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Abstract. Emotions are important and meaningful aspects of human behaviour. 
Analyzing facial expressions and recognizing their emotional state is a chal-
lenging task with wide ranging applications. In this paper, we present an emo-
tion recognition system, which recognizes basic emotional states in facial  
expressions. Initially, it detects human faces in images using the Viola-Jones 
algorithm. Then, it locates and measures characteristics of specific regions of 
the facial expression such as eyes, eyebrows and mouth, and extracts proper 
geometrical characteristics form each region. These extracted features represent 
the facial expression and based on them a classification schema, which consists 
of a Support Vector Machine (SVM) and a Multilayer Perceptron Neural Net-
work (MLPNN), recognizes each expression’s emotional content. The classifi-
cation schema initially recognizes whether the expression is emotional and then 
recognizes the specific emotions conveyed. The evaluation conducted on 
JAFFE and Kohn Kanade databases, revealed very encouraging results. 
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1 Introduction 

Facial expressions form a universal language of emotions, which can instantly express 
a wide range of human emotional states and feelings. The facial expressions assist in 
various cognitive tasks; so, reading and interpreting the emotional content of human 
expressions is essential to deeper understand the human condition. In an early work 
on human facial emotions [10] it has been indicated that during a face-to-face human 
communication only 7% of the information of a message is communicated by the 
linguistic part of the message, such as spoken words, 38% is communicated by para-
language (vocal part) and 55% is communicated by the facial expressions. So, the 
facial expressions constitute the most important communication medium in face-to-
face interaction. 

Giving to computer applications the ability to recognize the emotional state of hu-
mans from their facial expressions is a very important and challenging task with  
wide ranging applications. Indeed, automated systems that can determine emotions  
of a human based on his/her facial expressions, can improve the human computer 
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interaction and give computer systems the opportunity to customize and adapt its 
response. In intelligent tutoring systems, emotions and learning are inextricably 
bound together; so, recognizing the learner’s emotional states could significantly  
improve the efficiency of the learning procedures delivered to him/her [1] [14]. 
Moreover, surveillance applications such as driver monitoring and elderly monitoring 
systems could benefit from a facial emotion recognition system, gaining the ability to 
deeper understand and adapt to the person’s cognitive and emotional condition. Also, 
facial emotion recognition could be applied to medical treatment to monitor patients 
and detect their status. However, the recognition of the facial emotional state is consi-
dered to be very challenging task, due to the non-uniform nature of the human face 
and various conditions such as, lightening, shadows, facial pose and orientation [7]. 

In this work, a facial emotion recognition system developed to determine the emo-
tional state of human facial expressions is presented. The system analyzes facial ex-
pressions and recognizes the six basic emotions as defined by Ekman [4], following 
an analytical, local-based approach. Initially, given a new image, the system detects 
human faces in it using the Viola-Jones algorithm [18]. Then, it locates and measures 
facial deformations of specific regions such as eyes, eyebrows and mouth and extracts 
geometrical characteristics such as locations, length, width and shape. These extracted 
features represent the deformations of the facial expression and based on them a clas-
sification schema, which consists of a Support Vector Machine (SVM) and a Multi-
layer Perceptron Neural Network (MLPNN) classifier, recognizes each expression’s 
emotional content. Initially, the SVM classifier characterizes the facial expression as 
emotional or neutral and then the MLPNN recognizes and classifies the emotional 
facial expression into the proper emotion category. The evaluation study was con-
ducted on JAFFE and Kohn Kanade databases and revealed very encouraging results 
regarding the performance of the system in recognizing emotional expressions and 
specifying their emotional content on Ekman’s scale. 

The structure of the reminder of the paper is as follows. In section 2, related work 
is presented. In Section 3, the methodology and the system developed are illustrated. 
In Section 4, the evaluation conducted and the experimental results gathered are pre-
sented. Finally, Section 5 concludes the paper and presents direction for future work. 

2 Related Work 

In the literature there are a lot of research efforts on facial image analysis and emotion 
recognition [3][17]. Although a human can detect and interpret faces and facial expres-
sions naturally with little or no effort, accurate facial expression recognition by ma-
chines is still a challenge. Authors, in the work presented in [2], present a method for 
emotional classification of facial expressions, which is based on histogram sequence of 
feature vector. The system is able to recognize five human expression categories:  
happy, anger, sad, surprise and neutral, based on the geometrical characteristics of the 
human mouth with an average recognition accuracy of 81.6%. The work presented  
in [15] recognizes facial emotions based on a novel approach using Canny, principal 
component analysis (PCA) technique for local facial feature extraction and an artificial 
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the emotion recognition is conducted by the classification schema, which specifies the 
appropriate emotional content of the expression on Ekman’s scale. The classification 
schema consists of a Support Vector Machine (SVM) and a Multi-Layer Perceptron 
Neural Network (MLPNN) classifier, where the SVM specifies whether a facial ex-
pression is emotional or not and the MLPNN recognize the emotional content of the 
expressions recognized as emotional by the SVM.  

3.1 Image Analysis and Face Detection  

The system utilizes the Viola - Jones algorithm to locate human faces in an image. In 
general, the height and width of the face-box output by the Viola and Jones face de-
tector are determined accurately and can vary by approximately 5% [16]. In case that 
more than one faces are detected, each face is analyzed separately. A human face is 
further analyzed in order to locate specific AOIs. The first step, aiming to enhance the 
contrast of the face, is to apply histogram equalization and then a sober filter to em-
phasize the edges of the face. Then, the exact location of the eyes is specified. The 
locations of the rest of the AOIs are detected based on the relative position of the 
eyes: the eyebrows are located right above the eyes and the mouth is located in  
the horizontal center of the face under the eyes. More specifically, the image is ana-
lyzed as follows: 

1. Detect the face in the image using the Viola - Jones algorithm. 
2. Apply histogram equalization to enhance contrast of the upper-half of the 

face, which contains the eyes.  
3. Apply a Sobel filter to emphasize edges and transition of the face. 
4. Cut the face into four horizontal zones. 
5. Measure each zone’s pixel density by averaging the number of the white 

(transitional) pixels in each individual zone. 
6. Select the zone with the highest pixel density. This zone contains the eyes. 
7. Locate eyebrows and mouth using facial features mask (new figure). The 

eyebrows are located right above the eyes and the mouth is located under the 
eyes. 

The histogram equalization is very useful and is used to enhance the contrast of the 
image in order to obtain a uniform histogram and re-organizes the image’s intensity 
distributions. After that, a Sobel filter is applied to emphasize edges and transition of 
the face and after its application, the image of the human face is represented as a ma-
trix whose elements have only two possible values: zero and one. An element that has 
a value set to one represents an edge of a facial part in the image, such as an edge of 
an eye of the mouth etc. The pixel density of a zone is calculated to be the average 
sum of consecutive rows of the matrix of the zone. In this approach, the pixel density 
of a zone represents the complexity of the face in each particular zone. The zone with 
the highest complexity contains the eyes and the eyebrows. In Figure 2, the stages of 
the image analysis and the results of each process step are illustrated in an example 
facial image. 
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Fig. 3. Features extracted from each AOI 

 
Left eyebrow 

• H1: The height of the far left part. 
• H2: The height of the part found on the 

1/3 of the distance between the far left 
part and far right part. 

• H3: The height of the part found on the 
2/3 of the distance between the far left 
and far right part. 

• H4: The height of the far right. 
• L1: The length of the eyebrow. 
 

Right eyebrow 

• H5: The height of the far left part. 
• H6: The height of the part found on the 

1/3 of the distance between the far left 
and far right part. 

• H7: The height of the part found on the 
2/3 of the distance between the far left 
and far right part. 

• H8: The height of the far right part. 
• L2: The length of the eyebrow. 

Left eye 

• H9: The height of the far left part. 
• H10: The height of the far right part. 
• W1: The width of the eye.   

Right eye 

• H11: The height of the far left part. 
• H12: The height of the far right part. 
• W2: The width of the eye.  

Mouth 

• H13: The height of the far left part of the mouth. 
• H14: The height of the part found on the 1/2 of the distance between the far left 

and far right part of the mouth. 
• H15: The height of the far left part of the mouth. 
• W3: The width of the mouth. 
• L3: The length of the mouth. 
 
Relative Values 

• R1: The average height of the eyebrows.  

• R2: The horizontal distance between the eyebrows. 

• R3: The vertical distance between the eyebrows and the bottom of the mouth. 

• R4: The ratio of the mouth length to the mouth width. 
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So, a facial expression is represented by 25 features. These features model the facial 
expression and contain the necessary data to assist the classifiers to classify an ex-
pression into the proper category. 

3.3 Classification Schema 

The classification schema consists of two classifiers, a SVM and a MLPNN. SVMs 
are very powerful binary classifiers. In general, a SVM classifier constructs 
a hyperplane or a set of hyperplanes in a high- or infinite-dimensional space, which 
can be used for the classification procedure. A good separation is achieved by the 
hyperplane that has the largest distance to the nearest training data point of any class 
(so-called functional margin), since in general the larger the margin the lower 
the generalization error of the SVM classifier. For the purposes of our work, the SVM 
is used to separate the facial expressions that convey emotion from the neutral ones. 
The second classification method is based on a MLPNN classifier which enables 
higher flexibility in training and also great adaptation to the problem of emotional 
classification [5]. In general, MLPNNs are feed-forward neural networks and can be 
used for solving of various multi-class, nonlinear classification problems. In our me-
thodology, the MLPNN classifier used for the emotional classification of the facial 
expressions has three hidden layers, containing 14, 14 and 8 neurons respectively. 
Since there is no standard method to select the number of hidden layers and neurons, 
due to the nature of the Neural Networks, the selection is often, as in this case, the 
architecture with the best performance. The input layer of the MLPNN has 25 sensory 
neurons, in order to match the length of the information vectors. The MLPNN  
network is trained using the back propagation supervised learning technique, which 
provides a systematic way to update the synaptic weights of multi-layer perceptron 
networks. Both the MLPNN and the SVM classifiers were implemented in MATLAB 
toolkit. 

4 Experimental Study 

4.1 Data Collection 

The methodology and the system developed were extensively evaluated on facial 
images from two popular and widely used databases, the Japanese Female Facial  
Expression Database (JAFFE) [9] and the Cohn-Kanade database [6]. The Jaffe data-
base consists of 211 facial pictures of 10 different posers. Approximately the two 
thirds (140 images) of the images of the database were selected to be part of the train-
ing dataset and the remaining 71 images were part of the test dataset. The Cohn-
Kanade is a popular database which includes 486 sequences from 97 posers. For the 
needs and purposes of this study, the total number of the selected images was 209, 
where 140 images were part of the training dataset and 69 images were part of the test 
dataset respectively.  



272 I. Perikos et al. 

 

4.2 System Evaluation 

Initially, an evaluation of the system’s performance in characterizing a facial expres-
sion either as emotional or as neutral was conducted. The performance of the mechan-
ism is presented in Table 1. 

Table 1. SVM Performance Results 

Metric Jaffe Kohn Kanade Total 

Accuracy 92.3 100 96.4 

Precision 98.3 100 99.2 

Sensitivity 93.4 100 96.9 

Specificity 90 100 95 

 
The results indicate that the system has a very good performance in determining 

whether a facial expression conveys emotions or not. Indeed, the SVM achieves  
excellent performance in the Kohn Kanade database, mainly due to the fact that Kohn 
Kanade models present neutral expressions in a very consisted and inactive way. Al-
so, high sensitivity indicates that the mechanism can accurately identify emotional 
gestures that indeed are emotional.  

The second part of the evaluation study assessed the performance of the MLPNN 
mechanism of the system in recognizing the emotional content of an emotional facial 
expression. The facial expressions that were emotional and correctly recognized as 
emotional by the SVM mechanism, were used for this part of the experiment. Given 
that we have a multiple class output, we use the following metrics: average accuracy, 
precision and f-measure. The performance of the system is presented in Table 2. 

Table 2. Performance Results of the MLPNN 

Metric Jaffe Kohn Kanade Total 

Average Accuracy 89,7 % 81,4% 85,5% 

Precision 87,3% 82,8% 86,7% 

F-measure 88,9% 81.4% 86,7% 

 
The MLPNN demonstrates quite satisfactory performance in recognizing the emo-

tional status of emotional expressions. The results are better in the JAFFE database 
and we believe that the reason is the strength that the JAFFE models express the emo-
tions. Indeed, in some cases the models of the JAFFE database express the different 
emotions very vividly and with strong facial deformations. 

The third part of the study evaluated the overall performance of the system devel-
oped. The overall performance of the system and the confusion matrix of the perfor-
mance on both databases are presented in Table 3 and Table 4 respectively.  



Recognize Emotions from Facial Expressions Using a SVM and Neural Network Schema 273 

 

The overall evaluation results indicate that the system is performing very well in 
both databases. A noticeable point concerns the high performance of the system in 
recognizing facial gestures that express happiness. This is mainly due to the fact that 
joy is a very strong emotion that in most cases is expressed by vivid facial deforma-
tions. 

Table 3. The Performance Results of the System  

Metric Jaffe Kohn Kanade Total 

Average Accuracy 85.9 % 84,1% 85% 

Precision 87,5% 85,6% 86% 

F-measure 87.4% 85.4% 86.1% 

Table 4. The Combined Confusion Matrix of System’s Performance. 
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Joy 22 0 0 0 0 1 0 
Sadness 0 12 0 6 0 1 0 
Surprise 0 0 14 3 0 1 1 
Fear 0 3 0 16 0 0 1 
Disgust 0 3 0 2 13 1 0 

Anger 0 1 0 1 0 17 1 
Neutral 0 0 2 2 1 0 15 

5 Conclusion and Future Work 

In this paper, we present an emotion recognition system, which recognizes the six 
basic emotions defined by Ekman in facial expressions. Initially, it detects human 
faces in images using the Viola-Jones algorithm. Then it locates and measures charac-
teristics of specific regions and extracts proper features and geometrical aspects form 
each region. These extracted features represent the facial expression and based on 
them a classification schema recognizes each expression’s emotional content. The 
classification schema initially recognizes whether the expression is emotional, based 
on a SVM classifier, and then recognizes the specific emotions conveyed by the ex-
pression, based on a MLPNN. The evaluation conducted on JAFFE and Kohn Kanade 
databases revealed very encouraging results. 

As a future work, we plan to conduct a bigger scale evaluation and also examine 
the system’s performance in additional databases. Furthermore, an extension could be 
made in order to assist the system to analyse expressions from different poses and 
face orientations. Finally, the classification schema could be extended and the explo-
ration of a neuro-fuzzy approach could enhance the system’s classification perform-
ance. Exploring this direction is a main aspect of our future work. 
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