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Abstract. Facial occlusions pose significant obstacles for robust face
recognition in real-world applications. To eliminate the effect incurred
by occlusions, most of the popular methods concentrate on dealing with
the error between the occluded image and its recovery. Inspired by the
working mechanism of human visual systems in facial occlusion detec-
tion, we suggest that it should be the error metric and clustering rather
than exact recovery that play important roles for occlusion detection.
By considering the structural differences between faces and occlusions,
such as colors and textures, we construct five structural error metrics.
By considering the common structures shared by all occlusions, such as
localization and contiguity, we construct a structured clustering operator.
Furthermore, we select the optimal error metric via the minimum occlu-
sion boundary regularity criterion. Integrating the above techniques, we
propose the Structural Error Metrics and Clustering (SEMC) algorithm
for facial occlusion detection. Experimental results demonstrate that,
even just using the mean face of the training images as the recovery
image, SEMC still achieves more accurate and robust performance com-
pared to the related state-of-the-art methods.

Keywords: Unconstrained face recognition · Facial occlusion detec-
tion · Structural error metric · Structural clustering

1 Introduction

Recently, recognizing human faces with occlusions has received a lot of attention
in computer vision and pattern recognition [4,7,11,13,15,16]. Facial occlusions,
including accessories, shadows or other objects in front of a face, pose significant
obstacles for robust face recognition in real-world applications [3]. To eliminate
the effect incurred by occlusion, researchers have studied the solution schemes
from different views. Most of these schemes concentrate on the recovery error
ê ∈ R

m between the occluded image y ∈ R
m and its recovery ŷ ∈ R

m with respect
to (w.r.t.) the training dictionary A ∈ R

m×n , with the assumption that the
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larger the entry values of the error ê, the higher the probability with which the
corresponding pixels are occluded. By assuming that the error ê can be sparsely
coded w.r.t. some error coding dictionary E ∈ R

m×d, researchers proposed the
following Error Coding Model (ECM) from different views [2,5,8,13,14]

min
x,c

‖x‖1 + ‖c‖1 s.t. [A E]
[

x
c

]
= ŷ + ê = y, (1)

where x ∈ R
n and c ∈ R

d are the coding coefficients of the recovery image ŷ and
the error ê, respectively.

Another view on dealing with the error is the Error Weighting Model (EWM).
According to the works of [4,7,15,16], the EWM can be summarized as

min
x,w

‖x‖�a + μ ‖w � ê‖�b + λφ (w, ê) s.t. ê = y − Ax, (2)

where �a and �b are the norm indexes, μ and λ are the regularization parameters,
w ∈ R

m is the error weight, φ (w, ê) is the cost function of w w.r.t. the error ê,
and � is the Hadamard product. With μ = 1, λ = 0, w = 1, �a = �b = 1, E = I,
the EWM is equivalent to the ECM. The entries of the weight w indicate the
occlusion support or the probabilities with which the corresponding pixels are
occluded.

The occlusion location is mainly indicated by the reconstruction error ê =
y− ŷ = y−Ax in both ECM and EWM. It seems that the quality of the recovery
image ŷ determines the accuracy of the corresponding occlusion detection result.
However, we know that an exact recovery does not be necessary for human
visual system (HVS), that is, HVS could recognize the occluded region of a
face without having to see this face before, i.e., without having to compare it
with its ground truth. HVS captures the structural differences by comparing the
occlusion with a fuzzy face model, which is learned from the faces emerging in
everyday life ever before. We call that the learned face model is fuzzy as its
identity is unclear and HVS only keeps its typical structure composed of eyes,
nose, mouth and etc. Inspired by this observation, we explore the automatic facial
occlusion detection technology via structural comparison, that is, structural error
metrics and clustering. For simplicity, we choose the mean face ȳ = 1

n (A × 1)
(1 ∈ R

n) as the fuzzy face model in the subsequent work.
The rest of this paper is organized as follows. Section 2 presents several struc-

tural error metrics and a structural error clustering operator. Section 3 gives an
optimal error metric selection criterion, which integrates the proposed structural
error metrics and clustering operator together. Section 4 performs the experi-
ments. Section 5 concludes the paper.

2 Structural Error Metrics and Clustering

In order to highlight the error incurred by occlusion, we measure the error ẽ
between the test image y and the mean face ȳ based on the potential differential
structures between faces and occlusions; in order to cluster the occluded pix-
els, we consider the error ẽ and its clustering operator based on the common
structures shared by all occlusions.
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2.1 Structural Differences Induced Error Metrics

By observation, we note that the structural differences between occlusions and
the fuzzy face model (the mean face) is mainly reflected in colors, textures and
shapes. We now consider how to use these structural differences to construct
error metrics. Suppose we could project an image into a structured subspace,
which keeps or strengthens the preconceived structure and wipes off or weakens
the unwanted structures. Then the error between two images can be measured
in this new subspace

ẽf = Ef (y, ȳ) = |f (y) − f (ȳ)| , (3)

where the function f : Rm → R
m is the structural difference descriptor embedded

in the structured subspace. We call the error metrics based on (3) the structural
error metrics (SEMs). Hence, what is critical for SEMs is to design the structural
difference descriptors.

Color Difference Metrics. The color difference can be directly measured by
the absolute error metric in the original image domain EI (y, ȳ) = |I (y) − I (ȳ)| =
|y − ȳ|. However, EI does not consider the relative error between image pixels.
For example, if there exists yj = yi + a and ȳj = ȳi + a for some a � 1, we
have EI (yi, ȳi) = EI (yj , ȳj). While it seems reasonable in mathematics, this
error measurement result clashes with Weber’s law [12] in psychophysics, which
says that the relationship between the stimulus S and the perception p is log-
arithmic. That is, the lower the initial stimulus is, the more easily it could be
perceived. By assuming that the occlusion is a stimulus with low intensities, we
project images into the logarithmic domain and have the log-based error metric
Elog (y, ȳ) = |log y − log ȳ|, which enhances the error caused by the low-value
occlusions while suppresses the error incurred by high-value occlusions.

We then consider occlusions with high intensities. This problem might be
well solved, if we can map the occluded image into a feature subspace, where
most of the pixels with high values are transformed to the ones with low values.
By supposing the pixel values of the occlusion in the local area change slowly
and smoothly, this feature subspace can be described by the gradient ∇I =√(

∂I
∂x

)2
+

(
∂I
∂y

)2

, where ∂I
∂x and ∂I

∂y are the gradients along the vertical and

horizontal directions, respectively. We now have the log-gradient-based error
metric E∇ (y, ȳ) = |log∇ (y) − log∇ (ȳ)|, where log∇ (y) = log (∇y).

Texture Difference Metrics. While the log-based error metric Elog and the
log-gradient-based error metric E∇ are sensitive to occlusions with low intensi-
ties and high intensities changing uniformly, they are insensitive to occlusions
with intensities changing rapidly or randomly. In this scenario, it is the tex-
ture differences rather than the color differences that dominate the structural
differences between faces and occlusions. However, texture is easy to see but dif-
ficult to define [10], as its definition might be different for different applications.
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In this work, we describe the texture by the density of edges per unit area, which
can be computed over an image area by the Laplacian filtering ∇2I = ∂2I

∂x2 + ∂2I
∂y2 .

We then have a new error metric in the Laplacian filtered domain E∇2 (y, ȳ) =∣∣∇2y − ∇2ȳ
∣∣, which we call the Laplace-based error metric.

Color-Texture-Combined Difference Metrics. We now consider the sce-
nario when both the color and texture differences are prominent. Here, we intro-
duce the differential excitation (DE) of an image proposed by Chen et al. [1]
DE (I) = arctan ∇2I

I . The DE operator simultaneously keeps the texture and
color features of the original image, as the Laplacian filtered image ∇2I in the
numerator calculates the texture feature and I in the denominator keeps the color
feature. Specifically, the ratio ∇2I

I actually amounts to the Weber fraction, and
the arctangent function limits the output of DE in

[−π
2 , π

2

]
and is a logarithm-

like function, which is also sensitive to the change incurred by low intensities.
We now have the DE-based error metric EDE (y, ȳ) = |DE (y) − DE (ȳ)| .

2.2 Sharing Structures Induced Error Clustering

Clearly, it is critical to seek the common structures shared by all occlusions
for clustering occluded pixels. The common structures of occlusions explored in
existing literature mainly includes locality [4] and contiguity [16].

Local Structure for Error Enhancement and Normalization. The cor-
rentropy induced metric (CIM) [4] measures the error between each pixel pair yi

and ȳi as follows CIM (yi, ȳi) = 1−g (yi − ȳi), where g (x) = exp
(
− x2

2σ2

)
is the

Gaussian kernel. CIM is a statistical local metric due to the utilized Gaussian
kernel and its locality can be adjusted with the kernel size σ. In order to utilize
the local structure of the error calculated by various error metrics, we extend
the CIM to the following form CIMf (yi, ȳi) = 1 − g (Ef (yi, ȳi)). Note that the
error metric LD proposed in [7] is just an instance of the error metric CIMf .

Contiguous Structure for Error Clustering. The contiguous structure of
occlusion is usually depicted by the adjacent relationships of the occlusion spa-
tial support. However, the error support, instead of the occlusion support, is
commonly used in literature, since the occlusion support is usually unknown.
The contiguous filtering combined with the error clustering is the common way
to obtain the error support. In [16], the authors explored the contiguous struc-
ture via Markov random field, and the error support is estimated by solving a
binary GraphCut problem. In this work, for simplicity, we just use the morpho-
logical filtering [16] to obtain the contiguous structure. The key idea is to first
cluster the errors by K-means (or just threshold the errors) and then to apply
open and close operations to the binary error support, which can be formulated
as Ks (ê) = f• (f◦ (K (ê))) , where f◦ (·) and f• (·) are open and close operations,
respectively.
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Algorithm 1. Structural Error Metrics and Clustering (SEMC) for Facial
Occlusion Detection
Input: data matrix A ∈ R

m×n, test sample y ∈ R
m.

Output: detected occlusion support s̃.

1. Calculate the mean face ȳ = 1
n

(A × 1);
2. Set the structure difference operator ensemble: F =

{
I, log,∇,∇2, DE

}
;

3. For each f ∈ F
4. Calculate the recovered error ẽf : (ẽf )i = CIMf (yi, ȳi);
5. Cluster the recovered error: s̃f = Ks (ẽf );
6. End For
7. Select the optimal occlusion support: s̃ = s̃f∗ , where f∗ = arg minf∈F B (s̃f ).

3 Optimal Error Metric Selection

We now have 5 structural error metrics, EI , Elog, Elog∇ , E∇2 and EDE , for facial
occlusion detection, which are designed for different occlusions with different
structures, respectively. As the structure of a special occlusion is usually pri-
ori unknown, it seems difficult to automatically choose the optimal error metric.
However, we find that the minimum occlusion boundary regularity criterion pro-
posed in [7] can be used here to help selecting the optimal error metric. The idea
is inspired by the observation that all natural occlusions usually have smooth
and regular boundaries. We therefore deduce that if the shape of the detected
occlusion based on an error metric is coarse and irregular, the corresponding uti-
lized error metric might not be the optimal one. According to the morphological
boundary detection algorithm presented in [7], the minimum boundary regular-
ity criterion can be formulated as arg minf B (sf ) = ‖sf − (sf � T )‖1, where sf

is the detected error support, � is the erosion operator, and T = [1 1 1; 1 1 1; 1 1 1]
is the structuring element.

Incorporating the 5 structural error metrics, EI , Elog, Elog∇ , E∇2 and EDE

with the local error metric CIM , and using the structured clustering operator Ks

and the minimum occlusion boundary regularity criterion, Algorithm1, dubbed
the Structural Error Metrics and Clustering (SEMC), summarizes the whole
procedure of our method used to make facial occlusion detection.

4 Simulations and Experiments

To evaluate the proposed SEMC algorithm, we compare it with the state-of-
the-art methods on two publicly available databases, namely, the Extended Yale
B [6] database and the AR [9] database. Since the ECM (1) does not contain
the occlusion detection mechanism, we just pay attention to the state-of-the-
art EWM-based methods: the correntropy-based sparse representation (CESR)
[4], the robust sparse coding (RSC) [15], and the structured sparse error coding
(SSEC) [7]. Note that both CESR and RSC just calculate the probability w with
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which the pixels are occluded. We therefore cluster w to estimate the occlusion
support: for CESR, we estimate the occlusion support by K-means clustering
sCESR = K (1 − w); for RSC, according to its open Matlab code, we estimate
the occlusion support by threshold clustering sRSC =

(
w

maxw < 10−3
)
.

4.1 Synthetic Facial Occlusion Detection

In this section, we use the Extended Yale B database [6] to investigate the perfor-
mance of SEMC under fixed feature dimension for various synthetic occlusions
with varying levels and boundaries. We choose Subsets I and II (717 images,
normal-to-moderate lighting conditions) for training and Subset III (453 images,
more extreme lighting conditions) for testing. Synthetic occlusions with various
boundaries and occlusion levels are imposed on the test samples. The images are
resized to 96 × 84 pixels.

Detection With Various Occlusion Levels. To test the accuracy and stabil-
ity of SEMC in occlusion detection, we first simulate various levels of occlusions
from 10 % to 90 % by replacing a random located block of each test image with a
mandrill image. Figure 1a gives nine occluded faces with various occlusion levels
and their detailed detection results using the four compared methods. For each
method against each occlusion level, the average true positive rates (TPRs) and
false positive rates (FPRs) of the occlusion detection results over the 453 test
images are also shown in Fig. 1c. For all the cases, the TPRs and FPRs of SEMC
are almost always suboptimal compared to the optimal ones of the other meth-
ods, whereas the differences between TPRs and FPRs of SEMC are always the
largest. This implies that SEMC achieves the optimal balance between TPRs and
FPRs. Figure 1c also shows that SEMC achieves its optimal performance at the
50 %˜60 % occlusion levels but not at the lowest ones. The reason is that when
the occlusion levels are very low, the dominant differential structures between
the mean face (without occlusions) and the occluded face are mainly determined
by the differences between faces, which does not be considered by SEMC. The
similar problem also exists for the other 3 methods, especially for SSEC.

Different from the other compared methods, SEMC not only detects occlu-
sions but also understands occlusion structures. To illustrate this, Fig. 2a counts
the number of the structural error metrics selected by SEMC at various mandrill
occlusion levels. The main structure of mandrill occlusion actually changes with
occlusion levels: when the occlusion levels are low, the texture feature is signifi-
cant as the edge density is intensive; with the occlusion level increasing, both the
texture and color features become more and more significant. This means that
for low occlusion levels, SEMC should choose the Laplace-based error metric E∇,
while for high occlusion levels, SEMC should choose the DE-based error metric
EDE . Figure 2a shows that SEMC does perform as expected.

Detection With Various Occlusions. To test the adaptability of SEMC for
various occlusions, we simulate 60 % occlusion levels with 7 different objects
successively: mandrill, camera, dog, apple, sunflower, random block and white
block, i.e., we have 453 × 7 occluded test images. Figure 1b and d gives the
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Fig. 1. (a)-(b) The occlusion detection results of various algorithms against various
occlusions with various levels on the Extended Yale B database: (a) 10 %˜90 % mandrill
occlusions and (b) 60 % various occlusions. (c)-(d) The corresponding average TPRs
and FPRs of the 453 occlusion detection results of various algorithms against various
occlusions.
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Fig. 2. The statistics of the structural error metrics selected by SEMC for 10 %˜90 %
mandrill occlusions (a) and for various occlusions (b).
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Fig. 3. (a)-(b): The occlusion detection results of various algorithms against various
feature dimensions on the AR database. (c)-(d): The average TPRs and FPRs of the
occlusion detection results of various algorithms against various feature dimensions on
the AR database.

experimental results. Clearly, for all cases, SEMC achieves the optimal balance
between TPRs and FPRs. Figure 2b states the occlusion structures that SEMC
sees during its detection procedure.

4.2 Real-World Facial Occlusion Detection

We test the performance of SEMC in dealing with real disguises with the AR face
database [9]. The grayscale images were resized to 112 × 92. We select a subset
of the database that consists of 119 subjects (65 males and 54 females). For
training, we choose 2 unoccluded frontal view images with neutral expressions
for each subject from two sessions. For testing, we consider two separate test
sets of the 119 subjects. The first/second test set contains 119×2 images of the
subjects wearing sunglasses/scarves with neutral expressions from two sessions.

To test the accuracy and robustness of SEMC in occlusion detection for dif-
ferent feature dimensions, we use 4 different downsampled images of dimensions
154, 644, 2576, and 1,0304, which correspond to downsampling ratios of 1/8,
1/4, 1/2, and 1, respectively. The detailed occlusion detection results of the first
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Fig. 4. The statistics of the structural error metrics selected by SEMC for various
feature dimensions.

subject in the 4 different dimensions are shown in Fig. 3. Figure 3c and d com-
pare TPRs and FPRs of the detection results of the competing methods. Clearly,
SEMC achieves the optimal performance for the two types of disguises except for
the lowest feature dimension. The statistical results in Fig. 4 show that with the
feature dimension increasing, more and more log-based error metrics are selected
by SEMC, since the dark color features of sunglasses/scarves become more and
more significant. Figures 3 and 4 demonstrate that occlusion levels affect the
performance of SEMC.

5 Conclusions

Most of the state-of-the-art methods in dealing with facial occlusion are based
on the alternative iteration of image recovery and occlusion detection. In order
to detect facial occlusions efficiently and accurately, we propose a novel method
based on the structural error metrics and clustering (SEMC) without image
recovery. Experiments show that, even just using the mean face of the training
images as the recovery image, SEMC still achieves more accurate and robust
performance compared to the related state-of-the-art methods. However, the
experiments also show that the minimum occlusion boundary regularity criterion
used by SEMC to select the optimal error metric limits its efficacy on occluded
images with very low dimension features or with very low occlusion levels. This
issue encourages us to further explore new criterion for the optimal error metric
selection.
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