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Abstract. Low-end embedded devices and the Internet of Things (IoT)
are becoming increasingly important for our lives. They are being used
in domains such as infrastructure management, and medical and health-
care systems, where business interests and our security and privacy are
at stake. Yet, security mechanisms have been appallingly neglected on
many [oT platforms. In this paper we present a secure access control
mechanism for extremely lightweight embedded microcontrollers. Being
based on Sancus, a hardware-only Trusted Computing Base and Pro-
tected Module Architecture for the embedded domain, our mechanism
allows for multiple software modules on an IoT-node to securely share
resources. We implement and evaluate our approach for two application
scenarios, a shared memory system and a shared flash drive. Our imple-
mentation is based on a Sancus-enabled TT MSP430 microcontroller. We
show that our mechanism can give high security guarantees at small
runtime overheads and a moderately increased size of the Trusted Com-
puting Base.

Keywords: Protected module architecture - Internet of things
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1 Introduction

Ongoing developments in our ever-changing computing environment have led
to a situation where every physical object can have a virtual counterpart on
the Internet. These virtual representations of things provide and consume ser-
vices and can be assigned to collaborate towards achieving a common goal. This
Internet of Things (IoT) brings us unpreceded convenience through novel pos-
sibilities to acquire and process data from our environment. With numerous
applications in domains such as infrastructure management, transportation, and
medical and healthcare systems, the increasing growth of the IoT raises ques-
tions regarding the safe and secure deployment and use of extremely intercon-
nected devices. Computing nodes in the IoT are often equipped with inexpensive
low-performance microcontrollers that provide just enough computing power to
periodically perform their intended tasks, e.g., obtain sensor readings and pass
them on to other nodes. As a result, well established concepts and mechanisms
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from desktop and server environments — hierarchical protection domains, virtu-
alisation, virus scanners, firewalls, etc. — are either not available or cannot easily
be employed on IoT-nodes [17].

The problem of trustworthiness and trust management of low-power low-
performance computing nodes has previously been discussed in the context of
sensor networks [8,14]. Most techniques proposed for this domain focus on observ-
ing the communication behaviour and on validating the plausibility of sensor
readings to assess the trustworthiness of nodes, which is shown to reliably detect
the systematic failure nodes. Yet mechanisms to protect software and data on
a node are rare as most work in this domain focuses on efficiency and handles
security and privacy requirements as second-class citizens at best.

Contributions. In this paper we describe and evaluate an approach to implement
and securely enforce application-grained access control policies for IoT-nodes.
Our access control mechanism can manage access to various system resources
such as a file systems, Memory-Mapped I/O (MMIO) devices or specific devices
attached to an external communication bus. While incurring low overheads, our
mechanism guarantees at runtime that only authenticated software modules gain
access to resources as specified in the policy; the internal state of the access
control implementation is protected and cannot be tampered with.

Our approach is based on Sancus [16], a lightweight hardware-only Trusted
Computing Base (TCB) and Protected Module Architecture (PMA) [18]. San-
cus targets low-cost embedded systems which have no virtual memory. Recent
research on Program Counter Based Access Control (PCBAC) [19] shows that,
in this context, the value of the program counter can be used unambiguously to
identify a specific software module. Whenever the program counter is within the
address range associated with the module’s code, the module is said to be exe-
cuting. Memory isolation can then be implemented by configuring access rights
to memory locations based on the current value of the program counter. San-
cus also provides attestation by means of built-in cryptographic primitives to
provide assurance of the integrity and isolation of a given software module to a
third party, which we use to authenticate software modules.

We evaluate a prototypic implementation of our access control mechanism
in two application scenarios that facilitate secure data sharing between software
modules, (1) through a shared memory implementation and (2) through periph-
eral flash memory and the Coffee [20] file system. Our evaluation shows that
module isolation and access control impose relatively low overheads that should
be acceptable in deployment scenarios with stringent safety and security require-
ments. The application scenarios run on a Sancus-enabled TT MSP430 microcon-
troller, a single-address-space architecture with no memory management unit.
The source code of the evaluation scenario is available at https://distrinet.cs.
kuleuven.be/software/sancus/wistp2015/.

2 Protected Module Architectures and Sancus

As mentioned in the introduction, our work is built upon Sancus [16], a
lightweight PMA [18] specifically designed for embedded systems. Sancus
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guarantees strong isolation of software modules, called Sancus Modules (SMs),
through low-cost hardware extensions. Moreover, Sancus provides the means for
local and remote parties to attest the state of, or communicate with, the isolated
software modules. This section gives a detailed introduction of the features of
Sancus we use in the rest of this paper.

Isolation. Like many PMAs, Sancus uses PCBAC [19] to isolate SMs. Soft-
ware modules are represented by a public text section containing the module’s
executable code and a private data section containing data that should be kept
private to the module. The core of the PCBAC model is that the private data
section of a module can only be accessed from code in its public text section. In
other words, if and only if the program counter points to within a module’s code
section, memory access to this module’s data section is allowed. Note that on
systems that use MMIO, an SM can get exclusive access to a device by mapping
its private data section around the MMIO region of the device.

To prevent instruction sequences in the code section from being misused
by external code to extract private data, entry into a module’s code section
should be controlled. For this purpose, PMAs allow modules to designate certain
addresses within their code section as entry points. Code that does not belong
to a module’s code section is only allowed to jump to one of its entry points. In
Sancus, every module has a single entry point at the start of its code section.
Table 1 gives an overview of the access control rules enforced by Sancus.

Table 1. Memory access control rules enforced by Sancus using the traditional Unix
notation. Each entry indicates how code executing in the “from” section may access
the “to” section. The “unprotected” section refers to code that does not belong to a
SM.

From/to Entry Text Data Unprotected
Entry r-x r-x TW- rWx
Text r-x r-x Irw- rwx
Unprotected/

Other SM r-x r—- -—- rwx

SM Identification. Sancus allows SMs to reliably identify each other. To this
end, Sancus assigns a unique ID to each SM when its isolation is enabled. The
instruction sancus_get_id can be used to retrieve the ID of an SM at a specific
address. This can be used to, for example, verify the expected SM is isolated at
a specific location before calling its entry point.

To enable the implementation of access control policies, Sancus keeps track
of the ID of the previously executing SM. This ID can be queried using the
sancus_get_caller_id instruction. SMs typically use this feature to restrict
access to their entry point to some specific SMs.

Besides enabling SMs to identify each other, Sancus also provides crypto-
graphic primitives for modules to attest each other’s state. That is, to verify
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that a module’s code section has not been tampered with before the isolation was
enabled and that its code and data sections are loaded at the correct addresses.
For this, Sancus employs an elaborate key management scheme that is beyond
the scope of this paper. Suffices to say that SMs can be deployed with a Message
Authentication Code (MAC) of the code section and load addresses of a mod-
ule it needs to attest and Sancus provides instructions to verify that the actual
isolated module corresponds to this MAC.

Sancus Module Compilation. To securely create SMs for Sancus, a number
of specifics have to be considered. For example, every SM needs a separate stack
in its private data section to ensure the integrity of control data and local vari-
ables. Also, whenever exiting an SM, registers need to be cleared to avoid data
leakage. The Sancus distribution includes a C compiler to automate the process
of creating SMs. The compiler generates the necessary entry and exit stubs to
deal with intricacies mentioned above. Moreover, the compiler allows for the
definition of multiple entry points that are dispatched from the single physi-
cal entry point supported by Sancus. A generic approach to securely compiling
high-level code to low-level language with fine-grained memory access control is
presented in [1].

3 Motivation and Related Work

In this section, we introduce the need for a secure embedded file system and
discuss this in the light of recent related research. In a wider context, our pro-
totype demonstrates the feasibility of encapsulating and controlling access to a
shared system resource through a lightweight trusted software layer on top of
hardware-enforced mechanisms.

3.1 Embedded File System Security

Existing embedded file systems [5,6] focus mainly on performance aspects: flash
specific optimisations, RAM usage and energy consumption, whereas file pro-
tection is non-existing or remains very limited. This is in line with the original
concept of a single static unprotected embedded application. Indeed, the design
notes for Matchbox, a file system for TinyOS, state literally: “We do not need:
Security in any form, [...]” [7]. As another example, Contiki features the Cof-
fee file system [20], a dedicated lightweight flash file system without any form
of access control. LiteOS [4] provides its own LiteF'S UNIX-like file system in
which files may represent data, binaries or devices. It also offers a coarse-grained
user-oriented protection mechanism that classifies all users in one of three levels,
each with its own rwx mode bits.

We argue that in an embedded context, featuring a dynamic multi-
stakeholder deployment model, it is software modules rather than users that
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represent the unit of file protection. Indeed, recall from Sec. 2 that an SM repre-
sents the unit of memory protection and authentication. Extending these guar-
antees with SM-grained protection for shared system resources would thus be
valuable.

File protection on a per-SM-basis would furthermore be interesting as it dif-
fers from conventional UNIX-like user-oriented file protection [2]. UNIX decides
file access based on the identity of the owner of the currently executing program.
This coarse grained scheme does however not shield a user from malicious pro-
grams that run with her permissions [3]. Moreover, fine-grained file protection is
hindered by the default owner/group/others file attributes. Capability-based
process-specific file protection for UNIX has been proposed [3] as a countermea-
sure and fine-grained access control can be accomplished with access control
lists [9].

3.2 Secure Resource Sharing

PMAs reorganise an unprotected single-address-space into a set of hardware-
delimited protected SM enclaves. Secluding SMs in their respective protection
domains allows strong security guarantees on the one hand, but also limits the
overall flexibility of the system. Indeed, Sancus [16] does not natively support
complex policies, such as dynamically allocating and sharing of protected mem-
ory, or fine-grained peripheral access control. In this respect, our protected file
system serves as a case study on how to encapsulate a typical shared system
resource (i.e. secondary storage) in its own protection domain with flexible SM-
grained access control policies.

Self Protecting OS Modules. An SM should either fulfil its own needs or
rely on the services of an untrusted OS to interact with the outside world. This
implies poor trade-offs between flexibility and protection. Consider for example
an SM that wants to save confidential data in a file system or read secret values
from a sensor. Without additional support this SM would have to either claim
the file system / sensor for itself, effectively denying others access to the resource,
or accept to use it in an unprotected way.

The key idea we explore in our secure file system prototype is to mitigate this
flexibility vs. protection trade-off by adding a level of indirection. In our setup,
we build upon the existing Sancus primitives to provide a dedicated module
SMerver with exclusive access to a system resource and we implement a thin
software layer on top to enforce flexible access control policies. Sancus’ hardware
logic ensures S Mgepver is solely responsible for the resource it encapsulates. This
shows that even though this intermediate SM performs a typical OS task — shared
resource management — it differs significantly from a conventional omnipotent
trusted kernel software layer.

Secure resource sharing for PMAs thus requires a disjoint set of self protecting
0S modules. Every such module encapsulates and controls access to a platform
resource (e.g. a protected memory buffer, a file system, a keyboard, a network
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interface, etc.). This way, client SMs that use its services are offered availability
and access control guarantees.

Zero-Software Microkernel. The idea of implementing the OS as a set of non-
privileged modules echoes the widely known microkernel approach [12,13]. In a
microkernel architecture all non-essential OS services — such as device drives, file
systems, process management, etc. — are implemented as regular user programs,
known as servers. The main task of the privileged microkernel is to separate the
applications from each others and provide inter-process communication between
them. User programs and servers always communicate indirectly through the
microkernel. From a security perspective, a true microkernel limits the TCB by
reducing the kernel’s size. The actual OS services are implemented in user space
on top of these abstractions.

There is no consensus on which mechanisms should be implemented in the
microkernel. In a way, the Sancus platform is a truly minimal zero-software
microkernel that provides two basic mechanisms to SMs: memory isolation and
authentication. The question then becomes whether such a zero-software micro-
kernel is sufficient to securely implement OS-like services on top. In this respect,
Liedtke [12,13] identifies only three basic abstractions for his minimalist second
generation L4 software microkernel: address spaces, inter-process communica-
tion and threads. He argues a microkernel has to “hide the hardware concept
of address spaces, since otherwise, implementing protection would be impossi-
ble.” [12]. The Sancus platform provides fine-grained hardware-enforced protec-
tion domains in a single-address-space. Furthermore, Liedtke identifies the need
for a microkernel to “establish a communication channel which can neither be cor-
rupted nor eavesdropped” and states “uids are required for reliable and efficient
local communication” [12]. This clearly resembles Sancus’ hardware-supplied
unique SM IDs and attestation features.

Our protected file system prototype, SM,y,, demonstrates Sancus’ hardware-
enforced mechanisms are sufficient to realise SM-grained logical file access restric-
tions. SM,y, offers security guarantees similar to those of user-space file system
server which is effectively shielded from other protection domains. Moreover, a
client is ensured confidentiality and integrity when communicating with SM, ..
Importantly, Sancus realises these security guarantees without any trusted soft-
ware layer. Its hardware-enforced protection scheme indeed makes an omnipotent
kernel layer inherently impossible.

3.3 Application Scenarios

The problem domain of low-end embedded devices is characterised by conflicting
interests between economic considerations on the one hand and security require-
ments on the other. Sancus presents the SM as the unit of lightweight memory
isolation and authentication. Our protected file system SM,r, module supple-
ments these hardware-enforced security properties with logical file access control
guarantees by means of an explicit software TCB. It thus shows the feasibility
of securely sharing system resources on a per-SM-basis.
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Protected Shared Memory. Being able to pass a moderate sized buffer
securely between protection domains is useful in many contexts. A first scenario
concerns parameter passing of large values. Indeed, one can only pass parameters
securely through a limited number of CPU registers when calling an SM [16].

Protected shared memory is also useful in the context of secure I/O. Recall
from Sec. 2 that an SM can be provided with exclusive access to a MMIO
peripheral. As an example, a keyboard driver module SMpeypoarda could offer an
entry function to get an input line confidentially from the user. The module may
then use protected shared memory to pass the result to a client SM.

Secondary Storage. Several authors identify an emerging application area
for embedded platforms using secondary storage file systems [5,6,20]. In a multi-
stakeholder model with software extensibility by multiple untrustworthy vendors,
fine-grained access control for secondary storage resources is essential. Consider
for example a low-end extensible wearable device. One application could save
sensitive medical logs in the file system; another one could simultaneously use
the file system to save privacy-sensitive data such as environment sensor data,
recordings, GPS locations, etc. Needless to say reliable and fine-grained memory
protection and file access control is imperative in such a system.

4 Design and Implementation of a Protected File System

In this section, we present a protected file system for the Sancus platform [16].
The file system is encapsulated in its own SM,¢s protection domain with exclu-
sive access to the storage device, ensuring file system integrity. Furthermore,
our file system realises SM-specific access control, allowing fine-grained access
control policies for logical file sharing between SMs.

4.1 Layered Design

The protected file system depicted in Fig. 1 features a layered design with a
front-end access control layer deciding access to a private back-end software
layer, encapsulating the actual resource. From the point of view of the front-end,
the back-end is an abstract Contiki File System (CFS) interface implementation
that can be plugged in when compiling the SM,¢; module. We provide two dif-
ferent back-end implementations. Section 4.3 discusses an implementation that
operates on a Sancus-protected memory buffer, allowing a form of protected
shared memory between SMs. Section 4.4 plugs in a real-world embedded flash
file system, realising SM-grained protection on a shared system resource.

From a security perspective, the front- and back-end are merely a logical
structure, as the entire file system runs in a single protection domain SM,¢s.
The front-end offers the public interface (i.e. SMyyss’s entry points) towards
clients, whereas the back-end is called through private non-entry functions. As
the PMA hardware guarantees a protection domain can only be entered from
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Fig. 1. Our protected file system SM,¢s module consists of a generic public front-end
access control layer controlling access to a pluggable private back-end software layer,
encapsulating the actual resource.

its predefined entry points, a client is effectively prohibited from bypassing the
access-control front-end and calling the back-end directly.

The division of responsibilities between the front- and back-end is as follows.
The front-end presents a transparent UNIX like file system interface towards
client SMs to provide them with the concept of a contiguous logical file with
offset-addressable content. Internally however, the front-end is only concerned
with SM-oriented access control policies and maintains the data structures to do
so. It relies on the back-end CFS implementation for the concept of a logical file.
The back-end in its turn encapsulates the actual file system implementation and
is completely unaware of any access control going on. It is important to note here
that the front-end has no notion of persistence and stores all its access control
data structures in volatile protected memory. Our SM,;, prototype does not
support persistent SM-grained file protection (c.f. Sec. 6) since it uses Sancus’
unique hardware IDs that do not last over multiple boot cycles [16].

4.2 Generic Front-End Access Control Layer

The front-end is conceived as a wrapper implementation that associates an access
control list (ACL) of (ID, permissions_flag) pairs per logical file to validate
the caller’s permissions before passing the call to the back-end.

Software-Module-Grained Access Control. Recall from Sec. 2 that the
IDs, uniquely identifying a Sancus module within one boot cycle, are inher-
ently unforgeable as they are exclusively managed by hardware. They can there-
fore safely be used for subsequent client authentications in a software layer.
Essentially, the front-end accomplishes its access control guarantees through the
sancus_get_caller_id hardware instruction, which it uses to reliably retrieve
the ID of the client — i.e. the SM that entered the currently executing module.
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To realise our protected file system prototype SMs¢s, we build upon San-
cus’ hardware-enforced security guarantees in two ways. On the one hand, San-
cus’ memory isolation techniques grant SMr, exclusive access to its back-end
resource. On the other hand, Sancus’ SM identification scheme provides SM,
with a reliable client authentication mechanism that allows implementing a thin
software layer to realise flexible access control policies for its private back-end
resource.

Interface. We based our Sancus File System (SFS) interface on the UNIX-like
Contiki File System (CFS) interface [20], modifying it where needed and extend-
ing it with SM-specific access control functions. Specifically, we had to replace
the cfs_read and cfs_write functions, requiring a pointer to an unprotected
memory buffer and a length argument, with sfs_getc and sfs_putc functions,
which pass the arguments and return values securely through CPU registers. For
the same reason we had to replace file name strings with single chars.

In addition, our interface supports SM-specific access control. Using the
sfs_chmod function, the software module that first created a file can assign or
revoke fine-grained permissions for a specific SM via a bit flag. Currently our
prototype supports read-only, write-only and read-write permissions, but due
to the generic access control scheme, more advanced policies such as append-
only could be added relatively easy. Client SMs open files through a modified
sfs_open function, requiring a permissions flag argument and an initial size hint
which is passed to the back-end.

Data Structures. Our prototype stores all access control data structures in its
protected private data section. It employs a linked list for logical files, each with a
corresponding SM-grained permission ACL. This allows a two phase permission
lookup procedure when specifying a file by name. The file list is first traversed
to locate the file, using the name as a key. Thereafter, the corresponding ACL
is searched using the calling SM’s ID as a key. To speed up future accesses,
using a file descriptor, we employ a fixed-sized file-descriptor-indexed array with
pointers to the corresponding ACL entry.

On each function call, before translating the call to the CFS back-end, the
front-end validates the caller’s permissions. If the caller passes a file descriptor,
the implementation first checks whether it is in the expected range and points to
an ACL entry that belongs to the caller. Furthermore, to allow safe revocation
of earlier assigned permissions, SM,y, closes any remaining open file descriptors
when revoking a permission — as opposed to the POSIX standard [10] which
leaves such behaviour implementation-defined.

As Sancus [16] requires the protected memory section of an SM to be fixed-
sized during the SM’s lifetime, SM,¢s should fulfil its own dynamic protected
memory requirements. To do so, our implementation enforces a maximum num-
ber of open file descriptors, pre-allocates a fixed number of file and permis-
sion structs at compile time and maintains them in a free list at run time.
When running out of protected memory, the front-end rejects requests to create
additional files.
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4.3 Protected Shared Memory Back-End

In the protected shared memory implementation, the back-end operates on a
fixed-sized Sancus-protected memory buffer. Internally, we use a dynamic mem-
ory allocation malloc implementation on this buffer, allowing clients to trans-
parently claim a portion of the buffer through a UNIX-like API.

Logical files in the protected shared memory back-end have a fixed size during
their lifetime. When creating a new file, the implementation uses the initial size
argument to allocate a buffer of the corresponding size. From then on, it does
proper bounds checking, refusing to seek beyond the buffer’s end.

Files are arranged in a linked list, each element containing a pointer to a loca-
tion inside the private malloc buffer and the corresponding size. As in the front-
end, we maintain a file-descriptor-indexed array to speed up common file opera-
tions and to store the current client-specific logical file offset. This bookkeeping
information must also reside in protected memory. To support a dynamic num-
ber of logical files, the prototype implementation allocates the required structs
using its own protected malloc buffer.

4.4 Protected Shared Flash Storage

The research presented here adopts Contiki’s open source Coffee FS [20] as our
case study flash file system back-end. Coffee FS is highly optimised for small
flash memories, requires a small and constant RAM footprint per open file and
does not provide any existing file protection mechanism.

The shared flash storage back-end introduces the important issue of secure
peripherals [11]. Indeed, SM, ;s should be provided with exclusive access to the
flash drive to ensure file system integrity and confidentiality. For peripherals that
are being accessed through the memory address space, Sancus’ program counter
based memory access control scheme grants a dedicated driver SM exclusive
access to a resource by including the relevant MMIO addresses in its private data
section [16]. The driver module then mutually authenticates with SM, s, using
attestation as discussed in Sec. 2, to realise end-to-end file system protection.

5 Experimental Evaluation

In this section we evaluate the protected file system SM, ¢ prototype; our imple-
mentation and evaluation suite are available online. We discuss runtime overhead
as well as the induced memory footprint and code size. We define total runtime
overhead from a client SM’s perspective as the additional number of CPU cycles
needed to call an SM,y, entry function, compared to calling the respective func-
tion of an unprotected file system. Furthermore, we split the overall overhead into
a Sancus-dictated component, induced by switching Sancus protection domains,
and an implementation-dependent component caused by the access control layer.
Finally, we provide the relative overhead for the protected shared memory and
Coffee flash file system back-ends.
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All experiments were conducted on a Sancus-enabled MSP430 FPGA running
at 20 MHz. The FPGA is connected to a Micron M25P16 serial flash drive,
using the Coffee file system from Contiki release 2.7. For technical details on the
MSP430 and Sancus extensions we refer the reader to [16].

Sancus Protection Domain Switching. As explained in Sec. 2, SMs need
entry and exit code stubs that take care of private call-stack switching and
clearing of CPU registers to avoid leaking of confidential data. These code stubs
thus incur overhead for function calls that switch protection domains. The exact
number of cycles needed for such a function call varies with the number and size
of the arguments and return value. Calling an unprotected function from within
a module SM 4 takes between 120 and 170 cycles, whereas calling an SMp entry
function from within SM4 requires between 210 and 280 cycles.

These results indicate an additional Sancus-dictated overhead of roughly 100
cycles for client SMs calling our protected SM, s module, as opposed to calling
an unprotected file system. Note that this overhead is solely caused by encap-
sulating the file system in its own protection domain SM,¢,, independent from
any additional access control logic.

Access Control Overhead. We first provide micro benchmarks of the access
control front-end layer. The last column of Table 2 shows the total number of
CPU cycles needed for a protected client SMy4 to call our protected file system
SM,y, configured with a dummy back-end. The “Sancus Induced” column lists
the number of cycles thereof caused by calling the respective Sancus entry func-
tion, depending on the number of arguments. These numbers are responsible for
the vast majority of cycles, illustrating how SMs, realises SM-grained access
control policies through a thin software layer on top of Sancus.

Table 2. The number of cycles needed for SM,s, configured with a dummy back-end,
assuming a single open file with one ACL entry. The “Sancus Induced” column lists
the number of cycles needed to call the respective SM¢s entry function. The next two
columns show the overhead of the front-end and the last column lists the summation.

SFS API Sancus Front-End Induced Total
function case Induced | ACL checks back-end call
format 211 181 17 409
open creat 279 120 69 468
open exist 259 95 69 423
seek 259 18 58 335
getc 229 46 59 334
putc 234 55 63 352
close 229 56 24 309
remove 226 138 27 391
chmod add 247 120 0 367
chmod revoke | 247 158 0 405
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We further detail the overhead induced by the front-end. The “back-end call”
column of Table 2 lists the number of cycles needed by the front-end to call the
back-end — the downside of a layered design. The “ACL checks” column shows
the number of cycles needed to traverse the access control data structures, in the
case of a single file and ACL entry. The impact of using the file-descriptor-indexed
array is clearly visible, resulting in a constant and low access control overhead
for the functions seek, getc, putc and close. As explained in Sec. 4.2, our
prototype uses linked lists, resulting in a linear growing access control overhead
for functions without a file descriptor. We experimentally verified the worst-case
overhead indeed grows linearly with a reasonable factor of about 12 extra cycles
per additional logical file or ACL linked list entry.

The memory overhead of our SM,s prototype is bounded at compile time
by pre-allocating the file descriptor array and a maximum number of structs for
logical files and ACL entries, which is common practice in embedded file systems
(as in the Coffee back-end). Both structs occupy 6 bytes. In our test setup, we
configured the SM, s module with a maximum number of 10 ACL entries, 5 files
and 8 file descriptor entries, resulting in a total memory usage of 106 bytes. In
terms of code size, the access control layer of SM,r, occupies 1.9 KB, whereas
the Coffee back-end requires 5.3 KB. Our front-end access control layer thus
increases the code size with a factor of 0.36.

Protected Shared Memory Back-End. To investigate the runtime overhead
of the protected file system module SM,¢s configured with a shared memory
back-end, we compare it to the case where two SMs communicate via an unpro-
tected dynamically allocated shared memory buffer in the single-address-space.
The “shm” column of Table 3 thus shows our baseline, i.e. the number of cycles
needed to create a shared buffer of size 100 via an unprotected malloc call,
read/write a character and free it.! The next two columns list the number of
cycles needed for our protected shared memory SMj¢s; module and the absolute
overhead.

The key thing to note here is that, once the unprotected dynamic memory is
allocated, read and write accesses are equivalent to normal memory accesses and
thus require very few cycles. Our SM, s, protected shared memory setup however
adds a level of indirection, implying a huge relative overhead for memory accesses.
Moreover, setting up the memory buffer takes longer as the meta data structures
should be initialised and clients have to open the logical file before accessing it.
Emulating flexible access control policies on top of Sancus’ native protection
model is however for the moment the only way of realising complex protected
interactions between SMs.

Protected Shared Flash Storage Overhead. We investigate the runtime
overhead of our protected SM,y, file system prototype on top of Contiki’s Cof-
fee F'S [20], a typical real-world embedded flash file system. The “coffee” column

! Recall from Sec. 4.2 that we cannot support a multi-byte read/write APIL
Reading/writing a buffer will thus need multiple calls to getc/putc.
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Table 3. The overhead for a client SM 4 that uses SM,¢s’s services for each back-end,
assuming a single open file with one ACL entry. The “Shared Memory” columns list
from left to right: the number of cycles needed by SM4 to use unprotected dynamic
memory, SMsys with a shared memory back-end and the absolute overhead. The “Flash
Storage Back-End” columns list from left to right, the number of cycles needed for SM 4
to call: an unprotected Coffee file system, SM,s, with a Coffee back-end; the absolute
and relative overhead and the overhead percentage induced by the ACL lookup.

API ‘ Shared Memory ‘ Flash Storage Back-End

baseline overhead baseline overhead
function case shm sfs-shm shm-abs | coffee sfs-coffee abs rel acl
format - 584 584 360E6 360 E6 286 0 63
open creat 192 1,326 1,134 76,133 76,436 303 0 40
open exist - 706 706 2,604 2,862 258 10 37
seek - 322 322 430 594 181 44 10
getc 2 342 340 902 1,081 179 20 26
putc 4 351 347 1,288 1,485 197 15 28
close - 539 539 317 498 181 57 31
remove 192 670 478 8,033 8,293 260 3 53
chmod add - 367 367 - 367 367 - 33
chmod revoke | - 405 405 - 405 405 - 39

of Table 3 lists our baseline, i.e. the total number of CPU cycles needed for a
protected client SM4 to call an unprotected Coffee flash file system. The “sfs-
coffee” column shows the number of cycles needed by SM4 to call our SM¢,
protected file system module, configured with a Coffee back-end. Note that these
numbers reflect the ideal case where the front-end as well as the back-end imple-
mentation and flash driver share the same protection domain SMy,. In our test
setup the Coffee file system and the flash driver operate in unprotected mode,
see also Sec. 6. We thus arrived at the presented data by carefully subtracting
the fine-grained overhead of switching Sancus protection domains.

The “abs” column of Table 3 lists the absolute number of overhead cycles
caused by the protected file system implementation, as compared to the unpro-
tected Coffee setup. To interpret these numbers, the next columns provide the
relative overhead and the percentage of the total overhead that is caused by
the access control front-end implementation. These results indicate the over-
head of protected resource sharing on top of a real-world flash file system is
reasonable. Due to the delay of the flash I/O and the file-descriptor-indexed
array, the relative number of additional cycles remains limited for commonly
used file operations: under 20% for getc and putc; it even drops to zero for
1/0O-heavy operations such as format, creat and remove. Moreover, the addi-
tional SM-specific chmod access control function consumes a number of cycles of
the same magnitude as the unprotected in-memory file operations, such as seek.
Finally, the front-end access control software layer shows to be lightweight in
the sense that over half of SM,y,’s overhead — in the case of a single file and
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ACL entry — can be attributed to calling the respective Sancus entry function
and the back-end function call.

Comparing the two back-ends reveals another characteristic of SM interac-
tions: the relative overhead of switching protection domains decreases as the
execution time of the callee module increases. Specifically, the relative overhead
of SM s with a flash back-end is reduced by the flash I/O delay, whereas fast
unprotected memory access aggravates overheads in the protected shared mem-
ory case.

6 Discussion

In this section, we discuss the security guarantees and limitations of our pro-
tected file system SMr, prototype.

Trusted Computing Base. Our SM,¢s module builds upon Sancus’ existing
hardware primitives [16] to supplement the hardware-enforced security guaran-
tees of its clients with logical file access restrictions. Clients using SM,¢s nat-
urally incorporate it in their TCB. Our approach differs significantly from a
traditional trusted OS computing base however for two major reasons.

Firstly, only client SMs using SM;¢,s have to trust SM,¢s and Sancus offers
strong authentication to verify SM,rs. A client can attest an SM, guarantee-
ing that, i.e., SMys, has not been tampered with and was loaded correctly,
with exclusive access to the MMIO flash drive addresses. This results in a small
explicit TCB, as opposed to the implicit TCB induced by an omnipotent trusted
kernel.

Second, the SM,r, module is solely entrusted its dedicated file system task,
echoing the well known principle of least privilege. Thus, a faulty SM,¢s module
can only tamper with or leak the file system data it is entrusted. A client SM
still preserves exclusive access to its private section. In this, SM,y,’s security
guarantees are similar to those of a microkernel file system running in user space
as it is shielded from other protection domains. Notably, Sancus does not rely
on any trusted kernel software layer to enforce this separation.

Limitations. We acknowledge several limitations in our SM,¢s prototype.
Firstly, in our test setup, the Coffee file system back-end runs in unprotected
mode. We believe that protecting the Coffee implementation by an SM is rela-
tively easy, albeit out of scope for the work presented in this paper.

A second limitation concerns the protected flash driver. Currently Sancus’
program counter based memory access control hardware logic only allows a sin-
gle contiguous private data section per Sancus module [16]. This implies that
a module including a MMIO address range in its private data section, cannot
at the same time have protected data. Moreover, as it cannot safely provide
the stack needed by higher level programming languages, its corresponding code
section should be entirely implemented in assembly. We therefore need a sepa-
rate dedicated flash driver SM, exclusively communicating with SM¢,. From a
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security perspective, there is no real issue here, but switching protection domains
decreases the performance, as explained in Sec. 5. In a real-world setup however,
Sancus’ program counter based access control logic [16] could relatively easy be
extended to allow a MMIO address range as well as another contiguous protected
address range in a single protection domain SMjy,.

Finally, SM, ¢, ensures confidentiality and integrity of logical files as long as it
is up and running (which can be verified by the client), but does not persist these
guarantees across reboots. Indeed, since the IDs assigned to SMs by Sancus, do
not persist after reboots (see Sec. 2), they may change when redeploying an SM.
We argue that extending SM,,’s file protection guarantees across reboots is non-
trivial, as anything could happen between crashing of the node and successful
redeployment of SMj¢,. In this respect, our protected file system does also not
protect against physically removing and reading out the flash drive. This matches
Sancus’ attacker model [16] which does not consider attackers with physical
access to the hardware. The only way to protect against such attacks and to
support persistent file protection would be to encrypt all data on the flash disk
with SM,¢,’s Sancus-provided private key. Such an approach would however
dramatically reduce performance, especially since all data is transferred safely
through CPU registers on a byte-per-byte basis. Moreover, there would be little
advantage over the situation where clients encrypt the data themselves before
passing it to SMs, or even an unprotected file system.

We therefore consider our protected file system SM,¢; module as a way for
SMs to extend their fixed sized private data section considerably, while at the
same time offering flexible access control guarantees. In this respect, it could be
an interesting future work direction to ensure the hardware automatically clears
the flash drive on system boot — even before SM,;, is deployed — to enforce the
non-persistence of file system data.

7 Conclusion

Low-end embedded devices are becoming increasingly present and interconnected
in our everyday lives. Adequate software isolation for these platforms is crucial
in a multi-stakeholder context. In this perspective, PMAs offer strong hardware-
enforced memory isolation and authentication guarantees, but cannot realise
flexible access control policies for shared system resources. SMs should either
claim the resource for themselves or rely on the services of an untrusted OS
when interacting with the outside world.

In this paper we presented a protected file system SM, ;s module that builds
upon existing PMA hardware primitives to construct a software layer that
realises access control, i.e. logical file protection guarantees for client SMs. In
a broader perspective, this demonstrates the feasibility of supplementing the
hardware-enforced security properties offered by PMAs with SM-grained access
control guarantees enforced by a protected software TCB.

While our implementation is based on Sancus [16], a hardware-only TCB for
lightweight embedded microcontrollers, our approach is fairly general and can
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be implemented with other PMAs that provide (1) memory isolation, (2) attes-
tation guarantees and (3) exclusive use of MMIO ranges. Yet, to the best of
our knowledge, Sancus is the only PMA satisfying all these requirements in the
embedded world. In server and desktop computing, our approach can be imple-
mented using a trusted hypervisor and a PMA such as Intel’s SGX [15]. Since
SGX enclaves cannot claim MMIO ranges directly, a rather large software TCB
would be necessary.

In the future we will further investigate the effectiveness and efficiency of our
access control mechanism based on extended evaluation scenarios that allow for
meaningful macro-benchmarks. A particularly interesting scenario would be to
provide access control for I/O devices connected to a peripheral bus.
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