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Abstract. This paper presents a new method to deal with classification
of imbalanced data. A Bayesian ensemble of neural network classifiers is
proposed. Several individual neural classifiers are trained to minimize
a Bayesian cost function with different decision costs, thus working at
different points of the Receiver Operating Characteristic (ROC). Deci-
sions of the set of individual neural classifiers are fused using a Bayesian
rule that introduces a “balancing” parameter allowing to compensate the
imbalance of available data.
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1 Introduction

Pattern classification is the act of taking in raw data and making a decision
to assign it to a category or class [1]. There are many real world classification
tasks in industry, business and science. In many cases, classification task has to
be learned from an available labeled data set, containing samples of the objects
to be classified along with their corresponding class labels. Machine learning
methods, and specifically neural networks, have been extensively used to solve
this kind of classification problems [2,3].

In last years, the classification of imbalanced data has attracted a great
attention. Imbalanced data means that the number of instances of each class
are very different. Focusing in a binary classification problem, learning from
imbalanced data has the difficulty of representing the minority class, that can
be shrouded in the thicker cloud of samples of the majority class. This is a serious
concern in applications where the importance of detecting the minority class is
high, such as medical or fraud detection applications.
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Different techniques have been used to face the problem of classification of
imbalanced data: standard algorithms modified to compensate imbalance; pre-
processing techniques that modify the data set to balance it (removing sam-
ples of the majority class, or introducing synthetic samples of the minority
class); or ensembles of classifiers to improve the accuracy of individual classifiers.
A detailed review of several of these methods can be found in [4,5]. In particular,
ensembles of classifiers have shown excellent results [5,6].

Bayesian theory [7] allows to specify different costs for errors classifying each
class, and at the same time to take into account the prior probability of each
class. This formulation can be usefull to deal with imbalanced data.

In this paper, we will introduce a new ensemble method to deal with
imbalanced binary classification problems. A “balancing” parameter is intro-
duced in the design of the individual classifiers and in the design of the ensem-
ble. This “balancing” parameter, based on the Bayesian formulation, allows to
specify the relative importance of errors in the decision for each class.

2 Bayes Risk and Training of Neural Networks

A classification problem consists in assigning a D-dimensional pattern x
(instance or sample) to one out of a known set H of possible classes or hypothe-
ses. In a binary classification problem only two classes are possible, namely
H = {0, 1}. Bayesian formulation considers the a priori class probabilities along
with the different costs of each possible decision for samples of every class. The
goal of a Bayesian classifier is to minimize the Bayesian risk function, which
includes the statistical average of these costs [7,8]

R =
∑

t∈H

∑

d∈H
πt cd,t pĤ|H(d|t) (1)

where πt denotes the probability of hypothesis t, cd,t is the cost of deciding
hypothesis d when the true hypothesis is t, and pĤ|H(d|t) denotes the conditional
probability of this decision

pĤ|H(d|t) ≡ P (Decide d | t is true) (2)

The classifier minimizing the Bayesian risk is defined by the likelihoods (con-
ditional distributions of input pattern under both hypothesis, fX |H(x|t), for
t ∈ {0, 1}), as well as the a priori class probabilities and decision costs.
The optimal decision rule minimizing Bayesian risk is

Λ(x) =
fX |H(x|1)
fX |H(x|0)

Ĥ=1

≷
Ĥ=0

(c1,0 − c0,0)
(c0,1 − c1,1)

π0

π1
= γ (> 0) (3)

i.e., a test comparing the likelihood ratio (LR) with a threshold γ given by costs
cd,t and prior probabilities πt [7,8].
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A binary classifier is usually characterized by the false alarm and the miss
probabilities (probabilities of erroneous decisions under both hypothesis)

pFA = pĤ|H(1|0) ≡ P (Decide 1 | 0 is true) (4)

pM = pĤ|H(0|1) ≡ P (Decide 0 | 1 is true) (5)

Obviously, different values of γ originate different pairs of values for pFA and pM ,
which show a compromise: reducing one of them means increasing the other. The
Receiver Operating Characteristic (ROC) is a curve that represents pD = 1−pM

vs. pFA for 0 ≤ γ < ∞, i.e., draws the working points (pFA, pD) from (0, 0)
to (1, 1) [9]. The Area Under this Curve (AUC) is a parameter that serves to
compare different classifier designs when cd,t or πt are not given [10,11].

In binary classification, Bayesian formulation can be simplified assuming
c1,1 = c0,0 = 0, and parameterizing the other two costs by means of a single
parameter α as follows

c1,0 =
α

π0
, c0,1 =

1 − α

π1
(6)

Using this parameterization, the Bayesian risk becomes

R(α) = α pFA + (1 − α) pM (7)

and decision threshold is now given by γ = α/(1 − α). Parameter α establishes
the relative importance given to errors for samples of both classes.

In practice, in many real problems distributions involved in (3) are unknown,
and classifiers have to be designed from a set of labeled observations, {xk, yk},
k ∈ {1, 2, · · · , N}, with binary class labels yk. In this case, a machine architecture
with a number of trainable parameters, w, can be used to obtain a classifica-
tion rule. Machine learning methods, and in particular neural networks, can be
used in several different ways to solve binary classification problems [3]. Here,
architecture to implement the classifier is constrained to neural networks with a
single output and a threshold based decision.

For these networks, typically labels yk = −1 and yk = +1 are associated to
samples belonging to hyphotesis H = 0 and H = 1, respectively. The soft output
of the network is

zk = g(xk,w) (8)

where g(x,w) is the parameter-dependent non-linear transfer function of the
neural network, which depends on the specific network architecture. Finally, the
decision rule of the neural classifier, in terms of the given binary labels, is

ŷk = sgn(zk) (9)

where sgn(·) is the well known sign function.
The design of the neural classifier consists in obtaining the values of neural

network parameters, w. Frequently, w is obtained by imposing the minimization
of some appropriate cost function J(w) that measures the difference between
zk and yk. If cost is conveniently selected, network output zk can provide an



Classification of Binary Imbalanced Data 307

estimate of the posterior probabilities for each class and there is a relationship
with Bayesian formulation (see [3,12] for more details). This is the case of the
Mean Squared Error (MSE) cost function

JMSE(w) =
1
N

N∑

k=1

(yk − zk)2 (10)

probably the most used cost function because it can be used to minimize the
probability of error (Bayesian risk for c0,1 = c1,0, or equivalently α = π0).
This cost is useful for balanced problems, but for imbalanced problems, with
π0 >> π1, reducing pFA has a bigger impact in cost than reducing pM , thus
resulting in a poor performance for the minority class.

Typically, the cost function is iteratively minimized by using a gradient
descent method to adapt parameters from iteration (i − 1) to iteration i

w(i) = w(i−1) − μ
∂J(w)

∂w
(11)

It is interesting to remark that gradient expression in updating equation (11)
can be written as

∂J(w)
∂w

=
N∑

k=1

∂J(w)
∂zk

∂zk

∂w
(12)

Term ∂zk

∂w depends on network architecture, in particular on the dependence of
neural network output on network parameters. Term ∂J(w)

∂zk
is the one including

the dependence on the cost function. For MSE cost function

∂JMSE(w)
∂zk

= − 2
N

(yk − zk) (13)

3 Proposed Methods

In this communication we propose a classifier based on the ensemble of several
binary neural network classifiers. The neural classifiers as well as the ensemble
classifier will be based on the Bayes risk. In this section, first the individual
classifiers will be presented, and then the ensemble classifier will be formulated.

3.1 Individual Bayesian Neural Network Classifiers

In the design of the individual classifiers that will compose the ensemble, the
aim is to find the network parameters minimizing an estimate of Bayes risk (7)
for a given value of parameter α when decision rule is subject to be provided by
a neural network like the one presented in Section 2, i.e., given by (8) and (9).

Considering decision rule (9), false alarm (false positive) and miss (false neg-
ative) probabilities defining risk (7) for the neural classifier are

pFA =
∫ ∞

0

fZ|H(z|0) dz, pM =
∫ 0

−∞
fZ|H(z|1) dz (14)
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In general, conditional distributions on Z, which models network output (8), are
unknown. The proposed training method will estimate these distributions from
available data using Parzen window estimator [13]. If sets S0 and S1 contain
indexes for data corresponding to hypothesis H = 0 and H = 1, respectively

S0 = {k : yk = −1} and S1 = {k : yk = +1} (15)

and N0 and N1 denote the number of samples in each set, Parzen window esti-
mate for conditional distribution on Z given H = t is

f̂Z|H(z|t) =
1
Nt

∑

k∈St

Kσ(z − zk), t ∈ {0, 1} (16)

The window or kernel Kσ(z) is any valid probability density function (PDF) with
parameter σ controling its width. Typically, symmetric zero mean distributions,
such as Gaussians, are used for estimation. Replacing fZ|H(z|t) in (14) by its
Parzen estimation (16) to estimate pFA and pM

p̂FA =
∫ ∞

0

f̂Z|H(z|0) dz, p̂M =
∫ 0

−∞
f̂Z|H(z|1) dz (17)

and inserting now these estimates in (7), the proposed cost function is

JBayes(w) = α p̂FA + (1 − α) p̂M (18)

By defining function Lσ(x) from integration of Parzen kernel function,

Lσ(x) =
∫ +∞

x

Kσ(z) dz (19)

and taking into account that for symmetric zero mean PDFs Kσ(x)
∫ +∞

0

Kσ(x − z) dx = Lσ(−z) and
∫ 0

−∞
Kσ(x − z) dx = Lσ(+z) (20)

the proposed cost function can be written as

JBayes(w) =
α

N0

∑

k∈S0

Lσ(−zk) +
1 − α

N1

∑

k∈S1

Lσ(+zk) (21)

It is straightforward to obtain the derivative of this cost function with respect
to network output

∂JBayes(w)
∂zk

= ak Kσ(zk), with

{
α/N0, if yk = −1
(α − 1)/N1, if yk = +1

(22)

Finally, gradient with respect to network parameters is given by

∂JBayes(w)
∂w

=
N∑

k=1

∂JBayes(w)
∂zk

∂zk

∂w
(23)
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Again, note that ∂zk

∂w depends on the neural network specific architecture. From
an implementation viewpoint, it is important to remark that with respect to
the training of a neural network using MSE cost function, the only difference in
the proposed training algorithm is that (13) has to be replaced by (22) in the
computation of gradient for each iteration.

3.2 Ensemble Bayesian Classifier

The proposed classifier is a Bayesian ensemble of Nc individual neural network
classifiers. Each individual classifier will be trained with the procedure presented
in Section 3.1, for a different value for parameter α. The values for α used to
train each individual classifier will be denoted as α(j), with j ∈ {1, 2, · · · , Nc}
This means that each individual classifier will try to work at a different point
of the ROC of the classification problem, which is given by a different pair of
probabilities of false alarm and detection, thus having Nc different points

{(p(j)FA, p
(j)
D )} for j ∈ {1, 2, · · · , Nc} (24)

This provides diversity in the decisions of individual classifiers. After training
each individual neural classifier, these probabilities can be estimated from the
training set, or from a validation set if one is available.

The proposed classifier will fuse the decisions of the previous Nc individual
classifiers using a Bayesian rule. Therefore, to classify a given pattern xk, the
input for this ensemble classifier is the vector containing the Nc decisions pro-
vided by the individual neural network classifiers for this pattern. If ŷ

(j)
k denotes

the binary decision of the j-th individual classifier for input pattern xk, the input
of the ensemble for pattern xk is

xE
k ≡ xE

k (xk) =
[
ŷ
(1)
k , ŷ

(2)
k , · · · , ŷ

(Nc)
k

]
(25)

A likelihood ratio can be defined for this input of the ensemble. Conditional
distributions of the decisions of the individual classifiers are given by

p
(j)

Ŷ|H(ŷ(j)
k |0) =

{
p
(j)
FA, if ŷ

(j)
k = +1

1 − p
(j)
FA, if ŷ

(j)
k = −1

(26)

and

p
(j)

Ŷ|H(ŷ(j)
k |1) =

{
p
(j)
D , if ŷ

(j)
k = +1

1 − p
(j)
D , if ŷ

(j)
k = −1

(27)

Using these conditional distributions, and assuming conditional independence
between the output of the Nc classifiers, the likelihood ratio for x(E)

k is given by

Λ
(
xE

k

)
=

Nc∏

j=1

p
(j)

Ŷ|H(ŷ(j)
k |1)

p
(j)

Ŷ|H(ŷ(j)
k |0)

=
Nc∏

j=1

p
(j)
D δ[ŷ(j)

k − 1] +
(
1 − p

(j)
D

)
δ[ŷ(j)

k + 1]

p
(j)
FA δ[ŷ(j)

k − 1] +
(
1 − p

(j)
FA

)
δ[ŷ(j)

k + 1]
(28)
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where the discrete-time delta function δ[n] is used to provide a compact expres-
sion for (26) and (27). The final decision of the ensemble for input xE will be
obtained comparing the likelihood ratio with the threshold associated with the
value of parameter α defined for the Bayesian risk of the ensemble, αE

Λ(xE)
Ĥ=1

≷
Ĥ=0

γE , with γE =
αE

1 − αE
(29)

4 Experiments

This section presents the results obtained with the proposed method in the
classification of several imbalanced databases.

4.1 Databases

We have tested the proposed method with several imbalanced real-world databases
obtained from KEEL data-set repository [14]. Data and information about these
data sets can be found in the Website http://www.keel.es/dataset.php. Data sets
in [14] are organized in different k-fold partitions for training and test data. Here,
we have worked with the 5-fold partition provided in KEEL-dataset repository,
thus making easier to compare results. Results obtained for these 5 folds will be
averaged. Table 1 shows the main characteristics of the tested databases.

4.2 Implementation Details

The goal of this paper is to demonstrate the intrinsic potential of the proposed
method to work with different data. Therefore, instead of looking for the best
configuration for each database, a generic setup has been used for all databases.

The only pre-processing for input data is normalization, forcing zero mean
and unit variance for each dimension. Multilayer perceptrons (MLP) with a single
hidden layer of Nn neurons, a single neuron in the output layer, and hyperbolic

Table 1. Description of the databases used for experiments.

Database Number of patterns Dimensionality Imbalance Ratio

Yeast05679vs4 528 8 9.35
Ecoli067vs5 220 6 10.00
Glass2 214 9 10.39
Led7digit 443 7 10.97
Cleveland0vs4 177 13 12.62
Yeast4 1484 8 28.41
Yeast5 1484 8 32.78
Yeast6 1484 8 39.15

http://www.keel.es/dataset.php
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tangent activation functions, are used for the individual classifiers of the ensem-
ble. Transfer function (8) and gradient expressions ∂zk

∂w in (23) are well known
for this architecture [15,16], and have not been included due to lack of space.
An adaptive step-size μ has been used in gradient updating equation (11). After
each epoch, cost JBayes(w(i)) is evaluated and compared with JBayes(w(i−1))

– If JBayes(w(i)) < JBayes(w(i−1)): step size is increased, μ = cI μ
– If JBayes(w(i)) ≥ JBayes(w(i−1)): step size is decreased, μ = μ/cD, and

weights w(i) are re-computed with the new step size.

cI = 1.05 and cD = 2 have been used in all experiments, with initial value μ = 1.
Relatively small networks have been used: MLP networks with Nn = 4 neurons
in the hidden unit. Parzen window used in these experiments (to define cost and
to compute (22)) has been, with σ = 1 in all cases

Kσ(z) =

{
1
2σ

(
1 + cos

(
π
σ |z|)) , |z| ≤ σ

0, |z| > σ
(30)

An ensemble of 9 individual neural network classifiers has been implemented,
with the goal of showing advantage against ensembles with a higher number of
elements. Parameters defining the Bayes risk objective for each one of the individ-
ual neural networks are α(j) = 0.1×j, for j ∈ {1, 2, · · · , 9}. Network parameters
w are randomly initialized, with values drawn from independent Gaussian dis-
tributions, with zero mean and variance 0.1.Not a single validation mechanism
has been considered for training of individual neural classifiers, whereas 2000
epochs have been used for training every individual network. This generic setup
will allow to assess the capability of the proposed method to deal with problems
with a reduced number of samples, where a validation set can not be available.

4.3 Experimental Results

100 independent Monte Carlo simulations, starting with different initial param-
eters for individual neural classifiers, have been performed for each one of the
5 folds of every database. Average results obtained in the 5 folds, along with
standard deviations, will be presented.

Table 2 compares the AUC of the ensemble with the AUC given by individual
classifiers. AUC for ensemble has been obtained varying parameter γE from 0
to ∞ (in practice to maximum value for Λ(xE

k ) in samples of the test sets).
AUC for individual classifiers has been computed by means of the trapezoidal
integral of the 9 points (24) along with trivial ROC points (0, 0) and (1, 1).
AUC for ensemble is higher than AUC obtained with individual classifiers in all
databases, which shows the advantage of combining classifiers.

AUC gives an idea of the whole capability of the classifier to work at different
tradeoffs for pFA and pM . Therefore, it is an appropriate figure of merit for a
method designed to be able to work at any specified tradeoff. To evaluate the
ability of the method to work at a specified tradeoff for errors of both classes,
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Table 2. AUC for the ensemble and for the 9 working points (24) of the individual
neural classifiers, along with trivial (0, 0) and (1, 1) ROC points.

Database Individual classifiers Ensemble

Yeast05679vs4 0.8286 (± 0.0609) 0.8618 (± 0.0546)
Ecoli067vs5 0.8935 (± 0.0602) 0.9226 (± 0.0712)
Glass2 0.7934 (± 0.1542) 0.9096 (± 0.0723)
Led7digit 0.9312 (± 0.0441) 0.9474 (± 0.0450)
Cleveland0vs4 0.8803 (± 0.1201) 0.9531 (± 0.0558)
Yeast4 0.8573 (± 0.0234) 0.8968 (± 0.0179)
Yeast5 0.9439 (± 0.0503) 0.9734 (± 0.0309)
Yeast6 0.8903 (± 0.0730) 0.9125 (± 0.0699)

Table 3. Average success probability pS = 1 − (pFA + pM )/2 for best method in [5],
individual neural classifier with α(j) = 1/2, and ensemble of 9 classifiers with αE = 1/2.

Database Best in [5] Individual Ensemble

Yeast05679vs4 0.8144 0.7721 (± 0.0527) 0.7940 (± 0.0532)
Ecoli067vs5 0.8900 0.8736 (± 0.0539) 0.8963 (± 0.0656)
Glass2 0.8045 0.7787 (± 0.1775) 0.8675 (± 0.0917)
Led7digit 0.8880 0.8581 (± 0.0491) 0.8911 (± 0.0838)
Cleveland0vs4 0.8280 0.8014 (± 0.1598) 0.9164 (± 0.0712)
Yeast4 0.8489 0.7856 (± 0.0532) 0.8219 (± 0.0186)
Yeast5 0.9661 0.9343 (± 0.0548) 0.9506 (± 0.0481)
Yeast6 0.8678 0.8517 (± 0.0819) 0.8771 (± 0.0712)

Table 3 compares the average probability of a successful classification of samples
of both classes, measured as

pS = 1 − pFA + pM

2
(31)

This means to assign the same importance to errors in both classes, which in
the Bayesian risk corresponds to α = 1/2. Therefore, αE = 1/2 will be used in
the ensemble. Table also includes results obtained using a single individual neu-
ral classifier using α(j) = 1/2, and the best result provided by all the methods
compared in [5]. This work compares performance obtained using ensembles of
classifiers (10 to 40 classifiers) along with several preprocessing techniques used
to balance data sets before constructing the ensemble. The proposed ensem-
ble method provides better results than the individual neural classifier for all
databases. Compared with the best method in [5], it provides better results in
5 of the 8 databases. We want to remark that the proposed method does not
modify the data set before constructing the ensemble, to balance the number of
samples of each class, as some methods in [5] do. The classifier is constructed
using the original data.
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5 Discussion

A new method, designed to classify imbalanced data, has been presented. The
method combines several classifiers, each one designed to give a different relative
importance to errors in majority and minority classes (pFA and pM ) through
parameters α(j). This provides the ensemble with decisions for different working
points in the ROC curve. Using these diverse decisions, the ensemble has the
capability of working efficiently at different points of the ROC, allowing to select
different compromise for both classes by varying parameter γE (or αE).

The proposed method has shown competitive results in several imbalanced
databases using a generic and simple setup, without validation nor an specific
tuning for each database, and without data pre-processing to balance data sets.
Lack of balance is handled with a proper choice for parameter αE . This demon-
strates its intrinsic potential to work with imbalanced data sets.
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