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Praha 8, Czech Republic
david.coufal@cs.cas.cz

Abstract. RBF neural networks are an efficient tool for acquisition
and representation of functional relations reflected in empirical data.
The interpretation of acquired knowledge is, however, generally difficult
because the knowledge is encoded into values of the parameters of the
network. Contrary to neural networks, fuzzy systems allow a more con-
venient interpretation of the stored knowledge in the form of IF-THEN
rules. This paper contributes to the fusion of these two concepts. Namely,
we show that a RBF neural network can be interpreted as the radial fuzzy
system. The proposed approach is based on the study of conjunctive and
implicative representations of the rule base in radial fuzzy systems. We
present conditions under which both representations are computation-
ally close and, as the consequence, a reasonable syntactic interpretation
of RBF neural networks can be introduced.
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1 Introduction

In the world of nature-inspired models of computation, neural and fuzzy com-
puting possess a solid position. It is well known that neural networks primarily
focus on acquisition of functional relations from empirical data in the form of
a regression model. In contrast, fuzzy modeling aims on a syntactic description
of functional relations. This description is provided in terms of IF-THEN rules
that have the form of fuzzy logic formulas and incorporate fuzzy sets to model
linguistic terms.

Both computational paradigms are backed by the well-developed theories and
their own techniques for grasping information provided by a real-world environ-
ment. For a long time there have been attempts for creative combination of both
(or even more) modeling approaches. This movement has become known under
the term of soft-computing [10]. Our contribution follows the soft-computing line.

The neural networks are extremely good devices for processing data in terms
of non-linear regression. They develop (learn) the regression function that for
given inputs computes such the outputs that minimize the selected distance
c© Springer International Publishing Switzerland 2015
L. Iliadis and C. Jayne (Eds.): EANN 2015, CCIS 517, pp. 206–215, 2015.
DOI: 10.1007/978-3-319-23983-5 20



RBF Neural Networks and Radial Fuzzy Systems 207

to the desired outputs (a supervised learning task on a set of training data).
In RBF neural networks, the regression function is implemented in the form
of a weighted sum of certain selected points from the range of the regression
function. The weights correspond to activation levels of radial computational
units that represent the neurons of the network.

Fuzzy systems deal with a linguistic description of functional relations and
mathematize it. Mathematization is provided by means of translating linguistic
terms into fuzzy sets and combining them into IF-THEN rules. A group of IF-
THEN rules then determines the rule base of the fuzzy system.

The rule base is the carrier of the knowledge stored in the fuzzy system. There
are two basic mathematical representations of the rule base - the conjunctive
and the implicative one. Under the conjunctive representation, the knowledge
representation is data-driven. In this case, the rule base can be seen as the list of
prototypical examples taken from the relation the fuzzy system accommodates.
In contrast, under the implicative representation the rule base is seen as the set
of conditions expressed syntactically in terms of fuzzy logic formulas.

Conjunctively represented radial fuzzy systems can be shown to be computa-
tionally equivalent to RBF neural networks and vice versa. Hence both devices
can be transformed to each other. A conjunctive rule base can be formally rep-
resented in the implicative way. Under certain assumptions, it can be shown
that this representation is computationally close to the original conjunctive one.
Hence one can propose to interpreted the given RBF neural network as the con-
junctive radial fuzzy system and then interpret its rule base implicatively. As
a result, one gets the syntactic representation of the original RBF neural network
in terms of the implicative radial fuzzy system.

The goal of this paper is to mathematically develop the above transformation
idea and to study conditions under which conjunctive and implicative represen-
tation are computationally equivalent so that the proposed formal translation is
reasonable.

The rest of the paper is organized as follows. The next section is the review
section. The third section deals with the computational aspects of conjunctive
and implicative representations of the rule base in the radial fuzzy systems. The
fourth section concludes the paper.

2 RBF Neural Networks and Radial Fuzzy Systems

In this section we review the very basics of RBF neural networks, radial fuzzy
systems and fuzzy logic in order to the paper be self-contained. The review is
based on the classical textbooks [5], [7], [9], [4] and [6].

2.1 RBF Networks

The concept of the radial basis function neural network is very well
known [1], [5]. In this paper, we consider the RBF network in the standard
three-layered MISO (multiple-input single-output) configuration. That is, the
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RBF network represents a function from R
n to R space, n ∈ N. Let the hidden

layer consist of m ∈ N processing units - neurons. The neurons are mathemati-
cally represented by radial functions of the form

φj(x) = act(||x − aj ||), j = 1, . . . , m. (1)

In the formula, act : R → R is the so-called activation function that is consid-
ered to be be continuous, non-increasing with act(0) = 1 and limz→∞ act(z) = 0.
The point aj ∈ R

n is the center of the radial function φj . Clearly, φj corresponds
to a non-increasing function of the distance of the argument x from the central
point aj . The distance is measured by a norm || · || in the R

n space.
The function RBF : Rn → R implemented by the RBF network has the form

RBF(x) =
m∑

j=1

wj · φj(x) =
m∑

j=1

wj · act(||x − aj ||) (2)

where wj , j = 1, . . . , m is the set of network’s weights.
Concerning setting of parameters of the RBF network, namely, the number

m of neurons, their central points aj and weights wj , j = 1, . . . ,m, this task is
split into the structure and parameter learning subtasks. The first one is typically
carried out by using a sort of a clustering algorithm. The second one corresponds
to an optimization task. In our case, the latter is the task of linear regression.
In a multi-layered version, the celebrated back propagation algorithm is usually
employed here.

2.2 Basics of Fuzzy Systems

A fuzzy system in the MISO configuration computes a function from some input
space X ⊆ R

n to some output space Y ⊆ R. The special about fuzzy systems is
how this function is implemented. Canonically, this is made by the combination
of the four building blocks called the fuzzifier, the rule base, the inference engine
and the defuziffier [7], [9].

The fuzzifier transforms points of the input space into fuzzy sets specified on
this space. In this paper, we will consider the singleton fuzzifier that is the most
common in applications. The singleton fuzzifier associates a given input x∗ ∈ X
with the fuzzy set Afuzz such that Afuzz(x) = 1 for x = x∗, and Afuzz(x) = 0
otherwise.

The rule base of the fuzzy system is given by the set of m ∈ N IF-THEN rules.
The j-th rule represents the fuzzy relation Rj(x, y) on X × Y space specified as

Rj(x, y) = Aj1(x1) � · · · � Ajn(xn) � Bj(y) = Aj(x) � Bj(y). (3)

In the formula, Aj and Bj fuzzy sets correspond to the antecedent and con-
sequent fuzzy sets of the rule, respectively. The antecedent Aj is composed from
the individual fuzzy sets Aji, i = 1, . . . , n using a fuzzy conjunction which is
implemented by the t-norm �, i.e., we have Aj(x) = Aj1(x1) � · · · � Ajn(xn) for
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the antecedent. Clearly, x = (x1, . . . , xn). The interpretation of the � symbol
depends on the representation of the whole rule base.

Under the conjunctive representation, � corresponds to the fuzzy conjunction
and the relation that implements the j-th rule reads as Rj(x, y) = Aj(x) � Bj(y).
The whole rule base is then determined by a disjunctive combination of individ-
ual fuzzy relations

RBconj(x, y) =
m∨

j=1

Aj(x) � Bj(y). (4)

In (4), maximum is the typical choice for implementing the fuzzy disjunc-
tion

∨
. In the conjunctive case, the rule base RBconj can be seen as the list

of prototypic points from the relation on the input-output space that the fuzzy
system implements.

Under the implicative representation, � corresponds to the residuated fuzzy
implication → devised from the t-norm � by the process of residuation [4], [6]:
u → v = supz{z | z � u ≤ v ;u, v, z ∈ [0, 1]}. The j-th rule is then implemented
as the fuzzy relation Rj(x, y) = Aj(x) → Bj(y); and the whole rule base is
combined conjunctively

RBimpl(x, y) =
m∧

j=1

Aj(x) → Bj(y). (5)

In (5), the minimum operation is typically used to represent the fuzzy con-
junction

∧
. In the implicative case, the rule base can be seen as the set of the

conditions that are simultaneously imposed on the points of the relation the
fuzzy system implements.

2.3 Radial Fuzzy Systems

Radial fuzzy systems (RFSs) employ radial functions for representing member-
ship functions of fuzzy sets in their rules [2], [3]. Moreover, the RFSs exhibit the
so-called radial property. This is the shape preservation property in antecedents
of IF-THEN rules. The property makes the computational model of radial sys-
tems more tractable and the antecedents of rules correspond to multivariate
radial functions. Let us be more specific.

Definition 1. A fuzzy system is called radial if :

(i) There exists a continuous function act : [0,+∞) → [0, 1], act(0) = 1 such
that: (a) either there exists z0 ∈ (0,+∞) such that act is strictly decreasing
on [0, z0] and act(z) = 0 for z ∈ [z0,+∞) or (b) act is strictly decreasing on
[0,+∞) and limz→+∞ act(z) = 0.

(ii) Fuzzy sets in the antecedent and consequent of the j-th rule are specified as

Aji(xi) = act

(∣∣∣∣
xi − aji

bi

∣∣∣∣

)
, Bj(y) = act

(
max{0, |y − cj | − s}

d

)
(6)



210 D. Coufal

where n,m ∈ N; i = 1, . . . , n; j = 1, . . . , m; x ∈ R
n, x = (x1, . . . , xn); aj ∈ R

n,
aj = (aj1, . . . , ajn); b = (b1, . . . , bn), bi > 0, cj ∈ R; dj > 0, s > 0.
(iii) For each x ∈ R

n the radial property holds, i.e.,

Aj(x) = Aj1(x1) � · · · � Ajn(xn) = act( ||x − aj ||p,b), (7)

where || · ||b is the scaled �p norm for some p ≥ 1, i.e., ||u||p,b = (
∑

i |ui/bi|p)1/p.
Let us shortly comment on the definition. The first two conditions refer to

the specification of the individual fuzzy sets. In fact, they require that one-
dimensional fuzzy sets are specified as radial functions with the central points aji,
cj and scaling parameters bi and d. The parameter s is the shifting parameter
that makes the shape of the consequent fuzzy sets trapezoid-like. In Fig. 1 there
are presented examples of radial fuzzy sets.
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Fig. 1. Examples of radial fuzzy sets; (a) triangular A(x) = max{0, 1− |x− a|/b} and
(b) Gaussian A(x) = exp[−((x − a)/b)2] fuzzy set.

The third condition is the radial property. The property requires the shape
of individual fuzzy sets, which is determined by the act function, to be retained
under the combination by the t-norm �. From (7) we see that individual fuzzy
sets are transformed into the multi-dimensional one, and this fuzzy set has the
same shape as the individual fuzzy sets.

Table 1. Examples of t-norms and corresponding act functions.

t-norm act(z) Aj(x)

x � y = max{0, x + y − 1} max{0, 1 − z} max(0, 1 − ||x− aj ||1,b)
x � y = x · y exp(−z2) exp(−||x− aj ||22,b)

x � y = exp (−[(− ln(x))1/2 + (− ln(y))1/2)])2 exp(−z2) exp(−||x− aj ||21,b)

Remark that the radial property is not trivial. That is, the t-norm and the
shape has to be matched somehow in order to the radial property holds. In
[2], there is shown that in the case of continuous Archimedean t-norms the
matching is provided by setting act(z) = t(−1)(qzp) where t(−1) is the pseudo-
inverse of the additive generator of the t-norm and q > 0, p > 1 are parameters.
Table 1 presents some allowed pairs connected with the �Lukasiewicz, product and
Aczél-Alsina t-norm with λ = 1/2, respectively [6].
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2.4 Computational Model of Radial Fuzzy Systems

The specification of the computational model of a fuzzy system depends on the
implementation of the inference engine and the chosen deffuzification method.

The inference engine performs a sort of projection of the fuzzy set yielded by
the fuzzifier through the fuzzy relation represented by the rule base. The pro-
jection can be seen as the composition of the fuzzified input with the knowledge
stored in the fuzzy system. The most standard inference engine employed in
fuzzy computing is the CRI inference engine referring to the compositional rule
of inference [7], [9]. Mathematically, when the singleton fuzzifier is employed, it
yields for an input x∗ the fuzzy set B specified as

B(y) = supx{x ∈ X|Afuzz(x) � RB(x, y)} = RB(x∗, y). (8)

The defuzzier transforms the fuzzy set B into the point y∗ from the output
space Y . There are plenty of methods of defuzzification present [7], [9]; and their
use depends on the representation of the rule base.

In the case of the conjunctive representation when B(y) =
∨

j A(x∗) �Bj(y),
the
method of centroids is popular: y∗ =

(∑m
j=1 Aj(x∗) · y∗

Bj

)
/
(∑m

j=1 Aj(x∗)
)

.

In radial fuzzy systems the centroids y∗
Bj

of Bj sets correspond to their central
points, i.e., y∗

Bj
= cj , j = 1 . . . ,m.

The problem with this method is that the output is not defined for denom-
inator being 0 nor is generally continuous when we set y∗ = 0 for the zero
denominator. That is why the formula of centroids method is further simplified
into the form (in fact, this corresponds to a variant of the Takagi-Sugeno fuzzy
system [8])

y∗ =
m∑

j=1

Aj(x∗) · cj . (9)

In the case of the implicative representation, the fuzzy set B yielded by
the CRI inference engine reads as B(y) =

∧
j Aj(x∗) → Bj(y). Since for any

residuated implication one has u → v = 1 iff u ≤ v, we see that Aj(x∗) → Bj(y)
are modified Bj sets such that B′

j(y) = Aj(x∗) → Bj(y) = 1 iff Aj(x∗) ≤ Bj(y).
That is, B′

j sets are normal with the kernels Ij(x∗) = {y |Aj(x∗) ≤ Bj(y)}.
Any fuzzy conjunction of B′

j sets then yields a fuzzy set that is also normal
with the kernel I(x∗) =

⋂
j Ij(x∗), under the assumption that

⋂
j Ij(x∗) �= ∅.

If this is true for any input x∗ ∈ X, then the implicative fuzzy system is called
coherent. If the system under study is coherent, then it is natural to take as the
defuzzified point the middle point of I(x∗). In the case of the radial systems it
can be shown that I(x∗) corresponds to a closed interval. Hence

y∗ =
L(I(x∗)) + R(I(x∗))

2
(10)

where L(I(x∗) and R(x∗)) are the left and right limit points of I(x∗), respec-
tively.
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3 Combination of RBF Networks and Radial Fuzzy
Systems

In this section we propose an approach how to interpret the RBF neural network
in terms of the implicative radial fuzzy system.

We start with the computational equivalence of RBF networks and radial
conjunctive fuzzy systems. The equivalence is based on the comparison of com-
putational models (2) and (9). These models coincide if the number of neu-
rons equals the number of IF-THEN rules and if φj = Aj and wj = cj for all
j = 1, . . . , m.

Concerning the first equality φj(x) = Aj(x), x ∈ X = R
n it rests on the

radial property of the radial fuzzy systems. It is clear that the representation of
neurons and the employed t-norm in the fuzzy system must be matched in order
to the radial property holds. In the case of the second equality wj = cj , we see
that it requires the central points of consequents to coincide with the network’s
weights. The width and shift parameters d and s, respectively, do not affect the
computational equivalence between (2) and (9). Hence they can be set freely,
however, in the case of the d parameter we will require that the fuzzy system is
strictly coherent.

Definition 2. A radial fuzzy system is said to be strictly coherent if for any
pair of rules j, k ∈ {1, . . . , m} the following holds

d · ||aj − ak||p,b ≥ |cj − ck|. (11)

Based on the above definition, we set up d in such a way that the built con-
junctive fuzzy system is strictly coherent. Hence we search for such the minimal
d = dcoh that (11) holds. Formally, we have

dcoh = min
d

{d · ||aj − ak||p,b ≥ |cj − ck|, ∀j, k ∈ {1, . . . , m}}. (12)

This is a straightforward optimization task. Solving this problem we set d = dcoh
which finalizes the specification of the parameters in the conjunctive radial fuzzy
system. The specification of d does not impact the computational equivalence
between (2) and (9), however, this specification is important from the implicative
representation point of view, because if the implicative system is strictly coherent
then it is also coherent in the sense of Section 2.4.

Let us consider conjunctive radial system with the set of its parameters. Let
→ be the residuated implication derived from the t-norm � which is employed in
the conjunctive fuzzy system. We ask what will happen if we interpret the rule
base implicatively with the values of the parameters retained.

Clearly, if the conjunctive and implicative representations are computation-
ally close then the interpretation chain: the RBF network ⇒ the conjunctive
RFS ⇒ the implicative RFS makes sense. In the following two lemmas we will
show that both representations are computationally close to each other under
certain assumptions.
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Lemma 1. Let � be a t-norm and → its residuated implication. Let the rule
base of a radial fuzzy system consists of m ∈ N IF-THEN rules built up on the
basis of antecedents Aj and consequents Bj, j = 1, . . . ,m. Let the radial fuzzy
system be strictly coherent and the norm of the radial property be the scaled �1
norm, i.e., p = 1, then for the conjunctive and implicative representations of the
rule base one has

RBconj(x, y) ≤ RBimpl(x, y) (13)

for any x ∈ R
n and y ∈ R.

Proof. We start by proving the inequality

Aj(x) � Ak(x) � Bj(y) ≤ Bk(y) (14)

for j, k ∈ {1, . . . , m} and x ∈ R
n, y ∈ R. Indeed, by the triangle inequality,

non-increasing character of the act function and the radial property for the �1
scaled norm || · ||1,b, we have the following chain:

||x − aj ||1,b + ||x − ak||1,b ≥ ||aj − ak||1,b,
act(||x − aj ||1,b + ||x − ak||1,b) ≤ act(||aj − ak||1,b),

act(||x − aj ||1,b) � act(||x − ak||1,b) ≤ act(||aj − ak||1,b),
Aj(x) � Ak(x) ≤ act(||aj − ak||1,b). (15)

The triangle inequality of the second kind reads |cj−ck| ≥ | |y−cj |−|y−ck| |.
Therefore due to the strict coherence we have

d · ||aj − ak||1,b ≥ | |y − cj | − |y − ck| |,
d · ||aj − ak||1,b + |y − cj | − s ≥ |y − ck| − s,

d · ||aj − ak||1,b + max{0, |y − cj | − s} ≥ max{0, |y − ck| − s},

act(||aj − ak||1,b + max{0, |y − cj | − s}/d) ≤ act(max{0, |y − ck| − s}/d).

Due to the radial property for the the �1 scaled norm and (15), the left-hand
side of the last inequality is greater than

act(||x − aj ||1,b) � act(||x − ak||1,b) � act(max{0, |y − cj | − s}/d)

and implies the inequality (14).
For any t-norm � and its residuated implication → one has u� v → w = u →

(v → w) and u → v = 1 iff u ≤ v for u, v, w ∈ [0, 1], see [4]. Hence we can update
(14) as follows

Aj(x) � Ak(x) � Bj(y) ≤ Bk(y),
Aj(x) � Bj(y) ≤ Ak(x) → Bk(y),

maxm
j=1{Aj(x) � Bj(y)} ≤ Ak(x) → Bk(y),

maxm
j=1{Aj(x) � Bj(y)} ≤ minm

k=1{Ak(x) → Bk(y)},

RBconj(x, y) ≤ RBimpl(x, y).

This concludes the proof. �
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There is the natural question of how computationally close are both repre-
sentations. In terms of the fuzzy logic, the closeness relation is interpreted as
the fuzzy equivalence relation [4]. The fuzzy equivalence is introduced by the
formula x ≡ y = (x → y) � (y → x) for x, y ∈ [0, 1]. For any fuzzy equivalence
one has x ≡ y = 1 if x = y. If x �= y, then the measure of difference is given
either as x → y, if x ≥ y or by y → x if x ≤ y. For example for �Lukasiewicz
t-norm it reads as x ≡ y = 1 − |x − y|. The next lemma is due to Hájek [4].

Lemma 2. Let � be a t-norm and → its residuated implication. Let the rule base
of a radial fuzzy system consists of m ∈ N IF-THEN rules built up on the basis
of antecedents Aj and consequents Bj, j = 1, . . . ,m. Then for the conjunctive
and implicative representations of the rule base it holds

minm
j=1{Aj(x) � Aj(x)} → (RBimpl(x, y) ≤ RBconj(x, y))

for any x ∈ R and y ∈ R.

Proof. Remind once again that u � v → w = u → (v → w). Further, it can be
shown that (u → v) → [(u � w) → (v � w)] = 1 for any u, v, w ∈ [0, 1], see [4].
Hence one has the following chain:

(Aj(x) → Bj(y)) → [(Aj(x) � Aj(x)) → (Aj(x) � Bj(y))],
(Aj(x) � Aj(x)) → [(Aj(x) → Bj(y)) → (Aj(x) � Bj(y))],
(Aj(x) � Aj(x)) → [minm

j=1{Aj(x) → Bj(y)} → (Aj(x) � Bj(y))],
(Aj(x) � Aj(x)) → [minm

j=1{Aj(x) → Bj(y)} → maxm
j=1{Aj(x) → Bj(y)}],

minj{Aj(x) � Aj(x)} → [RBimpl(x, y) → RBconj(x, y)].

This concludes the proof. �

The combination of both lemmas gives us the final answer on how computa-
tionally close are both representation of the rule base in the radial fuzzy systems.
In order to state the theorem, we will denote as the degree of equivalence the
number

DOE = inf
x∈X

{minj{Aj(x) � Aj(x)}}.

Theorem 1. Let � be a t-norm and → its residuated implication. Let the rule
base of a radial fuzzy system consists of m ∈ N IF-THEN rules built up on the
basis of antecedents Aj and consequents Bj, j = 1, . . . ,m. Let the radial fuzzy
system be strictly coherent and the norm of the radial property be the scaled �1
norm, i.e., p = 1, then for the conjunctive and implicative representations of the
rule base one has

DOE ≤ (RBimpl(x, y) ≡ RBconj(x, y)).

Proof. By the above lemmas and the specification of ≡ relation we get

minj{Aj(x) � Aj(x)} → [RBimpl(x, y) ≡ RBconj(x, y)].

Therefore also DOE ≤ [RBimpl(x, y) ≡ RBconj(x, y)] because u → v = 1 iff
u ≤ v, u, v ∈ [0, 1]. �
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Theorem 1 tells us that if the scaled �p norm occurring in the radial property
is the scaled �1 norm and d is set in such a way that the fuzzy system is strictly
coherent, then DOE ≤ RBconj(x, y) ≡ RBimpl(x, y) for any x ∈ R

n and y ∈ R.
Therefore for any input x∗ one has also DOE ≤ RBconj(x∗, y) ≡ RBimpl(x∗, y).

4 Conclusions

The main result presented in the paper is the characterization of the mutual
relation between conjunctive and implicative representations of the rule base in
the radial fuzzy systems. We have shown that we can measure or control the
closeness of computational equivalence by means of the degree of equivalence.

The proposed use of the result follows the line of fusion of concepts of the
RBF neural networks and radial fuzzy systems. In fact, we have shown how the
RBF neural network can be interpreted in syntactic way in terms of the radial
implicative fuzzy system. The process of transforming the RBF neural networks
can be also understood as the method for establishing the radial fuzzy systems
on the basis of empirical data. In this case, the well-developed machinery for
learning the RBF neural networks can be exploited.
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