Second Order Variational Model for Image
Decomposition Using Split Bregman Algorithm

Jinming Duan'®) | Wengi Lu?, Guodong Wang?, Zhenkuan Pan?,
and Li Bai'®™)

1 School of Computer Science, University of Nottingham, Nottingham, UK
jxd@cs.nott.ac.uk, bai@cs.nott.ac.uk
2 College of Information Engineering, Qingdao University, Qingdao, China

Abstract. The classical first order Vese-Osher model is capable of
decomposing an image into its structure and texture components. How-
ever, an undesirable feature of this model for the task is the ‘staircase’
side effect that appears in the structure component. In this paper, we pro-
pose a second order Vese-Osher model for image decomposition, which
incorporates second order derivative information and is able to elimi-
nate the side effect of the first order model. In order to avoid directly
calculating the high order nonlinear partial differential equation (PDE)
of the proposed model, the split Bregman algorithm is applied, which
allows the use of fast Fourier transform and analytical generalized soft
thresholding equation. Experiments are conducted to demonstrate the
effectiveness and efficiency of the proposed model.
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1 Introduction

Image decomposition into structure and texture is an important procedure for
image understanding and analysis. Structure contains edges and hues of objects
and texture is characterized as oscillations in the image. These individual compo-
nents can be used, for example, for similarity analysis, texture synthesis, texture
image segmentation [1], and structure or texture image inpainting [2,3].

A common way to decompose an image into structure and texture is to use
the variational approach. Vese and Osher proposed the first order Vese-Osher
(FOVO) variational model [4] that combines Meyer’s oscillating function [5] for
texture images with the total variation (TV) model [6]. However, the FOVO
model suffers from the undesirable staircase effect - the decomposed structure
image has a uneven appearance. This is because energy minimization in the
bounded variation (BV) space [6] results in a piecewise constant objective func-
tion, leading to the staircase effect. High order variational models can be used
to remedy this side effect. However, the high order models usually contain sec-
ond order derivatives which lead to nonlinear fourth-order partial differential
equations (PDEs) that are very difficult to discretize to solve computationally.
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In this paper, we propose a second order Vese-Osher (SOVO) model for
image decomposition to overcome these problems with existing models men-
tioned above. The proposed model replaces the first order regularizer in original
FOVO model with the second order regularizer used in Lysaker-Lundervold-Tai
(LLT) model [7], which enables it to decompose an image into an oscillating
texture component and a structure part without the staircase effect. Instead of
solving high order nonlinear PDEs, the split Bregman algorithm [8], which has
been successfully applied to optimise LL1-based variational models, is adapted to
transform the energy minimization problem of the proposed SOVO decomposi-
tion model into four subproblems. These subproblems are then efficiently solved
by fast Fourier transform (FFT) and analytical soft thresholding equations with-
out any iteration. We validate the new model through extensive experiments.

2 The Proposed SOVO Model

In order to extract the structure and texture components, Meyer defined the
Banach space G as follows

G={v|v=div(g), g=(g1,92) € L™}

where div (-) is divergence operator and div (g) = 9y91 + 0yg2. The space G is

equipped with the following norm
v=div(g), g € L™, |g| =\/9f+g§}

[vllg = inf {H\/9f+g§
9=(91,92)

A function belonging to space G may have large oscillation and a small norm.
Thus the G norm can be adapted to capture the oscillations of a function in
energy minimization. As such, Meyer proposed the following image decomposi-
tion model (2.1)

s

uegl‘i/r%m {E (u) = /Q IVul + Allv|| g, f=u —H}} (2.1)
where {2 is an open and bounded domain and an input image function f is
defined on 2. Function u is defined in BV space and represents the non-oscillating
structure part. The first term in this model is total variation of u, which helps
to preserve sharp edges or contours of objects. Function v in the second term
belonging to space G denotes the oscillating part (texture or noise) of an image.
The model only replaces the L? norm in the data fitting term of the TV/ROF
model by the G norm. However, it is not possible to derive the Euler-Lagrange
equation for the G norm to use a straightforward PDE method to solve it.

To implement the model numerically, Vese and Osher [4] first propose the
FOVO model based on div (L”) norm

gljg{mu,g):;/n<f—u—dw<g>>2+A/Q|Vu|+v[/ﬁ |g|p]1/p} 22)
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where p > 1. A and ~y are two positive tuning parameters balancing the three
energy terms. Vese and Osher also confirmed that there are no obvious numerical
differences using different values of p, with 1 < p < 10. However, the case
p =1 yields faster calculation. However, as the term [, |[Vu| in (2.2) is defined
in BV space, leading to piecewise constant result (i.e. staircase effect) in the
decomposed structure.

To avoid this side effect without blurring edges of objects, we directly incor-
porate the second order derivative information into the original FOVO model,
that is, we replace the first order TV term with the second order one. Our
proposed SOVO model then becomes

. 1 .
win{B o) =3 [ (71— u=din(@)+x [ e(vad |92+ [ il
.9 0 0 0
(2.3)
where V2u denotes the Hessian matrix of u over image domain 2. And the
diffusivity e is defined as follows

=1—ex —Ch
(o=t p<<s/x>h>

The constant C}, is automatically calculated in such way that (0@ (s)/0s) ’S: , =0,
where @ (s) = se (s). Parameter h determines how fast the diffusivity e changes,
and A controls smoothness of function u.

The new regularizer | Q ‘V2u| with diffusivity e in (2.3) has shown good per-
formance in image decomposition producing smooth structures while preserving
the edge features. Traditionally, the optimisation problem is solved directly by
gradient decent flow leading to a fourth order nonlinear PDE which is very
complicated to discretize. Even though the semi-implicit finite difference can be
imposed, it is still computationally expensive. In addition, if directly deriving
the Euler-Lagrange equations of the vector function g used to represent oscil-
lating part of an image in the proposed model, we obtain another two PDEs
with respect to g1 and go, which are not analytical. To solve the equations, we
need to use semi-implicit fixed-point iteration method to iterate g; and go until
convergence. Inevitably, this iterative process needs additional computing time.
We will address the challenge of computational efficiency in next section.

3 The Split Bregman Algorithm

In Goldstein-Osher [8], fast iterative schemes were proposed and tested for the
TV model. It is one of most efficient numerical schemes for solving the L1-based
variational models [11,12]. There exist some other fast algorithms. For exam-
ple, the fast dual projection algorithm was adopted [9,10,13] to efficiently solve
the second order texture-extraction models. Moreover, the more recent augment
Lagrangian method [14,15] also attracts attention due to its extensive applica-
tions to the variational models such as LLT model [7], Euler-elastic model [16,17],
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mean-curvature model [18], and TV-Stokes model [19]. In this section, we apply
split Bregman algorithm to solve the proposed SOVO model. The idea is to first
split the original minimization problem into several subproblems by introduc-
ing some auxiliary variables, and then solve each subproblem. We first transform
the unconstrained minimization problem (2.3) into minimising the following con-
strained functional

Bugwm) =3 [ (7=u=div@)+A [ efl+a [ pml @

with constraints w = V2u and m = g. In (3.1), vector function m = (mq,ms) €

(RMXN)2 is related to function g, and w = <w1, W2) ¢ (RMXN)4 is a matrix
w3, Wy

valued function related to the Hessian of the function u. |w| = />, <4 (wn)?

stands for the Frobenius norm of the matrix w. The two constraints above can be

enforced effectively via the Bregman distance technique. Two Bregman iteration

parameters b = (le’ 212> € (RMXN)4 and by = (ba1,ba2) € (RMXN)2 are
13,014

introduced to transform the constrained functional (3.1) into following

B (wgowmibibe) = 5 [ (7= u=din(o)’

+/\/e|w|+ﬁ/ |w—V2u—b1|2 (3.2)
I7) 2 Ja

0
o [ml 2 [ g - baf
(9 2

where #; and 6, are two positive penalty parameters. It is known that one
of saddle points for functional (3.2) will give a minimizer for the constrained
minimization problem (3.1). In practice, it is very difficult to directly solve the
minimization problem (3.2), so we have developed an alternative optimization
method. Specifically, we split (3.2) into four subproblems for «, g, w and m each
of which can be solved quickly. The following section will introduce how to solve
the four subproblems.

4 Solving the Subproblems

4.1 Minimization of Subproblem with Respect to u

u = argmin {E(u):;/Q(f—u—div(g))z—i—921/Q|w—v2u—b1’2}

WERMXN

Deriving its Euler-Lagrange equation leads to following fourth order linear PDE

u+ 01div? (V?u) = f — div (g) — 61div” (by — w) (4.1)
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div? denotes second order divergence operator. By applying discrete Fourier
transform to the both sides of equation (4.1), one can obtain

M

2
1+ 46, (cos % + cos mr 2) ] F(u) =F(G) (4.2)

3

where G = f —div (g) — 61div? (by — w). i € [1, M] and j € [1, N| are the indexes
in discrete time domain. r € (1, M) and s € (1, N) are the frequencies in the
discrete frequency domain. (4.2) provides us with a closed-form solution of u as

e ()

F and F~! denote the discrete Fourier transform and inverse Fourier transform
respectively. R is the real part of a complex number. “—” stands for pointwise
division of matrices.

4.2 Minimization of Subproblem with Respect to g

g— argmin {E<g>:;/Qu—u—dw(gnﬁ9;/Q|m—g—b2|2}

gE(RJ\/IxN)Z

Its Fuler-Lagrange equation is given by
—div(g) +b29 =V (u—f) =02 (b—m)

By applying discrete Fourier transform to the both sides of equation, we have

(o) (7)) = ()

where the coefficients are

ayj; =0y — 2 (cos 2]’\’,'; - 1)
alg = ( 1+ cos 2]7{[5 ++/—1sin 2”5) (1 — cos & 2’" ++/—1sin 27”’)
as1 = ( 1+ cos &&- 2” ++/—1sin M) (1 — cos &2 2“ + +/—1sin m)

a22:02—2(c052wif— )

with
hy =V (u—f)— 02 (bar —my)
ha =V (u— f) — 02 (baz — m2)

We have M x N numbers of 2 x 2 systems. The determinant of the coefficient
matrix | “1 912 s
az1 A2

2 2
D = 02 — 20, <COS$+COSA7Z—2>



Second Order Variational Model for Image Decomposition 631

which is always positive for all discrete frequencies if f; > 0. After the systems of
linear equations are solved for each frequency r and s over the discrete frequency
domain, we use the discrete inverse Fourier transform to obtain

- (fl (aggj—'(hl)l—)au}'(hg)>)

I <f1 <a11f(h2)Da21f(h1)>)

4.3 Minimization of Subproblem with Respect to w and m

The minimisation problems of w and m works in a same manner. Both of their
solutions are form of analytical generalised soft thresholding equation. Specifi-
cally, we solve the following two problems

0
w = argmin {E(w):)\/e|w|+1/ |w—V2u—b1|2}
we(RM*N)4 Q 2 Jo

0
m = argmin {E(m):7/|m|d:ﬁ+2/ |m—g—b2|2}
me(RMxN)2 0 2 n

Their solutions respectively read

2
w:max<|V2u—|—bl|—>\6 O) Viuth

E7 |V2u+b1|
+ b
m = max <g+b2 - %,O) \ggJerz\

with the convention that 0 / 0 = 0. The above equation is known as the analytical
soft thresholding equation or shrinkage.

After the minimizers of the four subproblems are found, we can update Breg-
man iterative parameters in (3.2) as follows

b1:61+V2u7w

bp=by+g—m

5 Experimental Results

In this section, we use an example to illustrate the effectiveness of our proposed
SOVO model. More experimental results will be performed in the forthcom-
ing paper. Decomposition results on Fig. 1 (b) by the proposed SOVO model,
TV (ROF) model [6], FOVO model [4], Chambolle’s Inf-convolution model [21]
and TGV model proposed by Bredies et al. [20] are shown from Figs. 2 to 5.
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(a) Clean image (b) Texture image
Fig. 1. Main test images (resolution 510 x 520).

The quality of the decomposed images is validated quantitatively by the SSIM
index [22].

In Fig. 2, the decomposed structures and their corresponding SSIM calculated
from the reference image Fig. 1 (a) are given. It is clear to see that some texture
still remains in the result by TV model, leading to the lowest SSIM. FOVO
model outperforms TV model as there is no texture left in its decomposed result.
However, the staircase effect appears, which makes the result less appealing.
From Fig. 2 (c¢) and (d). The high order Inf-convolution and TGV models give
good and smooth output whilst preserving the edge features. As Inf-convolution
slightly blur edges of the decomposed structure, and it does not outperform TGV
model. The proposed SOVO model achieves the best visual and quantitative
evaluation result. It decomposes all texture while removes the staircase effect
and preserves the sharp edges.

DDDD]

FOVO Inf Con TGV SOVO

Fig. 2. Decomposed structural components of Fig. 1 (b) by different methods. The
resulting SSIMs from left to right are 0.3958, 0.6934, 0.7725, 0.8225, and 0.8551, respec-
tively.

In Fig. 4, the rescaled decomposed textural components by different models
are presented. Figure 4 (a) is the pure texture image computed by rescaling the
result of Fig. 3 (a) minus Fig. 3 (b). We do not list the SSIM index in the Figure
as it is not accurate after rescaling. However, one can observe Fig. 4 (b), (d) and
(e) contain more structure of original image Fig. 1 (a) than these by FOVO and
SOVO models. Thus, Fig. 4 (e) and (f) are more similar to the Fig. 4 (a). Note
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(a) Mid-slice of Fig. 1 (c¢) (b) Mid-slice of Fig. 2 (a) (c) Mid-slice of Fig. 2 (b)
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(d) Mid-slice of Fig. 2 (¢) (e) Mid-slice of Fig. 2 (d) (f) Mid-slice of Fig. 2 (e)

Fig. 3. A middle slice for detailed comparisons.

| (a) Origl - o () TV | | c) -‘ |

| (d) Inf-Con | o (e)V | o

Fig. 4. Decomposed textural components of image Fig. 1 (c¢) by different methods.
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that TV, Inf-convolution and TGV models simply use the L? norm to capture
the oscillations while the FOVO and SOVO models apply L' norm of |g|. The
latter is more capable of extracting oscillatory pattern from the textural signal.

In Fig. 3, the middle slices of the image Fig. 1 (b) are shown and its corre-
sponding decomposition results are shown in Fig. 2. The conclusions are consis-
tent with Fig. 2. It is more obvious that the proposed model outperforms the
other fours in terms of capability of textural removal and smoothness and sharp
edges/corners preservation.

To examine the quality of the decomposed structural parts in Fig. 2 as the
number of iteration increases, we have plotted the evolution of SSIM values in
Fig. 5. In the horizontal axis, instead of the number of iterations we put the
absolute CPU time calculated by multiplying the number of iterations and CPU
time per iteration. We also designed fast split Bregman algorithm for TV, Inf-
convolution, and TGV models for comparison with our algorithm. The fixed
point iteration method is applied to the FOVO model. For TV and FOVO mod-
els, their corresponding SSIM value increases at the beginning of iterations and
then drops when the staircase effect appears. The SSIM values of Inf-convolution,
TGV and SOVO models increase dramatically before 5 seconds and then remain
stable. The split Bregman is also used for TV, Inf-convolution, TGV and SOVO
models, and performed faster than the FOVO model.

0.9

0.2 -
FOvo
——Inf-Convolution
0.4/ / —TGV i
—SOovo
0 L L L L .
L] 5 10 15 20 25 30

Seconds

Fig. 5. Evolution of the SSIM index with absolute CPU time for the examples in Fig. 2.

6 Conclusion

In this paper, we proposed the SOVO model for image decomposition, which can
decompose an image into texture and structure without introducing the stair-
case effect. The advantages of our model also include computational efficiency
by using the split Bregman algorithm to avoid numerically solving high order
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PDEs. We provided the implementation details of the split Bregman algorithm
for solving the proposed model efficiently. Extensive experiments demonstrate
that the proposed second order model performs better than the existing image
decomposition models. Our future work will extend the proposed SOVO model
to image denoising and decomposition [23] for real world applications such as
medical imaging [24].
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