ |z| < ∞
comprise the incident wave and the unknown amplitudes of transmitted T (E)
and reflected R(E) waves, which are calculated together with the desired nu-
merical solution in the finite interval and its logarithmic derivatives R(zt) at the
boundary points of the interval. The unknown eigenvalues R(zmin) (or R(zmax))
are determined by solving the problem (19) with the boundary conditions (4)
taken into account in a way similar to [9]. The parameter R(zt), t = max (or
t = min), in the functional (5), (6) is determined from the asymptotic bound-
ary conditions, R(zt) = dΦas(E,z)

dz

∣
∣
∣
z=zt

1
Φas(E,zt) , where the asymptotic solutions

Φas(E, z) are δ-function normalized.
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In the case (a) of the complex potential the eigenfunctions Φ(E, z) obey the
normalization and orthogonality conditions

〈Φ(E)|Φ(E′)〉 =
∫ zmax

zmin

Φ(E, z)Φ(E′, z)f1(z)dz + C(E,E′) = 2πδ(E−E′), (8)

C(E,E′)=
∫ zmin

−∞
Φas(E, z)Φas(E

′, z)f1(z)dz+
∫ +∞

zmax

Φas(E, z)Φas(E
′, z)f1(z)dz.

In the case (b) of the real potential the left-hand function Φ(E, z) in the scalar
product (8) and in the functional (5), (6) is replaced with the complex conjugate
eigenfunction Φ∗(E, z). The detailed consideration of the asymptotic functions
Φas(E, z) will be presented below.

Problem 3. For metastable states the solution satisfies the boundary condi-
tions of the third kind (4), where the parameter R(zt) depends upon the com-
plex energy value E = �E + ı�E in the lower semiplane: R(zmin) = −√−2E,
R(zmax) =

√−2E, with �E > 0 and �E < 0. In this case for the real (b)
and complex (a) potentials (provided that the real and imaginary parts of the
latter are specifically chosen, see [13]) the solution satisfies the normalization
condition

(Φm|Φm)= 2
√

−2Em

(
∫ zmax

zmin

Φm(z)Φm(z)f1(z)dz − 1

)

+ Cmm = 0, (9)

Cmm = −f2(z
max)Φm(zmax)Φm(zmax) + f2(z

min)Φm(zmin)Φm(zmin),

and the orthogonality condition

(Φm|Φm′)=(
√

−2Em+
√

−2Em′)

∫ zmax

zmin

Φm(z)Φm′(z)f1(z)dz + Cmm′ = 0, (10)

Cmm′ = −f2(z
max)Φm(zmax)Φm′(zmax) + f2(z

min)Φm(zmin)Φm′(zmin),

that follows from calculating the difference of the functionals (5) with the eigen-
values Em, Em′ and the corresponding eigenfunctions Φm(z), Φm′(z) substituted
into them and with ıpm = ı

√
2Em and ıpm′ = ı

√
2Em′ substituted into the pa-

rameter R(zmax) and with inverse sign into the parameter R(zmin), respectively.
Similar orthogonality condition for real potentials was derived earlier using the
Green function of the semiaxis [22].

2.1 Scattering Problem: The Physical Asymptotic Solutions in
Longitudinal Coordinates and the Scattering Matrix

The solutions of the scattering problem with the fixed energy value E > 0
normalized by the condition (8) on the axis z ∈ (−∞,+∞) possess the “incident
wave + outgoing waves” asymptotic form

Φv(z → ±∞) =

⎧

⎪⎪⎨

⎪⎪⎩

{
X(+)(z)Tv, z > 0,

X(+)(z) +X(−)(z)Rv, z < 0,
v =→,

{

X(−)(z) +X(+)(z)Rv, z > 0,
X(−)(z)Tv, z < 0,

v =←,
(11)
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Fig. 2. The system of two complex Scarf potentials with V1 = 2, V2 = 1 separated by
the distance d = 7/2, and the system of two complex rectangular potential barriers. The
solid line shows the real part and the dotted line shows the imaginary part (left-hand
panel). The coefficients of transmission TL = |T→|2 (solid line), reflection RL = |R→|2
(dotted line), and absorption AL (dash-dotted line) versus the wave number k =

√
2E

for the systems of two purely real potentials (center panel) and complex potentials
(right-hand panel).

where Tv and Rv are the transmission and reflection amplitudes, v is the initial
direction of the particle motion along the z axis. For example, for f1(z) = f2(z) =
1 and rapidly decreasing V (z → ±∞) → 0 the asymptotic solutions X(±)(z) ≡
X(±)(z, E) have the form

X(±)(z) → (p)−1/2 exp (±ıpz) , p =
√
2E (12)

with the normalization condition
∫ ∞

−∞
(X(±)(z, E′))∗X(±)(z, E)dz = 2πδ(E′−E). (13)

Generally, the functions X(±)(z) satisfy the conditions with the Wronskian

Wr(X(∓)(z), X(±)(z)) = ±2ı, Wr(X(±)(z), X(±)(z)) = 0, (14)
Wr(a(z), b(z)) = f2(z) (a(z)db(z)/dz−da(z)/dzb(z)) .

For real-valued potentials the Wronskian is constant, which yields the follow-
ing properties of the reflection and transmission amplitudes
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T ∗
→T→ +R∗

→R→ = T ∗
←T← +R∗

←R← = 1, T→ = T←
T ∗
→R← +R∗

→T← = R∗
←T→ + T ∗

←R→ = 0, (15)

as well as the symmetric and unitary properties of the scattering matrix

S =

(
R→ T←
T→ R←

)

, S†S = SS† = 1. (16)

3 Generation of Algebraic Problems

First, the initial interval [zmin, zmax] is divided into n′ subintervals Ω̃i = [z′i−1, z
′
i],

each of them being divided into ni finite elements of different length hi =
(z′i−z′i−1)/ni. As a result we arrive at the following partitioning of the domain
into n = n1 + ...+ ni + ...+ nn′ ≥ n′ finite elements

Ωp
hj(z)

[zmin, zmax] = ∪n
j=1Ωj = ∪n′

i=1Ω̄i, Ω̄i = ∪n1+...+ni−1+ni

j=n1+...+ni−1+1Ωj , (17)

Ωj = [zmin
j , zmax

j ≡ zmin
j+1], j = 0, ..., n,

zmax
j=i′+n1+...+ni−1

= (z′i−1(ni−i′)+z′ii
′)/ni, i′ = 0, ..., ni, i = 1, ..., n′.

Each of the finite elements is then divided into p similar intervals, thus forming
the finite-element grid Ωp

hj(z)
[zmin, zmax] = {z0, z1, ..., znp}, where zp(j−1)+r =

(zmin
j (p−r) + zmax

j r)/p, r = 0, ..., p.
The solutions Φ̂(z) are sought for in the form of a finite sum over the basis of

local functions Ng
μ(z) at each nodal point z = zk of the grid Ωp

hj(z)
[zmin, zmax]:

Φ̂(z) =

L−1∑

μ=0

Φh
μN

g
μ(z), Φ̂(zl) = Φh

lκmax , dκΦ̂(z)/dzκ
∣
∣
z=zl

= Φh
lκmax+κ (18)

where L = (pn+1)κmax is the number of local functions and Φh
μ at μ = lκmax+κ

are the nodal values of the κ-th derivatives of the function Φ̂(z) (including the
function Φ̂(z) itself for κ = 0) at the points zl.

The local functions Ng
μ(z) ≡ Ng

lκmax+κ(z) are piecewise polynomials of the
given order p′ = κmax(p + 1)−1, constructed in our previous paper [19]. Their
derivative of the order κ at the node zl equals one, and the derivative of the order
κ′ �= κ at this node equals zero, while the values of the function Ng

μ(z) with all
its derivatives up to the order (κmax−1) equal zero at all other nodes zl′ �= zl of
the grid Ωp

hj(z)
[zmin, zmax], i.e., dκNg

l′κmax+κ′/dzκ
∣
∣
z=zl

= δll′δκκ′ , l = 0, . . . , np,
κ = 0, . . . , κmax−1.

The substitution of the expansion (18) into the variational functional (5), (6)
reduces the solution of the eigenvalue problem 1 or 3 (1)–(4) with the normal-
ization condition (7)) or (9), or the scattering problem 2 (1)–(4) with the fixed
energy E to the solution of the algebraic problem with respect to the desired set
Φh = {Φh

μ}L−1
μ=0 :

(A−Mmax +Mmin−2EB)Φh = 0. (19)
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Here A and B are the symmetric L × L stiffness and mass matrices, L =
κmax(np+ 1),

Aμ1;μ2 =

∫ zmax

zmin

f2(z)
dNg

μ1
(z)

dz

dNg
μ2
(z)

dz
dz +

∫ zmax

zmin

f1(z)dzN
g
μ1
(z)V (z)Ng

μ2
(z),

Bl1;l2 =

∫ zmax

zmin

f1(z)N
g
μ1
(z)Ng

μ2
(z)dz,

Mmax and Mmin are L × L the matrices with zero elements except M11 =
f2(z

min)R(zmin) and ML+1−κmax, L+1−κmax = f2(z
max)R(zmax), respectively.

The unknown eigenvalues R(zmin) or R(zmax) are determined by solving the
problem (19) with the boundary conditions (4) taken into account in a way
similar to that of Ref. [9].

The theoretical estimate for the H0 norm of the difference between the exact
solution Φm(z) ∈ H2

2 and the numerical one Φh
m(z) ∈ Hκmax

has the order of

|Eh
m−Em| ≤ c1 h

2p′
,

∥
∥Φh

m(z)−Φm(z)
∥
∥
0
≤ c2h

p′+1, (20)

where h = max1<j<n hj is the maximal step of the grid [21].
Remark. To obtain the eigenvalue estimate of the order 2p′ the integrals are to

be calculated with the same order of accuracy 2p′. If the integrals are calculated
with the accuracy p′ +1, then we get the estimate of the same order p′ +1 both
for eigenvalues and for eigenfunctions.

3.1 The Calculation Scheme for the Solution Matrix Φh = Φh
←

In this case Eq. (19) can be written in the following form

(G+Mmin)

(
Φa

←
Φb

←

)

≡
(
Gaa

← Gab
←

Gba
← Gbb

←

)(
Φa

←
Φb

←

)

=

(
0 0
0 G(zmax)

)(
Φa

←
Φb

←

)

, (21)

where (Mmin)11 = M11 = f2(z
min)R(zmin), R(zmin) = ı

√
2E, the solutions Φa

←
and Φb

← ≡ Φ←(zmax) are vectors with the dimension (L−1) and 1, respectively.
Hence the explicit expressions follow

Φa
← = −(Gaa

← )−1Gab
←Φb

←, G(zmax) = Gbb
←−Gba

←(Gaa
← )−1Gab

←. (22)

From Eqs. (21) and (22) the relation between Φb
← and its derivative follows

dΦb
←/dz = R(zmax)Φb

←, R(zmax) = G(zmax). (23)

Note, that the matrix G(zmax) is defined as the inverse of the submatrix
Gaa

← , the calculation of which requires significant computer resources. To solve
Eq. (23) without inverting Gaa← , let us consider the set of algebraic equations
with respect to the vectors Fa

← and Fb
←

(

Gaa← Gab←
Gba

← Gbb
←

)(
Fa

←
Fb←

)

= f2(z
max)

(

0
I

)

. (24)
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Since the determinant of the matrix G+Mmin is nonzero, the set of equations
has the unique solution

Fa
← = −(Gaa

← )−1Gab
←Fb

←, Fb
← = f2(z

max)
(

Gbb
←−Gba

←(Gaa
← )−1Gab

←
)−1

. (25)

Then the expression for R(zmax) follows

R(zmax) =
(

Fb
←
)−1

. (26)

From Eqs. (23) and (11) we get the equation for the reflection amplitude R←:

Y (+)
← (zmax)R←=−Y (−)

← (zmax), Y (±)
← (z)=dX(±)(z)/dz −R(z)X(±)(z). (27)

Having solved this equation, we find the reflection amplitude R←

R← = −(Y (+)
← (zmax))−1Y (−)

← (zmax). (28)

Then the desired solution Φh
← is calculated from Eqs. (11), (22), and (25)

Φb
← = X(−)(zmax) +X(+)(zmax)R←, Φa

← = F a
←

(

F b
←
)−1

Φb
←. (29)

The transmission amplitude T← is determined by solving the equation

X(−)(zmin)T← = Φh
←(zmin), T← =

(

X(−)(zmin)
)−1

Φh
←(zmin).

3.2 The Calculation Scheme for the Solution Matrix Φh = Φh
→

In this case Eq. (19) can be written as follows:

(G−Mmax)

(
Φa

→
Φb

→

)

≡
(
Gaa

→ Gab
→

Gba
→ Gbb

→

)(
Φa

→
Φb

→

)

=

(−G(zmin) 0
0 0

)(
Φa

→
Φb

→

)

,(30)

where (Mp
max)LL = ML+1−κmax,L+1−κmax = f2(z

max)R(zmax), R(zmax) =

−ı
√
2E, the solutions Φa

→ and Φb
→ ≡ Φ→(zmin) are vectors with the dimen-

sion 1 and (L−1), respectively.
The desired matrix G(zmin) = R(zmin) is expressed as

R(zmin) = (Fa
→)−1 , (31)

and the desired solution Φh
→ is calculated as

Φb
→ = Fb

→ (Fa
→)

−1
Φa

→, Φa
→ = X(+)(zmin) +X(−)(zmin)R→. (32)

Here Φa
→ ≡ Φ→(zmin) and Φb

→ are vectors with the dimension 1 and (L − 1).
The column vectors Fa

→ and Fb
→ with the dimension 1 and (L− 1) are solutions

of the sets of algebraic equations

(G−Mmax)

(
Fa

→
Fb→

)

≡
(

Gaa→ Gab→
Gba

→ Gbb
→

)(
Fa

→
Fb→

)

= −f2(z
min)

(

I
0

)

. (33)
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Fig. 3. Wave functions of the scattering problem for the first resonance value of energy
2Emax T

1 , corresponding to the full transparency, i.e., the maximal transmission coef-
ficient, for Φ→ (left-hand panels) and Φ← (central panels); the functions of resonance
metastable states with the energies 2Er

1 (right-hand panels), respectively, given in Ta-
ble 3. The upper panels refer to the system of two real Scarf potentials with V1 = 2,
V2 = 0, the lower panels refer to the system of two complex Scarf potentials with
V1 = 2, V2 = 1. Solid and dotted lines show the real and imaginary parts of the wave
functions, respectively.

Finally, we arrive at the following equations for the amplitudes of reflection R→
and transmission T→:

Y (−)
→ (zmin)R→ = −Y (+)

→ (zmin), X(+)(zmax)T→ = Φh
→(zmax), (34)

Y (±)
→ (z) =

dX(±)(z)

dz
−R(z)X(±)(z). (35)

The amplitudes of reflection R→ and transmission T→ take the form

R→ = −
(

Y (−)
→ (zmin)

)−1

Y (+)
→ (zmin), T→ =

(

X(+)(zmax)
)−1

Φh
→(zmax).

3.3 Algorithm for Calculating the Complex Eigenvalues and
Eigenfunctions of Metastable States

To calculate a complex eigenvalue and the corresponding eigenfunction a discrete
problem is solved for the equation

F(u) = 0, ⇔ {F1(u) = 0, F2(u) = 0
}

(36)

with respect to the pair of unknowns u = {Eh,Φh}, where F1(u) and F2(u) are
given by the expressions

F1(u) =
[

A− 2EhB+Mmin(E
h)−Mmax(E

h)
]

Φh, F2(u) = (Φh)TF1(u).

The transition from the approximate solution uk to the approximate solution
uk+1 is given by the formulas

2Eh
k+1 = 2Eh

k + μkτk, Φh
k+1 = Φh

k + vkτk, (37)

vk = v
(1)
k + v

(2)
k μk, Φh

k+1 = Φh
k+1((Φ

h
k+1)

TBΦh
k+1)

−1/2,
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where 2Eh
k=0 = 2E0, Φh

k=0 = Φ0 is the initial approximation from the vicinity of
the solution 2E = 2E∗, Φh = Φ∗. The iteration corrections v(1)

k , v(2)
k are found

by solving the inhomogeneous algebraic problems

F1(E
h
k ,v

(1)
k ) = −F1(E

h
k ,Φ

h
k) = −F1(uk), ⇒ v

(1)
k = −Φh

k , (38)

F1(E
h
k ,v

(2)
k ) =

(

B− dMmin(E
h
k )

2dEh
k

+
dMmax(E

h
k )

2dEh
k

)

Φh
k , (39)

and the correction μk to the eigenvalue Eh
k is found using the formula

μk =
F2(E

h
k ,Φ

h
k)

(Φh
k)

TBΦh
k

≡ (Φh
k)

TF1(E
h
k ,Φ

h
k)

(Φh
k)

TBΦh
k

,

that follows from Eq. (36). The expressions for nonzero elements of Mmin(E
h
k ),

Mmax(E
h
k ), and their derivatives by 2Eh

k have the form (L′ = L+ 1− κmax)

(Mmin(E
h
k ))11 = −f2(z

min)
√

−2Eh
k , (Mmax(E

h
k ))L′,L′ = f2(z

max)
√

−2Eh
k ,

d(Mmin(E
h
k ))11

d(2Eh
k )

=
f2(z

min)

2
√

−2Eh
k

,
d(Mmax(E

h
k ))L′,L′

d(2Eh
k )

= − f2(z
max)

2
√

−2Eh
k

.

The iteration step τk in the vicinity of the solution is equal to one, and the
optimal step τk is calculated using the formula [24]

τk = max (θ, δk(0)/(δk(0) + δk(1))) , θ = 0.1.

Here δk(0) = |F1(E
h
k ,Φ

h
k)|2 and δk(1) = |F1(E

h
k+1,Φ

h
k+1)|2 are the residuals and

Ek+1 and Φh
k+1 are calculated using Eqs. (37) at τk = 1. In all cases θ < τk < 1.

The iteration process (37) is terminated, when the condition |F2(E
h
k ,Φ

h
k)|2 < ε

becomes valid, where ε > 0 is the predetermined accuracy of the approximate
solution calculation.

4 Benchmark Calculations

As an example, let us consider the Schrödinger equation (1) at f1(z) = f2(z) = 1
with the complex Scarf potential on the axis z ∈ (−∞,+∞):

VScarf (z) = V1cosh
−2 z + ıV2 sinh zcosh

−2 z. (40)

Problem 1. For V1 < 0 and V 2
2 ∈ R the bound state problem has a finite set of

known analytic solutions [12]. At |V2| < 1/4− V1 the eigenvalues are essentially
complex conjugate pairs:

E±
n =− (

n−(g∗+±ıg∗−−1)/2
)2
, g∗±=

√

1/4−V1 ∓ V2, n=0, 1, ...<(g∗+−1)/2. (41)

At |V2| > 1/4−V1 (or when V2 is imaginary) the eigenvalues are real:

En=− (

n−(g∗++g∗−−1)/2
)2

, n=0, 1, ...<(g∗++g∗−−1)/2. (42)
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Table 1. Eigenvalues E±
1 , E1 and their differences from the corresponding analytic val-

ues calculated using the grid (−20(N1)− 4(N2)4(N3)20) with the number N1=N2=N3

of the eighth-order finite elements (κmax=3, p=2) in each of the subintervals, depending
on N1. The last row presents the analytic values and the Runge coefficient (43).

N1 V1 = −2, V2 = −3 V1 = −2, V2 = −1

4 −0.229080666±0.559461207*I 2.8E– 4∓3.1E–4*I −0.921836165 5.4E–4+6E–14*I
8 −0.229357025±0.559142713*I –9.5E– 7±1.3E–6*I −0.922378370 –9.6E–7–6E–13*I

16 −0.229356076±0.559144037*I 3E–10±2.5E–9*I −0.922377406 –6 E–10–3E–11*I
ext −0.229356076±0.559144040*I Ru = 8.005 −0.922377405 Ru = 9.130

Table 2. Dependence of the coefficients of transmission T , reflection R, and absorption
A, calculated using the grid (−20(N1)20) upon the number N1 of the eighth-order finite
elements (κmax = 3, p = 2) for V1 = 2, V2 = 2, k = 2E = 1. The last two rows present
the analytical solution and the Runge coefficient (43).

N1 Digits T→ R→ A→
20 16 0.6005954018870188 0.0007394643169153872 0.3986651337960658
40 16 0.5984475588608321 0.0007498888028424546 0.4008025523363254
80 16 0.5984514912751766 0.0007498689244704378 0.4007986398003530
80 8 0.59845983 0.00074979961 0.4007903704
ext 0.5984515130037975 0.0007498688034693990 0.4007986181927332
Ru 16 9.088 9.029 9.088

The numerical experiments using the finite-element grid Ωp
hj(z)

[zmin, zmax]

demonstrated strict correspondence to the theoretical estimations (20) for both
eigenvalues and eigenfunctions. In particular, we calculated the Runge coeffi-
cients

βl = log2

∣
∣
∣(σh

l − σ
h/2
l )/(σ

h/2
l − σ

h/4
l )

∣
∣
∣ , l = 1, 2, (43)

on three twice condensed grids with the absolute errors

σh
1 = |F (Eexact

m )− F (Eh
m)|, σh

2 = max
z∈Ωh(z)

|Φexact
m (z)− Φh

m(z)| (44)

for the eigenvalues and eigenfunctions, respectively. From Eq. (44) we obtained
the numerical assessment of the convergence order Ru ∼ 8 ÷ 9 of the proposed
numerical schemes (shown for F (E) = E in Table 1 and for F (E) = T→, R→, A→
in Table 2), the theoretical estimates being β1 = p′ + 1 and β2 = p′ + 1, in
accordance with the Remark following Eq. (20).

Problem 2. For the scattering problem with fixed real-valued energy 2E =
k2 > 0 and the complex Scarf potential (40) the coefficients of transmission |T |2
and reflection |R|2 are expressed as
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|R→|2=D→/D, |R←|2=D←/D, |T→|2=|T←|2=sinh2(2πk)/D, (45)
D→ = (2 cosh(πg+) cosh(πg−)+ cosh2(πg+)e

−2πk+cosh2(πg−)e2πk),
D← = (2 cosh(πg+) cosh(πg−)+ cosh2(πg+)e

2πk+cosh2(πg−)e−2πk),

D=sinh2(2πk)+2 cosh(2πk) cosh(πg+) cosh(πg−)+ cosh2(πg+)+ cosh2(πg−).

Here the notation g±=
√

V1 ± V2−1/4 is used. It has been proved [11] that when
the potential is complex and spatially non-symmetric, the reflectivity depends on
whether the particle is incident from the left or the right side. For the complex
potential scattering with the fixed real E > 0 the conditions (15) are modified
as follows:

|R→|2 + |T→|2 = 1− A→, |R←|2 + |T←|2 = 1−A←, T→ = T← ≡ T.

For the complex Scarf potential A→ and A← are expressed as

A→=
s+s−−s2−
1+s+s−

, A←=
s+s−−s2+
1+s+s−

, s±=
cosh(πg+)e

±πk+cosh(πg−)e∓πk

sinh(2πk)
.(46)

Here we consider only positive values A→ > 0 (or A← > 0), commonly inter-
preted as the probability of absorption [11, 13].

The Problem 1 of determining the eigenvalues Eh
m and the corresponding

eigenfunctions Φh
m(z) for Eq. (19) was solved using the built-in package Lin-

earAlgebra of the Maple system. Table 1 presents the dependence of the eigen-
values calculated using the grid (−20(N1) − 4(N2)4(N3)20) with the number
N1 = N2 = N3 of the eighth-order finite elements (κmax = 3, p = 2) in each
of the subintervals upon N1. One can see that these sequences converge to the
analytical results (41) and (42). The behaviour of the eigenfunctions Φh

m(z) is
illustrated by Fig. 1. The time of computing the auxiliary integrals is nearly 42
seconds, the time of constructing the matrices and solving the algebraic eigen-
value problem at N = 16 amounts to 4.5 seconds. Table 2 illustrates the de-
pendence of the coefficients of transmission T , reflection R, and absorption A
calculated using the grid (−20(N1)20) upon the number N1 of the eighth-order
finite elements (κmax = 3, p = 2). One can see that these sequences converge to
the analytical results (45) and (46) . The time of constructing the matrices and
solving the algebraic problem for N1 = 20 and N1 = 80 (Digits:=16) amounts
to 5 and 22 seconds, respectively, and for N1 = 80 (Digits:=8) this time is 5
seconds.

For a system of multiple-barrier Scarf potentials separated from each other
the approximate analytic expressions for the coefficients of transmission, reflec-
tion, and absorption are also available. In particular, for a system of two Scarf
potential the analytic expressions are presented in Ref. [13]).

The scattering Problem 2 with Eqs. (21) and (30) was solved following the
algorithm of Sections 3.1 and 3.2 and using the built-in package LinearAlgebra
of the Maple system using the finite-element grid (−8(N1 = 40)8) с N1 with
Hermite eighth-order finite elements (κmax = 3, p = 2). The dependence upon
k for the coefficients of transmission, reflection, and absorption, calculated with
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Table 3. The first resonance energy values 2Emax T
i for the maximal transmission

coefficient (full transparency) and the eigenvalues 2Er
i of resonance metastable states.

Scarf V1 = 2 2Emax T
1 = 0.310918 2Er

1 = 0.31093782 − ı0.00069129

V2 = 0 2Emax T
2 = 1.025359 2Er

2 = 1.02413913 − ı0.01733149

V1 = 2 2Emax T
1 = 0.360240 2Er

1 = 0.36025570 − ı0.00103794

V2 = 1 2Emax T
2 = 1.036324 2Er

2 = 1.03383748 − ı0.02383030

Steps/ V1 = 2 2Emax T
1 = 0.329476 2Er

1 = 0.32921557 − ı0.00247662

wells V2 = 0 2Emax T
2 = 1.254400 2Er

2 = 1.25175270 − ı0.03351010

V1 = 2 2Emax T
1 = 0.331776 2Er

1 = 0.33292316 − ı0.00247662

V2 = 1/2 2Emax T
2 = 1.263376 2Er

2 = 1.26054650 − ı0.03359483

the absolute accuracy 0.001, in the system of two Scarf potentials with V1 = 2,
V2 = 1 separated by the interval d = 7/2, is presented in the upper panel of
Fig. 2. The resonance structure of the transmission coefficient is due to the
presence of metastable states submerged in the continuous spectrum.

Problem 3. The complex eigenvalues and the corresponding eigenfunctions of
the metastable states are calculated by means of the Newton iteration algorithm
of Section 3.3 using the built-in package LinearAlgebra of the Maple system. For
the initial approximation we used both the solutions of the bound-state Problem
1 and the solutions of the scattering Problem 2 with the resonance values of
energy E = Er, corresponding to the peaks of the transmission coefficient.

For the system of two real- and complex-valued Scarf potentials Fig. 3 presents
the wave functions of the scattering problem for the first resonance state, cor-
responding to the maximal transmission coefficient (full transparency), and
the functions of a resonance metastable state. The first resonance energy val-
ues 2EmaxT

i corresponding to the maximal transmission coefficient (full trans-
parency) and the eigenvalues 2Er

i of the resonance metastable states are shown
in Table 3. The calculations were performed using the grid (−8(N1 = 40)8) with
N1 Hermite eighth-order finite elements (κmax = 3, p = 2).

In a similar way the piecewise continuous potentials are considered, in par-
ticular, the systems of potential steps/wells with rectangular-shaped walls. The
latter problem can be solved analytically. The lower panel of Fig. 2 presents the
approximation of the system of two Scarf potentials with a system of potential
steps/wells. As seen from Fig. 2, with the increase of the wave number k the
transmission, reflection, and absorption coefficients differ stronger. The calcula-
tions were performed using the grid (−7(N1=10)−2−7/4(N2=3)−2−7/8(N3=3)
−2(N4=20)2(N5=3)2+7/8(N6=3)2+7/4(N7=10)7) with Ni (i = 1, ..., 7) Her-
mite seventh-order finite elements (κmax=2, p = 3). The eigenvalues for the sys-
tem of real and complex potential steps/wells (see Table 3) qualitatively agree
with the results presented in the above paragraph. The scattering wave functions
for the first two resonance energy values and for the resonance metastable states
behave qualitatively similar to those of the system of Scarf potentials, and for
this reason are not presented here.
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5 Conclusion

The presented analysis of solving the eigenvalue problem, the scattering problem,
and the calculation of resonance metastable states for the Schrödinger equation
with continuous and piecewise continuous real-valued and complex potentials
demonstrated the efficiency of the developed algorithms and programs, imple-
mented in the Maple computer algebra system. The algorithm conserves the
derivative continuity property, inherent in the desired solution, in the approx-
imating numeric solution, defined on the finite-element grid using the Hermite
interpolating elements.

Further development of the proposed algorithms and programs is targeted
at the solution of the problems that describe the scattering processes in the
quantum-dimensional semiconductor systems and smoothly irregular waveguides
with piecewise continuous real-valued and complex coefficient functions in the
partial differential equations, which require the continuity of not only the solution
itself, but also of its first derivative.
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