
Model-Driven Engineering Based
on Attribute Grammars

Daniel Calegari(B) and Marcos Viera

Universidad de la República, Montevideo, Uruguay
{dcalegar,mviera}@fing.edu.uy

Abstract. The Model-Driven Engineering (MDE) paradigm proposes
the construction of software based on an abstraction from its com-
plexity by defining models, and on a (semi)automatic construction
process driven by model transformations. In this paper we pro-
pose the use of attribute grammars for the specification of QVT-
like (Query/View/Transformation) relational model transformations. We
also present how the syntax and semantics of models can be represented,
and we discuss the practical implications of this approach through the
development of a case study.

Keywords: Model-Driven Engineering · Attribute grammars · QVT ·
Haskell

1 Introduction

The use of a model-centric approach for the specification of a system, and of
automated mechanisms for its construction, improves efficiency on the whole
process. The Model-Driven Engineering (MDE, [1]) paradigm is based on these
practices. It envisions a software development life-cycle driven by models rep-
resenting different views of the system to be constructed and model transfor-
mations providing a (semi)automatic construction process. Models are defined
from metamodels, i.e. a model which introduces the syntax and semantics of
certain domain-specific kind of models. The relation between a model and its
metamodel is called conformance. A model transformation is basically the auto-
matic generation of a target model from a source model, according to a set of
rules that describe how certain elements in the source model can be transformed
into certain others in the target model. The Object Management Group (OMG)
has conducted a standardization process of languages and defined the MetaOb-
ject Facility (MOF, [2]) for metamodeling, and the Query/View/Transformation
Relations (QVT-Relations, [3]) for declarative model transformations.

Modelware is the technical space [4] of MDE, i.e. a working context with a set
of associated concepts, body of knowledge, tools, required skills, and possibilities.
In contrast, Grammarware is the technical space of grammars and grammar-
aware theories and software. Bridging of technical spaces is specially useful for
adopting the benefits of the other technical space [5], e.g. the translation of
c© Springer International Publishing Switzerland 2015
A. Pardo and S.D. Swierstra (Eds.): SBLP 2015, LNCS 9325, pp. 112–127, 2015.
DOI: 10.1007/978-3-319-24012-1 9

Model-Driven Engineering Based on Attribute Grammars 113

MDE elements (models, metamodels and transformations) into Grammarware
elements should allow their integration into existing tools such as diff/merge, as
well as the definition of declarative semantics associated to grammar produc-
tions. There are reasonable similarities between grammars and metamodels [5].
Since metamodels are language definitions, there is a relation between them
and the concept of a grammar, as well as models conforming to a metamodel
are like strings recognized by a grammar. Moreover, syntactical and semantical
properties that must hold in a given model to be considered conformant to a
metamodel, can be considered part of the semantics of a grammar. We also claim
that model transformations can be considered part of this semantics.

In this paper we address the bridging of Modelware and Grammarware by
representing MDE elements using Attribute Grammars (AGs, [6]). An AG is
composed by an underlying context-free grammar, describing the structure of
an Abstract Syntax Tree (AST), together with a set of attributes defined for
each non-terminal which allows to compute and pass information downwards and
upwards within the AST. In particular, we describe how metamodels can be rep-
resented as grammars, and their semantics, as well as QVT-like model transfor-
mations, as attributes of the grammar. AGs constitutes an executable method of
specification, since it describes only a computation in terms of an AG and then
automatically produces a program [7]. In this way we can derive a program for
checking conformance and executing a model transformation. We also discuss the
practical implications of this approach through the development of a case study1

using the Utrecht University Attribute Grammar Compiler (uuagc 2, [8]); a pre-
processor that generates Haskell code out of AG specifications.

The remainder of the paper is structured as follows. In Sect. 2 we introduce
the main concepts of MDE based on a running example. Then, in Sect. 3 we
present how models and metamodels can be represented using AGs, such that
is possible to verify conformance of a model with respect to its metamodel.
In Sect. 4 we present the specification of QVT-like model transformation using
AGs. Finally, in Sect. 5 we present related work and in Sect. 6 we present some
conclusions and an outline of further work.

2 Model-Driven Engineering

Every model conforms to a metamodel, which typically defines syntax and (static)
semantics of modeling languages like UML. The MetaObject Facility (MOF, [2]) is
a standard language for metamodeling. In few words, a metamodel defines classes
which can belong to a hierarchical structure. Any class has properties which can
be attributes (named elements with an associated type which can be a primitive
type or another class) and associations (relations between classes in which each
class plays a role within the relation). Every property has a multiplicity which
constrains the number of elements that can be related through the property.
1 Complete source code of our running example is available at https://www.fing.edu.
uy/inco/grupos/coal/field.php/Research/ANII14.

2 https://hackage.haskell.org/package/uuagc.

https://www.fing.edu.uy/inco/grupos/coal/field.php/Research/ANII14
https://www.fing.edu.uy/inco/grupos/coal/field.php/Research/ANII14
https://hackage.haskell.org/package/uuagc

114 D. Calegari and M. Viera

(a) UML metamodel (b) Relational metamodel

Fig. 1. Exampling metamodels

If there are conditions that cannot be captured by the structural rules of
this language, the Object Constraint Language (OCL, [9]) is used to specify
them. These considerations allow defining the conformance relation in terms
of structural and semantical conformance. Structural conformance with respect
to a MOF metamodel means that in a given model: every object and link is
well-typed and the model also respects the multiplicity constraints. Semantical
conformance means that a given model respects the invariants specified with the
supplementary constraint language.

As an example, the metamodel in Fig. 1a defines UML class diagrams, where
classifiers (classes and primitive types as string, boolean, integer, etc.) are con-
tained in packages (association contains). Classes can contain attributes (asso-
ciation has) and may be declared as persistent (kind = ‘Persistent’), whilst
attributes have a type that is a primitive type (association typeOf). Notice that
a class must contain only one or two attributes (multiplicity 1..2), and also
that the Classifier class is not abstract. We decided to handle these aspects dif-
ferently from UML class diagrams in order to have a more complete example.
The Relational diagrams metamodel in Fig. 1b defines schemas which contain a
number of tables and each table has a number of columns. Each column has a
name and a kind, and can be the primary key of the corresponding table.

A model transformation takes as input a model conforming to certain meta-
model and produces as output another model conforming to another metamodel
(possibly the same). Query/View/Transformation Relations (QVT-Relations,
[3]) is a relational language which defines transformation rules as mathemati-
cal relations between source and target elements. A transformation is a set of
interconnected relations: top-level relations that must hold in any transforma-
tion execution, and non-top-level relations that are required to hold only when
they are referred from another relation. Every relation defines a set of variables,
and source and target patterns which are used to find matching sub-graphs of
elements in a model. Relations can also contain a when clause which specifies the
conditions under which the relationship needs to hold, and a where clause which
specifies the condition that must be satisfied by all model elements participating

Model-Driven Engineering Based on Attribute Grammars 115

Fig. 2. Class to relational transformation (excerpt)

in the relation. The when and where clauses, as well as the patterns may contain
arbitrary boolean OCL expressions and can invoke other relations.

Consider the example of Fig. 2 which is a simplified version of the well-known
Class to Relational transformation [3]. The transformation basically describes
how persistent classes within a package are transformed into tables within a
schema. The relation PackageToSchema states that any UML package is mapped
into a relational schema. Moreover, the relation ClassToTable states that classes
marked as persistent are mapped into tables with the same name, a primary key
and an identifying column, such that the package to which the class belongs
is in the relation with the schema to which the table belongs. The relation
AttributeToColumn is called from the where clause of ClassToTable and maps
primitive attributes of the persistent class to columns of the corresponding table.
There are also keys, e.g. stating that the transformation must ensure that there
cannot be two Tables with the same name within the same Schema.

3 AG-based Structural and Semantical Conformance

As discussed in [5], describing a mapping from metamodels to grammars is in
many ways more demanding than the opposite, since metamodels inherently con-
tain more information than grammars, as for example the notion of inheritance
between metamodel elements and properties. Moreover, any metamodel can be
considered a graph of elements whereas grammars forms a tree. In what follows

116 D. Calegari and M. Viera

we introduce how metamodels can be mapped into AGs in such a way that a
model conforming with a metamodel is represented as a string recognized by the
corresponding AG. We also describe how AGs allow us to address structural and
semantical conformance checking as in the MDE world. Throughout this section
we also introduce the main concepts of AGs related to our proposal.

Since we are focusing on model transformations, we do not consider some
MOF constructs. In particular, we do not consider aggregation, uniqueness and
ordering properties within a property end, operations on classes, and packages.
Aggregation and operations are not used within transformations, whereas pack-
ages are just used for organizing metamodel elements (they can be considered
syntactic sugar). Although uniqueness and ordering properties are neither com-
monly used, they can be considered within semantical conformance checking.

MOF elements can be translated to AGs as follows.

Classes and Hierarchies. Each class is translated to a non-terminal with a
production rule resulting from the translation of their properties. If the class
does not have a superclass, then its production rule includes a terminal oid of
type Int representing an unique identifier of any instance of such class. Moreover,
if the class has subclasses, the production rule defines a non-terminal child of
type ClassCh, with Class the name of the class. This non-terminal defines one
production rule for each subclass, such that each one defines only one non-
terminal of the type of the corresponding subclass. If the class is not abstract,
then the child is wrapped with a Maybe.

In Fig. 3 we show the grammar resulting from the translation of the UML
class diagrams metamodel of Fig. 1a. In uuagc grammars are defined in data
declarations, which are very similar to Haskell data declarations with named
fields. Thus, for example, the declarations of Classifier , MaybeClassifierCh and
ClassifierCh result from the translation of the class Classifer.

Datatypes and Enumerations. Our AGs are Haskell-based specifications.
Thus, primitive types as string, boolean and integer are mapped to their cor-
responding Haskell types3. In the case of user defined datatypes, we translate
them in the same way we do with classes. An enumeration is translated to a
non-terminal with a choice of terminals corresponding to their values.

Properties and Multiplicities. Properties are defined by a name, an asso-
ciated type which can be a primitive type or another class and a multiplicity
constraining the number of elements that can be related through the property.
Within the context of the production rule corresponding to the class who owns
a property, we translate a property typed with a primitive type as a terminal of
the translated type. Moreover, if the property is typed with a non-primitive type,
we translate the property as a terminal of type Int , representing the identifier
of the element that must be related through the property. If the multiplicity of
the property accepts many elements, the type of the terminal is a list of the cor-
responding type. Finally, we use maybe if the multiplicity is 0..1. More narrow
3 In uuagc everything that is in between brackets is considered as Haskell code.

Model-Driven Engineering Based on Attribute Grammars 117

Fig. 3. Grammar for UML class diagrams metamodel

multiplicities are defined as attributes since they are considered as part of the
structural conformance checking.

Metamodel. At the top of the grammar we need a root element with a pro-
duction rule generating every other metamodel element on top of a hierarchy
(isolated classes and datatypes are considered hierarchies of one element). Then,
metamodels are represented as a list of such root elements. In our example, the
root model element is UMLModelElement .

The uuagc preprocessor generates Haskell data types out of the grammar
declarations. The following Haskell value, with type UML, is an example of a
model that conforms to the metamodel represented by the grammar of Fig. 3.

Referential and Inherited Properties. Properties are defined in their
owning classes, and within a hierarchy they must be inherited by subclasses.

118 D. Calegari and M. Viera

set EveryUMLModelElement = UMLModelElementCh Package Attribute Classifier
MaybeClassifierCh ClassifierCh Class PrimDataType

attr EveryUMLModelElement inh oid :: {Int }
inh kind :: {Sting }
inh name :: {Sting }

sem UMLModelElement | UMLModelElement child .oid = @oid
child .kind = @kind
child .name = @name

Fig. 4. Attributes defining UMLModelElement properties

In AGs, inherited attributes are used to pass information downward a tree.
We define inherited attributes such that, for a given property, these attributes
are copied to every subclass of the property owner. In our example we have
that UMLModelElement defines three properties (oid , kind and name), thus we
define inherited attributes, whose semantics is given by the original terminals
of its production rule, and which are copied to their child elements. This is
depicted in Fig. 4, where three inherited attributes (inh) are defined for every
descendant of UMLModelElement . Semantic rules, starting with the keywork
sem, define how the value of an attribute is computed. In the case of inherited
attributes, is the parent who computes the values for its children. In the example,
we define that the values of the attributes oid , kind and name of the child child of
UMLModelElement are the values of the fields oid , kind and name, respectively.
Semantic rules have to be defined for every production of all the non-terminal
which has the attribute. However, if a rule for an inherited attribute is missing,
the uuagc system derives a copy-rule, which just copies the value of the parent to
its children. Thus, the declarations of Fig. 4 express that, for example, the value
of the field oid is copied unchanged in the attribute oid to all the descendants
of UMLModelElement .

Some properties are references to other non-primitive elements. In this case,
we define a pair of lookup attributes for accessing these elements:

elemLookups is a synthesized attribute; i.e. an attribute that collects informa-
tion in a bottom-up way. In this case, we construct a function which allows to
lookup to an element into the list of model elements using its identifier. Then
this function is distributed through the model (EveryInter means all the non-
terminals but UML) using the inherited attribute elemLookupi .

For each class with a production rule defining a non-terminal as a reference
to other element, we define a higher-order attribute [10], i.e. a local attribute
that acts as if it is an additional child of the production (also with attributes).

Model-Driven Engineering Based on Attribute Grammars 119

sem Attribute | Attribute inst.typ ::UMLModelElement
inst.typ = fromJust (@lhs.elemLookupi @typ)

inst.owner ::UMLModelElement
inst.owner = fromJust (@lhs.elemLookupi @owner)

Fig. 5. References (excerpt)

{
data Type = TPackage | TAttribute | TClassifier | TPrimitiveDataType | TClass
}
attr EveryInter syn types use {++} { []} :: { [Type]}
sem Package | Package lhs.types = [TPackage]

sem Attribute | Attribute lhs.types = [TAttribute]

sem Classifier | Classifier lhs.types = TClassifier : @child .types

sem PrimDataType | PrimDataType lhs.types = [TPrimitiveDataType]

sem Class | Class lhs.types = [TClass]

Fig. 6. Collecting the types of an element

In the example depicted in Fig. 5 we represent the referential properties for the
Attribute class. The keyword inst specifies that we are defining a higher-order
attribute, while with lhs we refer to attributes coming from the left hand side
(i.e. the parent). Except for the symbols starting with @, that refer to attribute
values, the expressions on the right hand side of the = –signs of the semantic
rules are plain Haskell code. Since Attribute defines typ and owner as referential
properties (to a PrimitiveDatatype and a Class, respectively), we define higher-
order attributes typ and owner , such that their values are defined by looking up
the corresponding elements in the list of top elements; i.e. we dinamically copy
the corresponding branches of the three as new children. We ensure that these
elements exist by addressing structural conformance as explained next. Notice
that we are generating an infinite structure, due to the cyclic references of the
model. We make use of Haskell’s lazy evaluation to avoid infinite computations,
and unfold the structure only as much as needed.

Structural and Semantical Conformance. AGs also allows us to address
structural and semantical conformance. Structural conformance requires that the
model is well-typed and that also respects the multiplicity constraints. Additional
checks are mandatory in the case of referential properties and narrow multiplicity
constraints. In the case of semantical conformance, we need to specify supplemen-
tary constraints. Besides we do not have a direct translation from OCL to AGs,

120 D. Calegari and M. Viera

attr Every syn errs use {++} { []} :: { [String]}
sem Attribute

| Attribute lhs.errs = case @loc.owner of
Nothing → ["Type oid"++ show @owner ++ "not found."

Just → if elem TClass @owner .types
then []
else ["Type Error for oid"++ show @owner

sem Class
| Class lhs.errs = @loc.errMul ++ @loc.errDup

-- multiplicity constraint
loc.errMul = let atts = length $ atts

in if (1 > atts) ∨ (atts > 2)
then [@lhs.name ++ ": Multiplicity Error: "

++ show atts ++ " attributes."]
else []

-- semantical conformance checking
loc.errDup = let dup = [l | l ← group (sort @atts .names), length l > 1]

in if length dup > 0
then [show @lhs.oid

++ ": Duplicated Names: "++ show dup]
else []

Fig. 7. Structural and semantical conformance checking (excerpt)

devised as future work, the potential of AGs allows this kind of checking. Note
that higher order AGs are Turing complete [10]. To address typing requirements
we define a synthesized attribute types (Fig. 6) for collecting the types of an ele-
ment (its own type and their inherited types within a hierarchy). For synthesized
attributes we can define use rules for the cases where the semantic rules are not
explicitly declared. For example, for types the information is collected by append-
ing (++) the lists coming from the children. We also define a synthesized attribute
errs for collecting errors when checking conformance. This attribute is defined for
each non-terminal with respect to their own conformance needs. In Fig. 7 we show
some examples of conformance checks. We can see the definition of the inherited
attributes and some structural and semantical conformance chekings. In partic-
ular, within Attribute we check that its referential property owner exists and it
is well-typed (must be of type TClass). Moreover, in the context of a Class we
define that a class must have only 1 or 2 attributes (multiplicity constraint) and
also that the name of an attribute must be unique within a class (semantical con-
formance). For this last check we use the higher-order attribute atts , giving the
list of Attribute of a class, we collect their names and check if there are duplicates
in the resulting list.

Model-Driven Engineering Based on Attribute Grammars 121

4 AG-based Model Transformations

In this section we describe how model transformations specified using QVT-
Relations can be mapped to AGs. As a running example we use the (fragment
of) uml2rdbms transformation, defined in Fig. 2 of Sect. 2.

The AG specification of a transformation generates a Haskell function that
takes as input a model that conforms to the source metamodel and returns a
function from an initial model to a final model conforming to the target meta-
model. The transformation of the example is expressed as follows4:

Transformations are performed with check-enforce semantics; that is, first
we check if the initial target model complies with the relations specified by the
transformation, and then, only in the cases of relations that does not hold, the
model is incrementally updated. When executing the uml2rdbms transformation
to the umlModel defined in Sect. 3 with an empty initial target model we get:

But, if for example, we use this resulting model as the initial one, then the
same model is obtained. In case of models not completely complying with the
transformation specification, only the needed elements are inserted, e.g. if only
the last column (4) is missing, then the result is the initial model with this
column added (and the table updated to refer to this column).

Since the semantic function generated by the AG system should be a function
that takes as input a RDBMS and results in a RDBMS , we define at the root
of the grammar an inherited attribute input and a synthesized attribute output ,
both with type RDBMS .

We define a rule as a function that, given a list of relational model elements
returns an updated list of relational model elements. Top rules produced by the
elements of the source UML grammar are collected (i.e. composed) bottom-up
by a synthesized attribute top.

Thus, a transformation is defined as the application of the top rules to the
input list of elements.

4 RDBMS is the data type that represents the grammar corresponding to the meta-
model of Fig. 1b.

122 D. Calegari and M. Viera

{
type Relation = [T .RModelElement] → ([Int], [T .RModelElement])
}
attr Package UMLModelElementCh UMLModelElement syn p2S :: {Relation }
sem Package
| Package (lhs.counter , loc.s) = nextUnique @lhs.counter

loc.p2S = case @lhs.name of
pn → addSchema (mkSchema @loc.s "" pn [])

lhs.top = snd . @loc.p2S

{
mkSchema s k pn tl = (RModelElement s k pn (RMECSch (Schema tl)))

addSchema ns [] = ([oid ns], [ns])
addSchema ns (r : rs) | ns ≡ r = ([oid r], r : rs)

| otherwise = let (s, rs′) = addSchema ns rs in (s, r : rs′)
}

Fig. 8. Implementation of the relation PackageToSchema (excerpt)

The rules are created from the relations specified in the transformation. For
each relation, we define an attribute at the non-terminal representing the main
element of the source domain pattern of the rule. For example, in Fig. 8, for the
relation PackageToSchema we define an attribute p2S at Package.

A Relation takes an initial target model and returns a pair composed by the
list of possibly introduced elements and the resulting target model. The patterns
in QVT-Relations are traduced to pattern matching. We use a chained attribute
counter to generate unique identifiers for the new elements. A chained attribute
is a pair of attributes (synthesized and inherited) with the same name that are
used to walk through the tree keeping a sort of state; in this case a number.

Thus, for a given Package with name pn, we create an empty Schema with
name pn and identifier a new unique number. The function addSchema inserts
this new schema only if an equal schema does not already belong to the list.
Equality in model elements (≡) is defined in terms of the keys declared in the
transformation. Thus, if two schemas have the same name we consider they as
equals, even if they have different identifiers. If the new schema is not inserted,
the returned identifier is the one of the existing schema (not a new one).

Since PackageToSchema is a top relation, we use p2S to define the top
attribute by forgetting the identifiers of the inserted elements.

In Fig. 9 we show how the relation PackageToSchema is mapped to an
attribute c2T . This rule only applies if the given class is of kind “Persistent”;
otherwise the initial target model is returned unchanged. First we apply the

Model-Driven Engineering Based on Attribute Grammars 123

relations included in the when clause, in this case the p2S relation the Class
inherited from the namespace of the Classifier . Then, the model is sequentially
(possibly) updated with a new table, column and key. The addition of elements
that must be referred by other elements in the model, implies the need to update
such other elements, adding their references. For example, to (possibly) add a
Table we first use addTable ′ to possibly add the new table, in a similar way as
we described in the case of Schema, and then if the table was added we use
updSchema to update the schema s. After (possibly) adding the new elements
to the model, we apply the where clause relations to the resulting model. In
the example of Fig. 9 we apply the non-top AttributeToColumn relation (a2C),
given a table t and model r4 .

Notice that, for clarity reasons, we are assuming that both the when and
where clauses hold. In case any of them is not fulfilled (returning an empty list
of added/checked elements), the pair ([], r) has to be returned. Moreover, we
did not focus on how OCL expressions (in which QVT is strongly based) can be
represented. This is part of future work.

sem Class
| Class (loc.c1 , loc.t) = nextUnique @lhs.counter

(loc.c2 , loc.c) = nextUnique @loc.c1
(loc.c3 , loc.k) = nextUnique @loc.c2

loc.c2T = case (@lhs.namespace, @lhs.kind , @lhs.name) of
(p, "Persistent", cn) → λr →

let ([s], r1) = @lhs.p2S i r
([t], r2) = addTable (mkTable @loc.t "" cn s [] 0) r1
([c], r3) = addColumn (mkColumn @loc.c "" "TID" "NUMBER" t) r2
([k], r4) = addKey (mkKey @loc.k "" "PK" [c] t) r3
(cs, r5) = @loc.a2C t r4

in (t : c : k : cs, r5)
→ λr → ([], r)

lhs.top = snd . @loc.c2T

{
addTable nt rs = let (s, t) = (schema nt , oid nt)

([t ′], rs′) = addTable′ nt rs
in ([t ′], (if t ′ ≡ t then updSchema s t else id) rs′)

addTable′ nt = ([oid t], [nt])
addTable′ nt (r : rs) | nt ≡ r = ([oid r], r : rs)

| otherwise = let (t , rs′) = addTable′ nt rs in (t , r : rs′)

updSchema s t [] = []
updSchema s t (r : rs) | s ≡ (oid r) = addTable2Schema t r : rs

| otherwise = r : updSchema s t rs
}

Fig. 9. Implementation of the relation ClassToTable (excerpt)

124 D. Calegari and M. Viera

5 Related Work

The representation of MDE elements in terms of a shallow embedding of the
languages by providing a syntactic translation into Grammarware concepts has
been proposed before [5,11–13]. The translations have some minimal differences
between them with respect to the representation of hierarchical elements and
properties within. In few words, some proposals model hierarchies as a flattening
of elements, move properties from the topmost (or bottommost) element of a
hierarchy to every bottommost (or topmost, respectively) element in order to
have access to those inherited properties, or discard some intermediate elements
within a hierarchy since they do not have any property of their own. Besides
these translations generate more optimal grammars, they lose traceability with
respect to the original metamodel. Thus it could be neither appropriate for the
definition of a model transformation (as attributes related to the main element
of the source domain) nor for the definition of the reversal translation from the
AG to their corresponding metamodel. Moreover, properties are represented as
an occurrence of a non terminal of the typing class, or by-name, depending on
multiplicities and aggregations. We use a homogeneous representation by using
identifiers referencing elements on top of a hierarchy. Higher-order attributes
allow accessing every required property.

With respect to conformance, in [14] the authors propose a formal approach
for the definition of metamodels (not based on MOF) using a meta-notation
extending BNF and the specification of constraints on models in a formal logic
language. Moreover, in [11] the authors define general rules to derive a context-
free EBNF grammar from a MOF-compliant metamodel. They also use these
mapping rules to generate a Java compiler in which parser actions are added to
check semantical conformance. In our proposal, structural and semantical con-
formance is addressed using the same language of AGs. In [15] the authors use
reference attribute grammars (RAGs, [16]) for the specification of metamodel
semantics. They basically represent metamodels as in the other referred pro-
posals, but they use reference attributes (the main difference between AGs and
RAGs) in order to model non-containment properties. They also define several
attributes for representing derived properties and operations (not supported by
our proposal). RAGs allow to define a graph-like structure, more similar to the
concepts behind a metamodel. However, we can get a similar representation by
using a combination of IDs and higher-order attributes.

Up to our knowledge, with respect to model transformations there is only
one work [7] defining how to represent a model transformation using AGs. The
transformation is represented as attributes and the output is a text that corre-
sponds to the target model in accordance with its grammar. However, this work
only present general ideas, not using any transformation language as a reference
(e.g. QVT as we do) and exemplifying the proposal using an extremely reduced
version of a model transformation. Moreover, they do not ensure that the gen-
erated string indeed conforms to the target grammar, as we do by generating an
instance conforming to the target grammar.

Model-Driven Engineering Based on Attribute Grammars 125

6 Conclusions and Future Work

We have explored the use of AGs for the representation of MDE elements (mod-
els, metamodels and model transformations). Any metamodel is represented with
an AG, and models conforming to it are represented as strings recognized by the
corresponding grammar. We exhaustively use attributes for handling references
between metamodel elements, for structural and semantic conformance checking
and for representing QVT-like model transformations. We also developed a case
study using UUAGC which demonstrates the feasibility of this approach.

The representation of metamodels and models could be easily automated (as
a model-to-text transformation) since there is a straightforward representation
of the basic elements (as Haskell types) and the generated attributes directly
depend on the structure of the metamodel. In this way, structural conformance
can be automatically verified. Moreover, it could be possible to include the auto-
mated translation into a modeling environment, bridging the gap between model-
driven and attribute grammar practitioners.

By focusing on QVT, we are trying to structure the way we define model
transformations using AGs. The case study showed that there is some direct
relation between QVT constructs and their AG representation. We still need to
study if it is possible to automatically generate an AG from a QVT specification.
Our AG-based approach can be classified as a direct manipulation approach,
which offers little or no support or guidance in implementing transformations.
In this sense, we can explore the definition of an embedded domain specification
language (DSL) for model transformations. This DSL could be used for express-
ing model transformations within the Grammarware technical space, without
depending on the Modelware technical space.

Within the case study we addressed the inclusion of OCL expressions. How-
ever, further exploration is required in order to exhaustively represent OCL
within AGs. This will provide a uniform way of expressing constraints on trans-
formation rules, and on metamodels for semantical conformance checkings. More-
over, it will provide a way of addressing some OCL-based approaches for the
verification of a model transformation [17].

Besides an AG describes a computation and then a program is automatically
generated, we need to specify some aspects which are abstractly handled by the
transformation engine when a declarative approach is used, e.g. when elements
must be created or updated. Far from being a problem, this could be useful for
the representation of other transformation aspects, e.g. rule scheduling (order or
rule invocation), multi-directional transformations, tracing, multiple source and
target domains in a transformation, etc. Furthermore, since attribute computa-
tions are expressed as Haskell expressions, the Haskell type system (and novel
type-level programming techniques) can be exploited to provide partial proofs
of properties of the models and model transformations. For example, generated
grammars can be represented using the structure defined in [18] to represent
correct-by-construction mutually dependent structures and manipulate them in
a type-safe way. Further work is required in this sense.

126 D. Calegari and M. Viera

Finally, we need to continue developing case studies in order to strengthen
our results. Particularly, complex examples could allow the comparison between
our proposal and other transformation engines with respect to execution times.

Acknowledgements. This work has been partially funded by the Agencia Nacional
de Investigación e Innovación (ANII, Uruguay).

References

1. Kent, S.: Model driven engineering. In: Proceedings of Integrated Formal Methods,
pp. 286–298 (2002)

2. OMG: Meta Object Facility (MOF) 2.0 Core Specification. Specification Version
2.0, Object Management Group (2003)

3. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation. Final
Adopted Specification Version 1.1, Object Management Group (2009)

4. Kurtev, I., Bézivin, J., Aksit, M.: Technological spaces: an initial appraisal. In:
CoopIS, DOA 2002 Federated Conferences, Industrial Track (2002)

5. Paige, R.F., Kolovos, D.S., Polack, F.A.C.: A tutorial on metamodelling for gram-
mar researchers. Sci. Comput. Program. 96, 396–416 (2014)

6. Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theor. 2(2) , 127–
145 (1968). Correction: Math. Syst. Theor. 5(1), 95–96 (1971)

7. Dehayni, M., Féraud, L.: An approach of model transformation based on attribute
grammars. In: Masood, A., Léonard, M., Pigneur, Y., Patel, S. (eds.) OOIS 2003.
LNCS, vol. 2817, pp. 412–423. Springer, Heidelberg (2003)

8. Swierstra, S., Alcocer, P.A., Saraiva, J.: Designing and implementing combinator
languages. In: Swierstra, S., Oliveira, J., Henriques, P. (eds.) Adv. Funct. Program.
Lecture Notes in Computer Science, vol. 1608, pp. 150–206. Springer, Heidelberg
(1999)

9. OMG: Object Constraint Language. Formal Specification Version 2.4, Object Man-
agement Group (2014)

10. Vogt, H.H., Swierstra, S.D., Kuiper, M.F.: Higher order attribute grammars. SIG-
PLAN Not. 24(7), 131–145 (1989)

11. Gargantini, A., Riccobene, E., Scandurra, P.: Deriving a textual notation from
a metamodel. In: Proceedings of Workshop on Milestones, Models and Mappings
for Model-Driven Architecture. Volume WP06-02, ISSN1574-0846 of CTITSeries.
(2006)

12. Alanen, M., Porres, I.: A relation between context-free grammars and meta object
facility metamodels. Technical Report 606, Turku Centre for Computer Science
(2003)

13. Grammes, R., Gotzhein, R.: Towards the harmonisation of UML and SDL. In: de
Frutos-Escrig, D., Núñez, M., (eds.) Proceedings of Formal Techniques for Net-
worked and Distributed Systems 2004, Madrid Spain, 27–30 September 2004, pp.
61–78. Springer (2004)

14. Zhu, H.: An institution theory of formal meta-modelling in graphically extended
bnf. Front. Comput. Sci. 6(1), 40–56 (2012)

15. Bürger, C., Karol, S., Wende, C., Aßmann, U.: Reference attribute grammars for
metamodel semantics. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE
2010. LNCS, vol. 6563, pp. 22–41. Springer, Heidelberg (2011)

Model-Driven Engineering Based on Attribute Grammars 127

16. Magnusson, E., Hedin, G.: Circular reference attributed grammars - their evalua-
tion and applications. Sci. Comput. Program. 68(1), 21–37 (2007)

17. Calegari, D., Szasz, N.: Verification of model transformations: a survey of the state-
of-the-art. Electr. Notes Theor. Comput. Sci. 292, 5–25 (2013)

18. Baars, A.I., Swierstra, S.D., Viera, M.: Typed transformations of typed abstract
syntax. In: TLDI 2009: Proceedings of the 4th International Workshop on Types
in Language Design and Implementation, pp. 15–26. ACM, New York (2009)

	Model-Driven Engineering Based on Attribute Grammars
	1 Introduction
	2 Model-Driven Engineering
	3 AG-based Structural and Semantical Conformance
	4 AG-based Model Transformations
	5 Related Work
	6 Conclusions and Future Work
	References

