
The Trojan Problem from a Hamiltonian
Perturbative Perspective

Rocío Isabel Páez, Ugo Locatelli, and Christos Efthymiopoulos

Abstract The study of the Trojan problem (i.e. the motion in the vicinity of the
equilateral Lagrangian points L4 or L5) has a long history in the literature. Starting
from a representation of the Elliptic Restricted 3-Body Problem in terms of modified
Delaunay variables, we propose a sequence of canonical transformations leading
to a Hamiltonian decomposition in the three degrees of freedom (fast, synodic
and secular). From such a decomposition, we introduce a model called the ‘basic
Hamiltonian’ Hb, corresponding to the part of the Hamiltonian independent of the
secular angle. Averaging over the fast angle, the hHbi turns to be an integrable
Hamiltonian, yet depending on the value of the primary’s eccentricity e0. This
allows to formally define action-angle variables for the synodic degree of freedom,
even when e0 ¤ 0. In addition, we introduce a method for locating the position
of secondary resonances between the synodic libration frequency and the fast
frequency, based on the use of the normalized hHbi. We show that the combination
of a suitable normalization scheme and the representation by the Hb is efficient
enough so as to allow to accurately locate secondary resonances as well as higher
order resonances involving also the very slow secular frequencies.

1 Introduction

In recent years, the equilateral Lagrangian points L4 and L5 have become the
subject of several mission proposals, as a privileged position for solar observatories
(see Gopalswamya et al. 2011 and references therein). While these studies show the
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high feasibility of a mission towards the equilateral points, a deep understanding of
the Trojan dynamics (i.e. the motion in the vicinity of the equilateral Lagrangian
points) is mandatory for the success of such missions.

From a theoretical point of view, many studies faced the problem of the Trojan
motion by using the circular approximation of the Restricted 3-Body Problem
(CR3BP). In this framework, the linear stability around L4 or L5 is guaranteed for

values of the mass parameter � � �R D 27�p
621

54
� 0:0385, known as the Routh

criterion (Gascheau 1843). The linearized orbits, in the vicinity of L4 and L5, are
given by the composition of two different oscillatory motions, with frequencies

!f D 1 � 27
8

� C O.�2/ and !s D
q

27
4

� C O.�/, where the subscripts f and s
stand for ‘fast’ and ‘synodic’ respectively. These two oscillations have very different
timescales. On one hand, !f is approximately equal to 1, i.e. it gives an oscillation
of period similar to the mean motion of the primary. On the other hand, !s is
proportional to the square root of the mass parameter �, which is a small parameter
itself. Thus, the motion of the test particle can be decomposed in two different
contributions (Murray and Dermott 1999): the slow motion, associated to a guiding
center motion around the position of equilibrium, with period 2�=!s (known as
synodic libration), and the fast one, attributed to the short period motion of the
particle around the guiding center.

Besides the 1:1 mean motion resonance between the primary and the
Trojan object, there may exist secondary resonances, corresponding to
commensurabilities between the fast and the synodic frequency of the type
!f � n!s, with n integer. These resonances generate periodic orbits
forming n epicyclic oscillations (e.g. loops) while they accomplish one full
synodic libration. The presence of the secondary resonances affects the
quasiperiodic orbital solutions in terms of the two main frequencies !f and !s

(e.g. Deprit and Delie 1965), as it gives rise to so-called critical terms, i.e., terms
depending on a resonant combination of the angles. These resonant terms in the
series require a special treatment (e.g. Garfinkel 1977). On the other hand, in the
Trojan problem it can be shown that their effect on the slow (secular) motions is
rather limited (Namouni 1999). Let us mention, finally, that the use of averaging
techniques allows to simplify the study of the synodic librations by finding a
simplified form of the equation of motion for the so-called critical argument
� D � � �0, with �, �0 the mean longitude of the test particle and the primary,
respectively.
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Whereas the CR3BP may be a good first model for developing the theory of
Trojan orbits, it clearly does not suffice to represent more realistic problems. As a
natural extension, there exist several approximations to the analytical solution of
the Trojan problem in the framework of the Elliptic Restricted 3-Body problem
(ER3BP). This generalization brings new interesting features to the formulation.
While most works on the CR3BP consider two time scales (associated to !f and
!s), in the ER3BP three times scales are necessary (Érdi 1977), associated to the
fast, synodic and secular frequency. From the physical point of view, these three
scales are associated to the epicyclic oscillation (fast, O.1/), the libration around
the libration center (synodic, O.

p
�/) and the slow precession of the perihelion of

the orbit of the Trojan body (secular, O.�/) (Érdi 1978).
In the present work, we obtain a Hamiltonian decomposition individualizing the

three time scales, starting from the ER3BP. From this decomposition, we introduce
a model called the ‘basic Hamiltonian’ Hb, representing only the fast and synodic
d.o.f. of the elliptic problem. Averaging over the fast angle, the hHbi turns to be an
integrable Hamiltonian, yet depending on the value of the primary’s eccentricity
e0. From the latter, we can define action-angle variables for the synodic degree
of freedom, even when e0 ¤ 0. We introduce a method, based on the use of the
normalized hHbi, for locating the position of the secondary resonances between the
synodic libration frequency and the fast frequency. We show that the Hb normalized
under a suitable scheme is efficient enough to accurately locate both secondary
resonances and higher order resonances involving also the secular frequency.

2 The Basic Hamiltonian Hb

We start the construction of the Hb from the Hamiltonian corresponding to the planar
ER3BP.

Hell D kpk2

2
� 1

krk � Gm0
�

1

�
� 1

krk � r � r0

kr0k3

�
; (1)

where r0 and r are the heliocentric position vectors for the planet and for the
massless body, respectively, � D kr � r0k, p D Pr and Gm0 D �. We introduce
modified Delaunay variables .x; y; �; $/, independent of the mass parameter �

(Brown and Shook 1933; Morais 2001), given by

x D p
a � 1 ; � ; y D p

a
�p

1 � e2 � 1
�

; $ ; (2)
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where �, $ , a and e are the mean longitude, longitude of the pericenter, major semi-
axis and eccentricity of the orbit of the Trojan body (primed symbols correspond to
the primary). The Hamiltonian (1) in the new variables reads

Hell D � 1

2.1 C x/2
C I � �R.x; y; �; $; �0I $ 0; e0/ (3)

where we introduce a ‘dummy’ action variable I conjugate to �0, and �0 D nt. The
present expression of the Hamiltonian corresponds to an autonomous system of 3
d.o.f.

For the study of the Trojan dynamics, we define two new angles. The angle � D
� � �0 is the resonant angle corresponding to the 1:1 MMR resonance, with value
� D �=3 at the Lagrangian point L4. The angle ı$ D $ �$ 0 expresses the relative
position of the pericenter of the Trojan body from the pericenter of the planet. We
introduce these new angles through a generating function S2 depending on the old
angles (�, �0, $) and the new actions (X1, X2, X3),

S1 D .� � �0/X1 C �0X2 C .$ � $ 0/X3 ; (4)

yielding the following transformation rules

� D � � �0 ; �2 D �0 ; ı$ D $ � $ 0 ; x D X1 ; I D X2 � X1 ; y D X3 :

(5)

We keep the old notation for all variables involved in an identity transformation
(X1 D x, �2 D �0, X3 D y). The Hamiltonian then reads:

Hell D � 1

2.1 C x/2
� x C X2 � �R.x; y; �; ı$; �0I e0; $ 0/ : (6)

This expression can be recast under the form

Hell D hHi C H1 (7)

where

hHi D � 1

2.1 C x/2
� x C X2 � �hRi.�; ı$; x; yI e0; $ 0/ (8)

and

H1 D �� QR.�; ı$; x; y; �0I e0; $ 0/ ;



The Trojan Problem from a Hamiltonian Perturbative Perspective 197

with

hRi D 1

2�

Z 2�

0

Rd�0; QR D R � hRi :

The action X2 is an integral of motion under the Hamiltonian flow of hHelli. Thus,
hHelli represents a system of two d.o.f. We call position of the forced equilibrium
.�0; ı$0; x0; y0/ the solution of the system of equations

P� D @hHi
@x

D 0; Pı$ D @hHi
@y

D 0; Px D �@hHi
@�

D 0; Py D �@hHi
@ı$

D 0 :

(9)
We find

.�0; ı$0; x0; y0/ D �
�=3; �=3; 0;

p
1 � e02 � 1

�
: (10)

Let us note that the equilibrium point given by (10) does not represent a fixed point
in the synodic frame of reference, as in the circular case, but a short-period epicyclic
loop around L4, corresponding to a fixed ellipse of eccentricity e D e0 in the inertial
frame.

We now introduce local action-angle variables around the point of forced
equilibrium. To this end, we consider the ‘shift of center’ canonical transformation
given by1:

v D x � x0; u D � � �0; Y D �.W2 C V2/=2; � D arctan.V; W/ (11)

where

V D p�2y sin ı$ �p�2y0 sin ı$0; W D p�2y cos ı$ �p�2y0 cos ı$0 ;

where Y is defined negative so as to keep the canonical structure with respect to �.
Re-organising terms, the Hamiltonian (6) takes the form:

Hell D � 1

2.1 C v/2
� v C X2 � �

�
F .0/.u; �0 � �; v; YI e0; $ 0/

CF .1/.u; �; �0; v; YI e0; $ 0/
�

(12)

where F .0/ contains terms depending on the angles �0 and � only through the
difference �0 � �, and F .1/ contains terms dependent on non-zero powers of e0.

1We symbolize with arctan .a; b/ the function tan�1.a=b/ W R2 ! T
1, of two variables, that maps

the value of the arctangent to the corresponding quadrant in the coordinate system with b as the
abscissa and a as the ordinate.
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The part of the Hamiltonian corresponding to F .0/ can be formally reduced to a
system of 2 d.o.f. through the generating function

S2.u; �0; �; Yu; Ys; Yp/ D uYu C .�0 � �/Yf C �Yp (13)

yielding

�u D u ; �f D �0 � � ; �p D � ; v D Yu ; X2 D Yf ; Y D Yp � Yf :

(14)

The subscripts ‘f’ and ‘p’ stand for ‘fast’ and ‘proper’ respectively. As before, we
keep the old notation for the variables transforming by the identity �u D u; �p D �,
and Yu D v, except for the action Yf � X2. The Hamiltonian (12) in the new
canonical variables reads

Hell D � 1

2.1 C v/2
� v C Yf � �F .0/.v; Yp � Yf ; u; �f I e0; $ 0/ (15)

� �F .1/.v; Yp � Yf ; u; �f ; �I e0; $ 0/ :

Collecting terms linear in .Yp � Yf /, we find:

!f � P�f D @Hell

@Yf
D 1�27�=8CO.�2/ : : : ; g � P� D @Hell

@Yp
D 27�=8CO.�2/ : : :

(16)

We identify !f and g as the short-period and secular frequencies, respectively,
of the Trojan body. Therefore, the set of variables constructed in (13) allows to
separate the three time-scales by the corresponding 3 d.o.f. in the Hamiltonian, and
it allows to consider various ‘levels’ of perturbation. We call basic model the one of
Hamiltonian

Hb D � 1

2.1 C v/2
� v C Yf � �F .0/.v; Yp � Yf ; u; �f I e0; $ 0/ : (17)

The total Hamiltonian takes the form Hell D Hb C Hsec, where

Hsec D ��F .1/.v; Yp � Yf ; u; �f ; �I e0; $ 0/ (18)

contains terms of at least order O.e0 �/. Figure 1 summarizes the physical meaning
of the action-angle variables .�f ; u; �; Yf ; v; Yp/.
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Fig. 1 Schematic representation of the physical meaning of the action-angle variables used for the
Hell in Eq. (15). The plane .u; v/ corresponds to the ‘synodic’ motion of the Trojan body. Under
the Hamiltonian Hb, the phase portrait can be represented by a Poincaré section corresponding to
every time when the angle �f accomplishes a full cycle. The left panel shows schematically the
form of the projection of this section on the plane .u; v/. The central point P represents a stable
fixed point corresponding to the short-period periodic orbit around L4. The orbit has frequency
!f , while its amplitude increases monotonically with Yf . The forced equilibrium corresponds to
u0 D 0, Yf D 0. The point P, however, has in general a shift to positive values u0 > 0 for proper
eccentricities larger than zero [see later Eq. (24)]. Far from resonances, the invariant curves around
P are labeled by a constant action variable Js, and its associated angle (phase of the oscillation) �s.
Resonances, and their island chains correspond to rational relations between the frequencies !f and
!s. Within the resonant islands, Js is no longer preserved, but we have, instead, the preservation of
a resonant integral Js;res. The plane .W; V/ (right panel) depicts the evolution of the Trojan body’s
eccentricity vector under the Hamiltonian Hb. The motion of the endpoint of the eccentricity vector
can be decomposed to a circulation around the forced equilibrium, with angular frequency g, and
a fast (of frequency !f ) ‘in-and-out’ oscillation with respect to a circle of radius ep, of amplitude
which is of order O.Yf /. Under Hb alone, the quantities Yp; Js, or Yp; Js;res are quasi-integrals for
all the regular orbits. Furthermore, all extra terms with respect to Hb in the Hamiltonian (6) depend
on the slow angles �. Thus, all these terms can only slowly modulate the dynamics under Hb, and
this modulation can produce a long-term drift of the values of .Yp; Js/, or Yp; Js;res

In a first approximation, the quasi-integral of the proper eccentricity (Érdi 1996)
can be defined as

ep;0 D
p

V2 C W2 D p�2Y : (19)

However, Y is subject to fast variations due to its dependence on Yf !f � O.1/.
The time variations of Yf become particularly important when one of the following
two conditions holds: i) e0 < �, or ii) the orbit of the Trojan body is subject to a
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low-order resonance. On the other hand, since � is ignorable, Yp remains an exact
integral of the Hamiltonian (17) even in the cases (i) or (ii). We thus adopt the
following definition of the proper eccentricity:

ep D p�2Yp : (20)

Since F .1/ is at least O.e0/, PYp D O.e0/ under the full Hamiltonian (15).
Thus, ep remains a good quasi-integral for not very high values of the primary’s
eccentricity (Páez and Efthymiopoulos 2015).

A second averaging over the fast angle �f yields the Hamiltonian

Hb.u; vI Yf ; Yp; e0; $ 0/ D � 1

2.1 C v/2
� v C Yf � �F .0/.u; v; Yp � Yf I e0; $ 0/

(21)
with

F .0/ D 1

2�

Z 2�

0

F .0/d�f :

The Hamiltonian Hb.u; vI Yf ; Yp; e0; $/ represents a system of one degree of
freedom, all three quantities Yf ; Yp; e0 serving now as parameters, i.e. constants
of motion under the dynamics of Hb. The Hamiltonian Hb describes the synodic
(guiding-center) motions of the Trojan body, with the additional point that, since it
depends on e0, it does not correspond to the averaged (over fast angles) Hamiltonian
of the circular RTBP. Thus, it allows to find an integrable approximation to synodic
motions even when e0 ¤ 0.

The equilibrium point .u0; v0/ given by

@F .0/

@u
D @F .0/

@v
D 0

corresponds to a short-period periodic orbit of the Hamiltonian Hb around the forced
equilibrium point. We define the action variable

Js D 1

2�

Z

C
.v � v0/d.u � u0/ (22)

where the integration is over a closed invariant curve C around .u0; v0/ and ‘s’ stands
for ‘synodic’ (see Fig. 1). The angular variable �s, conjugate to Js, evolves in time
according to the synodic frequency !s given by [see Eq. (28)]

!s D P�s D �
r

27�

4
C : : : (23)
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Some manipulation of Eq. (21) allows to find a first order approximation to the
values of the frequencies !s and g. We deduce the shift in position, with respect to
L4, of the fixed point of F .0/, corresponding to the short-period orbit around L4
(Namouni and Murray 2000). The shift is given by u0 D �0 � �=3, where �0 is the
solution of @F .0/=@� D 0. We find:

u0 D 29
p

3

24
e2

p;0 C : : : (24)

where the error is of order 4 in the eccentricities ep;0, e0.
We introduce the following canonical transformation to analyze the motion

around the position of the periodic orbit given by u0; v0

S3.�f ; u; �; V; Jf ; Jp/ D .u � u0/V C �f Jf C �Jp ; (25)

where, in terms of the new actions, we have u0 D 29
p

3
12

.Jf � Jp/, yielding

v D V ; Yf D Jf ; Yp D Jp ; ıu D u�u0 ; qf D �f � 29
p

3

12
V qp D � C 29

p
3

12
V :

Since Hb in Eq. (21) does not explicitly depend on the angles qp and qf , the
conjugated actions Jp D Yp and Jf D Yf remain integrals of motion. We keep
the notation for Yf , Yp and v. Taylor-expanding Hb, around u0 up to terms of
order O.ıu2/, we find (up to terms of first order in � and second order in the
eccentricities):

Hb;ell D �1

2
C Yf � �

�
27

8
C : : :

�
e2

p;0

2
� 3

2
x2 C : : :

� �

 
9

8
C 63e02

16
C 129e2

p;0

64
C : : :

!
ıu2 C : : : (26)

where
e2

p;0

2
D Yf � Yp. Since Yf is of order O.�/, up to terms linear in � the part

Hsyn D �3

2
v2 � �

 
9

8
C 63e02

16
C 129e2

p

64
C : : :

!
ıu2 (27)

defines a harmonic oscillator for the synodic degree of freedom. The corresponding
synodic frequency is

!s D �
vuut6�

 
9

8
C 63e02

16
C 129e2

p

64
C : : :

!
: (28)
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On the other hand, the secular frequency is given by g D @Hb=@Yp. Assuming a
harmonic solution ıu D ıu0 cos.!st C �0s/, and averaging over the synodic period
hıu2i D ıu2

0=2, we find

g D �

�
27

8
C 129

64
ıu2

0 C : : :

�
; (29)

completing the estimation of the frequencies.

2.1 Secondary Resonances in the ER3BP

The Trojan domain describes itself a resonant regime, defined by the 1:1 commensu-
rability of the mean motions of the Trojan body and the primary. In addition, within
this domain, we can find secondary resonances of the form

mf !f C ms!s C mg D 0 (30)

with mf ; ms; m integers. The most important resonances are those involving low
order conmensurabilities between !f and !s, which exist also in the pCR3BP
(e0 D 0). They are of the form

!f C n!s D 0 (31)

with n D ms. We refer to (31), as the ‘1:n’ resonance. For mf D 1 and � in the range
0:001 � � � 0:01, n is in the range 4 � n � 12. In the frequency space .!f ; !s; g/,
the relations (31) represent planes normal to the plane .!f ; !s/ which intersect each
other along the g–axis. We refer to the resonances with m ¤ 0 as ’transverse’, since
they intersect tranversally such planes. In the numerical examples below, we use the
notation .mf ; ms; m/, for the integers of the resonant condition (30).

Figure 2 presents stability maps produced by the computation of the chaotic
indicator � FLI (Froeschlé et al. 2000), in the space of proper elements ep;0 [given
in Eq. (19)] and �u D u � u0, with u0 given in Eq. (24), (for a conspicuous
discussion of the initial conditions, see Páez and Efthymiopoulos 2015). In color
scale, we differentiate chaotic orbits (yellow) from regular orbits (dark purple). For
the different combinations of � and e0 considered, we can distinguish the structures
of the resonances 1:ms and (1,ms,m), for ms D 6; 7; 8; 10 and m D ˙1; ˙2; 3.
A validation of the resonant nature of the orbits within these structures is done by
means of Frequency Analysis (Laskar 2004).
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Fig. 2 Stability maps in terms of the FLI chaotic indicator. Light colors (yellow) correspond
to chaotic orbits, while dark colors (dark purple) correspond to regular orbits. The maps show
different resonances appearing for different combinations of physical parameters: � D 0:0016 and
e0 D 0 (a), � D 0:0024 and e0 D 0:06 (b), � D 0:0031 and e0 D 0:04 (c), � D 0:0016 and
e0 D 0:02 (d)

3 The Normalized Basic Hamiltonian hHbi

As already emphasized, the Trojan motion in the ER3BP has three well separated
temporal scales. The most basic form of Hamiltonian normalization stems from
averaging the Hamiltonian over the fast angles. Independently of the formalism
used, what remains after such averaging gives the synodic motion around the
libration center. However, the Hamiltonian of the ER3BP has a real singularity
corresponding to close encounters of the massless body with the primary m0. This
singularity corresponds to a D a0, � D � � �0 D 0 and it is inherited by the Hb. The
key remark is that any polynomial series expansion of the equations of motion (or the
Hamiltonian) with respect to � around a fixed value is convergent in a disk of radius
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equal to the distance between the fixed point and the singularity. In the literature, it
has been common to consider such polynomial expansions around the position of
equilibrium (�L4;L5 D ˙�

3
). Due to the asymmetry of the librations (Érdi 1996), it is

easy to see that the above limited convergence affects severely the representation of
the orbits mainly in the opposite direction to the primary.

Following Páez and Locatelli (2015), we average the Hb over the short period
without making expansions affected by the singular behavior of the Hamiltonian at
j� ��=3j D �=3. We start by expressing the basic model Hb in variables appropriate
for introducing the normalization scheme of Páez and Locatelli (2015). Hence, the
synodic degree of freedom is re-expressed by the variables

x D v C x0; � D u C �0 ; (32)

where x0 and �0 are given in Eq. (10). We introduce new canonical pairs, though the
transformation

S3 D .Yf � Yp/	1 C Yp	2 C x	3 ; (33)

yielding

Y D Yf � Yp ; Yp D Y2 ; x D Y3 ; 	1 D �f ; 	 � 	1 D � ; 	3 D � :

(34)

Keeping the previous notation for Yp, x, �f , � , the basic model Hb reads

Hb D � 1

2.1 C x/2
� x C Y C Yp � �F .0/.x;Y ; �; �f I e0/ : (35)

In terms of these variables, the dependence of Hb on � is of the form cosk1 �

.2�2 cos �/ j=2

or cosk2 �

.2�2 cos �/ j=2 , j D 2n � 1 with k1, k2 and n integers. Additionally, we express the
Hamiltonian in terms of modified Poincaré variables,

x ; � ; 
 D p
2Y cos �f ; � D p

2Y sin �f : (36)

The new expression for the Hamiltonian reads

Hb.x; �; 
; �; Yp/ D � 1

2.1 C x/2
� x C Yp C 
2 C �2

2
� �F .0/.�; x; 
; �I Yp; e0/ :

(37)
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Finally, we expand the Hamiltonian in terms of every variable except � , obtaining

Hb.x; �; 
; �; Yp/ D �x C
1X

iD0

.�1/i�1.i C 1/
xi

2
C 
2 C �2

2
C Yp (38)

C �
X

m1;m2;m3
k1;k2;k3;j

am1;m2;m3;k1;k2;j e0k3xm1 
m2 �m3 cosk1 .�/ sink2 .�/ ˇj.�/ ;

where the am1;m2;m3;k1;k2;j are constant coefficients and ˇ.�/ D 1p
2�2 cos �

. The
Hamiltonian Hb in (38) corresponds to the ‘zero-th’ step in the normalizing scheme,
i.e., before any normalization. This is denoted as H.1;0/.

3.1 Normalization Scheme

The normalizing algorithm defines a sequence of Hamiltonians by an iterative
procedure. Let us first introduce the following definition

Definition 1 A generic function g D g.x; 
; �; �/ belongs to the class Pl;s , if its
expansion is of the type:

X
2m1Cm2Cm3Dl

X
k1Ck2�lC4s�3

j�2lC7s�6

cm1;m2;m3;k1;k2;j �s �m1
m2 �m3 .cos �/k1 .sin �/k2
�
ˇ.�/

�j
;

where the real coefficients cm1;m2;m3;k1;k2;j gather also the dependence on the pri-
mary’s eccentricity e0.

At a generic normalizing step (r1,r2), the expansion of the Hamiltonian is given by

H.r1;r2/.x; 
; �; �; Yp/ D Yp C 
2 C �2

2
C
X
l�4

Z.0/
l

�
x; .
2 C �2/=2

�

C
r1�1X
sD1

 
R2X

lD0

�sZ.s/
l

�
x; .
2 C �2/=2; �

�C
X
l>R2

�r1 f .r1;r2�1Is/
l .x; 
; �; �/

!

C
r2X

lD0

�r1 Z.r1/
l .x; .
2 C �2/=2; �/ C

X
l�r2C1

�r1 f .r1;r2�1Ir1/
l .x; �; 
; �/

C
X
s>r1

X
l�0

�sf .r1;r2�1Is/
l .x; �; 
; �/ : (39)
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All the terms Z.s/
l and f .r1;r2Is/

l appearing in (39) are produced by expansions
including a finite number of monomials of the type given by the class Pl;s. More
specifically Z.0/

l 2 Pl;0 8 l � 4, Z.s/
l 2 Pl;s 8 0 � l � R2 ; 1 � s < r1 ,

Z.r1/
l 2 Pl;r1 8 0 � l < r2 , f .r1;r2�1Ir1/

l 2 Pl;r1 8 l � r2 , f .r1;r2�1Is/
l 2 Pl;s 8 l >

R2 ; 1 � s < r1 and 8 l � 0; s > r1 . We can distinguish the terms in normal form
Z (i.e. the terms depending on 
 and � exclusively through .
2 C�2/=2), of order up
to r1 and r2, from those that still keep a generic dependence on these variables.

The .r1; r2/th step of the algorithm formally defines the latter Hamiltonian
H.r1;r2/ by

H.r1;r2/ D exp
�
L

�r1
.r1/
r2

�
H.r1;r2�1/ ; (40)

where the Lie series operator is

expL � D I � C.L � / C 1

2
.L 2

 � / C : : : (41)

and

L � f � ; g; (42)

is the Poisson bracket with . The generating function �r1
.r1/
r2 is determined by

solving the following homological equation with respect to the unknown 
.r1/
r2 D


.r1/
r2 .x; 
; �; �/:

L
�r1 

.r1/
r2

Z.0/
2 C f .r1;r2�1Ir1/

r2
D Z.r1/

r2
; (43)

where Z.r1/
r2 is the new term in the normal form, and Z.0/

2 represents the kernel of
the homological equation. By construction, the Hamiltonian produced at ever step
inherits the structure presented in (39). From the latter, we point out that the splitting
of the Hamiltonian in sub-functions of the form Pl;s, organizes the terms in groups
with the same order of magnitude �s and total degree l=2 (possibly semi-odd) in the

variables x and Y D 
2C�2

2
.

Let R1 and R2 be the maximum orders considered for the normalization scheme,
thus the algorithm requires R1 � R2 normalization steps, constructing the finite
sequence of Hamiltonians H.1;0/ D Hb; H.1;1/; : : : ; H.R1;R2/. We remark here that
H.r1C1;0/ D H.r1;R2/ 8 1 � r1 � R1. Hence, the final Hamiltonian, reads

H.R1;R2/.x; 
; �; �; Yp/ D Z.R1;R2/

�
x;

.
2 C �2/

2
; �; Yp

�
C R.R1;R2/.x; 
; �; �/ ;

(44)
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where we distinguish the normal form Z.R1;R2/ from the remainder R.R1;R2/. While
the dependence of Z.R1;R2/ on x and � remains generic, it depends on 
 and � only

though the form 
2C�2

2
. Thus, we have

H.R1;R2/.x; �;Y ; �f ; Yp/ D Z.R1;R2/
�
x; �;Y ; Yp

�C R.R1;R2/.x; �;Y ; �f / : (45)

The key remark is that �f becomes ignorable in the normal form and, therefore, Y
becomes an integral of motion of Z.R1;R2/. Then, the normal form can be viewed
as a Hamiltonian of one d.o.f. depending on two constant actions Y and Yp, i.e.
Z.R1;R2/ represents now a formally integrable dynamical system. In all subsequent
computations, we fixed the values R1 D 2 and R2 D 4, corresponding to a second
order expansion and truncation on the mass parameter � and fourth order for the
polynomial degree of 
 and � (second order expansion in the eccentricity e; note
also that the expansion is of second order as well in the primary’s eccentricity e0). In
the following, these normalization orders are shown to be sufficient for the normal
form to provide a good representation of the original Hamiltonian in the domain of
regular motions.

4 Application: Location of the Resonances by Means
of the hHbi

The obtention of a normal form by averaging the basic Hamiltonian allows to extract
information of the resonant structure by pure analytical means. In this section,
we focus on the use of the normal form approximation Z.R1;R2/ in (45) for the
computation of the values of the three main frequencies of motion. With these
values, it is possible to locate the position of the most important resonances for
a certain combination of physical parameters.

Consider an orbit with initial conditions as specified in terms of the two
parameters �u and ep;0 as in the stability map of Fig. 2. The computation proceeds
by the following steps.

1) We first evaluate the synodic frequency !s, i.e., the frequency of libration of
the synodic variables � and x. The normal form Z.R1;R2/ leads to Hamilton’s
equations:

dx

dt
D f .x; � IY / D �@Z.R1;R2/

@�
(46)

and

d�

dt
D g.x; � IY / D @Z.R1;R2/

@x
: (47)
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For every orbit we can define the constant energy

Z.R1;R2/.x; � IY ; Yp/ � Yp � �.R1;R2/.x; � IY / D E : (48)

Note that since Yp appears only as an additive constant in Z.R1;R2/, the function
�.R1;R2/ does not depend on Yp. Also, according to (19) and (36), we have Y D
e2

p;0

2
. Then, for a fixed value of E , if @�.R1;R2/

@�
¤ 0, we can express � as an explicit

function of x,

�.R1;R2/.x; � IY / D E H) � D �.E ; xIY / : (49)

Thus, replacing in (46),

dx

dt
D f .x; �.E ; xIY /IY / H) dt D dx

f .x; �.E ; xIY /IY /
; (50)

by which we can derive an expression for the synodic period Tsyn

Tsyn D
I

dx

f .x; �.E ; xIY /IY /
; (51)

and thus the synodic frequency is !s D 2�
Tsyn

. In practice, (49) is hard to invert
analytically, and likewise, the integral (51) cannot be explicitly computed. We
thus compute both expressions numerically on grids of points of the associated
invariant curves on the plane .�; x/, or by integrating numerically (50) as a first
order differential equation (we found that the latter method is more precise than
the former).

2) We now compute the fast and secular frequencies !f , g. From Eq. (48), we find
P	 D @Z .R1;R2/

@Yp
D 1, implying g D 1 � !f . To compute !f , we use the equation

!f D 1

Tsyn

Z Tsyn

0

d�f

dt
dt D 1

Tsyn

Z Tsyn

0

@Z.R1;R2/.x; � IY /

@Y
dt : (52)

Replacing (50) in (52), we generate an explicit formula for the fast frequency

!f D 1

Tsyn

I
1

f .x; �.E ; xIY /IY /

@Z.R1;R2/.x; �.E ; xIY /IY /

@Y
dx : (53)

Both frequencies !f and !s are functions of the labels E and Y , which, in the
integrable normal form approximation, label the proper libration and the proper
eccentricity of the orbits. In the normal form approach one has ep;0 D ep D const,
implying Y D e2

p=2. If, as for the FLI maps in Fig. 2 (see Páez and Efthymiopoulos
2015), we fix a scanning line of initial conditions of the form xin D B uin D
B .�in � �0/, with B a constant, the energy E , for fixed ep, becomes a function
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of the initial condition uin only. Thus, uin represents an alternative label of the
proper libration (Érdi 1978). With these conventions, all three frequencies become
functions of the labels .uin; ep/. A generic resonance condition then reads

˚mf ;ms ;m D mf !f .ep; uin/ C ms!s.ep; uin/ C mg.ep; uin/ D 0 : (54)

For fixed resonance vector .mf ; ms; m/, (54) can be solved by root-finding, thus
specifying the position of the resonance in the plane of the proper elements .uin; ep/.

In order to test the accuracy of the above method, we compare the results of
the analytical estimation with the position of the resonances extracted from the FLI
map. Under the assumption that the local minimum of the FLI in the vicinity of a
resonance gives a good approximation of the resonance center, we study the curves
of the FLI � as a function of the libration amplitude �u, for a fixed value of ep;0.
The confirmation of the resonant nature of the candidate initial conditions is done
by means of Frequency Analysis (Laskar 2004). By changing the value of ep;0 along
the interval Œ0; 0:1�, we can depict the centers of the resonances on top of the FLI
map.

Figure 3 shows an example of these computations, for the parameters � D
0:0024 and e0 D 0:06. The normal form predictions are superposed as yellow
lines upon the underlying the FLI stability map (panel (B), Fig. 2) and the resonant
candidates extracted from the FLI maps denote the green curves. Due to the noise
in the FLI curves, it is not possible to clearly extract the position of the resonance

Fig. 3 Location of the center of different resonances by means of the normal form hHbi (yellow)
and the minima of the FLI indicator (green), on top of the corresponding FLI stability map for
� D 0:0024 and e0 D 0:06
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Table 1 Averaged values of
uZ , u� and ıuin for the
resonances in Fig. 3 for
� D 0:0024 and e0 D 0:06

Resonance uZ u� ıuin

1:8 0.524485 0.535153 1.993063�10
Œ�2�

.1; 8; 1/ 70.465475 0.464924 6.377401�10
Œ�3�

.1; 8; 2/ 0.406439 0.412246 1.605145�10
Œ�2�

.1; 8; 3/ 0.374879 0.385020 2.617987�10
Œ�2�

.1; 8; �1/ 0.587834 0.616093 4.572688�10
Œ�2�

.1; 8; �2/ 0.646464 0.679154 4.796435�10
Œ�2�

centers for all values of ep;0, while an analytic estimation (with varying levels of
accuracy) is always possible. At any rate, in Fig. 3 we plot the values of the centers
only in the cases when both methods provide clear results.

Table 1 summarizes the results for the location of the centers (uZ , u� ) and the
relative errors (ıuin D juZ �u� j

u�
), on average, for the resonances shown in the figure.

We can note that the level of approximation is very good for relatively low values
of uin, while the error in the predicted position of the resonance increases to a few
percent for greater values. Nevertheless, we demonstrate the overall efficiency of
the normal form approach in order to analytically determine the locus of resonances
in the space of proper elements. More detailed presentations of the above methods
will be given in forthcoming publication.
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