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Abstract. In the era of Big Data in Life Sciences, efficient processing and anal-
ysis of vast amounts of sequence data is becoming an ever daunting challenge. 
Among such analyses, sequence alignment is one of the most commonly used 
procedures, as it provides useful insights on the functionality and relationship of 
the involved entities. Sequence alignment is one of the most common computa-
tional bottlenecks in several bioinformatics workflows. We have designed and 
implemented a time-efficient distributed modular application for sequence 
alignment, phylogenetic profiling and clustering of protein sequences, by utiliz-
ing the European Grid Infrastructure. The optimal utilization of the Grid with 
regards to the respective modules, allowed us to achieve significant speedups to 
the order of 1400%. 
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1 Introduction 

When it comes to tools for analyzing and interpreting bio-data, the research communi-
ty has always been one step behind the actual acquisition and production methods. 
Starting from the first amino acid sequences and moving on to whole genome, epige-
nome, transcriptome analyses and genome wide association studies (GWASs) on the 
gene level, and to proteome, reactome and metabolome on the enzymatic and protein 
level, the same pattern holds for the next generation of biodata. Although the amount 
of data currently available is considered vast, the existing methods and widely used 
techniques can only hint at the knowledge that can be potentially extracted and conse-
quently applied for addressing a plethora of key issues, ranging from personalized 
healthcare and drug design to sustainable agriculture, food production and nutrition, 
and environmental protection. 

Researchers in genomics, medicine and other life sciences are using big data to 
tackle big issues, but big data requires more networking and computing power. “Big 
data” is one of today’s hottest concepts, but it can be misleading. The name itself 
suggests mountains of data, but that’s just the start. Overall, big data consists of three 
v’s: volume of data, velocity of processing the data, and variability of data sources. 
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These are the key features of information that require big-data tools. In order to ad-
dress these features, current approaches in Life Science research favor the use of es-
tablished workflows which have been proven to facilitate the first steps in data analy-
sis. 

One of the major computational bottlenecks in the vast majority of these approach-
es is the comparative phase of the involved workflows, which includes the production 
of similarity scores and therefore the construction of gene (or protein) families. There 
have been several attempts to address this issue in recent literature, ranging from 
highly specialized algorithms and tools [1][2][3], to Cloud-enabled frameworks [4][5] 
and platforms [6] (such as MapReduce). However, although such efforts clearly pro-
vide a computational edge against their vanilla counterparts, they often require the 
expertise to setup and fully employ a sophisticated software system, an expertise that 
most Life Science researchers lack. Moreover, specialized systems tend to be updated 
at a much lower pace, if at all, as compared to the more widely used vanilla approach-
es. In order to address these two issues, we have developed a user-friendly Grid-
enabled solution for comparative genomics that employs the vanilla version of the 
necessary tools, while harnessing and fully utilizing the potential of the computational 
Grid. As such, we achieve significant speedup in the process while maintaining full 
compatibility with future updates of the involved tools. 

2 Background 

The proposed framework spans across two distinct research areas; Grid Computing 
and Bioinformatics. In this Section, we will describe briefly the different platform and 
tools employed, as well as their impact in the overall structure of the framework. 

2.1 Grid Computing 

Grid Computing is an established method of high performance computing that is 
mostly utilized by embarrassingly parallel processes. As an innovative method to 
perform distributed computational and storage tasks over geographically distributed 
resources, Grid computing as an infrastructure exists for over a decade now. The  
European Grid Infrastructure (EGI) is the result of pioneering work that has, over the 
last decade, built a collaborative production infrastructure of uniform services through 
the federation of national resource providers that support multi-disciplinary science 
across Europe and around the world. An ecosystem of national and European funding 
agencies, research communities and technology providers, over 350 resource centers 
and other functions have now emerged to serve over 21,000 researchers in their inten-
sive data analysis across over 15 research disciplines, carried out by over 1.4 million 
computing jobs a day. In order to showcase our proposed framework, we employed 
the HellasGrid part of the EGI infrastructure, which is the biggest infrastructure for 
Grid computing in the South-Eastern European area, providing High Performance 
Computing and High Throughput Computing services to Greek educational and  
research centers. 
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2.2 Bioinformatics 

Although Bioinformatics is a very general term, we have focused particularly on the 
common steps which are computationally expensive and further required in the vast ma-
jority of bioinformatics research approaches. These steps comprise the alignment of se-
quences, the identification of families as well as the construction of phylogenetic profiles. 

Sequence Alignment (BLAST) 
Sequence alignment of different types of sequences (DNA, RNA and protein) is tradi-
tionally performed using the BLAST (Basic Local Alignment Search Tool) algorithm. 
It is provided by the NCBI Toolkit and is the predominant algorithm for sequence 
alignment [7] where each alignment is characterized by a number of parameters. In 
our framework, but without any loss of generality as the parameter selection is user-
dependent, we utilized two of them, i.e. the identity and the e-value. Identity refers to 
the extent to which two (nucleotide or amino acid) sequences have the same residues 
at the same positions in an alignment, and is often expressed as a percentage. E-value 
(or expectation value or expect value) represents the number of different alignments 
with scores equivalent to or better than S that is expected to occur in a database search 
by chance. The lower the E-value, the more significant the score and the alignment. 
Finally, despite the popularity of the BLAST algorithm, running this process is still 
extremely computationally demanding. For example, a simple sequence alignment 
between ~0.5 million protein sequences, can take up to a week on a single high-end 
PC. Even when employing high-performance infrastructures BLAST requires signifi-
cant time as well as the expertise to both run and maintain an HPC BLAST variant. 

Gene/Protein Families 
Based on sequence alignment data, a common practice is to construct the corresponding 
families (either at the gene or the protein level). A gene family is a set of several similar 
genes, formed by duplication of a single original gene, and generally with similar  
biochemical functions. A protein family is a group of proteins that share a common 
evolutionary origin, reflected by their related functions and similarities in sequence or 
structure. The use of the family construct has several advantages; from the functional 
annotation of novel sequences, to insights on the evolutionary histories of gene groups. 
As such, algorithms that allow for a fast and efficient identification of families are wide-
ly used. MCL (Markov Cluster Algorithm) is one of the most well known, and is a fast 
and scalable unsupervised clustering algorithm for graphs based on simulation of sto-
chastic flow graphs [8]. However, although MCL is a fast and efficient algorithm, it also 
requires a significant amount of resources and especially RAM resources. Therefore, an 
approach that allows for the better scaling of the application with larger datasets, is an 
essential step towards the Big Data analytics in Life Sciences. 

Phylogenetic Profiles 
Phylogenetic profiling is a bioinformatics technique in which the joint presence or 
joint absence of two traits across large numbers of species is used to infer a meaning-
ful biological connection, such as involvement of two different proteins in the same 
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biological pathway. By definition, a phylogenetic profile of a single sequence of a 
gene/protein family is a vector that contains the presence or absence of the particular 
entity across a number of known genomes that participate in the study. The biological 
premise underlying the phylogenetic profile construct is that proteins that exhibit the 
same or similar profile strongly tend to be functionally linked [9]. As such, profiles 
are an essential step in large scale analyses, as they can provide in an elegant manner, 
insights on the organization and interconnection of novel entities based solely on their 
sequence. Moreover, beyond the traditional binary phylogenetic profiles (denoting 
presence or absence), there are several different variants of in literature [10], such as 
extended profiles (i.e. number of homologues) and fuzzy (level of presence) among 
others. However, it is important to note that the construction of phylogenetic profiles 
is a computationally expensive process. Based on the sequence alignment data, each 
profile requires the comparison and identification of all homologues across the differ-
ent number of genomes in the study. Therefore, a scalable approach that caters to this 
specific need will be a measurable asset for time efficiency in the respective bioin-
formatics workflows. 

3 Materials and Methods 

We have designed and implemented a time-efficient distributed modular application 
for sequence alignment, phylogenetic profiling and clustering of protein sequences, 
by utilizing the European Grid Infrastructure. The guiding requirements for our ap-
proach are (a) maximizing the efficiency of a given workflow using the computational 
resources provided by EGI, (b) providing an automated approach and therefore a 
more user-friendly interface for researchers with no technical experience and (c) using 
the established (vanilla) applications and tools in order to maintain backwards compa-
tibility and maintenance, which is a usual issue in most of the custom approaches. 

A second design aspect of the framework is the modular paradigm. In the era of 
Big Data, there is a significant trend towards analysis pipelines; an arbitrary combina-
tion of tools and applications connected through common interfaces towards a user-
specific goal [11]. We have adopted the same approach, by implementing the overall 
system as a set of different components that communicate at the data level. 

The application is comprised of three main components; (a) BLAST alignment,  
(b) construction of phylogenetic profiles based on the produced alignment scores and 
(c) clustering of entities using the MCL algorithm. These modules have been selected 
as they represent a common aspect of a vast majority of bioinformatics workflows. 
The modules can be combined independently, and ultimately provide 4 different 
modes of operation. These modes loosely correspond to different goals by the end 
user, that range from the identification of gene families and the construction of phylo-
genetic profiles, to a pangenome analysis of the participating genomes [12]. 

Based on the selected mode of operation, our proposed framework proceeds with 
the distribution of both processes and data across the provided resources. The distri-
bution is performed automatically, based on the selected mode as well as the data 
under study. Moreover, the framework continuously monitors and evaluates the  
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execution of the spawned processes at all steps of the workflow. It is important to 
note that a Grid infrastructure has an inherently high number of jobs that fail to ex-
ecute properly and therefore require resubmission, due to a number of unexpected 
issues such as extremely long queue times. The proposed framework through constant 
monitoring of all processes, can evaluate which jobs require resubmission thus 
achieving higher efficiency in the overall process. Finally, after successful completion 
of all intermediate processes, the framework gathers the respective output for presen-
tation to the end user. A brief outline of this approach can be seen in Fig. 1.  

3.1 Modes of Operation 

The 4 modes of operation are presented below: 

1. MCL clusters of the protein query and database sequences where the clustering cri-
teria is the BLAST output (identity or e-value), based on the preference of the user. 
This mode is mostly utilized when trying to evaluate the potential function of novel 
sequences (query) by assigning them to protein/gene families produced from a  
given set (database). 

2. Phylogenetic profiles of each query sequence, where the genomes into considera-
tion are the ones whose proteins form the database. 

3. MCL clusters of the protein query sequences and database genomes, and phyloge-
netic profiles. 

4. This mode is essentially a combination of the output produced in modes 1 and 3. In 
practice, this is the most common approach, as it combines the functional 
gene/protein families with evolutionary insights provided by the produced phylo-
genetic profiles. 

It is important to note that, based on the mode of operation, data distribution across 
the computational resources is handled in a different way. In the first mode, the query 
file is distributed across the participating nodes, whereas the database file is copied 
multiple times. In modes 2 through 4, the situation is reversed; the data that is distri-
buted is that of the database file, whereas the query file is copied multiple times.  
Although this seems an arbitrary choice in data distribution, it has been validated 
through rigorous experimentation. However, an automated optimization of the inter-
nal parameters based on the characteristics of the input files, is still an open issue and 
will be addressed in future work. 

Beyond the aforementioned mode, there exists also a fifth mode that provides the 
same output as the fourth one, with the only difference being that the same file is used 
both as a database and a query. This is the case of an all-vs-all sequence comparison, 
widely used when performing a pangenome analysis. A key requirement in such case 
is to identify the number of protein families evident in the dataset, as well as their 
distribution across the different participating genomes. This sort of analysis can  
provide significant insights into the organization of the pangenome, as well as the 
functional relationships of entities across the different members of the pangenome. 
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Fig. 1. General flow chart showcasing the connection of the three components. 

The proposed framework in this mode, distributed the involved data by splitting 
the query file instead of the database file, as opposed to the process followed in the 
similar forth mode. This is due to the fact that in the case of all-vs-all, comparisons 
are executed faster when splitting the query file. The database file can only be distri-
buted in so many pieces as the genomes participating in its creation, in order for the 
phylogenetic profiles to be created faster. In the case of all-vs-all where the database 
file is also the query file, the number of splits that can be done to the query file are 
more than that of the database file, since the creation of phylogenetic profiles can be 
done easily, regardless of how the query file is split. The speedup achieved when 
distributing the data in this fashion is bigger. 

3.2 Input 

The input comprises of the following files; (1) two files containing the query protein 
sequences and the database protein sequences to be aligned, in FASTA format, which 
is a text-based format for representing nucleotide or peptide sequences, (2) a text  
file with the genomes whose protein sequences form the database file, and (3) a con-
figuration file for the application to run on a specific mode. All the input files  
are identical with the files required in most bioinformatics workflows and therefore 
we comply with the established requirements. The only exception is the custom  
configuration file, however, it is designed to be intuitive aiming for the non-expert 
end user. 
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3.3 Program Flow 

The application is automated, and needs only the configuration file to operate. Since 
BLAST execution and the creation of phylogenetic profiles are the most time-
consuming modules, and as they both are embarrassingly parallel in nature, we identi-
fy this as the critical execution path that we need to parallelize. By having parallel 
jobs executing in the participating Grid Infrastructure Nodes on a fraction of the input 
data, we achieve parallelism without the need of implementing common paralleliza-
tion techniques such as MPI or threads. 

In case of the BLAST algorithm and the construction of a phylogenetic profile for 
each query sequence, the application submits a number of jobs to the Grid. Each job is 
assigned a fraction of the input data that is assigned according to the mode of opera-
tion the application is running. Sequence alignment is then executed, and the con-
struction of phylogenetic profiles follows. Therefore, each job processes a piece of the 
input data, producing a piece of the output data. On each step, the data used and pro-
duced is uploaded to the Grid’s storage elements, making it accessible to all executed 
jobs and to the end user. Jobs are tracked to assure their successful execution at all 
times, preventing any information loss. 

3.4 Output 

The output may consist of (a) MCL clusters that were shaped using BLAST output as 
clustering criteria, (b) MCL clusters that were shaped using phylogenetic profiles as 
clustering criteria, and (c) phylogenetic profiles for each query protein sequence. 

The output is formatted in such a way that makes further processing easier. As men-
tioned earlier, the proposed framework addresses the initial, computationally expensive 
steps in the majority of bioinformatics workflows. Therefore it is expected that the pro-
duced results will be further analyzed using a wide variety of additional tools. To better 
facilitate interaction and further analysis, a series of parsing scripts are provided aiming 
to filter the output with specific areas of interest. In any case, the complete output of a 
given workflow is also available for the user to download in raw format. 

4 Results 

We have implemented the proposed framework1 using a number of scripts suitable for 
a Unix environment of a Grid Infrastructure. We have evaluated the application 
through several different scenarios, ranging from targeted investigations of enzymes 
participating in selected pathways against a custom database to produce functional 
groups, to large scale comparisons. As a database, we used all genomes available for 
the bacillus genus from the Ensembl database (data from bacteria.ensembl.org, R16). 
Specifically, the produced database comprises 78 different bacillus genomes, with a 
total of 418,590 protein sequences. As a query file we used three different inputs, and 
as such accounted three different test case scenarios. 
                                                           
1 Current version of source code: https://github.com/BioDAG/BPM 
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Test Case 1 - Leucine: 24 protein sequences of the Escherichia coli K-12 organism 
that participate in the leucine biosynthesis pathway. 

Test Case 2 - Bacillus5: 32,747 protein sequences from the top five largest genomes 
used in the bacillus database. 

Test Case 3 - Bacillus: In this test case, the FASTA file with all available sequences 
was used for query and for a database files. 

The results of these test cases are shown in Table 1. For each module, we present 
the average execution time, along with the average waiting time (time in-queue) for 
each job in the Grid’s job queues. It is important to note that we aim to explore the 
impact of the proposed framework with regard to the efficiency in execution times. 
Other aspects, such as clustering accuracy or performance of the alignment, although 
very significant in the overall process, are beyond the scope of the current work. 

Table 1. Results of the three test cases for each mode of operation (Q: Query, D: Database). 
The in-queue time is computed as the time from job submission until initiation of execution. 
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500 Q 

σ 9.73 1.88 - 163.25 

2,3,4 
mean 756.6 2972.4 188 364 

78 D 
σ 118.64 589.88 - 566.21 

 
The fifth mode of operation, all-vs-all, was further tested to observe the trade-off 

between the modules execution time versus the time in-queue that the Grid inserts to 
the total run time. The same data files where submitted, but with a different number of 
jobs running each time.The net run time of each job significantly decreases when the 
number of submitted jobs increases, but then in-queue time also increases (see Fig. 2. ). 
When more jobs are submitted, each job has to process a smaller piece of input data. 
However, this leads to a larger number of jobs to be handled by the respective Grid 
infrastructure, thus leading to longer waiting times. We can see that it is essential  
to find the optimal ratio of these two parameters, i.e. number of jobs and estimated  
in-queue time. 
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The current implementation provides a proof-of-concept approach to the proposed 
framework. However, there are several outstanding issues that will be addressed in 
future work, such as a rigorous complexity analysis of each step, the automated  
optimization of the data distribution process, as well as integration with existing  
web-interfaces, such as the Galaxy [13] platform. 
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