
Color Flipping

Felipe L. Silva(B), Marcelo F. Luna, and Wesley Attrot

State University of Londrina, Londrina, Brazil
{felipe.lds.88,marcelofernandesdeluna}@gmail.com

wesley@uel.br

Abstract. Spill code minimization is an important problem in register
allocation because it affects the quality of the code produced by the com-
piler and program performance. This work presents a new technique to
reduce spill code, called color flipping. Differently of other techniques,
color flipping prevents all load/store instructions insertion when avoid-
ing spill. Nevertheless, color flipping can be used in combination with
other spill minimization techniques to achieve an overall better result.
To evaluate the impact of using color flipping, experiments with a set
of interference graphs and with the benchmark SPEC CPU2006, showed
over 12 % of spill reduction.

Keywords: Spill minimization · Register allocation · Color flipping

1 Introduction

Register allocation [10,16,18,23] is one of the most important compiler optimiza-
tions. It directly affects the quality of the code produced. The goal of register
allocation is to keep as many as possible temporary values created by a program
in machine registers. The problem in register allocation occurs when the finite
number of available machine registers can not fit the unbounded temporary val-
ues. When this occurs some values must be kept in memory, which decreases
the speed of the generated code. To keep the temporaries in memory, load/store
instructions are inserted into the code; this process is called spill code generation.

The most widely used algorithm to perform register allocation is graph col-
oring [7,10,15]. In this approach, the compiler builds an interference graph G,
where each node represents a live range and edges connecting two live ranges li
and lj symbolizes an interference and means that li and lj will be live at the
same time in the future and should not occupy the same register. The problem
then is to find a proper K-coloring for G, such that no two adjacent nodes receive
the same color. By representing the colors as machine registers we can perform
register allocation with a coloring algorithm.

An ideal register allocator should produce the minimum amount of spill code
possible to avoid unnecessary memory accesses, and therefore slowdown the exe-
cutable code. However, introducing the minimum spill code as possible is an
NP-complete problem.

c© Springer International Publishing Switzerland 2015
A. Pardo and S.D. Swierstra (Eds.): SBLP 2015, LNCS 9325, pp. 81–95, 2015.
DOI: 10.1007/978-3-319-24012-1 7



82 F.L. Silva et al.

Several efforts have been made to find efficient techniques to reduce the
impact of spills in the code. In 1989 Bernstein et al. [5] improved the Chaitin’s
allocator with new heuristics to select the spill node known as best-of-three. In
the same year, Briggs et al. [6] developed a stronger coloring heuristic, called
optimistic coloring. In 1992 Briggs et al. [8] also extended the rematerialization
notion of Chaitin by dealing with multi-valued live ranges. The rematerialization
recomputes constant values when it is cheaper than to store and reload it. In 1997
Bergner et al. [4] developed a new minimization technique, known as interference
region spilling that was able to spill partially a live range. Later in 1998, Cooper
and Simpson [13] developed a new technique to globally split live ranges similar
to that developed by Bergner et al. [4] known as live range splitting. In 2003,
Govindarajan et al. [17] developed a heuristic to reduce the numbers of registers
used by instruction sequencing, called Minimum Register Instruction Sequence
(MRIS). In the same year, Koseki et al. [20] developed a new technique for partial
spilling called spill code motion. In 2005, Gao and Shi [14] created a method,
named merge that allows two interfered nodes in the interference graph occupy
the same machine register. Finally in 2013, Barany and Krall [3] developed a
global code motion to order basic blocks with the aim of reduce overlaps among
live ranges.

The majority of previous spill code minimization research efforts have been
focused on studying spilling heuristics to select the live range with the smallest
spill cost [5,9] and finer spilling/splitting mechanisms to reduce the number of
load/store instructions inserted [4,7,13]. Unlike these techniques we introduce
a technique called color flipping which focuses on the coloring stage of graph
coloring algorithm, where if color flipping succeeds no load/store instructions
are inserted because a register is assigned for the entire live range. The main
idea is to attempt to recolor [19] the interference graph, such that a used color
becomes available for spill node.

2 Color Flipping

To demonstrate how color flipping works, we present a simple example where
the spill is successfully avoided. The interference graph and its corresponding
node costs are shown in Fig. 1. In this example, we will assume that we have 3
colors available, that is, K = 3.

After coloring the interference graph, we are left with the 3-colored sub-graph
shown in Fig. 2(a) and the uncolored live range F . Normally we would spill the
live range F . However, observing this graph we notice that F has three neighbors
with unique colors: A : green, B : blue and E : red. So, if we change the color of
any of these nodes, then we will make a color available for F . By extending this
idea to one more level of the interference graph, i.e., searching for nodes with
unique color in the neighborhood of A, B and E, we can start to flip colors.
Analyzing the neighbors of A, we find that A has no neighbor with unique color,
so we proceed our analysis to B. We observe that B has one neighbor with
unique color, that is, A : green, C : green and D : red. As B is the only blue



Color Flipping 83

Fig. 1. Interference graph and its spill costs.

(a) Interference graph after
coloring phase.

(b) Interference graph after
flipping.

Fig. 2. Flipping colors in the graph (Color figure online).

Fig. 3. Final result after applying color flipping in Fig. 2(a) and continuing register
allocation (Color figure online).

node connected to D, so, it’s possible to flip B and D colors, as seen in Fig. 2(b).
Now we are free to color F with blue as shown in Fig. 3.

In Fig. 2(a) we flipped colors between two neighboring nodes. But it is also
possible to recolor a node if it has another color available. In the next example
we present a situation where recolor a node in this way makes a color available
for the spill node. The interference graph after the coloring phase and after
color flipping is shown in Fig. 4. We assume that K = 4. There are two physical
registers R1 and R3 already in the graph. Node F interferes with R1; nodes



84 F.L. Silva et al.

(a) Interference graph after
coloring phase.

(b) Interference graph after
flipping.

Fig. 4. Flipping colors in the graph (Color figure online).

Fig. 5. Final result after applying color flipping in Fig. 4(a) and continuing register
allocation (Color figure online).

D, F and G interfere with R3. There is no color available for live range G. By
observing this graph, we notice that E has another color available, because it
can be recolored with yellow. Recoloring E in this way, makes red available for
G. The Fig. 5 shows the result after applying color flipping in the graph.

The main advantage of color flipping over other spill minimization techniques
is that when avoiding a live range spill, no load/store instructions are inserted.
The color flipping avoids completely the spill, not only partially.

3 Color Flipping Algorithm

To implement color flipping we added an additional stage after the coloring
phase. This stage attempts to assign a register for each spilled live range. If
color flipping succeeds the live range is removed from the spill list and added
to the colored nodes list, otherwise no modification is made on the interference



Color Flipping 85

Fig. 6. Color flipping added to Briggs’ allocator.

graph and the live range is spilled. The Fig. 6 shows the Briggs’ allocator [7]
with color flipping stage added.

Given an interference graph G, and a spill node s ∈ G the color flipping
algorithm tries to recolor G such that a valid register R is made available for s.
To do so we divided color flipping into two modules: FindFlippingCandidates
and TryFlipping.

The aim of the first module is to find a set of flpping candidates, i.e., nodes
that may have their colors flipped. It begins analyzing each neighbor ni of the
spill nodes to determine if ni satisfies three constraints called flipping restric-
tions. A list - flippingCandidates - containing the neighbors that meet all
flipping restrictions is created.

Once the first module has finished the algorithm starts TryFlipping. In this
module each flipping candidate fi ∈ flippingCandidates is analyzed to deter-
mine if fi satisfies one of two flipping conditions. In positive case fi is recol-
ored, such that, a color is made available to the spill node and the algorithm
stops. Otherwise the color flipping algorithm calls FindFlippingCandidates
but with I and fi (not s) as input. This process is repeated until there is
no more flipping candidates, that is, flippingCandidates = ∅. We can stop
TryFlipping before setting a max level of recursion - maxLevel - such that color
flipping stops trying to find new flipping candidate when maxLevel is reached.
Figure 7 shows a simple flowchart of TryFlipping.

The flipping restrictions and the flipping conditions are constraints imposed
to a node ni to guarantee that is safe to flip ni color. By safe, we mean that all
constraints of the interference graph after color flipping are preserved. When ni

satisfies all flipping restrictions, then ni is a potential flip node. The next step is
to analyze ni to determine if ni is an actual flipping node, that is, determine if
ni satisfies one flipping condition. In order to understand how the color flipping
algorithm works, one needs a deeper understanding of the criteria used in flipping
restrictions and those used in flipping conditions.

Flipping Restrictions: The FindFlippingCandidates module is responsible
for finding nodes that satisfy the three flipping restrictions. The input is a node
in the interference graph, which we call the target node T , and the output is a list
of nodes that meets all three restrictions, which we call flippingCandidates.



86 F.L. Silva et al.

Fig. 7. Flowchart of TryFlipping module.

• First flipping restriction: this restriction must ensure that the flipping candi-
date has a unique color among the neighbors of the target node. In Fig. 8(a),
T contains three neighbors of the same color. Therefore X, Y and Z do not
satisfy the first flipping restriction. In Fig. 8(b) Z satisfies the first flipping
restriction. With this restriction we guarantee that if a flipping candidate
change its color, then T is free to receive its old color. For our example, in
Fig. 8(b) if Z is recolored, we are free to color T with green.

• Second flipping restriction: this restriction ensures that the flipping candi-
date is colored with a proper register Ri for T . By proper register we mean
that Ri does not interferes with T . In the sub-graph of Fig. 9 the node Z
is the unique among the neighbors of the target node T colored with blue.
However, R1 interferes with T , which makes Z to violate the second restric-
tion. If we remove R1 from the interference graph, then Z satisfies the second
flipping restriction.

• Third flipping restriction: we say that FindFlippingCandidates is on the
first level of an interference graph if T is a spill node. If T has flipping
candidates, then each one of them may be target nodes, if so we say that we
are at level > 1 of the interference graph. Once FindFlippingCandidates
begins to operate at a level > 1 of the interference graph, the third flipping
restriction is triggered. Otherwise this restriction is always satisfied. Consider
the graph in Fig. 10, when we begin searching for flipping candidates of T ,
we find that W satisfies the first and the second flipping restrictions. As we
are in the first level, it’s unnecessary to check the third flipping restriction,
so W is a flipping candidate of T . The algorithm proceeds to determine
the flipping candidates of W and finds that Z satisfies the first and second
the flipping restrictions. But Z is neighbor of T violating the third flipping
restriction.

So the aim of the third flipping restriction is ensure that a flipping candi-
date does not interfere with a target node of the previous flipping candidate.
In the example of Fig. 10, it must ensure that the flipping candidates of the



Color Flipping 87

Algorithm 1. Finds flipping candidates
1: procedure FindFlipCandidates(T)

2: for all i ∈ T.Adjs do
3: if i.color ∈ T.PreColored then
4: continue
5: for all j ∈ T.Adjs − {i} do
6: if !(i.color = j.color) then
7: continue
8: if !(T.ancestor /∈ i.Adjs) then
9: continue

10: i.ancestor ← T
11: flippingCandidates.insert(i)
12: return flippingCandidates

target node W do not interfere with T . If we remove the interference between
Z and T , then Z becomes a flipping candidate of W .

The Algorithm 1 shows the implementation of FindFlippingCandidates.
The line 2 checks if i satisfies the second flipping restriction, line 6 checks if i
satisfies the first flipping restriction, finally line 8 checks if i satisfies the third
flipping restriction. If i meets all flipping restrictions, then it’s added to the list
of flipping candidates on line 11.

(a) First restriction
unsatisfied.

(b) First restriction
satisfied.

Fig. 8. First flipping restriction example (Color figure online).

Fig. 9. Second flipping restriction unsatisfied (Color figure online).



88 F.L. Silva et al.

Fig. 10. Third flipping restriction unsatisfied.

Fig. 11. An interference graph where the second flipping condition fails (Color figure
online).

Flipping Conditions: The TryFlipping module is responsible for finding
nodes that satisfy one of two flipping conditions. The input is a spill node in the
interference graph and the desired level of recursion. The output is a valid color
for the spill node if color flipping succeeds or −1 if color flipping fails.

• First flipping condition: The first flipping condition deals with abusive using
of colors that pre-colored nodes may lead in the interference graph. The
Fig. 4(a) shows an example of interference graph, which satisfies the first
flipping condition. After the coloring phase, it is found that G is a spill
node. So we triggered the color flipping algorithm and we found that D, E
and F are marked nodes of G. Since E can also be colored with yellow, the
color red is made available for G.

• Second flipping condition: The second flipping condition operates at least in
three nodes. So it is only triggered from a recursion level > 1. For example,
consider the interference graph fragment shown in Fig. 11, if S is a spill
node, X a flipping candidate of S, and Y flipping candidate of X, the second
flipping condition must ensure that Y has no neighbor with the same color
of X. In Fig. 11 flipping the colors of X and Y will not be possible because
Y has a neighbor colored with green.

An implementation of TryFlipping is shown in Algorithm 2. The line 2
checks if the max level of recursion was reached and stops the algorithm in



Color Flipping 89

Algorithm 2. Tries to flipping some nodes colors
1: procedure TryFlipping(upNode, level)

2: if level = 0 then
3: return -1
4: FlipCandidates ← FindF lipCandidates(upNode)
5: if FlipCandidates.size() = 0 then
6: return -1
7: for all i ∈ FlipCandidates do
8: if i.allowed.size() > 0 then
9: flipColor ← i.color

10: i.color ← i.allowed.next()
11: return flipColor
12: else if upNode.color �= −1 then
13: IAdjs ← AdjList(i) − upNode
14: if upNode.color /∈ IAdjs.colors then
15: flipColor ← i.color
16: i.color ← upNode.color
17: return flipColor
18: else if level > 0 then
19: downF lipColor ← TryF lippingColor(i, level − 1)
20: if downflipColor > −1 then
21: upF lipColor ← i.color
22: i.color ← downF lipColor
23: return upF lipColor
24: return -1

positive case. The line 4 calls the module FindFlippingCandidates and stores
its results in FlipCandidates. Lines 7–23 loop through each element of the
list FlipCandidates, to determine if one of them satisfies one of the flipping
conditions. Lines 8–11 check the first flipping condition and lines 12–17 check
the second flipping condition.

Complexity: The most costing operation in color flipping algorithm is the com-
putation of the first restriction. Given an interference graph G with n nodes, the
first restriction needs (n − 1)(n − 2) comparisons in the worst case, i.e., the cost
is O(n2). Where (n − 1) is the number of nodes in G less the spill node and
(n − 2) is the number of nodes in G less the spill node and the node that is
under evaluation in the first restriction. On the other hand, in the best case it’s
not necessary to compute the first restriction, because the algorithm stops in the
second restriction analysis. The number of comparisons to calculate the second
flipping restriction is bounded by the number of registers in the target machine.
If we represent the number of registers as c, the second restriction needs c(n−1)
comparisons to be computed, which gives to color flipping a cost of Ω(n) in the
best case. Based in some of our experimental analysis of color flipping execution,
we noticed that the second restriction occurs with considerable frequency, which
makes color flipping cost similar to the best case.



90 F.L. Silva et al.

4 Experimental Results and Discussion

There are many reasonable ways to measure the quality of a good register alloca-
tor - compile time, space requirements, produced executable code efficiency. The
main objective of color flipping is to improve code efficiency of allocators that
use graph coloring approach. Although an additional cost of space and time is
introduced when the color flipping is added to the framework of these allocators,
the trend is not to cause severe damage in the performance, since it operates on
very limited portions of the graph. This section presents a series of comparisons
to measure the impact on the quality of the code when the color flipping is added
to Briggs’ allocator [7].

To evaluate the efficiency of color flipping two main experiments have been
made. The first one takes a set of 27, 921 interference graphs made available
by Appel and George [2] to measure how many live range spills were possible
to avoid using the color flipping technique. The second experiment, implements
the Briggs’ allocator with color flipping stage added in LLVM framework [21].
Several comparisons were made between the existing allocators of LLVM. The
tests were performed in a Core i5 machine, with 8 GB of RAM in Ubuntu 14.04
64 bits.

4.1 Appel and George Graph Experiments

The set of graphs available by Appel and George [2] were generated from the
self-compilation of SML/JN (Standard ML of New Jersey) [1] - a compiler for
the language Standard ML ’97 - to test new allocation techniques for graph
coloring, without relying on any specific framework.

The samples assume that K = 21 or K = 29, and also provide information
about moves between nodes in each graph, which allows the use of coalescing in
the allocation process. However, no spill cost information is provided, nor the
code that represents the interference graph. This limits the tests in two ways.
First when spill occurs, we can not know which variable will be spilled. To work
around this problem we assumed that all nodes in the interference graph have
cost = 1, therefore the node with higher degree is always chosen to spill. The
second limitation is that we can not reconstruct the interference graph when
spill occurs because there is no code information to make live analysis. In this
way, the experiment only computes the effect of color flipping in the first round
of the graph coloring algorithm if any spill occurs.

In order to test the efficiency of color flipping a Briggs’ allocator with-
out coalescing and where is possible enable color flipping was implemented
without any framework dependence. The tests were performed assuming K =
4, 8, 12, 16, 21/29. The recursion level of the color flipping was set to 2, we try
a recursion level > 2, but there was no significant improvement in the results
- less than 0.5 %. The results are shown in Table 1. We observed that as the
number of available register grows, the color flipping avoids more spills, this is
due to the fact that more flipping opportunities become possible when there
are more possibilities of coloring. However, even with K = 4 the reduction in



Color Flipping 91

Table 1. Number of live range spills avoided for the Appel and George 27,921 inter-
ference graph samples.

K Briggs - Total spills Color flipping - Spills avoided Reduction (%)

4 159,308 6,996 4.37

8 31,417 2,174 6.92

12 10,170 853 8.39

16 3,931 498 12.67

21/29 1,265 146 11.54

the number of live range spills is considerable. Another important observation is
that our measurements in Table 1 are in terms of live range spills avoided, not
in terms of load/store instructions reduction. As for each live range spilled some
load/store instructions are inserted, if we were able to perform our measure-
ments with Appel and George graph samples in terms of load/store reduction,
an even better result would be obtained.

4.2 LLVM Experiments

To evaluate the quality of the code produced, the benchmark SPEC CPU2006
was compiled for architectures x86 64 and ARM-Cortex9. A comparison was
made with the three main allocators of LLVM: basic, greedy and pbqp. It is
difficult to talk about allocators basic and greedy because there is no official
documentation about them. The best material found was an informal mail list
between the author of both allocators and the LLVM community [22]. Based on
this discussion and code itself, we can infer that both are hybrids allocators, using
ordered intervals as the extended linear scan [24] but using allocation mechanisms
similar of those used in the graph coloring. The basic uses a priority queue
to separate unrestricted live ranges (degree < k) from restricted live ranges
(degree ≥ k) which is similar to the algorithm proposed by Chow and Hennessy
[11,12]. The greedy is an extension of basic, which uses a form of iterative
coalescing similar to George and Appel [15] with split on demand. This is the
default allocator of LLVM. The pbqp allocator is based on quadratic problem
solving implemented by Hames Scholz [18].

The results of SPEC CPU2006 benchmark compilation are shown in Tables
2 (x86 64) and 3 (ARM-Cortex9). Unlike the experiments performed in Sect. 4.1,
in LLVM experiments the measurements are in terms of spill instructions
(load/store). We notice that our allocator produced code with similar quality to
LLVM allocators. In some cases much less spill code was inserted, e.g., 403.gcc,
400.perlbench. In 403.gcc for X86 64 (Table 2) was inserted 6, 356 spills with
color flipping, while all LLVM allocators inserted > 7300 spills. In 400.perlbench
for ARM-CortexA9 (Table 3) was inserted 2, 643 spills, while all LLVM allocators
inserted > 3200 spills. We also notice that one of the best performances of color
flipping was on the gcc benchmark. This may be due to the nature of the interfer-



92 F.L. Silva et al.

ence graph of a compiler, since the samples of graphs of Appel and George, where
we achieve better results, also represented a compiler. Another important obser-
vation is that the color flipping was more effective in ARM-Cortex9 architecture,

Table 2. Amount of spill code inserted by each benchmark of SPEC CPU 2006 for
x86 64 architecture using Briggs’, Color Flipping and LLVM’s allocators.

Benchmark Briggs Color flipping Reduction (%) Greedy Basic PBQP

400.perlbench 2,957 2,943 0.47 3,789 3,568 3,192

401.bzip2 323 318 1.55 531 329 309

403.gcc 6,422 6,356 1.03 7,352 7,527 7,396

429.mcf 21 21 - 17 20 22

433.milc 663 663 - 612 693 677

444.namd 4,813 4,802 0.23 5,055 5,087 4,731

445.gobmk 2,230 2,227 0.13 2,365 2,325 2,230

450.soplex 1,255 1,255 - 1,127 1,310 1,261

456.hmmer 1,389 1,389 - 1,205 1,424 1,388

458.sjeng 196 196 - 236 217 196

464.h264 2,908 2,897 0.38 3,068 3,014 2,867

470.lbm 89 89 - 41 89 91

471.omnetpp 737 737 - 583 759 724

473.astar 190 190 - 176 197 189

Table 3. Amount of spill code inserted by each benchmark of SPEC CPU 2006 for
ARM-CortexA9 architecture using Briggs’, Color Flipping and LLVM’s allocators.

Benchmark Briggs Color flipping Reduction (%) Greedy Basic PBQP

400.perlbench 2,684 2,643 1.53 3,337 3,271 3,260

401.bzip2 571 556 2.63 739 573 539

403.gcc 6,661 6,536 1.88 7,589 7,605 7,694

429.mcf 30 30 - 31 36 31

433.milc 466 466 - 491 462 486

444.namd 3,655 3,652 0.08 4,926 3,759 3,569

445.gobmk 2,000 1,985 0.75 2,311 2,216 2,148

450.soplex 772 766 0.78 902 840 829

456.hmmer 723 721 0.28 855 755 783

458.sjeng 415 413 0.48 492 464 422

464.h264ref 3,799 3,779 0.53 3,984 3,981 3,818

470.lbm 28 28 - 22 32 28

471.omnetpp 192 191 0.51 239 196 236

473.astar 230 230 - 216 236 226



Color Flipping 93

this suggests that color flipping may has a better performance in an environment
with more alias [25]- while ARM has 289 register units, the X86 64 architecture
has 241 register units. Finally we observe that color flipping always produced ≤
spills when compared to Briggs’ allocator.

Based on the experiment of Sect. 4.1 we expected a greater spill reduction.
There are two main causes for the results have been affected negatively. The first
one is the register class issue. Most of modern architectures are irregular. This
means that each live range can only be assigned to a specific set of registers.
For example, a variable int can not be allocated to a class of registers of type
float. The graph coloring algorithms are too abstract and do not deal with
these issues in their original design. Modern research has sought to make this
strategy generic enough to deal with these modern problems [25]. Unfortunately,
the tests in Sect. 4.1 do not simulated this behavior. The second one is the spill
cost issue. The tests with Appel and George graphs always spills the live range
with greater degree, which differs from the spill heuristic used in real programs.
This may causes unpredictable results.

5 Conclusion

In this work we presented a new spill code minimization technique called color
flipping. Rather than try to partially spill a live range, the color flipping tries
to recolor the interference graph, such that, a color is made available to the live
range spilled. If color flipping succeeds no load/store instructions are inserted,
that is, a machine register is assigned to the entire live range. Otherwise, the
graph coloring algorithm proceeds normally with no change in the coloring of
the interference graph. Another important advantage of using color flipping is
that it can combined with other spill minimization techniques easily, which can
improve the overall result of the final code.

Our experiments with the samples of Appel and George shown over 12 % of
live range spills reduction, suggesting that color flipping is an effective technique
to avoid spill code. However, in the experiments with the LLVM framework the
performance of color flipping was not as effective: in most benchmarks there was
a reduction < 1% of spill code.

In further tasks, we should investigate the causes of such performance. We
notice that the second restriction occurred much more often in the LLVM exper-
iment, then we will study ways to work around this restriction to achieve better
results.

References

1. Appel, A.W.: Standard ml of New Jersey (1996). http://www.smlnj.org/. Accessed
18 Nov 2014

2. Appel, A.W., George, L.: Sample graph coloring problems (1996). https://www.
cs.princeton.edu/appel/graphdata/. Accessed 18 Nov 2014

http://www.smlnj.org/
https://www.cs.princeton.edu/appel/graphdata/
https://www.cs.princeton.edu/appel/graphdata/


94 F.L. Silva et al.

3. Barany, G., Krall, A.: Optimal and heuristic global code motion for minimal
spilling. In: Jhala, R., De Bosschere, K. (eds.) Compiler Construction. LNCS, vol.
7791, pp. 21–40. Springer, Heidelberg (2013)

4. Bergner, P., Dahl, P., Engebretsen, D., O’Keefe, M.: Spill code minimization via
interference region spilling. In: Proceedings of the ACM SIGPLAN 1997 Conference
on Programming Language Design and Implementation, PLDI 1997, pp. 287–295.
ACM, New York (1997). http://doi.acm.org/10.1145/258915.258941

5. Bernstein, D., Golumbic, M., Mansour, Y., Pinter, R., Goldin, D., Krawczyk,
H., Nahshon, I.: Spill code minimization techniques for optimizing compliers. In:
Proceedings of the ACM SIGPLAN 1989 Conference on Programming Language
Design and Implementation. PLDI 1989, pp. 258–263. ACM, New York (1989).
http://doi.acm.org/10.1145/73141.74841

6. Briggs, P., Cooper, K.D., Kennedy, K., Torczon, L.: Coloring heuristics for reg-
ister allocation. In: Proceedings of the ACM SIGPLAN 1989 Conference on Pro-
gramming language design and implementation. PLDI 1989, pp. 275–284. ACM,
New York (1989). http://doi.acm.org/10.1145/73141.74843

7. Briggs, P.: Register allocation via graph coloring. Ph.D. thesis, Rice University
(1992)

8. Briggs, P., Cooper, K.D., Torczon, L.: Rematerialization. In: Feldman, S.I.,
Wexelblat, R.L. (eds.) PLDI, pp. 311–321. ACM (1992)

9. Chaitin, G.J.: Register allocation & spilling via graph coloring. In: Proceedings of
the 1982 SIGPLAN Symposium on Compiler Construction, SIGPLAN 1982, pp.
98–105. ACM, New York (1982). http://doi.acm.org/10.1145/800230.806984

10. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Mark-
stein, P.W.: Register allocation via coloring. Comput. Lang. 6(1), 47–57 (1981)

11. Chow, F.C., Hennessy, J.L.: The priority-based coloring approach to reg-
ister allocation. ACM Trans. Program. Lang. Syst. 12(4), 501–536 (1990).
http://doi.acm.org/10.1145/88616.88621

12. Chow, F., Hennessy, J.: Register allocation by priority-based coloring. In: Pro-
ceedings of the 1984 SIGPLAN Symposium on Compiler Construction, SIGPLAN
1984, pp. 222–232. ACM, New York (1984). http://doi.acm.org/10.1145/502874.
502896

13. Cooper, K.D., Simpson, L.T.: Live range splitting in a graph coloring register
allocator. In: Koskimies, K. (ed.) CC 1998. LNCS, vol. 1383, pp. 174–187. Springer,
Heidelberg (1998)

14. Gao, L., Shi, C.: An improved approach of register allocation via graph coloring.
In: Proceedings of the SPIE, vol. 5683, no. 5, pp. 113–123, May 2005

15. George, L., Appel, A.W.: Iterated register coalescing. ACM Trans. Program. Lang.
Syst. 18(3), 300–324 (1996). http://doi.acm.org/10.1145/229542.229546

16. Goodwin, D.W., Wilken, K.D.: Optimal and near-optimal global register alloca-
tions using 0–1 integer programming. Softw. Pract. Exper. 26(8), 929–965 (1996)

17. Govindarajan, R., Yang, H., Amaral, J.N., Zhang, C., Gao, G.R.: Mini-
mum register instruction sequencing to reduce register spills in out-of-order
issue superscalar architectures. IEEE Trans. Comput. 52(1), 4–20 (2003).
http://dx.doi.org/10.1109/TC.2003.1159750

18. Hames, L., Scholz, B.: Nearly optimal register allocation with PBQP. In: Lightfoot,
D.E., Ren, X.-M. (eds.) JMLC 2006. LNCS, vol. 4228, pp. 346–361. Springer,
Heidelberg (2006)

19. Kempe, A.B.: On the geographical problem of the four colours. Am. J. Math. 2(3),
193–200 (1879)

http://doi.acm.org/10.1145/258915.258941
http://doi.acm.org/10.1145/73141.74841
http://doi.acm.org/10.1145/73141.74843
http://doi.acm.org/10.1145/800230.806984
http://doi.acm.org/10.1145/88616.88621
http://doi.acm.org/10.1145/502874.502896
http://doi.acm.org/10.1145/502874.502896
http://doi.acm.org/10.1145/229542.229546
http://dx.doi.org/10.1109/TC.2003.1159750


Color Flipping 95

20. Koseki, A., Komatsu, H., Nakatani, T.: Spill code minimization by spill code
motion. In: Proceedings of the 22nd International Conference on Parallel Archi-
tectures and Compilation Techniques 0, p. 125 (2003)

21. Lattner, C., Adve, V.: Llvm: A compilation framework for lifelong program analysis
& transformation. In: Proceedings of the International Symposium on Code Gener-
ation and Optimization: Feedback-directed and Runtime Optimization, CGO 2004,
p. 75. IEEE Computer Society, Washington (2004). http://dl.acm.org/citation.
cfm?id=977395.977673

22. Olesen, J.S.: Greedy register allocation in llvm 3.0 (2011). http://lists.cs.uiuc.edu/
pipermail/llvmdev/2011-September/043511.html. Accessed 25 Aug 2014

23. Poletto, M., Sarkar, V.: Linear scan register allocation. ACM Trans. Program.
Lang. Syst. 21(5), 895–913 (1999). http://doi.acm.org/10.1145/330249.330250

24. Sarkar, V., Barik, R.: Extended linear scan: an alternate foundation for global
register allocation. In: Adsul, B., Odersky, M. (eds.) CC 2007. LNCS, vol. 4420,
pp. 141–155. Springer, Heidelberg (2007)

25. Smith, M.D., Ramsey, N., Holloway, G.: A generalized algorithm for graph-coloring
register allocation. In: Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation, PLDI 2004, pp. 277–288.
ACM, New York (2004). http://doi.acm.org/10.1145/996841.996875

http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-September/043511.html
http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-September/043511.html
http://doi.acm.org/10.1145/330249.330250
http://doi.acm.org/10.1145/996841.996875

	Color Flipping
	1 Introduction
	2 Color Flipping
	3 Color Flipping Algorithm
	4 Experimental Results and Discussion
	4.1 Appel and George Graph Experiments
	4.2 LLVM Experiments

	5 Conclusion
	References


