
Alberto Pardo
S. Doaitse Swierstra (Eds.)

 123

LN
CS

 9
32

5

19th Brazilian Symposium SBLP 2015
Belo Horizonte, Brazil, September 24–25, 2015
Proceedings

Programming
Languages

Lecture Notes in Computer Science 9325

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Alberto Pardo • S. Doaitse Swierstra (Eds.)

Programming
Languages
19th Brazilian Symposium SBLP 2015
Belo Horizonte, Brazil, September 24–25, 2015
Proceedings

123

Editors
Alberto Pardo
Universidad de la República
Montevideo
Uruguay

S. Doaitse Swierstra
Utrecht University
Utrecht
The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-24011-4 ISBN 978-3-319-24012-1 (eBook)
DOI 10.1007/978-3-319-24012-1

Library of Congress Control Number: 2015949737

LNCS Sublibrary: SL3 Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the proceedings of the 19th Brazilian Symposium on Programing
Languages (SBLP 2015), held during September 24–25, 2015, in Belo Horizonte,
Brazil. SBLP is a well-established symposium, promoted by the Brazilian Computer
Society since 1996, which provides a venue for researchers and practitioners interested
in the fundamental principles and innovations in the design and implementation of
programming languages and systems. Since 2010, SBLP has been organized in the
context of CBSoft (Brazilian Conference on Software: Theory and Practice), co-located
with a number of other events on computer science and software engineering.

The Program Committee of SBLP 2015 was formed by 33 members from 8
countries. The symposium received 26 submissions, including 4 short papers, with
authors from four different countries. Each paper was reviewed by at least three
reviewers, and evaluated on quality, originality, and relevance to the symposium. The
final selection was made by the program co-chairs, based on the reviews and Program
Committee discussion. The final program featured two keynote talks by Armando Fox
(University of California at Berkerley) and Doaitse Swierstra (Utrecht University), one
tutorial, nine full papers in English, a short paper in English, and two papers in
Portuguese (presented at the conference, but not included in these proceedings).

We would like to thank the authors, the reviewers, and the members of the Program
Committee for contributing to the success of SBLP 2015. We thank Armando Fox for
accepting our invitation and enriching the technical program with an interesting talk.
We also want to thank the members of the Organizing Committee of CBSoft 2015 for
all their help and support. We do not want to conclude without expressing our gratitude
to Fernando Pereira, chair of the SBLP Steering Committee and member of the
organization of CBSoft 2015, for all his support at the different stages of the organi-
zation of the symposium.

July 2015 Alberto Pardo
S. Doaitse Swierstra

Organization

Organizing Committee

Eduardo Figueiredo UFMG, Brazil
Fernando Pereira UFMG, Brazil
Kecia Ferreira CEFET-MG, Brazil
Maria Augusta Nelson PUC-MG, Brazil

Program Committee Chairs

Alberto Pardo Universidad de la República, Uruguay
Doaitse Swierstra Utrecht University, The Netherlands

Program Committee

Alberto Pardo Universidad de la República, Uruguay
Alex Garcia IME, Brazil
Alvaro Moreira Federal Univeristy of Rio Grande do Sul, Brazil
André Rauber Du Bois Federal University of Pelotas, Brazil
Carlos Camarão Federal University of Minas Gerais, Brazil
Christiano Braga Fluminense Federal University, Brazil
Doaitse Swierstra Utrecht University, The Netherlands
Fabio Mascarenhas Federal University of Rio de Janeiro, Brazil
Fernando Pereira Federal University of Minas Gerais, Brazil
Fernando Castor Federal University of Pernambuco, Brazil
Francisco H. de Carvalho

Junior
Federal University of Ceará, Brazil

Hans-Wolfgang Loidl Heriot-Watt University, UK
João Saraiva University of Minho, Portugal
João Ferreira Teesside University, UK
Louis-Noel Pouchet University of California Los Angeles/Ohio State

University, USA
Lucília Figueiredo Federal University of Ouro Preto, Brazil
Luís Barbosa University of Minho, Portugal
Manuel A. Martins University of Aveiro, Portugal
Marcelo A. Maia Federal University of Uberlândia, Brazil
Marcelo d’Amorim Federal University of Pernambuco, Brazil
Mariza Bigonha Federal University of Minas Gerais, Brazil
Martin Musicante Federal Univeristy of Rio Grande do Norte, Brazil
Noemi Rodriguez PUC-Rio, Brazil
Peter Mosses Swansea University, UK

Rafael Lins Federal University of Pernambuco, Brazil
Roberto Bigonha Federal University of Minas Gerais, Brazil
Roberto Ierusalimschy PUC-Rio, Brazil
Rodrigo Ribeiro Federal University of Ouro Preto, Brazil
Sandro Rigo State University of Campinas, Brazil
Sérgio Medeiros Federal University of Rio Grande do Norte, Brazil
Simon Thompson University of Kent, UK
Varmo Vene University of Tartu, Estonia
Zongyan Qiu Peking University, China

Additional Reviewers

Apinis, Kalmer
Garcia, Maxiwell
Luna, Carlos
Mendes, Alexandra
Moreira, João

Nestra, Härmel
Pinto, Gustavo
Soares-Neto, Francisco
Vojdani, Vesal

VIII Organization

Contents

Automatic Inference of Loop Complexity Through Polynomial
Interpolation . 1

Francisco Demontiê, Junio Cezar, Mariza Bigonha, Frederico Campos,
and Fernando Magno Quintão Pereira

Type Inference for GADTs and Anti-unification . 16
Adelaine Gelain, Cristiano Vasconcellos, Carlos Camarão,
and Rodrigo Ribeiro

Preserving Lexical Scoping When Dynamically Embedding Languages 31
Félix Ribeiro, Hisham Muhammad, André Murbach Maidl,
and Roberto Ierusalimschy

The Dinamica Virtual Machine for Geosciences . 44
Bruno Morais Ferreira, Britaldo Silveira Soares-Filho,
and Fernando Magno Quintão Pereira

Go Model and Object Oriented Programming . 59
Haiyang Liu and Zongyan Qiu

An Intrinsic Denotational Semantics for a Lazy Functional Language 75
Leonardo Rodríguez

Color Flipping . 81
Felipe L. Silva, Marcelo F. Luna, and Wesley Attrot

Deadlocks as Runtime Exceptions . 96
Rafael Lobo and Fernando Castor

Model-Driven Engineering Based on Attribute Grammars 112
Daniel Calegari and Marcos Viera

Composable Memory Transactions for Java Using a Monadic Intermediate
Language . 128

Rafael Bandeira, André R. Du Bois, Maurício Pilla, Juliana Vizzotto,
and Marcelo Machado

Author Index . 143

http://dx.doi.org/10.1007/978-3-319-24012-1_1
http://dx.doi.org/10.1007/978-3-319-24012-1_1
http://dx.doi.org/10.1007/978-3-319-24012-1_2
http://dx.doi.org/10.1007/978-3-319-24012-1_3
http://dx.doi.org/10.1007/978-3-319-24012-1_4
http://dx.doi.org/10.1007/978-3-319-24012-1_5
http://dx.doi.org/10.1007/978-3-319-24012-1_6
http://dx.doi.org/10.1007/978-3-319-24012-1_7
http://dx.doi.org/10.1007/978-3-319-24012-1_8
http://dx.doi.org/10.1007/978-3-319-24012-1_9
http://dx.doi.org/10.1007/978-3-319-24012-1_10
http://dx.doi.org/10.1007/978-3-319-24012-1_10

Automatic Inference of Loop Complexity
Through Polynomial Interpolation

Francisco Demontiê, Junio Cezar, Mariza Bigonha,
Frederico Campos, and Fernando Magno Quintão Pereira(B)

UFMG, Avenida Antônio Carlos, 6627, Belo Horizonte 31270-010, Brazil
{demontie,juniocezar,mariza,ffcampos,fernando}@dcc.ufmg.br

Abstract. Complexity analysis is an important activity for software
engineers. Such an analysis can be specially useful in the identification
of performance bugs. Although the research community has made sig-
nificant progress in this field, existing techniques still show limitations.
Purely static methods may be imprecise due to their inability to cap-
ture the dynamic behaviour of programs. On the other hand, dynamic
approaches usually need user intervention and/or are not effective to
relate complexity bounds with the symbols in the program code. In this
paper, we present a hybrid technique that solves these shortcomings. Our
technique uses a numeric method based on polynomial interpolation to
precisely determine a complexity function for loops. Statically, we deter-
mine: (i) the inputs of a loop, i.e., the variables that control its iterations;
and (ii) an algebraic equation relating the loops within a function. We
then instrument the program to plot a curve relating inputs and number
of operations executed. By running the program over different inputs,
we generate sufficient points for our interpolator. In the end, the com-
plexity function for each loop is combined using an algebra of our own
craft. We have implemented our technique in the LLVM compiler, being
able to analyse 99.7 % of all loops available in the Polybench benchmark
suite, and most of the loops in Rodinia. These results indicate that our
technique is an effective and useful way to find the complexity of loops
in high-performance applications.

1 Introduction

Complexity analyses show how algorithms scale as a function of their inputs.
Its importance stems from the fact that such a technique helps program devel-
opers to uncover performance bugs which are hard to find. In addition to this,
complexity analysis supports the decision of offloading or not computation to
the cloud or GPU. Finally, this kind of technique has implications to the the-
oretical computer science community, as it provides data that corroborate the
formal asymptotic analysis of algorithms. Given this importance, it comes as no
surprise that, since the 70s [20], large amounts of effort have been spent in the
design and improvement of empirical methodologies to infer code complexity.

Over the time, different static approaches were proposed to analyze programs
in functional [6,15,20] and imperative [11–13] languages. Although the static
c© Springer International Publishing Switzerland 2015
A. Pardo and S.D. Swierstra (Eds.): SBLP 2015, LNCS 9325, pp. 1–15, 2015.
DOI: 10.1007/978-3-319-24012-1 1

2 F. Demontiê et al.

approaches have the benefit of running fast and may give correct upper bounds,
this methodology has shortcomings. Static analyses may yield imprecise – or even
incorrect – results. This imprecision happens due to the inherently inability of
purely static approaches to capture the dynamic behavior of programs. In order
to circumvent this limitation of static approaches, the programming language
community has resorted to profiling-based methodologies [4,9,22]. However, even
these dynamic techniques are not free of limitations.

The main drawback of a profiling-based complexity analysis is the fact that it
is usually ineffective to relate the symbols in the program text to the result that
it delivers. For instance, the state-of-the-art tool in this field is aprof [4]. Aprof
furnishes programmers with a table that relates input sizes with the number of
operations performed. This modus operandi has two problems, in our opinion.
First, the input is provided as a number of memory cells read during the exe-
cution of a function. This number may not be meaningful to the programmer,
as we will clarify in Sect. 2. Second, it works at the granularity of functions.
However, developers are often more interested in knowing the computational
complexity of small regions within a function. Such regions can be, for instance,
performance-intensive loops. This paper addresses these two limitations of input
sensitive profiling.

The main contribution of our work is a novel hybrid technique to perform
complexity analysis on imperative programs, which we describe in Sect. 3. Our
technique is hybrid because it combines static analysis with dynamic profiling.
First, we use static analysis to determine loop inputs and to find algebraic rela-
tions between these loops. Then, we use a dynamic profiler, plus polynomial
interpolation, to infer the complexity of each loop in a function. Our technique
is capable of generating symbolic expressions that denote the complexity of each
loop, instead of the whole function. Furthermore, we combine and simplify these
expressions to make them even more meaningful to the software engineer. We
believe that this granularity can help developers to have a deeper understand-
ing of a function’s behaviour; hence, it provides them with the means to detect
and solve performance bugs more efficiently. We also show that our technique is
simpler than previous work while producing more useful results.

We have designed, tested, and implemented a tool on top of the LLVM com-
pilation infrastructure [14] to infer, automatically, the complexity of loops within
programs. We ran our tool over the Polybench [19] and Rodinia [3] benchmark
suites. Section 4 reports our findings. Our results indicate that we are capable of
correctly inferring the complexity of 99.7 % of the Polybench loops and 69.18 %
of the Rodinia loops. All the equations that we output, as explained in detail in
Sect. 2, are written as functions of the symbols, i.e., variable names, present in
the program code – that is an improvement on top of aprof and similar tools.
Moreover, we have found that 38 % of all functions in the benchmarks that we
analyzed have at least two independent loops. In this case, tools that only report
complexity information for entire functions may miss important details about
the asymptotic behaviour of smaller regions of code.

Automatic Inference of Loop Complexity Through Polynomial Interpolation 3

1 : void mult ip ly (int ∗∗matA, int ∗∗matB , int n){
2 : int i , j , k , sum ;
3 : int ∗∗ r e s u l t = (int ∗∗) mal loc (n ∗ s izeof (int ∗)) ;
4 : for (i = 0 ; i < n ; i++)
5 : r e s u l t [i] = (int ∗) mal loc (n ∗ s izeof (int)) ;
6 :
7 : for (i =0; i < n ; i++) {
8 : for (j =0; j < n ; j++) {
9 : sum = 0 ;
10 : for (k=0; k < n ; k++) {
11 : sum += matA [i] [k] ∗ matB [k] [j] ;
12 : }
13 : r e s u l t [i] [j] = sum ;
14 : }
15 : }
16 :
17 : j = 0 ;
18 : for (i = 0 ; i < n ;) {
19 : i f (j >= n) {
20 : j = 0 ;
21 : i++;
22 : p r i n t f (”\n”) ;
23 : } else {
24 : p r i n t f (”%8d” , r e s u l t [i] [j ++]);
25 : }
26 : }
27 : p r i n t f (”\n”) ;
28 : }

Fig. 1. Matrix multiplication – the running example that we shall use to explain our
contributions.

2 Overview

In this section we give an overview of the challenges this paper addresses. Figure 1
shows the example we will use to illustrate our technique. Function multiply
is a routine that performs matrix multiplication of two square matrices. For
pedagogical purposes, our function does not return the resulting matrix; instead,
it prints the result. We chose to implement the function in such a way to show
how our technique behaves on functions with multiple loops.

As developers, we would like to know the computational cost to execute this
function. For instance, knowing the complexity of each part of the target func-
tion, we can find out performance bottlenecks and improve its implementation.
Looking at the multiply function we can easily identify the linear behavior of
the loop on line 4 and the cubic behavior of the nested loops beginning at line 7.
However, a quick visual inspection on the loop at line 18 may not capture its
quadratic complexity (Fig. 1).

4 F. Demontiê et al.

Fig. 2. Gprof output for a simple program containing our example function.

Fig. 3. The output produced by the aprof input sensitive profiler.

We can use profilers to find out where the program is spending most of its
resources. However, traditional tools lack the ability to show how the program
scales as a function of its inputs. For instance, Fig. 2 shows the output that
Gprof [10] – the most well-known profiler in the Unix systems – produces for our
example. This profiler does not give us any information regarding the asymptotic
complexity of the program in Fig. 1. Instead, it produces a table describing where
the program spends more time during its execution.

There exist profilers that have been designed specifically to provide devel-
opers with an idea about the asymptotic complexity of programs [4,9,22]. Nev-
ertheless, aprof [4], the state-of-the-art approach in this field, is also not very
useful in this example. For instance, only looking at Fig. 2, which shows aprof’s
results for the function multiply, the user may not fully understand about the
function behaviour: this table shows numbers, but do not relate these numbers
with symbols in the program text. Moreover, the complexity curve seems to be
linear, since aprof considers the whole matrices as inputs (n2) – usually, devel-
opers describe asymptotic complexity in terms of the matrices dimensions (n).
Finally, the result generated by aprof describes the whole function. We believe
that this granularity is too coarse, because it makes it very difficult for the user
to verify the behavior of particular parts of the function.

We can do better: the technique that we describe in this paper produces one
polynomial for each loop in the function. These polynomials range on symbols
defined in the program text, e.g., the names of variables. Therefore, we claim
that our output is clearer to the developer. For instance, considering the loop

Automatic Inference of Loop Complexity Through Polynomial Interpolation 5

in line 7, we will state – automatically – that its complexity polynomial is:
n+1. Furthermore, considering the loop nest starting in line 18, we produce the
following equation to denote its complexity polynomial: n2 + n + 1.

Our result is on a finer granularity, so we can combine them to generate an
equation that expresses the asymptotic behavior of the whole target function.
For the function in the Fig. 1, our approach generates the following simplified
equation, in big O, to denote the function’s complexity:

O(n3)

We claim that this notation, which uses the names of variables present in the pro-
gram, is more meaningful to the application developer than the output produced
by traditional profilers, such as gprof or aprof.

3 Complexity Analysis

We can describe our technique in four main steps: (1) static analysis, (2) code
instrumentation, (3) dynamic information extraction and (4) polynomial inter-
polation. In this section we describe each one of these steps. However, before
delving into the details of our technique, we shall introduce some notation, which
will guide our explanations henceforth.

Loop Jargon. Let S be a subset of nodes of a control flow graph G. S contains a
special node H, which we shall call header, or entry point. Following Appel and
Palsberg [2, p. 376], we say that S is a natural loop if, and only if, it presents
the following three properties:

1. there exists a path from any node in S to H;
2. there exists a path from H to any node in S;
3. there is no path from a node of G to a node of S that does not go across H.

The last property defines S as a single-entry region, following Ferrante’s nomen-
clature [8]. An edge between any node in S to H is called a back-edge. We adopt
Wolfe’s definition of trip count [21, p. 200]: the number of times any back-edge of
a natural loop has been traversed by the program flow within a single execution
of the loop. Hence, a loop that exits the first time it is executed has a trip count
of zero. The number of times H is visited is one more than the trip count of the
loop. We estimate the complexity of a loop as the product of its trip count by
the number of operations in its longest path.

We call a node L ∈ S a latch, or exit point, if there exists an edge from L to
a node N , N ∈ G, N /∈ S. We say that L is a natural latch if one of these two
conditions applies:

– L = H. In this case we have a while loop;
– L �= H, and any edge from L either leaves S or leads to H. In this case we

have a repeat loop.

6 F. Demontiê et al.

If S contains only one latch, then we call it single exit. In this work we consider
multiple exit loops featuring only one natural latch. Code generated from typical
programming language constructs, i.e., for, while and repeat has this property,
as long as the command goto is not used.

Any latch contains a stop condition: a boolean expression whose evaluation
either keeps the program flow in S or leads away from it. If the natural latch
contains a stop condition that uses only one operator, which can be either <,
≤, > or ≥, then we call S an interval loop. We let the operands of the stop
condition be the limits of the interval. For instance, in the interval loop for(i =
0; i< N; i++), we have the stop condition i< N, whose limits are i and N. Our
technique handles any loop with only one input, and interval loops with up to
two inputs i1 and i2. In this case, we consider as the input size the difference
|i1 − i2|.

3.1 Input Analysis

We start the process of inferring the complexity of code with a static analysis
phase. The static analysis determines the inputs of each loop in the function.
We qualify as loop input any data that:

– influences the stop condition of the loop; and,
– is not defined within the loop.

For instance, the loop at line 7 in Fig. 1 is controlled by i < n. Variable i
has two definitions: one outside the loop, which we shall call i0, and another
inside, which we shall call i1. The former is initialized with the constant zero,
which is thus considered a loop input. Variable n is a parameter of the function;
hence, it is considered a symbolic input. Therefore, the two inputs of the loop
that exists at line 7 are {0, n}. Concretely, we detect inputs through a backward
analysis, that starts at the variables used in the loop’s stop condition, and ends
at the definitions of variables that lay outside the loop body. To determine the
complexity of a loop, we will plot the number of operations executed by the loop
for each value bound to one of its inputs that we have observed during a profiling
step. We shall describe this profiling in Sect. 3.3

3.2 Loop Dependence Analysis

Our profiler outputs the complexity of all the loops within a program. We must
combine this information to have a snapshot of the program’s complexity. How-
ever, combining the complexity of all the loops that constitute a program is not
a straightforward problem. One of the main difficulties that we face in this case
is how to deal with loops that may, or may not, execute, depending on the path
that the program follows. In order to provide meaningful answers to the user,
we propose an algebra to simplify the equations that we produce. Our algebra
has three operators: plus (+), times (×) and expander (⊕). The plus and times
operators have the usual semantics of asymptotic analysis. The expander was

Automatic Inference of Loop Complexity Through Polynomial Interpolation 7

1 : void printDups (std : : vector<std : : s t r i ng> l i n e s , s td : : s t r i n g key) {
2 : std : : vector<std : : s t r i ng> r e s u l t ;
3 : for (int i =0; i < l i n e s . s i z e () ; i++) {
4 : i f (l i n e s [i] . f i nd (key) != std : : s t r i n g : : npos) {
5 : r e s u l t . push back (l i n e s [i]) ;
6 : }
7 : }
8 :
9 : i f (r e s u l t . empty ()) return ;

10 :
11 : // f i nd dups in a naive way
12 : for (int i =0; i < r e s u l t . s i z e () −1; i++) {
13 : for (int j=i +1; j < r e s u l t . s i z e () ; j++) {
14 : i f (i != j && r e s u l t [i] == r e s u l t [j])
15 : std : : cout << r e s u l t [i] << std : : endl ;
16 : }
17 : }
18 : }

Fig. 4. A function to print duplicate lines containing a given key. The second loop has
a conditional execution.

proposed by us as an alternative to describe the complexity of code that may or
may not execute, depending on the program’s flow. Its semantics is defined in
the Eqs. 1 and 2:

O(xa ⊕ yb) = O(xa) + O(xb), {a, b} ∈ N (1)

Ω(xa ⊕ yb) = Ω(xa), {a, b} ∈ N (2)

As a reminder, the big-Omega notation indicates a lower asymptotic bound:
Ω(f) denotes a function whose growth is less than or equal to the growth of f .
Expansion denotes the complexity of code that executes conditionally. Figure 4
provides an example of a situation where the expander operation is useful. The
function printDups prints the duplicate lines containing a given substring in a
naive way. Because of the conditional branch in line 9, the loop starting on line
12 may or may not execute. Because of this, the complexity of this function is
Ω(n) - best case, when no line contains the key - and O(n2), where n is the size
of the vector. If C(L) denotes the asymptotic complexity of a given code region,
then we let C(printDups) = C(L3−7) ⊕ C(L12−17) = O(n ⊕ n2), where L3−7 is
the loop at lines 3 to 7 in Fig. 4, and L12−17 is the loop at lines 12 to 17.

As usual, addition and multiplication in the big-O notation are associative
and commutative. Multiplication is also distributive with regard to addition.
On the other hand, expansion is only associative, due to Eq. 2. These properties
let us use typical simplification rules to provide users of our tool with more
palatable results. Notice, once again, that expansion is non-commutative, and
simplification only applies if the first operand has higher complexity than the
second:

8 F. Demontiê et al.

C(L) = O(xa) + O(xb), a ≥ b

C(L) = O(xa)
C(L) = O(xa) × O(xb)

C(L) = O(xa+b)
C(L) = O(xa) + O(xb), a < b

C(L) = O(xb)
C(L) = O(xa) ⊕ O(xb), a ≥ b

C(L) = O(xa)

The simplification process is guaranteed to terminate, as it always reduces the
size of the resulting expression. Looking back to Fig. 1 it is easy to see that the
complexity is C(multiply) = C(L4−5) + C(L7−15) × C(L8−14) × C(L10−12) +
C(L18−26), which gives us: O(n + n ∗ n ∗ n + n2). Using the above equations we
can recursively simplify this expression. Firstly, we can simplify n ∗ n with n2.
We have now O(n + n2 ∗ n + n2) and we can use the same rule to simplify the
remaining multiplication, resulting in n3. It is easy to see that we can use the
two rules of plus to simplify the two additions. Then, the resulting complexity
is O(n3), as expected. Notice that n is a symbol produced by the input analysis
of Sect. 3.1.

3.3 Code Instrumentation

We infer the complexity of code by analyzing profiling data. We produce this
data through code instrumentation. To be able to extract dynamic informa-
tion, we instrument the target program to output: (i) the values of the loop
inputs immediately before the loop execution and (ii) the number of operations
performed by each loop. Loop inputs are determined by the analysis seen in
Sect. 3.1. The execution cost is measured in terms of instructions executed. We
have implemented this instrumentation framework within the LLVM compiler
infrastructure.

Care must be taken with regard to loops with multiple paths. Different paths
may yield different costs, a fact that could hinder our interpolator from finding
a perfect polynomial fit. Figure 5 illustrates this shortcoming. The program seen
in part (a) of the figure contains two loops, at lines 2 and 4. The loop at line 4
contains two execution paths. Let’s assume that during execution, our profiler
has observed that for M = 1, that loop executed 44 instructions, and for M = 2,
it always took the cheapest path; hence, executing 3+3 operations. These points,
(1, 42), (2, 6) would confuse our interpolator, which expects more operations for
larger inputs. To avoid this problem, we consider that the cost of a loop is
determined by its path of highest cost, which we estimate statically. To obtain a
conservative estimate of this path, we resort to a modified version of Dijkstra’s
algorithm, to solve the single-source largest path problem for an acyclic graph
with non-negative weights assigned to edges [7]. To build an acyclic graph, we
consider all the paths from the loop header H to its natural latch L.

Once we have determined – statically – the cost of a loop iteration, we instru-
ment it. To this end, we create a counter variable at the loop’s header, and
increment it by the estimated cost. Notice that incrementing this counter at the
loop header will account for one more iteration than the real execution. Never-
theless, it will not affect our cost analysis. We chose to do it like this because
the loop header is unique, and is always executed, independent on the way the

Automatic Inference of Loop Complexity Through Polynomial Interpolation 9

void search(char** book, int N, int M) {
 for (i = 0; i < N; i++) {
 char* line = book[i];
 for (j = 0; j < M; j++) {
 if (line[j] == '\0') {
 break;
 } else {
 match(line, pattern);
 }
 }
 }
}

1

2

3

4

5

6

7

8

9

10

11

12

2

4

6 8

9

10

8

3

42

2 2

1

2

2

2

4

cost(L2) = 8 + cost(L4) + 2 + 2

cost(L4) = 2 + 42 + 3

(a) (b) (c)

Fig. 5. (a) Program with a multi-path loop. (b) The cost-graph of the program. Nodes
represent program points and the edges’ weights represent the number of executed
instructions between two points. (c) The cost of each loop iteration.

program flows within the loop body. Figure 5 (c) shows the cost expressions that
we create for each loop. In the figure, edges represent paths within the loop, and
the nodes are the headers of those loops. Each one of these values is added once
per iteration of the loop. Once we have instrumented the program, we execute
it. As mentioned before, each execution of an instrumented program outputs
the values of each loop input, together with the number of operations executed
within that loop.

3.4 Polynomial Interpolation

We log the output of our profiler and parse it to extract pairs: input value ×
execution cost. With these points, we execute a polynomial interpolation method
to find the curve that best fits into this set. Our interpolation works as follows: we
test different polynomials, starting from a line (degree 1) upwards until n − 1,
where n is the number of points available. At step i we need i + 1 points to
determine a polynomial. Any group of i + 1 different points fits this purpose.
We call this group of points the guiding set. We use the points that are left
to check if we have found the correct polynomial. These remaining points are
called the verification set. We stop interpolation if, upon finding a polynomial
p, of degree k, k < n − 1, we notice that the n − k points in the verification set
fit perfectly into p. Our interpolation only works for single-variable polynomials,
but we can infer the complexity of nests of loops by multiplying symbolically
their individual complexities.

Figure 6 illustrates this process for the program seen in Fig. 1. The figure has
two blocks of loops; thus, we produce two polynomials. Let us take a deeper
look into the polynomial that we produce for the loop that exists at lines
18–25 of Fig. 1. This curve is shown in Fig. 6(a). In this example, we assume
that we have obtained, after profiling the program with eight different inputs,
the following pairs of size × cost: (13, 183), (50, 2,551), (72, 5,257), (80, 6,481),

10 F. Demontiê et al.

Fig. 6. (a) Polynomials found for the loop at lines 18–25 of Fig. 1. (b) Polynomials
found for the loop nest at lines 7–15. In each figure, the first curve that fits the points
in the verification set is marked in gray.

(98, 9,704), (115, 13,341), (139, 19,461). To derive a polynomial that describes
the complexity of this loop, we try to interpolate a line across those points using,
as our guiding set, only the first two pairs, e.g., (13, 183) and (50, 2,551). This
line does not contain the other six points, which form the verification set. Thus,
we move on to try a polynomial of degree two, this time, adding also the pair
(72, 5,257) to our guiding set. The new polynomial, n2 + n + 0.8 contains the
points in our verification set. Hence, we let it denote the computational cost of
the loop. The complexity of the loop is then O(n2), where n is the only symbolic
input of the loop under analysis, as we have explained in Sect. 3.1. We perform
similar process to discover the polynomial that characterizes the loop nest at
lines 7–15 of Fig. 1. However, this time our search stabilizes in a third-degree
polynomial. Figure 6(b) shows this curve.

4 Experiments

To examine the real applicability of our technique, we have implemented it as a
prototype tool. We have used the LLVM compilation infrastructure to perform
the static analysis and code instrumentation phases mentioned in Sects. 3.1–3.3.
All the experiments that we shall present in this section have been run on an
Intel Xeon processor, with 16 GB of RAM, running Linux Ubuntu. The main
goals of these experiments are: (1) to find out how effective is the technique
when applied to the loops found in real-world programs; and (2) to provide a
taxonomy of the loops found in real-world systems.

Effectiveness. To achieve our first goal – to probe the effectiveness of our tool –
we have executed it on the Polybench [19] and Rodinia [3] benchmark suites. We
have checked, manually, the answers produced by our tool for every loop in these
benchmarks. This exercise shows that we are able to correctly analyze 99.7 %
of the loops in Polybench. The remaining 0.3 % is due to a single loop which
is constant for the first two points, and varies for larger inputs. This behavior
makes it impossible for us to get a perfect polynomial match. For Rodinia – a
much bigger and general benchmark suite – our tool correctly analysed 63.58 %

Automatic Inference of Loop Complexity Through Polynomial Interpolation 11

Fig. 7. Percentage of loops per benchmark of Rodinia that we could analyze. The
correctness of all these results have been checked manually.

n2

n

n3

 n4

27.7%

49.7%

20.3%

2.3% 0.9%

10.7%

29.7% 58.7%

POLYBENCH RODINIA

Fig. 8. Distribution of complexities. In this chart we ignore the difference between
variables - we consider that n × m is equals to n2, for instance.

of the loops. However, the execution flow never reached some functions during
our profiling phase so we could not generate data for them. If we ignore those
functions, our success rate increases to 69.18 %.

Our results are worse for Rodinia because of three reasons: (1) some loops are
not polynomial, but we use a polynomial interpolation; (2) some loops iterate
over structures that our technique does not handle, such as strings or files; and
(3) some loops have 3 or 4 inputs that bound their execution. In this case, we do
not generate pairs of input vs time for the loop. Figure 7 shows the percentage of
loops that we could analyze per Rodinia benchmark. We do not show a chart for
Polybench, because we believe that this chart is not interesting. It would have
almost only bars at 100 % of precision.

Given all the machinery that we now have in place, we thought that it would
be interesting to categorize the loop nests that we have found in our benchmarks.
Figure 8 shows the distribution of complexities found in both benchmark suites.
The majority of loop nests in Rodinia are linear, and only a handful of them
are O(N4) or higher. In Polybench, the picture is slightly different. Most of the
loop nests in that collection are quadratic. This happens because Polybench has
been designed to test optimizations built over the polytope model. Linear loops

12 F. Demontiê et al.

Fig. 9. Quality of the approximation heuristic seen in Sect. 3.3. Each slice groups a
range of loops for which our approximation yielded similar results. For instance, for
78.6 % of the loops the approximation yields a result that is within [0, 1/3] of the
observed value.

are simply not challenging enough to the current state-of-the-art polyhedron
techniques.

The Topology of Loops. To better understand the power and limitations of the
technique that we advocate in this paper, we chose to analyze in greater detail
the topology of loops found in real-world programs. In addition to Rodinia and
Polybench, this time we chose to study also the loops present in SPEC CPU
2006, to have a larger body of samples.

We have counted the number of independent loops within functions. We say
that two loops, L1 and L2, are independent if one is not nested within the
other. We saw that 21.8 % of the functions have at least two independent loops
in Polybench, 40.4 % in Rodinia, and 38.1 % in SPEC. These numbers let us
conclude that it is important, from a software engineering point of view, to
output complexity results in a finer grain than functions, as aprof does. We do
it at the loop level. This finer granularity gives developers more information to
understand a function’s behaviour. We have also counted the number of loops
that are executed conditionally within a function. We found 92 control-flow
breaks (e.g. returns or exit calls) in the 99 functions that we have analyzed.
This data shows that if we ignore conditional execution, then we may output
incomplete – or incorrect – results. That is why we use the expander operator.

The last metric that we have studied is the number of loops with multi-
ple paths. We saw that 51.2 % of the loops in SPEC have multiple paths. We
also would like to know how far from the exact number of instructions we stay
when using the approximation seen in Sect. 3.3. In that case, we approximate
the cost of a loop as the cost of its longest path. By profiling the actual num-
ber of instructions executed in our benchmarks, we got that, most of the time,
our approximation is within 33 % of the actual result. This metric shows that

Automatic Inference of Loop Complexity Through Polynomial Interpolation 13

using the heuristic from Sect. 3.3 increases the applicability of our analysis with-
out compromising its results. Figure 9 shows a distribution of how distant our
approximation is from the real program behavior.

5 Related Works

Recent work has attempted to improve the state of the art on complexity analy-
sis. Particularly, profiler-based approaches have been able to give interesting
results. Goldsmith et al. [9] proposed a technique which consists in executing
the target program over workloads with different orders of magnitude and track-
ing how many times each program location was executed. They use polynomial
regression to fit the data into a linear or power-law model. However, the user
has to specify, for each workload, the value of features - a feature is an input
property which affects the algorithm execution, e.g. the size of an array or the
height of a tree. Our technique is able to automatically infer loops’ inputs; hence,
it does not require this type of user intervention.

Zaparanuks et al. [22] proposed the concept of algorithmic profiler. Their
approach consists in grouping the basic blocks of a loop and the functions which
make a cycle in the call-graph into the so called repetition nodes. Those nodes are
then combined in units that they have named algorithms. The technique is able to
identify if an algorithm is modifying or traversing a list or an array, for example.
In order to estimate the complexity of an algorithm, they retrieve the size of the
inputs and some performance metrics for each execution of the repetition nodes.
This modus operandi leads to a significant overhead, since the analyzer iterates
over the entire data structure to calculate its size. The automatic reconstruction
of data-structures is still an incipient area of research. Therefore, Zaparanuks
et al. have implemented a prototype which, up to this point, can analyze only
toy examples. We cannot reconstruct recursive data-structures as Zaparanuks
does; however, our approach is able to infer the complexity of most of the loops
in a real-world benchmark suite.

The work that is the most related to ours is Coppa et al.’s input sensitive
profiler [4]. This work has materialized itself into aprof tool. Core to aprof’s
work is the notion of Read Memory Size (RMS). This metric represents the
number of memory locations which are read before they have been written inside
a function. Aprof was implemented as a Valgrind [17] extension. We believe that
aprof is the most practical tool available nowadays to infer the complexity of
general purpose programs. Nevertheless, it has the shortcomings which we have
described in Sect. 1: (i) the granularity of results is at the function, not at the
loop, level; (ii) users have to fit equation by hand in aprof’s results to find the
complexity of a function; and (iii) results are given in terms of RMS, which may
not be significant to the developer. Our technique is capable of addressing these
drawbacks.

There exists a plethora of work related to the static estimation of complexity
of code [1,5,11,13,16]. Our work is essentially different from these approaches,
because our results are based on program behavior observed at runtime. In other

14 F. Demontiê et al.

words, our approach is dynamic: we execute and profile the program to infer its
computational complexity. The downside of our approach is that we are not able
to prove properties about the program’s complexity: there are no guarantees
that we will be able to observe every possible execution path within the pro-
gram code. The upside is precision: our approach is able to reason about typical
programming language features such as dynamically allocated memory, multiple
paths in loops, non-structured control flow graphs and pointer arithmetics. So
far, these real-world constructs have been challenging adversaries to the purely
static analyses.

6 Conclusion

This paper has presented a new technique, based on a combination of profiling
and static analysis, to infer the complexity of code. Static analysis gives us the
names of variables that bound the trip count of loops. Profiling lets us associate
these variables with the number of operations in the loops that they control.
We believe that our approach, whenever applicable, yields results that are more
meaningful to the application developer than the state-of-the-art tools that are
currently available. A tool that implements the technique is publicly available1

for use. There are several ways in which such a tool can be employed. Our
immediate goal is to use it to help in the automatic placement of code in non-
uniform memory access architectures. In this scenario, it is worthwhile to migrate
processes of high computational cost closer to the memory banks that contain
the data that said processes use. A totally static solution has been devised to this
problem by Piccoli et al. [18]. Our intention is to add to this solution a dynamic
component based on this paper’s ideas, in hopes to increase its precision.

References

1. Alves, P.R.O., Rodrigues, R.E., de Souza, R.M., Pereira, F.M.Q.: A case for a fast
trip count predictor. Inf. Process. Lett. 115(2), 146–150 (2015)

2. Appel, A.W., Palsberg, J.: Modern Compiler Implementation in Java, 2nd edn.
Cambridge University Press, Cambridge (2002)

3. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.-H., Skadron, K.:
Rodinia: a benchmark suite for heterogeneous computing. In: IISWC, pp. 44–54.
IEEE (2009)

4. Coppa, E., Demetrescu, C., Finocchi, I.: Input-sensitive profiling. In: PLDI. ACM
(2012)

5. Danielsson, N.A.: Lightweight semiformal time complexity analysis for purely func-
tional data structures. In: POPL, pp. 133–144. ACM (2008)

6. Debray, S.K., Lin, N.-W.: Cost analysis of logic programs. ACM Trans. Program.
Lang. Syst. 15(5), 826–875 (1993)

7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1, 269–271 (1959)

1 http://demontiejr.github.io/asymptus.

http://demontiejr.github.io/asymptus

Automatic Inference of Loop Complexity Through Polynomial Interpolation 15

8. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. TOPLAS 9(3), 319–349 (1987)

9. Goldsmith, S.F., Aiken, A.S., Wilkerson, D.S.: Measuring empirical computational
complexity. In: FSE, pp. 395–404. ACM (2007)

10. Graham, S.L., Kessler, P.B., McKusick, M.K.: gprof: a call graph execution profiler
(with retrospective). In: Best of PLDI, pp. 49–57 (1982)

11. Gulavani, B.S., Gulwani, S.: A numerical abstract domain based on expression
abstraction and max operator with application in timing analysis. In: Gupta, A.,
Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 370–384. Springer, Heidelberg
(2008)

12. Gulwani, S., Jain, S., Koskinen, E.: Control-flow refinement and progress invariants
for bound analysis. In: PLDI, pp. 375–385. ACM (2009)

13. Gulwani, S., Mehra, K.K., Chilimbi, T.: SPEED: precise and efficient static estima-
tion of program computational complexity. In: POPL, pp. 127–139. ACM (2009)

14. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: CGO, pp. 75–88. IEEE (2004)

15. Le Métayer, D.: Ace: an automatic complexity evaluator. ACM Trans. Program.
Lang. Syst. 10(2), 248–266 (1988)

16. Monniaux, D., Gonnord, L.: Using bounded model checking to focus fixpoint itera-
tions. In: Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 369–385. Springer,
Heidelberg (2011)

17. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: PLDI, pp. 89–100. ACM (2007)

18. Piccoli, G., Santos, H., Rodrigues, R., Pousa, C., Borin, E., Pereira, F.M.Q.: Com-
piler support for selective page migration in NUMA architectures. In: PACT, pp.
369–380. ACM (2014)

19. Pouchet, L.-N.: Polybench: the polyhedral benchmark suite (2012). http://www.
cs.ucla.edu/pouchet/software/polybench/. Accessed April 2015

20. Wegbreit, B.: Mechanical program analysis. Commun. ACM 18(9), 528–539 (1975)
21. Wolfe, M.: High Performance Compilers for Parallel Computing, 1st edn. Adison-

Wesley, Redwood City (1996)
22. Zaparanuks, D., Hauswirth, M.: Algorithmic profiling. In: PLDI, pp. 67–76. ACM

(2012)

http://www.cs.ucla.edu/pouchet/software/polybench/
http://www.cs.ucla.edu/pouchet/software/polybench/

Type Inference for GADTs and Anti-unification

Adelaine Gelain1, Cristiano Vasconcellos1(B),
Carlos Camarão2, and Rodrigo Ribeiro3

1 DCC, Universidade do Estado de Santa Catarina (UDESC), Joinville, Brazil
adelainegelain@gmail.com, cristiano.vasconcellos@udesc.br

2 DCC, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
camarao@dcc.ufmg.br

3 DECSI, Universidade Federal de Ouro Preto (UFOP), João Monlevade, Brazil
rodrigo@decsi.ufop.br

Abstract. Nowadays the support of generalized algebraic data types
(GADTs) in extensions of Haskell allows functions defined over GADTs
to be written without the need for type annotations in some cases and
requires type annotations in other cases. In this paper we present a type
inference algorithm for GADTs that is based on a closed-world approach
to overloading and uses anti-unification and constraint-set satisfiability
to infer the relationship between the types of function arguments and
result. Through some examples, we show how the proposed algorithm
allows more functions defined over GADTs to be written without the
need for type annotations.

1 Introduction

Generalized Algebraic Data Types (GADTs) constitute a powerful extension to
algebraic data types of functional languages like Haskell and ML, and are nowa-
days widely used. A GADT is defined by giving an explicit type signature for
each of its constructors. This allows functions to be defined by specifying equa-
tions that return expressions of distinct types, all instances of the GADT type.
For example, the function eval, presented in e.g. [7,12], evaluates an expression
and returns a value of a type that varies according to the argument type (due
to space reasons the Term constructor is presented in a shortened form):

data Term a where

Lit :: Int → Term Int
Inc :: Term Int → Term Int
IsZ :: Term Int → Term Bool
If :: Term Bool → Term a → Term a → Term a
Pair :: Term a → Term b → Term (a,b)

c© Springer International Publishing Switzerland 2015
A. Pardo and S.D. Swierstra (Eds.): SBLP 2015, LNCS 9325, pp. 16–30, 2015.
DOI: 10.1007/978-3-319-24012-1 2

Type Inference for GADTs and Anti-unification 17

eval :: Term a → a
eval (Lit i) = i
eval (Inc t) = 1 + eval t
eval (IsZ i) = 0 == eval i
eval (If l e1 e2) = if eval l then eval e1 else eval e2
eval (Pair a b) = (eval a, eval b)

The use of an algebraic data type would destroy the simplicity of the eval-
uator, by requiring a declaration of another algebraic data type with a distinct
constructor (tag) for each possible distinct type of the result, with undesirable
constructor tagging and untagging.

Type inference with GADTs is complex, mainly because of problems in iden-
tifying a principal type in many cases. Consider the following example, taken
from [15]:

data T a where

T 1 :: Int → T Bool
T 2 :: T a

test (T 1 n) = n > 0
test T 2 r = r

In the first alternative of test, the result type inferred for the expression
n > 0, Bool , is associated with the type of constructor T1, and (T1 n) can
be determined to have type T Bool , with n of type Int . In the second alternative
of test, there is no explicit association between type T a, constructed by the use
of T2, and the return type (the type of r), and thus in this case the type of
the result should be unified with that of the first alternative (Bool). A relation
between the GADT type and the type of the result could exist, and be explicitly
annotated: the following type signatures are both accepted for the function test,
but none is an instance of the other:

test :: ∀a.T a → Bool → Bool
test :: ∀a.T a → a → a

Several approaches have been proposed to deal with type inference for
GADTs, most of them imposing several restrictions. GADTs are supported in
GHC 7.10.1 [20] as described in [6], where type checking is based on type signa-
tures explicitly given by the programmer. Recent work [15,22] describes a type
inference algorithm that can avoid type signatures in a restricted number of
cases.

In this article we present another type inferencing algorithm that accepts the
declaration of functions based on GADTs without the need for type signatures
(Sect. 3). Examples where types can and cannot be inferred, and issues related
to the existence or not of principal types, are also discussed in Sect. 3.

18 A. Gelain et al.

Our type inference algorithm uses anti-unification (defined in Sect. 2.1) to
capture the relation between the types of the alternatives. Type variables that
are not related to GADTs are unified as usual. Cases involving recursive calls can
be polymorphic recursive, and are handled as if each alternative is an overloaded
definition. In this case, a constraint is added to the type of the recursive call.
Constraint-set satisfiability of these constraints is used to construct a substitu-
tion that is used for instantiating the type of the alternative, in a process similar
to the handling of overloading in System CT [2]. A brief review of System CT
is given in Sect. 2.

2 Preliminaries

In this section we introduce some basic definitions and notations. We consider
that meta-variables defined can appear primed or subscripted.

Meta-variable usage is defined in the paper as follows: x, y denote term vari-
ables, C,D data constructors, α, β (a, b, ... in examples) type variables, T a type
constructor, e a term, τ, ρ simple types, κ a constraint set, x : τ a constraint,
σ a type, Γ a typing context, that is, a set of pairs written as x : σ, and S a
substitution.

The notation an, or simply a, denotes the sequence a1, . . . , an, where n ≥ 0.
When used in a context of a set, it denotes the corresponding set of elements in
the sequence {a1, . . . , an}.

A substitution is a function from type variables to simple type expres-
sions (cf. Sect. 3.2). The identity substitution denoted by id . Sσ represents the
capture-free operation of substituting S(α) for each free occurrence of α in σ.

We overload the substitution application on constraints, constraint sets and
sets of types. Definition of application on these elements is straightforward. The
symbol ◦ denotes function composition and dom(S) = {α | S(α) �= α}.

The notation S[α �→ τ] denotes the updating of S such that α maps to τ , that
is, the substitution S′ such that S′(β) = τi if β = αi, for i = 1, ..., n, otherwise
S(β). Also, [α �→ τ] = id [α �→ τ].

2.1 Anti-unification

A type τ is a generalization — also called (first-order) anti-unification [3] —
of simple types τ n if there exist substitutions S

n
such that Si(τ) = τi, for

i = 1, . . . , n.
We call a function that gives the least generalization of a finite set of simple

types the least common generalization (lcg).
An algorithm for computing the lcg of a finite set of types in presented

in Fig. 1. The concept of least common generalization was studied by Gordon
Plotkin [10,11], that defined a function for constructing a generalization of two
symbolic expressions.

Type Inference for GADTs and Anti-unification 19

lcg(T) = τ where (τ, S) = lcg ′(T, ∅), for some S

lcg ′({τ}, S) = (τ, S)

lcg ′({τ1, τ2} ∪ T, S) = lcg ′′(τ, τ ′, S′) where (τ, S0) = lcg′′(τ1, τ2, S)
(τ ′, S′) = lcg′(T, S0)

lcg ′′(C τ n, D ρm, S) =
if S(α) = (C τ n, D ρm) for some α then (α, S)
else

if n �= m then (β, S[β �→ (C τ n, D ρm)])
where β is a fresh type variable

else (ψ τ ′ n, Sn)

where (ψ, S0) =

{
(C, S) if C = D
(α, S [α �→ (C, D)]) otherwise, α is fresh

(τ ′
i , Si) = lcg′′(τi, ρi, Si−1), for i = 1, . . . , n

Fig. 1. Least common generalization

2.2 System CT

System CT is an extension of the Damas-Milner type system for dealing with
overloading [1,2,13,14]. Our initial view for the definition of system CT was to
consider a simple extension where a name (or symbol) could have more than
one type assumption in a typing context. This led to the adoption of a closed
world approach for overloading [1,2,21]. However for efficiency reasons, we have
changed our initial idea about the support of only a closed world approach to
overloading, due to the need (in a closed world) of checking constraint-set sat-
isfiability for each function application. Nowadays, our view, highly influenced
by Haskell’s open world approach, is that an open world is the preferred app-
roach for supporting overloading. We leave discussion of an optional, instead
of mandatory, use of type classes, as well as a related motivation for changing
Haskell’s ambiguity rule, to future work.

The principal type of overloaded symbols is defined in system CT by comput-
ing the anti-unification of the types of the available definitions of these symbols
in the typing context, instead of requiring them to be explicitly annotated in a
class declaration.

The least common generalization of the finite set of types of the definitions
of an overloaded symbol in a given context is taken as the (principal) type of
the overloaded symbol. In system CT a type is denoted by ∀ᾱ. κ. τ , where κ is a
possibly empty constraint set and τ is a simple type (i.e. an unconstrained and
unquantified type). A constraint in system CT is a pair x : τ , where x is an
overloaded symbol and τ is a simple type. For example, a typing context, Γ==, in

20 A. Gelain et al.

which the equality symbol is overloaded with types Int and Char contains the
following type assumptions:

(==) : Int → Int → Bool
(==) : Char → Char → Bool

In this case, the principal type of (==) in Γ== is obtained by the least common
generalization of the two types of (==) in this typing context, and is given by:

∀a.{(==):a → a → Bool}. a → a → Bool

Constraint (==) : a → a → Bool on this type is similar to Haskell’s constraint
Eq a, where such type of (==) is annotated, the difference being essentially
the abscence of a constraint on (/=) that is also available in type class Eq .
The purpose of the constraint is the same as in Haskell: in this case, to allow
instantiation of type variable a in Γ== only for types Int and Char . Type inference
in system CT is a process similar to type inference in Haskell. In particular, the
use of overloaded symbols in expressions for which overloading is not resolved
causes a constraint to be included in the inferred type. For example, consider:

insert a [] = [a]
insert a (b:x)

| a == b = b:x
| otherwise = b: insert a x

The type of insert in this typing context is inferred to be:

insert:: ∀a. {(==) : a → a → Bool}. a → [a] → [a]

In general, in a constrained type ∀ an. κ. τ , κ is a set of constraints that
restricts the set of types to which ∀ an.κ. τ may be instantiated: every instance
must be such that the resulting constraint set must be satisfiable in the relevant
typing context. Constraint set satisfiability is in general an undecidable problem
[16,17], but it can be made decidable without significantly affecting the set of
typeable programs [14]. See also [2,4,5,18].

During type inference, the substitution returned by the function — called
sat — that computes a substitution that verifies (proves) satisfiability of a given
constraint set in a given typing context — or, equivalently, that verifies whether
the constraint set is entailed by a set of constraints on the types of definitions
of symbols in the typing context — can be used to “improve” the constrained
type. See e.g. [5,13,14] for definitions of sat and for the problem of constraint-set
satisfiability (CS-SAT).

In a closed world, the substitution returned by sat is needed to improve the
type of recursive functions. For example, consider the inference of the principal
type of overloaded equality for lists, in context Γ(==):

Type Inference for GADTs and Anti-unification 21

[] == [] = True
(a : x) == (b : y) = a == b && x == y

== = False

The (principal) type of (==) is inferred by considering firstly the types of
(==) used in the recursive definition, initially given by:

{(==):a → b → Bool , (==):[a] → [b] → Bool}. [a] → [b] → Bool (1)

The first constraint on the type above comes from a == b, and the second
from x==y. Note that the type of (==) cannot be inferred from the lcg of the
types of (==) in the typing context, because a new definition is being given, and
this in general will modify the lcg . Function sat comes to the rescue, being able
to compute a substitution that is used to improve the type of (==) to:

∀a.{(==) : a → a → Bool}. [a]→[a]→ Bool

despite the existence of an infinite set of substitutions that can be used to instan-
tiate the type (1) above:

{{a �→ Int , b �→ Int}, {a �→ Char , b �→ Char}, {a �→ [Int], b �→ [Int]}, {a �→ [Char],
{b �→ [Char]}, {a �→ [[Int]], b �→ [[Int]]}, {a �→ [[Char]], b �→ [[Char]]}, . . .}

The sat algorithm is defined in [2,14].
Type inference for polymorphic recursion is treated in a similar way.

3 Type Inference

Let’s say that a GADT function is a function such that the type of a parameter
or of the result is a GADT type. Type inference of a GADT function involves, in
our approach, the generalization of the types used in the defining alternatives.
The substitution returned by sat is used to improve the inferred type, using a
process of type inference that has the following phases:

1. The type of each defining alternative is inferred, with a constraint (included
in the constraint set) for each recursive use of the GADT function.

2. The type of each equation j is improved by the substitution given by
sat(κj , Γ), where κj is the constraint set on the type inferred for equation
j and Γ contains the type assumptions of used overloaded symbols together
with the set {x : σi | i = 1, . . . , n}, where x is the name being defined and σi

is the type of the i-th equation in the definition of x that is not recursively
defined.

3. Compute the lcg of the simple type of the alternatives.
4. Compute the substitution that is the most general unifier of the types of

alternatives of the GADT function which do not involve a GADT constructor
and apply this substitution to obtain the type of each alternative.

We present next some examples that illustrate the type inference process.

22 A. Gelain et al.

3.1 Examples

Example 1. Type Inference of function test

The types inferred for each alternative of the function test , presented in Sect. 1,
are:

test :: T Bool → a → Bool
test :: T b → c → c

In cases such as this, where recursive calls do not occur, no restriction is
generated, making the call to sat unnecessary. The lcg is then computed, tak-
ing the set of types of the alternatives as a parameter. The type obtained by
lcg allows observation of the dependency that exists between the types of each
alternative with those of the generalized type: types for which there is no asso-
ciation with the type of a GADT are unified. The generalization of the types of
the alternatives in the definition of the function test yields:

test :: T b′ → c′ → d′

Now, b′ is associated with a GADT, and c′, d′ are not. Thus, phase (4) above
specifies that a and c should be unified, as well as Bool and c, resulting in:

test :: ∀a.T a → Bool → Bool

As discussed in Sect. 1, type ∀a.T a → a → a could also serve as the type of
test , and in that case expression (test T2 ‘a’) would be type-correct.

In Haskell, type inference for the function testgenerates implication con-
straints [15,22], given by (where ∼ is a type equality constraint and ⊃ denotes
an implication constraint):

(a ∼ T b) ∧ (b ∼ Bool ⊃ c ∼ Bool) ∧ (a ∼ T d) ∧ (c ∼ e)

Type equality constraint (b ∼ Bool) is generated from T1 n, type equality
constraint (c ∼ Bool) is generated from the first alternative in the definition
of test , type equality constraint (c ∼ e) from the second alternative in the
definition of test , where e is the type of r, which is in this case free to be
unified ({e �→ c}). The meaning of an implication constraint can be understood
by considering that, in this example, (b ∼ Bool ⊃ c ∼ Bool) indicates that if
type variable b is instantiated to Bool then so must c. These constraints have
substitution {c �→ Bool} as a solution. Application of this substitution on the
type of test yields type T b → Bool → Bool , which is the same type inferred
by our algorithm. However, type variable c is considered untouchable in the
implication constraint, and then type inference fails. Type variables which occur

Type Inference for GADTs and Anti-unification 23

in implication constraints are considered untouchable within these constraints,
and can only be substituted as a result of applying substitutions obtained as
a result of solving other constraints. In GHC 7.6.x type inference proceeds as
outlined, but from version 7.8.1 a more restricted set of GADT functions for
non-annotated types was adopted.

Example 2. Type Inference of function eval

In the definition of eval , presented in Sect. 1, recursive calls involving poly-
morphic recursion occur in some alternatives, while the type of eval has not
been inferred yet. To handle such cases, constraints are generated from the type
required for each recursive call. These constraints are subsequently used in the
type improvement process.

The alternative with pattern on constructor If has recursive calls for all
arguments of the constructor (l, e1 and e1). l has type Term Bool , and e1, e2
have type Term a. Constraints {eval : Term a → b, eval : Term Bool → Bool}
are generated, and the type of the alternative is inferred also as Term a → b.
Type inference for the constructor Pair proceeds in a similar way. The types
inferred for each alternative are as follows:

(Lit i) eval :: Term Int → Int
(Inc t) eval :: Term Int → Int
(IsZ i) eval :: Term Bool → Bool
(If l e1 e2) eval :: {eval : Term Bool → Bool,

eval : Term a → b}.Term a → b
(Pair x y) eval :: {eval : Term c → e,

eval : Term d → f}.Term (c,d) → (e,f)

After this, the types of the alternatives which contain constraints are subject
to type improvement, which consists of the application of the substitution given
by sat(κ, Γ), where κ is the possibly empty constraint set in the type of each
alternative and Γ = {eval : Term Int → Int , eval : Term Bool → Bool}. After
type improvement the following types are inferred for each alternative:

(Lit i) eval :: Term Int → Int
(Inc t) eval :: Term Int → Int
(IsZ i) eval :: Term Bool → Bool
(If l e1 e2) eval :: Term a → a
(Pair x y) eval :: Term (c,d) → (c,d)

The type inferred for eval is the lcg of the types of the alternatives, given by:

eval :: ∀a.Term a → a

In this case, all types are associated with the GADT, what characterizes them
as types that should not be unified, and, as in this case all types are associated
to the GADT, we have that, in this case, the type inferred is the principal type.

24 A. Gelain et al.

Example 3. In some cases anti-unification does not capture the relationship
between types of alternatives. Consider for example the following function, pre-
sented in [18]:

data Erk a b where

I :: Int→ Erk Int b
B :: Bool→ Erk a Bool

f (I a) = a + 1

f (B b) = b && True

The generalization of the types of the alternatives in the definition of f is:
Erk a b → c. Since type variable c is not associated to a GADT, types Int and
Bool are unified, causing the definition of f to be rejected. However, for example
with annotated type Erk a a → a this function can be given a proper type.

3.2 Term and Type Syntax

The context-free syntax of terms and types is presented in Fig. 2. For simplicity
and following common practice, kinds are not considered in type expressions and
type expressions which are not simple types are not explicitly distinguished from
simple types. Type expression variables are called simply type variables. There
is a distinguished type constructor that is written as an infix operator, τ → τ ′,
as usual.

Terms e ::= x | C | λx. e | e e′ | let x = e in e′ | case e of C x → e
Simple types τ ::= α τ | T τ
Type schemes σ ::= ∀ α. κ. τ

Fig. 2. Syntax of terms and types

We use the following operations over typing contexts:

Γ (x) = {σ | x : σ ∈ Γ}
Γ, x : σ = (Γ − {x : σ | σ ∈ Γ (x)}) ∪ {x : σ}

We let: (i) tv(σ) denote the set of free type variables in σ, (ii) gtv(σ) denote
the set of free type variables that occur in the type of a GADT type constructor,
(iii) gtc(τ) represent the set of GADT type constructors occurring in τ and
(iv) rtv(τ) denote the set of free type variables that occur in the type of a
recursive algebraic data type, such as lists and trees (the set rtv(τ) is used to
avoid skolemization of type variables that occur in the type of the result of a
generalized GADT function).

Type Inference for GADTs and Anti-unification 25

We use constraints to express a relationship between the return type of a
function and its parameters, in case the type of parameters have a GADT con-
structor.

We also use the following notation to return the sets of constraints that
contain types that mention GADT constructors:

κ�
x = {x : τ ∈ κ | gtc(τ) �= ∅}

3.3 Algorithm Definition

For simplicity, we consider a language that is essentially core-ML extended with
GADT functions — that is, we do not include inference of types of expressions
with overloaded symbols. Readers interested in type inference for overloading
are referred to [13].

The proposed algorithm is defined as a syntax-directed proof system, using
formulas of the form Δ | Γ
 e : (κ.τ, S), where Δ is an environment of names of
recursive function definitions that contains constraints to be used in the process
of type improvement for case branches involving GADTs, κ. τ is the type inferred
for e and S is a substitution (used to instantiate type variables for obtaining type
κ. τ). Notation δ(x, τ,Δ) associates, with a symbol x and a type τ , constraint
set {x : τ}, if x is a recursively defined symbol, otherwise an empty constraint
set. It is defined as:

δ(x, τ,Δ) = if x ∈ Δ then {x : τ} else ∅

Type inference rules are standard, with the exception of rules (VAR) and
(CASE). The (VAR) rule generates a constraint for each symbol in Δ, used for

26 A. Gelain et al.

improvement of types of GADT functions. Each variable x that is not in Δ
has a type with an empty constraint set (remember that, for simplicity reasons,
overloading is not treated in this paper). The (CASE) rule is the main part of the
algorithm. First, the type of case scrutinee e is inferred. Then, the type of each
case alternative is inferred (in the textual order, but the order is not relevant).
Finally, if the case expression involves GADT constructors, the type of the case
expression is improved, by using a separate type improvement judgement (since
case alternatives are not expressions). Distinct case alternatives for the same
constructor must be unified, but in this paper we consider for simplicity that
each case alternative has a distinct constructor.

In order to infer the type of a case alternative, we need to unify its constructor
range type with the type inferred for the case scrutinee, producing a substitution
that is used to instantiate the types of the parameters, and add them to the
typing context to infer the type of the right-hand side of the alternative.

The judgement Γ �x (κi. τ ′
i → τi) � (τ ′ → τ, S) denotes the type improve-

ment necessary for the inference of types of functions defined by pattern match-
ing on a GADT function named x. Given a typing context Γ and, for each
alternative i, a set of constrained types κi. τ

′
i → τi, type improvement yields

the improved type τ ′ → τ . Note that only functions that have alternatives with
polymorphic recursion generate constraints. sat(κ, Γ) computes the improve-
ment substitution S for a set of constraints κ, using type assumptions given
by Γ . This judgement uses function specialize which computes a improvement
substitution based on the types of the case alternatives and their generalization.

specialize(τ, ∅) = id
specialize(τ, ({τ ′} ∪ T)) = unify({τ = τ ′}) ◦ specialize(T)

The type improvement judgement is defined as:

Type Inference for GADTs and Anti-unification 27

This judgement works as follows. For each equation i of a GADT function x,
let (κi)�

x be the set of constraints that mention GADT type constructors (in
the constraint set of the type of the i-th equation) and let Si be the satisfiabil-
ity substitution for this constraint set, in a typing context that contains type
assumptions corresponding to all alternatives. Then, let τ1 → τ2 be the lcg of
all Si (τ ′

i → τi)). Now, we “skolemize” α (i.e. treat them as non-unifiable), the
set of type variables introduced by the generalization of types of parameters of
a GADT. Type variables that occur in the return type of a function and also in
the generalization of a parameter of a recursive algebraic type are not skolem-
ized (for example, when the type [a] of the result is obtained from, say, the
generalization of [Int] and [Bool]). The inferred types of case alternatives are
then unified with non-skolemized type variables. The substitutions computed by
satisfiability and unification are applied to the generalized type, which is then
returned.

It is worth mentioning that the improvement judgement is conservative over
non-GADT types, since κ = ∅ when alternative types do not involve GADTs,
and no variable is skolemized, so all types must be unified.

3.4 GADT and Principal Type

In [22] Vytiniotis et al. argue that the principal type property offers fewer benefits
than a guarantee of type safety (i.e. that well-typed programs will not cause an
error at run-time). Consider for example the function eval , presented in Sect. 1,
but now consider that it is declared with only the first alternative:

eval (Lit i) = i

Our algorithm infers type (Term Int → Int) for eval , but in Haskell the
following type annotations would be allowed for eval : ∀a. Term a → a and
∀a.Term a → Int . None of these types is an instance of the other.

In our view, the type Term Int → Int is a good choice in this case, since
it avoids expressions such as, for example, eval (IsZ(Lit 1)), for which there
exists no alternative in the definition of eval . With the algorithm given in [22]
the following implication constraint is generated during type inference:

(a ∼ Term b) ∧ (b ∼ Int ⊃ c ∼ Int)

Note that substitution {c �→ Int} is a solution to this implication constraint
and application of this substitution leads to the inference of type Term a →
Int . However, in this constraint variable c is considered untouchable, and then
type inference fails in GHC. Again, in GHC version 7.6.x, the function eval
defined with only this alternative would have inferred type ∀a.Term a → Int ;
from version 7.8.1 type inference fails, due to type variable being considered
untouchable.

28 A. Gelain et al.

On the other hand, by adding the alternative of constructor IsZ , where the
type Term Bool is returned by the constructor, the type of eval becomes: ∀a.
Term a → a, which is the same as the type inferred by our algorithm. It is
important to point out that the type Term Int → Int , inferred by the alternative
of constructor Lit , is an instance of this type, in contrast with the case of Term
a → Int .

eval (Lit i) = i
eval (IsZ i) = 0 == eval i

Back to type safety, it would be desirable that in this case the type inference
algorithm restricts instances of a to either Int or Bool ; however, this seems to
need a special way of constraining polymorphic types.

In many cases, such as that of Example 1, a relation between the types of
alternatives is not expressed by the code in these alternatives. In these cases
there is no guarantee that the inferred type is the principal type.

4 Related Work

Peyton Jones et al. present an extension of Haskell’s type system for the support
of GADTs [6,7]. The verification of the types of GADT functions is done using
type annotations. These types, called rigid types, are propagated to inner scopes
by means of some specific rules. Pottier and Régis-Gianas [12] define a two-pass
type inference algorithm, separating traditional Hindley-Milner type inference
from the propagation of explicit type annotations. This separation makes the
mechanism of type propagation more efficient.

The type inference algorithm used in [15,22], called OutsideIn, extracts type
constraints from expressions occurring in inner scopes and solves these con-
straints in the outermost scope, avoiding an ad hoc approach for the propaga-
tion of rigid types. Besides using a more natural mechanism for propagation of
annotated types, this approach enables more helpful error messages and type
inference in a restricted number of function declarations. In these cases a rather
restrictive rule is adopted in the definition of untouchable variables, so that only
the types of functions for which the existence of a principal type can be guaran-
teed are inferred. In [19] Sulzmann and Schrijvers introduce some ideas adopted
in the OutsideIn algorithm.

Lin and Sheard present the Pointwise GADT type system [9], that uses a
modified unification algorithm to support parametric instantiation and type
indexing. In [8] Lin proposes algorithm P, more restrictive than Pointwise, that
does not require type annotations. The algorithm applies generalization only
in patterns of alternatives and supports polymorphic recursion. Differently from
our proposal, which handles polymorphic recursion similarly to overloading, algo-
rithm P uses an approach similar to that used by an iteration limit to guarantee
termination.

Type Inference for GADTs and Anti-unification 29

5 Conclusion

In this paper we have presented a type inference algorithm in the presence of
GADTs. The ideas behind the algorithm are intuitive and easy to understand.

The presented algorithm handles alternative definitions of a defined symbol
x as if they were overloaded definitions of x, in a closed world approach to
overloading, with support for polymorphic recursion. The algorithm makes use of
anti-unification to capture the relation between the types of distinct alternatives
of a function that has a parameter or returns a GADT. Types which must
not be unified are separated, before unifying the types of the alternatives. This
enables type inference for functions that typically require type annotations in
other implementations, such as that of GHC.

Further study in order to provide support for type annotations is necessary.
When there is a relation from the types of arguments to the type of the result
of a GADT function which is not made explicit in the code (e.g. Example 3),
our type inference algorithm can reject expressions that could be considered
type-correct.

References

1. Camarão, C., Figueiredo, L.: Type inference for overloading without restrictions,
declarations or annotations. In: Middeldorp, A., Sato, T. (eds.) FLOPS 1999.
LNCS, vol. 1722, pp. 37–52. Springer, Heidelberg (1999)

2. Camarão, C., Figueiredo, L., Vasconcellos, C.: Constraint-set Satisfiability for
Overloading. In: Proceedings of the 6th ACM SIGPLAN International Conference
on Principles and Practice of Declarative Programming, pp. 67–77. ACM (2004)

3. Chang, C.C., Keisler, H.J.: Model Theory: Dover Books on Mathematics, 3rd edn.
North-Holland Press, New York (2012)

4. Demoen, B., de la Banda, M.G., Stuckey, P.J.: Type Constraint Solving for Para-
metric and Ad-hoc Polymorphism. In: Proceedings of the 22nd Australasian Com-
puter Science Conference (1999)

5. Jones, M.: Simplifying and Improving Qualified Types. In: Proceedings of ACM
Conference on Functional Programming and Computer Architecture, FPCA 1995,
pp. 160–169 (1995)

6. Jones, S.P., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-based
type inference for GADTs. SIGPLAN Not. 41(9), 50–61 (2006)

7. Jones, S.P., Washburn, G., Weirich, S.: Wobbly types: type inference for generalised
algebraic data types. Technical report MS-CIS-05-26, University of Pennsylva-
nia, Microsoft Research (2004). http://research.microsoft.com/apps/pubs/default.
aspx?id=65143

8. Lin, C.K.: Practical type inference for the GADT type system. Ph.D. thesis, Port-
land State University, Portland, OR, USA (2010)

9. Lin, C.K., Sheard, T.: Pointwise generalized algebraic data types. In: Proceedings
of the 5th ACM SIGPLAN Workshop on Types in Language Design and Imple-
mentation, TLDI 2010, pp. 51–62. ACM, New York (2010)

10. Plotkin, G.D.: A note on inductive generalisation. Mach. intell. 5(1), 153–163
(1970)

http://research.microsoft.com/apps/pubs/default.aspx?id=65143
http://research.microsoft.com/apps/pubs/default.aspx?id=65143

30 A. Gelain et al.

11. Plotkin, G.D.: A further note on inductive generalisation. Mach. Intell. 6, 101–124
(1971)

12. Pottier, F., Régis-Gianas, Y.: Stratified type inference for generalized algebraic
data types. SIGPLAN Not. 41(1), 232–244 (2006)

13. Ribeiro, R., Camarão, C.: Ambiguity and context-dependent overloading. J. Braz.
Comput. Soc. 19(3), 313–324 (2013)

14. Ribeiro, R., Camarão, C., Figueiredo, L.: Terminating constraint set satisfiability
and simplification algorithms for context-dependent overloading. J. Braz. Comput.
Soc. 19(4), 423–432 (2013)

15. Schrijvers, T., Jones, S.P., Sulzmann, M., Vytiniotis, D.: Complete and decidable
type inference for GADTs. SIGPLAN Not. 44(9), 341–352 (2009)

16. Smith, G.: Polymorphic type inference for languages with overloading and subtyp-
ing. Ph.D. thesis, Cornell University (1991)

17. Smith, G.: Principal type schemes for functional programs with overloading and
subtyping. Sci. Comput. Program. 23(2–3), 197–226 (1994)

18. Stuckey, P., Sulzmann, M.: A Theory of overloading. In: Proceedings of the 7th
ACM International Conference on Functional Programming, pp. 167–178 (2002)

19. Sulzmann, M., Schrijvers, T., Stuckey, P.J.: Type Inference for GADTs via Her-
brand Constraint Abduction (2008)

20. Team, G., et al.: The Glorious Glasgow Haskell Compilation System User’s Guide,
Version 7.10.1 (2015)

21. Vasconcellos, C.: Inferência de tipos com suporte para sobrecarga baseada no sis-
tema CT. Ph.D. thesis, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
(2004)

22. Vytiniotis, D., Jones, S.P., Schrijvers, T., Sulzmann, M.: OutsideIn(X): modular
type inference with local assumptions. J. Funct. Program. 21(4–5), 333–412 (2011)

Preserving Lexical Scoping When Dynamically
Embedding Languages

Félix Ribeiro(B), Hisham Muhammad, André Murbach Maidl,
and Roberto Ierusalimschy

Department of Computer Science, PUC-Rio, Rio de Janeiro, Brazil
{fribeiro,hisham,amaidl,roberto}@inf.puc-rio.br

Abstract. There are various situations in which one may want to embed
source code from one language into another, for example when com-
bining relational query languages with application code or when per-
forming staged meta-programming. Typically, one will want to transfer
data between these languages. We propose an approach in which the
embedded code shares variables with the host language, preserving lex-
ical scoping rules even after the code is converted into an intermedi-
ate representation. We demonstrate this approach through a module for
meta-programming using Lua as both embedded and host languages.
Our technique supports dynamically generated code, requires no special
annotation of functions to be translated and is implemented as a library,
requiring no source pre-processing or changes to the host language exe-
cution environment.

Keywords: Lua · Domain-specific languages · Embedded languages ·
Meta-programming · Multi-stage programming

1 Introduction

Domain-Specific Languages (DSLs) are a way to simplify the development of
programs through the aggregation of domain knowledge into a programming lan-
guage. A Domain-Specific Language is a programming language that includes
features to express the semantics of a domain, often adding specific syntax.
Examples of DSLs are for text processing, MATLAB for performing numer-
ical computations, SQL for querying relational databases and regular expressions
for pattern matching in text.

The use of DSLs frequently happens in combination with other languages,
so that some aspects of a problem are handled with the DSL while other parts
are developed in a general-purpose language [7]. One way to do this is to embed
source code written in the domain-specific language into the source code of the
application, which is written in another language. We have then the notion of
a host language and an embedded language. SQL and regular expressions are
examples of languages which are often used in this fashion.

c© Springer International Publishing Switzerland 2015
A. Pardo and S.D. Swierstra (Eds.): SBLP 2015, LNCS 9325, pp. 31–43, 2015.
DOI: 10.1007/978-3-319-24012-1 3

32 F. Ribeiro et al.

Embedding source code of one language into another poses challenges. Typi-
cally, a language parser does not have support for handling chunks of code writ-
ten in another language intermixed with the source code. Common approaches
to handle the source code of two languages in a single source file are to either
pull the processing back to a step prior to the parsing of the main language,
using pre-processing, or to push it forward by storing the code written in the
embedded language as strings in the host language source code, which are sent
to the embedded language for processing only at run time.

This approach of storing code as strings, while popular, has some inconve-
niences. For instance, it is not possible to detect syntactical errors while compil-
ing the code. Embedding languages should also allow programmers to transfer
data between these languages, taking care to keep data in sync. For these rea-
sons, solutions based on meta-programming, where the embedded language can
be manipulated at a higher level of abstraction than strings, are more interesting.

Multi-Stage Programming (MSP) [14–16] is a meta-programming approach
that helps embedding a programming language in a host language in a well-
organized way. It defines constructs for quoting and escaping source code that
produce code objects, which are valid objects stored in the host language but
can also be invoked to execute the embedded language. A major benefit of MSP
is that it does not delay error verification to run-time. One can detect syntactical
errors and even type errors in the embedded code during compile-time. Another
benefit of MSP is that we can use program specialization to reduce the costs of
abstractions [14].

Using MSP to embed languages inside imperative languages can be hard,
because in these languages programmers can move code objects so they are used
outside of the scope of the binder of their free variables [17]. In purely functional
languages we do not have this problem due to the absence of side effects [9].

Languages that support dynamically-generated code, such as those that
provide eval-style functions where a string of source code can be compiled
into a function object at runtime, present further challenges. Traditional sta-
tic approaches to meta-programming that work by performing a pre-processing
pass at compile time may not be suitable, as the relevant functions may not be
generated yet.

In this work, we propose an approach for meta-programming in which the
embedded code shares variables with the host language, preserving lexical scop-
ing rules even after the code is converted into an intermediate representation.
In our proposed method, the host language uses closures to share data with the
embedded language, replacing variable references with function calls in the gen-
erated code. This way, we ensure that variables always match the scope of their
declarations.

We demonstrate this approach through a module for meta-programming
using Lua as both embedded and host languages. Our module decompiles Lua
functions to their Abstract Syntax Tree (AST) form and can later rebuild them
preserving scoping rules of the decompilation site. For simplicity, our implemen-
tation only supports functions that contain a single expression. We call these
functions lambda functions.

Preserving Lexical Scoping When Dynamically Embedding Languages 33

The technique we present here operates entirely at runtime. It is therefore
suitable for languages that may be embedded using the dynamic features of the
host language.

Our method requires no special annotation of functions to be translated and
is implemented as a library, requiring no source pre-processing or changes to the
host language execution environment. When an AST describes a function that
uses variables from an external local scope, it includes information about the
context where this function was defined.

We organize this paper in five sections. In Sect. 2 we review related work in
the field of multi-stage programming. In Sect. 3 we demonstrate our approach.
In Sect. 4 we formalize the semantics of our approach. In Sect. 5 we present our
conclusions.

2 Related Work

Meta-programming is the concept of writing programs that manipulate program
code as data, producing other programs. This allows programmers to improve
code performance or expressiveness by defining transformations over code. Lisp
[11] pioneered meta-programming by introducing a mechanism of quotation:
expressions marked with the operator ’ are not evaluated, and are treated as
data. Later Lisp dialects like Common Lisp and Scheme include quasi-quotation,
represented with the operator ‘, that allows parts of the quoted expression to
be “escaped” (with the , operator). The combination of quasi-quotation and
escaping powers the macro system of those languages [1]. This feature, however,
does not preserve scoping rules.

Multi-Stage Programming [14–16] is similar to the quasi-quotation mecha-
nism, but it takes lexical scoping into account. It features three constructs that
programmers can use to annotate code: brackets, escape, and run. We will use
MetaOCaml [2], an OCaml extension with MSP support through these three
staging constructs, to briefly explain these constructs. Brackets, marked with
.<>., avoid the execution of a computation, constructing an object instead that
represents the marked block of code:

let x = 1 + 1;;
let y = .< 1 + 1 >.;;

In the above example, x has type int and y has type int code. This means
that the expression x + y is invalid code in MetaOCaml, as the types of both
variables do not match. Escapes, marked as , combine small delayed compu-
tations for building bigger ones:

let z = .< x + .~y >.;;

Here, the code binds a new delayed computation 2 + (1 +
1) to z. Run, using the prefix operator .!, executes staged code. In the example
below, the program will compile and execute the code inside z, assigning the
integer 4 to r:

34 F. Ribeiro et al.

let r = .!z;;

Implementing DSLs is one of the most interesting applications of MSP [3].
Implementing efficient DSLs, either as interpreters or as compilers, is not an easy
task. The MSP constructs allow programmers to implement a DSL as a staged
interpreter, which translates the DSL code to the host language code, allowing
DSLs to run as efficiently as the host code, taking advantage of the optimizations
of the underlying compiler [15].

Mint [17] is a MSP extension to Java. Even though MSP ensures correct-
ness while embedding languages using purely functional languages, the same is
not that straightforward when we try to use MSP for embedding imperative
languages. The problem of embedding a language in an imperative language is
related to side effects, as programmers can move code objects beyond the bound
scope of free variables inadvertedly, a problem known as scope extrusion. Mint
extends the semantics of the escape construct to impose some restrictions on
side effects, not allowing side effects to appear inside a escape construct when
these side effects interact with delayed code.

LINQ (Language Integrated-Query) [12] is a set of features that extends C#,
allowing programmers to perform queries and manipulate data over different
kinds of data storage such as XML and MDF. One can also use LINQ with data
structures such as lists and arrays.

In .NET, C# and Visual Basic define a restricted type of anonymous func-
tion called an expression lambda, which is a function that consists of a single
expression. LINQ works as an embedded DSL [7] where anonymous functions
are used extensively, and was the motivating use case for the introduction of
expression lambdas. When one assigns an expression lambda to a variable of type
Expression<TDelegate>, .NET creates an AST corresponding to that expres-
sion, called an expression tree1. Expression trees can also be created programat-
ically, manipulating node objects via the API of the Expression class.

Expression lambdas can access external local variables, and they respect
lexical scope, regardless if they are used to declare anonymous functions or only
to produce an expression tree. Figure 1 illustrates how lexical scoping is preserved
in expression trees. Free variable y in line 5 references the declaration from line
4, even when the expression tree returned in line 11 is compiled into a function
in line 12.

Terra [4] is a multi-stage language for high-performance computing. It uses
Lua as a host language and defines extensions for staged computation. Lua
functions that run in the Lua interpreter are declared using standard Lua syn-
tax, with the function construct. Staged code is declared as Terra functions,
using the terra statement. Terra functions use similar syntax to Lua, but they
are statically typed and compiled into native code using LLVM. Lua code can
manipulate Terra types and functions as Lua objects. Terra also features a quote

1 Note that in C# parlance, lambda expression is a more general term that can refer
to both single-expression anonymous functions called expression lambdas and multi-
statement functions called statement lambdas. Conversion to expression trees is only
supported for expression lambdas.

Preserving Lexical Scoping When Dynamically Embedding Languages 35

Fig. 1. Lexical scoping in variables referenced in expression trees in C#.

statement for quoting blocks of Terra code as expression objects and brackets
([]) as the escape operator for evaluating Lua code inside a Terra function.

When a Terra function is declared, all Lua expressions escaped inside it and
Lua variables are replaced by the results of their evaluation. A Terra function,
therefore, does not form a closure with respect to free Lua variables. This design
trades lexical scoping for the guarantee that compiled Terra code does not need
to call back into the Lua interpreter during execution.

Metalua [5] is a Lua compiler that supports compile-time meta-programming,
a mechanism that allows programmers to interact with the compiler through a
macro system [6]. Metalua extends Lua 5.1 to provide methods for transforming
Lua code into Abstract Syntax Trees, but this code cannot contain references to
local variables of an outer scope.

Our implementation generates program ASTs in the same format as Metalua,
but including information about enclosing local variables. While Metalua handles
arbitrary Lua code syntactically marked for quoting, our module operates only
on restricted functions, but requires no quoting.

3 Lua2AST

We now present our proposed approach for run-time meta-programming. We
begin by describing in this section our implementation, Lua2AST. In the follow-
ing section, we proceed by formally discussing its semantics.

Lua2AST is a Lua module that is able to generate ASTs given a restricted
form of Lua functions, that we named lambda functions. Lambda functions are
defined as functions that contain in its body a single return statement containing
an expression. This expression can be of any kind and can also use variables of
the outer lexical scope.

Lua supports functions as a first-class value. Function objects are proper
closures, and are internally implemented by storing along with each function a

36 F. Ribeiro et al.

internal set of boxed references any local variables belonging to outer lexical
scopes. In Lua, these references are called upvalues [8]. Upvalues implement
proper lexical scoping and are generally transparent to the Lua programmer,
but they can be directly manipulated through Lua’s C API and through its
debug API. Lua2AST can produce a Lua function object given an AST, and
references to variables in the resulting function match the lexical scoping rules
of the call site where the AST was originally generated. As we will see below, this
is done using the debug API to correct upvalue references in the generated code.

Lua2AST uses two external Lua libraries in its implementation: LuaDec and
Lua-Parser. Luadec [13] is a Lua decompiler that takes a Lua binary chunk and
returns a string with equivalent Lua source code. Lua-Parser [10] generates a Lua
table representing the code AST given a string of Lua source code. Lua2AST
works by decompiling the input function with LuaDec, producing an AST with
Lua-Parser and finally resolving upvalue references in this AST, producing an
annotated AST with additional information that allows the library to recreate
the function’s original environment.

Our approach to preserve variable references is to generate auxiliary closures
when converting the function into AST format. These auxiliary closures are
stored in the AST data structure. When compiling the AST back into a function,
variable references are replaced by function calls to these closures.

This approach presents two major advantages to usual methods for adding
staged computation to existing languages. Firstly, our implementation is done
entirely as a library. By internally using a decompiler, we can operate directly
on Lua function objects without having to use a source code preprocessor. This
results in a non-intrusive approach: we did not need to create language extensions
and we did not need to modify the Lua virtual machine.

Secondly, our approach is particularly suitable for a dynamic language. If
Lua2AST was implemented as a static pass over the input source code, it would
not be possible to transform dynamically-loaded functions into ASTs. Since
Lua2AST operates entirely at runtime, we are able to operate over any suit-
able lambda function, including dynamically-generated Lua functions, such as
those loaded during program execution using the dostring function.

Below, we will discuss the implementation in further detail, covering the two
main functions of the Lua2AST API: lua2ast.toAST and lua2ast.compile.

3.1 Function Lua2ast.toAST(func)

The function toAST generates an AST from a Lua function. It takes a Lua
function as a parameter, which must be a lambda function. The function’s return
is a Lua table that represents an AST. This table follows a standardized format
for Lua ASTs that was originally defined by the Metalua project [5]. If the
received function uses upvalues, this AST will be decorated with additional data,
so that upvalue references can be later reconstructed.

The function toAST initially calls the LuaDec decompiler to produce a source
code representation of the given function. This string is sent to the parse func-
tion of the Lua-Parser library, producing the AST that represents the code.

Preserving Lexical Scoping When Dynamically Embedding Languages 37

The AST as returned by Lua-Parser, however, would not be sufficient to recon-
struct the function with proper scoping rules. Simply rebuilding the plain AST
into source code and loading into Lua would produce a function where all local
variables of outer scopes would turn into global variable references, since in Lua
undeclared variables are treated as globals by default.

The next step, therefore, is to detect locals of outer scopes and to annotate
them in the AST. This is done by scanning variable references in the AST and
matching them to the list of upvalues of the function object. Firstly, we find the
parameters of the function and store them in a set. Then, we locate the free
variables of the function, which are indentifiers in our expression tree that are
not in the set of function arguments. These free identifiers may be references to
outer locals or references to global variables. Any outer local will have a matching
entry in the internal list of upvalues of the closure. We look for this entry using
debug.getupvalue(), a function of Lua’s standard library that allows us to
perform introspection of a function’s upvalues. When the variable is found, we
decorate the AST node.

To do this decoration in our AST, we create a closure which will hold a
reference to our desired variable. To do so, we use the following helper function:

local function newclosure()
local temp
return function () return temp end

end

This function produces a new closure that contains an upvalue and merely
returns it. We then use the function debug.upvaluejoin(), also from the stan-
dard library. This function gets an upvalue from a Lua closure and make it
refer to another upvalue from a different function. We take the upvalue from
our desired variable and join it with the upvalue for the temp variable of our
newly-created closure. We then store this auxiliary closure in the AST node
that identifies the free variable.

Figure 2 illustrates the use of the lua2ast.toAST() function. The Lua code
on this example operates equivalently to the code on Fig. 1. For illustration
purposes, the code also calls lua2ast.print(), which dumps the AST in textual
format, following the syntax of Metalua. It represents node types with names
such as ‘Function; node data is represented as strings such as "x". The output
produced by the call at line 7 would be as follows:

{ ‘Function{ { ‘Id "x" },
{ ‘Return{ ‘Op{ "add", ‘Id "x", ‘Id "y"}}}

}}

Node ‘Id "y" is internally decorated with a closure that returns the value
of y defined in line 4.

38 F. Ribeiro et al.

Fig. 2. Lua2AST usage example

3.2 Function Lua2ast.compile(ast)

This function takes an AST and returns a new function object that is a result of
the AST’s compilation. When used with ASTs generated by lua2ast.toAST(),
it will use the additional decoration to produce variable references with proper
lexical scope.

Function lua2ast.toAST() works by generating source code, compiling it
and then using the standard debug library’s facilities to attach the auxiliary
closures to the generated function’s upvalue slots.

Proceeding with the example of Fig. 2, the AST returned in line 13 would be
initially converted into the following source code (Lua uses double-brackets for
multi-line strings):

[[local y
return function(x) return x + y() end]]

Prior to the reconstructed source code of the functions, we add declarations
of local variables for each outer local variable referenced in the function. Note
also that references for these variables are replaced by function calls in the body
of the function.

We then compile this source code using Lua’s standard function
loadstring() and run it to obtain its return value: a Lua function object.
Note that in the value of local y is not assigned in the source code. Calling this
function at this point would result in an error as the upvalue for y points to a
variable with the value of nil.

The final step of lua2ast.compile() is to fix the upvalue references to make
them point to the auxiliary closures created by lua2ast.toAST() and stored in
the AST table. For that, we use the standard function debug.setupvalue(),
which takes a closure, an upvalue index and a Lua value, and sets the variable

Preserving Lexical Scoping When Dynamically Embedding Languages 39

Fig. 3. Syntax of our version of Lua Core, extended with constructs to specify Lua2AST

pointed by the upvalue to the given value. It is worth pointing out, however, that
by setting this value we are not fixing the value of the original variable reference
(y from line 5 in Fig. 2). This reference was replaced in the newly generated
function with a call to a proxy function (y() in the above example), and it is
this new local y variable which is having its value fixed with the correct proxy
function instead. We formalize this process precisely in the following section.

Once the upvalues are fixed, lua2ast.compile() returns the function. In line
14 of Fig. 2 we see that the result of the compilation is then further applied, and
the reconstructed function runs according to the scope of the original function
declared in line 5.

4 Semantics

In this section, we specify the behavior of functions lua2ast.toAST() and
lua2ast.compile() by using the formalization of a subset of Lua semantics,
presented in [4] as Lua Core. We use the same formal framework of that work in
order to properly compare and contrast our approach for multi-stage program-
ming to that employed by Terra.

Lua Core depicts the notions of lexical scoping, closures and side-effects
present in Lua, and is therefore mostly sufficient for our purposes. We extend
this specification with an arbitrary “binary operator” expression, mimicking Lua
operators supported by Lua2AST. This way, we have a recursive rule through
which we can model Lua expressions as trees, to be later converted to ASTs.
We also include toAST () and compile() as core language operations so we can
specify their semantics separately from plain functions.

The syntax of our version of Lua Core is presented in Fig. 3. A Lua expression
(e) can be either a base value (b), a variable (x), a scoped variable definition
(let x = e in e, with e1; e2 as sugar for let = e1 in e2), a variable assignment
(x := e), an application (e(e)), a function definition (fun(x){e}), an operation on
expressions (e op e), or one of the special invocations toAST(e) and compile(a).
Lua values (v) can be base values (b), Lua ASTs (a) or closures. A closure is
represented as a triple 〈Γ, x, e〉, consisting of a namespace Γ : x → p (mapping
variable names x to memory positions p), an input argument x and an expres-
sion body e. A Lua AST for a function consists of a root node ([fnx a]) which
may contain nodes that wrap base values ([base b]), operations ([op a a]), and
variables ([var x 〈Γ, x, e〉]). As we will see below, the fact that variables are
wrapped by a node containing a closure is central to our approach.

In Fig. 4, we present the rules for evaluating Lua Core over an environment
Σ, which is a tuple (Γ, S) containing a namespace Γ : x → p and a store

40 F. Ribeiro et al.

Fig. 4. Rules
L→ for the evaluation of Lua expressions,

D→ for decompiling Lua expres-

sions into ASTs, and
C→ for compiling ASTs back into expressions.

S : p → v that maps memory positions to values2. We use L→: (e×Σ) → (v ×Σ)
for the evaluation of Lua expressions as in [4]. Rules for L→ presented here are
equivalent to those in that work: LVal and LVar evaluate values and vari-
ables; LLet describes variable scoping, by evaluating e2 in an environment cre-
ated by adding the result of evaluating e1 and assigning it to local variable x;
LApp describes function application, propagating side effects; LAsn evaluates
assignments; LFun evaluates function declarations. Our work adds new rules

2 The semantics of Lua Core in [4] is based on an environment Σ = (Γ, S, F) where F
is specific to Terra functions. In our presentation, we removed F . Rules reused from
[4] were adapted accordingly.

Preserving Lexical Scoping When Dynamically Embedding Languages 41

for L→: LOp describes the evaluation of an arbitrary binary operator, with seman-
tics given by some function Op(); LAst describes the evaluation of toAST ();
LComp evaluates compile().

We also add two other relations: rules for decompiling a Lua function into
an AST (D→: (e×Σ) → a) and rules for compiling ASTs back into Lua functions
(C→: (a × Σ) → (e × Σ)). These are used in LAst and LComp, respectively.

The decompilation function D→ takes an expression and an environment and
produces an AST. Since toAST () is a pure function, Σ does not figure in the
codomain of D→. Note that D→ is defined only for base values (DBase), variables
(DVar), the binary operator (DOp), and the initial function (DFn), mirroring
the implementation of toAST () in Lua2AST, which only supports functions
containing these elements. Its rules deconstruct the body of the function and
build the corresponding AST. Of particular interest is rule DVar, which stores
in the AST node a newly created closure, which returns the value of x given the
original function’s environment.

The compilation function C→ takes an AST and an environment and pro-
duces a closure and a new environment. For each of the four decompilation rules
there is a complementary compilation rule: CBase, CVar, COp and CFn. Rule
CVar translates nodes representing variable references into a function call to
the closure created by rule DVar. CVar assigns this closure to a variable x in
the resulting environment, and produces a function call to this closure instead
of a variable reference. Rule CFn returns a closure representing the entire com-
piled function and a new environment. This environment contains an unmodified
namespace Γ1 and a new store S2, which includes any closures created for keep-
ing variable references. The extended namespace Γ2 produced by the compilation
is used as the namespace of the resulting function’s closure.

As a result of running compile(), all variable references that existed in the orig-
inal function that was decompiled and was now recompiled were replaced by calls
to newly-created closures that merely return the value of the corresponding vari-
ables. These closures use the original namespace from decompilation time (Γ in
DVar), so the variable references are bound to the addresses they have in the lex-
ical scope where decompilation takes place. Any variable x stored in an AST will
only be evaluated when the compiled function returned by compile(a) is called.

By replacing variable references to function calls to the wrapper closures, we
ensure that the evaluation of variables (ultimately happening within the wrapper
closures) are based on their original namespaces. This is different from the app-
roach taken by Terra [4], where evaluation of Lua variables is done when the Terra
code is generated. LINQ [12] preserves the lexical scoping of reconstructed function
objects like our work does, but in our case staging happens entirely at run time.

5 Conclusion

In this work we presented an approach for multi-stage programming, through
which the lexical scope of variables can be preserved by replacing variable ref-
erences in the generated representation of the embedded language with closures

42 F. Ribeiro et al.

from the host language. When the intermediate representation is later converted
into executable form, calls to these closures are produced, ensuring access to the
variable in the correct context.

We implemented a module that demonstrates this approach. Our implemen-
tation uses a decompiler to convert, at runtime, Lua functions into an abstract
syntax tree form decorated with closures that capture the lexical environment of
free variables. The module is then able to compile the AST back into Lua, ensur-
ing that the resulting function accesses the correct variables even if compiled at
a different call site.

The technique we present here is general, and its core principle is not
dependent on specificities of Lua. It could be implemented in other languages
using other methods, such as source code pre-processing. However, the run-time
manipulation of function objects made possible by decompilation, as opposed to
compile-time manipulation of the source tree, allows us to perform multi-stage
programming dynamically, operating on any suitable functions, even if they were
created via dynamic code generation. This makes our approach particularly suit-
able for dynamic languages.

Our implementation also exploited Lua’s facilities for manipulating a clo-
sure’s list of upvalues, which allowed the construction of the generated functions
purely through manipulation of Lua function objects, without having to resort to
low-level bytecode generation. The only bytecode-level manipulation performed
by Lua2AST is read-only, and is restricted to the decompiler module. Our imple-
mentation required no language extensions and no modifications to the Lua VM.

We also specified the operational semantics for the transformations performed
by Lua2AST, in order to show how the lexical environment of variables is cor-
rectly preserved, and to contrast it with related work from the literature on
multi-stage programming.

This work presents many possibilities for future extensions. The current
implementation is a proof-of-concept that demonstrates the technique, and can
be extended to support more of the host language’s grammar. Another future
work we envision is the development of different code-generation back-ends, sup-
porting other languages. This would allow, for example, using Lua functions for
writing prepared statements for database query languages.

References

1. Bawden, A.: Quasiquotation in Lisp. In: Danvy, O. (ed.) Proceedings of the
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM 1999). Number NS-99-1 in BRICS Note Series, pp. 4–12,
San Antonio, Texas (1999)

2. Calcagno, C., Taha, W., Huang, L., Leroy, X.: Implementing multi-stage languages
using ASTs, gensym, and reflection. In: Pfenning, F., Macko, M. (eds.) GPCE 2003.
LNCS, vol. 2830, pp. 57–76. Springer, Heidelberg (2003)

3. Czarnecki, K., O’Donnell, J.T., Striegnitz, J., Taha, W.: DSL implementation in
MetaOCaml, template haskell, and C++. In: Lengauer, C., Batory, D., Blum, A.,
Odersky, M. (eds.) Domain-Specific Program Generation. LNCS, vol. 3016, pp.
51–72. Springer, Heidelberg (2004)

Preserving Lexical Scoping When Dynamically Embedding Languages 43

4. DeVito, Z., Hegarty, J., Aiken, A., Hanrahan, P., Vitek, J.: Terra: a multi-stage
language for high-performance computing. In: Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2013, pp. 105–116, New York, NY, USA, ACM (2013)

5. Fleutot, F.: Metalua: static meta-programming for Lua. https://github.com/
fab13n/metalua (2007). Accessed February 2015

6. Fleutot, F., Tratt, L.: Contrasting compile-time meta-programming in Metalua
and converge. In: Proceedings of the Workshop on Dynamic Languages and Appli-
cations (2007)

7. Fowler, M.: Domain Specific Languages, 1st edn. Addison-Wesley Professional,
Boston (2010)

8. Ierusalimschy, R.: Programming in Lua, 2nd edn. Lua.Org (2006)
9. Kameyama, Y., Kiselyov, O., Shan, C.C.: Closing the stage: from staged code to

typed closures. In: Proceedings of the 2008 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-based Program Manipulation, PEPM 2008, pp. 147–157,
New York, NY, USA, ACM (2008)

10. Maidl, A.M.: Lua-parser: a Lua 5.3 parser written with LPeg. https://github.com/
andremm/lua-parser (2013). Accessed April 2015

11. McCarthy, J.: Recursive functions of symbolic expressions and their computation
by machine, part I. Commun. ACM 3(4), 184–195 (1960)

12. Microsoft: LINQ. https://msdn.microsoft.com/en-us/library/bb397926.aspx
(2013). Accessed April 2015

13. Muhammad, H.: LuaDec: a decompiler for the Lua language. http://luadec.
luaforge.net/ (2006). Accessed April 2015

14. Taha, W.: Multi-stage programming: its theory and applications. Ph.D thesis,
Oregon Graduate Institute of Science and Technology (1999)

15. Taha, W.: A gentle introduction to multi-stage programming. In: Lengauer, C.,
Batory, D., Blum, A., Odersky, M. (eds.) Domain-Specific Program Generation.
LNCS, vol. 3016, pp. 30–50. Springer, Heidelberg (2004)

16. Taha, W.: A gentle introduction to multi-stage programming, part II. In: Lämmel,
R., Visser, J., Saraiva, J. (eds.) Generative and Transformational Techniques in
Software Engineering II. LNCS, vol. 5235, pp. 260–290. Springer, Heidelberg (2008)

17. Westbrook, E., Ricken, M., Inoue, J., Yao, Y., Abdelatif, T., Taha, W.: Mint: java
multi-stage programming using weak separability. In: Proceedings of the 2010 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2010, pp. 400–411, New York, NY, USA, ACM (2010)

https://github.com/fab13n/metalua
https://github.com/fab13n/metalua
https://github.com/andremm/lua-parser
https://github.com/andremm/lua-parser
https://msdn.microsoft.com/en-us/library/bb397926.aspx
http://luadec.luaforge.net/
http://luadec.luaforge.net/

The Dinamica Virtual Machine for Geosciences

Bruno Morais Ferreira, Britaldo Silveira Soares-Filho,
and Fernando Magno Quintão Pereira(B)

UFMG, Avenida Antônio Carlos, 6627, Belo Horizonte 31270-010, Brazil
{brunomf,fernando}@dcc.ufmg.br, britaldo@csr.ufmg.br

Abstract. This paper describes DinamicaVM, the virtual machine that
runs applications developed in Dinamica EGO. Dinamica EGO is a
framework used in the development of geomodeling applications. Behind
its multitude of visual modes and graphic elements, Dinamica EGO runs
on top of a virtual machine. This machine - DinamicaVM - offers devel-
opers a rich instruction set architecture, featuring elements such as map
and reduce, which are typical in the functional/parallel world. Ensuring
that these very expressive components work together efficiently is a chal-
lenging endeavour. Dinamica’s runtime addresses this challenge through
a suite of optimizations, which borrows ideas from functional program-
ming languages, and leverages specific behavior expected in geo-scientific
programs. As we show in this paper some of these optimizations deliver
speedups of almost 50x, and are key to the industrial-quality performance
of one of the world’s most widely used geomodeling tools.

1 Introduction

Dinamica EGO is a framework that supports the development of geomodeling
applications [17]. It was first released in 1998, and since then it has grown to
enjoy international recognition as an effective and useful framework for geomod-
eling. It has been used to model carbon emission and deforestation [13], bio-
diversity loss [15], urbanization and climate change [11], emission reduction [9]
and urban growth [19]. Testimony of Dinamica’s maturity are the intergovern-
mental collaborations where it is used. Among its application to public policies
in collaboration with governmental institutions in Brazil and abroad we cite the
World Bank and the United Nations Development Programme. For instance,
the REDD project, which integrates state departments from Bolivia, Peru and
Brazil, is using Dinamica to map the southwestern Amazon1. As another exam-
ple of relevant use, Dinamica’s simulation of the environmental impact of the
Santarém-Cuiabá Interstate (BR 163) has been key to lead the Brazilian gov-
ernment to create a national preservation area along this highway2. Finally,
SimAmazonia, a large effort to model climate change in the Amazon Basin using
Dinamica EGO [16], is part of the IPCC3 that shared the Nobel Peace prize of
2007 with Al Gore.
1 http://csr.ufmg.br/map/.
2 http://www.csr.ufmg.br/dinamica/applications/cuiaba-santarem.html.
3 www.ipcc.ch/publications and data/ar4/wg3/en/ch9.html.

c© Springer International Publishing Switzerland 2015
A. Pardo and S.D. Swierstra (Eds.): SBLP 2015, LNCS 9325, pp. 44–58, 2015.
DOI: 10.1007/978-3-319-24012-1 4

http://csr.ufmg.br/map/
http://www.csr.ufmg.br/dinamica/applications/cuiaba-santarem.html
www.ipcc.ch/publications_and_data/ar4/wg3/en/ch9.html

The Dinamica Virtual Machine for Geosciences 45

Dinamica EGO was created as an assemblage of components implemented
in C++, called functors, which represent typical cartographic operations [20].
Each functor has a number of inputs, and produces a number of outputs. The
edges that interconnect these ports determine how data flows in a Dinamica’s
application. The original Dinamica’s design had one fundamental disadvantage:
functors were complex components implementing complete algorithms. Given
this coarse granularity, whenever Dinamica’s users needed to implement new
behaviors, they had to ask the developers of that framework to code new functors.

To circumvent this shortcoming, we have implemented DinamicaVM, a vir-
tual machine designed to make the Dinamica framework more flexible. The goal
of this paper is to describe this virtual machine and its companion programming
environment. DinamicaVM contains an instruction set, a library of external com-
ponents, a scheduler, a garbage collector and an optimizer. The instruction set
is built around four functors: map, Reduce, Window and While, plus functors
for simple operations such as And, Add, Mul, etc. Map and Reduce are typi-
cal functional-oriented patterns, today heavily used in parallel programming [3].
Henceforth, to avoid confusion with the maps used as Dinamica’s main data
type, we shall call the map functor Apply. Window returns a neighbourhood
within a map. While receives a map, and a state, and return a new state which is
a function of the input map. In Sect. 3 we introduce, informally, the semantics of
each of these four core building-blocks of Dinamica EGO. The architecture that
these four components define finds no equal in other systems built with similar
purpose, as we explain in Sect. 5.

Applications built in DinamicaEGO manipulate large data: maps having
70 K ×70 K cells are common [18]. However, Dinamica’s programming environ-
ment has been designed with focus on expressivity, not efficiency. EGO Script,
the graphical programming language that embodies this environment, ensures
referential transparency; hence, fostering a functional – side effect free – user
experience. In order to ensure that such abstractions can be implemented effi-
ciently, Dinamica applies a number of optimizations onto chains of functors, after
these elements are linked together, but before they are deployed in the runtime
system. In Sect. 4 we describe these optimizations. Some of these techniques
are not new: they have already being implemented in functional languages [21].
Nevertheless, we revisit them under the light of a virtual machine customized
to handle maps and tables that represent geographic entities. For instance, even
though cache optimizations are well studied, we claim the cache-related trans-
formations from Sect. 4.2 as original contributions of this paper.

2 Dinamica in One Example

We illustrate the basic elements of Dinamica EGO via the implementation of
Conway’s Game of Life [7]. Figure 1 shows a screenshot of this implementation.
The game happens on a two-dimensional grid of square cells. Each cell can be
either active or inactive. The state of all the cells in a grid determine a generation
of the game. Generation g +1 is a function of generation g. The state of cell i at

46 B.M. Ferreira et al.

generation g+1 is determined by the state of this cell’s neighbours, at generation
g. The neighbourhood of a cell i is the 3×3 grid centered at i, excluding i itself.
If this neighbourhood contains 2 or 3 active cells, i will be active in the next
generation, otherwise, it will be inactive. Conway’s Game of life is the canonical
example of cellular automaton. Dinamica uses, among other techniques, different
cellular automata to model land evolution due to human occupation [17].

(a.1)

(a.2)

(a.3)

(b)

(c)

(c.2)

(c.1)

(d)
(e)(b.1)

(f)

Fig. 1. The implementation of Conway’s Game of Life in Dinamica EGO. Letters in
parentheses are not part of the original screenshot.

The application in Fig. 1 reads two inputs: an original map (a.1), plus an
integer indicating how many generations of the game will be produced (a.2). Its
output is the map after the final generation (a.3). A Repeat functor (b) produces
the successive generations of the game. Repeat is a specialization of a more
general functor called While, which we describe in Sect. 3. Repeat may either read
a new map, or work on data that it sends back to its input port. This feedbacking
is implemented by a functor called Multiplexer (b.1). Multiplexers are equivalent to
the φ-functions so ubiquitous in compiler analyses and optimizations [2]. We use
an Apply functor (c) to produce generation g+1 of the game, given generation g.
This component applies some operation on each cell of the input map according
to an iterating index (c.1). In this particular example, we are using each Apply’s
index i to derive a Window (e) of 3 × 3 cells centered at i. A Reduce operator
sums up the number of active cells on each neighbourhood. If this neighbourhood
contains 2 or 3 active cells, then i will be active in the next generation, otherwise
it will be inactive.

Some of the functors used in this example deal with data-structures. For
instance, Window reads a map, plus an index, and returns a neighbourhood
within the map. Other functors operate on individual data. For instance, the if
container (f) implements a conditional expression made of several smaller com-
ponents, which we have not shown for the sake of readability. These components,
e.g., Equal, And, Or and LessThan, implement unary and binary operations. Users
program applications in Dinamica EGO by combining these operators. In par-
ticular, the control flow of a Dinamica EGO program is determined by how the
different instances of Apply, Reduce, Window and While are interconnected. The
next section provides more details about each of these components.

The Dinamica Virtual Machine for Geosciences 47

Graphical User Interface &
Command Line Tools

Functor
Library

Core
Functors

Optimizer

Garbage
Collector

Scheduler

Ahead of Time
Compiler

Runtime Environment

Interpreter

Instruction Set Architecture

Programming Environment Java
C

+
+

U
se

r's
 V

ie
w

D
ev

el
op

er
's

V

ie
w

Type
Checker

Application
+

Data

Fig. 2. A schematic view of DinamicaVM.

3 The Dinamica Virtual Machine

Dinamica EGO runs on a virtual machine called DinamicaVM. Figure 2 shows a
schematic view of this virtual machine, including its programming environment.
Dinamica provides its users with a Graphical User Interface, which is imple-
mented in Java. It is also possible to load and run applications via a suite of
command line tools. These applications are ensembles of functors. This virtual
machine uses a set of functors, which include Apply, Reduce, While and Window.
It also provides a library of components, which exist either due to efficiency
reasons, or to keep compatibility with applications built prior to Dinamica 2.4.

The runtime environment of Dinamica EGO consists of an optimizer, and
ahead-of-time compiler, a scheduler, an interpreter and a garbage collector. The
ahead-of-time compiler converts Apply expressions, i.e., expressions that will be
applied on every cell of a map or table, into binary code. These expressions are
defined by Dinamica’s user through a syntax that we call EGO Script. Trans-
lation to binary works in two steps: first EGO Script commands are converted
to C++ instructions. Then, these instructions are compiled into binary code
by gcc. The scheduler sorts the functors topologically, and forwards this infor-
mation to the interpreter. If the target machine has multiple cores, then the
scheduler parallelizes the execution of functors according to their dependences.
The memory occupied by data structures that are no longer used are reclaimed
by a garbage collector, which is based on reference counting. Cyclic dependences
are not a problem in Dinamica, as it is not possible to create circular structures
in it. In this section, we shall explore the four key components that this virtual
machine interprets: Apply, Reduce, Window and While.

Apply. The Apply functor receives two inputs: (i) a map m, whose each cell
has type t, e.g., m : Map〈t〉, and (ii) a function f : t �→ t, that transforms the
contents of each cell. The functor then applies f onto each cell of m, yielding a
new map m′. Figure 3(a) provides a visual representation of Apply when used in
a program that increments every cell of a matrix of integers. The shapes used

48 B.M. Ferreira et al.

(a)

(b)

(c)

(d)

Fig. 3. The four high-level functors in DinamicaVM’s instruction set architecture.
(a) Apply; (b) Reduce; (c) Window; (d) While.

here are pragmatic. They are just visual triggers to help the user to identify the
functors and its ports.

In Dinamica’s Jargon, Apply is a Container. A Container is a functor that
may incorporate other functors. In terms of implementation, Containers follow
the “composite” design pattern [6]. Containers, like every other functor, may
have input and output ports. An Apply has only one input port, which receives
the target map, and only one output port, which yields the new version of
the map. However, contrary to regular functors, Containers have also internal
ports, which are used to communicate with their components. Apply has only
two internal ports. The first is Step, which returns the contents of a cell of the
input map. This element keeps an internal state, in such a way that successive
invocations of it return always different elements, which come from contiguous
positions in a column-major traversal of the map. The second internal port is
Set, which causes a value to be written in a position of the output map that
corresponds to the last index visited by Step in the input map.

The Dinamica Virtual Machine for Geosciences 49

Apply is one of the most used components in the Dinamica’s ecosystem.
Examples of its use include mapping coordinates into administrative regions
such as countries, states and municipalities; mapping altitude into costs; map-
ping cells into slope values, which are calculated given these cells’s neighbours,
etc. Thus, it is very important that this component be implemented efficiently.
Each iteration of Apply uses data that is completely independent from the data
used by the other iterations. In the PRAM (parallel random-access machine)
model, Apply can be implemented to run in O(1). Thus, this functor is imple-
mented to run in parallel.

Reduce. Reduce takes a map m of type Map〈t〉, a binary operator ⊕, of type
t′ × t �→ t′, and a seed s of type t′. It then produces a single value v of type t′,
such that v = s⊕m[0]⊕m[1]⊕ . . .⊕m[n− 1]. In this case, m[0], . . . m[n− 1] are
all the cells in m, assuming that m has n cells. Figure 3(b) shows an application
that sums up all the elements in a map of integers, thus producing an integer as
its result.

Like Apply, Reduce is also a Container. It has one internal input, Set, which
bears the same semantics as the component of same name in Apply. It has one
internal output port, Step, which delivers to the internal functors the current
value of the iteration. A functor Mux performs the function of the accumulator
used to keep track of the current value of a reduction. This functor, if applied
on a n1 × n2 map, runs sequentially in O(n1 × n2). We can parallelize it for
a few operations, which are commutative and associative, such as summation,
multiplication, minimum and maximum. In this case, it runs in O(ln(n1 × n2))
in the PRAM model.

Window. Several applications implemented in Dinamica use small neighbour-
hoods within a map: finding the average slope of a coordinate, with regard to its
neighbours; detecting borders, smoothing images, applying convolutions, finding
minimum/maximal cost paths, etc. Therefore, Dinamica provides users with an
operator to find neighbourhoods in maps: the Window functor, whose inputs and
output are represented in Fig. 3(c).

Window has three inputs ports, which receive a map, the size of a neigh-
bourhood’s side and an anchor, e.g., the coordinate that is the center of the
neighbourhood. It outputs a set of cells that constitute the neighbourhood. The
vast majority of all the algorithms built in Dinamica use squared neighbour-
hoods whose sides contain an odd number of elements, and whose center point
is the anchor. Because this setup is so common, it is heavily optimized, as we
explain in Sect. 4.2.

While. Most of Dinamica EGO components are stateless. Data structures are
usually copies, instead of being modified in place, for instance. However, there are
cases when keeping track of state is desirable for efficiency reason. For instance,
a stateless functor to model the movement of a ball, under the force of gravity
only, when let loose onto an elevation map, could lead to a formidable number
of copies of the target map. Dinamica avoids such situations by providing users

50 B.M. Ferreira et al.

with a statefull functor – the While iterator. The graphical representation of this
element can be seen in Fig. 3(d).

An While has one input port, which receives an index set. An index set is a
collection of sortable elements that index a data-structure: coordinates on a 2D
or 3D map, points on a line, rows in a table, etc. The While has an internal Step
port, which keeps track of the elements in the index set still to be processed.
While also has an internal Set port, which may update the index set with new
elements. Thus, in practice, While implements worklists: as long as the worklist is
not empty, this functor perform an action. DinamicaVM uses While, for instance,
to implement searches by depth and breadth in maps. A very common index set
consists in contiguous sequences of integer numbers. This case is so common that
we have a specialization of While – the Repeat functor – optimized to use it.

Specific Components. The While functor seen in Sect. 3, plus the binary and
unary operators of Dinamica EGO define a Turing complete language. Turing
completeness comes from the fact that these functors subsume the While for-
malism, typically used to illustrate programming language semantics [14]. Nev-
ertheless, there are applications that do not translate easily into amalgamations
of these few elements. In particular, there exist behaviors that our optimiza-
tions from Sect. 4 do not derive automatically. Thus, Dinamica EGO provides
a few specific – higher-level – components which are not implemented as com-
binations of the four previously described functors. These components are also
necessary to keep compatibility with applications developed prior to Dinamica
v2.4, which did not use the virtual machine that we describe in this paper. This
library includes a set of small functors with utilities purpose. This functors are
for arithmetical operations and helpers for loops (such as muxes).

For instance, Dinamica EGO contains a functor called CalcCostMap, which
constructs cost-surface maps out of raster images [4]. This functor has two inputs:
a friction map, and a map of source points. The outcome of a cost calculation is
a map that tells us, for each cell, the minimum cost to reach one of the source
cells. This problem emerges, for instance, whenever it is necessary to determine
the paths that roads must traverse to link each interior city to a given set of
harbours. The cost calculation problem is usually solved via chaotic iterations.
We start with a solution map in which each cell is mapped to an infinitely large
cost. Then, we iterate successive applications of the operator below, until a fixed
point is reached:

y
cost(x) = min{

cost(x)

cost(y) + friction(x)

sqrt(2) (cost(z) + friction(x)) zz
x yy
y zz

We have implemented the chaotic iterations as successive applications of four
loops, whose iteration space is given in Fig. 4(a). Each of these loops is paral-
lelized independently. Figure 4(b) shows the pattern of dependences in the first
loop, which traverses the map from the upper-left corner towards the lower-right
corner. The execution runtime has a predefined number of available workers.
Each worker has a task queue and can run a single task at a time. Tiles that

The Dinamica Virtual Machine for Geosciences 51

1 2 3 4

3 4 5 6

5 6 7 8

(a) (b)

(c) (d)

Fig. 4. (a) The four loops that implement the chaotic iterations of the CalcCostMap
functor. (b) Dependencies between tiles in the first loop: upper-left to lower-right.
(c) Tiles with the same number can be processed together in the first loop. (d) Example
of cost map that Dinamica produces.

must be processed are organized as a digraph of pending tasks. Tasks become
eligible to run after all their dependencies have been processed. If a thread is
idle, then it reclaims a tile that has no pending dependencies. This pattern con-
tinues until all the tiles have been processed. If the task queue of a processor
becomes empty, then it might steal work from the queue of other processor. If a
thread cannot steal any task, then it votes for the end of the computation. The
computation terminates when a consensus is achieved among all the workers.

In the previous Dinamica EGO architecture, the granularity of composition
was much higher. That is to say that users make use of fewer components to
build applications, but these components themselves, were already fairly com-
plex, implementing very specific algorithms themselves. Optimizations were only
inside functors or very specific [5]. Now, we have programmable blocks that can
be combined in a much finer granularity. It enables the implementation of more
general optimizations as we describe next.

4 Optimizations

In order to be accepted by its users, the Dinamica Virtual Machine had to be
at least as efficient as the original implementation of Dinamica’s runtime, which
was used until Dinamica v2.4, last released in 2014. The key to achieve this
efficiency are optimizations. Not only the implementations of Apply, Reduce,
While and Window are highly engineered, but also the way that these compo-
nents interact is optimized. All the optimizations that we describe here, except

52 B.M. Ferreira et al.

the prefetching from Sect. 4.24, are applied after an application has been type
checked, but before its modules start to run. EGO Script’s type system is sta-
tic, i.e., types are known before an application starts running. Furthermore, this
language does not support the dynamic loading of components, like PHP or
JavaScript do. Therefore, we know the size of each map cell that is manipu-
lated within an application, and we have a complete view of the dependence
graph between components. This knowledge is important to generate code for
the routines that read data, and move data between different functors. In this
section we briefly touch the most important transformations that DinamicaVM
applies onto its building blocks before an application runs. All the numbers that
we show alongside the description of the optimization have been obtained in an
Intel Core i5 with clock of 2.67GHz and 8GB of RAM.

4.1 Fusion

Fusion is a transformation that we implement onto combinations of Apply +
Apply, and Apply + Reduce. This optimization is common in functional lan-
guages [21]. It consists in combining the operators used by different functors in
the following way:

Apply f (Apply g m) = Apply (f ◦ g) m

Reduce s f (Apply g m) = Reduce s f ′ m
where f = λ(x, y) . x ⊕ y

and f ′ = λ(x, y) . g(x) ⊕ y

Function fusion is not a new idea of ours. If fact, we are using a very lim-
ited form of fusion, as we only apply it to two combinations of functions. More
extensive implementations have been described, for instance, by Jones et al. [8].
Nevertheless, our simple implementation of function fusion is enough to speed
up some of Dinamica’s applications dramatically.

Figure 5 illustrates some of these performance gains. In this example we are
using three very simple instances of Apply and Reduce:

Inc m = Apply (λx . x + 1) m
Div m = Apply (λx . x/2.17) m
Sum m = Reduce 0 (λ(x, y) . x + y) m

In the figure we use random square matrixes of integers having sides of 5.0 K,
7.5 K and 10.0 K cells. Without fusion DinamicaVM takes 9.940 s to Div◦Inc every
cell of the 103×103 matrix. Once fusion is activated, this time drops to 5.222 s. In
the case of Reduce, gains are of similar nature. It takes us 7.294 s to Sum◦ inc the
matrix with 10 K rows without fusion, and 2.998 s if we use fusion. These gains
are due to two factors: the elimination of intermediate data structures, and the

4 Prefetching is part of the implementation of Window; it does not require any program
transformation.

The Dinamica Virtual Machine for Geosciences 53

Fig. 5. Example of fusion. The Apply operator is always the increment function, and
the Reduce operator is the sum of integers.

improved locality. Concerning the first factor, fusion automatically eliminates
the need to copy the map that the leftmost Apply produces. As for locality,
the input map will be traversed only once instead of twice. Indeed, only one
iteration is necessary for any sequence of applications of the Apply functor, e.g.:
apply f1 (. . . (apply fn m) . . .) = apply (f1 ◦ . . . ◦ fn) m.

Fusion’s improvements are proportional to the complexity of the operator
used in Apply or Reduce. The more complex is the computation used inside these
functors, less performance gains we observe. For instance, consider the following
composition: Apply Normalize (apply calcSlope m). In this example, Normalize
is a simple linear function of the input value, but the calcSlope operation is a
substantially more complex functor present in the Dinamica EGO library. It
applies a Reduce over the output of a Window for each index in the input map.
For a 7500 × 7500 input map, fusion gives us 6 % of speedup in this example.

4.2 Window Optimizations

Window is a heavily used functor; thus, it is natural that it be optimized. Dinam-
icaVM applies two optimizations on Window: prefetching and unrolling. The
latter is only applicable on 3× 3 instances of Window. Prefetching avoids unnec-
essary trips to main memory in order to collect the pieces of a squared window
view. Unrolling removes unnecessary control flow from the most common type
of view that we have observed in Dinamica’s applications.

Prefetching: most of the applications that use Window slide it over an image
in row-major order, that is, starting from the upper-left corner of an image,
and going to its lower-right corner. This pattern is so common because it is
the default order in which Apply and Reduce evaluate the elements of a map.
Our optimizer ensures that each cell of a Window is read only once from main
memory, if Window is used in that way. To ensure this property, we pre-fetch the
lines that will be traversed by Window.

54 B.M. Ferreira et al.

(c)
(a)

(b)

Line 1

Line 2

Line 3

Fig. 6. The three-lines cache. The dashed arrows show line pointers in the previ-
ous iteration of Window. The solid arrows show the pointers in the current iteration.
(a) Input map. (b) Cached lines. (c) Center of 3 × 3 window.

Figure 6 illustrates this approach for a 3×3 instance of Window. In this exam-
ple, each time Window is called, it reads nine elements of the input map. Instead
of fetching this data when Window is created, we pre-fetch three entire lines of
the map, and let Window slide on these lines. Once Window reaches the rightmost
border of the image, we discard the topmost line, and read one line more from
main memory. If Window works with submatrices of n rows, then we should, in
principle, keep n lines in cache. However, most of the applications available in
the Dinamica’s ecosystem work with 3×3 windows. Thus, we chose to work with
only three lines at a time. Consequently, larger instances of Window may lead to
multiple trips to the main memory. The prefetching is only necessary for maps
that cannot fit entirely in the L0 cache. In the absence of this optimization, a
n × n Window causes each – non-border – map cell to be read n2 times. Usually
data in the same row of Window are fetched only once to the L0 cache; however,
data may be fetched more times if it happens to be read as part of different rows
of Window.

Performance Improvement Due to Pre-fetching: Figure 7(a) shows the
performance of three different instances of an image smoothing algorithm. The
algorithm uses a 3×3 convolution matrix that does simple average to implement
smoothing. The smoothing filter returns, for a given cell i, the average of all the
immediate neighbours of i plus i itself. The three instances of the algorithm are:

– Library – the algorithm was implemented using a monolithic filter available
in Dinamica’s library.

– DVM - No Opt – our algorithm, built as the following combination of
functors:
Smooth m = Apply ((Reduce Average) ◦ Window) m

– DVM - Prefetching – the previous implementation, with prefetching
enabled in DinamicaVM.

Fig. 7(a) varies the number of times that the image is smoothed. Each time
requires one application of the smoothing algorithm. Our optimization speeded
up Window by a factor that reached 3.9x for 40 applications of the smoothing
algorithm. It even surpassed the library component, which has a much more
monolithic design. Our optimized version of image smoothing is 1.7x faster.

The Dinamica Virtual Machine for Geosciences 55

Unrolling: the most used type of Window is a 3 × 3 squared view of a map,
with anchor in the center. Because this pattern is so common, we use a special
implementation of it, which has no control flow. This implementation reads a
chunk of memory that is large enough to fit each one of the nine indices to be
processed. It then divides this memory into nine pieces, and fills up the positions
in the map view with them. The size of memory that must be read is determined
by the ahead-of-time compiler, before Window is invoked, but after the type of
its input is already known.

Figure 7(b) shows the performance gains obtained due to unrolling and
prefetching when applied on the implementation of Conway’s Game of Life.
This application was discussed in Sect. 2. To provide some perspective to the
reader, we show the runtime of the implementation of Conway’s automaton in
Dinamica 2.4, before the virtual machine was released. In this case, the game
is implemented with a set of functors from the library. The series “VM Base”
shows our application running on the virtual machine without either prefetch-
ing or unrolling. In this case, DinamicaVM is 59 % slower than Dinamica v2.4’s
implementation of Conway’s game. However, once we turn on optimizations, we
see substantial gains: Unrolling already puts DinamicaVM’s times on pair with
v2.4’s results. And the combination of unrolling and prefetching makes us 57 %
faster than the old version of Dinamica. In other words, the two optimizations
makes our virtual machine 3.6x faster.

Fig. 7. (a) Performance gain due to prefetching in an image smoother. (b) Performance
gains in Conway’s Game of Life (Sect. 2) due to unrolling and prefetching. X-axis is
data-size (image size or number of generations), and Y-axis is time, in msecs.

5 Related Work

Other Geomodeling Tools: There exist many different tools that support the
development of land use models. Some of them enjoy commercial success; others
are popular in the academia. We are aware of four frameworks having a moderate
to large user base that might compete with Dinamica in the geomodeling niche:

56 B.M. Ferreira et al.

ArcGis5, Idrisi6, and PCRaster7. A direct comparison between all these tools
is not possible, because they use different algorithms to perform simulations.
Furthermore, there is not a common benchmark suite that they all can handle.
Nevertheless, there exist a few limited studies comparing some of these tools.
As an example, Pérez-Vega et al. [15] have compared Dinamica and Idrisi, not
from a performance perspective, but from the point of view of the accuracy of
each modeling algorithm. Dinamica is substantially faster, and more accurate in
some situations. Idrisi’s algorithm, based on neural networks, is more accurate
in others. We have re-implemented one of the models from the Idrisi 32 v.2
tutorial (land use map (worcwest), source map (newplant) and destination map
(powerline)), in both Dinamica EGO v1.8 and ArcGis 9.3. Figure 8 shows the
result. The goal of this model is to find an optimum pathway in a map, given the
cost of traversing the terrain. We have experimented with different resolutions:
5 meters (2,880 × 2,880 cells) and 15 meters (960 × 960 cells). Dinamica uses
an iterative algorithm, which we might stop after a few passes over the map, or
we might iterate until reaching an optimal solution. We did not perceive visual
difference between the path found within 3 iterations or Dinamica’s optimal
solution. For the 15 meters models, Dinamica’s 3-passes solution was 120 times
faster than Idrisi’s and 264 times faster than ArcGis’s. For the 5 m version,
Dinamica’s 3-passes model took 46 s, while neither Idrisi nor ArcGis were able
to run the model. This difference is larger in multicore computers. For example,
on a laptop DELL Alienware with 8 cores, Dinamica’s 2-passes solution takes
less than 2 s to process the 15-m model, almost doubling performance. In this
same setup, the computing time of the other GIS platforms increased due to
disk accesses. Mas et al. [12] compared Dinamica EGO in relation to CLUE-S
and GEOMOD.

Dataflow Programming Languages. Dinamica EGO implements a dataflow
programming environment. Quoting Daniel Hils [10], “The central concept of the
data flow model is that a program can be represented by a directed graph where
nodes represent functions and where arcs represent the flow of data between
functions.” The idea of representing computation as graphs has been studied at

Modeling method 15 m (9602) 5 m (2, 8802)

Dinamica, 2 iterations 3 sec 31 sec
Dinamica, 3 iterations 5 sec 46 sec
Dinamica, optimum 38 sec 6 min 6 sec

Idrisi MacroModeler 32 v.2 10 min –

ArcGIS ModelBuilder 9.3 22 min –

Fig. 8. A comparison between three different tools.

5 http://www.esri.com/software/arcgis.
6 http://clarklabs.org/.
7 http://pcraster.geo.uu.nl/.

http://www.esri.com/software/arcgis
http://clarklabs.org/
http://pcraster.geo.uu.nl/

The Dinamica Virtual Machine for Geosciences 57

least as early as 1966 [1]. However, we are not aware of any data flow language
that supports geomodeling in particular.

6 Conclusion

This paper has presented DinamicaVM, the virtual machine that supports the
execution of applications built on top of the Dinamica EGO geo-scientific frame-
work. DinamicaVM differs from other virtual machines, such as Oracle’s JVM
or Microsoft’s .NET, in a number of ways. In particular, DinamicaVM is not a
general purpose virtual machine: it is tailored to run applications that process
very large images representing cartographic maps. Furthermore, as we saw in the
paper, DinamicaVM has a high-level instruction set, which includes components
borrowed from functional programming, such as map (e.g., Apply) and Reduce.
Dinamica EGO is open source, and is available on-line.

This work lets us draw conclusions which are also valid to other data-flow and
functional programming environments. First, it is possible to design and imple-
ment a very expressive instruction set, and still ensure that these instructions
can be interpreted efficiently. Key to this efficiency are the optimizations that
we apply after type-checking the application, but before loading it up. Second,
it is possible to make the most of the specific nature of applications that will
run on the virtual machine with very positive results. In our case, the virtual
machine is customized to handle large images and tables, which are typical in
geosciences. This observation lets us believe that the techniques currently avail-
able in DinamicaVM can be of use in other systems that process large images.

References

1. Bohm, C., Jacopini, G.: Flow diagrams, turing machines and languages with only
two formation rules. Commun. ACM 9(5), 366–371 (1966)

2. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph.
TOPLAS 13(4), 451–490 (1991)

3. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

4. Eastman, J.R.: Pushbroom algorithms for calculating distances in raster grids. In:
Auto-Carto, pp. 288–297. ASPRS and ACSM (1989)

5. Ferreira, B.M., ao Pereira, F.M.Q., Rodrigues, H., Soares-Filho, B.S.: Optimizing
a geomodeling domain specific language. In: Simposio Brasileiro de Linguagens de
Programacao. Sociedade Brasileira de Computacao (2012)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co. Inc.,
Boston (1995)

7. Gardner, M.: Mathematical games - the fantastic combination of John conway’s
new solitaire game life. Sci. Am. 1(223), 120–123 (1970)

8. Gill, A., Launchbury, J., Peyton Jones, S.L.: A short cut to deforestation. In: Pro-
ceedings of the Conference on Functional Programming Languages and Computer
Architecture, FPCA 1993, pp. 223–232. ACM, New York (1993). http://doi.acm.
org/10.1145/165180.165214

http://doi.acm.org/10.1145/165180.165214
http://doi.acm.org/10.1145/165180.165214

58 B.M. Ferreira et al.

9. Hajek, F., Ventresca, M.J., Scriven, J., Castro, A.: Regime-building for REDD+:
evidence from a cluster of local initiatives in south-eastern Peru. Environ. Sci.
Policy 14(2), 201–215 (2011)

10. Hils, D.D.: Visual languages and computing survey: data flow visual programming
languages. J. Visual Lang. Comput. 3, 69–101 (1992)

11. Huong, H.T.L., Pathirana, A.: Urbanization and climate change impacts on future
urban flood risk in can tho city, Vietnam. Hydrol. Earth Syst. Sci. Discuss. 8(6),
10781–10824 (2011)

12. Mas, J.F., Kolb, M., Paegelow, M., Camacho Olmedo, M.T., Houet,
T.: Inductive pattern-based land use/cover change models: a compari-
son of four software packages. Environ. Model. Softw. 51, 94–111 (2014).
http://dx.doi.org/10.1016/j.envsoft.2013.09.010

13. Nepstad, D., Soares-Filho, B., Merry, F., Lima, A., Moutinho, P., Carter, J., Bow-
man, M., Cattaneo, A., Rodrigues, H., Schwartzman, S., McGrath, D., Stickler, C.,
Lubowski, R., Piris-Cabeza, P., Rivero, S., Alencar, A., Almeida, O., Stella, O.:
The end of deforestation in the Brazilian amazon. Science 326, 1350–1351 (2009)

14. Nielson, H.R., Nielson, F.: Semantics with Applications - A Formal Introduction.
Wiley, New York (1992)

15. Pérez-Vega, A., Mas, J.F., Ligmann-Zielinska, A.: Comparing two approaches to
land use/cover change modeling and their implications for the assessment of bio-
diversity loss in a deciduous tropical forest. Environ. Model. Softw. 29(1), 11–23
(2012)

16. Soares-Filho, B., Nepstad, D., Curran, L., Cerqueira, G., Garcia, R., Ramos, C.,
Voll, E., McDonald, A., Lefebvre, P., Schlesinger, P.: Modelling conservation in the
Amazon basin. Nature 440, 520–523 (2006)

17. Soares-Filho, B., Pennachin, C., Cerqueira, G.: Dinamica - a stochastic cellular
automata model designed to simulate the landscape dynamics in an Amazonian
colonization frontier. Ecol. Model. 154, 217–235 (2002)

18. Soares-Filho, B., Rajo, R., Macedo, M., Carneiro, A., Costa, W., Coe, M.,
Rodrigues, H., Alencar, A.: Cracking Brazil’s forest code. Science 344(6182), 363–
364 (2014). http://www.sciencemag.org/content/344/6182/363.short

19. Thapa, R.B., Murayama, Y.: Urban growth modeling of Kathmandu metropolitan
region, Nepal. Comput. Environ. Urban Syst. 35(1), 25–34 (2011)

20. Tomlin, C.D.: Geographic Information Systems and Cartographic Modelling.
Prentice-Hall, Englewood Cliffs (1990)

21. Wadler, P.: Deforestation: transforming programs to eliminate trees. Theor. Com-
put. Sci. 73(2), 231–248 (1988)

http://dx.doi.org/10.1016/j.envsoft.2013.09.010
http://www.sciencemag.org/content/344/6182/363.short

Go Model and Object Oriented Programming

Haiyang Liu(B) and Zongyan Qiu

LMAM and Department of Informatics, School of Mathematics,
Peking University, Beijing, China
{liuhaiyang,zyqiu}@pku.edu.cn

Abstract. Go is a contemporary language aiming to support OO
programming where the core OO feature, inheritance, is intentionally
excluded. Go uses the concepts of embedding and interface to provide
its object model. To understand the design of Go and its consequences,
we develop a simple Go-like model language, mini-Go, which abstracts
Go’s interface-based OO features. The formal defined type system and
semantics are given. In addition, we propose an even simpler language
μGo where the feature of pointers is further removed. We demonstrate
that μGo is as expressive in OO as the original language with pointers,
which provides a uniform model for Go-like OO programming. We inves-
tigate the OO model of the Go-like languages using μGo in detail, point
out that the absence of open recursion brings difficulties in OO design,
and then propose a novel design pattern to mimic the open recursion
feature to overcome the difficulties.

Keywords: Programming language · Object Oriented · Go

1 Introduction

The Object Oriented (OO) programming facilities play an important role in
the development of programming languages and software engineering practice.
Class/Inheritance are core in mainstream OO languages to support OO pro-
gramming necessities, e.g., encapsulation, subtyping, polymorphism, etc. Addi-
tionally, OO facilities, like class, composition, inheritance, and other OO facilities
are also heavily used in design patterns, which can, in many useful cases, give
clean and neat solutions [1].

Although class and inheritance are basic language features for OO program-
ming, sometimes they are misused or overused in practice, and that leads to
inflexible or too complicated designs. By recognizing this problem, Gamma
et al. [1] proposed two principles for reusable OO design:

– Program to an interface, not an implementation.
– Favor object composition over class inheritance.

Both aim to restrict the use of class and inheritance in practice. These principles
are reflected in the late OO languages and program designs. Java introduces the
interfaces – a special kind of abstract classes – and use it in its standard library
c© Springer International Publishing Switzerland 2015
A. Pardo and S.D. Swierstra (Eds.): SBLP 2015, LNCS 9325, pp. 59–74, 2015.
DOI: 10.1007/978-3-319-24012-1 5

60 H. Liu and Z. Qiu

to support mix-in paradigm to enhance the flexibility. A statistic research on
practical Java projects [2] shows that more interfaces than classes are used in
projects, while most inheritance is shallow (and then restricted).

Those lead people to think about the OO language design which emphasizes
more on the interfaces rather than classes, composition rather than inheritance,
and simple inheritance/implementation rather than complicated type hierarchy.
The Go programming language developed by Google reflects this trend.

Go [3] is a relatively new language designed by Rob Pike, Ken Thompson,
and others. It was conceived in late 2007 and published in November 2009. Go is
a compiled, concurrent, garbage-collected, statically typed language designed to
solve problems introduced by multi-core processors, networked systems, massive
computation clusters, and the web programming model [4].

Go supports OO programming in a novel way. A typical OO language, e.g.
Java or C#, supports OO via the concepts of class and inheritance. In contrast,
Go has no class, nor inheritance. It uses embed types and interfaces to support
OO programming. The embed types enable code reuse, and interfaces enable
polymorphism. Go designers believe that eliminating inheritance makes the lan-
guage more lightweight and easier to use, and still flexible and expressive [5].

We are interested in how the embedding and special interface facilities of
Go affect its expressiveness and conciseness for OO programming; and what the
semantics of Go’s object oriented model is with respect to the subtle difference
between interfaces of Go and other languages. Then we conduct this work. First
we build a concise model language out of Go in Sect. 3, and defines its type system
and semantics; then in Sect. 4, we found that the pointers can be removed to have
μGo, which is a simpler Go-like language. Moreover, we find out some inherent
weak points of Go model in supporting OO programming in this study, and it
will be discussed in Sect. 5.

2 Go: A First Glance

Initially, this section gives a brief introduction of Go with focus on its OOP
related features.

The following interface definitions are taken from Go’s standard package io:

package io

type Writer interface {

Write(p []byte) (n int, err error)
}

type Closer interface {

Close() error
}

type WriteCloser interface {

Writer

Closer

}

The code seems similar to the interface definitions in Java. Here Writer and
Closer are declared as two simple interfaces where each has only one method,
and WriteCloser extends (in term of Go, embeds) both of them.

However, compared with Java or C#, interfaces in Go play different roles,
have different semantics and make the implementation relation implicit. Interface
types have their own values in Go. An interface variables holds an interface value,
which includes the actual value with its runtime type, thus it is more like an

Go Model and Object Oriented Programming 61

object in Java or C#. A type T implements an interface I, if T provides all meth-
ods declared in I, which is so-called “duck typing” in Go. For example, structure
os.File and interface net.Conn below both implement io.WriteCloser, sim-
ply because they provide all methods declared in Write and Close. No explicit
declaration is necessary.

package net

type Conn interface {

Read(b []byte) (n int, err error)
Write(b []byte) (n int, err error)
Close() error
LocalAddr() Addr

//
}

package os

type File struct {

*file

}

func (f *File) Close() error { ... }

func (f *File) Read(b []byte)
(n int, err error){...}

//

A function with a io.WriteCloser parameter will accept an argument of type
net.Conn or os.File. This enables dynamic polymorphism. If we define:

func copyAndClose(w io.WriteCloser, r io.Reader) {

io.Copy(w, r)

i f err := w.Close(); err != nil {

log.Println("Error�closing", err)

}

}

Both copyAndClose(fileA,fileB) and copyAndClose(connA,fileB) are
valid.

People announce that Go supports OOP in a special way [5]. However, we
want to clarify what does it mean that Go supports OOP, and whether or not
this OO model possesses some inherent limitations, and if it does, whether we
can overcome the limitations.

Pierce summarized some main features to identify OOP [6, Sect. 18.1], and
we list them here with some discussions related to Go language:

1. Multiple representations of operations. When an operation is invoked via a
variable on an object, the object itself determines what code gets executed.
This is also called dynamic dispatch, and is the most important characteristic
of OO. In Go, a variable with an interface type I can preserve an interface
value that refer to an object of any type that implements I, and the interface
value determines what code to be executed.

2. Encapsulation. The internal representation of objects is hidden from the client
code. Go provides only package level encapsulation mechanism.

3. Subtyping. The type of an object is just the set of names and types of its
operations. It implies a natural subtype relation, that an object satisfies an
interface I if it satisfies an interface J whose operations is a superset of I’s.
Go’s interface feature provides a perfect pattern of subtyping mechanism.

4. Inheritance. Inheritance between classes in OO languages is a mechanism for
code reuse. Although Go has no class, its embedding mechanism for structures
and interfaces enables code reuse without introducing complex type hierarchy.
This embedding mechanism is just similar to inheritance in the sense of [6].

5. Open recursion. Most OO languages have a special variable called self or
this, which allows a method in a class to invoke methods that are defined

62 H. Liu and Z. Qiu

later in a subclass. Go does not have this feature. Methods in Go need to
declare a receiver variable explicitly, and the variable is not late-bound.

As pointed out above, embedding and interface are the keys in Go’s OO
model, which are main features to support code reuse, while the interfaces sup-
port polymorphism. However, obviously some regular features in common OO
languages are absent in Go, e.g. the type hierarchy and late-bound method
receiver. Do these absences affect Go’s expressiveness and conciseness in OOP?
We will discuss these topics in detail below.

3 Mini-Go: A Model Language for Go OO Model

To conduct a rigorous study on Go’s object model in detail, we need a formal
defined language. We select a subset of Go related to OO programming and
name it mini-Go, as a basis for our investigation.

Fig. 1. Syntax of mini-Go

The syntax of mini-Go is given in Fig. 1, where I and S are interface and
structure type names, respectively; v, x are variable names; a is a data field of
a structure; r is the receiver of a method (like this in Java and C++, but no
special name required in Go). We use overlined terms to denote finite comma-
separated sequences of zero or more elements.

We take only bool here as a primitive data type in the syntax, while other
primitive types can be added without difficulty. Many types of Go—arrays, slices,
maps, functions, and channels—are omitted in this work, simply because they
are less-related to our main subject. Here are only 3 composite types: structures,
interfaces, and pointers. However, unlike in Go [3], here we assume that nil has
a special type Null for the completeness of typing.

We adopt restricted side-effect free expressions in mini-Go. This is not sub-
stantial. Complicated expressions, possibly with side effects, can be encoded

Go Model and Object Oriented Programming 63

with the help of assignments and auxiliary variables. For example, f(x) + g(y)
in Go can be encoded with a + b after a = f(x); b = g(y). We import only some
basic statements for sequential programming, where skip denotes the empty
statement for clarity.

A method signature does not contain the type of its receiver, that simplifies
the description of the method set of interfaces. However, unlike [3], here the
signature contains the method name. Non-method functions in Go are omitted
in mini-Go. This does not affect the expressiveness since every function can be
treated as a method of a dummy structure type. All variables in mini-Go are
declared at the beginning of methods and there is exactly one return statement
at the end. These simplify the semantics of mini-Go.

In addition, structures and interfaces are declared at the beginning of a pro-
gram, and their scope is assumed to be the whole program. Methods are defined
at the global scope. At last, a mini-Go program is just a sequence of interfaces,
structures, and method declarations.

Mini-Go takes the similar typing rules and semantics as Go. Furthermore,
a valid mini-Go program is also a valid Go program (except for skip) which has
the same behavior. For example, the sketch codes given in Sect. 2 are all valid
in mini-Go. From these, we see how mini-Go supports OO programming.

The detail of mini-Go is given in the technical report [7]. We list some impor-
tant typing and semantics rules below with the focus on the OO behaviors.

Fig. 2. Selected typing rules for mini-Go

3.1 Typing

With a static environment Γ of the mini-Go program, we use Γ,C,m � e : T to
assert that expression e has type T in method m of composite type C, where
C may be a structure type or a pointer type to a structure; and use Γ,C,m �
c : com to assert that statement c is well-formed in method m of type C. For
convenience, we use Γs, Γi, and Γt to represent the names of the structures, the
interfaces, the types, respectively. And we use Γe(T) to denote types embedded
in T . In addition, Γm maps a structure, a pointer to structure, or interface type
T to its method set, Γm(T), which includes all T ’s method names and signatures.

64 H. Liu and Z. Qiu

The method set of pointer ∗S includes the methods defined for both S and ∗S,
where S is a structure type. And Γv(T)(m) and Γb(T)(m) are the local variables
and method body of method m of type T respectively.

Figure 2 lists some important typing rules, while the complete set of rules
can be found in the technical report [7].

Γ, S,m � stype(e) = T is denoted as Γ, S,m � e : T for convenience, and we
just write stype(e) = T when the static environment is clear from the context.

Supposing that I is an interface and T is a composite type (structure, pointer,
or interface), we say that T implements I, denoted as Γ � I ≺ T , if I’s method
set is a subset of T ’s. This is defined by the first rule in Fig. 2. The implemen-
tation relation shows that mini-Go has a structural type system for interface
types, which is the so-called “duck typing” feature in Go.

In mini-Go, a right value expression e can be assigned to a left value expres-
sion le of type T , just in cases that:

– e has type T , say Γ, S,m � e : T .
– T is an interface type, and T is implemented by the type of e.
– e is nil, and T is an interface type or pointer type.

We now define the type compatibility relation �, which is the reflexive transi-
tive closure of implementation relation ≺. Meanwhile, we define that Null type
is compatible with all interface types and pointer types as in Fig. 2.

We also give rules for the well-typedness of assignment statements and
method invocation. For the method invocation, firstly, the method signature
is found through the type of receiver, then the types of actual arguments’ types
are checked to be compatible with formal arguments’ types, at last the assign-
ment of return value is checked. The receiver type T0 here can be a structure, a
pointer to a structure, or an interface.

3.2 Semantics

Now we define a structural operational semantics [8] for mini-Go as a configura-
tion transformation. The configurations of mini-Go programs are defined as:

Configure = (Statements × Stack × Heap) ∪ (Stack × Heap)
In a configuration, η ∈ Statements is the current code to be executed. A local
variable stack σ ∈ Stack is a list of frame s : ID ⇀fin Addr, which is a finite
map from identifiers to heap addresses, where ID is a set of names, and Addr
is the heap address space. To be concise, supposing that σ = s :: σ′, we define

σ(x) � s(x) σ[x �→ v] � s[x �→ v] = s \ {x �→ } ∪ {x �→ v}
where x is a variable name, v is a value, and s[x �→ v] denotes the new frame
after updating the frame s with the value v for the variable x.

At last, an object heap h ∈ Heap is a finite partial map:

h : Addr ⇀fin V alue

where V alue = PrimV alue ∪ Addr ∪ V alueID ∪ (Type × V alue)
Here Type is the set of types. Set V alue is divided into four disjoint subsets:
(1) the primitive value set, PrimV alue (true and false for bool, for example);

Go Model and Object Oriented Programming 65

σ, h � ref(le) = addr , assign(le, e) = val
(le = e, σ, h) � (σ, h[addr �→ val])

lookup(dtype(v), dref(v), m) = (vars, cm, val)
vars =

{
r �→ T, ret �→ V, ai �→ Ui, vk �→ Tk

}

σm =
{

r �→ addr0, ret �→ addrr, ai �→ addr i, vk �→ addrk
}

:: σ, addr0,r,i,k /∈ dom(h)

hm = h ∪
{
addr0 �→ val , addr i �→ assign(ai, ei)

}

(cm, σm, hm) � (σ′, h′) σ′, h′ � assign(x, ret) = rval
(x = v.m(ei), σ, h) � (σ, h′[σ(x) �→ rval])

Fig. 3. Selected semantic rules for mini-Go

(2) the address value set, for pointers; (3) the structure value set, where each
object o : ID ⇀fin V alue is a finite partial map from names of data fields to their
values; and (4) the interface value set, Type × V alue, in which every interface
value stores an object with its dynamic type.

In mini-Go, an interface variable holds an interface value, which includes the
actual object with its runtime type. Unlike the class based OO languages, an
object does not know its runtime type in mini-Go, therefore the type information
in the interface value is necessary to support dynamic dispatching.

Mini-Go has only local variables. A variable holds the reference (heap
address) of an object, and the actual object is stored in the heap. In addition, we
suppose that there is an offset function offset : Addr × ID → Addr. For address
a of a structure of type T and a field name f , offset(a, f) gives address af of the
field. We ignore the details of offset, which can be easily built in practice.

The evaluation of a value expression is a routine work, thus we only pay
attention to evaluating a left-value expression and its address. For any left-value
expression e, we can get its address by function ref:

σ, h � ref(e) =

⎧
⎪⎨

⎪⎩

σ(v) e is v,

offset(σ(v), a) e is v.a,

h(σ(v)) e is ∗v.

Then it is easy to define the evaluation function for left-value expressions:

σ, h � eval(&e) = ref(e), eval(e) = h(ref(e)).
And we can now define the functions of dynamic type and of reference to

dynamic value for convenience:

σ, h � dtype(e), dref(e) =

{
stype(e), ref(e), stype(e) /∈ Γi,

T, offset(ref(e), val) stype(e) ∈ Γi, where eval(e) = (T, val).

where the dynamic type and value of an expression of non-interface type are its
static type and the evaluated value respectively, and the dynamic type and value
of an expression of interface type are stored in the interface value.

We list in Fig. 3 only semantic rules for the assignment and method invoca-
tion, while the other rules are given in the technical report [7].

There are two situations for assignment and parameter passing: when we
assign a non-interface value to an interface variable, we need to make a new
interface value from the original value and its type first, then do the assignment

66 H. Liu and Z. Qiu

Fig. 4. Method lookup function of mini-Go

or parameters passing; otherwise, we just assign the value to the destination
variable as usual. To simplify the semantic rules, we introduce an assignment
function to denote the value to be assigned in statement le = e:

σ, h � assign(le, e) =

{
eval(e), stype(le) /∈ Γi or stype(e) ∈ Γi

(stype(e), eval(e)), stype(le) ∈ Γi, stype(e) /∈ Γi.

Then we can unify the different cases in one rule [Asn].
The rule for method invocation is a bit complicated, because we mimic Go

to use different strategies to lookup the method body for pointer, structure
and interface variables. We have a formal definition for a lookup function which
reflects the corresponding rule of Go (Fig. 4). lookup takes the dynamic type
dtype(v) of variable v, the reference dref(v) to the dynamic value of v, and the
method name m as parameters, and determines the local variables vars of m,
its body code cm, and the receiver value val. Because of embedding structures
and interfaces in mini-Go, the lookup function is defined recursively:

1. If method m is defined in type T , we can extract the method body directly.
Mini-Go does not distinguish pointers and non-pointers receivers when calling
methods. Pointers are automatically dereferenced for non-pointer receivers,
and non-pointer variables’ addresses are passed to pointer receivers.

2. If method m is defined in an embedding non-interface type Te, we
can also extract the method body directly, and get the receiver value
h(offset(addr, Te)) = eval(v.Te) as the embedded Te field of v.

3. If method m is defined in an embedding interface type I, we recursively lookup
the method body from dynamic type and value of the embedded interface
value val(I).

Having the method body, a method invocation is split into several stages:
evaluating actual arguments, establishing new method’s environment, executing
the method body, and assigning the return value to the result variable. In rule
[Inv], local variables are vars, and the environment of the method is σm and hm,
where addr0, addrr, addri, addrk /∈ dom(h) are new allocated heap addresses.
We can see that all the arguments, including the receiver, are passed by value.

3.3 Redundancies of Mini-Go and Go

By building a formal model for mini-Go, we find that there are some clear
redundancies in the design of Go. Most importantly, Go provides two concepts

Go Model and Object Oriented Programming 67

Fig. 5. Syntax of μGo

for the receivers to support method dispatching: object values and pointers. As
is pointed in Fig. 4, when passing an object argument to a pointer parameter as
a receiver, the object’s address is taken and passed. Similarly, when passing a
pointer argument to an value parameter as a receiver, the pointer is dereferenced
to pass the object it refers:

type T struct{}
func (r T) byVal() {

}

func (pr *T) byPtr() {

}

var v T; v = T{}

var p *T; p = new(T)
p.byVal() // r gets *p
p.byPtr() // pr gets p
v.byVal() // r gets v
v.byPtr() // pr gets &v

The syntactic sugar gets more complicated when interfaces are involved. The
method set of a pointer type includes the methods of its corresponding value
type, but the method set of a value type does not includes those methods with a
value type receiver. What’s more, interface variables are assigned by value. This
is confusing, and make the semantics complicated.

type ByVal interface {

byVal()

}

type ByPtr interface {

byPtr()

}

var iv_p ByVal = p // OK
var iv_v ByVal = v // OK, copy v
var ip_p ByPtr = p // OK

// ERROR: T does not implements ByPtr
var ip_v ByPtr = v

Non-pointer receivers can always be replaced by pointer receivers, so we can
change the semantics a little to pass the receiver by reference and avoid pointer
types. And we can go further to change the semantics of interface variables,
to allow interface variables preserving the references rather than the values of
objects. This does not restrict the expressiveness of the language, but makes
it possible to remove the pointer types entirely and results in a more uniform
model. These observations lead to a simpler model language μGo, which will be
discussed in Sect. 4.

68 H. Liu and Z. Qiu

4 µGo: A Simplified OO Model Language for Go

Now we develop an even simpler model language for Go, namely μGo, where we
omit the pointers presented in Go, and change the semantics of interface variables
to be references. Figure 5 gives the syntax of μGo, which is almost the same as
mini-Go, except that features related to pointers are completely removed. This
simplifies (and unifies) the syntax of expressions and assignments, and makes
the method definitions concentrating to only one form. The receiver takes the
reference semantics as we mentioned earlier, that will be defined below.

4.1 Typing µGo

We take a similar static type environment Γ as described in Sect. 3. Notations
Γs, Γi, Γt, and Γm have the same meanings as in mini-Go, for the structure name
set, the interface name set, the type name set, and the mapping from a type to
its method set, respectively.

Fig. 6. Selected typing rules for μGo

In Fig. 6 we list some important typing rules for μGo. Since pointers are
absent, the implementation relation ≺ of μGo is defined by only one rule, and
the type compatibility relation � remains the same as in mini-Go. We also define
the static type function stype for μGo as in mini-Go.

The rules for typing assignments, and the well-typedness of method invoca-
tion statement remain the same as in mini-Go. For the invocation, we get the
method signature through the type of receiver, then check types of actual argu-
ments against the types of formal parameters. At last we check the assignment
of return value. The receiver type T0 here can be a structure or an interface.

4.2 Operational Semantics

The configurations of a μGo program has the same form as in mini-Go. However,
the structure of heap is different. Address values are gone in μGo as expected,
and interface values now store the reference to the objects with its type, not the
object itself:

h : Addr ⇀fin V alue

where V alue = PrimV alue ∪ V alueID ∪ (Type × Addr)

Go Model and Object Oriented Programming 69

Fig. 7. Selected semantic rules of μGo

Fig. 8. Method lookup function of μGo

There’s no difference about evaluating the address or value of a variable or
field, except that pointers are not in consideration.

σ, h � ref(e) =

{
σ(v) e is v,

offset(σ(v), a) e is v.a,
eval(e) = h(ref(e)).

And the dynamic type and reference functions remain the same:

σ, h � dtype(e), dref(e)=

{
stype(e), ref(e), stype(e) /∈ Γi,

T, offset(ref(e), val) stype(e) ∈ Γi, where eval(e) = (T, val).

For statements, as in mini-Go, we discuss only the assignment and method
invocation. The semantic rules are given in Fig. 7.

As in mini-Go, assigning a non-interface value to an interface variable has
different semantics from normal assignment, therefore we also need to define a
similar assignment function. However, in μGo, an interface variable preserves the
reference of the object with its type, which makes the most significant difference
from mini-Go:

σ, h � assign(le, e) =

{
eval(e), stype(le) /∈ Γi or stype(e) ∈ Γi

(stype(e), ref(e)), stype(le) ∈ Γi, stype(e) /∈ Γi.

Then the rule [μAsn] has the same form of [Asn] in mini-Go, but the semantics
of assignment of interface variables is altered.

For method invocations, we define the method lookup function as in mini-Go
(Fig. 8). Unlike in mini-Go, the receiver parameter gets a reference rather than a
value of the argument while method invocation in μGo. Therefore, the signature

70 H. Liu and Z. Qiu

of the method lookup function changes to find the local variables, method body
and actual receiver reference. Thanks to the absence of pointers, the definition
is much simpler.

Having the method body, the method invocation rule [μInv] has the similar
form to [Inv] in mini-Go. The most significant difference is that the receiver is
now passed by reference, thus the method body and the caller share the same
receiver object.

5 Object Model

Mini-Go and μGo give us a solid base to investigate the object model of Go
language. In this section we restrict our language facilities in μGo for conciseness,
and all the code can be translated to mini-Go/Go without any difficulty.

Go avoid type hierarchy in the language design [5], therefore, there is no
class inheritance as in typical OO languages, although the structure types in
Go look like classes in C++, and the embedding looks like inheritance. In a
glance, embedding in Go works similarly as an inheritance mechanism: all fields
and methods from an embedded structure/interface are implicitly taken into the
new structure, and a method from an embedded structure or interface will be
overridden if a new method with the same signature is defined.

In μGo, it is possible to emulate a real (Java-like) class as follows:

type Class interface {

Method() }

type ClassImpl struct {

Field Type }

func (self ClassImpl) Method() {

// ...
}

type SubClass interface {

Class // interface inheritance
Method2() }

type SubClassImpl struct {

Class // implementation inheritance
Field2 Type2 }

func (self SubClassImpl) Method2() { ... }

Where the embedding of interface types are used to support subtyping and
polymorphism, and the embedding of structure types are used to support code
reusing. Using this program pattern, we can emulate most uses of inheritance,
although a little verbose.

However, the structure embedding alone cannot replace class inheritance
without help of interface types. Structure embedding does not define a subtype
relation. In Go, it is impossible to “downcast” a structure or interface into an
embedded structure, and is impossible either even using pointers. And of course
it is also impossible to assign a structure to a variable of the embedded structure.
This fact shows that the embedding is completely a composition mechanism for
code reuse. On the other hand, implementation of interface types is a subtype
relation (see Sects. 3.1 and 4.1), and calling a method from an interface variable
leads to dynamic dispatch (see Figs. 4 and 8). That’s how the code example
above works. Therefore, when dynamic dispatch or subtyping is needed, it is
necessary to use interface types.

Furthermore, since downcasting is impossible for embedding types, the tech-
nique above cannot give full power of OO programming. In Go, method receivers
must be explicitly declared. In addition, for a non-interface method, the receiver
variable always insist on its static type, but never late-bounds to some subtype

Go Model and Object Oriented Programming 71

of it. This is a special case of lack of downcast that the receiver cannot be cast
to its subtype. Therefore, polymorphism via method receiver is impossible in Go.
In contrast, in typical class-based OO programming languages, e.g. Java, there
is a special variable this to allow a method in a class to invoke methods that
are defined later in a subclass. This late-bound receiver mechanism is called
the open recursion feature [6]. And it enables some advanced OO programming
techniques.

A good example to demonstrate late-bound receivers is the template design
pattern [1]. Supposing we are writing game applications, different games have
the same pattern that every portion of a game can be split into several steps. We
want to write the procedure only one time for playing the games with different
implementations of steps. In C++, the skeleton of the code looks like:

class Game { public void play(); public virtual void step(); };

void Game::play() { this->step(); this->step(); }

class ChessGame : public Game { public virtual void step(); /∗ . . . ∗/ };

void ChessGame::step() { /∗ one step of chess game ∗/ }

int main() { Game *g = new ChessGame(); g->play(); }

When invoking g->play() in main, virtual calls this->step() are launched, and
some real code defined in the subclass, ChessGame, is actually executed, although
g has type Game. That is, this in play() is late and dynamic bounded.

It seems that embedding of structures in μGo is quite similar to the inheri-
tance in C++. An attempt to translate the C++ program to μGo might be:

type Game struct {}

func (this Game) Play() {

this.Step(); this.Step() } // Error: no Step() method for type Game
type ChessGame struct { Game }

func (this ChessGame) Step() { /∗ one step of chess game ∗/ }

func main() {

var g Game = new(ChessGame) // Error: ChessGame is not a subtype of Game
g.Play() }

However, this is wrong. Because the structure Game does not even know the fact
that it is embedded in ChessGame, and because the receiver this in method
Play() is not late-bound, it is impossible to call Step() method of ChessGame
type from Game’s method. What’s more, an object of type ChessGame cannot be
assigned to variable g of type Game, because ChessGame is not a subtype of Game.
We see that structure embedding in μGo cannot bring us dynamic dispatch, nor
subtyping.

The ordinary way to implement such functionality in Go is to define Play()
as a (non-method) function which has a Stepper parameter, where Stepper is
an interface with Step() method:

type Stepper interface { Step() } func Play(s Stepper) { s.Step(); s.Step() }

This is acceptable in simple situations, but different instance types of Stepper
cannot share the common data fields and methods of games, and there is no
proper type to describe the concept of a “game”. Thus it is too limited for
complicated OO design.

72 H. Liu and Z. Qiu

A more sophisticated solution is to define Game as a structure for the com-
mon fields and methods, and let Game embed the Stepper interface to support
dynamic dispatch:

type Stepper interface { Step() } type Game struct { Stepper }

func (this Game) Play() { this.Step(); this.Step() }

type ChessStepper struct {}

func (this ChessStepper) Step() { /∗ one step ∗/ }

func main() { var g Game = new(Game); g.Stepper = ChessStepper{}; g.Play() }

It is not, however, the template pattern, but in fact the command pattern [1].
As was pointed out before, embedding is not subtyping. The embedded Stepper
is not a subtype of Game, therefore we cannot access the common fields and
methods defined in Game from Step() method. So this technique is still limited.

We can overcome the limitation by explicitly passing Game, the common
part of different variants of games, to Step() method. Or we can also define a
ChessGame structure which embeds Game and implements Stepper, and explicitly
pass a ChessGame structure as an ChessStepper to Play() method:

type Stepper interface { Step() } type Game struct { Stepper }

func (this Game) Play(s Stepper) { this.Step(); this.Step() }

type ChessGame struct { Game }

func (this ChessGame) Step() { /∗ one step ∗/ }

func main() { var g Game = new(ChessGame); g.Play(g) }

The so-called client-specified self pattern above is used in [9] to implement tem-
plate pattern in Go. However, These workarounds are verbose and unnatural
that need weird method call like g.Play(g).

Now we propose another solution to explicitly introduce late-bound receivers,
which can mimic class-based languages in implementing template pattern:

type Game interface { Play(); Step() }

type BaseGame struct {

// explicitly declared late-bound receiver
dyn Game }

func (g BaseGame) Play() {

// the late-bound receiver
var this Game = g.dyn

this.Step(); this.Step() }

type ChessGame struct { BaseGame }

func NewChessGame() ChessGame {

var g ChessGame = new(ChessGame)
// bound the dynamic receiver explicitly
g.dyn = g

return g }

func (g ChessGame) Step() { /∗ one step ∗/ }

func main() {

var g Game = NewChessGame()

g.Play() }

Here ChessGame is a subtype of Chess since it implements interface Chess, and
we embed BaseGame in ChessGame to reuse method Play(). In addition, Play()
could invoke method Step() from its super type via dyn, so the dynamic dis-
patch is enabled. The only thing we added is the field dyn, which acts a role as
the late-bound this variable in a class-based OO language. Further, we use the
constructor NewChessGame() to manually bound dyn only once, no wired call
like g.Play(g) is needed.

Our approach combines the power of embedding structure and interface
types. Structure embedding enables code reuse, interface types enable dynamic
dispatch and subtyping, and the dyn field of an interface type mimics the late-
bound receiver. What’s more, the dyn trick does not affect the use of the method,

Go Model and Object Oriented Programming 73

thus good encapsulation is achieved. This suits the OOP features by Pierce [6]
well, and solves the existing problems.

From above discussions, we can conclude that, the absence of late-bound self
variable in Go brings an important restriction to combine the powers of dynamic
dispatch and code reuse. This absence brings difficulties to invoking a method
in the embedded structure, where a dynamic invocation to the method in the
embedding structure outside is applied. Although we can use a different design
to round about the problem (for example, use the command pattern instead of
the template pattern), or we can emulate a class-based language in Go with some
extra effort. Neither approach is perfect.

6 Related Work and Conclusions

Since Go is rather young, we have not found model languages like mini-Go and
μGo for its OO features been published yet. The idea of duck typing of Go comes
from dynamic languages e.g. Python and Ruby, while the interface-based design
comes from Java. There are many model languages for investigating the OO
features of Java, such as the Featherweight Java [10] and MJ [11]. The idea of
separating subtyping and inheritance can be found in Cook et al. [12,13].

Schmager et al. [9] discussed how to implement some design patterns [1]
in Go. They pointed out that the template pattern, which is based on type
hierarchy, is difficult to implement, and proposed to use client-specified self pat-
tern [14] to overcome the absence of inheritance and late-bound self features.
However, their technique is more verbose for programmers and does not support
encapsulation well compared to our proposal.

In this paper, we have investigated the OO-related features of Go language,
where class inheritance is excluded intensively. Our contributions include:

1. We develop a sequential model language mini-Go of Go language, and build
its formal typing rules and structural semantics as a basis of later research.

2. We point out that the pointer types in Go can be dropped without sacrificing
Go’s expressiveness, and design such a model language μGo with its typing
rules and formal semantics.

3. We investigate the OO model of Go using μGo in detail. Go takes a very
different object model based on its embedding and interfaces features, which
has been proved to be relatively expressive in most situations. But the absence
of open recursion brings difficulties to design some programs in Go. And we
propose a novel design pattern to mimic the missing feature and overcome
the difficulties.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Pearson Education, Upper Saddle River (1994)

2. Tempero, E., Boyland, J., Melton, H.: How do Java programs use inheritance? an
empirical study of inheritance in Java software. In: Vitek, J. (ed.) ECOOP 2008.
LNCS, vol. 5142, pp. 667–691. Springer, Heidelberg (2008)

74 H. Liu and Z. Qiu

3. The Go Authors: The Go Programming Language Specification, 1.4.2 edn., Novem-
ber 2014

4. Pike, R.: Go at Google: Language design in the service of software engineering
5. The Go Authors: The Go Programming Language: FAQ, 1.4.2 edn., November

2014
6. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
7. Liu, H., Qiu, Z.: Go model and object oriented programming. Technical report,

School of Mathematical Science, Peking University (2015)
8. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebraic

Program. 60–61, 17–139 (2004)
9. Schmager, F., Cameron, N., Noble, J.: GoHotDraw: evaluating the Go program-

ming language with design patterns. In: Evaluation and Usability of Programming
Languages and Tools, p. 10. ACM (2010)

10. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

11. Bierman, G.M., Parkinson, M.J., Pitts, A.M.: MJ: an imperative core calculus
for Java and Java with effects. Technical report 563, University of Cambridge
Computer Laboratory, April 2003

12. Cook, W.R., Hill, W., Canning, P.S.: Inheritance is not subtyping. In: Proceedings
of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 1990, pp. 125–135. ACM, New York (1990)

13. Cook, W.R.: On understanding data abstraction, revisited. SIGPLAN Not. 44(10),
557–572 (2009)

14. Viljamaa, P.: Client-specified self. In: Pattern Languages Of Program Design, pp.
495–504. ACM Press/Addison-Wesley Publishing Co., New York (1995)

An Intrinsic Denotational Semantics for a Lazy
Functional Language

Leonardo Rodŕıguez(B)

FaMAF, Universidad Nacional de Córdoba, Córdoba, Argentina
lrodrig2@famaf.unc.edu.ar

Abstract. In this paper we present a denotational semantics for a lazy
functional language. The semantics is intrinsic in the sense that it defines
meaning for typing derivations instead of language expressions. We con-
trast our semantics with the well-known evaluation rules defined by Ses-
toft [17] and show that these rules preserve types and meaning.

Keywords: Denotational semantics · Lazy evaluation · Type theory

1 Introduction

In a lazy functional language, function arguments are evaluated only if needed
and at most once. The evaluation is performed in normal order and with sharing
of arguments evaluation. This paper presents a denotational semantics for a lazy
language that models this evaluation strategy. The semantics is intrinsic in the
sense of Reynolds [15,16], since it defines meaning to typing judgements rather
than to terms themselves, and as a consequence, only well-typed terms have
meaning.

The semantics of lazy languages have been largely studied, and there are
many operational specifications and abstract machines based on graph reduction
[8,10], super-combinators [7], and other techniques. Launchbury [12] defined a
big-step operational semantics for an extended lambda calculus. The sharing of
evaluation is modelled using heaps mapping variables to its values, which are
updated when the evaluation of an expression is finished. Sestoft [17] revised
the semantics by providing a way to locally check freshness of variables during
evaluation, among others improvements. This paper takes the same language
used by Sestoft but with the inclusion of a type-system. We define an intrinsic
denotational semantics for the language, and show that the evaluation rules
preserve both types and meaning.

There are other denotational definitions of the semantics for lazy functional
languages [3,4,9]. Launchbury [12] defined a denotational semantics and pre-
sented a proof of adequacy with respect to his evaluation rules. However, Bre-
itner [6] have recently found some issues in the proof, and then adjusted the
semantics to correct them. Nakata [13] presented an alternative definition to
the denotational semantics for recursive local declarations. In [13], like in this
paper, a type system is included in the language, but its semantic definition is
nonetheless untyped.
c© Springer International Publishing Switzerland 2015
A. Pardo and S.D. Swierstra (Eds.): SBLP 2015, LNCS 9325, pp. 75–80, 2015.
DOI: 10.1007/978-3-319-24012-1 6

76 L. Rodŕıguez

2 Syntax and Semantics

We use the same language as in [12,17], a lambda calculus with recursive local
declarations which presents terms in a restricted syntax:

Definition 1 (Language terms)

The purpose of this restricted form is to ensure that every function argument
has been previously bound by a local declaration (let), and therefore it will
be shared in the heap, as will become clear later. Note that a general lambda
expression may be translated into this restricted syntax by introducing new let-
bindings.

Notation: Before we continue let us fix some notations about finite maps (used
to represent heaps, contexts and environments). Let M : D → R be a finite
map from a set D (the domain of M) to some set R (the range of M). We write
M [x �→ r] for the extension of M with a new map {x �→ r}. Sometimes we write
M [xi �→ ri] as a shortening of M [x1 �→ r1] . . . [rn �→ rn], and if D0 ⊆ D we
write M |D0

for the restriction of M to the domain D0. Finally, if M and M ′ are
maps with disjoint domain, we write M � M ′ for the combination of the two
maps in a single one.

Figure 1 shows Sestoft’s evaluation rules. A heap Γ is a finite map from
variables to expressions, and a pair of the form (Γ, e) where e is an expression
is called a configuration. A judgement of the form (Γ, e) ⇓A (Δ, w) says that
in the heap Γ , the expression e will evaluate to w producing a new heap Δ.

The evaluation rules are annotated with a set A of the variables whose value
is being computed at the time. The only place where this set is updated is in
the Var rule when the value of x is about to be computed.

The rule Var is where sharing becomes evident. Once the expression e is
evaluated, the variable x is updated in heap Δ with its new value w, avoiding
in this way to evaluate the variable x again in the future.

In the Let rule we write ê for the substitution e[z1\x1, . . . , zn\xn]. The vari-
ables zi have to be fresh: they must not occur in Γ , A or let {xi �→ ei} in e.

Fig. 1. Big-step operational semantics

An Intrinsic Denotational Semantics for a Lazy Functional Language 77

Notice that, unlike in [12], the checking of freshness can be done locally (that is,
looking only at the configuration being evaluated and not at the entire evalua-
tion tree).

It is necessary to ensure that the substitution e′[x\y] does not capture the
variable x (in the App rule), and also that the variable x does not occur in the
domain of Δ (in the Var rule), and hence the extension Δ[x �→ w] does not
overwrite any map of Δ. In order to guarantee those properties it is required for
the evaluation to produce only “A-good” configurations, as defined in [17]. For
convenience we reproduce the definition here:

Definition 2. A configuration (Γ, e) is A-good if and only if
1. A∩ dom(Γ) = ∅, 2. Fv(Γ, e) ⊆ A∪ dom(Γ), 3. Bv(Γ, e)∩ (A∪ dom(Γ)) = ∅.
Here Fv(Γ, e) denotes the set of free variables of the entire configuration, includ-
ing the expressions in the range of Γ . Similarly, the set Bv(Γ, e) contains all the
bound variables of the configuration (Γ, e). The following lemma, proved in [17],
shows that indeed “A-good” is preserved by evaluation.

Lemma 1. If (Γ, e) is A-good and (Γ, e) ⇓A (Δ, w) is derivable, then (Δ, w)
is A-good and dom(Γ) ⊆ dom(Δ).

3 Type System

In Fig. 2, we define the typing rules for expressions, heaps and configurations.
A typing judgment for an expression e has the usual form π
 e : θ, where

π is a context and θ is a type. We have two type constructors, the basic type b
and arrow types of the form θ → θ′. Contexts are finite maps from variables to
types.

On the other hand, a typing judgement for a heap Γ has the form π′
 Γ : π,
where both π′ and π are contexts. The first context π′ is necessary since a heap
may contain free variables: in the V ar evaluation rule, the variable x may occur

Fig. 2. Typing rules

78 L. Rodŕıguez

free in the range of the heap and still be removed from its domain and included
in the set A. Thus, the context π′ is intended to type each variable in A, whereas
the context π is meant to type each variable in the domain of Γ .

We have a single rule to type a configuration (Γ, e) that combines a typing
derivation for the heap Γ and a typing derivation for the expression e. Note that
the use of the operation π′ � π has the implicit requirement for the domain of π′

and π to be disjoint. This is ensured if the configuration (Γ, e) is dom(π′)-good.
The following lemma states that the evaluation rules preserves types:

Lemma 2 (Type preservation). Let (Γ, e) and (Δ, w) be configurations, π′

and π0 contexts, and θ a type such that:

1. (Γ, e) is dom(π′)-good, 2. (π′, π0)
 (Γ, e) : θ, 3. (Γ, e) ⇓dom(π′) (Δ, w).

Then, there is a context π1 such that π0 ⊆ π1 and (π′, π1)
 (Δ, w) : θ.

Proof. The proof is by structural induction on the evaluation rules. In each case,
it is necessary to perform inversion in the typing derivation and to use Lemma 1.

4 Denotational Semantics

We used a domain-theoretic setting to define the semantics of the language. The
meaning of a type θ is a domain � θ � and the meaning of a context π is an
environment �π � (a named finite product ordered pointwise).

In Fig. 3 we present some of the equations of the semantics. We define three
functions E� �π, θ, H� �π, π′ and C� �π′, θ that assign a continuous function to
a typing derivation for a expression, a heap and a configuration, respectively.

It can be proved that this semantics is coherent : different typing derivations
with the same conclusion have the same meaning. This property allow us to
write without ambiguity E� e �π, θ for the semantics of any typing derivation with
conclusion π
 e : θ (and the same holds for the other forms of judgement).
We refer to [14] for a proof of coherence of the semantics for a language larger
than the one we use in this paper.

Notation: Let us clarify some notation we use in Fig. 3. The symbol λ̂ is used
as a meta-binder to avoid confusion with the symbol λ used in abstractions. If η
is an environment, we write η � x for its projection on the variable x. Finally,
we write YD f for the least fixed-point of a continuous function f : D → D
where D is a domain.

The following lemma says that evaluation rules preserve meaning. This
lemma corresponds to “Theorem 2” in [12] (correctness of denotational seman-
tics), but this time proved for the revised semantics of Sestoft and including only
well-typed configurations.

An Intrinsic Denotational Semantics for a Lazy Functional Language 79

Fig. 3. Denotational semantics.

Lemma 3 (Semantic preservation). Let (Γ, e) and (Δ, w) be configurations,
π′, π0, π1 be contexts, and θ a type such that,

1. (π′, π0)
 (Γ, e) : θ,
2. (Γ, e) is dom(π′)-good,

3. π0 ⊆ π1,
4. (π′, π1)
 (Δ, w) : θ.

Then, if (Γ, e) ⇓dom(π′) (Δ, w), for all η ∈ �π′ � it holds:
1. C� (Γ, e) �π′, θ η = C� (Δ, w) �π′, θ η, 2. H�Γ �π′, π0 η = (H�Δ �π′, π1 η)|dom(π0).

Proof. The proof is by structural induction on the evaluation rules. It is necessary
to use Lemma 2 to construct the typing derivations required to apply inductive
hypothesis in each case.

The complete proof of this lemma is longer than the untyped version pre-
sented in [12], but each step in the proof is type-driven and has the simplicity
provided by the typed framework.

5 Further Work

We have not yet proved computational adequacy of the semantics in the sense
of [12, Sect. 5]. For instance, we should prove that if the semantics of a term is
non-bottom, then the term evaluates to a normal form.

Our goal behind this intrinsic definition of the semantics is to prove the cor-
rectness of Sestoft’s abstract machine [17] using type-indexed logical relations.

80 L. Rodŕıguez

In our experience, intrinsic semantics are more suitable for formalization in a
proof assistant with dependent types since all the semantic functions are total
(without the need of type-error constants that usually complicate the semantic
equations). We expect to formalize the results in this work using the Coq [2] proof
assistant together with a domain theory library developed by Benton et al. [5].
We extended this library and used it to a formalize a denotational semantics
for a call-by-name functional language, and a proof of correctness for a com-
piler targeting the Krivine abstract machine [11]. Our development is available
online [1].

References

1. Some Formalizations in Coq. http://cs.famaf.unc.edu.ar/leorodriguez/compiler
correctness/

2. The Coq Proof Assistant. http://coq.inria.fr/
3. Abramsky, S.: The lazy lambda calculus. In: Turner, D. (ed.) Research Topics in

Functional Programming, pp. 65–116. Addison-Wesley, Boston (1990)
4. Abramsky, S., Ong, C.L.: Full abstraction in the lazy lambda calculus. Inf. Comput.

105(2), 159–267 (1993)
5. Benton, N., Kennedy, A., Varming, C.: Formalizing Domains, Ultrametric Spaces

and Semantics of Programming Languages (2010), unpublished
6. Breitner, J.: The correctness of Launchbury’s natural semantics for lazy evaluation.

Archive of Formal Proofs (2013)
7. Hughes, R.J.M.: Super-combinators: a new implementation method for applicative

languages. In: Proceedings of the 1982 ACM Symposium on LISP and Functional
Programming, LFP 1982, pp. 1–10. ACM, New York (1982)

8. Jones, P.L.S.: Implementing lazy functional languages on stock hardware: the
spineless tagless G-machine. J. Funct. Program. 2(2), 127–202 (1992)

9. Josephs, M.B.: The semantics of lazy functional languages. Theor. Compu. Sci.
68(1), 105–111 (1989)

10. Kieburtz, R.B.: The G-machine: a fast, graph-reduction evaluator. In: Jouannaud,
J.P. (ed.) FPLCA 1985. LNCS, vol. 201, pp. 400–413. Springer, Heidelberg (1985)

11. Krivine, J.L.: A call-by-name lambda-calculus machine. High. Order Symbolic
Comput. 20(3), 199–207 (2007)

12. Launchbury, J.: A natural semantics for lazy evaluation. In: POPL, pp. 144–154
(1993)

13. Nakata, K.: Denotational semantics for lazy initialization of letrec: black holes as
exceptions rather than divergence. In: 7th Workshop on Fixed Points in Computer
Science (2010)

14. Reynolds, J.C.: The Coherence of Languages with Intersection Types. In: Ito, T.,
Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 675–700. Springer, Heidelberg
(1991)

15. Reynolds, J.C.: Theories of Programming Languages. Cambridge University Press,
New York (1999)

16. Reynolds, J.C.: The Meaning of Types - From Intrinsic to Extrinsic Semantics.
Technical report RS-00-32, BRICS, December 2000

17. Sestoft, P.: Deriving a lazy abstract machine. J. Funct. Program. 7(3), 231–264
(1997)

http://cs.famaf.unc.edu.ar/ leorodriguez/compilercorrectness/
http://cs.famaf.unc.edu.ar/ leorodriguez/compilercorrectness/
http://coq.inria.fr/

Color Flipping

Felipe L. Silva(B), Marcelo F. Luna, and Wesley Attrot

State University of Londrina, Londrina, Brazil
{felipe.lds.88,marcelofernandesdeluna}@gmail.com

wesley@uel.br

Abstract. Spill code minimization is an important problem in register
allocation because it affects the quality of the code produced by the com-
piler and program performance. This work presents a new technique to
reduce spill code, called color flipping. Differently of other techniques,
color flipping prevents all load/store instructions insertion when avoid-
ing spill. Nevertheless, color flipping can be used in combination with
other spill minimization techniques to achieve an overall better result.
To evaluate the impact of using color flipping, experiments with a set
of interference graphs and with the benchmark SPEC CPU2006, showed
over 12 % of spill reduction.

Keywords: Spill minimization · Register allocation · Color flipping

1 Introduction

Register allocation [10,16,18,23] is one of the most important compiler optimiza-
tions. It directly affects the quality of the code produced. The goal of register
allocation is to keep as many as possible temporary values created by a program
in machine registers. The problem in register allocation occurs when the finite
number of available machine registers can not fit the unbounded temporary val-
ues. When this occurs some values must be kept in memory, which decreases
the speed of the generated code. To keep the temporaries in memory, load/store
instructions are inserted into the code; this process is called spill code generation.

The most widely used algorithm to perform register allocation is graph col-
oring [7,10,15]. In this approach, the compiler builds an interference graph G,
where each node represents a live range and edges connecting two live ranges li
and lj symbolizes an interference and means that li and lj will be live at the
same time in the future and should not occupy the same register. The problem
then is to find a proper K-coloring for G, such that no two adjacent nodes receive
the same color. By representing the colors as machine registers we can perform
register allocation with a coloring algorithm.

An ideal register allocator should produce the minimum amount of spill code
possible to avoid unnecessary memory accesses, and therefore slowdown the exe-
cutable code. However, introducing the minimum spill code as possible is an
NP-complete problem.

c© Springer International Publishing Switzerland 2015
A. Pardo and S.D. Swierstra (Eds.): SBLP 2015, LNCS 9325, pp. 81–95, 2015.
DOI: 10.1007/978-3-319-24012-1 7

82 F.L. Silva et al.

Several efforts have been made to find efficient techniques to reduce the
impact of spills in the code. In 1989 Bernstein et al. [5] improved the Chaitin’s
allocator with new heuristics to select the spill node known as best-of-three. In
the same year, Briggs et al. [6] developed a stronger coloring heuristic, called
optimistic coloring. In 1992 Briggs et al. [8] also extended the rematerialization
notion of Chaitin by dealing with multi-valued live ranges. The rematerialization
recomputes constant values when it is cheaper than to store and reload it. In 1997
Bergner et al. [4] developed a new minimization technique, known as interference
region spilling that was able to spill partially a live range. Later in 1998, Cooper
and Simpson [13] developed a new technique to globally split live ranges similar
to that developed by Bergner et al. [4] known as live range splitting. In 2003,
Govindarajan et al. [17] developed a heuristic to reduce the numbers of registers
used by instruction sequencing, called Minimum Register Instruction Sequence
(MRIS). In the same year, Koseki et al. [20] developed a new technique for partial
spilling called spill code motion. In 2005, Gao and Shi [14] created a method,
named merge that allows two interfered nodes in the interference graph occupy
the same machine register. Finally in 2013, Barany and Krall [3] developed a
global code motion to order basic blocks with the aim of reduce overlaps among
live ranges.

The majority of previous spill code minimization research efforts have been
focused on studying spilling heuristics to select the live range with the smallest
spill cost [5,9] and finer spilling/splitting mechanisms to reduce the number of
load/store instructions inserted [4,7,13]. Unlike these techniques we introduce
a technique called color flipping which focuses on the coloring stage of graph
coloring algorithm, where if color flipping succeeds no load/store instructions
are inserted because a register is assigned for the entire live range. The main
idea is to attempt to recolor [19] the interference graph, such that a used color
becomes available for spill node.

2 Color Flipping

To demonstrate how color flipping works, we present a simple example where
the spill is successfully avoided. The interference graph and its corresponding
node costs are shown in Fig. 1. In this example, we will assume that we have 3
colors available, that is, K = 3.

After coloring the interference graph, we are left with the 3-colored sub-graph
shown in Fig. 2(a) and the uncolored live range F . Normally we would spill the
live range F . However, observing this graph we notice that F has three neighbors
with unique colors: A : green, B : blue and E : red. So, if we change the color of
any of these nodes, then we will make a color available for F . By extending this
idea to one more level of the interference graph, i.e., searching for nodes with
unique color in the neighborhood of A, B and E, we can start to flip colors.
Analyzing the neighbors of A, we find that A has no neighbor with unique color,
so we proceed our analysis to B. We observe that B has one neighbor with
unique color, that is, A : green, C : green and D : red. As B is the only blue

Color Flipping 83

Fig. 1. Interference graph and its spill costs.

(a) Interference graph after
coloring phase.

(b) Interference graph after
flipping.

Fig. 2. Flipping colors in the graph (Color figure online).

Fig. 3. Final result after applying color flipping in Fig. 2(a) and continuing register
allocation (Color figure online).

node connected to D, so, it’s possible to flip B and D colors, as seen in Fig. 2(b).
Now we are free to color F with blue as shown in Fig. 3.

In Fig. 2(a) we flipped colors between two neighboring nodes. But it is also
possible to recolor a node if it has another color available. In the next example
we present a situation where recolor a node in this way makes a color available
for the spill node. The interference graph after the coloring phase and after
color flipping is shown in Fig. 4. We assume that K = 4. There are two physical
registers R1 and R3 already in the graph. Node F interferes with R1; nodes

84 F.L. Silva et al.

(a) Interference graph after
coloring phase.

(b) Interference graph after
flipping.

Fig. 4. Flipping colors in the graph (Color figure online).

Fig. 5. Final result after applying color flipping in Fig. 4(a) and continuing register
allocation (Color figure online).

D, F and G interfere with R3. There is no color available for live range G. By
observing this graph, we notice that E has another color available, because it
can be recolored with yellow. Recoloring E in this way, makes red available for
G. The Fig. 5 shows the result after applying color flipping in the graph.

The main advantage of color flipping over other spill minimization techniques
is that when avoiding a live range spill, no load/store instructions are inserted.
The color flipping avoids completely the spill, not only partially.

3 Color Flipping Algorithm

To implement color flipping we added an additional stage after the coloring
phase. This stage attempts to assign a register for each spilled live range. If
color flipping succeeds the live range is removed from the spill list and added
to the colored nodes list, otherwise no modification is made on the interference

Color Flipping 85

Fig. 6. Color flipping added to Briggs’ allocator.

graph and the live range is spilled. The Fig. 6 shows the Briggs’ allocator [7]
with color flipping stage added.

Given an interference graph G, and a spill node s ∈ G the color flipping
algorithm tries to recolor G such that a valid register R is made available for s.
To do so we divided color flipping into two modules: FindFlippingCandidates
and TryFlipping.

The aim of the first module is to find a set of flpping candidates, i.e., nodes
that may have their colors flipped. It begins analyzing each neighbor ni of the
spill nodes to determine if ni satisfies three constraints called flipping restric-
tions. A list - flippingCandidates - containing the neighbors that meet all
flipping restrictions is created.

Once the first module has finished the algorithm starts TryFlipping. In this
module each flipping candidate fi ∈ flippingCandidates is analyzed to deter-
mine if fi satisfies one of two flipping conditions. In positive case fi is recol-
ored, such that, a color is made available to the spill node and the algorithm
stops. Otherwise the color flipping algorithm calls FindFlippingCandidates
but with I and fi (not s) as input. This process is repeated until there is
no more flipping candidates, that is, flippingCandidates = ∅. We can stop
TryFlipping before setting a max level of recursion - maxLevel - such that color
flipping stops trying to find new flipping candidate when maxLevel is reached.
Figure 7 shows a simple flowchart of TryFlipping.

The flipping restrictions and the flipping conditions are constraints imposed
to a node ni to guarantee that is safe to flip ni color. By safe, we mean that all
constraints of the interference graph after color flipping are preserved. When ni

satisfies all flipping restrictions, then ni is a potential flip node. The next step is
to analyze ni to determine if ni is an actual flipping node, that is, determine if
ni satisfies one flipping condition. In order to understand how the color flipping
algorithm works, one needs a deeper understanding of the criteria used in flipping
restrictions and those used in flipping conditions.

Flipping Restrictions: The FindFlippingCandidates module is responsible
for finding nodes that satisfy the three flipping restrictions. The input is a node
in the interference graph, which we call the target node T , and the output is a list
of nodes that meets all three restrictions, which we call flippingCandidates.

86 F.L. Silva et al.

Fig. 7. Flowchart of TryFlipping module.

• First flipping restriction: this restriction must ensure that the flipping candi-
date has a unique color among the neighbors of the target node. In Fig. 8(a),
T contains three neighbors of the same color. Therefore X, Y and Z do not
satisfy the first flipping restriction. In Fig. 8(b) Z satisfies the first flipping
restriction. With this restriction we guarantee that if a flipping candidate
change its color, then T is free to receive its old color. For our example, in
Fig. 8(b) if Z is recolored, we are free to color T with green.

• Second flipping restriction: this restriction ensures that the flipping candi-
date is colored with a proper register Ri for T . By proper register we mean
that Ri does not interferes with T . In the sub-graph of Fig. 9 the node Z
is the unique among the neighbors of the target node T colored with blue.
However, R1 interferes with T , which makes Z to violate the second restric-
tion. If we remove R1 from the interference graph, then Z satisfies the second
flipping restriction.

• Third flipping restriction: we say that FindFlippingCandidates is on the
first level of an interference graph if T is a spill node. If T has flipping
candidates, then each one of them may be target nodes, if so we say that we
are at level > 1 of the interference graph. Once FindFlippingCandidates
begins to operate at a level > 1 of the interference graph, the third flipping
restriction is triggered. Otherwise this restriction is always satisfied. Consider
the graph in Fig. 10, when we begin searching for flipping candidates of T ,
we find that W satisfies the first and the second flipping restrictions. As we
are in the first level, it’s unnecessary to check the third flipping restriction,
so W is a flipping candidate of T . The algorithm proceeds to determine
the flipping candidates of W and finds that Z satisfies the first and second
the flipping restrictions. But Z is neighbor of T violating the third flipping
restriction.

So the aim of the third flipping restriction is ensure that a flipping candi-
date does not interfere with a target node of the previous flipping candidate.
In the example of Fig. 10, it must ensure that the flipping candidates of the

Color Flipping 87

Algorithm 1. Finds flipping candidates
1: procedure FindFlipCandidates(T)
2: for all i ∈ T.Adjs do
3: if i.color ∈ T.PreColored then
4: continue
5: for all j ∈ T.Adjs − {i} do
6: if !(i.color = j.color) then
7: continue
8: if !(T.ancestor /∈ i.Adjs) then
9: continue

10: i.ancestor ← T
11: flippingCandidates.insert(i)
12: return flippingCandidates

target node W do not interfere with T . If we remove the interference between
Z and T , then Z becomes a flipping candidate of W .

The Algorithm 1 shows the implementation of FindFlippingCandidates.
The line 2 checks if i satisfies the second flipping restriction, line 6 checks if i
satisfies the first flipping restriction, finally line 8 checks if i satisfies the third
flipping restriction. If i meets all flipping restrictions, then it’s added to the list
of flipping candidates on line 11.

(a) First restriction
unsatisfied.

(b) First restriction
satisfied.

Fig. 8. First flipping restriction example (Color figure online).

Fig. 9. Second flipping restriction unsatisfied (Color figure online).

88 F.L. Silva et al.

Fig. 10. Third flipping restriction unsatisfied.

Fig. 11. An interference graph where the second flipping condition fails (Color figure
online).

Flipping Conditions: The TryFlipping module is responsible for finding
nodes that satisfy one of two flipping conditions. The input is a spill node in the
interference graph and the desired level of recursion. The output is a valid color
for the spill node if color flipping succeeds or −1 if color flipping fails.

• First flipping condition: The first flipping condition deals with abusive using
of colors that pre-colored nodes may lead in the interference graph. The
Fig. 4(a) shows an example of interference graph, which satisfies the first
flipping condition. After the coloring phase, it is found that G is a spill
node. So we triggered the color flipping algorithm and we found that D, E
and F are marked nodes of G. Since E can also be colored with yellow, the
color red is made available for G.

• Second flipping condition: The second flipping condition operates at least in
three nodes. So it is only triggered from a recursion level > 1. For example,
consider the interference graph fragment shown in Fig. 11, if S is a spill
node, X a flipping candidate of S, and Y flipping candidate of X, the second
flipping condition must ensure that Y has no neighbor with the same color
of X. In Fig. 11 flipping the colors of X and Y will not be possible because
Y has a neighbor colored with green.

An implementation of TryFlipping is shown in Algorithm 2. The line 2
checks if the max level of recursion was reached and stops the algorithm in

Color Flipping 89

Algorithm 2. Tries to flipping some nodes colors
1: procedure TryFlipping(upNode, level)
2: if level = 0 then
3: return -1
4: FlipCandidates ← FindF lipCandidates(upNode)
5: if FlipCandidates.size() = 0 then
6: return -1
7: for all i ∈ FlipCandidates do
8: if i.allowed.size() > 0 then
9: flipColor ← i.color

10: i.color ← i.allowed.next()
11: return flipColor
12: else if upNode.color �= −1 then
13: IAdjs ← AdjList(i) − upNode
14: if upNode.color /∈ IAdjs.colors then
15: flipColor ← i.color
16: i.color ← upNode.color
17: return flipColor
18: else if level > 0 then
19: downF lipColor ← TryF lippingColor(i, level − 1)
20: if downflipColor > −1 then
21: upF lipColor ← i.color
22: i.color ← downF lipColor
23: return upF lipColor
24: return -1

positive case. The line 4 calls the module FindFlippingCandidates and stores
its results in FlipCandidates. Lines 7–23 loop through each element of the
list FlipCandidates, to determine if one of them satisfies one of the flipping
conditions. Lines 8–11 check the first flipping condition and lines 12–17 check
the second flipping condition.

Complexity: The most costing operation in color flipping algorithm is the com-
putation of the first restriction. Given an interference graph G with n nodes, the
first restriction needs (n − 1)(n − 2) comparisons in the worst case, i.e., the cost
is O(n2). Where (n − 1) is the number of nodes in G less the spill node and
(n − 2) is the number of nodes in G less the spill node and the node that is
under evaluation in the first restriction. On the other hand, in the best case it’s
not necessary to compute the first restriction, because the algorithm stops in the
second restriction analysis. The number of comparisons to calculate the second
flipping restriction is bounded by the number of registers in the target machine.
If we represent the number of registers as c, the second restriction needs c(n−1)
comparisons to be computed, which gives to color flipping a cost of Ω(n) in the
best case. Based in some of our experimental analysis of color flipping execution,
we noticed that the second restriction occurs with considerable frequency, which
makes color flipping cost similar to the best case.

90 F.L. Silva et al.

4 Experimental Results and Discussion

There are many reasonable ways to measure the quality of a good register alloca-
tor - compile time, space requirements, produced executable code efficiency. The
main objective of color flipping is to improve code efficiency of allocators that
use graph coloring approach. Although an additional cost of space and time is
introduced when the color flipping is added to the framework of these allocators,
the trend is not to cause severe damage in the performance, since it operates on
very limited portions of the graph. This section presents a series of comparisons
to measure the impact on the quality of the code when the color flipping is added
to Briggs’ allocator [7].

To evaluate the efficiency of color flipping two main experiments have been
made. The first one takes a set of 27, 921 interference graphs made available
by Appel and George [2] to measure how many live range spills were possible
to avoid using the color flipping technique. The second experiment, implements
the Briggs’ allocator with color flipping stage added in LLVM framework [21].
Several comparisons were made between the existing allocators of LLVM. The
tests were performed in a Core i5 machine, with 8 GB of RAM in Ubuntu 14.04
64 bits.

4.1 Appel and George Graph Experiments

The set of graphs available by Appel and George [2] were generated from the
self-compilation of SML/JN (Standard ML of New Jersey) [1] - a compiler for
the language Standard ML ’97 - to test new allocation techniques for graph
coloring, without relying on any specific framework.

The samples assume that K = 21 or K = 29, and also provide information
about moves between nodes in each graph, which allows the use of coalescing in
the allocation process. However, no spill cost information is provided, nor the
code that represents the interference graph. This limits the tests in two ways.
First when spill occurs, we can not know which variable will be spilled. To work
around this problem we assumed that all nodes in the interference graph have
cost = 1, therefore the node with higher degree is always chosen to spill. The
second limitation is that we can not reconstruct the interference graph when
spill occurs because there is no code information to make live analysis. In this
way, the experiment only computes the effect of color flipping in the first round
of the graph coloring algorithm if any spill occurs.

In order to test the efficiency of color flipping a Briggs’ allocator with-
out coalescing and where is possible enable color flipping was implemented
without any framework dependence. The tests were performed assuming K =
4, 8, 12, 16, 21/29. The recursion level of the color flipping was set to 2, we try
a recursion level > 2, but there was no significant improvement in the results
- less than 0.5 %. The results are shown in Table 1. We observed that as the
number of available register grows, the color flipping avoids more spills, this is
due to the fact that more flipping opportunities become possible when there
are more possibilities of coloring. However, even with K = 4 the reduction in

Color Flipping 91

Table 1. Number of live range spills avoided for the Appel and George 27,921 inter-
ference graph samples.

K Briggs - Total spills Color flipping - Spills avoided Reduction (%)

4 159,308 6,996 4.37

8 31,417 2,174 6.92

12 10,170 853 8.39

16 3,931 498 12.67

21/29 1,265 146 11.54

the number of live range spills is considerable. Another important observation is
that our measurements in Table 1 are in terms of live range spills avoided, not
in terms of load/store instructions reduction. As for each live range spilled some
load/store instructions are inserted, if we were able to perform our measure-
ments with Appel and George graph samples in terms of load/store reduction,
an even better result would be obtained.

4.2 LLVM Experiments

To evaluate the quality of the code produced, the benchmark SPEC CPU2006
was compiled for architectures x86 64 and ARM-Cortex9. A comparison was
made with the three main allocators of LLVM: basic, greedy and pbqp. It is
difficult to talk about allocators basic and greedy because there is no official
documentation about them. The best material found was an informal mail list
between the author of both allocators and the LLVM community [22]. Based on
this discussion and code itself, we can infer that both are hybrids allocators, using
ordered intervals as the extended linear scan [24] but using allocation mechanisms
similar of those used in the graph coloring. The basic uses a priority queue
to separate unrestricted live ranges (degree < k) from restricted live ranges
(degree ≥ k) which is similar to the algorithm proposed by Chow and Hennessy
[11,12]. The greedy is an extension of basic, which uses a form of iterative
coalescing similar to George and Appel [15] with split on demand. This is the
default allocator of LLVM. The pbqp allocator is based on quadratic problem
solving implemented by Hames Scholz [18].

The results of SPEC CPU2006 benchmark compilation are shown in Tables
2 (x86 64) and 3 (ARM-Cortex9). Unlike the experiments performed in Sect. 4.1,
in LLVM experiments the measurements are in terms of spill instructions
(load/store). We notice that our allocator produced code with similar quality to
LLVM allocators. In some cases much less spill code was inserted, e.g., 403.gcc,
400.perlbench. In 403.gcc for X86 64 (Table 2) was inserted 6, 356 spills with
color flipping, while all LLVM allocators inserted > 7300 spills. In 400.perlbench
for ARM-CortexA9 (Table 3) was inserted 2, 643 spills, while all LLVM allocators
inserted > 3200 spills. We also notice that one of the best performances of color
flipping was on the gcc benchmark. This may be due to the nature of the interfer-

92 F.L. Silva et al.

ence graph of a compiler, since the samples of graphs of Appel and George, where
we achieve better results, also represented a compiler. Another important obser-
vation is that the color flipping was more effective in ARM-Cortex9 architecture,

Table 2. Amount of spill code inserted by each benchmark of SPEC CPU 2006 for
x86 64 architecture using Briggs’, Color Flipping and LLVM’s allocators.

Benchmark Briggs Color flipping Reduction (%) Greedy Basic PBQP

400.perlbench 2,957 2,943 0.47 3,789 3,568 3,192

401.bzip2 323 318 1.55 531 329 309

403.gcc 6,422 6,356 1.03 7,352 7,527 7,396

429.mcf 21 21 - 17 20 22

433.milc 663 663 - 612 693 677

444.namd 4,813 4,802 0.23 5,055 5,087 4,731

445.gobmk 2,230 2,227 0.13 2,365 2,325 2,230

450.soplex 1,255 1,255 - 1,127 1,310 1,261

456.hmmer 1,389 1,389 - 1,205 1,424 1,388

458.sjeng 196 196 - 236 217 196

464.h264 2,908 2,897 0.38 3,068 3,014 2,867

470.lbm 89 89 - 41 89 91

471.omnetpp 737 737 - 583 759 724

473.astar 190 190 - 176 197 189

Table 3. Amount of spill code inserted by each benchmark of SPEC CPU 2006 for
ARM-CortexA9 architecture using Briggs’, Color Flipping and LLVM’s allocators.

Benchmark Briggs Color flipping Reduction (%) Greedy Basic PBQP

400.perlbench 2,684 2,643 1.53 3,337 3,271 3,260

401.bzip2 571 556 2.63 739 573 539

403.gcc 6,661 6,536 1.88 7,589 7,605 7,694

429.mcf 30 30 - 31 36 31

433.milc 466 466 - 491 462 486

444.namd 3,655 3,652 0.08 4,926 3,759 3,569

445.gobmk 2,000 1,985 0.75 2,311 2,216 2,148

450.soplex 772 766 0.78 902 840 829

456.hmmer 723 721 0.28 855 755 783

458.sjeng 415 413 0.48 492 464 422

464.h264ref 3,799 3,779 0.53 3,984 3,981 3,818

470.lbm 28 28 - 22 32 28

471.omnetpp 192 191 0.51 239 196 236

473.astar 230 230 - 216 236 226

Color Flipping 93

this suggests that color flipping may has a better performance in an environment
with more alias [25]- while ARM has 289 register units, the X86 64 architecture
has 241 register units. Finally we observe that color flipping always produced ≤
spills when compared to Briggs’ allocator.

Based on the experiment of Sect. 4.1 we expected a greater spill reduction.
There are two main causes for the results have been affected negatively. The first
one is the register class issue. Most of modern architectures are irregular. This
means that each live range can only be assigned to a specific set of registers.
For example, a variable int can not be allocated to a class of registers of type
float. The graph coloring algorithms are too abstract and do not deal with
these issues in their original design. Modern research has sought to make this
strategy generic enough to deal with these modern problems [25]. Unfortunately,
the tests in Sect. 4.1 do not simulated this behavior. The second one is the spill
cost issue. The tests with Appel and George graphs always spills the live range
with greater degree, which differs from the spill heuristic used in real programs.
This may causes unpredictable results.

5 Conclusion

In this work we presented a new spill code minimization technique called color
flipping. Rather than try to partially spill a live range, the color flipping tries
to recolor the interference graph, such that, a color is made available to the live
range spilled. If color flipping succeeds no load/store instructions are inserted,
that is, a machine register is assigned to the entire live range. Otherwise, the
graph coloring algorithm proceeds normally with no change in the coloring of
the interference graph. Another important advantage of using color flipping is
that it can combined with other spill minimization techniques easily, which can
improve the overall result of the final code.

Our experiments with the samples of Appel and George shown over 12 % of
live range spills reduction, suggesting that color flipping is an effective technique
to avoid spill code. However, in the experiments with the LLVM framework the
performance of color flipping was not as effective: in most benchmarks there was
a reduction < 1% of spill code.

In further tasks, we should investigate the causes of such performance. We
notice that the second restriction occurred much more often in the LLVM exper-
iment, then we will study ways to work around this restriction to achieve better
results.

References

1. Appel, A.W.: Standard ml of New Jersey (1996). http://www.smlnj.org/. Accessed
18 Nov 2014

2. Appel, A.W., George, L.: Sample graph coloring problems (1996). https://www.
cs.princeton.edu/appel/graphdata/. Accessed 18 Nov 2014

http://www.smlnj.org/
https://www.cs.princeton.edu/appel/graphdata/
https://www.cs.princeton.edu/appel/graphdata/

94 F.L. Silva et al.

3. Barany, G., Krall, A.: Optimal and heuristic global code motion for minimal
spilling. In: Jhala, R., De Bosschere, K. (eds.) Compiler Construction. LNCS, vol.
7791, pp. 21–40. Springer, Heidelberg (2013)

4. Bergner, P., Dahl, P., Engebretsen, D., O’Keefe, M.: Spill code minimization via
interference region spilling. In: Proceedings of the ACM SIGPLAN 1997 Conference
on Programming Language Design and Implementation, PLDI 1997, pp. 287–295.
ACM, New York (1997). http://doi.acm.org/10.1145/258915.258941

5. Bernstein, D., Golumbic, M., Mansour, Y., Pinter, R., Goldin, D., Krawczyk,
H., Nahshon, I.: Spill code minimization techniques for optimizing compliers. In:
Proceedings of the ACM SIGPLAN 1989 Conference on Programming Language
Design and Implementation. PLDI 1989, pp. 258–263. ACM, New York (1989).
http://doi.acm.org/10.1145/73141.74841

6. Briggs, P., Cooper, K.D., Kennedy, K., Torczon, L.: Coloring heuristics for reg-
ister allocation. In: Proceedings of the ACM SIGPLAN 1989 Conference on Pro-
gramming language design and implementation. PLDI 1989, pp. 275–284. ACM,
New York (1989). http://doi.acm.org/10.1145/73141.74843

7. Briggs, P.: Register allocation via graph coloring. Ph.D. thesis, Rice University
(1992)

8. Briggs, P., Cooper, K.D., Torczon, L.: Rematerialization. In: Feldman, S.I.,
Wexelblat, R.L. (eds.) PLDI, pp. 311–321. ACM (1992)

9. Chaitin, G.J.: Register allocation & spilling via graph coloring. In: Proceedings of
the 1982 SIGPLAN Symposium on Compiler Construction, SIGPLAN 1982, pp.
98–105. ACM, New York (1982). http://doi.acm.org/10.1145/800230.806984

10. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Mark-
stein, P.W.: Register allocation via coloring. Comput. Lang. 6(1), 47–57 (1981)

11. Chow, F.C., Hennessy, J.L.: The priority-based coloring approach to reg-
ister allocation. ACM Trans. Program. Lang. Syst. 12(4), 501–536 (1990).
http://doi.acm.org/10.1145/88616.88621

12. Chow, F., Hennessy, J.: Register allocation by priority-based coloring. In: Pro-
ceedings of the 1984 SIGPLAN Symposium on Compiler Construction, SIGPLAN
1984, pp. 222–232. ACM, New York (1984). http://doi.acm.org/10.1145/502874.
502896

13. Cooper, K.D., Simpson, L.T.: Live range splitting in a graph coloring register
allocator. In: Koskimies, K. (ed.) CC 1998. LNCS, vol. 1383, pp. 174–187. Springer,
Heidelberg (1998)

14. Gao, L., Shi, C.: An improved approach of register allocation via graph coloring.
In: Proceedings of the SPIE, vol. 5683, no. 5, pp. 113–123, May 2005

15. George, L., Appel, A.W.: Iterated register coalescing. ACM Trans. Program. Lang.
Syst. 18(3), 300–324 (1996). http://doi.acm.org/10.1145/229542.229546

16. Goodwin, D.W., Wilken, K.D.: Optimal and near-optimal global register alloca-
tions using 0–1 integer programming. Softw. Pract. Exper. 26(8), 929–965 (1996)

17. Govindarajan, R., Yang, H., Amaral, J.N., Zhang, C., Gao, G.R.: Mini-
mum register instruction sequencing to reduce register spills in out-of-order
issue superscalar architectures. IEEE Trans. Comput. 52(1), 4–20 (2003).
http://dx.doi.org/10.1109/TC.2003.1159750

18. Hames, L., Scholz, B.: Nearly optimal register allocation with PBQP. In: Lightfoot,
D.E., Ren, X.-M. (eds.) JMLC 2006. LNCS, vol. 4228, pp. 346–361. Springer,
Heidelberg (2006)

19. Kempe, A.B.: On the geographical problem of the four colours. Am. J. Math. 2(3),
193–200 (1879)

http://doi.acm.org/10.1145/258915.258941
http://doi.acm.org/10.1145/73141.74841
http://doi.acm.org/10.1145/73141.74843
http://doi.acm.org/10.1145/800230.806984
http://doi.acm.org/10.1145/88616.88621
http://doi.acm.org/10.1145/502874.502896
http://doi.acm.org/10.1145/502874.502896
http://doi.acm.org/10.1145/229542.229546
http://dx.doi.org/10.1109/TC.2003.1159750

Color Flipping 95

20. Koseki, A., Komatsu, H., Nakatani, T.: Spill code minimization by spill code
motion. In: Proceedings of the 22nd International Conference on Parallel Archi-
tectures and Compilation Techniques 0, p. 125 (2003)

21. Lattner, C., Adve, V.: Llvm: A compilation framework for lifelong program analysis
& transformation. In: Proceedings of the International Symposium on Code Gener-
ation and Optimization: Feedback-directed and Runtime Optimization, CGO 2004,
p. 75. IEEE Computer Society, Washington (2004). http://dl.acm.org/citation.
cfm?id=977395.977673

22. Olesen, J.S.: Greedy register allocation in llvm 3.0 (2011). http://lists.cs.uiuc.edu/
pipermail/llvmdev/2011-September/043511.html. Accessed 25 Aug 2014

23. Poletto, M., Sarkar, V.: Linear scan register allocation. ACM Trans. Program.
Lang. Syst. 21(5), 895–913 (1999). http://doi.acm.org/10.1145/330249.330250

24. Sarkar, V., Barik, R.: Extended linear scan: an alternate foundation for global
register allocation. In: Adsul, B., Odersky, M. (eds.) CC 2007. LNCS, vol. 4420,
pp. 141–155. Springer, Heidelberg (2007)

25. Smith, M.D., Ramsey, N., Holloway, G.: A generalized algorithm for graph-coloring
register allocation. In: Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation, PLDI 2004, pp. 277–288.
ACM, New York (2004). http://doi.acm.org/10.1145/996841.996875

http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-September/043511.html
http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-September/043511.html
http://doi.acm.org/10.1145/330249.330250
http://doi.acm.org/10.1145/996841.996875

Deadlocks as Runtime Exceptions

Rafael Lobo(B) and Fernando Castor

Center of Informatics, Federal University of Pernambuco,
Recife, Brazil

{rbl,castor}@cin.ufpe.br
http://www.cin.ufpe.br/

Abstract. Deadlocks are a common type of concurrency bug. When a
deadlock occurs, it is difficult to clearly determine whether there is an
actual deadlock or if the application is slow or hanging due to a differ-
ent reason. It is also difficult to establish the cause of the deadlock. In
general, developers deal with deadlocks by using analysis tools, intro-
ducing application-specific deadlock detection mechanisms, or simply by
using techniques to avoid the occurrence of deadlocks by construction.
In this paper we propose a different approach. We believe that if dead-
locks manifest at runtime, as exceptions, programmers will be able to
identify these deadlocks in an accurate and timely manner. We lever-
age two insights to make this practical: (i) most deadlocks occurring in
real systems involve only two threads acquiring two locks (TTTL dead-
locks); and (ii) it’s possible to detect TTTL deadlocks efficiently enough
for most practical systems. We conducted a study on bug reports and
found that more than 90 % of identified deadlocks were indeed TTTL.
We extended Java’s ReentrantLock class to detect TTTL deadlocks and
measured the performance overhead of this approach with a conservative
benchmark. For applications whose execution time is not dominated by
locking, the overhead is estimated as below 6%. Empirical usability eval-
uation in two experiments showed that students finished tasks 16.87 % to
30.7 % faster on the average using our approach with the lock being the
most significant factor behind it, and, in one of the experiments answers
were significantly more accurate (81.25 % more correct bugs found).

Keywords: Deadlock · Concurrency · Exception handling · Empirical
studies

1 Introduction

Real-world applications use concurrency to do computation in parallel with mul-
tiple threads/processes taking more advantage of multicore processors. Unfortu-
nately, concurrent code is difficult to write correctly, as it is well documented [1].
Deadlocks are a very common type of error in concurrent systems [1]. Dead-
locks manifest when threads are waiting each other in a cycle, where each
thread is waiting for another thread to release its desired lock. This produces a
never-ending wait. Although there are two well-documented types of deadlocks,
c© Springer International Publishing Switzerland 2015
A. Pardo and S.D. Swierstra (Eds.): SBLP 2015, LNCS 9325, pp. 96–111, 2015.
DOI: 10.1007/978-3-319-24012-1 8

Deadlocks as Runtime Exceptions 97

resource deadlocks and communication deadlocks [2,3], in this work our focus
is on resource deadlocks, e.g., deadlocks that stem from threads attempting to
obtain exclusive access to resources, and whenever the term deadlock is used we
implicitly mean resource deadlock.

In practice, developers employ a number of approaches to deal with dead-
locks: (i) static program analyses [4,7–9]; (ii) dynamic program analyses [10–
14,16]; (iii) application-specific deadlock detection infrastructures [19]; (iv) tech-
niques to guarantee the absence of deadlocks by construction [4]; (v) model
checking [17]. The first two approaches are known to be heavyweight. In addi-
tion, the former often produces many false positives. The third approach has
limited applicability and often imposes a high runtime overhead. The fourth
approach has a low cost but cannot be employed in cases where it is not feasible
to order lock acquisitions nor use non-blocking locking primitives. Finally, model
checking is a powerful solution but has limited scalability when applied in the
context of real programs. It also has limited generality, since some programs
with side effects simply cannot be model checked.

In this paper we advocate an approach that complements the aforementioned
ones. In summary, we believe deadlocks should not fail silently but instead their
occurrence should be signaled as exceptions at runtime. To make this vision
possible, we leverage two insights: (i) the vast majority of existing deadlocks
occur between two threads attempting to acquire two locks (as reported by other
authors [1] and confirmed by us in Sect. 2); and (ii) it is possible to efficiently
introduce deadlock detection for these two-thread, two-lock deadlocks (TTTL
deadlocks) within the locking mechanism itself, incurring in an overhead that
is low for applications whose execution time is not dominated by locking. We
present a new type of lock that automatically checks for TTTL deadlocks at
runtime and, if one is found, throws an exception indicating the problem. We
have implemented this approach as an extension to Java’s ReentrantLock class.
Deadlock exceptions are already supported in programming languages such as
Haskell [5] and Go [6] but they focus on different types of deadlocks. Similarly,
runtime exceptions for data races have been proposed [15].

We present data from an empirical study showing that our assumption about
the prevalence of TTTL deadlocks holds in practice. This confirms the findings
of a previous study that focused on concurrency bugs in general [1]. To evaluate
our approach, we conducted two controlled experiments. In both cases, subjects
using these new locks were able to detect deadlocks significantly faster than
subjects not using them. Furthermore, in one of the studies, this approach helped
the subjects to more accurately identify the causes of the deadlock. We also
show that our approach has an overhead that, while non-negligible, is low for
applications whose execution time is not dominated by locking.

2 Bug Reports Study

Attempting to generalize deadlock detection at runtime does not seem feasible
from a performance viewpoint, since existing dynamic analyses take considerable

98 R. Lobo and F. Castor

time [11]. But previous bug reports study [1] found that 30 out of 31 deadlock bug
reports involved at most two resources. We suspected TTTL deadlocks were more
common in real world systems than more complex deadlocks, so we investigated
this further. This section presents the results of this investigation.

2.1 Data Collection

We selected three open source projects to investigate: Lucene, Eclipse and Open-
JDK. Lucene1 is a text search engine library. Eclipse2 is one of the most popular
IDEs for java developers. OpenJDK3 is an open-source implementation of the
Java Platform. These three projects share some key similarities: they’re mostly
written in Java; they have immense bug report repositories with easy tools to
search into them; and lastly, their bug reports were usually well discussed and
contained enough context that allowed us to classify them with some confidence,
which was very important in this study.

In total, we collected 541 bug reports containing the word deadlock on their
titles or on their descriptions. In Lucene, we found 27 closed issues of type
“bug” in module “lucene-core”.4 In Eclipse, we found 406 resolved issues with
resolution “fixed”.5 In OpenJDK, we found 108 issues of type “bug” on module
“JDK” with resolution “fixed” and status “resolved”.6 We then proceeded to
calculate the sample size that would allow us to have 95 % of confidence level
and 5 % sampling error, which resulted in 225 bugs. Thus we created a random
sample of that size to analyze further 7.

2.2 Data Labeling

We defined a set of fields to classify for each bug analyzed in the sample. First,
we define a category. Then complete other fields based on how much we could
understand of each bug report, like the number of threads involved, number of
resources involved, type of locking mechanism used, and so on.

We have four different values for the category field. Category A indicates that
we are confident this is a resource deadlock. Thus, we should be able to describe
the number of threads and locks that were involved. In contrast, category B
represents the opposite: it is certainly not a resource deadlock. The reported bug
is a communication deadlock, due to evidence of lost notify/signal in the bug
context or anything else that supports it was not a resource deadlock. Category
C refers to all the false-positive results: the term deadlock was used as a synonym
of “hanging” or an “infinite loop”, or to just mention another deadlock bug as a

1 Lucene: http://lucene.apache.org/.
2 Eclipse: https://eclipse.org/.
3 OpenJDK: http://openjdk.java.net/.
4 Lucene bug reports list: http://goo.gl/DhVI3t.
5 Eclipse bug reports: http://goo.gl/qQnrEm.
6 OpenJDK bug reports: http://goo.gl/xYFfsO.
7 Bug reports sample: http://goo.gl/zNsIGz.

http://lucene.apache.org/
https://eclipse.org/
http://openjdk.java.net/
http://goo.gl/DhVI3t
http://goo.gl/qQnrEm
http://goo.gl/xYFfsO
http://goo.gl/zNsIGz

Deadlocks as Runtime Exceptions 99

reference, not as a cause of the current bug. Lastly, category D is set for all bugs
that we could not understand clearly, due to a lack of evidence or discussion.

2.3 Results Analysis

Initially we consider only bugs we clearly identified, that is, bugs that were not
labeled as category D. In Table 1 (second column), we can see in that from
all resource deadlocks, 92.07 % of them are indeed TTTL deadlocks. Another
interesting finding is that 75.93 % of all deadlocks are indeed resource deadlocks.

Table 1. Labeled categories and estimations

Category Number of bugs Estimated

A 101 146

A and TTTL 93 134

B 32 46

C 23 33

D 69 0

If we now consider bugs we could not clearly classify, we can make some
estimations of how many of them would be resource deadlocks and TTTL dead-
locks. The first estimate is the worse case scenario, that is, all bugs in category
D should be in category A but none of them would be TTTL deadlocks. In this
case, only 54.7 % of resource deadlocks would be TTTL deadlocks. If we look at
the best case scenario, that is, all bugs in D would be TTTL deadlocks, then
it would be 95.29 % instead. However none of these two scenarios seems realis-
tic. We believe that a more realistic scenario would be to assume that bugs in
category D are distributed roughly in the same way as those in categories A, B,
and C. If that is the case (last column of Table 1), out of all resource deadlocks,
we estimate that 91.7 % of them would also be TTTL deadlocks. Thus TTTL
deadlocks are certainly the most popular type of resource deadlocks, amounting
to more than 9 out of every 10 resource deadlocks. This result makes it evident
that an approach to automatically detect these deadlocks has practical value.

2.4 Threats to Validity

Only one of the authors labeled all bug reports due to constraints on time and
lack of resources. In counterpart, having only one reviewer makes it easier to
guarantee that all bug reports were reviewed following the exact same procedure,
but we would have preferred to have at least one more reviewer to label each
bug independently and use it as a way to double check the labels accuracy.
Furthermore, one factor that might limit generalization of these findings is that
all projects we looked were written in Java and different programming languages
may have different distribution of deadlock bugs.

100 R. Lobo and F. Castor

3 Deadlock Detection

In this section we present the proposed approach. We extend the notion of lock
by making locks responsible for both detecting TTTL deadlocks and raising
exceptions whenever such deadlocks occur. In this section we present an algo-
rithm implementing this extended notion of lock and show that our algorithm
guarantees that (i) every TTTL deadlock is detected; and (ii) if an exception
reporting a deadlock is raised, it must stem from the occurrence of a TTTL
deadlock.

We have modified the default implementation of Java’s ReentrantLock to
allow efficient runtime detection of TTTL deadlocks. It works as follows:

1. Each lock has a pointer to a thread, the owner of the lock, or null when no
thread owns that lock.

2. Each lock has an integer to represent its current state: 0 means the lock is
free and no thread owns it (the unlocked state), 1 means there is a thread
that owns the lock (the locked state). For simplicity, we are only interested on
these two states. Nonetheless, in the implementation of ReentrantLock, each
time a thread owner acquires the same lock, this state would be incremented,
and decremented each time the thread releases it.

3. Each thread has a thread-local list of pointers to locks it currently owns.
4. Each lock has a waiting queue of threads that are waiting to acquire it.

Whenever a thread tries to obtain a lock when it’s already acquired, the
thread will add itself to the waiting queue before parking. Upon the event of
releasing the lock, the owner of that lock will look for the first thread in the
waiting queue and unpark it.

5. When a thread wants to acquire a lock, it will swap the current state to locked
if the current state is unlocked atomically.
(a) If the thread fails, it must be because the lock is already owned by some

other thread, then it will add itself on the waiting queue for that lock.
Finally, the thread will park.

(b) Otherwise, the thread will set itself as the current owner of that lock and
also add this lock to its thread-local list of pointers of locks it owns.

6. When a thread is about to release a lock, the current owner pointer of that
lock is set to null and that lock is also removed from the thread-local list of
owned locks. Finally, the lock state is changed to unlocked.

7. Before parking, a thread will check whether there is a deadlock. When the
current thread is unable to acquire its desired lock, it must be because another
thread already owns it. It is possible to know who is the owner of any lock,
so the current thread identifies the owner of its desired lock as the conflicting
thread. Then the current thread will search on each lock of its list of owned
locks if the conflicting thread is waiting for it.
(a) If positive, then we have a circular dependency (current thread is stuck

waiting for its desired lock and the conflicting thread is stuck waiting for a
lock the current thread owns) and thus a deadlock exception will be raised.

(b) Otherwise, the thread parks.

Deadlocks as Runtime Exceptions 101

We take advantage of the current algorithm employed by ReentrantLock and
some of its guarantees listed below to avoid the need to introduce extra synchro-
nization mechanisms or costly atomic operations during deadlock detection:

1. The operation of swapping the state of a lock from unlocked to locked must
be done atomically by the thread, so only one thread can be successful at a
time.

2. A thread will only park when it is guaranteed that some other thread can
unpark it. Missing notifications will never happen and concurrent uses of park
and unpark on the same thread will be resolved gracefully.

3. Inserts on each lock’s waiting queue must be done atomically. If multiple
threads concurrently attempt to insert themselves in the waiting queue on the
same lock, they will both succeed eventually but the exact order of insertions
is not important.

4. Once the last element in the waiting queue of a lock is read, it should be
safe to read all threads in the waiting queue that arrived before the last
element. Since the thread who reads the waiting queues is also the one who
blocks every thread waiting on the queues, we can guarantee the only updates
that could happen concurrently are new insertions at the end of each queue.
However insertions in the end of the queue are not important once a last
element pointer is obtained.

Lemma 1. The proposed protocol can always detect TTTL deadlocks.

Proof. By way of contradiction, suppose not and a TTTL deadlock occurred
without it being detected. Lets assume that threads A and B have both acquired
locks a and b respectively, as follows:

writeA(statea = locked) → writeA(ownera = A) (1)

writeB(stateb = locked) → writeB(ownerb = B) (2)

In the above expressions, ‘x → y’ indicates that event x happened before event
y. Notation ‘writeB(ownerb = B)’ indicates that thread B wrote to variable
ownerb the value B. And now each thread will attempt to acquire the opposing
lock: thread A is trying to acquire lock b and thread B is trying to acquire lock
a, as follows:

readA(stateb == locked) → writeA(waiting queueb.insert(A)) (3)

readB(statea == locked) → writeB(waiting queuea.insert(B)) (4)

The notation ‘readA(stateb == locked)’ indicates that thread A read variable
stateb and obtained value locked. If a TTTL deadlock happened, then both
threads are now parked and all previous equations should be correct. But before
parking, each thread must check for deadlock by inspecting each lock it owns if
the opposing thread is on its waiting queue. As we initially assumed no deadlock
exception has been raised, then both threads are parked and also the following
equations must be correct:

102 R. Lobo and F. Castor

readA(ownerb == B) → readA(waiting queuea.contains(B) == false) (5)

readB(ownera == A) → readB(waiting queueb.contains(A) == false) (6)

The problem with the previous equations is that they both cannot be true simul-
taneously. Before checking for deadlock, each thread must add itself on the wait-
ing queue of its desired lock. If it holds that the opposing thread is not in the
waiting queue yet, then it must be because it did not start to check for deadlock
yet, thus a contradiction. ��
Lemma 2. The proposed protocol never raises a deadlock exception for a non-
existent TTTL deadlock.

Proof. By way of contradiction, assume the opposite: a deadlock exception was
raised and there is no real TTTL deadlock. Exactly one of the following equations
must be true in order to raise a deadlock exception (if both were true at the same
time, an actual deadlock would have occurred):

readA(ownerb == B) → readA(waiting queuea.contains(B) == true) (7)

readB(ownera == A) → readB(waiting queueb.contains(A) == true) (8)

Suppose without loss of generality that the first equation is true. It means that
thread B is waiting for lock a and it is also the owner of lock b. If it is on
the waiting queue, that thread is either parked already or about to park and
in both cases thread B is going to depend on the release of lock a to proceed.
However, as we have seem previously, thread A at this point is also about to
park and is checking for a deadlock. If this condition holds, we have a circular
dependency between threads A and B, a real TTTL deadlock, thus we have a
contradiction. ��

3.1 Extension: Raising Exceptions in All Threads

The protocol we presented guarantees that an exception is raised in at least one
of the threads involved in a deadlock. A safer approach, however, would be to
have exceptions raised in both threads involved in the deadlock. In this section
we describe an extension to the protocol that provides this guarantee. This does
not affect how deadlock is detected but what should be done after a deadlock is
detected. Thus, does not impact the correctness of the protocol. The proposed
extension comprises the following:

1. Each lock has a list of tainted threads. This list should only be read or updated
by the owner of that lock, allowing immunity from interference without any
extra synchronization cost.

2. Once a deadlock is detected and the current thread is about to raise a deadlock
exception, it already knows which thread is conflicting with itself and which
lock that thread desires. The current thread (the owner of the desired lock)
will add this conflicting thread to the tainted threads list for that lock. After
that, the deadlock exception is raised.

Deadlocks as Runtime Exceptions 103

3. When the conflicting thread is unparked and finally acquires its desired lock
(it becomes the owner of that lock), then it is allowed to read the list of
tainted threads. If this thread identifies itself in this list, then it must be
because it was part of a deadlock before, so it removes its reference from the
list and also raises a deadlock exception.

4. Every operation on the list of tainted threads of any lock (either reading or
inserting values) should be followed up by some cleanup on all references to
threads that are no longer running.

That is sufficient to force both threads to raise exceptions when only one
of them would raise an exception in the initial protocol. The latter only raises
exception on both threads if they simultaneously reach the point where they
check for deadlocks. However, for this particular case, this change introduces
a different problem: dangling references. If each thread adds their conflicting
thread to the lists of tainted threads of the locks they own, but none of them
is able to acquire their respective desired locks (as in item 3), both threads will
leave their references behind for others to cleanup (as in item 4). We minimize
this issue by cleaning these references as soon as any thread acquires the lock.

3.2 Implementation

The modified OpenJDK ReentrantLock version to implement this algorithm is
available in our code repository [18]. Further implementation details were omit-
ted here for brevity.

4 Evaluation

In this section we present an evaluation of our approach. Our evaluation com-
prises two parts: (i) a usability evaluation involving two experiments with two
groups of students (Sect. 4.1); and (ii) a preliminary analysis of the performance
overhead of our approach (Sect. 4.2). The exact input, instructions, and any
additional document we have used in this section are available at [18].

4.1 Usability Evaluation

We ran empirical evaluation to measure the efficiency of deadlock exceptions
with regard to problem solving speed and accuracy. We defined two research
questions for this evaluation: RQ1. Is the time spent to identify the bug reduced
using our implementation? RQ2. Is the accuracy in the identification of the
causes of a deadlock bug improved for developers using our approach? For the
second question, each answer was evaluated based on three criteria with three
possible values each: 0 for absence, 0.5 for partially present and 1 for fully present.
First criteria, A, stands for “correctly classified problem as deadlock”; second
criteria, B, means “classified problem as different from deadlock”; and lastly, C
means “correctly identified method calls involved in the deadlock”. Whenever

104 R. Lobo and F. Castor

(A − B) + C ≥ 1.5 is true, we defined it as a correct answer (that is, whenever
the bug was described as deadlock and at least one of the methods involved in
the deadlock were identified correctly).

We wrote two programs with different levels of complexity which were pre-
sented in the same order for all subjects. The first program, known as Bank,
contained 4 classes spread among 4 files, 3 threads, 3 explicit locks, and a mean
of 82 lines of code per file. The second program, known as Eclipse, had 15 classes
spread in 11 files, 4 threads, 5 explicit locks, and a mean of 40 lines of code per
file. Each program could use either LockA or LockB, where LockA was our imple-
mentation with deadlock detection on at least one thread involved in a deadlock,
while LockB was just the default ReentrantLock implementation. Each student
was assigned to either group A or B randomly. In group A, students would
start with LockA in the first program but use LockB on the second program;
meanwhile, in group B students would have the locks in opposite order.

The two experiments had similar setups but differed in terms of the subjects.
For the first experiment, the subjects comprised a group of third-year under-
graduate students who underwent an 18-hour concurrent programming course.
The course included a number of programming assignments. The experiment
was conducted as a test for the course. The subjects of the second experiment
were graduate students enrolled in master’s degree or PhD program attending
a 40-hour Parallel Programming course with a focus on algorithms and data
structures. They had classes about advanced concepts of parallel programming
and had practical exercises, including implementing a number of different lock-
ing approaches. The participants in the second experiment were all volunteers
and were not required to take part in it. Also, for both experiments, the assign-
ments were the same. It asked students to identify any problems they could with
the provided programs. All students started the experiment with program Bank.
When they finished, they received the second program, Eclipse. When a student
finished one of the programs, we set a timestamp on it. The timestamp was
written based on a chronometer visible to everyone in the laboratory. For the
first group (undergraduate students), we allowed 90 min per program. For the
second group (graduate students), we allowed 60 min per program.

Time Analysis. We defined the following hypothesis to answer RQ1:

H0 : μTimeLockA ≥ μTimeLockB (9)

H1 : μTimeLockA < μTimeLockB (10)

We used Latin Square Design [24] to control two factors that might affect
the metrics: subjects and program complexity. Programs Bank and Eclipse had
complexity easy and difficult respectively, while LockA and LockB were the two
possible treatments we wanted to compare. Since we had N subjects, 2 pro-
grams and 2 possible treatments, we disposed subjects in rows and programs in
columns of latin squares, randomly assigning in each cell of the square a treat-
ment that could be LockA or LockB, but also guaranteeing that for any given

Deadlocks as Runtime Exceptions 105

row or column in this square, each treatment appeared only once. Consequently,
we have replication, local control and randomization which are the three princi-
ples of experiment design [24]. Time analysis was conducted with R Statistical
Software using the inputs extracted from each day. We used the linear model
described in Fig. 1 that considers the effect of different factors on the response
variable as proposed by other authors [21], including the effect between each
replica and treatment [20].

Ylijk = μ + τl + ταli + βj + γk + τγlk + εlijk

Ylijk - response of lth replica, ith student, jth program, kth lock
τl - effect of lth replica
ταli - effect of interaction between lth replica and ith student
βj - effect of jth program
γk - effect of kth lock
τγlk - effect of interaction between lth replica and kth lock
εlijk - random error

Fig. 1. Regression model.

Initially, we plotted box-plot graphics shown in Fig. 2 for both experiments
and calculated the means for time spent in Tables 2 and 3, where we can observe
that students finished the exercise faster on the average when using our approach:
16.87 % less time on the first group and 30.70 % less on the second group. Then
we ran Box-Cox transformation to reduce anomalies such as non-additivity and
non-normality. The value of λ at the maximum point in the curve drawn by
box-cox function in R was not approximately 1 (λ = 5), thus we should apply
the transformation: on our regression model, Ylijk should be powered to λ. We
did the same on the second experiment as λ = 1.3636.

(a) First experiment (b) Second experiment

Fig. 2. Box-plot on both experiment days

106 R. Lobo and F. Castor

Table 2. First group’s time spent

Time spent (mean)

LockA 4227.800 s

LockB 5086.367 s

Table 3. Second group’s time spent

Time spent (mean)

LockA 1737.714 s

LockB 2507.714 s

Table 4. First experiment ANOVA results.

Df Sum Sq Mean Sq F value p-value

Replica 14 3.8633e + 37 2.7595e + 36 1.6553 0.1784197

Program 1 4.1460e + 36 4.1460e + 36 2.4869 0.1371197

Lock 1 3.9489e + 37 3.9489e + 37 23.6873 0.0002492 ***

Replica: Student 15 4.1013e + 37 2.7342e + 36 1.6401 0.1808595

Replica: Lock 14 2.4033e + 37 1.7166e + 36 1.0297 0.4785520

Residuals 14 2.3340e + 37 1.6671e + 36

After applying Box-Cox transformation, we ran Tukey Test of Additivity that
checks whether effect model is additive. If the model was additive, then rows and
columns of each latin square wouldn’t affect significantly the response [24]. Now
consider the hypothesis where the null hypothesis (H0) says the model is additive
and alternative hypothesis (H1) says the opposite. In the first experiment, model
was additive as we obtained p-value of 0.514 which is not lower than 0.05 and
we couldn’t reject H0; similarly for the second experiment, the model was also
additive as p-value found was 0.914.

Finally, we ran the ANOVA (ANalysis Of VAriance) test which compares
the effect of treatments on the response variable, providing an approximated p-
value for every associated factor. When a variable has p-value < 0.05, it means
that factor was significant to the response. Tables 4 and 5 shows the most
important factor as the type of Lock for both experiments, allowing us
to reject our null hypothesis defined for RQ1. Thus, considering this result and
the box plots in Fig. 2, we can say that the use of our locks promoted faster
identification of deadlocks.

Accuracy Analysis. We used the number of correct answers using each lock
to measure accuracy, so we defined the following hypothesis to answer RQ2.

H0 : μCorrectAnswersLockA ≤ μCorrectAnswersLockB (11)

H1 : μCorrectAnswersLockA > μCorrectAnswersLockB (12)

To compare the accuracy of the subjects using Java’s regular ReentrantLock
and our modified implementation, we employed Fisher’s exact test [25]. We could
not use ANOVA because the data for accuracy is categorical (Correct vs. Incor-
rect) instead of numerical. Applying Fisher’s exact test on data from Tables 6

Deadlocks as Runtime Exceptions 107

Table 5. Second experiment ANOVA results.

Df Sum Sq Mean Sq F value Pr(>F)

Replica 6 2576883250 429480542 14.1891 0.0025793 **

Program 1 6875586 6875586 0.2272 0.6505035

Lock 1 1958179433 1958179433 64.6938 0.0001975 ***

Replica: student 7 2328154077 332593440 10.9881 0.0047601 **

Replica: lock 6 823830276 137305046 4.5362 0.0441188 *

Residuals 6 181610625 30268438

Table 6. First group’s accuracy

Correct Incorrect

LockA 29 2

LockB 16 15

Table 7. Second group’s accuracy

Correct Incorrect

LockA 13 1

LockB 10 4

and 7, we can see that undergraduate students results presented a two-tailed P
value equals 0.0004: the association between rows (groups) and columns (out-
comes) was considered to be extremely statistically significant; consequently, it
suggests that an improvement on accuracy occurred due to the use of the pro-
posed approach, where it had 81.25 % more correct answers. However graduate
students results only had 30 % more correct answers with a two-tailed P value
equals 0.3259, which does not represent statistically significant evidence.

Although we cannot draw strong conclusions regarding improved accuracy,
we found some interesting behavior. Some students in the second group were
greatly experienced on concurrent programming and they knew how to efficiently
find a deadlock using the tools available in their IDE of choice, thus being able
to finish the tasks really quickly for both problems. This observation allows us
to hypothetize that deadlock exceptions are more helpful for less experienced
programmers, but we leave investigation of this matter for future work.

Threats to Validity. We must consider a few remarks regarding the validity
of our results. First remark: we could have used automated process to handle
timestamps rather than manually writing their name with it on the whiteboard
once they finished a question to keep track of time limit per subject later; this
could potentially reduce overhead and increase timestamp precision. Secondly,
the first group did this experiment in replacement of their actual exam might
have impacted the time we measured. We noticed some students spent more
time on each question by purpose. We believe that they were reluctant to ask
for the next question because they still had plenty of time left and they wanted to
make sure it was correct. We did not notice such behavior with the second group
of students and we believe it is because they did not have the same pressure to
deliver correct results as the first group had. Third remark is related to programs’
complexity: the ones we used to evaluate the students are considerably easier to

108 R. Lobo and F. Castor

understand than most programs in real world, but unfortunately we could not use
any real world scenario as students would not be able to finish each assignment
in time; with that in mind, we created two questions based on real world bugs
we found on our bug report studies.

Last remark is about whether we are able to draw conclusions based on
students data: some studies suggest that using students as subjects is as good
as using industry professionals [23]; Runes ran an experiment which shows that
there’s not much significant differences between undergraduate, graduate and
industry professionals, with the exception that undergraduate students often
take more time to complete the tasks [22].

4.2 Performance Overhead

We conducted a preliminary set of experiments to analyze the overhead of
our approach. We compared our deadlock-safe implementation with the orig-
inal ReentrantLock implementation available in the JDK and with Eclipse’s
deadlock-safe OrderedLock [19]. OrderedLock is similar our approach in the
sense that it attempts to detect deadlocks at runtime. However, it aims to be
general, detecting N -thread deadlocks without much concern for performance.
OrderedLock deeply relies on Eclipse’s code architecture. So, in order to use it
in our evaluation, we had to perform some small code changes, removing only
Eclipse-specific bits that did not affect the core functionality of OrderedLock.
The source code for these lock implementations is available elsewhere [18].

We developed a synthetic benchmark that creates N threads that perform
additions to ten integer counters where each increment in a counter is protected
by explicit locks. Each thread would have to increment its corresponding counter
1000 times before finishing its execution and the counters were evenly distributed
across the threads. Therefore, each counter will have exactly (N/10) threads
doing increments on it and higher values of N result in higher contention, that
is, more threads will compete against each other for a particular counter. In this
preliminary evaluation, we have conducted measurements for values of N equal
to 10, 50, 100, and 200. Since each thread in the benchmark never acquires more
than one lock at the same time, deadlocks cannot occur. We emphasize that
this setup is very conservative, since every operation that each thread performs
requires locking. Thus, the obtained overhead will be a worst-case estimate and
thus much higher than one would encounter in a real-world application [26].
The measurements were made on an Intel CoreTM i7 3632QM Processor (6Mb
Cache, 2.2GHz) running Ubuntu 12.04.4 LTS and each cell in Table 8 is the
average of 50 executions (preceded by 20 executions that served as a warm-up).

The difference of results between our implementation and the original Reen-
trantLock gives a range of increased time from about 50 % to 90 %. Meanwhile,
OrderedLock performed a lot worse, reaching a 8446.3 % increase in time for the
worst case. To get a rough estimate of the impact that this overhead would have
on actual application execution time, we analyzed the results obtained by Lozi et
al. [26]. The authors profiled 19 real-world applications and small benchmarks in

Deadlocks as Runtime Exceptions 109

Table 8. Benchmark time measurements (in seconds)

Threads ReentrantLock ReentrantLock modified OrderedLock

10 0.084184 0.105729 0.159503

50 0.089094 0.136507 1.094718

100 0.090978 0.159541 3.395974

200 0.131739 0.194075 11.258714

order to measure the time these systems spend on their critical sections. Worst-
case results ranged between 0.3 % and 92.7 %. If we consider the average time
spent on the critical sections of 12 of these systems, the impact of our approach
on the overall execution time would be less than 6% in the worst case. The
remaining cases are extreme, in the sense that these systems spend more time
in their critical sections than out of them [26].

5 Conclusion

In this work, we investigated deadlock bug reports in open source projects and
confirmed a previous study claim that TTTL deadlocks are the most frequent
case of deadlock (92.07 % of all resource deadlocks we identified). We modified
Java’s ReentrantLock and provided a lightweight version of it that detects TTTL
deadlock in runtime. We measured its performance overhead with a very conser-
vative benchmark and we estimate our cost to be less than 6 % for worse case
on real world applications. Finally, we did an empirical evaluation to measure
its usability and we found that deadlock exceptions speeds up finding deadlock
bugs in code, and we also found some non-conclusive evidence showing that it
may also improve accuracy of deadlock bug reports, but we leave for future work
to verify whether this last observation is actually true.

Acknowledgments. We thank feedback from anonymous reviewers and from SPG
group at CIn/UFPE. Rafael was supported by a grant provided by CAPES. Fer-
nando is supported by CNPq/Brazil (304755/2014-1, 487549/2012-0 and 477139/2013-
2), FACEPE/Brazil (APQ- 0839-1.03/14) and INES (CNPq 573964/2008-4, FACEPE
APQ-1037-1.03/08, and FACEPE APQ-0388-1.03/14).

References

1. Lu, S., et al.: Learning from mistakes: a comprehensive study on real world con-
currency bug characteristics. In: ACM Sigplan Notices, vol. 43, no. 3. ACM (2008)

2. Singhal, M.: Deadlock detection in distributed systems. Computer 22(11), 37–48
(1989)

3. Knapp, E.: Deadlock detection in distributed databases. ACM Computing Surveys
(CSUR) 19(4), 303–328 (1987)

110 R. Lobo and F. Castor

4. Marino, D., et al.: Detecting deadlock in programs with data-centric synchroniza-
tion. In: 2013 35th International Conference on Software Engineering (ICSE). IEEE
(2013)

5. Marlow, S.: Parallel and Concurrent Programming in Haskell: Techniques for Mul-
ticore and Multithreaded Programming. O’Reilly, Aug 2013

6. Aimonetti, M.: Go Bootcamp: Chap. 8 - Concurrency. http://www.golang
bootcamp.com/book/concurrency

7. Engler, D., Ashcraft, K.: RacerX: effective, static detection of race conditions and
deadlocks. SIGOPS Oper. Syst. Rev. 37(5), 237–252 (2003)

8. Shanbhag, V.K.: Deadlock-detection in java-library using static-analysis. In: Asia-
PacificSoftware Engineering Conference, pp. 361–368 (2008)

9. Williams, A., Thies, W., Awasthi, P.: Static deadlock detection for java libraries. In:
Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 602–629. Springer, Heidelberg
(2005)

10. Da Luo, Z., Das, R., Qi, Y.: Multicore sdk: a practical and efficient deadlock
detector for real-world applications. In: 2011 IEEE Fourth International Conference
on Software Testing, Verification and Validation (ICST). IEEE (2011)

11. Cai, Y., Chan, W.K.: MagicFuzzer: scalable deadlock detection for large-scale
applications. In: Proceedings of the 2012 International Conference on Software
Engineering. IEEE Press (2012)

12. Pyla, H.K., Varadarajan, S.: Avoiding deadlock avoidance. In: Proceedings of the
19th International Conference on Parallel Architectures and Compilation Tech-
niques. ACM (2010)

13. Pyla, H.K., Varadarajan, S.: Transparent runtime deadlock elimination. In: Pro-
ceedings of the 21st International Conference on Parallel Architectures and Com-
pilation Techniques, PACT 2012, pp. 477–478. ACM, New York (2012)

14. Pyla, H.K.: Safe Concurrent Programming and Execution (2013)
15. Biswas, S., et al.: Efficient, Software-Only Data Race Exceptions (2015)
16. Qin, F., Tucek, J., Zhou, Y., Sundaresan, J.: Rx: Treating bugs as allergies–a safe

method to survive software failures. ACM Trans. Comput. Syst., 25(3), August
2007

17. Havelund, K., Pressburger, T.: Model checking java programs using java pathfinder.
Int. J. Softw. Tools Technol. Transf. 2(4), 366–381 (2000)

18. Java’s ReentrantLock with DeadlockException. https://github.com/rafael
brandao/java-lock-deadlock-exception

19. Eclipe’s OrderedLock class description. Documentation http://cct.lsu.edu/
rguidry/ecl31docs/api/org/eclipse/core/internal/jobs/OrderedLock.html

20. Sanchez, I.: Latin Squares and its applications on software engineering. Master’s
thesis, Federal University of Pernambuco, Recife, Brazil (2011)

21. Accioly, P.: Comparing different testing strategies for software product lines. Mas-
ter’s thesis, Federal University of Pernambuco, Recife, Brazil (2012)

22. Runeson, P.: Using students as experiement subjects - an analysis on graduate
and freshmen student data. In: Proceedings of the 7th International Conference on
Empirical Assessment in Software Engineering. Keele University, UK, pp. 95–102
(2003)

23. Staron, M.: Using students as subjects in experiments - a quantitative analysis of
the influence of experimentation on students’ learning process. In: CSEE & T, pp.
221–228. IEEE Computer Society (2007)

24. Box, G.E.P., Hunter, J.S., Hunter, W.G.: Statistics for Experimenters: Design,
Innovation, and Discovery. Wiley-Interscience (2005)

http://www.golangbootcamp.com/book/concurrency
http://www.golangbootcamp.com/book/concurrency
https://github.com/rafaelbrandao/java-lock-deadlock-exception
https://github.com/rafaelbrandao/java-lock-deadlock-exception
http://cct.lsu.edu/ rguidry/ecl31docs/api/org/eclipse/core/internal/jobs/OrderedLock.html
http://cct.lsu.edu/ rguidry/ecl31docs/api/org/eclipse/core/internal/jobs/OrderedLock.html

Deadlocks as Runtime Exceptions 111

25. Agresti, A.: A survey of exact inference for contingency tables. Statistical Science,
pp. 131–153 (1992)

26. Lozi, J.-P., David, F., Thomas, G., Lawall, J., Muller, G.: Remote core locking:
migrating critical-section execution to improve the performance of multithreaded
applications. In: Proceedings of the 2012 USENIX Annual Technical Conference
(USENIX ATC 2012), Berkeley, CA, USA (2012)

Model-Driven Engineering Based
on Attribute Grammars

Daniel Calegari(B) and Marcos Viera

Universidad de la República, Montevideo, Uruguay
{dcalegar,mviera}@fing.edu.uy

Abstract. The Model-Driven Engineering (MDE) paradigm proposes
the construction of software based on an abstraction from its com-
plexity by defining models, and on a (semi)automatic construction
process driven by model transformations. In this paper we pro-
pose the use of attribute grammars for the specification of QVT-
like (Query/View/Transformation) relational model transformations. We
also present how the syntax and semantics of models can be represented,
and we discuss the practical implications of this approach through the
development of a case study.

Keywords: Model-Driven Engineering · Attribute grammars · QVT ·
Haskell

1 Introduction

The use of a model-centric approach for the specification of a system, and of
automated mechanisms for its construction, improves efficiency on the whole
process. The Model-Driven Engineering (MDE, [1]) paradigm is based on these
practices. It envisions a software development life-cycle driven by models rep-
resenting different views of the system to be constructed and model transfor-
mations providing a (semi)automatic construction process. Models are defined
from metamodels, i.e. a model which introduces the syntax and semantics of
certain domain-specific kind of models. The relation between a model and its
metamodel is called conformance. A model transformation is basically the auto-
matic generation of a target model from a source model, according to a set of
rules that describe how certain elements in the source model can be transformed
into certain others in the target model. The Object Management Group (OMG)
has conducted a standardization process of languages and defined the MetaOb-
ject Facility (MOF, [2]) for metamodeling, and the Query/View/Transformation
Relations (QVT-Relations, [3]) for declarative model transformations.

Modelware is the technical space [4] of MDE, i.e. a working context with a set
of associated concepts, body of knowledge, tools, required skills, and possibilities.
In contrast, Grammarware is the technical space of grammars and grammar-
aware theories and software. Bridging of technical spaces is specially useful for
adopting the benefits of the other technical space [5], e.g. the translation of
c© Springer International Publishing Switzerland 2015
A. Pardo and S.D. Swierstra (Eds.): SBLP 2015, LNCS 9325, pp. 112–127, 2015.
DOI: 10.1007/978-3-319-24012-1 9

Model-Driven Engineering Based on Attribute Grammars 113

MDE elements (models, metamodels and transformations) into Grammarware
elements should allow their integration into existing tools such as diff/merge, as
well as the definition of declarative semantics associated to grammar produc-
tions. There are reasonable similarities between grammars and metamodels [5].
Since metamodels are language definitions, there is a relation between them
and the concept of a grammar, as well as models conforming to a metamodel
are like strings recognized by a grammar. Moreover, syntactical and semantical
properties that must hold in a given model to be considered conformant to a
metamodel, can be considered part of the semantics of a grammar. We also claim
that model transformations can be considered part of this semantics.

In this paper we address the bridging of Modelware and Grammarware by
representing MDE elements using Attribute Grammars (AGs, [6]). An AG is
composed by an underlying context-free grammar, describing the structure of
an Abstract Syntax Tree (AST), together with a set of attributes defined for
each non-terminal which allows to compute and pass information downwards and
upwards within the AST. In particular, we describe how metamodels can be rep-
resented as grammars, and their semantics, as well as QVT-like model transfor-
mations, as attributes of the grammar. AGs constitutes an executable method of
specification, since it describes only a computation in terms of an AG and then
automatically produces a program [7]. In this way we can derive a program for
checking conformance and executing a model transformation. We also discuss the
practical implications of this approach through the development of a case study1

using the Utrecht University Attribute Grammar Compiler (uuagc 2, [8]); a pre-
processor that generates Haskell code out of AG specifications.

The remainder of the paper is structured as follows. In Sect. 2 we introduce
the main concepts of MDE based on a running example. Then, in Sect. 3 we
present how models and metamodels can be represented using AGs, such that
is possible to verify conformance of a model with respect to its metamodel.
In Sect. 4 we present the specification of QVT-like model transformation using
AGs. Finally, in Sect. 5 we present related work and in Sect. 6 we present some
conclusions and an outline of further work.

2 Model-Driven Engineering

Every model conforms to a metamodel, which typically defines syntax and (static)
semantics of modeling languages like UML. The MetaObject Facility (MOF, [2]) is
a standard language for metamodeling. In few words, a metamodel defines classes
which can belong to a hierarchical structure. Any class has properties which can
be attributes (named elements with an associated type which can be a primitive
type or another class) and associations (relations between classes in which each
class plays a role within the relation). Every property has a multiplicity which
constrains the number of elements that can be related through the property.
1 Complete source code of our running example is available at https://www.fing.edu.
uy/inco/grupos/coal/field.php/Research/ANII14.

2 https://hackage.haskell.org/package/uuagc.

https://www.fing.edu.uy/inco/grupos/coal/field.php/Research/ANII14
https://www.fing.edu.uy/inco/grupos/coal/field.php/Research/ANII14
https://hackage.haskell.org/package/uuagc

114 D. Calegari and M. Viera

(a) UML metamodel (b) Relational metamodel

Fig. 1. Exampling metamodels

If there are conditions that cannot be captured by the structural rules of
this language, the Object Constraint Language (OCL, [9]) is used to specify
them. These considerations allow defining the conformance relation in terms
of structural and semantical conformance. Structural conformance with respect
to a MOF metamodel means that in a given model: every object and link is
well-typed and the model also respects the multiplicity constraints. Semantical
conformance means that a given model respects the invariants specified with the
supplementary constraint language.

As an example, the metamodel in Fig. 1a defines UML class diagrams, where
classifiers (classes and primitive types as string, boolean, integer, etc.) are con-
tained in packages (association contains). Classes can contain attributes (asso-
ciation has) and may be declared as persistent (kind = ‘Persistent’), whilst
attributes have a type that is a primitive type (association typeOf). Notice that
a class must contain only one or two attributes (multiplicity 1..2), and also
that the Classifier class is not abstract. We decided to handle these aspects dif-
ferently from UML class diagrams in order to have a more complete example.
The Relational diagrams metamodel in Fig. 1b defines schemas which contain a
number of tables and each table has a number of columns. Each column has a
name and a kind, and can be the primary key of the corresponding table.

A model transformation takes as input a model conforming to certain meta-
model and produces as output another model conforming to another metamodel
(possibly the same). Query/View/Transformation Relations (QVT-Relations,
[3]) is a relational language which defines transformation rules as mathemati-
cal relations between source and target elements. A transformation is a set of
interconnected relations: top-level relations that must hold in any transforma-
tion execution, and non-top-level relations that are required to hold only when
they are referred from another relation. Every relation defines a set of variables,
and source and target patterns which are used to find matching sub-graphs of
elements in a model. Relations can also contain a when clause which specifies the
conditions under which the relationship needs to hold, and a where clause which
specifies the condition that must be satisfied by all model elements participating

Model-Driven Engineering Based on Attribute Grammars 115

Fig. 2. Class to relational transformation (excerpt)

in the relation. The when and where clauses, as well as the patterns may contain
arbitrary boolean OCL expressions and can invoke other relations.

Consider the example of Fig. 2 which is a simplified version of the well-known
Class to Relational transformation [3]. The transformation basically describes
how persistent classes within a package are transformed into tables within a
schema. The relation PackageToSchema states that any UML package is mapped
into a relational schema. Moreover, the relation ClassToTable states that classes
marked as persistent are mapped into tables with the same name, a primary key
and an identifying column, such that the package to which the class belongs
is in the relation with the schema to which the table belongs. The relation
AttributeToColumn is called from the where clause of ClassToTable and maps
primitive attributes of the persistent class to columns of the corresponding table.
There are also keys, e.g. stating that the transformation must ensure that there
cannot be two Tables with the same name within the same Schema.

3 AG-based Structural and Semantical Conformance

As discussed in [5], describing a mapping from metamodels to grammars is in
many ways more demanding than the opposite, since metamodels inherently con-
tain more information than grammars, as for example the notion of inheritance
between metamodel elements and properties. Moreover, any metamodel can be
considered a graph of elements whereas grammars forms a tree. In what follows

116 D. Calegari and M. Viera

we introduce how metamodels can be mapped into AGs in such a way that a
model conforming with a metamodel is represented as a string recognized by the
corresponding AG. We also describe how AGs allow us to address structural and
semantical conformance checking as in the MDE world. Throughout this section
we also introduce the main concepts of AGs related to our proposal.

Since we are focusing on model transformations, we do not consider some
MOF constructs. In particular, we do not consider aggregation, uniqueness and
ordering properties within a property end, operations on classes, and packages.
Aggregation and operations are not used within transformations, whereas pack-
ages are just used for organizing metamodel elements (they can be considered
syntactic sugar). Although uniqueness and ordering properties are neither com-
monly used, they can be considered within semantical conformance checking.

MOF elements can be translated to AGs as follows.

Classes and Hierarchies. Each class is translated to a non-terminal with a
production rule resulting from the translation of their properties. If the class
does not have a superclass, then its production rule includes a terminal oid of
type Int representing an unique identifier of any instance of such class. Moreover,
if the class has subclasses, the production rule defines a non-terminal child of
type ClassCh, with Class the name of the class. This non-terminal defines one
production rule for each subclass, such that each one defines only one non-
terminal of the type of the corresponding subclass. If the class is not abstract,
then the child is wrapped with a Maybe.

In Fig. 3 we show the grammar resulting from the translation of the UML
class diagrams metamodel of Fig. 1a. In uuagc grammars are defined in data
declarations, which are very similar to Haskell data declarations with named
fields. Thus, for example, the declarations of Classifier , MaybeClassifierCh and
ClassifierCh result from the translation of the class Classifer.

Datatypes and Enumerations. Our AGs are Haskell-based specifications.
Thus, primitive types as string, boolean and integer are mapped to their cor-
responding Haskell types3. In the case of user defined datatypes, we translate
them in the same way we do with classes. An enumeration is translated to a
non-terminal with a choice of terminals corresponding to their values.

Properties and Multiplicities. Properties are defined by a name, an asso-
ciated type which can be a primitive type or another class and a multiplicity
constraining the number of elements that can be related through the property.
Within the context of the production rule corresponding to the class who owns
a property, we translate a property typed with a primitive type as a terminal of
the translated type. Moreover, if the property is typed with a non-primitive type,
we translate the property as a terminal of type Int , representing the identifier
of the element that must be related through the property. If the multiplicity of
the property accepts many elements, the type of the terminal is a list of the cor-
responding type. Finally, we use maybe if the multiplicity is 0..1. More narrow
3 In uuagc everything that is in between brackets is considered as Haskell code.

Model-Driven Engineering Based on Attribute Grammars 117

Fig. 3. Grammar for UML class diagrams metamodel

multiplicities are defined as attributes since they are considered as part of the
structural conformance checking.

Metamodel. At the top of the grammar we need a root element with a pro-
duction rule generating every other metamodel element on top of a hierarchy
(isolated classes and datatypes are considered hierarchies of one element). Then,
metamodels are represented as a list of such root elements. In our example, the
root model element is UMLModelElement .

The uuagc preprocessor generates Haskell data types out of the grammar
declarations. The following Haskell value, with type UML, is an example of a
model that conforms to the metamodel represented by the grammar of Fig. 3.

Referential and Inherited Properties. Properties are defined in their
owning classes, and within a hierarchy they must be inherited by subclasses.

118 D. Calegari and M. Viera

set EveryUMLModelElement = UMLModelElementCh Package Attribute Classifier
MaybeClassifierCh ClassifierCh Class PrimDataType

attr EveryUMLModelElement inh oid :: {Int }
inh kind :: {Sting }
inh name :: {Sting }

sem UMLModelElement | UMLModelElement child .oid = @oid
child .kind = @kind
child .name = @name

Fig. 4. Attributes defining UMLModelElement properties

In AGs, inherited attributes are used to pass information downward a tree.
We define inherited attributes such that, for a given property, these attributes
are copied to every subclass of the property owner. In our example we have
that UMLModelElement defines three properties (oid , kind and name), thus we
define inherited attributes, whose semantics is given by the original terminals
of its production rule, and which are copied to their child elements. This is
depicted in Fig. 4, where three inherited attributes (inh) are defined for every
descendant of UMLModelElement . Semantic rules, starting with the keywork
sem, define how the value of an attribute is computed. In the case of inherited
attributes, is the parent who computes the values for its children. In the example,
we define that the values of the attributes oid , kind and name of the child child of
UMLModelElement are the values of the fields oid , kind and name, respectively.
Semantic rules have to be defined for every production of all the non-terminal
which has the attribute. However, if a rule for an inherited attribute is missing,
the uuagc system derives a copy-rule, which just copies the value of the parent to
its children. Thus, the declarations of Fig. 4 express that, for example, the value
of the field oid is copied unchanged in the attribute oid to all the descendants
of UMLModelElement .

Some properties are references to other non-primitive elements. In this case,
we define a pair of lookup attributes for accessing these elements:

elemLookups is a synthesized attribute; i.e. an attribute that collects informa-
tion in a bottom-up way. In this case, we construct a function which allows to
lookup to an element into the list of model elements using its identifier. Then
this function is distributed through the model (EveryInter means all the non-
terminals but UML) using the inherited attribute elemLookupi .

For each class with a production rule defining a non-terminal as a reference
to other element, we define a higher-order attribute [10], i.e. a local attribute
that acts as if it is an additional child of the production (also with attributes).

Model-Driven Engineering Based on Attribute Grammars 119

sem Attribute | Attribute inst.typ ::UMLModelElement
inst.typ = fromJust (@lhs.elemLookupi @typ)

inst.owner ::UMLModelElement
inst.owner = fromJust (@lhs.elemLookupi @owner)

Fig. 5. References (excerpt)

{
data Type = TPackage | TAttribute | TClassifier | TPrimitiveDataType | TClass
}
attr EveryInter syn types use {++} { []} :: { [Type]}
sem Package | Package lhs.types = [TPackage]

sem Attribute | Attribute lhs.types = [TAttribute]

sem Classifier | Classifier lhs.types = TClassifier : @child .types

sem PrimDataType | PrimDataType lhs.types = [TPrimitiveDataType]

sem Class | Class lhs.types = [TClass]

Fig. 6. Collecting the types of an element

In the example depicted in Fig. 5 we represent the referential properties for the
Attribute class. The keyword inst specifies that we are defining a higher-order
attribute, while with lhs we refer to attributes coming from the left hand side
(i.e. the parent). Except for the symbols starting with @, that refer to attribute
values, the expressions on the right hand side of the = –signs of the semantic
rules are plain Haskell code. Since Attribute defines typ and owner as referential
properties (to a PrimitiveDatatype and a Class, respectively), we define higher-
order attributes typ and owner , such that their values are defined by looking up
the corresponding elements in the list of top elements; i.e. we dinamically copy
the corresponding branches of the three as new children. We ensure that these
elements exist by addressing structural conformance as explained next. Notice
that we are generating an infinite structure, due to the cyclic references of the
model. We make use of Haskell’s lazy evaluation to avoid infinite computations,
and unfold the structure only as much as needed.

Structural and Semantical Conformance. AGs also allows us to address
structural and semantical conformance. Structural conformance requires that the
model is well-typed and that also respects the multiplicity constraints. Additional
checks are mandatory in the case of referential properties and narrow multiplicity
constraints. In the case of semantical conformance, we need to specify supplemen-
tary constraints. Besides we do not have a direct translation from OCL to AGs,

120 D. Calegari and M. Viera

attr Every syn errs use {++} { []} :: { [String]}
sem Attribute

| Attribute lhs.errs = case @loc.owner of
Nothing → ["Type oid"++ show @owner ++ "not found."

Just → if elem TClass @owner .types
then []

else ["Type Error for oid"++ show @owner

sem Class
| Class lhs.errs = @loc.errMul ++ @loc.errDup

-- multiplicity constraint
loc.errMul = let atts = length $ atts

in if (1 > atts) ∨ (atts > 2)

then [@lhs.name ++ ": Multiplicity Error: "

++ show atts ++ " attributes."]

else []

-- semantical conformance checking
loc.errDup = let dup = [l | l ← group (sort @atts .names), length l > 1]

in if length dup > 0

then [show @lhs.oid
++ ": Duplicated Names: "++ show dup]

else []

Fig. 7. Structural and semantical conformance checking (excerpt)

devised as future work, the potential of AGs allows this kind of checking. Note
that higher order AGs are Turing complete [10]. To address typing requirements
we define a synthesized attribute types (Fig. 6) for collecting the types of an ele-
ment (its own type and their inherited types within a hierarchy). For synthesized
attributes we can define use rules for the cases where the semantic rules are not
explicitly declared. For example, for types the information is collected by append-
ing (++) the lists coming from the children. We also define a synthesized attribute
errs for collecting errors when checking conformance. This attribute is defined for
each non-terminal with respect to their own conformance needs. In Fig. 7 we show
some examples of conformance checks. We can see the definition of the inherited
attributes and some structural and semantical conformance chekings. In partic-
ular, within Attribute we check that its referential property owner exists and it
is well-typed (must be of type TClass). Moreover, in the context of a Class we
define that a class must have only 1 or 2 attributes (multiplicity constraint) and
also that the name of an attribute must be unique within a class (semantical con-
formance). For this last check we use the higher-order attribute atts , giving the
list of Attribute of a class, we collect their names and check if there are duplicates
in the resulting list.

Model-Driven Engineering Based on Attribute Grammars 121

4 AG-based Model Transformations

In this section we describe how model transformations specified using QVT-
Relations can be mapped to AGs. As a running example we use the (fragment
of) uml2rdbms transformation, defined in Fig. 2 of Sect. 2.

The AG specification of a transformation generates a Haskell function that
takes as input a model that conforms to the source metamodel and returns a
function from an initial model to a final model conforming to the target meta-
model. The transformation of the example is expressed as follows4:

Transformations are performed with check-enforce semantics; that is, first
we check if the initial target model complies with the relations specified by the
transformation, and then, only in the cases of relations that does not hold, the
model is incrementally updated. When executing the uml2rdbms transformation
to the umlModel defined in Sect. 3 with an empty initial target model we get:

But, if for example, we use this resulting model as the initial one, then the
same model is obtained. In case of models not completely complying with the
transformation specification, only the needed elements are inserted, e.g. if only
the last column (4) is missing, then the result is the initial model with this
column added (and the table updated to refer to this column).

Since the semantic function generated by the AG system should be a function
that takes as input a RDBMS and results in a RDBMS , we define at the root
of the grammar an inherited attribute input and a synthesized attribute output ,
both with type RDBMS .

We define a rule as a function that, given a list of relational model elements
returns an updated list of relational model elements. Top rules produced by the
elements of the source UML grammar are collected (i.e. composed) bottom-up
by a synthesized attribute top.

Thus, a transformation is defined as the application of the top rules to the
input list of elements.

4 RDBMS is the data type that represents the grammar corresponding to the meta-
model of Fig. 1b.

122 D. Calegari and M. Viera

{
type Relation = [T .RModelElement] → ([Int], [T .RModelElement])
}
attr Package UMLModelElementCh UMLModelElement syn p2S :: {Relation }
sem Package
| Package (lhs.counter , loc.s) = nextUnique @lhs.counter

loc.p2S = case @lhs.name of
pn → addSchema (mkSchema @loc.s "" pn [])

lhs.top = snd . @loc.p2S

{
mkSchema s k pn tl = (RModelElement s k pn (RMECSch (Schema tl)))

addSchema ns [] = ([oid ns], [ns])
addSchema ns (r : rs) | ns ≡ r = ([oid r], r : rs)

| otherwise = let (s, rs′) = addSchema ns rs in (s, r : rs′)
}

Fig. 8. Implementation of the relation PackageToSchema (excerpt)

The rules are created from the relations specified in the transformation. For
each relation, we define an attribute at the non-terminal representing the main
element of the source domain pattern of the rule. For example, in Fig. 8, for the
relation PackageToSchema we define an attribute p2S at Package.

A Relation takes an initial target model and returns a pair composed by the
list of possibly introduced elements and the resulting target model. The patterns
in QVT-Relations are traduced to pattern matching. We use a chained attribute
counter to generate unique identifiers for the new elements. A chained attribute
is a pair of attributes (synthesized and inherited) with the same name that are
used to walk through the tree keeping a sort of state; in this case a number.

Thus, for a given Package with name pn, we create an empty Schema with
name pn and identifier a new unique number. The function addSchema inserts
this new schema only if an equal schema does not already belong to the list.
Equality in model elements (≡) is defined in terms of the keys declared in the
transformation. Thus, if two schemas have the same name we consider they as
equals, even if they have different identifiers. If the new schema is not inserted,
the returned identifier is the one of the existing schema (not a new one).

Since PackageToSchema is a top relation, we use p2S to define the top
attribute by forgetting the identifiers of the inserted elements.

In Fig. 9 we show how the relation PackageToSchema is mapped to an
attribute c2T . This rule only applies if the given class is of kind “Persistent”;
otherwise the initial target model is returned unchanged. First we apply the

Model-Driven Engineering Based on Attribute Grammars 123

relations included in the when clause, in this case the p2S relation the Class
inherited from the namespace of the Classifier . Then, the model is sequentially
(possibly) updated with a new table, column and key. The addition of elements
that must be referred by other elements in the model, implies the need to update
such other elements, adding their references. For example, to (possibly) add a
Table we first use addTable ′ to possibly add the new table, in a similar way as
we described in the case of Schema, and then if the table was added we use
updSchema to update the schema s. After (possibly) adding the new elements
to the model, we apply the where clause relations to the resulting model. In
the example of Fig. 9 we apply the non-top AttributeToColumn relation (a2C),
given a table t and model r4 .

Notice that, for clarity reasons, we are assuming that both the when and
where clauses hold. In case any of them is not fulfilled (returning an empty list
of added/checked elements), the pair ([], r) has to be returned. Moreover, we
did not focus on how OCL expressions (in which QVT is strongly based) can be
represented. This is part of future work.

sem Class
| Class (loc.c1 , loc.t) = nextUnique @lhs.counter

(loc.c2 , loc.c) = nextUnique @loc.c1
(loc.c3 , loc.k) = nextUnique @loc.c2

loc.c2T = case (@lhs.namespace, @lhs.kind , @lhs.name) of
(p, "Persistent", cn) → λr →

let ([s], r1) = @lhs.p2S i r
([t], r2) = addTable (mkTable @loc.t "" cn s [] 0) r1
([c], r3) = addColumn (mkColumn @loc.c "" "TID" "NUMBER" t) r2
([k], r4) = addKey (mkKey @loc.k "" "PK" [c] t) r3
(cs, r5) = @loc.a2C t r4

in (t : c : k : cs, r5)
→ λr → ([], r)

lhs.top = snd . @loc.c2T

{
addTable nt rs = let (s, t) = (schema nt , oid nt)

([t ′], rs′) = addTable′ nt rs
in ([t ′], (if t ′ ≡ t then updSchema s t else id) rs′)

addTable′ nt = ([oid t], [nt])
addTable′ nt (r : rs) | nt ≡ r = ([oid r], r : rs)

| otherwise = let (t , rs′) = addTable′ nt rs in (t , r : rs′)

updSchema s t [] = []

updSchema s t (r : rs) | s ≡ (oid r) = addTable2Schema t r : rs
| otherwise = r : updSchema s t rs

}

Fig. 9. Implementation of the relation ClassToTable (excerpt)

124 D. Calegari and M. Viera

5 Related Work

The representation of MDE elements in terms of a shallow embedding of the
languages by providing a syntactic translation into Grammarware concepts has
been proposed before [5,11–13]. The translations have some minimal differences
between them with respect to the representation of hierarchical elements and
properties within. In few words, some proposals model hierarchies as a flattening
of elements, move properties from the topmost (or bottommost) element of a
hierarchy to every bottommost (or topmost, respectively) element in order to
have access to those inherited properties, or discard some intermediate elements
within a hierarchy since they do not have any property of their own. Besides
these translations generate more optimal grammars, they lose traceability with
respect to the original metamodel. Thus it could be neither appropriate for the
definition of a model transformation (as attributes related to the main element
of the source domain) nor for the definition of the reversal translation from the
AG to their corresponding metamodel. Moreover, properties are represented as
an occurrence of a non terminal of the typing class, or by-name, depending on
multiplicities and aggregations. We use a homogeneous representation by using
identifiers referencing elements on top of a hierarchy. Higher-order attributes
allow accessing every required property.

With respect to conformance, in [14] the authors propose a formal approach
for the definition of metamodels (not based on MOF) using a meta-notation
extending BNF and the specification of constraints on models in a formal logic
language. Moreover, in [11] the authors define general rules to derive a context-
free EBNF grammar from a MOF-compliant metamodel. They also use these
mapping rules to generate a Java compiler in which parser actions are added to
check semantical conformance. In our proposal, structural and semantical con-
formance is addressed using the same language of AGs. In [15] the authors use
reference attribute grammars (RAGs, [16]) for the specification of metamodel
semantics. They basically represent metamodels as in the other referred pro-
posals, but they use reference attributes (the main difference between AGs and
RAGs) in order to model non-containment properties. They also define several
attributes for representing derived properties and operations (not supported by
our proposal). RAGs allow to define a graph-like structure, more similar to the
concepts behind a metamodel. However, we can get a similar representation by
using a combination of IDs and higher-order attributes.

Up to our knowledge, with respect to model transformations there is only
one work [7] defining how to represent a model transformation using AGs. The
transformation is represented as attributes and the output is a text that corre-
sponds to the target model in accordance with its grammar. However, this work
only present general ideas, not using any transformation language as a reference
(e.g. QVT as we do) and exemplifying the proposal using an extremely reduced
version of a model transformation. Moreover, they do not ensure that the gen-
erated string indeed conforms to the target grammar, as we do by generating an
instance conforming to the target grammar.

Model-Driven Engineering Based on Attribute Grammars 125

6 Conclusions and Future Work

We have explored the use of AGs for the representation of MDE elements (mod-
els, metamodels and model transformations). Any metamodel is represented with
an AG, and models conforming to it are represented as strings recognized by the
corresponding grammar. We exhaustively use attributes for handling references
between metamodel elements, for structural and semantic conformance checking
and for representing QVT-like model transformations. We also developed a case
study using UUAGC which demonstrates the feasibility of this approach.

The representation of metamodels and models could be easily automated (as
a model-to-text transformation) since there is a straightforward representation
of the basic elements (as Haskell types) and the generated attributes directly
depend on the structure of the metamodel. In this way, structural conformance
can be automatically verified. Moreover, it could be possible to include the auto-
mated translation into a modeling environment, bridging the gap between model-
driven and attribute grammar practitioners.

By focusing on QVT, we are trying to structure the way we define model
transformations using AGs. The case study showed that there is some direct
relation between QVT constructs and their AG representation. We still need to
study if it is possible to automatically generate an AG from a QVT specification.
Our AG-based approach can be classified as a direct manipulation approach,
which offers little or no support or guidance in implementing transformations.
In this sense, we can explore the definition of an embedded domain specification
language (DSL) for model transformations. This DSL could be used for express-
ing model transformations within the Grammarware technical space, without
depending on the Modelware technical space.

Within the case study we addressed the inclusion of OCL expressions. How-
ever, further exploration is required in order to exhaustively represent OCL
within AGs. This will provide a uniform way of expressing constraints on trans-
formation rules, and on metamodels for semantical conformance checkings. More-
over, it will provide a way of addressing some OCL-based approaches for the
verification of a model transformation [17].

Besides an AG describes a computation and then a program is automatically
generated, we need to specify some aspects which are abstractly handled by the
transformation engine when a declarative approach is used, e.g. when elements
must be created or updated. Far from being a problem, this could be useful for
the representation of other transformation aspects, e.g. rule scheduling (order or
rule invocation), multi-directional transformations, tracing, multiple source and
target domains in a transformation, etc. Furthermore, since attribute computa-
tions are expressed as Haskell expressions, the Haskell type system (and novel
type-level programming techniques) can be exploited to provide partial proofs
of properties of the models and model transformations. For example, generated
grammars can be represented using the structure defined in [18] to represent
correct-by-construction mutually dependent structures and manipulate them in
a type-safe way. Further work is required in this sense.

126 D. Calegari and M. Viera

Finally, we need to continue developing case studies in order to strengthen
our results. Particularly, complex examples could allow the comparison between
our proposal and other transformation engines with respect to execution times.

Acknowledgements. This work has been partially funded by the Agencia Nacional
de Investigación e Innovación (ANII, Uruguay).

References

1. Kent, S.: Model driven engineering. In: Proceedings of Integrated Formal Methods,
pp. 286–298 (2002)

2. OMG: Meta Object Facility (MOF) 2.0 Core Specification. Specification Version
2.0, Object Management Group (2003)

3. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation. Final
Adopted Specification Version 1.1, Object Management Group (2009)

4. Kurtev, I., Bézivin, J., Aksit, M.: Technological spaces: an initial appraisal. In:
CoopIS, DOA 2002 Federated Conferences, Industrial Track (2002)

5. Paige, R.F., Kolovos, D.S., Polack, F.A.C.: A tutorial on metamodelling for gram-
mar researchers. Sci. Comput. Program. 96, 396–416 (2014)

6. Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theor. 2(2) , 127–
145 (1968). Correction: Math. Syst. Theor. 5(1), 95–96 (1971)

7. Dehayni, M., Féraud, L.: An approach of model transformation based on attribute
grammars. In: Masood, A., Léonard, M., Pigneur, Y., Patel, S. (eds.) OOIS 2003.
LNCS, vol. 2817, pp. 412–423. Springer, Heidelberg (2003)

8. Swierstra, S., Alcocer, P.A., Saraiva, J.: Designing and implementing combinator
languages. In: Swierstra, S., Oliveira, J., Henriques, P. (eds.) Adv. Funct. Program.
Lecture Notes in Computer Science, vol. 1608, pp. 150–206. Springer, Heidelberg
(1999)

9. OMG: Object Constraint Language. Formal Specification Version 2.4, Object Man-
agement Group (2014)

10. Vogt, H.H., Swierstra, S.D., Kuiper, M.F.: Higher order attribute grammars. SIG-
PLAN Not. 24(7), 131–145 (1989)

11. Gargantini, A., Riccobene, E., Scandurra, P.: Deriving a textual notation from
a metamodel. In: Proceedings of Workshop on Milestones, Models and Mappings
for Model-Driven Architecture. Volume WP06-02, ISSN1574-0846 of CTITSeries.
(2006)

12. Alanen, M., Porres, I.: A relation between context-free grammars and meta object
facility metamodels. Technical Report 606, Turku Centre for Computer Science
(2003)

13. Grammes, R., Gotzhein, R.: Towards the harmonisation of UML and SDL. In: de
Frutos-Escrig, D., Núñez, M., (eds.) Proceedings of Formal Techniques for Net-
worked and Distributed Systems 2004, Madrid Spain, 27–30 September 2004, pp.
61–78. Springer (2004)

14. Zhu, H.: An institution theory of formal meta-modelling in graphically extended
bnf. Front. Comput. Sci. 6(1), 40–56 (2012)

15. Bürger, C., Karol, S., Wende, C., Aßmann, U.: Reference attribute grammars for
metamodel semantics. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE
2010. LNCS, vol. 6563, pp. 22–41. Springer, Heidelberg (2011)

Model-Driven Engineering Based on Attribute Grammars 127

16. Magnusson, E., Hedin, G.: Circular reference attributed grammars - their evalua-
tion and applications. Sci. Comput. Program. 68(1), 21–37 (2007)

17. Calegari, D., Szasz, N.: Verification of model transformations: a survey of the state-
of-the-art. Electr. Notes Theor. Comput. Sci. 292, 5–25 (2013)

18. Baars, A.I., Swierstra, S.D., Viera, M.: Typed transformations of typed abstract
syntax. In: TLDI 2009: Proceedings of the 4th International Workshop on Types
in Language Design and Implementation, pp. 15–26. ACM, New York (2009)

Composable Memory Transactions for Java
Using a Monadic Intermediate Language

Rafael Bandeira1, André R. Du Bois1(B), Mauŕıcio Pilla1,
Juliana Vizzotto2, and Marcelo Machado1

1 PPGC - Universidade Federal de Pelotas, Pelotas, Brazil
{bandeira,dubois,pilla,mdsmachado}@inf.ufpel.edu.br

2 PPGI - Universidade Federal de Santa Maria, Santa Maria, Brazil
juvizzotto@inf.ufsm.br

Abstract. Transactional memory is a new programming abstraction
that simplifies concurrent programming. This paper describes the paral-
lel implementation of a Java extension for writing composable memory
transactions in Java. Transactions are composable i.e., they can be com-
bined to generate new transactions, and are first-class values, i.e., trans-
actions can be passed as arguments to methods and can be returned as
the result of a method call. We describe how composable memory trans-
actions can be implemented in Java as a state passing monad, in which
transactional blocks are compiled into an intermediate monadic lan-
guage. We show that this intermediated language can support different
transactional algorithms, such as TL2 [9] and SWissTM [10]. The imple-
mentation described here also provides the high level construct retry,
which allows possibly-blocking transactions to be composed in sequence.
Although our prototype implementation is in Java using BGGA Clo-
sures, it could be implemented in any language that supports objects
and closures in some way, e.g. C#, C++, and Python.

1 Introduction

The transactional memory programming model is considered a promising app-
roach to facilitate the task of programming multi-core machines, as it does not
have many of the pitfalls of the dominant concurrent programming model using
threads and locks [31]. In this model, sequences of operations that modify mem-
ory are grouped into atomic transactions. The runtime system of the language
must guarantee that these transactions will appear to have been executed atom-
ically to the rest of the system.

This paper describes the parallel implementation of a Java extension for writ-
ing composable memory transactions in Java. Programmers define composable
actions that are first class values in Java and can be composed using a special
notation. The high level of abstraction provided by this language is obtained
by compiling it into a state passing monad and we provide two different imple-
mentations of this intermediate language using the TL2 [9] and SwissTM [10]
software transactional memory algorithms. Although our prototype implemen-
tation is in Java and uses CMTJava [6] as the embedded language, the approach
c© Springer International Publishing Switzerland 2015
A. Pardo and S.D. Swierstra (Eds.): SBLP 2015, LNCS 9325, pp. 128–142, 2015.
DOI: 10.1007/978-3-319-24012-1 10

Composable Memory Transactions for Java 129

presented here could be used to implement an embedded domain specific lan-
guage for transactions in any language that supports objects and closures, e.g.
C#, C++ and Python. The compiler and examples described here can be down-
loaded from [4].

This paper is organized as follows: Sect. 2 describes CMTJava, the example
embedded language for transactions. In the design proposed in this paper, CMT-
Java is first compiled into an intermediate language for transactions (Sect. 3).
The interesting thing about this monadic language is that it can support dif-
ferent transactional algorithms (Sect. 4). Boilerplate code to access the internal
transactional system can be generated automatically as described in (Sect. 4.2).
In Sect. 5 preliminary experiments with a parallel Hash table implemented in
CMTJava are shown. Although parallel Hash tables are easy to implement using
transactional memory, it is very hard to get them right when working with con-
current lock based algorithms [22]. Finally, we present related work in Sect. 6,
conclusions and future work in Sect. 7.

2 Composable Memory Transactions for Java

This Section describes CMTJava [6], an embedded domain specific language for
composable memory transactions [18] in Java. CMTJava provides the abstraction
of transactional objects. Transactional objects have their fields accessed only by
special get and set methods that are automatically generated by the compiler.
These methods return transactional actions as a result. Transactional actions
can only be executed by the atomic method. Transactional actions are first
class values in Java and they are composable: transactions can be combined to
generate new transactions.

2.1 CMTJava and the Bank Account Example

In this Section we describe the implementation of a thread safe Bank Account
object using CMTJava. A bank account could be described in CMTJava as a
class with a single filed Balance:

class Account implements TObject{
private volatile Double balance;

The Account class has only one field and Java’s volatile keyword is used
to guarantee that threads will automatically see the most up-to-date value in
the field. The TObject interface works as a hint to the compiler, so it will gen-
erate automatically the code needed to access this class in transactions. It also
generates two methods to access each field of the class. For the Account class it
will generate the following methods:

STM<Void> setBalance(Double balance);
STM<Double> getBalance();

130 R. Bandeira et al.

The setBalance and getBalance methods are the only way to access the
balance field. A value of type STM<A> represents a transactional action that
when executed will produce a value of type A. Hence, getBalance returns a
transactional action that when executed will produce a Double representing the
current balance of the account.

An Account should also have methods to deposit, withdraw and transfer
money between accounts.

The deposit method could be implemented as follows:

public STM<Void> deposit (Double n)
{

return STM{
Double b < - getBalance();
setBalance(b + n)

};
}

This method will return a new transaction that reads the current balance of
the account, and increments it with a value n. The STM{...} block works like the
do notation in STM Haskell [18]: it is used to compose transactions. The notation
STM{a1;...; an} constructs a STM action by glueing together smaller actions
a1;...;an in sequence. The variables created inside a transactional action are single
assignment variables. These variables are used only to carry the intermediate
state of the transaction being constructed and do not need to be logged by
the runtime system supporting transactions. To emphasize that these variables
are different than ordinary Java variables, a different symbol for assignment is
used (<-).

public STM < Void > withdraw(Double n)
{

STM < Void > t = STM{
Double b < - getBalance();
if (b < n)

retry()
else

setBalance(b-n)
};
return t;

}

The withdraw method first checks if the account has the amount of money
needed for the withdrawal. If the current balance is less than the amount to
be withdrawn, the transaction suspends itself by calling retry. Otherwise the
current balance is changed by calling setBalance. The call to retry will block
the transaction, i.e., the transaction will be aborted and restarted from the
beginning. The transaction will not be re-executed until at least one of the fields
of the TObjects that it has accessed is written by another thread. In the case

Composable Memory Transactions for Java 131

of the withdraw method, when it calls retry the transaction is suspended until
some other transaction modifies the balance field of the account.

STM actions can be executed atomically using the atomic method. For exam-
ple, in Fig. 1 we show an implementation of a thread that atomically transfers
money between two different accounts.

class TTransfer implements Runnable{

Account c1;
Account c2;
Double money;

TTransfer(Account c1, Account c2, Double money)
{

this.c1 = c1;
this.c2 = c2;
this.money = money;

}

public void run()
{

STM<Void> t1 = STM{
c1.withdraw(money);
c2.deposit(money)

};

atomic(t1);
}

}

Fig. 1. The TTransfer class

3 The Monadic Intermediate Language: The STM Monad

3.1 Monads and Closures

Java Closures. To implement CMTJava we used BGGA Closures, a Java ex-
tension that supports anonymous functions and closures [1]. We use this imple-
mentation of closures instead of the version available in Java 8 for historical
reasons in the project. We believe that the methodology described here can be
applied on any object oriented language supporting closures (see Sect. 7 for more
discussion on this). In BBGA, an anonymous function can be defined using the
following syntax:

{formalparameters=>statementsexpression}
where formal parameters, statements and expression are optional. For example,
{ int x => x + 1 } is a function that takes an integer and returns its value
incremented by one. An anonymous function can be invoked using its invoke
method:

String s = { => ‘‘Hello!’’}.invoke();

132 R. Bandeira et al.

An anonymous function can also be assigned to variables:

{int => void} func = {int x => System.out.println(x)};

The variable func has type {int => void}, i.e., a function type meaning that
it can be assigned to a function from int to void. Function types can also be
used as types of arguments in a method declaration.

A closure is a function that captures the bindings of free variables in its
lexical context:

public static void main(String[] args) {
int x = 1;
{int=>int} func = {int y => x+y };
x++;
System.out.println(func.invoke(1)); // will print 3

}

A closure can use variables of the enclosing scope even if this scope is not
active at the time of closure invocation e.g., if a closure is passed as an argument
to a method it will still use variables from the enclosing scope where it was
created.

Monads. A monad is a way to structure computations in terms of values and
sequences of computations using those values [3]. A monad is used to describe
computations and how to combine these computations to generate new compu-
tations. For this reason monads are frequently used to embed domain specific
languages in functional languages for many different purposes, e.g., I/O and con-
currency [29], Parsers [25], controlling robots [28], and memory transactions [18].
A monad can be implemented as an abstract data type that represents a con-
tainer for a computation. These computations can be created and composed
using three basic operations: bind, then and return. The bind and then func-
tions are used to combine computations in a monad. bind executes its first
argument and passes the result to its second argument (a function) to produce
a new computation. then takes two computations as arguments and produces a
computation that will execute them one after the other. The return function
creates a new computation from a simple value.

The next section presents the implementation of these three operations for
the STM monad in Java.

3.2 The STM Monad

The STM monad is a state passing monad [3] similar to [5,24]. A state passing
monad is used for threading a state through computations, where each com-
putation returns an altered copy of this state. In the case of transactions, this
state is the meta-data for the transaction, e.g., logs, buffers, etc. The STM class
is implemented as follows:

Composable Memory Transactions for Java 133

public class STM<A> {
public { Trans => TResult } stm;

public STM ({ Trans => TResult } stm) {
this.stm = stm;

}
}

The STM class describes a transactional action. Transactional actions are rep-
resented as functions that take the state of the current transaction in execution
(Trans) and return TResult<A> describing the new state of the transaction after
its execution.

The TResult<A> class has three fields, the first field is the (result) (of type
<A>) of executing the STM action, the second (newTrans) (of type Trans) is a
reference to the modified state of the transaction, and the third is a flag indi-
cating if the transaction is either ACTIVE meaning the transaction can continue,
ABORT meaning that a conflict occurred and the transaction must be aborted or
RETRY meaning the transaction called the retry() method.

Once the monad type is defined, we need to describe how objects of this type
can be composed by implementing the methods bind, then and return. The
method bind is used to compose transactional actions:

public static <A,B> STM bind (STM<A> t, {A => STM } f) {
return new STM ({Trans t1 =>

TResult<A> r1 = t.stm.invoke(t1);
TResult r;
if (r1.state == STMRTS.ACTIVE) {

STM r2 = f.invoke(r1.result);
r = r2.stm.invoke(r1.newTrans);

} else {
r = new TResult(null, r1.newTrans, r1.state);

}
r

});
}

The bind method takes as arguments an STM<A> action t and a function
f of type {A => STM } and returns as a result a new STM action. The
objective of bind is to combine STM actions generating new actions. The resulting
STM action takes a transaction (t1) as an argument and invokes the t action by
passing the current state of the transaction to it (t.stm.invoke(t1)). If after
the execution of t the transaction is still active then the f function is called
generating the resulting STM. Otherwise the execution flow is abandoned as
the transaction was aborted, either because a conflict with other thread, or
because retry was called.

The then method, the sequencing operator of the monad, is implemented in
a very similar way to bind, or it could be implemented in terms of bind [3].

134 R. Bandeira et al.

Finally, the stmReturn method is used to insert any object A into the STM
monad:

public static <A> STM<A> stmReturn (A a) {
return new STM<A>({ Trans t => new TResult(a,t,STMRTS.ACTIVE) });

}

The stmReturn method is like Java’s return for STM blocks. It takes an object
as an argument and creates a simple transaction that returns this object as a
result. It can also be used to create new objects inside a transaction. For example
the addToTail method, from the linked-linked list used to implement the buckets
of the hash table from our experiments (see Sect. 5), returns a transaction that
inserts a new element at the tail of a linked list:

public STM<Void> addToTail(Integer n) {
return STM{

Node a < - STMRTS.stmReturn (new Node(null,null));
tailList.setNext(a);
tailList.setVal(n);
this.setTailList(a) };

}

STM blocks are translated into calls to bind and then using translation rules
that are very similar to the translation rules for the do notation described in the
Haskell report [30] (See [6] for a complete description of the rules).

For example, the following implementation of a deposit method:

public STM<Void> deposit (Account a, Double n)
{

return STM{
Double balance < - a.getBalance();
a.setBalance(balance + n)

};
}

is translated to

public STM<Void> deposit (Account a, Double n)
{

return STMRTS.bind(a.getBalance(), { Double balance =>
a.setBalance(balance + n)});

}

4 Implementation of the RTS for Transactions

All that was discussed on the last section is related to the monadic layer of our
system. But how can we make this intermediate language execute transactions
on a real parallel machine? In this section we describe the implementation of
two different transactional algorithms under this monadic layer.

Composable Memory Transactions for Java 135

4.1 Software Transactional Memory Design Space

Transactional memory was first described as a Hardware feature [21]. This paper
focuses on Software Transactional Memory (STM), in which transactions are
mainly implemented in software, with little hardware support, i.e., a compare
and swap operation.

In an STM system, memory transactions can execute concurrently and, if
finished without conflicts, a transaction may commit. Conflict detection may be
eager, if a conflict is detected the first time a transaction accesses a value, or
lazy when it occurs only at commit time. With eager conflict detection, to access
a value, a transaction must acquire ownership of the value, hence preventing
other transactions to access it, which is also called pessimistic concurrency con-
trol. With optimistic concurrency control, ownership acquisition and validation
occurs only when committing. These design options can be combined for different
kinds of accesses to data, e.g., eager conflict detection for write operations and
lazy for reads. STM systems also differ in the granularity of conflict detection,
word based and object based being the most common. Although CMTJava is
an object oriented language, conflicts are detected at word granularity, meaning
that accesses to different fields of the same object will not cause a conflict.

STM systems need a mechanism for version management. With eager version
management, values are updated directly in memory and a transaction must
maintain an undo log where it keeps the original values. If a transaction aborts,
it uses the undo log to copy the old values back to memory. With lazy version
management, all writes are buffered in a redo log, and reads must consult this log
to see earlier writes. If a transaction commits, it copies these values to memory,
and if it aborts the redo log can be discarded.

An STM implementation can be lock based, or obstruction free. An obstruc-
tion free STM does not use blocking mechanisms for synchronization and guaran-
tees that a transaction will progress even if all other transactions are suspended.
Lock based implementations, although offering weaker progress guarantees, are
believed to be faster and easier to implement [11].

4.2 Transactional Algorithms Implemented

We can make the STM monad execute different STM algorithms by modifying
the Trans class, that represents the state of a transaction being executed, and
by modifying the code generated by the get and set methods for TObjects.
To demonstrate the usefulness of our design, we have implemented two different
algorithms for STM, TL2 [9] and SwissTM [10].

The TL2 algorithm is a classic lock based, deferred update transactional algo-
rithm, similar to the one used in the GHC implementation of STM Haskell [17]:
all writes are recorded in a redo log. When a transaction finishes, it validates
its log to check if it has seen a consistent view of memory, and its changes
are committed to memory. The main difference of the TL2 algorithm is that
conflicts are detected by using a global clock that is shared by all threads.
Every transacted memory location is associated with a write stamp and a lock

136 R. Bandeira et al.

(they are implemented as a single versioned write-lock as in [9,16]), when open-
ing an object for reading/writing, the transaction checks if the write stamp of
memory address is not greater than the transaction read stamp, in that case
it means that the object was modified after the transaction started executing,
hence the transaction must be aborted. If the memory passes the validation it
means that the transaction has seen a consistent view of the memory.

SwissTM is also a lock-based algorithm that uses a global counter to detect
conflicts. The difference is that it combines eager write/write conflict detection
with lazy write/read and lazy version management. It has been reported to be
faster than other classic implementations of STM, e.g., RSTM [27], TL2 [9]. It
is also word based and every memory location is protected by two locks: a read
lock (r-lock) and a write lock (w-lock). The w-lock is acquired eagerly when a
transaction wants to write to a specific location, thus preventing other trans-
actions to write to the same location. Even though a transaction must acquire
w-lock in order to write to a memory position, writes are buffered in a redo log.
The advantage is that even though data is write locked, other transactions can
still read the original value without conflicting. The read locks are acquired only
at commit time, to avoid other transactions to read inconsistent states while a
transaction is copying its local view of data to memory.

The use of a global clock guarantees opacity, i.e., that transactions always
observe a consistent view of memory. This is an important feature if STM is to be
implemented as a library. For example, the STM algorithm used in the current
implementation of STM Haskell that ships with the GHC compiler [17] does not
guarantee opacity. In order to avoid infinite loops or crashes due to using an
inconsistent value, the scheduler of the GHC runtime system was modified, so
that every time it is about to switch to a thread that is executing a transaction,
the state of that transaction must be validated.

The Trans class for TL2 and SwissTM can be the same and has the following
fields:

public class Trans {
public volatile long readStamp;
public Long transId;
public WriteSet writeSet;
public ReadSet readSet;

Other transactional algorithms may use a different Trans class, e.g., an eager
version algorithm does not need a write set. In the implementation described here
both the writeSet and readSet are implemented implemented using a HashMap.

Transactions modify the state of the transaction by calling the get and set
methods of TObjects. These get and set methods are boilerplate code and
are generated automatically by the CMTJava compiler. For example, for the
Account class defined in Sect. 2, the following setBalance method is generated
for the TL2 algorithm:

Composable Memory Transactions for Java 137

public STM<Void> setBalance (Double b) {

return new STM<Void>({Trans t =>
TResult r = null;
if (balanceFieldInfo.lock.isLocked()) {

r = new TResult(null, t, STMRTS.ABORTED);
} else {

t.writeSet.put(balanceFieldInfo,b);
r = new TResult(new Void(), t, STMRTS.ACTIVE);

}
r

});
}

For each field in a TObject class, the compiler also generates an extra field
that contains the data necessary to access this field inside a transaction. In
the example, for the balance field we get the balanceFieldInfo object that
contains a reference to the field’s lock and a closure used to update the field
during a commit. The code for the set method checks if the field is locked, in
that case the transaction must abort; otherwise, it adds a new value for the field
in the transaction write set.

The atomic method takes as an argument a STM object and executes the
transaction described in it atomically with respect to other concurrent calls to
atomic in other threads. To execute a transactional action, the atomic method
generates a new empty transaction state, and then invokes the transaction:

Trans t = new Trans();
TResult<A> r = stmObject.stm.invoke(t);

After executing the transaction, the TResult object returned must be
inspected. If the transaction is still active, it means that it can try to commit.
To do that if using the TL2 algorithm, a transaction:

1. Locks the objects in its write-set using time-outs to avoid deadlock
2. Increments the global clock getting its write-stamp
3. Validates the readset: checks if the memory locations in the readset are not

locked and that their write-stamp are still less then the transaction’s read-
stamp

4. Copies its changes into memory, updates the write stamp of each memory
location with its own write stamp and releases its locks.

If using the SwissTM algorithm, the transaction must:

1. Lock all r-locks of memory locations it has written to, i.e., to avoid transac-
tions from reading inconsistent values from memory

2. Increment the global clock

138 R. Bandeira et al.

3. Validate its read set, i.e., check that the version numbers of the memory
location it has read are still less or equal to the value that was in the global
commit counter when the transaction started executing

4. Update all memory locations with the content of the redo log, and change
their version numbers to the value obtained when the global commit counter
was incremented

5. Release all read and write locks

4.3 FieldInfos and the Implementation of retry

As explained before, the TObject interface is just a hint so that the compiler
can automatically generate the code needed to access a class inside transactions.
For each field in a TObject class, the compiler will generate an extra field,
called FieldInfo that contains the data necessary to access this field inside a
transaction.

The fieldInfo object contains all the information needed to perform the vali-
dation and commit of fields of TOBjects. It has a writeStamp indicating when
it was last modified, a function updateField that works like a pointer to the
field and is used to update the field with its new value during commit.

When retry is called, a transaction aborts its execution and it will be only
restarted once at least one of the fields of the TObjects it has read is modified.
Each field of a TObject has in its fieldInfo object a Vector containing the blocked
threads that called retry and are waiting to be awaken by an update on that
field. Hence, when retry is called the transaction must insert itself in the waiting
queues available for each of the fields it has accessed. During commit, before
releasing locks, a transaction must awaken all threads that are waiting in the
queues of the fields it is updating.

5 Preliminary Performance Measurements

To validate our system we implemented a concurrent hash table using CMTJava.
The table is represented by a Java array that contains in each position a bucket.
Buckets are linked list of TObjects. The table is protected by a TObject, and
when it exceeds a threshold, its size is doubled. Here we compare the CMT-
Java hash table using the two transactional algorithms with the HashTable class
implemented by Oracle, which uses native Java monitors to synchronize access
and avoid race conditions. In all experiments, hash tables were initialized with
11 positions for fairness with the default of the HashTable class. Operations
were defined for a random input from 1 to 1000. The mix of operations was
1 % deletes, 9 % inserts, and 90 % of lookups as this is the most common pattern
of access to hash tables [22].

The execution environment used an 8-socket 64-cores non-uniform memory
access machine (NUMA) comprised of Intel Xeon processors and 128 GB of
RAM. Our experimental hypothesis was that the serialization due to the nature
of the monitor in the original HashTable implemented by Sun would impar

Composable Memory Transactions for Java 139

scalability, i.e., increasing the number of concurrent threads would not improve
the number of operations. On the other hand, it was expected that using the
TL2 and SwissTM algorithms for transactional memories might help to expose
more parallelism and, therefore, allow for less contention and better scalability.

Figure 2 shows the rate of operations by milliseconds in the vertical axys
for HashTable, HashTL2, and HashSwissTM, when the number of threads is
increased from 1 to 16 in the horizontal axis, for a total of 100,000 operations.
CMTJava with the SwissTM algorithm is better than the monitor alternative
when the number of threads is greater than four, allowing for more parallelism.
Here the early write/write conflict detection mechanism seemed to work better.

Fig. 2. Rate of operations for different number of threads, 100,000 operations

Figure 3 shows the rate of operations for a total of 1,000,000 operations.
Although HashTable is more efficient for a single thread, CMTJava with both
TM algorithms is better than the monitor synchronization for a larger number of
operations. The SwissTM algorithm shows better performance stability though.

Fig. 3. Rate of operations for different number of threads, 1,000,000 operations

140 R. Bandeira et al.

6 Related Work

CMTJava builds on work done in the Haskell language, by bringing the idea of
composable memory transactions into an object oriented context. STM Haskell
[18], is a concurrency model for Haskell based on STM. Programmers define
transactional variables (TVars) that can be read and written using two prim-
itives. The readTVar primitive takes a TVar as an argument and returns an
STM action that, when executed, returns the current value of the TVar. The
writeTVar primitive is used to write a new value into a TVar. In CMTJava,
each field of a transactional object works as a TVar and each field has its get/set
method that work just like readTVar and writeTVar. STM blocks in CMTJava
are just an implementation of the do notation available in Haskell. In previous
work [6] we have described CMTJava and also presented a naive implementation
of transactions where a global lock had to be held during transaction commit.
This simple implementation served only as a prototype implementation to test
the language. As the implementation was so simple, it served only as a proof of
concept and no performance measurements were given.

Most works on STM in Java provide low level libraries to implement trans-
actions [13,19,20]. Harris and Fraser [16] provide the first language with con-
structs for transactions. Their Java extension gives an efficient implementation
of Hoare’s conditional critical regions [23] through transactions, but transactions
could not be easily composed. The Atomos language [8] is a Java extension that
supports transactions through atomic blocks and also the retry construct to
block transactions. Transactions are supported by the Transactional Coherence
and Consistency hardware transactional memory model (TCC) [12], and pro-
grams are run on a simulator that implements the (TCC) architecture. Deuce
[14] is a transactional memory system for Java providing annotations that can
give a transactional semantics to a method. It is implemented by rewriting Java
byte-codes to add calls to the transactional RTS.

There are many TM libraries and extensions for languages than run on the
JVM, e.g., Scala and Clojure. Clojure [15] is a dialect of Lisp that runs on the JVM
and has native support for transactions. The functional/object oriented language
Scala is a functional object oriented language that supports transactional memory
through many libraries, e.g., in [7] a new data type for transactional references is
introduced together with functions to read and write these references.

7 Conclusions and Future Work

We have described the implementation of an embedded domain specific lan-
guage for composable memory transactions in Java. The language is compiled
into a monadic intermediated language, and we demonstrated that this monadic
language can support different STM algorithms. Preliminary experiments show
that, besides the high overhead imposed in implementing monads in a language
that is not optimized for it, we could achieved reasonable results in preliminary
experiments. Since this project started before the release of Java 8, the current
implementation of CMTJava does not use its version of closures. But this is just

Composable Memory Transactions for Java 141

a low level technicality in the internal implementation of the CMTJava language.
We believe that the ideas presented here could be used to implement an embed-
ded language for transactions in any language that provides closures, like Java
8, C++ or C#. An obvious choice would be to implement it in C#, a language
that is similar in many aspects to Java. In fact, C# already supports closures
through delegates and since version 3.0, it has basic support for monads through
query comprehensions in LINQ. A monad can be described in C# by implement-
ing two extension methods, toIdentity (equivalent to return) and SelectMany
(equivalent to bind). If we used the algorithm described in this paper to imple-
ment these methods, we could use the LINQ syntax to compose transactions. As
future work we would like to investigate new abstractions/constructs for the lan-
guage, e.g., something similar to orElse from STM Haskell or unreadTVar[32].
Other lines of work would be to investigate an adaptive STM mechanism for
the monadic intermediate language, that depending on the amount of conflicts
can change the transactional algorithm used e.g., choose a different contention
manager. We would also like to have a library of benchmarks, probably based on
the Haskell STM benchmark suite [2]. We are currently working on a operational
semantics for CMTJava based on Feather Weight Java [26].

The CMTJava compiler and examples can be downloaded from [4].

References

1. Java Closures. WWW page. http://www.javac.info/, December 2008
2. The Haskell STM Benchmark. WWW page. http://www.bscmsrc.eu/software/

haskell-stm-benchmark, October 2010
3. All About Monads. WWW page. https://wiki.haskell.org/All About Monads,

June 2015
4. CMTJava. WWW page. https://github.com/rafaelleao/CMTJava, May 2015
5. Bieniusa, A., Middelkoop, A., Thiermann, P.: Twilight in haskell: software trans-

actional memory with safe I/O and typed conflict management. In: Preproceedings
of IFL 2010, September 2010

6. Du Bois, A.R., Echevarria, M.: A domain specific language for composable memory
transactions in java. In: Taha, W.M. (ed.) DSL 2009. LNCS, vol. 5658, pp. 170–186.
Springer, Heidelberg (2009)

7. Bronson, N.G., Chafi, H., Olukotun, K.: Ccstm: a library-based stm for scala. In:
The First Annual Scala Workshop at Scala Days (2010)

8. Carlstrom, B.D., McDonald, A., Chafi, H., Chung, J., Minh, C.C., Kozyrakis, C.,
Olukotun, K.: The ATOMOS transactional programming language. ACM SIG-
PLAN Not. 41(6), 1–13 (2006)

9. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

10. Dragojević, A., Guerraoui, R., Kapalka, M.: Stretching transactional memory. In:
Proceedings of PLDI 2009, pp. 155–165. ACM, New York, NY, USA (2009)

11. Ennals, R.: Software transactional memory should not be obstruction-free. Tech-
nical report IRC-TR-06-052, Intel Research Cambridge Technical report, January
2006

http://www.javac.info/
http://www.bscmsrc.eu/software/haskell-stm-benchmark
http://www.bscmsrc.eu/software/haskell-stm-benchmark
https://wiki.haskell.org/All_About_Monads
https://github.com/rafaelleao/CMTJava

142 R. Bandeira et al.

12. McDonald, A., et al.: Characterization of TCC on chip-multiprocessors. In: 14th
PACT 2005, pp. 63–74. IEEE Computer Society, Saint Louis, MO, USA, September
2005

13. Marathe, V.J., et al.: Lowering the overhead of nonblocking software transactional
memory. Revised, University of Rochester, Computer Science Department, May
2006

14. Felber, P., Korland, G., Shavit, N.: Deuce: noninvasive concurrency with a java
stm. In: Electronic Proceedings of MULTIPROG, p. 10 (2010)

15. Halloway, S.: Programming Clojure, 1st edn. Pragmatic Bookshelf, Frisco (2009)
16. Harris, T., Fraser, K.: Language support for lightweight transactions. ACM SIG-

PLAN Not. 38(11), 388–402 (2003)
17. Harris, T., Marlow, S., Peyton Jones, S.: Haskell on a shared-memory multiproces-

sor. In: Haskell Workshop 2005, pp. 49–61, ACM Press, September 2005
18. Harris, T., Marlow, S., Peyton Jones, S., Herlihy, M.: Composable memory trans-

actions. In: PPoPP 2005, ACM Press (2005)
19. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing

software transactional memory. SPNOTICES ACM SIGPLAN Not. 41, 253–262
(2006)

20. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional
memory for dynamic-sized data structures. In: PODC: 22th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing (2003)

21. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture, pp. 289–300, May 1993

22. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers Inc., San Francisco (2008)

23. Hoare, C.A.R.: Towards a theory of parallel programming. In: Hoare, C.A.R., Per-
rott, R.H. (eds.) Operating System Techniques, pp. 61–71. Academic Press, New
York (1972)

24. Huch, F., Kupke, F.: A high-level implementation of composable memory trans-
actions in concurrent haskell. In: Butterfield, A., Grelck, C., Huch, F. (eds.) IFL
2005. LNCS, vol. 4015, pp. 124–141. Springer, Heidelberg (2006)

25. Hutton, G., Meijer, E.: Monadic parsing in haskell. J. Funct. Program. 8(4), 437–
444 (1998)

26. Igarashi, A., Pierce, B., Wadler, P.: Featherweight java: a minimal core calculus
for java and GJ. TOPLAS 23(3), 396–459 (2001)

27. Marathe, V.J., Spear, M.F., Heriot, C., Acharya, A., Eisenstat, D., Scherer III,
W.N., Scott, M.L.: Lowering the overhead of software transactional memory. Tech-
nical report TR 893, Computer Science Department, University of Rochester, Mar
2006 (Condensed version submitted for publication)

28. Peterson, J., Hudak, P., Elliott, C.: Lambda in motion: controlling robots with
haskell. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 91–105. Springer,
Heidelberg (1999)

29. Peyton Jones, S.: Tackling the awkward squad: monadic input/output, concur-
rency, exceptions, and foreign-language calls in Haskell. In: Engineering Theories
of Software Construction, pp. 47–96, IOS Press (2001)

30. Peyton Jones, S.: Haskell 98 language and libraries: the revised report. J. Funct.
Program. 13(1), 1–255 (2003)

31. Peyton Jones, S.: Beautiful Concurrency. O’Reilly, Sebastopol (2007)
32. Sonmez, N., Perfumo, C., Stipic, S., Cristal, A., Unsal, O.S., Valero, M.: Unreadt-

var: extending haskell software transactional memory for performance. In: Trends
in Functional Programming, vol. 8. Intellect Books, Bristol (2008)

Author Index

Attrot, Wesley 81

Bandeira, Rafael 128
Bigonha, Mariza 1

Calegari, Daniel 112
Camarão, Carlos 16
Campos, Frederico 1
Castor, Fernando 96
Cezar, Junio 1

Demontiê, Francisco 1
Du Bois, André R. 128

Ferreira, Bruno Morais 44

Gelain, Adelaine 16

Ierusalimschy, Roberto 31

Liu, Haiyang 59
Lobo, Rafael 96
Luna, Marcelo F. 81

Machado, Marcelo 128
Maidl, André Murbach 31
Muhammad, Hisham 31

Pereira, Fernando Magno Quintão 1, 44
Pilla, Maurício 128

Qiu, Zongyan 59

Ribeiro, Félix 31
Ribeiro, Rodrigo 16
Rodríguez, Leonardo 75

Silva, Felipe L. 81
Soares-Filho, Britaldo Silveira 44

Vasconcellos, Cristiano 16
Viera, Marcos 112
Vizzotto, Juliana 128

	Preface
	Organization
	Contents
	Automatic Inference of Loop Complexity Through Polynomial Interpolation
	1 Introduction
	2 Overview
	3 Complexity Analysis
	3.1 Input Analysis
	3.2 Loop Dependence Analysis
	3.3 Code Instrumentation
	3.4 Polynomial Interpolation

	4 Experiments
	5 Related Works
	6 Conclusion
	References

	Type Inference for GADTs and Anti-unification
	1 Introduction
	2 Preliminaries
	2.1 Anti-unification
	2.2 System CT

	3 Type Inference
	3.1 Examples
	3.2 Term and Type Syntax
	3.3 Algorithm Definition
	3.4 GADT and Principal Type

	4 Related Work
	5 Conclusion
	References

	Preserving Lexical Scoping When Dynamically Embedding Languages
	1 Introduction
	2 Related Work
	3 Lua2AST
	3.1 Function Lua2ast.toAST(func)
	3.2 Function Lua2ast.compile(ast)

	4 Semantics
	5 Conclusion
	References

	The Dinamica Virtual Machine for Geosciences
	1 Introduction
	2 Dinamica in One Example
	3 The Dinamica Virtual Machine
	4 Optimizations
	4.1 Fusion
	4.2 Window Optimizations

	5 Related Work
	6 Conclusion
	References

	Go Model and Object Oriented Programming
	1 Introduction
	2 Go: A First Glance
	3 Mini-Go: A Model Language for Go OO Model
	3.1 Typing
	3.2 Semantics
	3.3 Redundancies of Mini-Go and Go

	4 Go: A Simplified OO Model Language for Go
	4.1 Typing Go
	4.2 Operational Semantics

	5 Object Model
	6 Related Work and Conclusions
	References

	An Intrinsic Denotational Semantics for a Lazy Functional Language
	1 Introduction
	2 Syntax and Semantics
	3 Type System
	4 Denotational Semantics
	5 Further Work
	References

	Color Flipping
	1 Introduction
	2 Color Flipping
	3 Color Flipping Algorithm
	4 Experimental Results and Discussion
	4.1 Appel and George Graph Experiments
	4.2 LLVM Experiments

	5 Conclusion
	References

	Deadlocks as Runtime Exceptions
	1 Introduction
	2 Bug Reports Study
	2.1 Data Collection
	2.2 Data Labeling
	2.3 Results Analysis
	2.4 Threats to Validity

	3 Deadlock Detection
	3.1 Extension: Raising Exceptions in All Threads
	3.2 Implementation

	4 Evaluation
	4.1 Usability Evaluation
	4.2 Performance Overhead

	5 Conclusion
	References

	Model-Driven Engineering Based on Attribute Grammars
	1 Introduction
	2 Model-Driven Engineering
	3 AG-based Structural and Semantical Conformance
	4 AG-based Model Transformations
	5 Related Work
	6 Conclusions and Future Work
	References

	Composable Memory Transactions for Java Using a Monadic Intermediate Language
	1 Introduction
	2 Composable Memory Transactions for Java
	2.1 CMTJava and the Bank Account Example

	3 The Monadic Intermediate Language: The STM Monad
	3.1 Monads and Closures
	3.2 The STM Monad

	4 Implementation of the RTS for Transactions
	4.1 Software Transactional Memory Design Space
	4.2 Transactional Algorithms Implemented
	4.3 FieldInfos and the Implementation of retry

	5 Preliminary Performance Measurements
	6 Related Work
	7 Conclusions and Future Work
	References

	Author Index

