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Preface

This volume contains the papers presented at SFCM 2015: The Fourth International
Workshop on Systems and Frameworks for Computational Morphology, held on
September 17 and 18, 2015, at the University of Stuttgart, Germany.

From the point of view of computational linguistics, morphological resources form
the basis for all higher-level applications. This is especially true for languages with a
rich morphology like Czech, German, Finnish, Italian, Latin, Pali, Polish, Sanskrit, and
Serbian, to name some of the languages targeted in this volume. A morphology
component should thus be capable of analyzing single wordforms as well as whole
corpora. For many practical applications not only morphological analysis but also
generation is required, i.e., the production of surfaces corresponding to specific
categories.

Apart from uses in computational linguistics, there are numerous practical appli-
cations that can benefit from morphological analysis and/or generation or even require
it, for example in textual analysis, word processing, information retrieval, or dialog
systems. These applications have specific requirements for morphological components,
including requirements from software engineering, such as programming interfaces or
robustness.

With the workshop on Systems and Frameworks for Computational Morphology
(SFCM) we have established a place for presenting and discussing recent advances in
the field of computational morphology. SFCM focuses on linguistically motivated
morphological analysis and generation, computational frameworks for implementing
such systems, and linguistic frameworks suitable for computational implementation. In
2015 the workshop took place for the fourth time. The main theme for SFCM 2009 was
systems for a specific language, namely, German; SFCM 2011 looked at phenomena at
the interface between morphology and syntax in various languages; SFCM 2013 dis-
cussed the role of morphological analysis and generation to improve the rather dis-
appointing situation with respect to language technology for languages other than
English. All workshop programs are accessible via the series website at http://www.
sfcm.eu.

SFCM 2015 aimed at broadening the scope to include research on very under-
resourced languages, interactions between computational morphology and formal,
quantitative, and descriptive morphology, as well as applications of computational
morphology in the Digital Humanities. For the first time, it was a two-day workshop
and featured a special session dedicated to CLARIN (“Common Language Resources
and Technology Infrastructure”). Dörte de Kok from CLARIN-D and Krister Lindén
from FIN-CLARIN gave insights on CLARIN in general and how the German and
Finnish CLARIN centers support computational morphology.

Based on the number of submissions and the number of participants at the workshop
we can definitely state that the topic of the workshop has met with great interest from
the community, both from academia and industry. The broader scope of this workshop

http://www.sfcm.eu
http://www.sfcm.eu


as outlined in the call for papers is reflected in the broader variety of topics discussed
and use cases described. We received 16 submissions describing complete works of
research as well as novel challenges and visions, of which 10 were accepted after a
thorough review by the members of the program committee. The peer review process
was double-blind, and each paper received three independent reviews.

In addition to the regular papers, we had the pleasure of Magda Ševčíková from
Charles University Prague giving an invited talk on the role of morphology in the
Prague Dependency Treebank.

The discussions after the talks and during the demo session, as well as the final
plenum, showed the interest in and the need and requirements for further efforts in the
field of computational morphology. During the last years, we see more workshops and
conferences following the lead idea of SFCM to bring together researchers with dif-
ferent perspectives interested in the common topic of morphological phenomena. We
also see more events actively supporting the idea of a “workshop” by offering ample
opportunity to demonstrate and discuss ongoing research in an informal atmosphere,
where participants can get critical but supportive feedback, in addition to the traditional
presentation of complete research by talks in front of a plenum. We are encouraged to
continue the series of SFCM workshops by the advent of similar morphology-oriented
events targeting specific languages (such as the “Greek Workshop on Frameworks and
Systems for Computational Morphology” in 2013 on Rhodes) or addressing compu-
tational aspects in morphology from the linguistic point of view (such as the workshop
on “Computational Methods for Descriptive and Theoretical Morphology” in 2015 in
Vienna).

Topics of this Book

This book starts with the invited paper by Magda Ševčíková (“Morphology within the
Multi-layered Annotation Scenario of the Prague Dependency Treebank”), presenting
morphological annotation as an element in a large multi-layered treebank. Following
the approach of relations between form and function, morphological information is
represented as attributes at the tectogrammatical layer. This allows the use for practical
applications like dependency-based machine translation and the creation of lexical
databases.

The following paper, “Designing and Comparing G2P-Type Lemmatizers for a
Morphology-Rich Language” by Steffen Egger, presents work on lemmatization of
ancient Latin. He finds that general-purpose string-to-string transduction models as
used for grapheme-to-phoneme conversion perform better than techniques based on
suffix transformation. The lemmatizer is aimed to complement lexicon-based systems.

In the paper “Morphological Disambiguation of Classical Sanskrit,” Oliver Hellwig
targets another ancient language. He describes a system for tokenization and mor-
phological analyzation of Sanskrit combining a morphological rule-base with statistical
selection of the most probable analysis.

The third paper aiming at ancient languages is “Morphological Analysis and Gen-
eration for Pali” by David Alfter and Jürgen Knauth. They introduce a system for
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analyzing and generating Pali word forms. The system can be integrated into a general
technical infrastructure and supports linguistic research on Pali.

The paper “A Universal Feature Scheme for Rich Morphological Annotation” by
John Sylak-Glassman, Christo Kirov, David Yarowski, and Roger Que introduces a
general set of features that represent fine distinctions in meaning expressed by inflec-
tional morphology across languages. For evaluation, the texts of the Bible are used as a
large parallel corpus. This work is in the field of typology and cross-linguistic mor-
phology to improve NLP applications such as machine translation and information
extraction.

In the paper “Dsolve—Morphological Segmentation for German using Conditional
Random Fields,” Kay-Michael Würzner and Bryan Jurish present a system for the
segmentation of complex German word forms. Segmentation is handled as a classifi-
cation task using conditional random fields. Unlike previous segmentation approaches,
Dsolve also predicts types of morph boundaries, which boosts performance.

Maciej Janicki’s paper “A Multi-purpose Bayesian Model for Word-Based Mor-
phology” presents morphology as a systematic correspondence between full word
forms without segmenting word forms into smaller units. The Bayesian models trained
this way perform very well when evaluated for lexicon expansion and the generation of
inflected forms in German and Polish.

In their paper “Using HFST—Helsinki Finite-State Technology for Recognizing
Semantic frames,” Krister Lindén, Sam Hardwick, Miikka Silfverberg, and Erik
Axelson show the use of HFST as a comprehensive framework using the example of
recognizing semantic frames. HFST is a toolkit for text analysis covering all steps from
tokenization over morphological analysis up to semantic tagging. This paper empha-
sizes the usefulness of such toolkits for text analysis in the Digital Humanities.

The next paper, “Morpho-SLaWS: An API for Morphosyntactic Annotation of the
Serbian Language” by Toma Tasovac, Saša Rudan, and Siniša Rudan, gives another
insight into the use of NLP tools in Digital Humanities. The Serbian Lexical Web
Service (SLaWS) offers a broad range of functions to be used as a resource-oriented
web service. Morpho-SLaWS is the morphological component of this infrastructure
and can be combined with other linguistic resources and tools.

Next, in their paper “Morphological Analysis and Generation of Monolingual and
Bilingual Medical Lexicons,” Serena Pelosi, Annibale Elia, and Alessandro Maisto
describe the automatic creation of Italian–English medical lexical resources. They use
finite-state transducers to analyze combinations of prefixes, confixes, and suffixes used
in medical terms. This approach allows also for recognition of relevant neologisms and
multi-word expressions.

Finally, the paper “Grammar Debugging” by Michael Maxwell argues for the
representation of morphological and phonological features in a linguistic way that
allows for automatic conversion into parsers. For debugging, he presents a tool that
enables the linguist to follow each step during analysis and generation. Here again,
linguists do not need programming skills but can adjust the parser on the linguistic
level.

The contributions show that high-quality research is being conducted in the area of
computational morphology: Mature systems are further developed and new systems
and applications are emerging. Other languages than English are becoming more
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important. The papers in this book come from eight countries and two continents,
discuss a wide variety of living and ancient languages, and illustrate that, in fact,
morphological resources are indeed the basis for higher-level natural language pro-
cessing applications.

The trend towards open-source developments still goes on and evaluation is con-
sidered an important issue. Making high-quality morphological resources freely
available will help to advance the state of the art and allow for the development of
high-quality real-world applications. Useful applications shown as use cases here with
carefully conducted evaluation demonstrate to a broad audience that computational
morphology might not be a solved problem but is mature enough to be used in research
settings in the Digital Humanities. It also shows that computational morphology is an
actual science with tangible benefits for society.

July 2015 Cerstin Mahlow
Michael Piotrowski
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Morphology Within the Multi-layered
Annotation Scenario of the Prague Dependency

Treebank

Magda Ševč́ıková(B)

Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics,
Charles University in Prague, Malostranské náměst́ı 25,

118 00 Prague, Czech Republic
sevcikova@ufal.mff.cuni.cz

Abstract. Morphological annotation constitutes a separate layer in the
multi-layered annotation scenario of the Prague Dependency Treebank.
At this layer, morphological categories expressed by a word form are
captured in a positional part-of-speech tag. According to the Praguian
approach based on the relation between form and function, functions
(meanings) of morphological categories are represented as well, namely as
grammateme attributes at the deep-syntactic (tectogrammatical) layer
of the treebank.

In the present paper, we first describe the role of morphology in
the Prague Dependency Treebank, and then outline several recent
topics based on Praguian morphology: named entity recognition in
Czech, formemes attributes encoding morpho-syntactic information in
the dependency-based machine translation system, and development of
a lexical database of derivational relations based partially on information
provided by the morphological analyser.

Keywords: Annotation · Deep syntax · Lemma · Morphology · Multi-
layered scenario · Part-of-speech tag · Surface syntax · Tagging

1 Introduction

The Prague Dependency Treebank (PDT) has a multi-layered scenario designed
on the theoretical basis of Functional Generative Description (FGD). Though
the theoretical framework itself focuses mainly on syntactic issues, the PDT
annotation project started with annotation at the morphological layer. Informa-
tion included at this layer was extensively used during annotation at both the
layer of surface syntax and the deep-syntactic layer (tectogrammatics).

In the paper, the formal approach to Czech inflectional morphology is intro-
duced first (see Sect. 2). An overview of tools for morphological analysis and
disambiguation is followed by a description of the part-of-speech (POS) tags
and morphological lemmas. The core of the paper presents annotation of mor-
phological categories in PDT within the theoretical framework of FGD (Sects. 3.1
c© Springer International Publishing Switzerland 2015
C. Mahlow and M. Piotrowski (Eds.): SFCM 2015, CCIS 537, pp. 1–26, 2015.
DOI: 10.1007/978-3-319-23980-4 1



2 M. Ševč́ıková

and 3.2). A lemma and a positional POS tag capturing formally expressed inflec-
tional categories were assigned manually to each token at the morphological layer
(Sect. 3.3), and reinterpreted in a semi-automatic procedure during the anno-
tation at the tectogrammatical layer; here, meanings of semantically relevant
morphological categories were represented as values of special attributes (called
grammatemes) assigned to nodes of the tectogrammatical tree (Sect. 3.4). PDT
annotation scenario served as one of the resources for other treebanks mentioned
in Sect. 3.5.

In Sect. 4, recent topics are outlined that are immediately connected with
the presented approach to Czech morphology, namely named entity recognition
in Czech, formemes encoding morpho-syntactic information in the dependency-
based machine translation system, and development of a lexical database of
derivational relations based partially on information provided by the morpho-
logical analyser.

2 Computational Morphology of Czech

2.1 Tools for Morphological Analysis and Disambiguation

Czech is a Slavic language with a complex system of both inflectional and deriva-
tional morphology. Though the traditional separation of inflections and deriva-
tions, which is documented in influential grammars of Czech, has been partially
overcome in some NLP approaches to Czech, the main focus is still on inflectional
morphology.

This section is limited to morphological analysis and morphological disam-
biguation (tagging) as two subtasks of morphological processing of Czech;1 the
former of them consists in assigning pairs of a tag and a lemma to an individual
word form (usually regardless of the context) while the latter subtask is to select
a single tag–lemma pair for the respective word form, mostly with respect to a
(close) context.

Formulation of a computational approach to Czech morphology is dated back
to the 1990s; cf. first experiments in automatic morphological analysis and dis-
ambiguation of Czech by Hladká and Hajič [13,18,23]. Morphological analysis
was based on the Czech morphological dictionary (published now under the name
MorfFlex CZ; [14]) which contains more than 350 thousand manually entered
entries; the recogniser recognises about 12 million Czech word forms.

For first tagging experiments [23], it was possible to use manually annotated
data, thanks to a pioneering corpus annotation project which was carried out
at the Institute of the Czech Language of the Academy of Sciences of the Czech
Republic from 1971 to 1985 (the corpus was called Korpus věcného stylu ‘Prac-
tical Corpus’ and, later on, converted into the Czech Academic Corpus with
morphological and analytical annotation compatible with PDT; [24,66,67]).

1 The issues of morphological synthesis, generation etc. go beyond the scope of the
paper; see Hajič [11] for a complex description of computational approach to Czech
morphology including formal definitions.
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Table 1. Comparison of the taggers according to their accuracy on Czech (based on
[51,56])

Tagger Accuracy

Morče semi-supervised [51] 95.89 %

MorphoDiTa [56] 95.75 %

Combination of taggers [52] 95.70 %

Morče [68] 95.67 %

HMM [29] 94.82 %

Feature-based tagger [11] 94.04 %

The next, feature-based tagger was trained already on PDT data, which were
manually annotated with positional POS tags and lemmas (Sects. 2.2 and 3.3).
The tagger was based on a statistical algorithm with an exponential model [11],
and distributed, along with a tool for morphological analysis, as a part of the
PDT 2.0 release [16]. An implementation based on Hidden Markov Models is
available as well [29].

In line with efforts to develop and to improve POS taggers for English and
other languages inspired by Collins [6] and others, a tagger based on aver-
aged perceptron, called Morče (an acronym of Morfologie češtiny ‘Morphol-
ogy of Czech’; [68]), was published in 2006. The Morče tagger was trained on
manually annotated data of PDT, achieving a state-of-the-art performance on
Czech,and later on, it was involved in experiments combining this tagger with
the feature-based tagger, HMM tagger and a rule-based component [52], and in
semi-supervised training experiments [51].2 The semi-supervised version of the
Morče tagger outperformed its original implementation as well as the combina-
tion with other taggers; see Table 1.

The most recent implementation, MorphoDiTa (Morphological Dictionary
and Tagger; [53,56]), is an open-source tool for morphological analysis, tagging,
and lemmatisation as well as for tokenisation and morphological generation; it
is available along with trained linguistic models.

The feature-based tagger and the Morče tagger were used for morphologi-
cal processing of large (100,000,000+ tokens) corpora of the SYN series, built
at the Institute of Czech National Corpus.3 Experiments with the rule-based
disambiguation of large corpus data have been carried out [31,36,37,39]. Nev-
ertheless, improvements in tagging have been reported recently by applying a
combined disambiguation system including the Morče tagger and a rule-based
component [40]; compare previous approaches to combining statistical and rule-
based methods in [15,50], or [52].

2 The semi-supervised version of Morče was published under the Compost project
(http://ufal.mff.cuni.cz/legacy/compost/cz/). An implementation of the averaged
perceptron algorithm was released in the Featurama project too (http://sourceforge.
net/projects/featurama/).

3 http://korpus.cz/.

http://ufal.mff.cuni.cz/legacy/compost/cz/
http://sourceforge.net/projects/featurama/
http://sourceforge.net/projects/featurama/
http://korpus.cz/


4 M. Ševč́ıková

Table 2. Positions of the positional POS tag

Position no. Name Description

1 POS Part of speech

2 SUBPOS Detailed part of speech

3 GENDER Gender

4 NUMBER Number

5 CASE Morphological case

6 POSSGENDER Possessor’s gender

7 POSSNUMBER Possessor’s number

8 PERSON Person

9 TENSE Tense

10 GRADE Degree of comparison

11 NEGATION Negation

12 VOICE Verbal voice

13 RESERVE1 Unused

14 RESERVE2 Unused

15 VAR Variant, style, register, special usage

All the tools described above use compact tags or, predominantly, positional
POS tags (both described in Sect. 2.2) as the output tag format.

An alternative system of encoding Czech morphology has been developed in
the Natural Language Processing Centre at the Faculty of Informatics, Masaryk
University in Brno, and implemented in the ajka analyser, which provides both
inflectional and (to a limited extent) derivational analysis of Czech based on a
large-coverage dictionary [44,45].

Last but not least a weakly-supervised (resource-light) approach to morpho-
logical analysis and tagging is to be mentioned, which substantially decreases
requirements on cost-intensive manual input [8,20]. Though the weak supervision
is often accompanied with a lower accuracy, the approaches are advantageous
especially for underresourced languages.

2.2 Tag Sets for Czech, Positional POS Tag and Morphological
Lemma Used in the Prague Dependency Treebank

There have been several tag sets used for Czech. From the chronological perspec-
tive, the tag set used in the original annotation of the Czech Academic Corpus
(CAC; see Sect. 2.1) should be mentioned first [66,67].

In the original CAC tag set,4 tags of maximum eight positions were used. At
the first and second position, the part-of-speech class of the token was specified;
the remaining positions were associated with morphological categories that are
relevant for the particular part-of-speech class. Thus, for instance, in the fourth
4 http://ufal.mff.cuni.cz/rest/CAC/tOrig.html.

http://ufal.mff.cuni.cz/rest/CAC/tOrig.html
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tag position, mood is encoded with verb forms while gender with noun, adjec-
tives, pronouns, and numerals. The values to be filled in at a particular position
were defined with respect to the part-of-speech class as well and encoded with
digits. Therefore, for instance, the same digit in the same position is to be inter-
preted differently with adjectives and with verbs. Compare the original CAC
tags to be assigned to the tokens Pokládáte ‘(you) find’, za ‘for’, and standardńı
‘standard’ (the first three tokens from the sentence analysed in Table 3) and their
interpretation:

Pokládáte 5251 19 verb – imperfective – 2nd person plural – indicative present
active – [imperative:default] – one-word form – gender not
expressed

za 774 preposition – primary – with accusative

standardńı 22 414 adjective – primary – [subclass:default] – neuter – singular –
accusative

A system of compact tags was defined by Hajič [11], and used in compilation
of the morphological dictionary (MorfFlex CZ; [14]) and in tagging experiments,
e.g. [13]. This tag system works with positions, specifying a combination (a
“pattern”) of relevant morphological categories (each associated with a tag posi-
tion) for each part-of-speech (sub)class.5 Compact tags for the same three tokens
should be interpreted as follows:6

Pokládáte VPp2A verb – indicative present – plural – 2nd person – affirmative

za R4 preposition – with accusative

standardńı ANS41A adjective – neuter – singular – accusative – no gradation – affirmative

As an alternative to compact tags, a system of positional POS tags was
developed and gradually preferred to the former one; cf. Hajič [11].7 Positional
POS tags, along with two-component lemmas (described below), were assigned
to the PDT data at the morphological layer; see Sect. 3.3.

A positional POS tag consists of 15 positions: The part of speech and a
(functionally or formally delimited) subpart of it are encoded in the first and
second positions of the tag, respectively. Positions 3 to 12 are each associated
with a particular morphological category, positions 13 and 14 are reserved for
a potential extension of the tag information, and the 15th position captures
information of variants, register features etc.; see Table 2.8 Part-of-speech classes

5 http://ufal.mff.cuni.cz/pdt1/Morphology and Tagging/Doc/compact tags.pdf.
6 The tag of the verb form is composed according to the pattern for present indicative

forms: VPnpa (i.e., verb – indicative present – number – person – negation).
7 http://ufal.mff.cuni.cz/pdt1/Morphology and Tagging/Doc/hmptagqr.pdf.
8 An extended version of 16 positions was used in corpora of the Czech National

Corpus. The 16th position is associated with the category of aspect which is, when
using the tag with 15 positions, encoded in the technical lemma suffix described
below.

http://ufal.mff.cuni.cz/pdt1/Morphology_and_Tagging/Doc/compact_tags.pdf
http://ufal.mff.cuni.cz/pdt1/Morphology_and_Tagging/Doc/hmptagqr.pdf
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Table 3. Morphological lemma and positional POS tag assigned to tokens of the sen-
tence Pokládáte za standardńı, když se s Mečiarovou vládou nelze téměř na ničem
rozumně dohodnout? (lit.: Find for standard, when REFL with Mečiar’s government
is-not-possible almost on nothing reasonably agree?) ‘Do you find it standard when
almost nothing can be reasonably agreed on with Mečiar’s government?’ at the mor-
phological layer of PDT, and conversion of the positional POS tags into the Interset
interlingua attribute–value pairs (last column)

Token Morphological Positional Interset
lemma POS tag

Pokládáte pokládat :T VB-P- - -2P-AA- - -

pos=”verb”, negativeness=”pos”,
number=”plur”, person=”2”, verb-
form=”fin”, mood=”ind”, tense=”pres”,
voice=”act”

za za-1 RR- -4- - - - - - - - - -
pos=”adp”, adpostype=”prep”,
case=”acc”

standardnı́ standardnı́ AAIP4- - - -1A- - - -

pos=”adj”, negativeness=”pos”, gen-
der=”masc”, animateness=”inan”,
number=”plur”, case=”acc”, de-
gree=”pos”

, , Z:- - - - - - - - - - - - - pos=”punc”

když když J,- - - - - - - - - - - - - pos=”conj”, conjtype=”sub”

se se ˆ(zvr. zájmeno/částice) P7-X4- - - - - - - - - -
pos=”noun”, prontype=”prs”, re-
flex=”reflex”, case=”acc”, vari-
ant=”short”

s s-1 RR- -7- - - - - - - - - -
pos=”adp”, adpostype=”prep”,
case=”ins”

Mečiarovou Mečiarův ;S ˆ(*2) AUFS7M- - - - - - - - -
pos=”adj”, poss=”poss”, gen-
der=”fem”, number=”sing”,
case=”ins”, possgender=”masc”

vládou vláda NNFS7- - - - -A- - - -
pos=”noun”, negativeness=”pos”,
gender=”fem”, number=”sing”,
case=”ins”

nelze lze VB-S- - -3P-NA- - -

pos=”verb”, negativeness=”neg”,
number=”sing”, person=”3”, verb-
form=”fin”, mood=”ind”, tense=”pres”,
voice=”act”

téměř téměř Db- - - - - - - - - - - - - pos=”adv”

na na-1 RR- -6- - - - - - - - - -
pos=”adp”, adpostype=”prep”,
case=”loc”

ničem nic PW- -6- - - - - - - - - -
pos=”adj—noun”, prontype=”neg”,
negativeness=”neg”, case=”loc”

rozumně rozumně ˆ(*1ý) Dg- - - - - - -1A- - - -
pos=”adv”, negativeness=”pos”, de-
gree=”pos”

dohodnout dohodnout :W Vf- - - - - - - -A- - - -
pos=”verb”, negativeness=”pos”,
verbform=”inf”

? ? Z:- - - - - - - - - - - - - pos=”punc”
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as well as values of morphological categories were delimited in accordance with
their description in the academic grammar of Czech [25].

In spite of combinatorial restrictions implied by the language itself,9 there
is a considerable number of combinations of the category values attested in the
language data; cf. 1,574 different positional POS tags (and 71,503 different mor-
phological lemmas) assigned to 1,957,247 tokens of the PDT 3.0 data annotated
at the morphological layer. The positional POS tag, which allows for a combi-
nation of values of single categories, enables thus to describe the rich inflection
in an economical way (compare, for instance, the POS tag set used in the Penn
Treebank project [32]).

Besides a positional POS tag, each token was assigned a morphological lemma
composed of two parts at the morphological layer of PDT. The first part of the
lemma (so-called lemma proper) is a string of characters mostly correspond-
ing to the base form of the word (namely, nominative singular form of nouns,
nominative singular masculine of pronouns and numerals, nominative singular
masculine positive form of adjectives, infinitive form of verbs, and positive form
of adverbs).10 Since the lemma was proposed as a unique identifier, ambiguous
base forms were disambiguated with a digit attached by a hyphen to the string
of characters (cf. Lemmas assigned to prepositions za, s, and na in Table 3).

The second part of the lemma is a technical suffix. It is attached to the lemma
proper by an underscore. Technical suffixes do not occur with most lemmas; how-
ever, if needed, more technical suffixes are possible with a single lemma. The suffix
contains either a commentonverbal aspect (cf. the suffixof theverb lemmapokládat
in Table 3), or a comment explaining the respective meaning (suffix of the pronoun
se), a label identifying the named entity type ( ;S with the lemma Mečiar ův iden-
tifying surnames), or derivational information (namely, formally encoded changes
to be carried out to arrive at the base word; cf. ˆ(*2) with the same lemma: two
characters should be removed in order to get the base word Mečiar).

Motivated by the needs of parsing, machine translation and other NLP sub-
tasks, a method for conversion of different sets of POS tags has been developed:
Interset is a set of universal morpho-syntactic features to which tag sets used in
different corpora can be converted; it has been proposed as a sort of interlingua
for POS tags [71]. The most recent Interset version covers 64 different tag sets
of 37 languages [70]. See the positional POS tags used in PDT converted into
the Interset attribute–value structures in Table 3.

9 Generally speaking, there are typical nominal categories, such as case and gender,
which do not combine with verbal categories, such as person, tense, mood, and
voice. However, for instance, some Czech verb forms (past participle, transgressive)
are marked for gender.

10 With pluralia tantum nouns and other words with an incomplete or deficient par-
adigm, other forms are used instead of the canonical one; for instance, the plurale
tantum kalhoty ‘trousers’ is assigned the nominative plural form as a lemma.
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3 Annotation of Morphological Categories in the Prague
Dependency Treebank

3.1 Theoretical Background of the Prague Dependency Treebank:
Functional Generative Description

Functional Generative Description is a theoretical linguistic framework formu-
lated in Prague in the 1960s [48,49]. It is rooted in the structuralist approach
of the Prague Linguistic Circle; however, it has responded to similar stimuli as
foreign approaches with fundamentally different backgrounds.

FGD decomposes the language system into several levels;11 the “lowest” of
them corresponds to linear text (either spoken or written) whereas the “high-
est” level represents the linguistic meaning of the sentence and is modelled as a
dependency tree structure.12 Between these two levels (phonetic and tectogram-
matical level, respectively), another three levels were discerned in the original
proposal, namely the morphonological level, morphological level, and level of
surface syntax.

The theoretical fundamentals of FGD, to which – besides multiple levels –
the dependency approach to syntax and the theory of valency belong, served as
a starting point for the design of the annotation scenario of PDT [5]. Out of the
set of levels differentiated in FGD, three layers have been included in the PDT
scenario: the morphological layer, surface-syntactic layer, and tectogrammati-
cal layer. Differences between the layout of the PDT layers and levels in FGD
were motivated by the needs of NLP tasks, e.g. parsing, and were analysed by
Štěpánek [65].

The formalised approach to morphology as a separate level of the language
system model and the description of the meanings of morphological categories
at the tectogrammatical level is a stable part of the FGD framework13 and has
been adopted into the annotation scenario of PDT as well.

11 The present paper draws a terminological distinction between a level as a concept of
the theoretical framework of FGD and a layer as a part of the annotation scenario
of PDT.

12 An opposite perspective, i.e. the text as a surface string which is assigned a deeper
analysis, is justifiable as well; however, we stick to the perspective from the text as
a basis on the top of which analyses are built.

13 There are considerable similarities in dealing with morphology between FGD (and
PDT) and the Meaning-Text Theory (MTT). As in MTT even more levels are dis-
tinguished than in FGD, the morphological level in FGD corresponds mainly to
the deep-morphological representation in MTT but shares several features with
the surface-syntactic representation of this framework [34]. The function of mor-
phological categories is then a part of the deep-syntactic representation in MTT
(the attributes are called grammemes in MTT and grammatemes in FGD); see
Žabokrtský [74] for a more detailed comparison of these frameworks.
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3.2 History of the Prague Dependency Treebank

The Prague Dependency Treebank is a collection of Czech newspaper texts from
1990s, processed at four layers. At the first (non-annotation) layer, called word
layer, the source text is segmented into documents and paragraphs, tokens are
associated with unique identifiers. At the morphological layer, as the lowest
annotation layer, each token is assigned a positional POS tag and a lemma, see
Table 3. At the surface-syntactic (analytical) layer, the syntactic structure of each
sentence is represented as a dependency-tree structure. Nodes of the analytical
tree are in a one-to-one correspondence to tokens at the morphological layer
and are labelled with surface-syntactic functions (such as subject Sb, object Obj

etc.; Fig. 1). At the tectogrammatical layer (the highest layer of annotation), the

a-mf930713-044-p16s1

Pokládáte
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standardní ,
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AuxP

Obj AuxX

AuxC

AuxT AuxP
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Fig. 1. Sentence Pokládáte za standardńı, kdyč se s Mečiarovou vládou nelze téměř
na ničem rozumně dohodnout? ‘Do you find it standard when almost nothing can be
reasonably agreed on with Mečiar’s government?’ annotated at the analytical layer of
PDT 3.0. Nodes are labelled with word forms and surface-syntactic functions (e.g., Sb
for subject, Adv for adverbials, the Aux labels are assigned to different types of function
words)
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underlying syntactic structure of the sentence is also represented as a dependency
tree, which, however, differs from the analytical one in several aspects.

While every token annotated at the morphological layer has exactly one cor-
responding node in the analytical tree, the correspondence between the nodes of
the tectogrammatical tree and the analytical tree, which is nevertheless explicitly
recorded in the data in the form of cross-layer references, is not always one-to-
one, since only content words are represented as tectogrammatical nodes, and
new nodes are constructed for deletions (cf. the node with the lemma #PersPron

representing the pro-dropped subject pronoun of the verb pokládáte in Fig. 2)
or for grammatical elements which do play a role in the syntactic structure but
cannot be expressed in the surface shape of the sentence (see the #Cor node
in Fig. 2, which is the subject of the infinitive dohodnout se and is relevant for
coreference annotation). Nodes of the tectogrammatical tree were labelled with

– semantic roles (functors; e.g. ACT for Actor, PAT for Patient, MANN for
Manner),

– labels defining the type of the respective node and its semantic part of speech
(cf. the nodetype and sempos attributes),

– meanings of morphological categories (grammatemes), and
– labels identifying the node as an element of the topic or focus part of the

sentence; see Fig. 2.

Non-dependency relations are annotated on the top of dependencies in the tec-
togrammatical tree; see the coreference arrow in Fig. 2. Annotation at the tec-
togrammatical layer is documented in [35].

There are four releases of the PDT data available: PDT 1.0, PDT 2.0,
PDT 2.5, and PDT 3.0.14 PDT 1.0 was published in 2001 and contains data
annotated at the morphological layer and at the analytical layer [19]. Annota-
tion of both types is available for 1,583 documents (containing 1,255,590 tokens
in 81,614 sentences); there are also another 14 documents (469,652 tokens in
29,561 sentences) annotated at the morphological layer only and 314 documents
(251,743 tokens in 16,649 sentences) with analytical annotation only. A sample
of 3,490 tokens (in 203 sentences) with morphological and analytical annotation
is annotated at the tectogrammatical layer as well.

The complete three-layer annotation is available for a large part of the data
from PDT version 2.0 onwards. PDT 2.0, published in 2006 [16], contains 3,165
documents (with 833,195 tokens in 49,431 sentences) with morphological, analyt-
ical, and tectogrammatical annotations. Another 2,165 documents (with 670,544
tokens in 38,482 sentences) are annotated at the morphological and analytical
layer, and for yet another 1,780 documents (with 453,508 tokens in 27,931 sen-
tences) only morphological annotation is available in PDT 2.0. The data at each
layer were divided into train data (app. 80 % of the data set with the respective
annotation combination), development-test data (app. 10 %), and evaluation-test
data (app. 10 %).
14 A preliminary, test version of the treebank (PDT 0.5), containing 450 thousand

tokens in 26 thousand sentences, was compiled for the Summer Workshop on Lan-
guage Engineering at the Johns Hopkins University in Baltimore in 1998.
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In PDT 2.5 and PDT 3.0 (released in 2011 and 2013, respectively),15 the
texts of PDT 2.0 are enriched with new annotations at the tectogrammatical
and analytical layer, but neither the size of the data nor the portions of the data
annotated at individual layers have changed; particular mistakes were corrected
in the recent releases as well [3,4]. The following annotations were new in the
PDT 2.5 as compared to PDT 2.0:
– annotation of multiword expressions at the tectogrammatical layer,
– a new grammateme identifying a special usage of plural forms of nouns

(pair/group meaning) at the tectogrammatical layer,
– clause segmentation at the analytical layer.

For the PDT 3.0 release, the tectogrammatical layer was further modified:
– changes in the modality grammatemes,
– an extended annotation of coreference and bridging anaphora,
– annotation of discourse relations,
– genre specification.

Table 4. Values of the nodetype attribute assigned to each tectogrammatical node

nodetype
values

Description

complex Complex nodes represent nouns, adjectives, verbs, adverbs, and pronouns and

numerals; they are the only nodes assigned with grammatemes

root The root of the tectogrammatical tree is a technical node labelled with a unique

identifier of the sentence

atom Atomic nodes represent rhematisers, modal modifications (with functors RHEM,

MOD, respectively) etc.

coap Roots of coordination and apposition constructions are, according to the FGD

convention, assigned a lemma of the coordinating conjunction or an artificial

lemma of a punctuation symbol (e.g. #Comma)

fphr Nodes with the FPHR functor are parts of foreign phrases, i.e. they are

components of phrases that do not follow rules of Czech grammar

dphr Dependent parts of phrasemes represent words that constitute a single lexical

unit with their parent node (with the DPHR functor); the meaning of this

unit is not a sum of the meanings of its component parts

list Roots of foreign and identification phrases (with lemmas #Forn and #Idph)
were added into the tree as parent nodes of foreign phrases (i.e., nodes with

nodetype=fphr) or as parents of a multi-word named entity

qcomplex Quasi-complex nodes represent obligatory verbal complementations that are not

present in the surface sentence (they are mostly labelled with the same

functors as complex nodes but have a special lemma, e.g. #Gen)

15 Syntactically annotated PDT data of the particular versions are publicly accesible
via the PML Tree Query environment (https://lindat.mff.cuni.cz/services/pmltq/;
[38]) for searching.

https://lindat.mff.cuni.cz/services/pmltq/
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3.3 Morphology as a Layer of Annotation in the Prague
Dependency Treebank

As one can see from the history of the PDT releases, data of PDT were annotated
at the morphological layer first. Each token was assigned a positional POS tag
and a morphological lemma within a manual procedure which was preceded by
an automatic morphological analysis.

The manual annotation was carried out by eight annotators [21]. Each file was
annotated by two annotators in parallel, their task was a manual disambiguation
of results of the morphological analysis using the DA and LAW (Lexical Annota-
tion Workbench) editors of morphological annotations.16 When the lemma was
not offered by the tagger, it was created manually by the annotator and, subse-
quently, included into the morphological dictionary. After the parallel annotation
was finished, instances of disagreement were decided by a third annotator. See
the morphological annotation of a sentence in Table 3.

Annotation at the morphological layer was used during annotation at the
analytical and, more importantly, at the tectogrammatical layer, being the main
source of information for automatic assignment of grammatemes.

Morphological annotation, after a separate checking at this layer, was
involved in the cross-layer checking of analytical and tectogrammatical anno-
tations before the public release of the data. Štěpánek [64] gives examples of
rather simple comparisons of POS tag values with surface-syntactic functions
at the analytical layer and with functors at the tectogrammatical layer (e.g.
with conjunctions), and describes checking of named entity information involved
in the technical suffix of the morphological lemma against the tectogrammat-
ical annotation, or a complex verification whether all valency slots defined by
the valency lexicon are filled in with tectogrammatical nodes representing the
requested word forms.

Table 5. Frequency of the nodetype values in the PDT 3.0 data annotated at all three
layers

nodetype value Frequency

complex 550,909

root 49,431

qcomplex 45,995

coap 35,742

atom 34,032

fphr 4,553

list 2,515

dphr 1,283

16 https://bitbucket.org/jhana/feat-morph/wiki/Home.

https://bitbucket.org/jhana/feat-morph/wiki/Home
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3.4 Morphological Meanings at the Tectogrammatical Layer

Following the Praguian tradition of distinguishing form and function, functions
(meanings) of morphological categories are captured by grammateme attributes
in the tectogrammatical tree. The inclusion of grammatemes into the tectogram-
matical layer responds to the claim of self-containedness and unambiguity of the
sentence representation at each layer. If, for instance, meanings conveyed by the
grammatical number with nouns, degree of comparison with adjectives, or tense
with verbs were not specified at the tectogrammatical layer, several semantically
different sentences could be generated from a single tectogrammatical tree.

Since morphological meanings are conveyed only by some nodes of the tec-
togrammatical tree and, moreover, not all grammatemes are relevant for all
nodes, tectogrammatical nodes were classified in two subsequent steps. First,
eight general types of nodes were distinguished according to their functor and/or
tectogrammatical lemma in a fully automatic procedure. Grammatemes are rel-
evant for nodes of just one type (for complex nodes); cf. the nodetype values and
their frequency in PDT 3.0 in Tables 4 and 5.

Second, complex nodes were subdivided into four groups, called semantic
parts of speech (semantic nouns, semantic adjectives, semantic verbs, and seman-
tic adverbs) within which 19 more specific subgroups were discerned automat-
ically. Accordingly, the sempos attribute with 19 values was defined (Table 6).
Each subgroup was associated with a set of relevant grammatemes.

Table 6. Frequency of the sempos values in the PDT 3.0 data annotated at all three
layers

sempos value Frequency sempos value Frequency

n.denot 236,890 n.pron.def.demon 4,760

adj.denot 101,057 adj.pron.indef 3,383

v 88,026 adv.pron.indef 3,107

n.pron.def.pers 32,938 adv.pron.def 2,928

adj.quant.def 19,428 adj.quant.grad 1,865

n.denot.neg 18,832 adv.denot.grad.nneg 1,139

n.pron.indef 11,342 adv.denot.grad.neg 1,073

adv.denot.ngrad.nneg 8,996 adv.denot.ngrad.neg 751

n.quant.def 7,993 adj.quant.indef 655

adj.pron.def.demon 5,745

As annotation of grammatemes was the last task in the PDT 2.0 annotation
procedure, it could profit from the annotation at lower layers as well as from
annotations already done at the tectogrammatical layer (mainly from the tree
structure, functors, and coreference).
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Nearly 1,600,000 grammateme values in total (with more than 550 thousand
complex nodes) were assigned at the tectogrammatical layer of PDT 2.0, most
of them automatically. Manual annotation, carried out by two annotators in
parallel, with a follow-up decision by a third annotator in cases of disagreement,
is responsible for approximately 17,500 out of the grammateme values [42].

The set of grammatemes and values assigned at the tectogrammatical layer
was based on the FGD framework [49]. However, the repertoire has been revisited
and changed according to the recent linguistic research during the annotation of
individual PDT releases. In this paper, we present the grammateme annotation
which is available in PDT 3.0.

There are 15 grammatemes annotated at the tectogrammatical layer of
PDT 3.0. Grammatemes number, gender, person, politeness, and typgroup were
assigned to nodes classified as semantic nouns. The grammatemes degcmp, nega-

tion, numertype, and indeftype were annotated with semantic nouns and with
semantic adjectives. Semantic adverbs were assigned grammatemes degcmp, nega-

tion, and indeftype. Semantic verbs were assigned a special subset of verbal gram-
matemes: tense, aspect, factmod, deontmod, diatgram, and iterativeness.

Seven out of the 15 grammatemes correlate with morphological categories
which are traditionally addressed in the grammatical description of Czech. Nev-
ertheless, the grammateme values cannot be mostly interpreted from a single
word form (its POS tag), but a more complex structure including auxiliaries had
to be involved in the value assignment procedure (cf. grammatemes tense, fact-

mod, deontmod, or diatgram described below), or manual annotation was needed,
for instance, to assign number with pluralia tantum, absolute usage of com-
parative forms of adjectives and adverbs, or polite usage of 2nd person plural
verbs.

– The number grammateme captures the number of entities to which the par-
ticular noun refers. In most cases, the value (sg or pl) correlates with the
morphological category but is different, for instance, with pluralia tantum
nouns (e.g., otevřel dveře.sg na terasu ‘he opened the door to the terrace’ vs.
několikery dveře.pl ‘several doors’).

– Values of the gender grammateme (anim for animate masculines, inan for inan-
imates, fem and neut) correspond to the morphological gender of nouns, but if
the grammatical gender does not coincide with the natural gender, the gram-
mateme value was chosen according to the former one (cf. the neuter noun
děvče ‘girl’).

– The person grammateme (values 1 for the speaker, 2 for the hearer, and 3 for
a person/object it is talked about) was assigned with nodes representing pro-
nouns. The grammateme values were non-trivially interpreted from agreement
markers expressed by relevant verb forms.

– Values pos (positive), comp (comparative), and sup (superlative) of the degcmp

grammateme correspond mostly to the category of degree of comparison, but
comparative forms with an absolute (non-comparative) meaning were identi-
fied manually and assigned the third value acomp (e.g., starš́ı žena ‘an elder(ly)
woman’).
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Fig. 2. Sentence Pokládáte za standardńı, když se s Mečiarovou vládou nelze téměř
na ničem rozumně dohodnout? ‘Do you find it standard when almost nothing can be
reasonably agreed on with Mečiar’s government?’ annotated at the tectogrammatical
layer of PDT 3.0. Nodes are labelled with a tectogrammatical lemma, with a functor
(e.g. ACT, MANN), topic-focus annotation (in front of the functor), a nodetype value
(e.g., root or qcomplex), or a semantic part of speech and grammatemes (only with
complex nodes, displayed under the functor). The predicate node of the tree (functor
PRED) was assigned a sentence modality value (here, inter for interrogative sentences)

– Values of the tense grammateme distinguish the presented actions/states
according to whether they preceded the moment of utterance or another action
(ant), followed it (post), or happened simultaneously with it (sim). If the par-
ticular node represented a more complex verb form, the grammateme value
had to be interpreted carefully. For example, future verbal tense in Czech is
expressed by a simple inflected form (with perfectives; dohodne se ‘(he) will-
agree’), or by an auxiliary verb (imperfectives; bude pokládat ‘(he) will find’),
or by prefixing (lexically limited; cf. the future form pojede ‘(he) will-go’ of
the verb jet ‘to go’).
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– For the factmod grammateme, four meanings (values) were distinguished
according to the inner structure of the mood category in Czech, namely,
asserted for actions/states presented as given (mostly by an indicative verb
form), potential for potential events (expressed by a present conditional form),
irreal for events expressed by a past conditional, and appeal for required events
(conveyed by an imperative form).

– Values proc (processual/imperfective) and cpl (complex/perfective) of the
aspect grammateme correlate with the aspect information captured by the
technical lemma suffix at the morphological layer.

Another four grammatemes are considered grammaticalised meanings in the
FGD framework as well:

– Values polite and basic of the politeness grammateme were assigned to per-
sonal pronouns to distinguish the polite form (Vy .polite jste se už přihlásil?
‘Have you.polite logged in already?’) from a common usage (Vy .basic jste se
už přihlásili? ‘Have you.basic logged in already?’).

– The typgroup grammateme was included into the grammateme system to cap-
ture the pair/group meaning (like in koupil si boty ‘(he) bought a-pair-of
shoes’) expressed by plural forms; the pair/group meaning was delimited as
another meaning of plural in Czech (besides the common usage reffering to
several single entities, cf. vystaveny byly jen pravé boty ‘only right shoes were
displayed’; [58]).

– The diatgram grammateme captures meanings subsumed under grammati-
calised diatheses, which are expressed by different verbal forms with a scale
of auxiliaries: act for active voice, pas for passive voice, res1, res2.1 and res2.2

for different types of resultative forms, recip for recipient diathesis, disp for
verb forms expressing dispositional modality, and deagent for deagentive verb
forms.

– The deontmod grammateme was used to represent modal verbs as auxiliaries
at the tectogrammatical layer; seven values were delimited according to modal
meanings of necessity, possibility etc.

Even subsumed under the term of grammatemes, the following attributes
capture derivational morphology,17 rather than inflections:

– The iterativeness grammateme enables to represent an iterative verb by the
tectogrammatical lemma of its non-iterative counterpart.

– The negation grammateme represents the negative meaning (expressed mostly
by the ne- prefix) of nouns, adjectives and adverbs.18

– The indeftype grammateme made it possible to reduce pronouns and pronomi-
nal adverbs to a small set of lemmas at the tectogrammatical layer, exploiting
the semantically relevant regularities within this closed class [62]. Cf. the node

17 These derivations are subtypes of lexical derivation according to Kury�lowicz [30].
18 Negated verb forms are analysed differently at the tectogrammatical layer, namely,

they are decomposed into two nodes; cf. the verbal node with the lemma lze and
node with the artificial lemma #Neg representing the negation in Fig. 2.
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with the lemma co ‘what’ in Fig. 2, which represents the pronoun (na) ničem
‘(on) nothing’ (the negative semantic feature was captured by the negat value).

– Similarly, the numertype is used to capture the specific meanings of different
types of numerals (e.g. ordinal numerals, multipliers) that are represented by
the tectogrammatical lemma of the corresponding cardinal numeral.

In addition to the approach described above for selected derivational rela-
tions captured by grammatemes, two types of highly regular derivatives, namely
possessive adjectives and deadjectival adverbs, were converted into their base
words, i.e., into nouns and adjectives, respectively. Since both these types of
derivatives differ from their base words just in the function they play within the
tectogrammatical structure,19 it is sufficient to use the functor to encode the
difference between the derived word and the base; see the nodes with the lemma
Mečiar and rozumný ‘reasonable’ in Fig. 2.

Possible extension of the annotation of derivational morphology at the tec-
togrammatical layer is discussed in Sect. 4.3.

3.5 PDT-Style Annotations in Other Treebanks

Czech Academic Corpus, mentioned above in Sect. 2, has been converted from the
original annotation (carried out in the 1970s and 1980s) into the PDT annotation
scheme after the PDT 2.0 release; cf. CAC 1.0 [67] and CAC 2.0 [66]. CAC 2.0
contains morphological and analytical annotation for nearly 500 thousand tokens
(and another data portion with morphological annotation only) which is now
fully compatible with PDT.

Besides CAC, PDT annotation scenario has been used also for Arabic [17]
and English [12], and has served as one of the resources for annotation schemes
for Slovak (Slovak Treebank, which is a part of the Slovak National Corpus),
Slovenian (Slovene Dependency Treebank),20 Ancient Greek and Latin (Ancient
Greek and Latin Dependency Treebanks),21 and as an inspiration for other tree-
banking projects.

In 2011, an important project of bringing treebanks of different languages
(some of them just mentioned) under a common annotation scheme has been
proposed under the acronym HamleDT (HArmonized Multi-LanguagE Depen-
dency Treebank). Treebanks were harmonised into the Prague Dependencies
annotation style (based on analytical PDT annotation; [73]) and, recently, con-
verted into Stanford Universal Dependencies [33]. Thirty treebanks are available
in HamleDT 2.0 [43,72].22

19 They belong to syntactic derivation as defined by Kury�lowicz [30].
20 http://nl.ijs.si/sdt/.
21 http://nlp.perseus.tufts.edu/syntax/treebank/.
22 Stanford Universal Dependencies, the Interset interligua (mentioned in Sect. 2.2),

and Google universal POS tags [41] served as a basis for the annotation scheme
of the Universal Dependencies treebank project, the current version of which (Uni-
versal Dependencies 1.1; [1]) contains dependency annotated data for 18 languages
including Czech.

http://nl.ijs.si/sdt/
http://nlp.perseus.tufts.edu/syntax/treebank/
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4 Morphology in Named Entity Recognition,
Dependency-Based Machine Translation, and in a
Database of Derivational Relations in Czech

4.1 Named Entity Recognition in Czech

In a pilot approach to named entity (NE) classification and recognition, started
only in 2007 [60], technical suffixes of morphological lemmas were used as an
important resource for this task. Based on a survey of previous NE research
using a low number of coarse-grained categories (such as [9]) on the one hand, or
detailed categories (preferred in semantically oriented tasks, cf. [47]) on the other,
a two-level classification has been proposed for Czech, which is convenient for
both a robust processing and research interested in more subtle categorisation.

At the first level of the classification, ten rough categories were distinguished
and, at the second level, further subclassified into 62 detailed categories. For
instance, within the category of geographical names, subcategories of names of
continents, states, towns, hydronyms etc. were discerned. This classification was
used in the Czech Named Entity Corpus (CNEC), which consists of 6 thousand
sentences with more than 150 thousand tokens manually assigned with NE cat-
egories [57,61]. The data were used for development of several recognisers of NE
in Czech texts; cf. [26–28,55,60], and the most recent of them, NameTag [54,56],
which is an open-source tool for NE recognition, distributed along with trained
linguistic models.

4.2 Formemes in Dependency-Based Machine Translation

The complex dependency deep-syntactic analysis has been used as a transfer
layer in a machine translation system developed at the Institute of Formal and
Applied Linguistics, Faculty of Mathematics and Physics, Charles University
in Prague. The MT system, originally called TectoMT [75], has been extended
with a number of modules into a modular NLP framework Treex, which is either
available for installation from CPAN,23 or can be run on-line under the LIN-
DAT/CLARIN repository [46]. Recently, the Treex framework has been used,
for instance, in the QTLeap European machine translation project.24

The deep-syntactic analysis provided by the Treex framework has intro-
duced a special type of attributes, called formemes, into the deep-syntactic tree.
Formemes are node attributes in which the form of the word represented by
respective node is encoded by a combination of morphological and syntactic fea-
tures. Taking the example of the prepositional phrase s (Mečiarovou) vládou
in Fig. 2 and its English equivalent with (Mečiar’s) government, the formeme
n:with+X is to be assigned to the tectogrammatical node representing the (source)
phrase with government within the English-to-Czech machine translation, while
the node representing the (target) phrase s vládou is assigned the formeme n:s+7

23 See http://ufal.mff.cuni.cz/treex.
24 http://qtleap.eu/.

http://ufal.mff.cuni.cz/treex
http://qtleap.eu/
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in which the morphological case (7 for instrumental) is specified in addition to
the particular preposition. A complete list of formemes implemented in Treex
can be found in [7].

From the perspective of the PDT annotation scheme, information encoded
in formemes is a combination of information involved in POS tags at the mor-
phological layer and in surface-syntactic functions at the analytical layer of PDT
with selected auxiliary words (e.g., prepositions).

4.3 Derivational Morphology in Czech

Besides a basic NE annotation, the technical suffix of the morphological lemma
provides information on regular derivational relations as well.25 In PDT, deriva-
tional information involved in the lemma suffix at the morphological layer was
extended by derivational information captured in selected grammatemes or in
functors at the tectogrammatical layer (see Sect. 3.4).

This rather preliminary approach to interconnection of Czech derivational
morphology with inflections on the one hand, and with syntax on the other
has indicated the way how to overbridge the separation of derivations from
inflectional morphology which is documented in all representative grammars of
Czech.26

In order to put the annotation of derivations in PDT on a solid basis but,
primarily, to build a reliable resource of derivational data for Czech, a lexical
network of derivationally related words (DeriNet; [59]) is being developed. The
current version DeriNet 0.9 contains more than 305 thousand lexemes which were
connected with more than 117 thousand links that correspond to derivational
relations between pairs of lexemes (i.e., between a base lexeme and a lexeme
derived from it).27 The pairs of derivationally related lexemes can be arranged
into a tree graph; see the derivational tree with the root standard ‘standard’
(displayed by DeriNet Viewer)28 in Fig. 3.

The network was initialised with a set of lexemes whose existence was sup-
ported by corpus evidence. As the data were morphologically processed by the
Morče tagger, technical suffixes including derivational information were avail-
able, and were extensively used in creating derivational links in the network. This
starting annotation phase has been followed by several rounds of semi-automatic
annotation within which special attention had to be devoted to vowel and con-
sonant alternations that occur very frequently during derivation in Czech. Since
some of the alternations are involved in the inflectional paradigm as well, recent
efforts in exploiting the inflectional morphological dictionary seem to make it

25 A limited derivational analysis is carried out also by the ajka analyser (see Sect. 2.1).
26 In Czech linguistics, derivation is separated from inflectional morphology, being

described as the core part of word-formation, which is kept apart from the gram-
matical module; only inflectional morphology and syntax are supposed to constitute
the grammatical structure of Czech.

27 http://ufal.mff.cuni.cz/derinet.
28 http://ufal.mff.cuni.cz/derinet/viewer.

http://ufal.mff.cuni.cz/derinet
http://ufal.mff.cuni.cz/derinet/viewer
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Fig. 3. The derivational tree of the noun standard ‘standard’ in the lexical network
DeriNet

possible to build a model of alternations which will enable to couple deriva-
tionally related lexemes automatically with a high precision even if they differ
substantially due to the alternations.29

Though DeriNet is still being developed (besides exploitation of the inflec-
tional data, the main focus is on addition of new edges and correction of mis-
takes),30 it is, to the best of our knowledge, the most complex and the only
freely available resource of derivational data for Czech, and it belongs to a rela-
tive small number of derivational resources in general (cf. CELEX [2] for English,
German and Dutch, DerivBase for German [69], DerivBase.Hr for Croatian [63],
or most recently, the Démonette network for French [22]).

After arriving at a final version of the DeriNet data, semantic labelling of the
derivational relations is proposed as the next step. Here, dealing with ambiguity
and homonymy is expected to be the biggest challenge.31

The DeriNet network enriched with semantic labels is then envisaged to be
used as the main resource for an extension of the derivational annotation of
tectogrammatical data in PDT. Nevertheless, it is expected that only the most
frequent semantic classes of derivatives with a transparent derivational meaning
will be processed in order not to “overload” the data and to keep them usable
for both NLP tasks and linguistic research.
29 For instance, one of the changes occurring during derivation of the adjective sněžný

‘snowy’ from the noun sńıh ‘snow’ is present in the inflectional paradigm of the noun
(sńıh.nom.sg – sněhu.gen.sg).

30 One of the current mistakes is documented in the tree in Fig. 3: the noun nestandard-
nost ‘non-standardness’ is to be captured as derived either from the noun standard-
nost ‘standardness’, or from the adjective nestandardńı ‘non-standard’ (which is not
included in the network, though).

31 For instance, the suffix -ka is used both in diminutives and female nouns (e.g. skř́ıň
‘cupboard’ > skř́ıňka ‘small cupboard’, učitel ‘teacher’ > učitelka ‘female teacher’),
and, on the other hand, several meanings are expressed by formally different affixes
in Czech (e.g. female nouns are derived by the suffixes -ka, -yně, -ice, -ovna and
several others).
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5 Conclusions

The aim of the present paper was to put together a complex picture of the role
of morphology in the richly annotated data of the Prague Dependency Tree-
bank. Morphological annotation constitutes a separate layer in the treebank,
nevertheless, it has been used as a source of information encoded at the higher,
structural layers of annotation. Correlations between morphological categories
captured at the morphological layer and grammateme attributes included in the
tectogrammatical tree were analysed in detail.

Though tagging has been discussed to be a sort of solved task for at least
“sufficiently resourced” languages [10], probably including Czech, it is still an
interesting and appealing task since, particularly in a morphologically rich lan-
guage like Czech, a high-quality lemmatisation and POS tagging are considered
a common prerequisite of most NLP tasks.

In the paper we briefly outlined several topics that are based on morphological
tools, and on morphologically annotated data as well. An outlook, concerning the
proposed extension of the tectogrammatical annotation with derivations, docu-
ments the importance of morphology in efforts to deepen the syntactic analysis
of language data.
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Missilä, A., Montemagni, S., Nivre, J., Nurmi, H., Osenova, P., Petrov, S., Piitu-
lainen, J., Plank, B., Prokopidis, P., Pyysalo, S., Seeker, W., Seraji, M., Silveira,
N., Simi, M., Simov, K., Smith, A., Tsarfaty, R., Vincze, V., Zeman, D.: Universal
Dependencies 1.1. LINDAT/CLARIN digital library at Institute of Formal and
Applied Linguistics, Charles University in Prague (2015). http://hdl.handle.net/
11234/LRT-1478

2. Baayen, R.H., Piepenbrock, R., Gulikers, L.: The CELEX lexical database (release
2), Data/software. Linguistic Data Consortium, Philadelphia (1995)
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34. Mel’čuk, I.A.: Dependency Syntax: Theory and Practice. State University of New
York Press, New York (1988)

http://hdl.handle.net/11858/00-097C-0000-0001-4872-3
http://repository.upenn.edu/cis_reports/237/


24 M. Ševč́ıková
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is necessary. In: Šimková, M. (ed.) Insight into the Slovak and Czech Corpus Lin-
guistics, pp. 26–44. Veda, Bratislava (2006)
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97, 194–207 (2014)

41. Petrov, S., Das, D., McDonald, R.: A universal part-of-speech tagset. In: Proceed-
ings of the 8th International Conference on Language Resources and Evaluation
(LREC 2012), pp. 2089–2096. ELRA, Istanbul (2012)
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J., Žabokrtský, Z.: HamleDT 2.0. LINDAT/CLARIN digital library at Institute of
Formal and Applied Linguistics, Charles University in Prague (2014). http://hdl.
handle.net/11858/00-097C-0000-0023-9551-4
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Abstract. We consider the statistical lemmatization problem in which
lemmatizers are trained on (word form, lemma) pairs. In particular, we
consider this problem for ancient Latin, a language with high degree of
morphological variability. We investigate whether general purpose string-
to-string transduction models are suitable for this task, and find that
they typically perform (much) better than more restricted lemmatiza-
tion techniques/heuristics based on suffix transformations. We also exper-
imentally test whether string transduction systems that perform well on
one string-to-string translation task (here, G2P) perform well on another
(here, lemmatization) and vice versa, and find that a joint n-gram model-
ing performs better on G2P than a discriminative model of our own mak-
ing but that this relationship is reversed for lemmatization. Finally, we
investigate how the learned lemmatizers can complement lexicon-based
systems, e.g., by tackling the OOV and/or the disambiguation problem.

1 Introduction

Lemmatization can be defined as the normalization task of mapping the inflected
forms of lexical words to their canonical form, i.e., their lemma (cf. [5,6,12]).
A related problem is stemming, in which the variability of word forms is reduced
by mapping different variants to a common root or stem, which may be a
crude abstraction that does not need to correspond to any valid linguistic unit.1

Lemmatization and stemming are important preprocessing steps in information
retrieval, text mining, and knowledge discovery.

In this work, we view the lemmatization problem within the general string-to-
string translation setup of mapping arbitrary strings x ∈ Σ∗ to arbitrary other
strings y ∈ Γ ∗, where Σ and Γ are arbitrary alphabets (finite sets). While this
setup would also include other natural language processing (NLP) tasks such as

– grapheme-to-phoneme conversion (G2P) [2,11], in which x is a letter-string
and y is a string of phonemes,

– transliteration [21], in which x is a word form in one script (e.g., Cyrillic,
Hebraic, Latin, etc.) and y is a corresponding form in another script, or

– spelling error correction [4], in which x is a wrongly spelled word form and y
its desired correction,

1 In stemming, all that typically matters is that related words map to the same (lin-
guistic or even non-linguistic) object.

c© Springer International Publishing Switzerland 2015
C. Mahlow and M. Piotrowski (Eds.): SFCM 2015, CCIS 537, pp. 27–40, 2015.
DOI: 10.1007/978-3-319-23980-4 2



28 S. Eger

our focus is, as indicated, on the lemmatization task in which x is a word form
and y its lemma. Our statistical problem is to learn mappings x �→ y from pairs
of strings {(xi,yi) | i = 1, 2, 3, . . .}.

As [12] point out, the difficulty of the lemmatization problem heavily depends
on the types of natural languages involved. While lemmatization is consid-
ered relatively easy in highly analytical languages such as English, the problem
becomes considerably more difficult in languages that exhibit sufficient mor-
phological variability, such as the Slavic languages or ancient Greek and Latin.
In these, “stems can combine with many different suffixes, and the selection of
appropriate ending and its combination with the stem depends on morpholog-
ical, phonological and semantic factors” [12]. In the present work, our focus is
on lemmatization in ancient Latin, because, on the one hand, ancient Latin is
a prime exemplar of a language with rich morphology in which more than hun-
dred distinct forms may be associated with a single (e.g., verb) lemma. On the
other hand, we are currently actively developing several NLP tools for ancient
Latin,2 of which a lemmatizer (as well as, in subsequent steps, a POS tagger and
a parser) is an integral part.

Arguably, the most well-researched domain within the field of string-to-string
translation is G2P and it is tempting to simply apply one of the existing G2P
toolkits to the problem. Our approach in this work is indeed to evaluate how
standard G2P models perform on the lemmatization task and how their per-
formance relates to standard statistical lemmatizers. As one of our results, we
will show that two of the general G2P models that we review, a standard joint
n-gram model and a discriminative model of our own making, not only perform
orders of magnitude better than two off-the-shelf lemmatizers on the G2P prob-
lem, but also considerably better on the lemmatization task. We also show that
ordering of performance relationships is not necessarily preserved across string
transduction problems. More precisely, we show that the joint n-gram modeling
that we test is considerably better on G2P conversion than our own discrimina-
tive model, but that this relationship is reversed on the lemmatization task. After
reviewing the models in Sect. 2, we briefly outline our data base in Sect. 3, and
conduct performance comparisons in Sect. 4. In this section, we also investigate
how our learned lemmatizers may complement lexicon-based lemmatizers, e.g.,
by tackling the out-of-vocabulary (OOV) problem and/or by disambiguation.
We conclude in Sect. 5.

Concerning related work, Porter stemmer [19] is a rule-based heuristic for
solving the stemming problem in English. The approaches that we survey in
the current work are much more closely related to modern machine learning
approaches for string transduction. For instance, Dreyer and Eisner [6] present
a discriminative log-linear model learning latent classes and apply it to lemma-
tization. Gesmundo and Samardzic [9] reformulate lemmatization as a tagging
problem in a setting where they assume that lemmas are derived from word
forms by prefix and suffix transformations and the tag label encodes the substi-
tution patterns. Toutanova and Cherry [23] show that considering lemmatization

2 See, e.g., https://prepro.hucompute.org/.

https://prepro.hucompute.org/


Designing and Comparing G2P-Type Lemmatizers 29

and part-of-speech tagging jointly may be mutually beneficial. Their character-
based lemmatization module is similar to the G2P-type lemmatizers we consider
below but only considers one-to-one character transformations plus a heuristic
for dealing with suffixes.

2 Models

In this study, we rely on the following software/models for learning the lemma-
tization problem.

– Phonetisaurus [18] implements a joint n-gram model [2] in a weighted finite
state transducer setup, and has originally been designed for G2P conversion.
Like our own modeling, Phonetisaurus can be used in a more general setting,
however, to learn to transduce arbitrary input sequences into arbitrary output
sequences. Phonetisaurus seems to perform on par or better than competitors
on the G2P problem and trains and decodes orders of magnitudes faster [18].3

– LemmaGen [12,13] is a lemmatizer that learns ‘if-then’ rules from (x,y) pairs
as shown in Table 4. To transduce/lemmatize a new input form, rules (and
their exceptions) are ordered, and the first condition that is satisfied fires the
corresponding rule [12]. Importantly, LemmaGen learns to transduce word
form suffixes into lemma suffixes, so it might be prone to committing errors,
e.g., when initial or middle parts of word forms need to be adjusted to generate
the correct lemma.

– Mate [3] provides a full pipeline of lemmatization, tagging, morphological
tagging, and dependency parsing. It is trainable on appropriate input format.
In our context, we only train the lemmatizer module of the pipeline.

Our own modeling implements a two-stage tagging procedure to translate
input strings into output strings. In the first stage, an input word is segmented
into parts using a sequence labeler (tagger) that maps input character sequences
to ones or zeros, depending on whether a split occurs at the given character
position. In the second stage, each part of the segmented input string is tagged
with an output string subsequence. Table 1 illustrates. The training data for both
sequence labelers is taken from monotone many-to-many aligned input strings as
in Table 2.4 The second stage tagger directly trains on the aligned data, while the
first stage tagger learns sequence segmentations from the segmented x sequences
in the alignments using a binary coding scheme (cf. [1,7]). Table 3 illustrates
this—note that we encode a split as a ‘1’ and a non-split (continuation) as a ‘0’.

As a tagging model, we use linear chain conditional random fields (CRF)
[14].5 This allows us to include arbitrary features in the tagging process. We use
the following:
3 In our experiments below, we choose an n-gram order of size 6 for Phonetisaurus.

Increasing n-gram order size did not lead to better performance in preliminary tests.
4 We use the alignments produced by the Phonetisaurus toolkit.
5 Although CRFs are rather old and typically not always the best-performing sequence

labeling models [17], we use them here mainly for practical reasons. In particular,
the CRF package we are using, available from https://code.google.com/p/crfpp/,
provides a very convenient interface to modeling sequence labeling.

https://code.google.com/p/crfpp/
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Table 1. Sample decoding phase.

præformet � p-r-æ-f-o-r-m-et
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
p-r-ae-f-o-r-m-o

passvrarum � p-a-ss-vra-rum
↓ ↓ ↓ ↓ ↓
p-a-ti- o - r

Table 2. Sample aligned input string pairs (x,y).

d-i-s-s-o-n-verat d-i-s-s-o-n-o

c-o-n-r-e-ct-v-s c-o-n-r-i-g-e-o

j-m-p-e-d-i-o i-m-p-e-d-i-o

c-o-m-p-u-t-aris c-o-m-p-u-t-o

t-e-r-r-e-batvr t-e-r-r-e-o

a-d-i-u-t-o-rivm a-d-i-u-t-o-r

p-r-a-e-p-e-d-i-m-e-n-t-a p-r-a-e-p-e-d-i-m-e-n-t-um

u-n-d-e-c-i-m-am u-n-d-e-c-i-m-a

d-u-l-c-i-l-o-c-u-t-i-ssimarum d-u-l-c-i-l-o-c-u-t-u-s

Table 3. Word forms x from Table 2, corresponding segmentations and binary encod-
ings of the segmentations.

Word form Segmentation Binary encoding

dissonverat d-i-s-s-o-n-verat 01111110000

conrectvs c-o-n-r-e-ct-v-s 011111011

jmpedio j-m-p-e-d-i-o 0111111

computaris c-o-m-p-u-t-aris 0111111000

terrebatvr t-e-r-r-e-batvr 0111110000

adiutorivm a-d-i-u-t-o-rivm 0111111000

praepedimenta p-r-a-e-p-e-d-i-m-e-n-t-a 0111111111111

undecimam u-n-d-e-c-i-m-am 011111110

dulcilocutissimarum d-u-l-c-i-l-o-c-u-t-i-ssimarum 0111111111110000000

(1) Contextual features: for each input symbol (a character or a subsequence
of characters), we include all character subsequence m-grams (unigrams,
bigrams, trigrams, etc.) that fit inside a window of size 6 around the current
input symbol position.6 To illustrate, when the second stage tagger views
the current input position e in the input word form c-o-n-r-e-ct-v-s, it sees
that the next position contains ct, the previous position contains r, etc.; the
next two positions contain (ct,v), etc.

6 Increasing window size typically does not lead to better performance, as we verified
in preliminary experiments.
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(2) Linear-chain and transition features: These include features between subse-
quent output symbol characters (character subsequences) as is the defining
property of linear chain conditional random fields.

(3) Intra-subsequence-character features: We also include features that allow the
second stage tagger to not only see the character subsequence at the current
input position but also the characters that constitute it. For example, rather
than merely knowing that the last input position of d-i-s-s-o-n-verat is verat,
the tagger would also know that verat is made up of the characters v, e,
r, a, t. This may help the classifier in case longer character subsequences
are sparse. Since additional features increase computational costs, we only
include unigram intra-subsequence-character features.

We call the system that includes features (1) and (2) AliSeTra (for align-segment-
translate), while we refer to the system that in addition includes features (3) as
AliSeTra++. We also note that our design of phrasing string transduction as a
(two-stage) sequence labeling approach is, per se, nothing novel — it is one of
the standard paradigms in G2P (cf., e.g., [10,11]).

3 Data

Our data base is a huge Latin lexicon containing almost 10 million distinct word
forms subsumed under more than 100,000 lemmas [8,15]. This lexicon has been
semi-automatically created from several freely available Web resources and via
lexical expanders and subsequent manual correction (where necessary). Of these
forms, almost 80 % belong to the open word classes nouns, verbs, and adjectives,
on which we will focus in the remainder of this work.7 Our task will be to learn
to lemmatize Latin word forms falling under the named word classes from pairs
of examples as shown in Table 4.

Table 4. Example string pairs in the data base. (Potential) substitution patterns
highlighted for clarity of exposition.

Verbs

ingemuistis ingemisco
exmactauissetis exmacto
conrectvs conrigeo
emundatarum emundo
superintexere superintego
disputebant disputeo

Nouns

principibvs princps
fragi fragum
chyrogrillio chyrogrillius
adversatvm adversatus
erupturus erupturus
sciothericorvm sciothericum

Adjectives

denuntiatissimam denuntiatus
perrectas perrectus
dedolatiores dedolatus
praestantioribvs praestans
infortunatissimvs infortunatus
resoniores resonus

7 Typically, word forms in other word classes are also not inflectional, so that the
learning problem would be trivial.
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4 Evaluation

We now evaluate the four described systems. We start with an evaluation on
a G2P conversion task, in order to see how the systems perform in a string-to-
string translation setting different from lemmatization. We train and evaluate all
systems on the General American (GA) variant of the Combilex [20] G2P data
set. Throughout our evaluation settings, we use word accuracy as our evaluation
measure, defined as the fraction of correctly transduced forms in the test set,
i.e., it is defined as the number of strings xi in the test set that satisfy ŷi = yi,
divided by the size of the test set. Here xi is an input form, yi is the gold
standard reference and ŷi is the prediction of a specific system. Word accuracy
is a strict measure that penalizes even tiny deviations from the gold standard,
but is nowadays the most common in G2P and related fields.

4.1 Testing G2P Performance

Table 5 gives results when we train the systems on training sets of size 2,000,
5,000, and 10,000, respectively, and test them on a disjoint set of string pairs of
size 28,609. Phonetisaurus is clearly best in all settings, with a margin of about
7–20 % over AliSeTra, depending on training set size. AliSeTra++ performs
slightly worse than AliSeTra in two out of three training set size cases, indi-
cating that the additional features tend to harm in this case, which could be due
to the fact that the system now must estimate additional (possibly irrelevant)
parameters and due to stronger overfitting given the additional degrees of free-
dom (see also the discussion below). In any case, difference between AliSeTra++
and AliSeTra is marginal. Both AliSeTra/++ and Phonetisaurus perform strik-
ingly better than each of LemmaGen and Mate on the G2P conversion task. For
example, at a training set of size 10,000, Phonetisaurus has about 66 % of the
test inputs correct, while LemmaGen has only 6.82 % correct (i.e., accuracy is
about 10 times higher for Phonetisaurus) and Mate 1 %.

Table 5. Word accuracy in % as a function of training set size. G2P data.

2,000 5,000 10,000

AliSeTra++ 38.33 51.98 61.26

AliSeTra 36.64 52.43 62.13

Phonetisaurus 44.60 57.62 66.67

LemmaGen 2.29 4.42 6.82

-last-4-chars 15.30 22.33 36.82

Mate 0.39 0.76 1.00

-on-training 89.17 97.49 95.26

Looking at the reasons for this discrepancy, we find that, as we have already
outlined when introducing the systems, LemmaGen can essentially only
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transform the endings of strings, which results in errors for virtually all long
words. In fact, when we test accuracy comparing only the last four charac-
ters of ŷi with the last four of yi, we find that the accuracy of LemmaGen
increases substantially, but is still at a much lower level than either Phoneti-
saurus or AliSeTra. For instance, at a training set size of 10,000, word accuracy
of Phonetisaurus (AliSeTra) is still 81 % (68 %) higher than that of LemmaGen,
even in this favorable setting for LemmaGen. The performance of Mate is even
(considerably) worse than that of LemmaGen. This is not due to the fact that
input and output alphabets are different in G2P conversion, as the performance
on the training data shows. Here, Mate achieves accuracy of up to 97 %, indicat-
ing that the system may be entirely overfitting the training data (e.g., storing
training data instances as lexical entries and learning minimal transformation
regularities).8

4.2 Testing Lemmatization Performance

Next, we investigate performance on the lemmatization task. Figure 1 shows
learning curves—accuracy as a function of training set size—for all systems when
the systems are exclusively trained and tested on verbs. We distinguish two
modes of testing:

– In-domain-testing : In in-domain testing, training and test data contain forms
that belong to the same lemma. For example, the training data might contain
the form amavisse, while the test data might contain the form amas, both of
which have amo as a lemma (however, no form in the test data also occurs in
the training data).

– Out-domain-testing : In out-domain testing, the test data contains only forms
whose lemmas do not underlie any form in the training data.

In-domain and out-domain testing intend to address different application scenar-
ios. If a statistical lemmatizer is primarily used for lemmatizing out-of-vocabulary
(OOV) forms,9 out-domain-testing would be the more relevant criterion for suit-
ability of the lemmatizer. In a less restricted application scenario for the lem-
matizer, results of in-domain-testing would likely be the more relevant statistic,
particularly if training sets are large enough, since in this case, most forms to be
lemmatized in a text will either have been seen in the training data or, at least,
may be expected to be morphologically related to forms in the training data.

The figure shows that AliSeTra++ performs best now, with a slight but con-
sistent margin over AliSeTra. Particularly in out-domain testing, AliSeTra/++
perform substantially better than Phonetisaurus where difference in performance
8 In fact, it seems that Mate simply stores input strings that occur fewer than 5 times,

rather than learning substitution patterns from these (personal communication with
Bernd Bohnet). Thus, the evaluation scenario adopted in this work puts Mate at
a general disadvantage, since we generally train systems on arbitrary lists of word
pairs selected from a lexicon rather than on the distributions found in ‘real’ text.

9 E.g., when the lemmatizer is developed to assist a lexicon-based lemmatizer.
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Fig. 1. Word accuracy as a function of training set size. Left: In-domain testing. Right:
Out-domain testing. Verbs.

is between 5 and 12 %. Again, all three of the general string transduction systems
have considerably higher word accuracies than either LemmaGen or Mate, but
differences are much less pronounced than on the G2P conversion task. In fact,
in out-domain-testing, LemmaGen performs even better than Phonetisaurus, for
particular training set sizes. It is also worthy to note that LemmaGen and Mate
perform relatively stable over in-domain vs. out-domain testing, while AliSe-
Tra/++ and Phonetisaurus seem to suffer more from overfitting (put positively:
can better adapt to the distribution of the training data).

As to why AliSeTra++ performs better than AliSeTra on the verb lemmati-
zation task, an intuitive explanation would be that average segment length in the
string transduction task is correlated with effectiveness of the intra-subsequence-
character features, since longer segments are sparser and therefore harder to
estimate as whole chunks. In fact, average length of a segment in verb lemma-



Designing and Comparing G2P-Type Lemmatizers 35

Table 6. Test set sizes.

Verbs Nouns Adjectives

In-domain 20,000 20,000 20,000

Out-domain 206,347 39,454 83,295

tization is 1.53, with a maximum segment length of 10—cf. the aligned pair
(m-i-r-arenturque,m-i-r-o)—while average length of a segment in the G2P data
set is 1.14, with a maximum length of 2—cf. the aligned pair (gu-a-r-a-n-t-ee-d,
g-a-r-@-n-t-i-d).

In Tables 7, 8, and 9, we report word accuracies for the different systems on
the three word classes verbs, nouns, and adjectives. Each system is trained ten
times, on randomly extracted and not necessarily disjoint training sets of size
40,000. These training sets contain only (word form, lemma) pairs that belong to
the respective word classes. The tables report average and simple majority vote
results when each system is tested on in-domain and out-domain data, as before.
Test set sizes are indicated in Table 6. Generally, the same conclusions as for the
values shown in Fig. 1 apply—namely, that AliSeTra/++ and Phonetisaurus per-
form considerably better than LemmaGen and Mate, and that AliSeTra/++ typ-
ically perform best among all systems (particularly in the out-domain setting).

Table 7. Word accuracy in % for different systems, verbs. Each system is trained on 10
random subsets of the training data of size 40,000 each. Average and simple majority
vote results indicated. In bold: Statistically indistinguishable best performances.

Avg-InDomain Maj-InDomain Avg-OutDomain Maj-OutDomain

AliSeTra 87.89 89.07 81.78 82.94

AliSeTra++ 88.42 89.72 83.09 84.51

Phonetisaurus 86.98 89.64 73.78 78.40

LemmaGen 78.23 81.45 76.91 80.19

Mate 66.10 67.98 64.36 66.63

Error Analysis. For verbs, typical errors are mismatches of -or/-o endings.
Such distinctions are very hard to learn for the statistical lemmatizers because
it requires to know whether a verb is a deponent verb, that is, lacks active forms.
This can actually not be regularly predicted from the characters that constitute
a form, but would require lexical knowledge. Also, mismatches between conju-
gation classes is a common source of error. For example, the verb transpicio
(‘look through’) is third conjugation class, for which the -i- ending of the stem is
characteristic. A wrong lemmatization might assign a form in the morphological
paradigm of transpicio the lemma transpico, which contains the characteristic
ending for the (most common) first conjugation class. For nouns, the decoding
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Table 8. Word accuracy in % for different systems, nouns. Each system is trained on
10 random subsets of the training data of size 40,000 each. Average and simple majority
vote results indicated. In bold: Statistically indistinguishable best performances.

Avg-InDomain Maj-InDomain Avg-OutDomain Maj-OutDomain

AliSeTra 78.25 79.98 74.11 75.84

AliSeTra++ 77.76 80.96 74.31 75.92

Phonetisaurus 76.74 79.28 72.98 75.64

LemmaGen 75.37 78.09 72.74 75.85

Mate 72.90 73.53 70.26 71.98

Table 9. Word accuracy in % for different systems, adjectives. Each system is trained
on 10 random subsets of the training data of size 40,000 each. Average and simple
majority vote results indicated. In bold: Statistically indistinguishable best perfor-
mances.

Avg-InDomain Maj-InDomain Avg-OutDomain Maj-OutDomain

AliSeTra 92.13 93.18 87.21 87.94

AliSeTra++ 91.50 92.14 87.28 87.90

Phonetisaurus 91.80 93.57 84.57 86.09

LemmaGen 85.37 86.20 84.49 85.77

Mate 71.16 71.70 70.32 71.67

problem is even more difficult for the statistical lemmatizers because gender
(e.g., -us (masculine) vs. -um (neuter) lemma ending) is, to a significant degree,
arbitrary and therefore unpredictable. Moreover, many declination classes have
identical endings for forms in certain slots of the morphological paradigms (e.g.,
-is ending in dative plural for nouns that belong to both first as well as second
declension), which is another source of difficult-to-predict error. In many of these
instances, a lexicon could act as a filtering device (see below).

As to why the joint m-gram modeling Phonetisaurus performs worse than
the discriminative model in the lemmatization task but not the G2P setting, we
find that there are significantly more distinct ‘graphones’ (pairs of correspond-
ing input-output subsequences such as (a,a) or (arenturque,o)) in a comparable
quantity of aligned (x,y) pairs (e.g., 1,217 vs. 725 distinct graphones in a lemma
vs. G2P data set, respectively, in a list of 10,000 aligned pairs), so that the basic
entity of the joint m-gram model, the graphone, is harder to estimate.

4.3 Text Evaluation

We also present an evaluation of ‘real-world’ lemmatization, i.e., when the pre-
sented lemmatizers are used for the lemmatization of word forms in the context
of sentences. To this end, we extract all words in all sentences from Perseus [22].
We discard all upper-case forms (since upper case forms generally do not occur
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Table 10. Word accuracy for different systems. Each is trained 10 times on 120,000
(word form, lemma) pairs as described in the text. Type accuracy is the fraction of
unique word forms lemmatized correctly, while token accuracy also takes frequency of
word forms into account (irregular forms, which are harder to learn, are typically much
more frequent). In bold: Statistically indistinguishable best performances.

AliSeTra++ Phonetisaurus LemmaGen Mate

Type Average 61.09 57.67 53.07 46.71

Majority 63.83 60.96 57.40 49.12

Token Average 54.38 50.04 47.01 41.43

Majority 57.07 52.09 52.11 44.12

in the above outlined training data), and all word forms that the Perseus gold
standard does not classify as either verbs, adjectives, or nouns.

Instead of training lemmatizers separately on each word class and then trying
to resolve the resulting ambiguity upon lemmatizing a new test form x, we
directly train lemmatizers on word forms from all word classes.10 Hence, we
train each lemmatizer on a total of 120,000 word forms, consisting of 40,000 verb
pairs, 40,000 noun pairs, and 40,000 adjective pairs each. Results are shown in
Table 10. As can be seen, AliSeTra++ performs again best and the ordering of
systems is (about) the same as in the previous experiments, i.e., AliSeTra++ >
Phonetisaurus > LemmaGen > Mate. We omit indicating the results of AliSeTra
because the CRF typically takes hours to days to train on the given training set
size.

To say a word on why results appear relatively weak compared to the previ-
ously outlined, we note the following:

– Perseus sometimes indicates lemma variants as gold standard for input forms
(e.g., in Latin i/j and u/v alternation are typically considered free variants).
We count such phenomena as errors although, from a linguistic point of view,
these would not constitute real errors. Still, from an evaluation perspective,
this does not matter since conditions for all systems are the same.

– Most importantly, note that our training distributions do not represent the
actual distributions of word forms in text. For example, we include equal
numbers of verbs, nouns, and adjectives in training, but such a distribution is
not likely to hold for real text.

– We note, however, that when we increase training set size from 120,000 word
pairs to more than 3 million word pairs, type accuracy for LemmaGen
increases from about 53 % to more than 76 % and token accuracy increases
from about 47 % to more than 74 %. Training the other lemmatizers on much
more data would be the logical next step, but is omitted in this evaluation
because training times are considerable.

10 We also performed the alternative decoding strategy where lemmatizers are sepa-
rately trained, but found it to perform worse.
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Table 11. Combining a lexicon and statistical lemmatizer.

Type Token

Lexicon 72.21 69.11

Lexicon + AliSeTra++ 76.22 71.38

Table 12. TreeTagger lemma token accuracy on a subpart of the PL and accuracy
values when the lemmatizer is complemented by our trained lemmatizers.

Token Accuracy

TreeTagger 86.23 %

TreeTagger + AliSeTra++ 88.56 %

TreeTagger + LemmaGen 89.37 %

Finally, we address two more questions in the context of real-world lemma-
tization. The first is how a lexicon can be combined with the trained lemmatizers
that we have outlined. To this end, we (a) lemmatize each word in Perseus with
simple lexicon look-up: if the word form is in our lexicon (see Sect. 3), retrieve
the corresponding lemma. If several lemmas are associated with the form, pick
one of them randomly. This strategy leads to a word type accuracy of 72.21 %
(average over ten runs). Most problems in this case are due to lemma ambiguity:
while the lexicon has an OOV rate of only 1.03 %, each form is on average asso-
ciated with 1.49 lemmas. For example, for the form canis the lexicon outputs
the lemma suggestions canes, cania, cano, canum, canus, canis. Alternatively,
(b) for each form to lemmatize, we let AliSeTra++ output its k-best lemma sug-
gestions (we choose k = 10) and choose the first-best that occurs in the lexicon.
If none of the k best is in the lexicon, we simply choose the first-best suggestion
of AliSeTra++. Table 11 shows that this leads to a type accuracy of 76.22 %,
which is not only considerably better than AliSeTra++’s performance without
a lexicon (61.09 %) but also better than the lexicon itself.

Secondly, we ask how our trained lemmatizer can complement an existing tag-
ger or lemmatizer. To this end, we download the Latin TreeTagger from Gabriele
Brandolini11 and have it lemmatize (and tag) a subpart of the Patrologia Latinae
(PL) [16].12 This tagger and lemmatizer has a token lemma accuracy of 86.23 %
on the indicated text. About 50 % of all errors are unknown word forms. If, for
each unknown word form, we substitute the prediction of AliSeTra++ (trained
on 120,000 pairs), or LemmaGen (trained on more than 3 million pairs), lemma
token accuracy increases to 88.56 % and 89.37 %, respectively, which constitute
improvements of about 2.7 % and 3.6 %, respectively. See Table 12 for a summary.
11 Available at http://www.cis.uni-muenchen.de/∼schmid/tools/TreeTagger/.
12 We could not use Perseus because the TreeTagger was trained on Perseus.

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
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5 Conclusion

We have considered the statistical lemmatization problem in which lemmatizers
are trained on (word form, lemma) pairs, which enables them to learn the mor-
phological processes involved in lemmatization. We have investigated whether
general purpose string-to-string transduction models are suitable for this task,
and have seen that they typically perform (much) better than more restricted
lemmatization techniques/heuristics based on suffix transformations. We have
also investigated how the learned lemmatizers can complement lexicon-based
systems, e.g., by tackling the OOV and/or the disambiguation problem.

Our next step is to train the described lemmatizers on the full size of our
database, from which we expect huge accuracy gains, since they have concur-
rently been trained only on a tiny fraction of it (much less than 10 %). For the
CRF based models, training them on the full size of our database is actually a
scaling challenge since they must then learn hundreds of millions of features, but
this can be accommodated by training many subsystems on disjoint portions of
the data and a subsequent aggregation step. For real world lemmatization, this
also requires to train the systems on distributions that reflect those found in
‘real’ text rather than on random word pair lists retrieved from a lexicon, as
done here. Finally, by combining the so-enhanced lemmatizers with our lexicon,
very high accuracy lemmatizers can be expected.
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Abstract. Sanskrit, the “sacred language” of Ancient India, is a mor-
phologically rich Indo-Iranian language that has received some attention
in NLP during the last decade. This paper describes a system for the
tokenization and morphosyntactic analysis of Sanskrit. The system com-
bines a fixed morphological rule base with a statistical selection of the
most probable analysis of an input text. After an introduction into the
research history and the linguistic peculiarities of Sanskrit that are rel-
evant to the task, the paper describes the present architecture of the
system and new extensions that increase its accuracy when analyzing
morphologically ambiguous forms. The algorithms are tested on a gold-
annotated data set of 3,587,000 words.

1 Introduction

Sanskrit, an Old Indo-Aryan (OIA) language, whose first texts date back to
around 1.500 BCE, has produced one of the largest premodern text corpora in
the world. Taking an oversimplifying approach, there are two relevant linguistic
layers of Sanskrit. The earlier layer contains the Vedic corpus that may have
been created between 1.500 and the middle of the first millenium BCE and that
has probably preserved a spoken form of Sanskrit.1 The later layer of Classical
Sanskrit is written in a language that is largely regulated by the famous grammar
of Pān. ini (details in Sect. 2). The term “Sanskrit” only refers to this classical
stage of the language throughout this paper.

While the oldest Vedic layer has been the subject of numerous detailed linguis-
tic studies, the later layer of Classical Sanskrit, which contributes the vast major-
ity of transmitted texts, has been studied only scarcely from a linguistic point
of view. There are several reasons for this inequally distributed research inter-
est, some of them originating in the fascination of traditional philology for the
old, “authentic” layers of the language. In addition, the early codification of San-
skrit in the grammar of Pān. ini has led to the assumption that Classical Sanskrit
is mainly interesting for the content it produced, but not for its linguistic features.
This view will not hold stand when the numerous interactions with other South-
Asian languages are taken into account (Sect. 3). Another obstacle that prevented

1 Bloch [2] gives an introduction into the linguistic history of Sanskrit. More details
about the Vedic layer are found in Witzel [34].
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the large-scale linguistic study of Classical Sanskrit is the mere size of the litera-
ture it produced. A computer based approach will facilitate access to this corpus
and its underlying linguistic structures, and may be helpful in moving scholarly
attention to the numerous linguistic peculiarities of Classical Sanskrit. This paper
describes a lexical and morphological parser for Classical Sanskrit whose output
allows a strictly corpus-based, data driven approach to this language.

The paper is organized as follows. Section 2 gives an overview of formal sys-
tems of Sanskrit grammar and modern NLP related research in processing Clas-
sical Sanskrit. Section 3 summarizes some of the central issues that complicate
the automatic analysis of Sanskrit. Section 4 describes the basic architecture of
the tokenizer and morphological analyzer. Extensions of the basic system and
improvements in the accuracy and coverage of the morphological analysis are
reported in Sect. 5. Section 6 summarizes the paper.

2 Previous Research and Resources

Sanskrit has a long tradition of formal language description and analysis that
predates any modern Western attempts in this field by millenia. This tradition
was started by the grammarian Pān. ini, who probably lived around 350 BCE in
Northwestern India (a general overview in [29]). His grammar As.t.ādhyāȳı (“eight
[as.t.an] chapters [adhyāya]”) provides an extremely concise description of a late
Vedic level of Sanskrit and may reflect a dialect of Sanskrit spoken at his time
(details of the discussion in [4]). This conciseness was made possible by introduc-
ing methods such as thematic roles, rewrite rules, abstract derivation levels, and
pre-concepts of phonemes and morphemes, all of which are crucial for contem-
porary linguistics [13].2 Pān. ini’s methods of language description were expanded
and refined by his followers in works such as the Mahābhās.ya (Patañjali, 150
BCE) or the Siddhāntakaumud̄ı (16. c. CE; refer to Scharfe for a history of
grammatical research in India [29]).

Given the sophisticated formal methods that are provided by the Indian
grammatical tradition and that were “rediscovered” in Western linguistics only
in the 20th century, it is not surprising that some researchers try to transpose
the Pān. inian system of morphosyntactic analysis, more or less directly, into an
NLP tool. These approaches frequently face problems with overgeneration (refer
to Kulkarni’s study from the area of phonetics [17]) and with the order in which
the rules of the As.t.ādhyāȳı need to be applied.3 Mishra handles these problems
2 In a recent research project, the As.t.ādhyāȳı has been fully annotated on the mor-

phological, lexical and word-semantic level to make it easier accessible for Western
researchers without knowledge of Sanskrit [25]. A web platform that gives access to
this database is available at http://panini.phil-fak.uni-duesseldorf.de/panini/.

3 The rules of the As.t.ādhyāȳı are not given in the order in which they need to be
applied for generating a valid Sanskrit word. Instead, it is generally assumed that
their order minimizes the resulting rule base. The Indian grammar uses the concept of
anuvr. tti (“following”) rules for regulating the order in which rules and their elements
are applied. These rules are not part of the text of the As.t.ādhyāȳı, but are recorded –
and heavily discussed – in the commentary literature; refer to [4, 187ff.] for details
about rule order in the As.t.ādhyāȳı, and to [26] for the proof of minimality in a
subset of Pān. inian rules.

http://panini.phil-fak.uni-duesseldorf.de/panini/
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by reformulating the rules of the As.t.ādhyāȳı in terms of set theory [21]. Huet [12]
and Kulkarni [16] combine formal methods from the As.t.ādhyāȳı with a statistical
scorer. Mittal estimates the probability of Sandhi splits from a parallel corpus of
sandhied and unsandhied texts [22].4 He combines a finite state automaton built
from the parallel corpus, estimations of word frequencies, and a morphological
analyzer with a scoring function that calculates a joint lexical and phonological
weight for a given analysis of a Sanskrit sentence. The author reports that his
system selects the best split of a given Sanskrit string in 92.8 % percent of all
cases. Hellwig presents a statistical lexical and morphological analyzer [8], but
misses the opportunity to give reliable performance data of this system [10].

In recent years, NLP has become increasingly interested in the processing of
morphologically rich languages, and Sanskrit fits well into this extended scope
of research. From among the more popular languages, Hebrew has similar chal-
lenges for NLP as Sanskrit. According to Adler, Hebrew has a rich and highly
ambiguous morphology, and its morphological tag set is by far more comprehen-
sive than that of English [1]. Shacham and Wintner combine results of classi-
fiers that are each specialized on a subset of all morphological tags for Hebrew,
and report an improvement over the baselines found in former papers on the
topic [30]. Yuret describes an algorithm for the morphological disambiguation
of Turkish, which has a similar proportion of morphologically ambiguous forms
as Sanskrit [35]. By training decision lists with local, non-lexical features, the
author achieves a disambiguation accuracy of nearly 96 % on a small test set. Lee
proposes a graphical model for the joint morphological analysis and parsing of
morphologically rich languages such as Latin and Czech [19], and obtains slight
improvements over a baseline generated by separate training on the two tasks.

Basic computational resources were missing almost completely when the first
versions of the system presented in this paper were created. The relational lexi-
cographic database (Sect. 4.1) had to be extracted from a digitized version of the
dictionary of Monier-Williams [23]. Although the majority of entries could be
converted automatically by using regular expressions, preparing a usable data-
base version of this dictionary still required considerable manual correction due
to inconsistencies in the formatting of the original dictionary and of its digitized
text version. Moreover, the Monier-Williams was designed as a typical reference-
oriented printed dictionary. This means that it recorded numerous compounds
with purely compositional meaning (e.g., mahāgiri, “high mountain”, consist-
ing of the adjective mahā “high” and the noun giri “mountain”). Such lexicon
entries may be useful in printed editions, but complicate the lemmatization that
focuses on decomposed primitives.

Similar problems are also encountered when building computational proces-
sors for other premodern Indian languages as, for example, for Pāli [14] or for
Old Marathi, for which a morphological analyzer is currently developed. Lack of

4 Refer to page Subsect. 3.3 for the phonological phenomenon of Sandhi.
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resources further pertains to large, consistently formatted digital text corpora5

and to gold annotated training and test data from any level of linguistic analy-
sis, although the research community has begun to compile such resources on a
small scale during the last years [31].

3 Linguistic Background and Challenges

Sanskrit poses a number of challenges for the automatic linguistic analysis, some
of which are not found in the languages typically examined in current NLP. This
section gives an overview of the most important of these phenomena.

3.1 Morphology

Sanskrit has a rich and partly ambiguous morphology. Nouns and adjectives
inflect for three numbers (Sg., Du., and Pl.), eight cases (Nom., Acc., Voc.,
Gen., Dat., Ins., Abl., Loc.), and a frequent and productive stem form (Co.)
that is used to create compounds.6 The finite forms of the verbal system differen-
tiate between present (indicative present, imperative, imperfect), future (future,
conditional, periphrastic future), perfect, and seven classes of aorists. Each of the
tenses builds forms for three persons, three numbers, and the active and medium
voices. These forms are supplemented by infinite forms such as fully declinable
participles of the present, future, perfect, and of the past, and indeclinable forms
(infinitive, absolutive). With a few exceptions, the derivation of nominal and ver-
bal forms from their respective stems is regular. The complex, interacting rules
that guide these derivational processes are formulated in the As.t.ādhyāȳı.

While the rich inflexion of Sanskrit, in principle, promotes a reliable mor-
phological analysis of Sanskrit texts, there are a few high-frequency morphemes

5 The GRETIL web repository (http://gretil.sub.uni-goettingen.de/) contains less
than 20 million strings. Several of the texts are not usable for automatic processing
due to excessive formatting of their editors, as described in Sect. 3.6.

6 The following abbreviations are used in this paper: Nom.: nominative; Acc.:
accusative; Ins.: instrumental; Dat.: dative; Gen.: genitive; Loc.: locative; Voc.:
vocative; Co.: compound; Sg.: singular; Du.: dual; Pl.: plural; Msc.: masculine;
Fem.: feminine; Neu.: neuter; Ind.: indeclinable; Pres.: present; Impf.: imperfect;
Perf.: perfect tense; Proh.: prohibitive (a kind of imperative that is only used
in negated phrases); PastPart.: past participle, frequently with a passive sense;
PresPart.: present participle

Ambiguities in a morphological analysis are expressed by a regex-style nota-
tion, with | denoting the operator OR and round brackets a set of options. So,
(Nom.|Acc.|Voc.)Pl.Neu.means that a form is a neuter plural either in nomina-
tive or accusative or vocative.

The plus operator + is used to separate elements of compounds, the ampersand
sign & to indicate Sandhi at word boundaries (Sect. 3.3).

Further abbreviations: tri: trigram based model for morphological
disambiguation; crf: Conditional Random Fields; me: Maximum Entropy.

http://gretil.sub.uni-goettingen.de/
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whose phonetic ambiguity complicates the morphological tagging. Most impor-
tant among them is the word final sequence -am, which marks Nom., Acc., and
Voc.Sg. of the noun class -a neuter, Acc.Sg. of the noun class -a masc. and
Acc.Sg. of nominal stems that end with consonants. Such morphological ambi-
guities gain in importance through the phenomenon of bahuvr̄ıhi compounding,
which can change the gender of a nominal compound (refer to Sect. 3.2). In
addition, the phonetic process of Sandhi can “obfuscate” the output forms of
the inflectional endings (Sect. 3.3).

3.2 Compounding

Although compound formation does not seem to interfere with morphological
analysis at first view, the long ranges covered by many compounds, e.g., in
philosophical and scientific texts, complicate the estimation of transition weights
for sequence based algorithms. In addition, Sanskrit knows a class of compounds
called bahuvr̄ıhi (“(a person who has) much rice”) that produce adjectives with
a possessive meaning.7 During this compounding process, the original nominal
compound is transformed into an adjective, and the gender of the final member
of the compound is adopted to the gender of the noun the bahuvr̄ıhi refers
to. In example 1, the phrase pāpakarmabhih. can be interpreted as a “default”
compound (“by bad actions”, Ins.Pl.Neu., tatpurus.a interpretation) or, more
correctly, as a bahuvr̄ıhi adjective refering to the anaphoric masculine pronoun
taih. . During adjectivization, the gender of the compound is changed from the
original neuter to the masculine of the pronoun:

(1) nih. śes. o
without remainder-NOM.SG.MSC.

hi
because-IND.

kr. to
make-PASTPART.NOM.SG.MSC.

vam. śo
family-NOM.SG.MSC.

mama
my-GEN.SG.

taih.
they-INS.PL.(MSC.|NEU.)

pāpakarmabhih.
bad-CO.+actions-INS.PL.(MSC.|NEU.)

“Because my family was completely destroyed by these bad persons (lit.: by
them, who have bad actions), . . . ” (Mahābhārata, 13.31.25).8

3.3 Phonetic Rules (Sandhi)

Sanskrit uses a large set of euphonic rules called Sandhi (“connection”), whose
formulation is another major contribution of the As.t.ādhyāȳı. Most of these rules

7 Note that the word bahuvr̄ıhi is itself an example of a bahuvr̄ıhi compound. In its
“default interpretation” as a so-called tatpurus.a (“his man”, an instance of relational
compounding) compound, it means just “much rice.”.

8 From a purely grammatical point of view, the sentence can also be translated as “...
destroyed by these bad actions.” Numerous references of the bahuvr̄ıhi solution with
unambiguous case endings (e.g., in Nom.Pl.Msc.) make the proposed interpretation
much more plausible.
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combine two phonemes into one or two other phonemes to produce a “smoother
pronounciation”.9 Sandhi occurs inside of words during the derivational process
and at the boundary between words during the construction of the sentence from
the inflected lemmata. For an example of how word boundary Sandhi works,
consider the three inflected Sanskrit words tān (Acc.Pl.Msc. of pronoun tad,
“they”), cet (Ind., “if”), and jayati (3rdSg.Pres. of verb ji, “to win”). The
word-final n of tān and the initial c of cet produce the Sandhi mśc, while the
word-final t of cet and the initial j of jayati produce jj. Using these two Sandhis,
the three separate forms are merged into a single string tām. ścejjayati (“if (s)he
overcomes them”).

Sandhi tends to “obfuscate” morphological terminations. This phenomenon
is, for instance, observed in the phrase pān. d. avā api (Nom.Pl.Msc. of the noun
pān. d. ava, “name of a famous family”, and api, Ind., “also”), where the original
word final letter h. of pān. d. avāh. has been elided through boundary Sandhi. A mor-
phological analyzer must be able to reconstruct the pre-sandhied form pān. d. avāh.
based on the right context api, before it starts the actual morphological analysis.

While, theoretically, Sandhi must be used whenever applicable, real texts show
a lot of divergence from this rule. Sanskrit epics, for example, do not adhere strictly
and consistently to these rules (“Epic Sandhi”).10 Much more frequently, however,
deviations from these rules may have been caused by errors of the author or the
scribe of a text due to an insufficient knowledge of these euphonic rules. It should
be needless to emphasize that Sandhi rules complicate the automatic analysis of
Sanskrit massively, because they introduce ambiguity into tokenization (refer to
Sect. 4) and tend to overgenerate possible analyses of a string. A working system
used for real texts must be able to cope with the full set of standard Sandhi rules,
but also with irregular situations as found in the epics, and it should not interrupt
analysis when a Sandhi rule has not been applied.

3.4 Word Order

Word order is another problematic area, because it is explored intensively in NLP
models for English, while its role in South-Asian languages is far less prominent.
Staal claims that there are virtually no rules for word order in Sanskrit [32],
without supporting his theory with quantitative data. Gillon, who claims that
unmarked Sanskrit sentences show a tendency for verb-finality [7], has certainly
arrived at a more realistic picture of word order in Sanskrit prose texts. Although
prose texts seem to prefer a certain word order, it is by far not as strictly reg-
ulated as, for instance, in English. Features exploring the order of words may,

9 Though slightly outdated, the grammar of Stenzler still provides a good introduction
into Sanskrit Sandhi rules [33, 3ff.].

10 Refer to [24, 1ff.] for a detailed linguistic description with several examples.
Brockington locates the epics, especially the Mahābhārata, in a continuum “of
dialects and language registers from classical or Pān. inian Sanskrit at one end to collo-
quial MIA [Middle Indo-Aryan] at the other” [3, 83] and makes this linguistic situation
responsible for the irregular application of Sandhi in epic texts.
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therefore, not contribute as significantly to the accuracy of the morphological
analysis as they do for English [6].

3.5 The Lexicon

Classical Sanskrit has built up an extremely rich vocabulary that covers topics
as diverse as religion, philosophy, science (grammar, medicine, mathematics),
poetry, and popular tales. Apart from OIA terms and their derivatives, Sanskrit
included words from several “substrate languages” such as Dravidian, Middle
(Prākr.ts, Apabhram. śa) and even New Indo-Aryan languages.11 Because San-
skrit was used as a literary language by most authors, and because most authors
were well aware of its long-standing literary tradition, one can observe a ten-
dency to revive older strata of the vocabulary and to incorporate them into new
texts.12 From the perspective of NLP, the richness of the vocabulary contributes
to the sparsity of lexicographic data, and complicates the estimation of lexical
parameters of ML models.

3.6 Orthography

A closely connected area is the general lack of a strict orthography and the miss-
ing reliability of punctuation. Many algorithms for language analysis require full
sentences as the basic input units. Sanskrit uses a vertical line called dan. d. a
(“staff”, “stick”) for marking breaks in the metrical structure and in the gen-
eral discourse structure of texts. However, the dan. d. a, which is rendered by a
backslash (/) in this paper, frequently does not coincide with the termination of
complete sentences. Example 2 contains two dan. d. as that mark the end of the
metrical units. Here, only the second dan. d. a after adhitis. t.hati coincides with the
termination of a full sentence, while the first one separates the verbal form uvāca
from its subject (Mahābhārata, 13.28.10):

(2) ...
...

gardabhı̄
she-ass-NOM.SG.FEM.

putragr. ddhinı̄
son-CO.+caring-NOM.SG.FEM.

/
dan. d. a

uvāca
say-3rdSG.PERF.

mā
not-IND.

śucah.
worry-PROH.SG.

putra
son-VOC.SG.MSC.

can. d. ālastvādhitis. t.hati
Can.d. āla-NOM.SG.MSC.&you-ACC.SG.&ride-3rdSG.PRES.

/
dan. d. a

“The she-ass, who was sorried about her son, said: ‘Don’t worry, son! A
Can.d. āla13 is riding on you.’ ”

Algorithms for detecting the true sentence breaks in Sanskrit have not yet
been developed. NLP systems must either rely on sentences with manually
11 Emeneau describes the basic parameters of the interaction between Indo-Iranian

and Dravidian languages [5]. A quantitative overview of the major influences that is
based on Mayrhofer’s etymological dictionary [20] is given in [9].

12 A quantitative evaluation of the reuse of Pān. inian vocabulary is presented in [11].
13 A member of a low caste.
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marked borders, which involves time consuming manual annotation, or must be
able to handle the lack of orthographic information appropriately. To increase the
readability, the term “sentence” will, nevertheless, denote a sequence of strings
that is terminated by a dan. d. a in this paper. Such a “sentence” may thus con-
tain parts of a sentence or of sentences, a full sentence, or several concatenated
sentences.

At an even more basic level, traditional editions of Sanskrit texts insert blank
spaces between non-mergable strings sparingly, if at all. On the contrary, Western
editors frequently even resolve boundary Sandhis to increase the readability of
the text, thereby producing syllable sequences that are invalid from an Indian
point of view. Therefore, the text of the second sentence in Example 2 could
also be written as uvācamāśucah. putracan. d. ālastvādhitis. t.hati (traditional Indian
style) or uvāca mā śucah. putra can. d. ālas tvā adhitis. t.hati (Western style).

4 Architecture of the System

This section gives an overview of how a Sanskrit sentence is analyzed in the pro-
posed system. Because the core functionality of the tagger has been described in
[8], this section only summarizes the central components (Sect. 4.1) and process-
ing steps (Sect. 4.2). Section 4.3 gives a short evaluation of the algorithm for joint
tokenization and lemmatization.

4.1 Basic Components

The system consists of five core components.

1. The lexical database stores lemmata, their grammatical categories, meanings,
word semantic information, and inflected verbal forms. The database cur-
rently contains 174,190 distinct lemmata with 313,725 meanings and 104,811
connections to a word semantic repository that is derived from OpenCyc14.

2. The corpus stores the Sanskrit texts along with their lexicographic, morpho-
logical and word semantic gold annotations.15 There are 273 texts in the
corpus database, 69 of which are completely annotated. The texts contain
2,674,000 strings that are split into 3,587,000 lexical tokens with morphologi-
cal gold annotations. The corpus data are used to train statistical models for
lexico-morphological analysis and disambiguation. As can be seen in Table 1,
the corpus mainly contains texts from the epic-Purān. ic traditions16 and from
science, including medicine, alchemy, and gemmology. The type-token-ratios

14 http://opencyc.org/.
15 As these data are only checked by one annotator and have not been adjudicated,

they should rather be called semi-gold annotations.
16 The Mahābhārata and the Rāmāyan. a are the two central epic texts written in

Sanskrit. The term Purān. a (“old (story)”) denotes a group of works dealing with
virtually everything; refer to Rocher for an introduction [28].

http://opencyc.org/
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(TTR)17 vary strongly between the topic levels, with the highest value not
surprisingly found in lexicography.

3. The linguistic models comprise (1) a hard-coded rule base for Sandhi resolu-
tion and for determining morphological categories of nouns, and (2) learned
parameters of the statistical algorithms that are created using the training
data extracted from the corpus. Sanskrit nouns are inflected by adding termi-
nations to the roots of words in a similar way as in Latin or Ancient Greek.
Morphological analysis of nominal forms is performed by removing possible
inflectional suffixes from a string at runtime, and looking up the remaining
word root in the noun section of the lexical database. Inflected verbal forms
have a special role in the system. They are synthesized automatically for each
(prefixed) verbal root, checked manually, and then stored in the verb section
of the lexical database along with their morphological information (tense,
mode, person, number). At runtime, morphological analysis of verbal forms
is performed by looking up an input string in the verb section of the data-
base, and returning the associated morphological information, if it is found.
Although Sanskrit verbal forms can be analyzed using a rule based system
(refer, for instance, to [21]), the current solution was chosen to speed up the
creation of the initial system, because a thorough handling of the verbal forms
would have required a formalization of large ranges of the As.t.ādhyāȳı.

Table 1. Composition of the corpus, grouped by topics. %: percentage of lemma tokens
in texts with a given topic in relation to the number of all lemma tokens in the corpus;
TTR: averaged type-token-ratio for each topic.

Topic % TTR

Buddhist 1.51 0.34

darśana (“philosophy”) 1.62 0.3322

dharma (“law”) 4.07 0.4095

Grammar 0.52 0.314

Epic-Purān. ic 55.33 0.2145

Lexicography 2.13 0.5966

Poetry 4.88 0.4308

Religious 4.37 0.414

Science 23.8 0.347

śruti (late Vedic texts) 1.78 0.3576

4. The tag set consists of tags for indeclensibles, nouns and verbal forms. The
indeclensible tag covers particles, interjections, and conjunctions. The noun

17 The TTRs found in the third column of Table 1 are obtained by calculating the
TTRs for each text, and then averaging these values over the topic levels. Because
text lengths have not been used as normalizing factors, the TTRs of underrepresented
topic levels such as śruti or Buddhist literature are most probably too high.
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tags represent substantives and adjectives in one of the three genders, three
numbers and eight cases, plus the 3 respective stem forms. The tags for the
verbal system differentiate between present, future, and past tenses in the
three persons and numbers. The verbal tags are thus less fine-grained than
the nominal ones: While each morphological category of nouns is mapped to
its own tag, tags for verbal forms focus on person and number distinction,
but differentiate only roughly between the tenses (refer to Sect. 3.1 for the
tense system of Sanskrit). Because the morphological ambiguity in the verbal
system is much lower than in the nominal one, this design decision reduces the
number of tags and simplifies the task of automatic morphological analysis.

5. The linguistic processor uses the models and the lexical database to analyze
a sentence. The resulting analysis can be checked manually (creation of gold-
annotated data) and stored in the corpus to increase the size of the training
database.

4.2 Tokenization and Morphological Analysis

The algorithm that performs tokenization, lemmatization, and morphological
analysis works in two main steps. The first step tries to generate the correct
lemmatization of the input text, which includes Sandhi resolution and compound
splitting. The second step performs a fine-tuning of the morphological analysis of
the highest scoring lemmatization obtained in the first step. The disambiguation
methods dealt with in this paper are part of the second step.

In the first step, each input string s is scanned from left to right (refer to
[8] for details). If a (combination of) phoneme(s) at position i in s is found in
the list of possible Sandhi results, s is tentatively split at i, and its left part is
analyzed lexically and morphologically after its final Sandhi has been undone.
If the left part is a valid Sanskrit form, the right part of s is analyzed in the
same way. If this recursive algorithm reaches the end of the string, all proposed
analyses are inserted in a hypothesis lattice. After the full input sentence has
been processed, Viterbi decoding is used to find the most probable sequence of
lexical tokens in the resulting lattice.

For Viterbi decoding, all morpho-lexical analyses LMj are extracted for
each possible split string j. The split string vanam, for example, produces the
three analyses LMj1 = (Nom.Sg.Neu., vana, “forest”), LMj2 = (Acc.Sg.Neu.,
vana, “forest”), and LMj3 = (Voc.Sg.Neu., vana, “forest”). Although the first
step is concerned with lemmatization, morphological information is included at
this point because it helps to distinguish between different lexical derivations
of ambiguous surface strings such as te, which can be derived from tvat (“you”,
Dat. or Gen.Sg.) or tat (“this”, Nom.Pl.Msc.). The decoding process uses the
probabilities of bigrams (LMj−1, LMj) whose frequencies are estimated from the
annotated corpus and smoothed using the method proposed by Kneser and Ney
[15]. To make analysis paths of different lengths comparable to each other, the
sums of logarithmized transition probabilities resulting from Viterbi decoding
are divided by the lengths l of their paths, which is equivalent to taking the
lth root from the unlogarithmized path probabilities. When T denotes the set
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of all possible tokenizations t of a given sentence, the winning tokenization of a
sentence fulfills the condition argmax

t∈T

1
|t|

(∑|t|
i=1 log p(LMi|LMi−1)

)
.

4.3 Evaluation of the Tokenization

The quality of the joint tokenization and lexical disambiguation was assessed
by calculating the Levenshtein edit distance between gold sequences of lexemes
from the corpus and the corresponding silver sequences of lexemes generated by
the system. For testing, a set of 10.000 sentences was drawn randomly from the
corpus. The parameters of the tokenizer were re-estimated from the remaining
part of the corpus, and the retrained model was applied to the 10.000 holdout
sentences.

As can be seen in Table 2, the model produces the correct lexical tokenization
for 94.4 % of the holdout sentences, and one error for 3.3 % of them. To get an
idea of how the topics of the texts influence tokenization accuracy, the numbers
of edit operations were grouped by the texts from which the sentences were
drawn, and some of the most voluminous texts were labeled with the same
coarse-grained domain tag set that was used for creating Table 1. Table 3 shows
that tokenization works well for texts from the epic-Purān. ic literature. These
texts are mostly written in an easy, unpretentious style, they share a large core
vocabulary, and they constitute one of the thematic focus areas of the corpus
(refer to Table 1). A similar picture emerges for the Āyurvedic (medical) texts,
which are, however, linguistically and especially lexicographically much more
demanding than the epic-Purān. ic literature, as indicated by the higher type-
token-ratio shown in Table 1. The alchemical texts, in contrast, show higher error
rates, although the alchemical tradition has actually developed from Āyurveda.
This fact can possibly be explained by rare lexemes used in these texts (e.g., in
the Rasādhyāya, a late text showing strong influences from NIA languages) and
by the low literary quality of many alchemical texts. The As.t.ādhyāȳı produces
the worst tokenization score in the evaluation, because the text uses Sanskrit
as a metalanguage for encoding its grammar, and some of these metalinguistic
phenomena are not handled by the regular processing pipeline of the program
to avoid overgeneration. In addition, Table 1 shows that the grammatical texts
constitute the smallest thematic section of the corpus. Adding more texts from
the grammatical tradition may improve the unsupervised tokenization of the
As.t.ādhyāȳı.

The evaluation has shown that the lemmatization produces acceptable results
for texts from domains for which enough training data is available. The morpho-
logical analysis resulting from the first step of the decoding process, however,
is frequently wrong. Therefore, another level of morphological Viterbi decod-
ing is added for the highest-scoring lexical path, using only smoothed trigrams
of morphological tags, but no lexical information. Column 3 (tri) of Table 5
reports the global accuracy of this approach, grouped by the number of different
proposals per lexical item. As could be expected, the accuracy of this approach
decreases with the number of morphological options per word. The next section
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Table 2. Length of sentences (rows) and numbers of edit operations needed to trans-
form silver in gold tokenization (Levenshtein), tested on a holdout set of 10.000 sen-
tences. Values in percent of all 10.000 sentences.

Number of edits

0 1 2 ≥ 3

≤ 5 14.47 0.19 0.26 0.04

6–10 75.63 2.91 1.43 0.28

11–15 3.58 0.16 0.17 0.01

≥ 16 0.75 0.04 0.04 0.03
∑

94.43 3.3 1.9 0.36

describes experiments for improving the performance of the system for ambigu-
ous morphological analyses.

5 Improvements and Evaluation

As noted in Sect. 4.2, words in the best lexical path can be annotated with more
than one morphological solution. Column 2 of Table 5 shows that such ambiguous
solutions occur for approximately 100%−58% = 42% of all words in the test set.
Resolving these ambiguities is, therefore, crucial for the accurate morphological
tagging of Classical Sanskrit. This section describes a set of experiments that
aim at improving the morphological analysis of ambiguous cases. Subsection 5.1
sketches the feature extraction. Subsection 5.2 describes which ML models are
used for learning. Section 5.3 describes how the test and training sets are created.
Results and error analysis are presented in Sect. 5.4.

5.1 Features

The features are built from the two pieces of information that are available
after the first stage of linguistic analysis has been completed: (1) the lexical
information about each word in the highest scoring path, and (2) the morpho-
logical solutions that the analyzer has proposed for each lexeme in this path. The
proposals for the morphological analysis are merged into an ordered set of dis-
tinct morphological classes. This merged set is used as a single feature M of the
word under consideration. If, for example, the analyzer has detected that a word
can be (Nom.|Acc.)Pl.(Msc.|Fem.), these four proposals are unfolded into
the single feature Acc.Pl.Fem.|Acc.Pl.Msc.|Nom.Pl.Fem.|Nom.Pl.Msc.,
using alphabetical ordering of the names of the morphological tags.

Before extracting the features from the training set, frequency thresholds are
applied to remove lexical items L with a total frequency of less than 10 and
combined morphological solutions M that occur with a total frequency of less
than 50 in the training corpus. If only one morphological solution is proposed
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Table 3. Number of edit operations for individual texts; refer to Table 1 for the topic
labels. Abbreviations: med.: medical (Āyurveda); alchem.: alchemical (rasaśāstra);
narr.: narrative

Text Number of
tested sent

Number of edits Domain

0 1 2 ≥ 3

Mahābhārata 3071 94.86 3.35 1.69 0.1 Epic-Purān. ic

Rāmāyan. a 774 95.61 2.71 1.68 0 Epic-Purān. ic

Liṅgapurān. a 395 93.92 4.05 1.52 0.51 Epic-Purān. ic

Suśrutasam. hitā 347 98.27 0.86 0.86 0 Science (med.)

As.t.āṅgahr.dayasam. hitā 289 94.12 2.77 2.42 0.69 Science (med.)

Ānandakanda 243 92.18 4.94 2.88 0 Science (alchem.)

Br.hatkathāślokasam. graha 189 95.77 4.23 0 0 Poetry (narr.)

Carakasam. hitā 172 95.93 2.33 1.16 0.58 Science (med.)

Rasaratnākara 163 93.87 3.07 1.84 1.23 Science (alch.)

Rājanighan. t.u 141 91.49 4.96 2.84 0.71 Lexicography

Manusmr.ti 122 95.08 3.28 0.82 0.82 dharma

Vis.n. usmr.ti 75 90.67 2.67 5.33 1.33 dharma

Hitopadeśa 58 93.1 3.45 3.45 0 Poetry (narr.)

Rasendracintāman. i 36 91.67 5.56 2.78 0 Science (alch.)

As.t.ādhyāȳı 35 57.14 14.29 22.86 5.71 Grammatical

Rasādhyāya 24 87.5 8.33 4.17 0 Science (alch.)

for a word (58 % of all cases), this solution is assumed to be the correct one,
and the true morphological class of this word is replaced by a dummy variable
to reduce the complexity of the training process.18 The full feature vector vi
for the word at position i is the union of all lexical and morphological features
of words with a maximal distance of 3 from i (context window).19 Consider,
as an example, the trivial sentence sa vanam. gacchati (“he goes into the for-
est”) with a context window of size 1. The first step of the analysis has pro-
posed the following highest scoring sequence: (sa = (Nom.Sg.Msc., lemma tad,
“he”)), (vanam20 = ((Nom.|Acc.|Voc.)Sg.Neu., vana, “forest”)), (gacchati =
((3rdSg.Pres.|(Loc.Sg.(Msc.|Neu.), PresPart.)), gam, “to go”)). The first
word has the local features L=tad and M=(Nom.Sg.Msc.), the second word has
L=vana and M=(Nom.Sg.Neu.|Acc.Sg.Neu.|Voc.Sg.Neu.), and the third

18 The one-solution case predicts the correct morphological category in about 99.8 %
of all cases. The errors are caused by irregular word forms.

19 The parameter 3 for the window size was chosen after comparing disambiguation
results for window sizes between 1 and 7. Window sizes above 3 did not consistently
increase the accuracy, but required higher training times.

20 The final Sandhi m. has been transformed into the pausa form m.
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Table 4. Features and target classes for the sentence sa vanam. gacchati. X denotes the
dummy variable used for words with only one morphological analysis. (Nom.) . . . : local
features of vanam, i.e. (Nom.|Acc.|Voc.)Sg.Neu.; 3rdSg.Pres. . . . : local features of
gacchati, i.e. 3rdSg.Pres.|(Loc.Sg.(Msc.|Neu.))

321
Word sa vanam gacchati

Local L maganavdat
features M NOM.SG.MSC. (NOM.|ACC.|VOC.)SG.NEU. 3rdSG.PRES. . . .

Full feature {X} {L−1 = tad, L0 = vana, {L−1 = vana, L0 = gam,
vector L+1 = gam, L+1 = ,0/

M−1 = NOM.SG.MSC., M−1 = (NOM. . . . ,
M0 = (NOM. . . . , M0 = 3rdSG.PRES. . . . ,

M+1 = 3rdSG.PRES. . . . } M+1 = }0/

Target class X ACC.SG.NEU. 3rdSG.PRES.

one L=gam and M=(3rdSg., past tense|Loc.Sg.Msc.|Loc.Sg.Neu.). The tar-
get classes, on which the classifiers are trained, are the correct morphological
tags according to the gold standard for the ambiguous solutions, or the dummy
variable X in case of unambiguous solutions. The full feature vectors and the
target classes for each word are given in Table 4, where the numeric subscripts
denote the distance from the respective focus word at position i. These full
vectors are the input for the ML methods that are described in Sect. 5.2.

5.2 Models

The ML models that are used to resolve the morphological ambiguities must
be able to handle high-dimensional feature vectors of varying size from a nom-
inal scale. The size of the feature vectors is variable because (1) all lexical and
morphological context information of words with an unambiguous morphological
analysis is replaced by the dummy variable X, and (2) lexical and morphological
context information can be pruned away when their frequencies are below the
thresholds given in Sect. 5.1. Two models that fulfill these requirements are Max-
imum Entropy Classifiers (ME, [27])21 and Conditional Random Fields (CRF,
[18]).22 While ME is trained and evaluated on single words, CRF is a sequential
model that takes information about the preceding word into account. Because
the local morphological and lexical context presumably influences the analysis
of a word, it may be expected that the sequential CRF performs better than the
non-sequential ME, even if they are trained with the same data.

21 Used in the Java implementation of the OpenNLP package; settings: smoothing
factor: 0.001, 100 iterations.

22 Used in the C++ implementation from http://www.chokkan.org/software/crfsuite/;
settings: L2 regularization: 2.0, one-dimensional architecture.

http://www.chokkan.org/software/crfsuite/
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5.3 Test Design

Training and test sets are constructed by first extracting those sentences from
the corpus whose gold analysis contains between 2 and 20 lexical items. Longer
sentences are excluded to limit the time needed for data creation. The resulting
set S consists of approximately 475,000 sentences. Each sentence in S is tokenized
by using the first step of the analysis algorithm described in Sect. 4.2. If the
lexical silver annotation proposed after the first step is identical with the lexical
gold annotation from the corpus, the features described in Sect. 5.1 are extracted
from the sentence, and the sentence is added, along with its features, to a set F .
This set F is split randomly into a training set containing 95 % and a test set
containing 5 % of all sentences in F .

It should be kept in mind that the final test and training sets contain only sen-
tences that have been analyzed correctly on the lexical level. This restriction was
introduced to simplify the creation of the test data, but it could have a negative
effect when the final system is confronted with real-world sentences whose first-
step lemmatization contains errors. Another caveat concerns the testing method.
Because considerable time is needed for training the models, no cross-validation
of the results is performed for this paper.

5.4 Evaluation and Error Analysis

Table 5 shows the accuracy rates of all three tested classifiers, i.e. the number
of correctly classified items divided by the number of all items in the respective
category, depending from the number of morphological categories proposed by
the system. As could be expected, the two sequence based algorithms (tri, crf)
consistently outperform the me model, although this model is also trained with
context features. Among the sequence based classifiers, crf is superior to tri.

The column called fallback shows that it is possible to improve over the
accuracy of crf for some frequent classes when the decisions of tri and crf
are merged. As crf outputs a probability p along with its decision, a threshold
for p that maximizes the accuracy of the crf result is searched on a holdout
set. If the probability for a solution from the test set is below this treshold, the
output of crf is replaced with that of tri. A simple majority voting with all
three classifiers tri, crf and me does not increase the accuracy (last column in
Table 5).

Table 6 gives a more detailed evaluation of precision, recall, and F-score for
the most frequent target tags in the test set. Two observations are relevant.
First, crf generates the best solutions for most tags, as indicated by the numbers
printed in bold. For some cases, such as the notoriously difficult Nom.Sg.Msc.
(second row), one can observe a strong increase in P, R, and F when compared
to the values of tri and me. Second, there are large differences between the
target tags that can be explained by the underlying morphological ambiguities
and their statistical distributions. The most frequent tag Co.Msc., for exam-
ple, is identical with Voc.Sg.Msc. in many cases. Nevertheless, the chance of
confounding the two forms is low, because vocatives are comparatively rare in
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Table 5. Number of proposed morphological categories and accuracy of the tested
classifiers. Refer to Footnote 6 for the abbreviations.

No. of solutions Proportion tri crf me fallback majority

1 58.04 – – – – –

2 15.74 92.04 93.12 87.56 93.79 93.22

3 9.09 82.48 88.52 82.1 88.56 87.43

4 9.38 77.89 82.94 79.15 82.78 82.56

5 2.98 89.56 91.42 87.18 91.85 91.65

6 1.76 85.82 89.8 82.76 90.76 88.84

7 0.69 85.7 89 86.55 88.88 88.63

8 0.25 76.49 83.44 78.15 84.77 79.14

9 1.51 83.03 84.21 75.03 85.39 83.54

≥ 10 0.54 84.45 86.47 80.72 88.18 85.54

the corpus. Similarly good results are achieved for ambiguous verbal forms, most
of which have one “dominant” interpretation. So, the form uvāca (“I/he said”)
is almost exclusively used as 3rd Sg.Perf. (and not 1st Sg.Perf.), and gac-
chati is mostly used as 3rd Sg.Pres. of the root gam (“to go”) and not as
Loc.Sg.Msc. of the present participle of gam. On the contrary, the rates for
(Nom.|Acc.)Sg.Neu. and Acc.Sg.Msc. are low, because the frequent noun
classes on -a have the same endings for these three forms. This situation is fur-
ther complicated by bahuvr̄ıhi formation (Sect. 3.2) and sentences extending over
dan. d. a boundaries (Sect. 3.6). bahuvr̄ıhi formation is also responsible for errors
in classifying forms such as Ins.Sg.Msc. and Neu. (not in the table), because
it can change their genders during the compounding process.

6 Summary and Perspectives

The paper has described a system for joint tokenization, lemmatization and
morphological analysis of Sanskrit, and it has reported performance rates for
the tokenization task (Sect. 4.3, Tables 2 and 3). By using crf as an additional
sequential classification layer, it is possible to improve the analysis of morpho-
logically ambiguous forms. It should be emphasized that the numbers reported
in this paper are only valid for the test set. They will probably be lower in unsu-
pervised analysis, because the input for building the features (Sect. 5.1) may
contain errors. Future research should concentrate on improving the quality of
the features with which the model is trained, and on integrating more linguistic
tasks such as syntactic parsing into the model, as proposed for Latin by Lee [19].
On the engineering side, deep neural learning models co-trained on several tasks
should be tested for a morphologically complex language such as Sanskrit.

From a more general point of view, the linguistic analysis of Sanskrit opens per-
spectives in two areas. First, Sanskrit is a typical representative of resource-poor
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Table 6. Precision (P), recall (R) and F score (F) for the three classifiers and the most
frequent morphological tags (frequency ≥ 2 % of all ambiguous cases in the test set).
The highest values for P, R and F per line are printed in bold. Prop.: Proportion of
this gold tag in all gold tags of ambiguous cases. v. n.: verbal noun

Tag Prop. crf tri me

P R F P R F P R F

Co.Msc. 14.34 98.52 99.62 99.07 98.8 97.38 98.08 93.54 98.88 96.14

Nom.Sg.Neu. 11.22 80.92 88.07 84.34 73.2 79.09 76.03 75.83 84.29 79.84

Acc.Sg.Neu. 9.11 81.94 76.24 78.99 72.44 69.13 70.75 71.54 74.7 73.09

Nom.Pl.Msc. 7.00 93.91 98.36 96.08 94.4 95.54 94.97 89.79 95.34 92.48

Acc.Sg.Msc. 4.47 84.4 79.87 82.07 83.08 80.01 81.52 75.14 75.96 75.55

3.Sg.Past 3.09 98.9 99.8 99.35 99.28 99.41 99.34 93.51 97.65 95.54

Gen.Sg.Msc. 2.90 90.02 97.02 93.39 92.36 93.96 93.15 89.02 91.67 90.33

Loc.Sg.Neu. 2.86 92.21 89.09 90.62 93.51 90.29 91.87 86.74 85.64 86.19

Nom.Sg.Msc. 2.76 92.66 96.65 94.61 92.31 92.71 92.51 89.41 91.69 90.54

Loc.Sg.Msc. 2.44 85.25 91.09 88.07 87.57 91.25 89.37 82.87 83.83 83.35

3.Sg.Pres. 2.44 98.28 99.09 98.68 96.22 98.68 97.43 92.78 97.53 95.1

Nom.Sg.Msc. (v.n.) 2.38 82.39 93.16 87.44 80.81 85.65 83.16 76.81 87.51 81.81

Co.Fem. 2.37 94.31 95.75 95.02 94.82 88.62 91.62 92.12 91.33 91.72

Nom.Sg.Fem. 2.19 92.47 91.2 91.83 84.36 89.46 86.84 87.21 85.61 86.4

Ins.Sg.Msc. 2.08 89.39 93.02 91.17 90.27 90.79 90.53 86.33 85.66 85.99

Ins.Pl.Msc. 2.08 87.89 95.55 91.56 92.64 92.64 92.64 86.57 86.74 86.65

languages – both in its linguistic embedding in South Asia and in its status as a
classical language that is not spoken anymore. Solutions found for the linguistic
analysis of Sanskrit may, therefore, be applicable both for other South Asian lan-
guages and for similar studies in classical European languages. Second, NLP has
been focussing stronger on morphologically rich languages with a weakly regulated
word order during the past few years, and it may profit from insights gained from
the study of “off-track” languages such as Sanskrit.
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Abstract. In this paper we describe a system that performs morpho-
logical generation and analysis for Pali. We discuss the morphological
aspects of the tasks our system performs with emphasis on Pali specific
characteristics and difficulties and present insights into how this system
is integrated into a technical infrastracture used in research about Pali.

1 Introduction

Pali is a historical language from the group of Middle Indo-Aryan languages
that is still widely studied because of the many buddhist scriptures that are
written in Pali [3,4]. However, Pali has not been intensely studied with regard
to its computational processing. This is certainly also due to technical reasons,
like the lack of a dictionary suitable for computational linguistic tasks and the
lack of a Pali corpus in a good machine readable format. Part of our work as
researchers therefore involves the preparation of data for computational tasks in
general.

Pali is a fusional language; besides a base meaning expressed by a stem or a
root, further morphological information is expressed by adding affixes [1]. Thus,
in the word devo, the stem dev- expresses the meaning ‘god/deity’ while the
ending -o expresses ‘noun, singular, a-declension, masculine, nominative.’

We propose in this work a system for the morphological generation and analy-
sis of Pali. This system has been developed in the context of the SeNeReKo
project where the authors of this paper are involved in. After that we describe
how we can treat the morphophonological phenomenon of sandhi. We further
address the problem of irregular morphological forms and how we can efficiently
cope with such problems.

The resources available in Pali are few and insufficient for regular computa-
tional processing tasks: Pali is a low-resource language. Especially the lack of a
dictionary has caused us problems. A central aspect of our work therefore has
been how to progress with our goals of data processing under those conditions.

2 Related Work

A team of the University of Copenhagen has previously tried to process and
use the dictionary data. They wanted to create a new digitized version of the

c© Springer International Publishing Switzerland 2015
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dictionary, but did not succeed and stopped after having edited three letters of
the Pali alphabet [10].

Some problems that occur in Pali have been addressed in the related lan-
guage Sanskrit [7–9,11–13]. However, the resources available for Sanskrit are of
a different quality and quantity than the resources available for Pali.

Kulkarni et al. [11] for example use sandhi rules to split sandhi compounds
and a morphological analyzer to validate the results. For Pali, the morphological
analyzer is only in the phase of being built. However, they also aknowledge that
generating all possible splits results in the generation of thousands of splits, 90 %
of which are not morphologically valid [11].

In many Sanskrit systems, dictionaries play one of the key roles and solutions
for Sanskrit cannot simply be adapted to Pali for lack of a suitable dictionary.
Huet [9] proposes a sandhi splitter that has recourse to databases which do not
exist for Pali, such as a database with all finite root forms, including primary
conjugations and secondary conjugations [9].

3 Preliminaries

3.1 The Data

Our work presented in this paper uses the Pali Canon provided by the Vipassana
Research Institute in 2012 as a basis [14]. This corpus comprises the fundamental
texts of the Therevada Buddhism and constitutes much of the historic Pali that
is left.

As a basis for a dictionary we use the digitized copy of the dictionary of Stede
and Davids (1997) which has been provided by the University of Chicago [5].

We processed the data in various ways (especially pattern matching) in order
to arrive at dictionary entries structured in such a way that we can identify all
lemmas and get some information about word classes.

3.2 Overall Technical System Architecture

Any kind of data is not very useful if it is not maintained by a technical
infrastructure, especially dictionary data. While we could maintain the corpus
data in the form of files, the dictionary data had to be inserted into a database
for ease of use.

Because of the unstructured form of each dictionary entry, we chose to stor
this data in the NoSQL database management system MongoDB under the con-
trol of a small application server running on NodeJS. Therefore the data is
managed in a document-based fashion so that we have more flexibility with
respect to data models. The server provides a REST interface for easy access
by computer programs, enabling us to build a small variety of technical tools
using this data. Besides the dictionary server, we created a server addressing
the Pali morphology (which is the focus of this paper), a data processor to infer
PoS from plaintext dictionary entries, an editor for manual lookup and editing
of dictionary entries, and other minor tools.
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4 Morphological Generation in Pali

In this chapter we discuss the theoretical and technical aspects of our morpho-
logical generator (which is implemented as a server as mentioned above).

4.1 Overall Generation Process

The morphological generation component generates inflected forms of a lemma.
When generating, we first have to distinguish between regular generation

and irregular word forms. For regular generation, we combine the paradigm
endings with the stem of the word to obtain morphological forms. At this stage,
we can also perform small sound changes and stem modifications according to
grammatical conventions in Pali. The next section describes regular generation
in more detail.

For irregular forms, we perform a table lookup as described below in Sect. 4.4.

4.2 Generation of Regular Forms

When generating regular forms according to the paradigm, we take a lemma
and, if possible, its word class. Our first task is to derive a stem from the lemma
(to the be able to inflect it in a following step). For this process of deriving the
stem, the word class is important because the word classes have different lemma
endings, and this ending has to be removed from the lemma to form the word
stem.

Nouns and adjectives have a special “lemma ending” which often does not
occur in the word’s paradigm. By “ending” we mean the termination character
sequence of a word which does not always need to match a pure linguistic concept
of “ending” in Pali. This “ending” thus explicitly marks a word as lemma. In
contrast, pronouns use the first person masculine singular form as lemma, and
verbs use the third person active singular indicative present tense form. Entries
in our Pali dictionary represent these lemmas and follow these conventions.

If we cannot supply the word class of a lemma at generation time, a dedicated
word class guesser tries to guess the most probable word class by comparing the
ending of the lemma with word class specific lemma endings. In the optimal case,
only one word class can be singled out and returned as hypothesis. However, often
two or more word classes are possible.

Then, the paradigm which matches the current word’s word class is selected.
The stem is combined with every ending of the paradigm and the morphological
information is saved together with the generated form. Before combining, we
check whether the ending performs changes on the stem, and, if this is the case,
we apply these changes before adding the ending.

For example, the word manas ‘mind’ is a noun lemma. From the surface
form, we can infer that it belongs to the “as” declension group. The stem is
formed by removing the lemma ending of the “as” group, which is “as.” We
arrive at the stem “man-.” We combine the stem with every ending as specified
by the paradigm for nouns of the “as” declension group.
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For verbs, some forms are constructed with the base, which is similar to the
stem of nouns, while others are constructed with the root. A verb has a root,
which is not a full free morpheme. For example pacati ‘to cook,’ has the stem
‘paca-’ and the root

√
pac. The root

√
pac belongs to the first division of the

first conjugation which form the base by adding ‘a’ to the root. There are seven
different declension classes that derive the base differently. Sometimes, more
than one base can be derived from a root, e.g., the root

√
rudh ‘to obstruct’ has

five bases: rundhati, rundhiti, rundh̄ıti, rundheti, rundhoti.
As an example of a regular verb formation, let us consider the following.

From
√
kar, base karo ‘to make,’ we can form the singular forms of the present

indicative as follows: karomi ‘I make,’ karosi ‘you make,’ karoti ‘s/he/it makes.’
According to this concept in technical implementation we have chosen para-

digms as data model in XML format, for example:

<paradigm type="noun">

<number type=" singular">

<declension type="as">

<gender type=" neuter">

<case type="nominative">

<ending >o</ending >

</case>

<case type="vocative">

<ending >a</ending >

<ending >o</ending >

...

</case>

</gender >

</declension >

</number >

</paradigm >

The innermost nodes contain the ending morpheme while the nodes traversed
in order to reach an innermost node express the morphological information of
that node. In this example we have the ending ‘o’ which expresses noun, singular,
declension ‘as,’ neuter, nominative and the endings ‘a’ and ‘o’ which in this
specific case express noun, singular, declension ‘as,’ neuter, vocative. If we have
the lemma manas ‘mind,’ we can, given this excerpt of a paradigm, generate
the forms mano and mana with the respective morphological information.

The example given above addresses nouns. Morphological information about
other word classes are specified similarly.

4.3 Regular Deviations from the Paradigm

Let us now consider the lemma pacati ‘to cook.’ This is a verb lemma, thus
the stem is paca-. We can form the singular forms of the present indicative as
follows: pacami, pacasi, pacati. The problem is that in this case, the first form
is wrong and should be pacāmi with a lengthening of the a. The other forms
(pacasi, pacati) are correct. Indeed, the ending -mi of the singular first person
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indicative present active lengthens the preceding letter if that letter is ‘a.’ In the
above example with karo, no lengthening takes place. This is a regular deviation
from the regular paradigm in a technical sense.

Regular deviations from the paradigm can be encoded in the paradigm in the
form of conditional rules. The basic concept of these rules are that we specify
pairs consisting of:

– a pattern that specifies where the modifications in a generated form should
be applied

– the concrete modifications that shall be applied.

The following are examples of endings with rules.

(1) <ending type="Drare">asi</ending>
(2) <ending type="Cm2">anto</ending>
(3) <ending type="Cl1a">mi</ending>

Patterns start with a capital letter that indicates the broad category of the
pattern. The primary category ‘C’ indicates that the stem should be modified
before appending the ending, category D indicates the frequency of word forms
constructed with the ending. These are all existing categories at the moment.
A further category R is planned that restricts the environment to which an
ending can be appended.

The category letter is followed by category specific instructions. In our case
the ‘D’ is followed by the word ‘rare,’ indicating that forms formed with this
ending are rare (ex. 1). For category C, in our examples ‘C’ is followed by “m”
and a number (ex. 2), or by “l,” a number and one of the characters (a,i,u)
(ex. 3). In the first case, the number indicates how many letters to delete from
the right of the stem before appending the ending (ex. 4 shows the application
of ex. 2). In the second case, the number indicates how many letters to the
right of the ending the letter to lengthen is and the character indicates what
letter to lengthen before appending the ending. If the letter indicated in the rule
matches the letter in the base, the lengthening takes place (ex. 5); otherwise,
no lengthening takes place (ex. 6). Category D does not modify the stem and
merely adds information about frequency.

(4) bhavam. ‘sir’ → bhav (root) + anto (ex. 2) → bh + anto → bhanto
(5)

√
pac (root) → paca (base) + mi (ex. 3) → pacā + mi → pacāmi

(6)
√
kar (root) → karo (base) + mi (ex. 3) → karo + mi → karomi.

4.4 Irregular Word Forms

Changes that affect the morphology in other ways that cannot be encoded in the
paradigm are treated differently. For highly irregular morphological forms, we
encode the information about the irregular forms in the dictionary. At generation
time, the dictionary is consulted, and if any irregular information is found, it is



Morphological Analysis and Generation for Pali 65

used. The information is encoded as a node of the dictionary entry1, for example
(only the relevant node is shown, surrounding nodes are not shown):

{

"irregular":{

"numeral":{
"type ":" full",

"defaultMode ":" overwrite",

"forms ":[

{

"gender ":"masculine",

"number ":" plural",

"word ":"tayo",

"case":" nominative"

},

{

"gender ":"masculine",

"number ":" plural",

"word ":"ti~n~na~n",

"case":" genitive"

},

...

The “irregular” node contains possible word class nodes, since a lemma can
belong to more than one word class. The word class nodes contain a type, a
default mode and the morphological forms. The “type” information specifies
whether the given morphological forms constitute the whole paradigm for the
word class node (full), or whether the given information only contains some of
the morphological forms (partial). The mode specifies how the morphological
forms are treated. The following table illustrates the types and their associated
modes.

type mode

full overwrite

partial add

remove

overwrite

For the type “full,” the only mode is “overwrite.” This means that by specify-
ing irregular information as full, the information provided overwrites any applica-
ble paradigm. Hence, all the information specified must be the full paradigm for
the word in question.
1 Note: The data structure is specified in JSON format, not XML. This is because our

dictionary data is maintained in a NoSQL data base which uses JSON as communi-
cation data format.
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The type “partial” can have different modes, namely “add,” “remove,” and
“overwrite.” We can overwrite specified forms, we can add irregular forms to
regularly inflected (generated) forms or we can remove some generated forms.
Removal of generated forms is useful for defective paradigms such as tayo ‘three’
which has no singular or the defective verb as ‘to be.’ Every irregular form can
also overwrite the general default mode by specifying another mode.

Depending on the type of the irregular information, other forms are gener-
ated, added, removed or no generation takes place at all.

4.5 Dealing with Words of Unknown Word Class

Morphological generation can be used for analysis as well.
If we encounter a word and we want to determine the word class of the word,

we could look up the word in the dictionary and retrieve this information. Our
dictionary unfortunately is insufficient for this task: we only have sufficient infor-
mation for roughly 60 % of lemmas in the dictionary [10]. This is due to the fact
that so far there does not exist a complete dictionary suitable for computational
linguistic tasks.

If we are lucky on a lookup, the dictionary contains word class information
for that word. If we are unlucky, the dictionary does not contain information
about the word class, or the dictionary does not contain the word at all.

In the latter cases, if we have multiple hypotheses about the word class
of a word, we can generate all morphological forms of the word according to
these hypotheses. We can then count the number of actually occurring forms for
each hypothesis and choose the most probable hypothesis as word class for our
word. Previous experiments have shown that this approach yields good results
with 76.25 % correct predictions for verb forms to 97.31 % for nouns and adjec-
tives [10].

4.6 Output

Our system returns JSON as output. The following is an excerpt from a success-
ful morphological generation for eka ‘one’ (spaces and line breaks inserted for
readability):

{"lemma":"eka",

"forms ":{

"numeral":[

{

"gender ":"masculine", "number ":" singular",

"word ":" eko", "case":" nominative"

},

{

"gender ":"masculine", "number ":" singular",

"word ":"ekassa", "case":" genitive"

},

...
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The response is wrapped in a “success” node in case of success. As can be seen,
morphological information is encoded as key-value pairs. The user can then, for
a given key, decide to consider or ignore certain key-value pairs. For example,
rare and poetic forms are marked as being rare; no distinction could be made
between rare and poetic, since rare forms often are poetic forms and vice versa.
Furthermore, we are not (yet) in possession of qualified information concerning
the matter. However, if a user is not interested in rare forms, these can simply
be excluded by ignoring forms marked as rare.

Aside from the default JSON output, it is possible to get XML output as
well. The desired output format is specified within the request. This way our
system is flexible and can adapt to suit the needs of its users.

5 Morphological Analysis in Pali

5.1 Overall Analysis Process

The morphological analysis component produces morphological information
about a word. The component can be divided into two distinct sub-components.

The first sub-component performs a look-up in a word table containing irreg-
ular forms. If the table contains the word in question, information from the table
is returned. Otherwise, the second sub-component is used.

The second sub-component analyzes a word using a rule based approach.
Information taken from the paradigms is used to split the word into possible
stem–ending elements. Based on these stems and the word class, word class spe-
cific lemmata are derived. The morphological analysis corresponds to the mor-
phological information attached to the identified ending element. These analyses
are then returned.

5.2 Lookup-Based Approach

The lookup-based approach performs a lookup of the word form to analyze
in a a word form table. This table contains all irregular forms and provides
exhaustive and valid information for a correct word form analysis. This data can
be computed in advance and/or provided manually.

5.3 Heuristic Approach

For a given word, the analyzer matches the word’s ending against all paradigms.
If a match is found, the information from the paradigm containing the ending
is added to the analyses. Based on the identified ending, the word to analyze is
split into a stem and an ending.

5.4 Word Class Guesser

Based on the heuristic approach, the word class guesser derives word class
hypotheses from morphological information. Hypotheses are weighted based on
the ending, the common frequency and the ending’s length.
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5.5 Output

As with the generation, the output is JSON. The analyses are grouped by cal-
culated lemma. The forms are then grouped by word class. For each word class,
the word is shown split into identified stem and ending if applicable. Then, mor-
phological information is listed as key-value pairs2. The analysis of “eka” ‘one’
yields:

{"analyses ":[

{"lemma":"eka",

"forms ":{

"numeral":[

{"word ":"eka",

"grammar":

{" gender ":"masculine",

"number ":" singular",

"case":" vocative"

}

}]}},

{"lemma":"eka",

"forms":

{"noun ":[

{"word ":" ek_a",

"grammar":

{" gender ":" feminine",

"number ":" singular",

"case":" vocative",

"declension ":"a"

}

}]}},

...

5.6 Problems

The morphological analyzer does considerably better if a word class can be
specified along with the word to analyze. However, such information is not always
accessible at the moment of analysis.

The analysis also overgenerates; often, many different and possible analyses
are returned. This is due to some morphological forms having identical surface
forms, especially verb forms. Another reason for the overanalysis is that we
cannot determine which of the possible analyses is the correct analysis. Finally,
discriminating between adjectives and nouns is nearly impossible, since their
paradigms are very similar. Moreover, many words in Pali can be used both as
nouns and as adjectives.
2 For reasons of easy interoperability with all system components we primarily focus

on JSON as output format. As mentioned above the programming interface allows
retrieval of XML output as well, which then contains the same data as the JSON
data structure above.
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As we cannot rely on one or more good dictionaries, as in Sanskrit for exam-
ple, we have to rely more strongly on the morphological analysis and generation.
With this information in mind, our dictionary is being completed both manually
and computationally at the moment of writing. Nevertheless, as Pali is a dead
language about 2500 years old, this is not an easy task. Therefore, we expect
that some more research about specific words and word forms will be done in
the future.

6 Sandhi in Pali

6.1 Explanation

Sandhi are phonological sound changes that occur when two sounds meet [6].
These phonological changes are also reflected in writing.

There are two types of sandhi: internal and external sandhi [8]. Internal
sandhi concerns sound changes within one word that take place when a word
takes an inflectional ending or when a verbal root is converted to a verbal stem
[8]. External sandhi occurs between two words next to each other [6,8]; external
sandhi can lead to two words being combined into one surface form (ex. 7).

Also, when a compound is formed, sandhi can occur (ex. 8). Compounding
is frequent and complex in Pali, thus this is important not only if we want
our system to be able to generate correct compounds, but even more so if we
want to split compounds. Addressing this is relevant for real world applications,
whenever someone wants to deal with words from the existing Pali texts.

(7) evam. ca → evañca ‘and thus’
(8) ajja uposatho → ajjupposatho ‘the day of fasting’

Our system can generate compounds according to the rules of sandhi, but
splitting of compounds that result from internal sandhi is still future work.

6.2 General Letter-Based Approaches

The problem with sandhi resolution is that we cannot say if and where sandhi
took place by looking at a morphological form. In general additional information
is needed which increases the complexity of tasks addressing sandhi. We tried
multiple approaches and found exclusive letter based approaches to fail due to
lack of precision: our approaches led to massive overgeneration during splitting.

For example, one rule states that when two vowels meet, the first vowel may
be elided. Another rule states that when two vowels meet, the second one may be
elided. When looking at a vowel, we cannot however determine whether one of
these rules was applied or not. Using only these two rules, if we have a Pali word
with n vowels, and knowing that Pali has 8 vowels [6], the number of possible
splits N is

N = (1 + (2 ∗ 8))n (1)
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Indeed, we can choose not to split the word, or we can split the word in 8
different ways with 2 rules, for each vowel. For n = 1, we have 17 possibilities.
For n = 2 we already have 289 possibilities. The number of possible splits grows
exponentially. The full ruleset generates even more possible splits [2].

6.3 Corpus-Based Resolution with Regular Expressions

Due to the massive overgeneration of the first approach, we have opted for a
different aproach. Because of the limited amount of Pali text in existence, we
use a case based resolution. The external-sandhi splitter we have built operates
on the basis of regular expression rules which have been manually compiled from
examples occurring in the corpus.

7 Results and Conclusion

In this paper we have shown methods and software components to analyse Pali
as well as generate word forms. We found that this is possible to a good extent
though Pali is a low resource language and no sufficiently good dictionary is
available.

Nevertheless the problem with our approach of word for generation is over-
generation and variable generation quality depending on the word. This is due
to the fact that we have to include rare and poetic forms; furthermore, we
don’t have sufficient information in the dictionary. Still, we have chosen this
rule based approach because words in Pali mostly follow a regular inflectional
paradigm. Resulting quality issues must be addressed in the future especially by
an enhanced version of a Pali dictionary which is currently not yet available.

We also discussed word form analysis including external sandhi splitting.
Though there is no sufficiently complete dictionary available right now our app-
roach leads to very valuable results for other scientific projects as it has turned
out in the context of our work, and as recent contacting attempts by other
researchers have shown. As shown in our paper, sometimes even a pragmatic app-
roach to certain problems can yield surprisingly good results: though of course
such an approach has to be selected very carefully, performing splitting of exter-
nal sandhi in our case of the low resource language Pali led to good results.

We provide our software components and technical infrastructure and (aim
to provide) the current version of the Pali dictionary enhanced by our team as
a helpful basis for future researchers.
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Abstract. Semantically detailed and typologically-informed morpho-
logical analysis that is broadly applicable cross-linguistically has the
potential to improve many NLP applications, including machine transla-
tion, n-gram language models, information extraction, and co-reference
resolution. In this paper, we present a universal morphological feature
schema, which is a set of features that represent the finest distinctions in
meaning that are expressed by inflectional morphology across languages.
We first present the schema’s guiding theoretical principles, construc-
tion methodology, and contents. We then present a method of measuring
cross-linguistic variability in the semantic distinctions conveyed by inflec-
tional morphology along the multiple dimensions spanned by the schema.
This method relies on representing inflected wordforms from many lan-
guages in our universal feature space, and then testing for agreement
across multiple aligned translations of pivot words in a parallel corpus
(the Bible). The results of this method are used to assess the effective-
ness of cross-linguistic projection of a multilingual consensus of these
fine-grained morphological features, both within and across language
families. We find high cross-linguistic agreement for a diverse range of
semantic dimensions expressed by inflectional morphology.
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1 Introduction

Semantically detailed and typologically-informed morphological analysis that is
broadly applicable cross-linguistically has the potential to improve many NLP
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applications, including machine translation (particularly of morphologically rich
languages), n-gram language models, information extraction (particularly event
extraction), and co-reference resolution.

In this paper, we first present a novel universal morphological feature schema.
This schema is a set of features that represent the finest distinctions in meaning
that are expressed by inflectional morphology across languages. The purpose of
the proposed universal morphological feature schema is to allow any given overt,
affixal (non-root) inflectional morpheme in any language to be given a precise,
language-independent, semantically accurate definition.

As a demonstration of the utility and consistency of our universal schema, we
show how it can enable cross-linguistic projection-based approaches to detailed
semantic tagging. We measure the cross-linguistic variability in the semantic
distinctions conveyed by inflectional morphology along multiple dimensions cap-
tured by our schema. This method relies on representing inflected wordforms
from many languages in our universal feature space, and then testing for fea-
ture agreement across multiple translations of pivot words chosen from a parallel
text (e.g., the Bible). We find high cross-linguistic agreement for a diverse range
of semantic dimensions expressed by inflectional morphology, both within and
across language families. This is true even in some cases where we expect lan-
guages to diverge due to non-semantic or arbitrary divisions of the semantic
space (e.g., when assigning grammatical gender to inanimate objects).

2 A Universal Morphological Feature Schema

This section describes the principles that inform the composition of the schema,
the methodology used to construct it, and its contents. See Table 1 for a sum-
mary of the full schema that includes both the dimensions of meaning and their
respective features.

2.1 Guiding Theoretical Principles

The purpose of the universal morphological feature schema is to allow any given
overt, affixal (non-root) inflectional morpheme in any language to be given a
precise, language-independent, semantically accurate definition. This influences
the overall architecture of the schema in two significant ways.

First, the schema is responsible for capturing only the meanings of overt,
non-root, affixal inflectional morphemes, which considerably limits the semantic-
conceptual space that must be formally described using these features. This
significant limitation of the range of data that must be modeled makes an inter-
lingual approach to the construction of the schema feasible (as also noted by
Sagot and Walther [43]).

Second, the schema is sensitive only to semantic content, not to overt surface
form. This follows the insight in linguistic typology that “crosslinguistic com-
parison [. . . ] cannot be based on formal patterns (because these are too diverse),
but [must] be based primarily on universal conceptual-semantic concepts” [26,
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Table 1. Dimensions of meaning and their features, both sorted alphabetically

Dimension Features

Aktionsart accmp, ach, acty, atel, dur, dyn, pct, semel, stat,
tel

Animacy anim, hum, inan, nhum

Aspect hab, ipfv, iter, pfv, prf, prog, prosp

Case abl, abs, acc, all, ante, apprx, apud, at, avr, ben,
circ, com, compv, dat, equ, erg, ess, frml, gen, in,
ins, inter, nom, noms, on, onhr, onvr, post, priv,
prol, propr, prox, prp, prt, rem, sub, term, vers,
voc

Comparison ab, cmpr, eqt, rl, sprl

Definiteness def, indef, nspec, spec

Deixis abv, bel, dist, even, med, nvis, prox, ref1, ref2, rem,
vis

Evidentiality assum, aud, drct, fh, hrsy, infer, nfh, nvsen, quot,
rprt, sen

Finiteness fin, nfin

Gender bantu1-23, fem, masc, nakh1-8, neut

Information structure foc, top

Interrogativity decl, int

Mood adm, aunprp, auprp, cond, deb, imp, ind, inten, irr,
lkly, oblig, opt, perm, pot, purp, real, sbjv, sim

Number du, gpauc, grpl, invn, pauc, pl, sg, tri

Parts of speech adj, adp, adv, art, aux, clf, comp, conj, det, intj, n,
num, part, pro, v, v.cvb, v.msdr, v.ptcp

Person 0, 1, 2, 3, 4, excl, incl, obv, prx

Polarity neg, pos

Politeness avoid, col, foreg, form, form.elev, form.humb, high,
high.elev, high.supr, infm, lit, low, pol

Possession aln, naln, pssd, psspno

Switch-reference cn r mn, ds, dsadv, log, or, seqma, simma, ss, ssadv

Tense 1day, fut, hod, immed, prs, pst, rct, rmt

Valency ditr, imprs, intr, tr

Voice acfoc, act, agfoc, antip, appl, bfoc, caus, cfoc, dir,
ifoc, inv, lfoc, mid, pass, pfoc, recp, refl

p. 665, and references therein]. Due to the semantic focus of the schema, it con-
tains no features for indicating the form that a morpheme takes. Instead, the
schema’s features can be integrated into existing frameworks that can indicate
the form of morphemes, such as Sagot and Walther [43] for NLP and the Leipzig
Glossing Rules for theoretical and descriptive linguistics [12].
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The universal morphological feature schema is composed of a set of features
that represent semantic “atoms” that are never decomposed into more fine-
grained meanings in any natural language. This ensures that the meanings of all
morphemes are able to be represented either through single features or through
multiple features in combination.

The purpose of the universal morphological feature schema strongly influ-
ences its relationship to linguistic theory. The features instantiated in the schema
occupy an intermediate position between being universal categories and com-
parative concepts, in the terminology coined by Haspelmath [26, pp. 663–667].
Haspelmath defines a universal category as one that is universally available
for any language, may be psychologically ‘real,’ and is used for both descrip-
tion/analysis and comparison while a comparative concept is explicitly defined
by typologists, is not claimed to be ‘real’ to speakers in any sense, and is used
only for the purpose of language comparison.

Because the purpose of the schema is to allow broad cross-linguistic mor-
phological analysis that ensures semantic equality between morphemes in one
language and morphemes, wordforms, or phrases in another, its features are
assumed to be possibly applicable to any language. In this sense, features are
universal categories. However, like comparative concepts, the features of the uni-
versal schema are not presumed to be ‘real’ to speakers in any sense.

Like both universal categories and comparative concepts, each feature retains
a consistent meaning across languages such that every time a feature is associated
with a morpheme, that morpheme necessarily bears the meaning captured by
that feature (even though that morpheme may bear other meanings and serve
other functions as well). This emphasis on semantic consistency across languages
prevents categories from being mistakenly equated, as in the dative case example
in Haspelmath [26, p. 665], which highlights the problems with establishing cross-
linguistic equivalence on the basis of terminology alone.

2.2 Constructing the Schema

The first step in constructing the universal feature schema was to identify the
dimensions of meaning (e.g., case, number, tense, mood, etc.) that are expressed
by overt, affixal inflectional morphology in the world’s languages. These were
identified by surveying the linguistic typology literature on parts of speech and
then identifying the kinds of inflectional morphology that are typically associated
with each part of speech. In total, 23 dimensions of meaning were identified.

For each dimension, we determined the finest-grained distinctions in mean-
ing that were made within that dimension by a natural language by surveying
the literature in linguistic typology. That is, we identified which meanings were
“atomic” and were never further decomposed in any language. The reduction of
the feature set in the universal schema to only those features whose meanings are
as basic as possible minimizes the number of features and allows more complex
meanings to be represented by combining features from the same dimension.
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In addition to these basic features, some higher-level features that represented
common cross-linguistic groupings were also included. For example, features such
as indicative (ind) and subjunctive (sbjv) represent groupings of multiple basic
modality features which nevertheless seem to occur in multiple languages and
show very similar usage patterns across those languages [37]. These can be viewed
as ‘cover features’ in which backing off to more basic features remains an option.

Each dimension has an underlying semantic basis that is used to define the
features subsumed by that dimension. To determine the underlying semantic
basis for each dimension, the linguistic typology and descriptive linguistic the-
ory literature were surveyed for explanations that were descriptively-oriented
and offered precise definitions for observed basic distinctions. A simple exam-
ple is the dimension of number, whose eight features are defined according to
a straightforward quantificational scale of the number of entities. The follow-
ing section presents the schema in detail, describing the semantic basis of each
dimension and listing its features.

Because this is the first instantiation of this particular schema, it is likely
not yet fully exhaustive and the authors invite input on dimensions or features
that should be considered for inclusion. Future work will focus on the possible
inclusion of additional features, especially from other known frameworks such as
GOLD [24]. Many of the features from the Universal Dependencies Project [47]
and the Leipzig Glossing Rules [12] are already integrated into the schema.

2.3 Dimensions of Meaning Encoded by Inflectional Morphology

The semantic bases of the dimensions of meaning that are encoded by inflectional
morphologyarediscussed approximately according to thepart of speechwithwhich
the dimension is conventionally associated. After the parts of speech themselves,
the following dimensions are discussed: (verbs:) Tense, aspect, Aktionsart, mood,
voice, evidentiality, switch-reference, person, (nouns:) number, gender, case, ani-
macy, possession, information structure, politeness, (adjectives:) comparison, (pro-
nouns:) deixis. This order is purely expositional: Dimensions of meaning and their
features are not formally associated with any particular part of speech.

For reasons of space, we omit discussion of the dimensions of finiteness,
interrogativity, and polarity, which exhibit simple binary oppositions, as well
as valency and animacy, whose features are typical and defined in the expected
way. We also omit discussion of definiteness, which uses features inspired by the
the work of Lyons [36, pp. 50,99,278]. These dimensions and their features are
included in Table 1.

Parts of Speech. Croft [16, p. 89] defines the conceptual space in Table 2
for parts of speech. It is the cross-product of the concepts of object, property,
and action with the functions of reference, modification, and predication. This
conceptual space provides definitions for the following cross-linguistically com-
mon parts of speech, which are all captured by features in the universal schema:
Nouns (n), adpositions (adp), adjectives (adj), verbs (v), masdars (v.msdr),
participles (v.ptcp), converbs (v.cvb), and adverbs (adv).
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Table 2. Functionally-motivated conceptual space defining basic parts of speech,
adapted from Croft [16, p. 89]

Reference Modification Predication

Object object reference:
nouns

object modifier:
adpositions

object predication:
predicate nouns

Property property reference:
substantivized
adjectives

property modifier:
(attributive)
adjectives

property predication:
predicate
adjectives

Action action reference:
masdars

action modifier:
adverbs, participles
converbs

action predication:
verbs

Masdars, participles, and converbs are distinct parts of speech which are
nonfinite and derived productively from verbs [25, pp. 4–5]. Masdars (verbal
nouns) refer to the action of a verb, such as running in the running of the race.
Participles can be property modifiers when they function like adjectives, and
action modifiers when they function like adverbs. Both adverbs and converbs
(i.e., verbal adverbs) modify the action expressed by the verb.

In addition to these parts of speech, the following parts of speech are included
based on their use in the Universal Dependencies Project [47], which provides an
annotation system for approximately 30 languages: Pronoun (pro), determiner
(det), auxiliary (aux), conjunction (conj), numeral (num), particle (part),
and interjection (intj). In addition to these, articles (art), classifiers (clf),
and complementizers (comp) were given features based on their inclusion in the
Leipzig Glossing Rules [12].

Tense. Tense and aspect are defined according to the framework in [30], which
uses the concepts of Time of Utterance (TU, ‘|’), Topic Time (TT, ‘[ ]’), and
Situation Time (TSit, ‘{ }’) to define tense and aspect categories. Topic Time
(TT) and Situation Time (TSit) are conceived as spans while Time of Utterance
(TU) is a single point. By defining tense and aspect categories solely in terms of
the ordering of these spans and TU, tense and aspect categories can be defined
in a language-independent way that facilitates cross-linguistic comparison.

TU is the time at which a speaker makes an utterance, and topic time is the
time about which the claim in the utterance is meant to hold true. TSit is the
time in which the state of affairs described by the speaker actually holds true.
Tense is the relationship of TU to TT while aspect is the relationship of TT to
TSit. The three core tenses are defined schematically in (1–3). To simplify the
examples of tense, imperfective aspect is always used (i.e., TT is within TSit).
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Some languages further distinguish tense categories by morphologically
marking the temporal distance between TU and TT. For example, Bamileke-
Ngyemboon (Bantu) distinguishes four levels of temporal distance symmetrically
in the past and future, such that for the past there is hodiernal (earlier today;
hod), hesternal (yesterday; 1day), recent past (in the last few days; rct), and
remote (rmt) past while for the future there is later today, tomorrow, within
the next few days (recent future), and farther ahead yet (remote future) [10,
p. 96]. Bamileke-Dschang (Bantu) also has a symmetrical system, but adds an
‘immediate’ step (immed) indicating ‘just now’ or ‘coming up in a moment’ [10,
p. 97].

Aspect. Aspect indicates the relationship between the time for which a claim
is made (TT) and the time for which a situation was objectively true (TSit).
The aspects that can be defined by relating TSit and TT are: Imperfective
(ipfv), perfective (pfv), perfect (prf), progressive (prog), and prospective
(prosp). The iterative (iter) and habitual (hab) aspects, sometimes catego-
rized as Aktionsarten, can also be defined this way, but require more than one
TSit.

Before defining each category, it is necessary to differentiate 1-state and
2-state verbs. A 1-state verb is a verb like ‘sleep,’ which lexically encodes only
one state (symbolized as ‘—–’). In a 2-state verb, the verb lexically encodes a
source state (SS, symbolized as ‘———’) and a target state (TS, symbolized as
‘++++++’). The verb ‘leave’ is a 2-state verb, since it is impossible to leave
without going through a transition of being somewhere (the source state) and
then being gone from that place (the target state).

In the schematic definitions of aspect categories that follow, time of utter-
ance is fixed in the diagrams at a point toward the end of the target state such
that all examples are past tense. Note that English does not clearly morpho-
logically distinguish perfective, perfect, and prospective aspects. This compli-
cates translation of the diagrams, but demonstrates their utility in establishing
language-independent definitions of these categories.
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Aktionsart. Aktionsart refers to the “inherent temporal features” of a verb [30,
pp. 29–31], and is a grammatical means of encoding how the action described by
a verb unfolds in reality. We include the distinctions defined by Cable [6], Comrie
[8], and Vendler [48]. The features that apply to verbs are Stative (stat), Even-
tive/Dynamic (dyn), Telic (tel), Achievement (ach), Punctual (pct), Accom-
plishment (accmp), Durative (dur), Atelic (atel), Semelfactive (semel), and
Activity (acty).

Mood. Grammatical mood is the morphological marking of modality, which
“is concerned with the status of the proposition that describes the event” [37,
p. 1]. The morphological marking of modality tends to group primary categories
of modality into larger superordinate categories. The indicative (ind) and sub-
junctive (sbjv), realis (real) and irrealis (irr), and Australian non-purposive
(aunprp) and purposive (auprp) moods are superordinate groupings of primary
modalities. Each pairs of groupings has a set of core uses that can be reduced
to an opposition between indicating information that is asserted as truth and
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indicating information that is not asserted as truth [37, p. 3]. These superordi-
nate categories are encoded as features for the reasons stated in Sect. 2.2.

Basic modality categories that are typically captured by overt morphology
include, first, the imperative-jussive modality (imp). Imperative-jussive state-
ments express a command for an actor to do something. Imperatives typically
refer to commands to a second person actor while jussives command a first per-
son plural or third person actor [37, p. 81]. No case was found in which imper-
ative and jussive modalities were contrasted overtly on the same person. Other
basic modality categories express varying speculative attitudes, including likely
(lkly), potential (pot), and unlikely or surprising. The Papuan language Dani
contrasts the realis, likely, and potential moods overtly [37, p. 162]. Related to
the potential mood is the permissive (perm) mood, which indicates ‘may’ in the
sense of having permission. A number of Balkan languages, including Bulgarian,
mark the admirative modality (adm), which expresses surprise, doubt, or irony
[p. 11]. The North American isolate Tonkawa explicitly marks the opposite of
speculative, the intentive (inten), which expressed “(definitely) will, going to”
[p. 82]. Languages such as Tiwi (isolate; Australia) mark the obligative (oblig)
modality overtly to indicate “must, have to” [p. 75]. Similar to the obligative, the
debitive modality (deb), “ought to, should,” is marked overtly in Tamil [p. 27].
The general purposive (purp) modality indicates ‘in order to, for the purpose
of.’ The conditional mood, familiar from Spanish, expresses “would (if certain
conditions held),” and the simulative, which occurs in Caddo, expresses hypo-
thetical action in the sense of “as if X-ing” [37, p. 178]. Finally, the optative or
desiderative modality (opt) marks that an actor wants an action to occur.

Voice. Voice is the dimension of meaning that “expresses relations between a
predicate [typically a verb] and a set of nominal positions - or their referents - in a
clause or other structure” [29]. Klaiman [p. 2] defines three types of grammatical
voice: Derived, basic, and pragmatic voice systems.

Derived voice includes two voice categories familiar from Indo-European lan-
guages, active (act) and passive (pass). In ergative-absolutive languages, an
ergative subject is demoted to an absolutive subject in what is termed an antipas-
sive (antip) construction [29, p. 230]. Derived voice can also include middle voice
(mid) in languages like Sanskrit, but middle voice is more often part of basic
voice systems (as in Modern Fula), in which voice is captured by lexical items,
which have an inherent voice associated with them [29, p. 26].

Pragmatic voice systems include what have been called direct-inverse sys-
tems, common in North American languages, as well as complex voicing systems
in Austronesian languages. In languages with direct-inverse voice systems (e.g.,
Plains Cree), arguments are ranked according to a salience hierarchy, such as
1 > 2 > 3 > non-human animate > inanimate. When the most “salient” argu-
ment of the verb functions as the subject, the verb may be marked with a direct
voice (dir) morpheme [29, p. 230]. The inverse voice (inv) marks the argument
of the verb that is lower in the hierarchy when it functions as the subject. When
the arguments of the verb are at equal ranks, they are marked as either proximate
or obviative, as described in Sect. 2.3 (Person).
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In Austronesian voice systems, a different voice is used to focus nouns occu-
pying different semantic roles [29, p. 247]. A voice marker that simultaneously
marks the semantic role of the focused noun is used on the verb and the overt
marker of the semantic role is replaced by a morpheme that marks both the
semantic role and its status as focused. The Austronesian language that makes
the most distinctions in semantic role marking in its voice system is Iloko
(Ilocano). The semantic roles it marks are given dedicated features in the univer-
sal schema since they are used by other Austronesian languages. Those roles are:
Agent (agfoc), patient (pfoc), location (lfoc), beneficiary (bfoc), accompa-
nier (acfoc), instrument (ifoc), and conveyed (cfoc; either by actual motion
or in a linguistic sense, as by a speech act) [41, pp. 336–338].

Finally, valency-changing morphology is categorized with voice because it
alters the argument structure of a sentence. Reflexives (refl) direct action back
onto a subject, while reciprocals (recp) indicate that with a plural subject, non-
identical participants perform the action of the verb on each other. Causatives
(caus) indicate that an action was forced to occur, and may introduce an argu-
ment indicating the actant that was forced to perform the action. Applicative
morphemes (appl) increase the number of oblique arguments (that is, arguments
other than the subject or object) that are selected by the predicate [38].

Evidentiality. Evidentiality is the morphological marking of a speaker’s source
of information [1]. The universal morphological feature schema follows
Aikhenvald [1] in viewing evidentiality as a separate category from mood and
modality. Although categories of evidentiality may entail certain modalities (such
as hearsay or reported information evidentials entailing irrealis or subjunctive
moods), evidentiality is a distinct category that encodes only the source of the
information that a speaker is conveying in a proposition.

The unique evidential categories proposed as features here are based on
Aikhenvald’s typology [1, pp. 26–60]. Those features are, in approximate order
of directness of evidence: Firsthand (fh), direct (drct), sensory (sen), non-
visual sensory (nvsen), auditory (aud), non-firsthand (nfh), quotative (quot),
reported (rprt), hearsay (hrsy), inferred (infer), and assumed (assum). The
degree to which these categories could be reduced using a deeper featural analysis
requires further research.

Switch-Reference. Switch-reference is an anaphoric linkage between clauses
that disambiguates the reference of subjects and other NPs [44, p. 1]. Switch-
reference is a fully grammaticalized phenomenon in some languages and can
occur when the reference of subjects or other NPs is already fully disambiguated.
Switch-reference marking is concentrated in languages of North America (notably
in the Southwest, Great Basin, and coastal Northern California), Australia,
Papua New Guinea, and the Bantu languages of Africa [44, p. 5].

A basic overt distinction in many switch-reference systems is between same
subject (ss) and different subject (ds) [44, pp. 3–4]. In addition to this basic
distinction, a third underspecified category, open reference (or) marking, which
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signals “indifference as to the referential relation between the two [NPs] rather
than specified non-identity” [44, p. 34]. In addition, some West African lan-
guages have what have been called “logophoric” systems in which pronouns are
explicitly coreferential (or logophoric; log) with a pronoun in a previous clause
[44, pp. 50–56].

More complex switch-reference systems necessitate additional features, which,
due to space limitations, are not described here, but are included in the summary
of the schema. Note that cn r mn is a feature template used to signal switch-
reference marking between NPs in any argument position (as must be used for,
e.g., Warlpiri) [44, p. 25]. When expanded, these template features bring the total
feature count above 212.

Person. The conventional person categories that are encoded on verbs in most
languages include first person (1), second person (2), and third person (3). Apart
from these common distinctions, some languages also distinguish other categories
of person, including zero (0) and fourth person (4), and each conventional per-
son category is sometimes subdivided further. The Santa Ana dialect of Keres
distinguishes all four of these categories [20, pp. 75–76].

Zero person, which occurs in Finnish, describes an underspecified third per-
son, as with English ‘one,’ that refers to any human actor [31, p. 209]. Fourth per-
son is used to describe an otherwise third-person referent that is distinguished via
switch-reference (e.g., in Navajo “disjoint reference across clauses” [52, p. 108])
or obviation status [7, pp. 306–307].

The first person plural (‘we’) is divided into inclusive (incl), i.e., including
the addressee, or exclusive (excl), i.e., excluding the addressee. When two or
more third person arguments are at the same level of the salience hierarchy in
a language with a direct-inverse voice system, one argument is usually overtly
marked as proximate (prx) and the other as obviative (obv).

Number. The dimension of number is relevant for multiple parts of speech
and is one of the most frequent agreement features. Each feature is defined with
respect to a quantificational scale of the number of entities indicated. The range
of number distinctions on nouns is most extensive, with less common categories
like “greater paucal” expressed in a small number of languages on nouns, but
never on verbs.

The number categories found on nouns include singular (sg), plural (pl), dual
(du), trial (tri), paucal (pauc), greater paucal (gpauc), and so-called inverse
number (invn) [14]. Sursurunga (Austronesian) contrasts all these, except
inverse, on nouns [14, pp. 25–30].

In inverse number systems, such as that of Kiowa [14, pp. 159–161], nouns
have a default number that indicates the number with which they are “expected”
to occur. For example, if ‘child’ is by default singular and ‘tree’ is by default
plural, then inverse number marking would make ‘child’ plural and ‘tree’ singu-
lar, inverting the number value of the noun.
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Gender. Gender is a grammatical category that includes both conventional
gender from European languages like Spanish and German, and systems with
more than three categories that are typically described as noun class systems.

Because gender can be assigned according to semantic, morphological, phono-
logical, or lexical criteria, creating an underlying conceptual-semantic space
for defining gender features is of limited utility. In addition, gender categories
rarely map neatly across languages, with differences in gender assignment even
where semantic criteria primarily determine gender. This schema therefore treats
gender as an open-class feature. The working strategy for limiting feature pro-
liferation is to encode features for gender categories that are shared across lan-
guages within a linguistic family or stock in order to capture identical gender
category definitions and gender assignments that result from common ances-
try. Results presented in Table 3a offer evidence that this is an effective strategy,
given the level of agreement in gender features within a family. The features mas-
culine (masc), feminine (fem), and neuter (neut) are motivated by many Indo-
European languages. To capture the eight possible Nakh-Daghestanian noun
classes, the features nakh1, nakh2, etc. are used, and to capture the Bantu
noun classes, of which 25 are estimated to have existed in Proto-Bantu [21,
p. 272], the features bantu1, bantu1a, bantu2, etc. are used.

Case. “Case is a system of marking dependent nouns for the type of relationship
they bear to their heads” [3, p. 1]. The types of overt case that are encountered
in the world’s languages can be divided into three types: (1) core case, (2) local
case, and (3) other types of case [3].

Core case is also known as ‘non-local,’ ‘nuclear,’ or ‘grammatical’ case [3,13],
and indicates the role of a syntactic argument as subject, object, or indirect
object. The specific core cases vary according to the syntactic alignment that
a given language uses and can be defined in terms of three standard “meta-
arguments,” S (subject of an intransitive verb), A (subject of a transitive verb),
and P (object of a transitive verb). Nominative-accusative languages use the
nominative case (nom) to mark S and A and the accuative (acc) to indicate
P. Ergative-absolutive languages use the ergative case (erg) to indicate A and
absolutive (abs) to indicate S and P. In ‘tripartite’ languages that fully differ-
entiate S, A, and P, the S-only nominative (noms) indicates only S.

Non-core, non-local cases (type 3) express non-core argument relations and
non-spatial relations. The dative case (dat) marks the indirect object, and its
functions are sometimes divided into two distinct cases, the benefactive (ben)
for marking the beneficiary of an action and the purposive (prp) for marking the
reason or purpose for an action [3, pp. 144–145]. The genitive (gen) and relative
(rel) cases both mark a possessor, with relative also marking the core A role
[p. 151]. The partitive case (prt) marks a noun as partially affected by an action
[p. 153]. The instrumental case (ins) marks the means by which an action is done,
and sometimes marks accompaniment, which can be marked distinctly with the
comitative case (com) [p. 156]. The vocative case (voc) marks direct address
[pp. 4–5]. In comparative constructions, the standard of comparison (e.g. ‘taller
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than X ’) can be explicitly marked with the comparative case (compv) when
the comparison is unequal and with the equative case (eqtv; e.g., ‘as much
as X ’) when the comparison is equal. The formal case (frml) marks “in the
capacity of, as,” and the aversive case (avr), common in Australian languages,
indicates something that is to be feared or avoided. Also common in Australian
languages are the privative/“abessive” case (priv) indicating without or a lack
or something and its counterpart, the proprietive case (propr), which indicates
the quality of having something [3, p. 156].

The local cases express spatial relationships that are typically expressed by
adpositions in English (and in the majority of the world’s languages) [40, p. 24].
The types of local case morphemes include place, distal, motion, and ‘aspect’
morphemes, as shown by Radkevich [40].1 The place morphemes indicate ori-
entation to a very precise degree [p. 29]. The Nakh-Daghestanian languages
Tabassaran and Tsez contain the largest number of place morphemes, which
include separate morphemes, encoded in the schema as features, for “among
(inter), at (at), behind (post), in (in), near (circ), near/in front of (ante),
next to (apud), on (on), on (horizontal; onhr), on (vertical; onvr),” and “under
(sub)” [13,40]. Only one morpheme (and feature) indicates distal (rem). The
motion category is composed of only three possible parameters, namely essive
(static location; ess), allative (motion toward; all), and ablative (motion away;
abl) [40, pp. 34–36]. The ‘aspect’ category is an elaboration of the motion cate-
gory, and includes four parameters, namely approximative (apprx), terminative
(term), prolative/translative (prol), and versative (vers) [pp. 37, 53–55]. The
approximative indicates motion toward, but not reaching, a goal, while the ter-
minative indicates that motion “as far as,” or “up to” the goal. The versative
indicates motion in the direction of a goal, without indication of whether it
is reached, and the prolative/translative indicates motion “along, across,” or
“through” something.

Animacy. To the extent that animacy is a grammatically separate category
from person, individuation, and agency, it encompasses only four principal cat-
egories: Human (hum), non-human (nhum), animate (anim), and inanimate
(inan) [11, p. 185]. Animacy is not encoded by dedicated overt morphemes in
any language, but can still be isolated as an independent parameter that has
overt morphological effects. Animacy conditions the realization of accusative
case in Russian, with animate masculine nouns taking a form identical to the
genitive and inanimate masculine nouns taking a form identical to the nomina-
tive [54, p. 48].

Possession. Some languages, including Turkish and certain Quechua languages,
use overt affixal morphology to mark characteristics of the possessor directly on
a possessed noun or to encode the type of possession. The simplest type of
1 The local case morphemes can be organized within each category through the use

of abstract features that are more general than the feature labels employed in the
schema.
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marking on the possessed noun marks no characteristics of the possessor, but
simply encodes the quality of being possessed (pssd). This feature occurs in
Hausa, Wolof, and in the construct state in Semitic languages [15].

The grammatical characteristics of the possessor that are marked in lan-
guages of the world include person, clusivity, number, gender, and politeness. For
example, Huallaga Quechua marks person, clusivity, and number [49, pp. 54–55].
Turkish marks person, number, and formality [23, p. 66], and Arabic marks per-
son, number (including dual), and gender (masculine and feminine) [42, p. 301].
The features used to capture these morphemes contain the prefix pss-, followed
by a number indicating person (1–3), s, d, or p for number, i or e for clusivity, m
or f for gender, and infm or form for politeness. For example, possession by a
second person singular masculine possessor is marked with the feature pss2sm.
This feature is schematized as psspno (‘possession-person-number-other’).

Finally, many languages (such as Kpelle [Mande]), distinguish alienable pos-
session (aln), in which ownership can change, from inalienable possession (naln),
in which ownhership is considered to be inherent. For example, Kpelle marks pos-
session by a first person singular possessor distinctly in ‘my house’ (Na pεrεi) from
‘my arm’ (m-pôlu) [50, p. 279].

Information Structure. Information structure is a component of grammar
that formally expresses “the pragmatic structuring of a proposition in a dis-
course” [32, p. 5]. More concretely, information structure directly encodes which
parts of a proposition are asserted by the speaker (the focus; foc) and which
are presupposed or otherwise not asserted (the topic; top; ibid., pp. 5–6).

The topic signals what the sentence is about. Lambrecht [32, p. 131] defines
the topic more specifically as “expressing information which is relevant to [a
referent in the proposition] and which increases the addressee’s knowledge of
this referent.” The focus signals information that is not presupposed by the
addressee [32, p. 213]. The information marked by the focus forms the core of
the proposition’s assertion, and typically includes the part of the proposition
that is unpredictable or new to the listener (ibid.).

Politeness. Politeness is the dimension of meaning that expresses social sta-
tus relationships between the speaker, addressee, third parties, or the setting in
which a speech act occurs [5,9]. Politeness/honorific systems can indicate rela-
tionships along four axes: (1) The speaker-referent axis, (2) the speaker-addressee
axis, (3) the speaker-bystander axis, and (4) the speaker-setting axis [5,9].

Levinson [33, p. 90] writes that with honorifics along the speaker-referent axis,
“respect can only be conveyed by referring to the ‘target’ of the respect” and that
“the familiar tu/vous type of distinction in singular pronouns of address . . . is
really a referent honorific system, where the referent happens to be the addressee.”
The t-v distinction encodes the informal (infm) and formal (form) distinction.
Data from Japanese motivate positing two sublevels of the formal level. Japanese
uses one set of referent honorifics in a speech style called sonkeigo to elevate the
referent (form.elev) and a distinct set of referent honorific forms in a speech
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style called kenjōgo to lower the speaker’s status (form.humb), thereby raising
the referent’s status by comparison [51, pp. 41–43].

In speaker-addressee honorific systems, politeness is conveyed by word choice
itself, not just by terms that refer to the addressee. Japanese and Javanese use
these systems, and in each, the distinction is between a polite form (pol) that
conveys respect and a plain form that does not.

Features are defined for speaker-bystander honorific systems, as occur in
Dyirbal (Pama-Nyungan) and Pohnpeian (Austronesian) [33, pp. 90–91], for
example, and for the speaker-setting axis (or register), but are not described
here due to space limitations.

Comparison. Comparison and gradation can be expressed through overt affixal
morphology [18]. The comparative (cmpr), such as English -er, relates two
objects such that one exceeds the other in exhibiting some quality (ibid.). The
superlative (sprl) relates any number of objects such that one exceeds all the
others. This is specifically the relative (rl) superlative, such as that expressed by
English -est. Another type of superlative, the absolute (ab) superlative, expresses
a meaning like “very” or “to a great extent,” and is used in Latin, for example
[18]. Equative constructions are comparative constructions in which the com-
pared entities exhibit a quality to an equal extent. The adjective itself can be
marked as conveying equality (eqt), as in Estonian and Indonesian [18].

Deixis. Deictic features, primarily spatial, are used to differentiate third-person
pronouns and demonstrative pronouns, especially in languages where these cat-
egories overlap [2, pp. 134–135]. Contrasts can be established according to dis-
tance, verticality, reference point, and visibility. The maximal distance distinction
occurs in Basque, which contrasts proximate (prox), medial (med), and remote
(remt) entities [27, pp. 123,150]. The maximal number of verticality distinctions
occurred in the original Lak (Nakh-Daghestanian) pronoun system, which con-
trasted remote pronouns that encoded being below (bel), at the same level as
(even), or above (abv) the speaker [22, p. 304]. The maximal reference point dis-
tinction occurs in Hausa, which contrasts a pronoun with proximity to the first
person (speaker; ref1), to the second person (addressee; ref2), and to neither
(‘distal’; noref) [2, p. 145]. Finally, the maximal visibility distinction occurs in
Yupik (Eskimo-Aleut), which distinguishes visible (vis) from invisible (nvis), and
further subdivides visible elements into those that are ‘extended,’ i.e., spread out
and moving (e.g., the ocean), and those that are ‘restricted,’ i.e., in sight and sta-
tionary [4]. More research into distinctions in the visibility domain is required
before positing features beyond vis and nvis.

3 Enabling Projection-Based Approaches to Fine-Grained
Morphological Tagging

A primary motivation for richly annotating inflectional morphology in a consis-
tent, universally-applicable way is that it enables direct comparison (and even
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translation) across languages. In this section, we examine variability in the use
of inflectional morphological features across languages. Understanding this vari-
ability is central to evaluating the viability of simple projection-based approaches
(such as those developed by [19,28,46,53]) to fine-grained part-of-speech tagging
(i.e., morphological tagging), particularly of underspecified languages.

Some languages, such as English, lack significant surface morphology, so many
semantic distinctions must be discovered through contextual analysis. For exam-
ple, English lacks overt indicators of politeness on verbs, whereas many other
languages (e.g., Japanese, Spanish) express it directly through inflectional mor-
phology. If we align the underspecified English word to its foreign counterparts
(using standard tools from machine translation), they could provide a consen-
sus label for unspecified semantic values. These consensus-derived labels could
be used to generate training data for monolingual semantic tagging algorithms,
without the need for costly human annotation effort. The quality of the labels
would depend on the tendency of foreign languages to consistently realize inflec-
tional features.

The following sections present a method of measuring cross-linguistic vari-
ability in inflectional morphology in order to assess the validity of projection-
based approaches to tagging.

3.1 Bible Alignments

We examined cross-linguistic variability in inflectional morphology by comparing
which morphological features were expressed across multiple translations of the
same meaning. First, we use a set of locations in the New Testament portion of
the New International Version (NIV) of the English Bible as ‘pivots.’ A location
is described by a (verse, position) pair and constitutes a context-specific word-
meaning combination. All (and only) nominal and verbal words in the NIV New
Testament were used as pivots.

For each pivot, we found all single-word foreign translations using verse-level
alignments obtained from the Berkeley aligner [35] on the 1169 Bibles from the
Parallel Bible Corpus2. It was possible for a given pivot to be translated into
the same foreign language multiple times, if multiple versions of the Bible were
available in that language.

Foreign words were then linked to universal morphological feature represen-
tations in our schema via lookup in a database of richly annotated data from
Wiktionary.3 The database contained inflected wordforms from 1,078,020 unique
lemmas across the 179 languages represented in Wiktionary’s English edition.
For further details on the extraction of Wiktionary data and mapping those data
to features in the universal morphological feature schema, see Sylak-Glassman,
Kirov, Yarowsky, and Que [45].

To avoid ambiguity, only words with a single unique feature vector were used.
A total of 1,683,086 translations were able to be mapped this way. Overall, these
2 http://paralleltext.info/data/all/.
3 http://www.wiktionary.org.

http://paralleltext.info/data/all/
http://www.wiktionary.org
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covered 47 unique languages across 18 language families (e.g., Romance, Celtic,
Slavic, Germanic, Uralic, Quechuan, etc.). Family affiliation was determined by
manually correcting output from Ethnologue [34]. These mappings made it pos-
sible to quantify the level of agreement in feature value for each dimension of
meaning across different translations of the same pivot. See Fig. 1 for an example
in which pairwise agreement may be measured between a Spanish and Russian
translation of the same English pivot word. This example also shows how an
underspecified English wordform can be labeled with additional morphological
features via consensus of its non-English counterparts.

Jesus        weptPivot (English):

Translation 1 (Spanish):

Translation 2 (Russian):

{IND;3;SG;PST;PFV,...}

{IND;MASC;SG;PST;PFV,...}

{PST,...}

Fig. 1. Pairwise agreement of multiple translations (Spanish and Russian) of the same
(English) pivot location. Note that the pivot word in this case, wept, only has the pst
(past tense) feature overtly specified in English. However, we can assign it other labels
including sg and pfv through a consensus of the available translations.

3.2 Results and Discussion

As an indicator of cross-linguistic consistency, Table 3a describes the average
percentage of translation pairs (e.g., see Fig. 1) that agree on a particular feature
across available pivots.4 For a particular dimension, only pairs of translations
that both specify a non-null feature value were ever compared. The table shows
the average pairwise agreement for each dimension across all translations, the
average when comparisons are limited to translations from different language
families, the average when comparisons are limited to the same language family,
and the average when comparisons are limited to the same language (i.e., only
between different Bible versions).

The results indicate that within-language variability is very low. This is an
upper bound measuring variability due to translators’ linguistic choices, rather
than true differences in cross-language feature realization. There is more variabil-
ity within language families, but the overall drop in agreement is small. This sug-
gests that consensus-based labeling of a target language would be very effective if
parallel data from genealogically-related languages were available. Surprisingly,
4 Some disagreement in the data will be due to errors in our Wiktionary data, or the

automated Bible alignment. We do not discuss these sources of noise in this paper,
but they should affect all measurements in a uniform way, and thus do not preclude
the comparisons we make.
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Table 3. Table (a) summarizes cross-linguistic agreement for each feature dimension.
The ‘overall’ results correspond to pairwise agreement across all available translations.
The ‘different family’ column shows pairwise agreement among only translations from
different language families. The ‘same family’ and ‘same language’ columns show pair-
wise agreement only between translations from the same family, and the same language,
respectively. Table (b) summarizes cross-linguistic projection accuracy for each feature
dimension. The ‘held-out’ column indicates the probability that a held-out transla-
tion for an English pivot will match the consensus of the remaining translations. The
Albanian and Latin columns indicate the accuracy of consensus compared to gold-
standard Albanian and Latin feature labels provided by automatic feature-extraction
from Wiktionary.

(a)

Dimension Overall Different Family Same Family Same Language

Case
Gender
Mood
Number
Part of Speech
Person
Politeness
Tense
Voice

0.45 0.23 0.77 0.91
0.75 0.39 0.87 0.96
0.89 0.82 0.95 0.99
0.79 0.74 0.88 0.96
0.74 0.73 0.85 0.94
0.87 0.82 0.93 0.97
0.98 0.84 0.99 1.00
0.73 0.66 0.82 0.95
0.95 0.83 0.99 0.99

Average 0.79 0.67 0.89 0.96

(b)

Dimension Held-Out Albanian Latin

Case
Gender
Mood
Number
Part of Speech
Tense
Voice

0.50 0.57 0.81
0.76 0.74 0.44
0.91 N/A 0.96
0.83 0.83 0.85
0.83 0.86 0.59
0.79 0.84 0.65
0.95 N/A 0.84

Average 0.80 0.77 0.73

this is true for gender, which, aside from animate nouns with natural masculine
or feminine gender, is often assumed to be assigned arbitrarily or according to
non-semantic principles [17]. Our data indicate that gender assignment tends to
be preserved as related languages diverge from a common proto-language.

Even if we only have parallel text from a set of mutually unrelated languages,
the different families column in Table 3a suggests that we may still rely on a solid
consensus for many features. Gender, and presumably other arbitrarily-assigned
features do show significant drop in agreement across unrelated languages.

Nominal case shows especially poor agreement cross-linguistically. There are
a number of possible reasons for this. First, no core case features will agree
between languages with different syntactic alignment systems. Second, languages
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sometimes assign morphological case in idiosyncratic ways. For example, Russian
uses instrumental case not only to denote an implement, but also to mark the
time of day and season of the year that an action takes place [39]. These linguistic
sources of disagreement, combined with a larger overall set of possible labels for
the case feature, predict a lower base rate of agreement.

While pairwise agreement statistics provide a general idea of the feasibility
of cross-linguistic projection depending on the similarity of available transla-
tion languages to the target, they are not a direct evaluation of the accuracy
of consensus-based labels. Since we do not currently have hand-labeled gold-
standard data with which to perform such an evaluation, we offer three approx-
imations, shown in Table 3b. The held-out column shows the probability that,
across all translations of a given pivot, the feature values of a single held-out
translation match the consensus values from the remaining translations (i.e.,
each held-out translation acts as proxy for a gold-standard). The rows in the
Albanian and Latin columns show the result of using Albanian and Latin Bibles
as a source of pivot locations, and treating our automatically-derived Wiktionary
data for these languages as a gold-standard.5 Albanian is an especially interesting
case. Because it is an isolate within the larger Indo-European family, no highly
genealogically similar languages were available in our dataset. This simulates the
labeling of an unknown new language.

Overall, the results indicate that an approach based on consensus would be
effective for assigning feature labels to wordforms. This is especially true if data
from languages within the same family are available. For many feature dimen-
sions, even cross-family labels would be useful, especially in low-resource envi-
ronments where a large gold-standard training set is otherwise unavailable. The
high levels of cross-linguistic agreement, particularly for non-arbitrary semantic
distinctions, would not be possible if our feature schema could not be consistently
applied to multiple, potentially unrelated languages.

4 Conclusion

The universal morphological feature schema presented here incorporates findings
from linguistic typology to provide a cross-linguistically applicable method of
describing inflectional features in a universalized framework. It greatly expands
the coverage of inflectional morphological features beyond previous frameworks
and at the same time offers a substantive hypothesis on the dimensions of mean-
ing and which distinctions within them are encoded by inflectional morphology
in the world’s languages.

The schema offers many potential benefits for NLP and machine transla-
tion by facilitating direct meaning-to-meaning translations across language pairs,
regardless of form-related differences. We demonstrated that Wiktionary forms,
when annotated according to our schema, were very likely to agree along the
5 When comparing Albanian and Latin pivots to the consensus of their translations,

no Albanian and Latin translations were used. Using only cross-language consensus
prevents unfair advantage from self-similarity.



A Universal Feature Schema for Rich Morphological Annotation 91

dimensions of meaning expressed by inflectional morphology when they were
aligned to the same pivot words by automatic machine translation tools. This
cross-linguistic consistency supports the viability of consensus-based multilin-
gual projection of fine-grained morphological features to an underspecified tar-
get language (e.g., tagging formality levels in English even though they are not
expressed by the native inflectional system) when parallel text is available.

References

1. Aikhenvald, A.Y.: Evidentiality. Oxford University Press, Oxford (2004)
2. Bhat, D.N.S.: Pronouns. Oxford University Press, Oxford (2004)
3. Blake, B.J.: Case. Cambridge University Press, Cambridge (2001)
4. Bliss, H., Ritter, E.: Developing a database of personal and demonstrative pro-

noun paradigms: Conceptual and technical challenges. In: Proceedings of the IRCS
Workshop on Linguistic Databases. IRCS, Philadelphia (2001)

5. Brown, P., Levinson, S.C.: Politeness: Some Universals in Language Usage. Cam-
bridge University Press, Cambridge (1987)

6. Cable, S.: Tense, Aspect and Aktionsart. http://people.umass.edu/scable/
PNWSeminar/handouts/Tense/Tense-Background.pdf

7. Chelliah, S.L., de Reuse, W.J.: Handbook of Descriptive Linguistic Fieldwork.
Springer, Dordrecht (2011)

8. Comrie, B.: Aspect: An Introduction to the Study of Verbal Aspect and Related
Problems. Cambridge University Press, Cambridge (1976)

9. Comrie, B.: Linguistic Politeness Axes: Speaker-Addressee, Speaker-Referent,
Speaker-Bystander. In: Pragmatics Microfiche 1.7 (1976)

10. Comrie, B.: Tense. Cambridge University Press, Cambridge (1985)
11. Comrie, B.: Language Universals and Linguistic Typology. Basil Blackwell, Oxford

(1989)
12. Comrie, B., Haspelmath, M., Bickel, B.: Leipzig Glossing Rules. https://www.eva.

mpg.de/lingua/resources/glossing-rules.php
13. Comrie, B., Polinsky, M.: The great Daghestanian case hoax. In: Siewierska, A.,

Song, J.J. (eds.) Case, Typology, and Grammar: In Honor of Barry J. Blake, pp.
95–114. John Benjamins, Amsterdam (1998)

14. Corbett, G.: Number. Cambridge University Press, Cambridge (2000)
15. Creissels, D.: Construct forms of nouns in African languages. In: Proceedings of

the Conference on Language Documentation and Linguistic Theory 2, pp. 73–82.
SOAS, London (2009)

16. Croft, W.: Parts of speech as language universals and as language-particular cat-
egories. In: Vogel, P.M., Comrie, B. (eds.) Approaches to the Typology of Word
Classes, pp. 65–102. Mouton de Gruyter, New York (2000)

17. Cucerzan, S., Yarowsky, D.: Minimally supervised induction of grammatical gen-
der. In: Proceedings of HLT-NAACL 2003, pp. 40–47. ACL, Stroudsburg, PA
(2003)

18. Cuzzolin, P., Lehmann, C.: Comparison and Gradation. In: Booij, G.E., Lehmann,
C., Mugdan, J., Skopeteas, S. (eds.) Morphologie: Ein internationales Handbuch
zur Flexion und Wortbildung/An International Handbook on Inflection and Word-
Formation, pp. 1212–1220. Mouton de Gruyter, Berlin (2004)

19. Das, D., Petrov, S.: Unsupervised part-of-speech tagging with bilingual graph-
based projections. In: Proceedings of ACL 2011, pp. 600–609. ACL, Stroudsburg,
PA (2011)

http://people.umass.edu/scable/PNWSeminar/handouts/Tense/Tense-Background.pdf
http://people.umass.edu/scable/PNWSeminar/handouts/Tense/Tense-Background.pdf
https://www.eva.mpg.de/lingua/resources/glossing-rules.php
https://www.eva.mpg.de/lingua/resources/glossing-rules.php


92 J. Sylak-Glassman et al.

20. Davis, I.: The language of Santa Ana Pueblo. In: Anthropological Papers, Num-
bers 68–74, Bureau of American Ethnology, Bulletin 191, pp. 53–190. Smithsonian
Institution, Washington, DC (1964)

21. Demuth, K.: Bantu noun classes: loanword and acquisition evidence of semantic
productivity. In: Senft, G. (ed.) Classification Systems, pp. 270–292. Cambridge
University Press, Cambridge (2000)

22. Friedman, V.: Lak. In: Brown, K. (ed.) Encyclopedia of Language and Linguistics,
pp. 303–305. Elsevier, Oxford (2006)
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Dsolve—Morphological Segmentation
for German Using Conditional Random Fields
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Abstract. We describe Dsolve, a system for the segmentation of mor-
phologically complex German words into their constituent morphs. Our
approach treats morphological segmentation as a classification task, in
which the locations and types of morph boundaries are predicted by a
Conditional Random Field model trained from manually annotated data.
The prediction of morph-boundary types in addition to their locations
distinguishes Dsolve from similar approaches previously suggested in the
literature. We show that the use of boundary types provides a (somewhat
counter-intuitive) performance boost with respect to the simpler task of
predicting only segment locations.

1 Introduction

The goal of the morphological segmentation of words is their decomposition into
morphemes (lexical level) or morphs (text level), each of which may be associ-
ated with a lexical meaning and/or a grammatical function. The segmentation
of a word into morphemes is often referred to as deep segmentation, and is con-
trasted to surface-level segmentation into morphs (e.g., [5]). Given the segmen-
tation of the German compound Ärztekammern (engl. “medical associations”)
into Ärzt-e-Kammer-n, the difference between the deep and the surface levels
is observable in the segment Ärzt, which is a variant of the noun Arzt (engl.
“doctor”) which may only be realized in the plural. Arzt and Ärzt are distinct
surface realizations—called allomorphs—of the morpheme {Arzt}. The task of
surface-level morphological segmentation of a word can be viewed as identifica-
tion on the one hand of the word formation operations which contribute to the
word’s construction (i.e., compounding, derivation, inflection) and of the morphs
which constitute the operands of these operations on the other.

Morphological segmentations have many applications in (computational)
linguistics, including information retrieval [19], language learning [2], and letter-
to-sound conversion [6]. In the following, we present Dsolve, a system for surface-
level segmentation of words based on supervised training of a conditional
random field model (CRF) [17]. In order to classify our approach, we first give
an overview of the related literature. We then describe Dsolve in more detail,
evaluate its performance on a modest set of manually annotated German words,
and conclude with some insights and loose ends.

c© Springer International Publishing Switzerland 2015
C. Mahlow and M. Piotrowski (Eds.): SFCM 2015, CCIS 537, pp. 94–103, 2015.
DOI: 10.1007/978-3-319-23980-4 6
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2 Related Work

Approaches to automatic morphological segmentation can be classified based
on two characteristics. The first of these is the distinction between methods
which rely on the manual specification of potential morph(eme) combinations—
typically using some grammar formalism—and those which automatically induce
such knowledge from un-annotated language data using distributional inference.
The second characteristic is whether the approach in question makes use of some
list or lexicon of (free) morphemes or not. Such a list can substantially increase
quality of the results, but is often associated with a great deal of manual effort.

Traditional finite-state or two-level approaches [1] use manually constructed
rules together with an extensive lexicon. The initial cost of creating a reliable
system is thus quite high. The scope of finite-state morphologies usually includes
other applications such as base-form reduction, word categorization, or lexical-
semantic analysis. This broad scope often implies the inclusion of morpholog-
ically complex forms into the underlying lexica, which adversely affects their
performance on the task of morphological segmentation. For German, the most
prominent systems are GERTWOL [12], SMOR [28], and TAGH [9], which are
either closed-source commercial products (GERTWOL and TAGH) or suffer
from the aforementioned over-lexicalization issue (SMOR and TAGH).

A great number of proposals have been made to reduce the effort involved in
the creation of morphological analysis systems. One class of proposals makes use
of the fact that the number of affixes is much smaller than the number of free mor-
phemes. Such affix removal stemmers [8] successively remove known affixes from
words under the assumption that the remaining string is the word stem [22,24].

In statistical methods, linguistic knowledge is represented as a probability
distribution over some atomic unit which is inferred from language data. In unsu-
pervised settings (sometimes called morphology induction), these data are raw
(i.e., unannotated) texts. Important works in this category include [3,4,7,10].
All of these approaches have in common that they aim at constructing lists of
possible morph(eme)s using a set of pre-defined heuristics. The identification of
morph(eme)s occurs by means of reference to character or string frequencies. In
[10] for example, an underlying word structure prefix? stem suffix∗ is assumed
in order to identify so-called signatures, classes of stems which occur with com-
mon affixes. The performance of systems trained in an unsupervised manner is
surprisingly high (compare, for example, the results of Morpho Challenge [16]),
but still insufficient for productive applications.

The inclusion of manually segmented words in the training process (so called
semi-supervised settings) can improve the performance of statistical methods
dramatically [15]. An early instance of a data-driven approach which is trained
in a completely supervised manner is MOSES [14]. For each bigram of adjacent
characters in a word, the most likely intervening boundary type is selected on
the basis of the boundary type distributions in the training material. Following
this idea, there have been a number of proposals which focus on modeling the
relation between local substrings and morph(eme) boundaries. Dsolve itself falls
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into this category, and we elaborate on the precise nature of the relation to be
modeled below.

CRFs have previously been applied to word segmentation in Chinese in [30].
Studies on morphological segmentation of languages with alphabetic writing
systems were carried out on Arabic [11,26], English [2,26,27], Finnish [26,27],
Hebrew [26] and Turkish [26,27].

3 Morphological Segmentation as Sequence Classification

Sequence classification is a popular technique in natural language processing,
already having been used successfully, e.g., for tokenization, part-of-speech tag-
ging, and named entity recognition. At its core, the sequence classification task
is defined in terms of a given set of symbols O and a set of classes C, and maps
each symbol oi ∈ O in an observation string o = o1 . . . on onto a class ci ∈ C
by determining the most probable string of classes c = c1 . . . cn associated with
o by an underlying stochastic model. Individual statistical models differ in the
manner in which the most probable classes are calculated. Hidden Markov mod-
els for example optimize the joint probability P (o, c) [23], while CRFs optimize
the conditional probability P (c|o) [31].1

For the task of morphological segmentation, the set of symbols is simply
the surface character alphabet itself (or the set of character N -grams over this
alphabet [14]). The set of target classes is usually two-valued (e.g., C = {0, 1}),
leading to a classifier which predicts for every position i whether or not there is
a segment boundary following (rsp. preceding) the observed symbol at position
i of the input word, as illustrated in Fig. 1a.

G e f o l g s l e u t e n

(a) 0 1 0 0 0 1 1 0 0 0 0 1 0

(b) 0 + 0 0 0 ˜ # 0 0 0 0 ˜ 0

Fig. 1. The German noun compound Gefolgsleuten (engl. “henchmen[dative]”) bound-
ary classified using (a) a binary classification scheme and (b) a type-sensitive classifi-
cation scheme.

Some approaches (e.g., [14,26]) use more complex classification schemes in
order to define morph(eme)s as spans in words (e.g., C = {B, I,E, S} with B
indicating the initial character of a multi-character morph, I a character inside
a multi-character morph, E the final character of a multi-character morph, and
S a single-character morph. Since such a span-based classification may result in
inconsistent predictions, further disambiguation heuristics are required to inter-
pret the classification results.
1 Although as correctly noted in [23], any class-string c which maximizes P (c, o) will

also maximize P (c|o) if the observation string o is held fixed.



Morphological Segmentation for German Using Conditional Random Fields 97

The mere detection of boundaries is itself however insufficient for some appli-
cations. Consider for example the task of syllabification which in most languages
follows the maximum onset principle [29]. In German, the morphological struc-
ture of words overrides this principle in cases of prefixion and compounding.
Dsolve attempts to accommodate such phenomena by using a type-sensitive
classification scheme: CDsolve = {+,#,∼, 0}, where ‘+’ indicates that a prefix
morph ends at the current position, ‘#’ indicates that a free morph starts with
the following position, ‘∼’ indicates that a suffix morph starts with the follow-
ing position, and 0 indicates that there is no morph boundary after the current
position. An example using this classification scheme is given in Fig. 1b.

We chose CRFs as the computational framework for the classification task.
CRFs are a class of stochastic models using chain-structured undirected graphs
to encode the dependencies between observations and output labels (i.e., classes).
These dependencies are expressed in terms of feature functions representing
salient properties of the input. Feature functions depending on external data
sources, distributional properties such as “successor frequency” [13] as extracted
from a large corpus of (un-annotated) data [27], or the distinction between vowels
and consonants [2] have also been proposed for the current task.

In the case of Dsolve, we defined a simple feature inventory using only uni-
gram features based on local string context. Each position i in the input string
o = o1 . . . on is assigned a feature for each substring of o of length m ≤ N within a
context window of N−1 characters relative to position i (including implicit word
boundary symbols with pseudo-indices 0 and n + 1). Formally, a Dsolve model
of “order”2 N has 2N2 − ∑N

m=1 m distinct feature functions fk
j , where −N <

j ≤ k < N and k − j < N , with fk
j (oi) = oi+joi+j+1 · · · oi+k−1oi+k. A model

with N = 3 for example has 12 distinct feature functions. If o = sport, then o3
has the non-zero features {f−2

−2 = ‘s’, f−1
−2 = ‘sp’, f0

−2 = ‘spo’, f−1
−1 = ‘p’, f0

−1 =
‘po’, f1

−1 = ‘por’, f0
0 = ‘o’, f1

0 = ‘or’, f2
0 = ‘ort’, f1

1 = ‘r’, f2
1 = ‘rt’, f2

2 = ‘t’}.
During model training, the influence of each feature expressed as a real-valued
weight is optimized with respect to a manually classified training set. For the
current experiments, optimization was performed by means of the L-BGFS
algorithm [20].

4 Evaluation

In this section, we investigate the influence of model order on the tasks of bound-
ary detection and optional classification of word-internal morph boundaries. We
report model performance in terms of string accuracy (acc), precision (pr), recall
(rc), and the and unweighted precision-recall harmonic average F [25]. For eval-
uation purposes, given a finite set W of annotated words and a finite set C of
boundary classes with 0 ∈ C the designated non-boundary class, we associate
2 Note that our use of “model order” in this paper refers only to the context window

size used to define the feature function inventory, and is unrelated to the order of
linear-chain feature dependencies in the underlying CRF models.
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Table 1. Comparison of two independent manual segmentations of a sample of Dsolve’s
training materials.

Boundary symbol pr% rc% F% acc%

+ 92.05 97.20 94.56 n/a

# 96.01 93.28 94.63 n/a

∼ 93.28 92.66 92.97 n/a

TOTAL [+types] 93.74 93.74 93.74 87.40

TOTAL [−types] 96.20 96.20 96.20 87.40

with each word w = w1w2 . . . wm∈W a partial relevant boundary-placement
function Brelevant,w : N→C\{0} such that Brelevant,w(i) = c if and only if there
exists a manually annotated morph boundary of type c ∈ C in the word w
between the characters wi−1 and wi, 1 < i ≤ m. The retrieved morph-boundary
placement function Bretrieved,w is defined analogously based on the output of the
CRF labeling. The evaluation quantities for the detection and classification task
can then be defined in the usual manner:

pr = |relevant ∩ retrieved| / |retrieved| (1)
rc = |relevant ∩ retrieved| / |relevant| (2)
F = (2 · pr · rc) / (pr + rc) (3)

acc = |{w ∈ W | Bretrieved,w = Brelevant,w}| / |W | (4)

where:

relevant =
⋃

w∈W
{w} × Brelevant,w = {(w, i, c) | (i �→ c) ∈ Brelevant,w} (5)

retrieved =
⋃

w∈W
{w} × Bretrieved,w = {(w, i, c) | (i �→ c) ∈ Bretrieved,w}(6)

Evaluators for the detection-only task can be defined identically, after map-
ping all boundary types c ∈ C\{0} to a single, shared value.

4.1 Materials

We created a list of 15,522 distinct German word-forms and manually annotated
types and locations of all word-internal morph boundaries. In unclear cases, we
consulted canoo.net and/or the Etymologisches Wörterbuch des Deutschen [21].
If multiple correct segmentations were applicable, we randomly selected one of
them. Candidate word-forms were selected from various corpora in the collec-
tion of the Zentrum Sprache at the Berlin-Brandenburg Academy of Sciences
and Humanities3. A total of 21,068 word-internal morph boundaries were anno-
tated in this fashion. In the interest of providing an accurate approximation of
the morph boundary distribution in German and to guard against false-positive
3 http://www.bbaw.de.

http://www.bbaw.de
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Table 2. Evaluation results for Dsolve on the combined boundary-detection and clas-
sification task for [+types] model variants.

N pr% rc% F% acc%

1 27.27 0.01 0.03 22.84

2 70.84 60.92 65.51 47.29

3 85.23 82.64 83.91 70.60

4 91.39 88.77 90.07 80.50

5 93.46 90.67 92.04 83.50

Table 3. Detailed results for Dsolve boundary classification by boundary type.

Prefix-stem (+) Stem-stem (#) Stem-suffix (∼)

N pr% rc% F% pr% rc% F% pr% rc% F%

1 – 0.00 – 27.27 0.05 0.10 – 0.00 –

2 63.97 50.25 56.28 71.47 51.27 59.71 72.65 69.83 71.21

3 83.62 85.65 84.63 87.27 77.31 81.99 84.89 84.31 84.60

4 92.44 92.35 92.39 93.04 86.07 89.42 90.21 88.87 89.54

5 95.57 94.68 95.12 95.01 88.83 91.81 91.92 90.16 91.03

boundary predictions, 3,555 monomorphemic words were also included in the list.
The complete list is published under the terms of the CC BY-SA 3.0 license, and
is available for download.4 In order to provide an assessment of the plausibil-
ity of our segmentations, we created explicit written annotation guidelines and
asked a professional linguist of our acquaintance to edit a sample of 1,000 words
accordingly. The results of a comparison to our segmentation is shown in Table 1,
where our segmentations as above are interpreted as “relevant” boundaries, and
the independent third-party segmentations provide the “retrieved” boundaries.
Training and run-time application of CRFs were performed with the wapiti
toolkit [18].

4.2 Method

The evaluation data was randomly partitioned into ten chunks of approximately
equal size and evaluated by 10-fold cross-validation. For each of the ten training
subsets and for each model order N with 1 ≤ N ≤ 5, we trained two CRF
model variants using a context window of N characters for CRF model features
as described in Sect. 3. The first model variant, which we designate with the
subscript [+types] predicts both boundary location and type by internal use of
3 distinct boundary labels for prefix-, stem-, and suffix-boundaries, respectively,
in addition to a designated label for non-boundaries. The second model variant,
indicated by the subscript [−types], uses only two labels indicating the pres-
ence or absence of a morph boundary, regardless of its type. For purposes of
4 http://kaskade.dwds.de/∼moocow/gramophone/de-dlexdb.data.txt.

http://kaskade.dwds.de/~moocow/gramophone/de-dlexdb.data.txt
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Table 4. Evaluation results on the boundary-detection task for Dsolve variants both
with (+types]) and without (−types) model-internal use of distinct boundary classes.

Method Variant N pr% rc% F% acc%

FlatCat – – 79.18 89.48 84.01 75.27

spanCRF – 1 40.33 9.57 15.47 24.13

spanCRF – 2 77.35 71.80 74.47 55.04

spanCRF – 3 88.43 87.52 87.97 74.49

spanCRF – 4 92.83 91.33 92.08 82.57

spanCRF – 5 93.56 92.29 92.92 84.45

Dsolve +types 1 36.36 0.02 0.04 22.84

Dsolve +types 2 79.45 68.32 73.47 53.16

Dsolve +types 3 89.36 86.64 87.98 74.35

Dsolve +types 4 93.49 90.81 92.13 82.55

Dsolve +types 5 94.46 91.63 93.02 84.36

Dsolve −types 1 56.34 0.72 1.42 23.03

Dsolve −types 2 77.53 69.61 73.36 52.94

Dsolve −types 3 88.81 86.58 87.68 73.70

Dsolve −types 4 92.93 90.78 91.85 81.92

Dsolve −types 5 93.89 91.73 92.80 83.98

comparison, we also included results on the boundary detection task for both
Morfessor FlatCat5 as well as a wapiti re-implementation of the span-based
CRF model described in [26] as methods “FlatCat” and “spanCRF,” respec-
tively. Each trained model was applied to the respective disjoint test subset, and
the evaluation quantities defined above were computed for the concatenation of
all test subsets.

4.3 Results and Discussion

Evaluation results for the joint task of boundary detection and classification are
given in Tables 2 and 3, and results for the boundary detection task modulo
classification are given in Table 4. Note that since the [−types] model variants
were incapable of predicting boundary classes, they were not considered for the
joint detection and classification task.

The most prominent effect observable in the data is the fact that all evalu-
ation quantities increase monotonically as model order grows. Such a tendency
is common for n-gram models of natural language phenomena, and can be
interpreted in the current case as a lexicalization effect: as model order grows,
5 http://www.cis.hut.fi/projects/morpho/morfessorflatcat.shtml; FlatCat models

were trained with perplexity threshold 10.0 using annotated corpus data in
semi-supervised mode.

http://www.cis.hut.fi/projects/morpho/morfessorflatcat.shtml
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the induced models are able to incorporate information on the distributions of
increasingly long whole morphs. This hypothesis is supported on the one hand
by the data from Table 3, indicating that the induced models performed most
poorly for strong (#) morph boundaries—which necessarily occur between com-
paratively long stem morphs—and on the other hand by the disproportionate
performance gain of the models with orders 2 and 3 with respect to their prede-
cessors, since most German prefixes and suffixes are of length 2 or 3.

Unsurprisingly, comparing the quantities for the [+types] model variants from
Tables 2 and 4 shows that the task of morph boundary detection is in some sense
easier than the joint task of boundary detection and classification. Since both the
models and data-set partitions used for evaluation were identical, the observed
differences are clearly due to the fact that some “errors” in the joint task arose
from incorrect predictions of boundary types, albeit at the correct positions:
Brelevant,w(i) = c 	= c′ = Bretrieved,w(i).

Both of the Dsolve model variants as well as the spanCRF models sub-
stantially outperformed the Morfessor FlatCat baseline for all model orders
N > 3. The Dsolve[+types] model variants performed quite similarly to the
closely related spanCRF models. For N > 1, the Dsolve[+types] models were
slightly more precise than the spanCRF models of the same order, while the
latter achieved slightly higher recall rates. Since the Dsolve[+types] errors were
more uniformly distributed between false positives and false negatives for N > 3,
these achieved a higher harmonic average F than their spanCRF counterparts,
although the latter were slightly more successful in terms string accuracy. Due to
the limited size of the test corpus, differences on the order of magnitude observed
between the Dsolve[+types] and spanCRF models must be viewed with a mod-
icum of skepticism: the differences for N = 5 for example stem from a total of
only 136 boundary errors and 13 string errors.

Despite the simplicity of the detection-only task, the Dsolve[+types] model
variants making use of distinct boundary classes consistently outperformed the
[−types] variants using a only binary label set for all model orders N > 1 in
terms of both precision and string accuracy, leading to a relative error reduction
of 9.33 % for precision at model order N = 5. While the [−types] variants dis-
played a slightly improved recall in some cases, the effect was not sufficient to
outperform the [+types] models on either of the “top-level” evaluation quantities
F or string accuracy for nontrivial model orders N > 1. This somewhat counter-
intuitive effect can only be attributed to the use of multiple boundary classes
in the [+types] variants: since the underlying CRF models allow not only the
presence of a boundary but also its class to influence the conditional path prob-
ability, these models are capable of capturing distributional regularities beyond
those available to the [−types] models, which only encode boundaries’ presence
or absence. Postulation of a prefix-boundary for example allows a [+types] model
to abstract over the lexical content of the prefix in question when estimating sub-
sequent path probabilities, whereas a [−types] model would require additional
surface context in order to identify the prefix morph as such and adjust its
predictions accordingly.
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5 Conclusion and Outlook

We have presented a system for the surface segmentation of morphologically
complex words. Treating segmentation as a classification task, our approach
uses a Conditional Random Field model trained on a modest set of manually
annotated data to predict both the locations and the respective types of morph
boundaries for each new input word. Evaluation by cross-validation on a list
of 15,522 manually annotated German word-forms showed promising results,
with a model using a context window of N = 5 input characters achieving a
total precision-harmonic average F ≈ 93% on a joint boundary detection and
classification task. Somewhat surprisingly, the incorporation of multiple distinct
boundary classes into the CRF model was shown to provide a performance gain
on a boundary detection task when compared to an otherwise equivalent model
encoding only boundary presence or absence. We attribute this effect to the clas-
sification models’ greater ability to represent linguistically salient distributional
regularities.

We are interested in applying our approach to other languages and data-sets,
and in extending the approach as presented above by the optional inclusion of
user-supplied lexical data (e.g., lists of known prefixes, stems, and/or suffixes).
Future work should also investigate to what degree if any the model training
phase can be augmented by semi-supervised learning techniques [15] using a
large corpus of un-annotated data.
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Abstract. This paper introduces a probabilistic model of morphol-
ogy based on a word-based morphological theory. Morphology is under-
stood here as a system of rules that describe systematic correspondences
between full word forms, without decomposing words into any smaller
units. The model is formulated in the Bayesian learning framework and
can be trained in both supervised and unsupervised setting. Evaluation
is performed on tasks of generating unseen words, lemmatization and
inflected form production.

Keywords: Word-based morphology · Machine learning · Generative
model · Inflection · Lemmatization · Lexicon expansion

1 Introduction

Morphological analysis is an indispensable element of the NLP pipeline for many
languages. Lemmatization or stemming is essential for virtually every semantic
processing and information retrieval task, whereas syntactic processing, like pars-
ing or chunking, usually requires Part-of-Speech tags and inflectional features,
e.g., case or gender. As a rich inflectional system is typically able to generate
hundreds of word forms for a single lemma, storing all those information in a lex-
icon is highly inefficient. In addition to inflection, also derivational morphology
(especially compounding is some languages, e.g., German) often employs highly
productive and regularized processes, which can result in a potentially unlimited
number of lemmas. Therefore, systems for automatic morphological processing
are a topic of ongoing research.

Despite the importance of morphological analysis, up to now no clear task
definition has been established. The output of tools ranges from morpheme seg-
mentation and labeling to just inflectional analysis (lemma + tag). Although
the segmentation-based approach provides more detailed information, some
non-straightforward tasks are often left to the user, like distinguishing between
inflectional andderivational affixes, reconstructing the lemmaor deriving the prop-
erties of the word from the properties of its morphemes. Also the handling of non-
concatenative morphological phenomena varies from tool to tool. The reasons for
those problems lie already in the underlying morphological theory, which requires
c© Springer International Publishing Switzerland 2015
C. Mahlow and M. Piotrowski (Eds.): SFCM 2015, CCIS 537, pp. 104–123, 2015.
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all word formation processes to be expressed in terms of morphemes. Therefore, we
introduce alternative theories, in particular Whole Word Morphology, in Sect. 3.

In addition to morphological analysis, there are also other NLP tasks, which
require the knowledge of a language’s morphology. Inflected form generation,
understood as producing an inflected word form from a lemma and a set of
desired inflectional features, is needed in machine translation, among others.
Another morphology-related task is lexicon expansion, i.e., anticipating morpho-
logically motivated, but unseen words.

The goal of the present work is a generative probabilistic model of the lexi-
con, that accounts for morphological relations between words. It can be trained
either in an unsupervised or a supervised setting, and, once trained, it is capa-
ble of solving various morphology-related tasks, including the above-mentioned.
Relying on a relational description of morphology, it does not suffer from the
limitations of the segmentation-based approaches.

The rest of this paper is structured as follows: Sect. 2 provides an overview
of the state-of-the-art in machine learning of morphology. Section 3 introduces
linguistic theories, on which the present work is based. The generative model is
described in Sect. 4 and the algorithms for training and applying it are sketched
in Sect. 5. Section 6 describes evaluation of the model on practical NLP tasks.
Topics for further research are described in Sect. 7. Section 8 summarizes the
opportunities and advantages of the present work.

2 Related Work

2.1 Morpheme Segmentation

Automatic morpheme segmentation, especially unsupervised, has been a topic of
active research for at least the last two decades [10]. The probably most known
state-of-the-art tool is Morfessor [23]. It is based on the Minimum Description
Length principle, which in this case is strongly connected to Bayesian learning.
Other approaches based on probabilistic models include the work of Poon et al.
[16] (log-linear models) and Can [5] (chap. 5, probabilistic hierarchical clustering).

Another group of approaches seeks to first group morphologically similar
words together. The words belonging to the same cluster are then aligned in
order to extract morphemes. Especially context similarity is typically used for
this purpose, sometimes along with ortographical similarity. This group includes
the approaches of Can [5] (chap. 4) and Kirschenbaum [12], among others.

Many further approaches have been submitted to MorphoChallenge [13],
which offered standarized task formulation and datasets for morpheme segmen-
tation. This yearly competition took place from 2005 to 2010.

Supervised learning of morphological segmentation is significantly less com-
mon. A method using Conditional Random Fields has been presented recently
by Ruokolainen et al. [19]. Moreover, some models developed for unsupervised
learning can also be trained in a supervised setting, like Morfessor [23] or the
log-linear model of Poon et al. [16].
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2.2 Lemmatization and Learning Inflectional Paradigms

Another branch of research considering automatic learning of morphology targets
especially inflectional morphology. The task is then defined as either aligning an
inflected word form to its root or lemma, or clustering the inflected forms of
same lemma together. Many approaches exploit the high mutual dependency of
inflectional processes, expressed in paradigms, which is a characteristic feature
of inflection.

Yarowsky and Wicentowski [26], followed by Wicentowski [25], present a
model of inflection, which can account for some non-concatenative phenomena,
like root vowel change. The supervised approach employs a trie-based classi-
fier, whereas the unsupervised performs the matching between an inflected word
form and lemma based on a combination of various features: ortographical simi-
larity, context similarity, and frequency ratio. The paradigm-oriented approaches
include Chan [6], who uses Latent Dirichlet Allocation to group suffixes into par-
adigms, and Durrett and DeNero [8]. Unsupervised clustering of inflected word
forms into lexemes has been approached by Janicki [11].

2.3 Tagging Unknown Words

A slightly different approach to morphological analysis is found in handling
unknown words in the task of stochastic PoS-tagging. In this case, the goal
is to predict the tag and sometimes the lemma of an unknown word in a given
context. The tagging is thus token-based, rather than type-based. In addition to
context features, which are the main component of such taggers, morphological
features like prefix and suffix n-grams are sometimes incorporated in order to
improve the tagging. The examples of such approaches include Mikheev [14],
Tseng et al. [22] and Chrupa�la et al. [7], among others.

2.4 Lexicon Expansion

Compared to the above topics, the prediction of morphologically motivated
unseen words is relatively little explored. Rasooli et al. [18] have shown in a
recent paper, how the segmentation produced by Morfessor can be used for
generation of new words. Their approach is to generate all possible sequences
of morphemes with a finite-state automaton and to apply additional reranking
steps based on letter trigram probabilities. On the other hand, Neuvel and Fulop
[15] define the whole task of morphology learning as learning to produce new
words using morphological mechanisms. The approach is inspired by the theory
of Whole Word Morphology [9] and bears many similarities to the present work.
However, it does not use probability or any kind of scoring, the discovered rules
are applied wherever possible, which may lead to overgeneration, especially when
learning from noisy data.
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3 Word-Based Morphology

The notion of word-based morphology has been introduced by Aronoff [2] with
the claim that “all regular word-formation processes are word-based,” i.e., they
apply to whole existing words, rather than some abstract structural elements.
While Aronoff only took derivational morphology into account, the claim was
further extended by Anderson [1]. In the latter theory, both inflection and deriva-
tion consists of word-formation rules, which operate on stems (defined as “word
minus inflectional material”) without creating any internal word structure. The
difference is that inflectional rules derive surface words out of stems, while deriva-
tional rules derive new stems.

A theory that rejects any abstract elements of word structure, called Whole
Word Morphology (henceforth WWM), has been proposed by Ford et al. [9]. A lot
of criticism is devoted to the notion of “morpheme” there: first of all, it does not
account for non-concatenative morphological phenomena. Also, the definition of
morpheme as “the minimal element of language having a meaning or function” is
troublesome, since some units participating in word-formation processes do not
have a meaning on their own, while some functions are realized not by addition,
but rather by absence or even truncation of phonological material. An example
would be French adjective inflection, where the masculine form is formed from
the feminine by truncation of the last consonant. Finally, the distinction between
inflection and derivation is rejected as unmotivated.

In WWM, the minimal meaningful elements of language are words them-
selves. Morphology, on the other hand, describes the frequently recurring formal
similarity patterns between words in terms of rules, called morphological strate-
gies. Those rules always relate full lexical representations (phonological, syn-
tactic, and semantic) of two words to each other and are not decomposable. An
example of a rule for English plural formation would be /X/N.Sg ↔ /Xs/N.Pl. X
is here a variable element, that can be instantiated with any string of phonemes.
The two-sided arrow indicates, that the rule is bidirectional: no direction is
privileged and no word is said to be morphologically “more complex” than the
other. The atomicity of the rule means that no direct link is established between
the -s-ending and the Pl feature. In other words, there is no “plural morpheme,”
there is just a systematic correspondence between many plural nouns and their
singular counterparts. While such interpretation may seem awkward in this case,
it allows to treat all morphological phenomena uniformly, including the above
mentioned non-concatenative and truncation cases, among others.

Finally, WWM does not distinguish “compounds” as words derived from
more than one other word. It is pointed out, that only one part is always respon-
sible for the base meaning and grammatical properties of a compound, while the
other part is merely an “affix,” the similarity of which to an existing word being
irrelevant for the morphology. Compounds can thus also be explained with regu-
lar morphological strategies: for example the German word Arbeitsmarkt is linked
to Markt via the rule: /X/N ↔ /arbeitsX/N. Doubtful cases between derivation
and compounding, like the German rule /X/Adj.Pred ↔ /Xerweise/Adv, speak
in favour of this unification.
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4 The Model

4.1 Lexicon as Directed Graph

The model of morphology introduced in this paper adopts many of the ideas from
the WWM theory. The morphological structure of a language is understood as a
graph of words, with morphological rules as edges. However, the bidirectionality
of the rules is not preserved, because it would lead to many redundant edges.
Instead, every word can only be derived from a single base word, i.e., every node
can have at most one ingoing edge.

machen

machst

macht

machte machtest

machbar machbaren

machbare

Fig. 1. A sample tree from a German lexicon.

Figure 1 presents a sample graph for German lemmas machen ‘to do’ and
machbar ‘feasible’ with a couple of inflected forms. Note that if we used bidirec-
tional rules, an edge would have to be drawn between every pair of the shown
words, also pairs like (machtest, machbaren). Such a multitude of redundant
rules can hardly correspond to a language speaker’s competence. Therefore, we
are rather looking for a spanning tree of the full morphological graph, which
contains for each word a single base word, from which it is “really” derived.

In Fig. 1, the edges are drawn according to the usual morphological theory:
inflected forms are derived from lemmas (possibly through other inflected forms,
like machtest from the “imperfect stem” machte), while derivational rules derive
“more complex” lemmas from “simpler” ones. Such behavior might be desirable
for solving some specific tasks, like lemmatization, and can be controlled by
training data and model parameters. However, from the point of view of model
architecture, any trees of words are allowed, regardless of whether they make
sense for the linguistic theory. Especially in the unsupervised learning task, where
the graph structure emerges from the data through optimization, the regular-
ities in word shape can be captured in quite different ways than traditional
grammatical description (see also introduction to Sect. 6).
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4.2 Model Formulation

A Bayesian model with parameter θ consists of two probability distributions:
the prior probability P (θ), which expresses a-priori beliefs about the possible
parameter values, and the likelihood function P (D|θ), which expresses the com-
patibility of the data D with the model parametrized by θ. The goal of the
learning task is to find the most likely model given the observed data, i.e., the
parameter value θ∗ which maximizes the posterior probability P (θ|D). The latter
can be transformed using the Bayes’ theorem:

θ∗ = arg max
θ

P (θ|D) = arg max
θ

P (θ) · P (D|θ)
P (D)

= arg max
θ

P (θ) · P (D|θ) (1)

The last equality follows because P (D) does not depend on θ. Instead of com-
puting the likelihood directly, the log-likelihood is often used, because it is easier
to manipulate numerically. As logarithm is an increasing function, the maxi-
mization of those two is equivalent.

In our model of morphology, the observed data is the lexicon L: a directed
acyclic graph, in which every node has at most one ingoing edge. The nodes of
the lexicon contain words, while the edges correspond to morphological rules.
The parameter of the model is the set R of morphological rules. In the following,
we will define the distributions P (R) and P (L|R).

In order to define P (L|R), we will decompose L into layers: L0, L1, . . . as
follows: let L0 contain all the nodes, that have no ingoing edge. Such nodes will
be called roots.1 Then, each Li+1 contains the nodes, that are derived from a node
from Li. Let rt be a probability distribution (called root probability distribution)
over the set of all strings using letters from the target language’s alphabet. For
example, rt can be based on letter frequencies. Then we define:

P (L0) := P (|L0|) · |L0|! ·
∏

w∈L0

rt(w) (2)

First, we draw the length of L0 from some distribution. Then, each of the ele-
ments of L0 is drawn independently from the root distribution. As the ordering
of the elements is irrelevant, the result is multiplied by the number of possible
orderings. Note that P (L0) does not depend on R and that rt is not a model
parameter (i.e., it is fixed). We can get rid of the factorial term by using Poisson2

distribution with parameter λL for P (|L0|), which yields:

P (L0) := e−λLλ
|L0|
L

∏
w∈L0

rt(w) (3)

1 The notion of root used here has nothing to do with the definition typically used in
morphology. It is meant as a root of a derivational tree, like the one shown in Fig. 1,
which principally can be any word.

2 The distribution of set length has negligible influence on the behavior of the model
and is included only for formal completeness. Poisson distribution is chosen because
of mathematical simplicity.
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Next, we will define the probability P (Li+1|Li, R) of deriving the layer Li+1

from Li using the rules from set R. For each rule r, let πr denote a probability,
called productivity of r. Further, let r(w) denote the (possibly empty) set of
words resulting from applying the rule r to w.3 Finally, let EL denote the set of
edges of L. Then:

P (Li+1|Li, R) :=
∏

w∈Li

∏
r∈R

∏
w′∈r(w)

{
πr if (w,w′) ∈ EL

1 − πr if (w,w′) /∈ EL

(4)

In other words, for each word from the layer Li, each rule can apply with its
inherent probability πr. The latter corresponds to the definition of productivity
mentioned by Aronoff [2, p. 36]. The lexicon also contains information about
cases where a rule does not apply, the probability of which equals 1 − πr.

Finally, we can define the complete likelihood function:

P (L|R) := P (L0) ·
∞∏

i=0

P (Li+1|Li, R) (5)

The product going to infinity can be justified as follows: once there is a Lk = ∅,
then all further layers must also be empty and (4) yields P (∅|∅, R) = 1.

The rule set prior P (R) is defined similarly to P (L0): first, we introduce a
distribution P (r) over single rules. For this purpose, we decompose a rule into a
sequence of elementary edit operations (insertion or deletion of a character). We
also introduce a third operation COPY (c), which leaves an arbitrary number of
characters unchanged. For example, the German rule /Xen/V.Inf → /geXt/V.PP

would be expressed as the sequence:

(i(’g’), i(’e’), c, d(’e’), d(’n’), i(’t’), d(V.Inf), i(V.PP))

The distribution P (r) is obtained by assigning (fixed) weights to each of the
three operations and taking a probability distribution over letters and tags (e.g.,
according to their corpus frequency).

The next step is specifying a prior distribution for rule productivities. It
is easy to check that the rule frequency in the lexicon follows a binomial dis-
tribution. Therefore, we use a standard non-informative prior Beta(1, 1) for
productivity. Finally, as we did with L0, also here we use a Poisson distribution
with parameter λR for |R|. Then we obtain:

P (R) := e−λRλ
|R|
R

∏
r∈R

P (r)P (πr) (6)

3 In our formalism, rules are functions mapping words to sets of words. The set is
empty if the constraints on the left-hand side of the rule are not met. Otherwise,
typically a single word is produced, but cases with more than one result are also
possible.
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4.3 Extension with Features

The model sketched above can be further extended to include arbitrary features,
like word frequency, semantic vectors, inflectional classes, etc. In this case, the
graph nodes contain feature vectors and the rules are conditional distributions
on feature values.

As an example, consider the PoS-tag of a word. In the model presented in the
previous section, it was treated like a part of the word’s string representation.
Instead, we can define it as a separate feature t. Then, the nodes of the lexicon
are pairs (w, t), while the rules additionally contain a probability distribution
(called transformational distribution) τr(t′|t) of the tag of the resulting word,
given the tag of the base word. For the above-mentioned rule for German past
participle formation, τr(t′|V.Inf) would equal 1 for t′ = V.PP and 0 otherwise.
For t �= V.Inf, τr(t′|t) can be left undefined, because the rule does not produce
any results.

Equations (3), (4) and (6) become then:

P (L0) := e−λLλ
|L0|
L

∏
(w,t)∈L0

rt(w)P (t|w) (7)

P (Li+1|Li, R) :=
∏

(w,t)∈Li

∏
r∈R

∏
w′∈r(w)

{
πrτr(t′|t) if ∃t′((w, t), (w′, t′)) ∈ EL

1 − πr otherwise
(8)

P (R) := e−λRλ
|R|
R

∏
r∈R

P (r)P (πr)P (τr) (9)

In addition, we need the distribution on root tags (possibly conditioned on the
string form of the word) P (t|w) and the prior distribution on τ , P (τ). In this
example, the former can just be based on the frequencies of the tags in training
data, while the latter can be a uniform distribution on all possible tag pairs (only
degenerate τ , that equal 1 for exactly one resulting tag, are taken into account).

While the above examplemay look overcomplicated, this formalismallows us to
incorporate a large variety of features into themodel. Let us consider another exam-
ple: the frequency class of a word, defined as fw = �log2

maxw′∈L freq(w′)
freq(w) 	, where

freq is the corpus frequency. There are reasons to assume, that morphological rules
add a roughly constant factor to the word’s frequency class. Consider Fig. 2, which
shows the differences in frequency class between German word pairs conforming
to the rule /X/ → /Xs/, in the absence of PoS-tags. The histogram forms a bell-
shaped curve with mean approximately 2. Moreover, the cases near the mean cor-
respond to regular morphological phenomena, while the tails contain mostly pairs
of unrelated words, which happen to fit the pattern, like hau, the imperative of
hauen (‘to hit’, ‘to chop’) and Haus ‘house’. Assuming a Gaussian distribution of
this quantity allows us to filter outmuch of the noise. Thus,we introduce a feature f
corresponding to the frequency class of a word. Its corresponding transformational
distributionφr(f ′|f) is aGaussian distributionwith somemeanμφr

(being amodel
parameter for each rule) and unit variance. The priors P (f |w) and P (μφ) can be
skipped at this moment for the sake of simplicity, since they have little influence
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on the likelihood function. Note that the frequency classes are integers, so φr(f ′|f)
is in fact an integral of the Gaussian distribution on a unit interval. The means μφ

are also limited to integers so that the prior can assign non-zero probabilities to
concrete values.
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Fig. 2. Difference of frequency classes of various pairs following the rule /X/ → /Xs/.
The dashed line is Gaussian probability density with μ = 2 and σ2 = 1.

4.4 Local Properties

In this section, we will present some local properties of the model based on the
global formulae introduced above. For the sake of simplicity, we will use the basic
model without features.

Edge Score. Let’s consider the contribution to the overall log-likelihood of draw-
ing a new edge w1

r→ w2, compared to a situation, where w2 is a root. If L′

denotes the lexicon with the considered edge, and L the lexicon without it, the
score is given by:

ln P (L′|R) − ln P (L|R) = ln
πr

(1 − πr)λLrt(w2)
(10)

Note that this score depends on nothing else than w2 and πr. This fact will play
an important role in the unsupervised training algorithm.

Rule Contribution. Let νr denote the frequency of rule r in lexicon and μr the
number of words, to which r could be applied, but is not. The contribution of
r, together with all its corresponding edges, to the overall log-likelihood is given
by:

− ln(λRP (r)πνr
r (1 − πr)μr ) = − ln λR − ln P (r) − νr ln πr − μr ln(1 − πr) (11)
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Using the above formula, we can also easily derive the optimal productivity as:

π∗
r =

νr

νr + μr
(12)

Word Cost. When a new word is inserted into the lexicon, it can either be
attached to an existing node, or left as a root.4 The cost of insertion is thus:

cost(w) = −max(ln rt(w), max
r∈R

L∩r−1(w) �=∅
ln

πr

1 − πr
) (13)

As the contribution to the log-likelihood is typically negative, it is plausible to
call the opposite of this quantity the “cost”.

Back-Formation. In some cases, adding a word as a root may seem implausi-
ble even though we do not see any possible base word. Let’s consider the case
of inserting understandableAdj, when understandV is not contained in the lexi-
con, but the rule /X/V → /Xable/Adj is known and highly productive. If the
root distribution rt has bias towards shorter words (which is the case for exam-
ple for N -gram-based distributions), it may turn out, that inserting understand
and an edge understand → understandable may yield lower cost than inserting
understandable directly as a root. The model is thus capable of back-formation.

5 Algorithms

5.1 Preprocessing

In both unsupervised and supervised setting, the input data must be adjusted
to the right format, before the actual training can start. The training data for
supervised learning consist of a list of word pairs, for which the second word is
known to be derived from the first. In order to convert it to a proper lexicon, a
rule has to be extracted from each pair. This is done with the same algorithm
as in unsupervised learning (see below).

The unsupervised learning task requires a couple more preprocessing steps.
The training data consist of a list of words, with optional features (like frequency
class or PoS-tag). First of all, pairs of words with sufficient string similarity are
found using the FastSS algorithm [3]. The algorithm is modified in order to find
morphologically related pairs: a difference of up to 5 characters at the beginning
and at the end of words is allowed, as well as up to 3 characters in a single slot
inside the word. While those constants can be configured arbitrarily, this setting
fits to morphological rules of many languages.

Once the pairs of similar words are found, a rule is extracted from each pair.
For this purpose, the Wagner-Fischer algorithm for computing string edit dis-
tance [24] is used to compute the optimal alignment between words. The align-
ment is then transformed into prefix, suffix, and internal change, plus optionally
PoS-tag change if tags are used.
4 For simplicity, it is assumed here that the newly inserted word does not take over

any child nodes from other words.
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Finally, the frequency of rules is counted and only the top-N frequent rules
are preserved. This filtering step has little influence on the correctness of the
results and is done for performance reasons: most extracted rules are accidental
similarities between unrelated words, which typically have low frequency. Filter-
ing them out speeds up the further processing greatly. By setting N to 10000
we can be almost sure, that all real morphological rules are preserved.

5.2 Training

Problem Formulation. In the supervised learning task, we now have a full lexicon
available. It remains to find a plausible rule set, which can be done in a single
Maximum Likelihood estimation step. In the unsupervised setting, the graph
resulting from the preprocessing steps contains all possible edges, but the subset
of those, that corresponds to the lexicon structure, still has to be found. In this
case, we treat the lexicon structure as a hidden variable and apply the “hard
Expectation-Maximization” algorithm, as described by Samdani et al. [20], which
consists of alternating Maximum Likelihood estimations of lexicon given rule set
and rule set given lexicon.

Rule Optimization. Before the ML estimation steps are carried out, an additional
step is performed in both unsupervised and supervised task. At the point of
rule extraction, the rules were made as general as possible: only the segments
that change are recorded. For example, the rule extracted from the German
pair (achten, achtung) would be /XeY/ → /XuY g/, although the more specific
pattern /Xen/ → /Xung/ is definitely more appropriate. The current step fixes
this problem with the help of likelihood: for each pair of words (w1, w2) following
a rule r, we extract all possible rules that describe the transformation from w1 to
w2. Then we calculate the contribution of each rule to the overall log-likelihood
using (11). Finally, we choose the set of rules that minimizes the costs.

In the above example, the original rule r : /XeY/ → /XuY g/ is splitted into
r1 : /Xen/ → /Xung/ and r2 : /XeY/ → /XuY g/. r1 covers the most cases,
so νr1 ≈ νr, but μr1 < μr, because the constraint on the left side is stronger.
Thus, the last term of (11) is weakened. Also, πr1 > πr, which decreases the cost
further. The remaining cases, like for example the accidental similarity (ber,
burg)5, are covered by r2. Here, μr2 = μr + νr1 , but νr2 and πr2 are very small.
In conclusion, the following inequality is fulfilled:

P (r)πνr
r (1 − πr)μr < λRP (r1)π

νr1
r1 (1 − πr1)

μr1 P (r2)π
νr2
r2 (1 − πr2)

μr2 (14)

This justifies the splitting of r into r1 and r2. In unsupervised learning, this step
is performed only once, before running the EM algorithm.

5 Although ber is not a valid German word, it may happen to occur in the data, for
example as an abbreviation or a foreign word.
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Estimating Rules Given Lexicon. In this step, the productivity of each rule is set
to the optimal value given by (12). Once it falls to 0, the rule is deleted. If the
model uses frequency class as a feature, also the means μφr

have to be estimated
for each rule. This is done by setting each mean to the rounded average difference
of frequency classes for the pairs of words following the rule.

Estimating Lexicon Given Rules. While searching for an optimal lexicon, we
consider the edges obtained in the preprocessing steps and look for a subset of
those, in which every node has at most one ingoing edge. This problem is known
as optimal branching of a graph and can be solved with Chu-Liu-Edmonds’
algorithm [21]. As weight of the edges, we use the contribution of an edge to the
log-likelihood given by (10). The property, that this weight depends on nothing
else than the pair of nodes between which the edge is drawn, is crucial at this
point. It allows the weights to stay constant as the structure of the graph is
manipulated.

Checking Rules. This additional step, performed after each iteration of the EM
algorithm in unsupervised training, allows for easier elimination of “weak rules.”
The contribution of each rule to the log-likelihood (the “cost” of the rule), given
by (11), is compared to the “gain,” which is achieved by using this rule to derive
words. In order to compute the gain of rule r, for each word w derived by r, we
count the minimum cost of deriving w by another rule, or the cost of introducing
w as a root if no other rule is possible. The sum of those costs constitutes the
gain of r:

gain(r) := −
∑

w:
r→w

max(ln rt(w), max
r′∈R\{r}
w∈rng(r′)

ln
πr′

1 − πr′
) (15)

The notation r→ w means summing over all w that are derived by r in the
present lexicon and rng(r′) means the set of words that can be derived by r′.
Thus, words that contribute a lot to the gain of r are those, for which r has no
good replacement. The rules, for which the cost exceeds the gain, are deleted.

5.3 Lexicon Search

Word Insertion. An insertion of a new word into the lexicon requires finding a
position, at which the optimal cost, given by (13), is achieved. This is done by
iterating over rules, in the order of decreasing productivity. For each rule r, it
is assumed that the word w in consideration is derived by r. The corresponding
base word w′ is computed. If w′ is not contained in the lexicon, back-formation
is attempted, i.e., the recursively computed cost of inserting w′ into the lexicon
is added. The algorithm terminates if some rule r would yield bigger costs,
than the previously considered rules, even in the “optimistic case,” i.e., if the
postulated base word was found in the lexicon. As the rules are sorted according
to decreasing productivity, further search would yield even bigger costs. In this
case, the best solution found so far is returned. The depth of the recursion of
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back-formation is typically restricted to some small number (like 1 or 2) for
performance reasons.

If the model uses PoS-tags as a feature and the new word w is given without
tag, this algorithm is also able to find the optimal tag. In this case, each time w
is matched against a rule r, the tag standing on the right-hand side of r is used.

Lexicon Expansion. This algorithm finds morphologically motivated, but
unknown words, which can be inserted into the lexicon with low cost. As the
previous algorithm, the present one also considers rules in the order of decreasing
productivity. For each rule r, words in lexicon are found, to which it could be
applied, but is not. The results of applying r to those words are added to the list
of newly generated words. Note that in this case, the cost of the newly generated
word depends only on the productivity of the rule, since the base word is always
contained in the lexicon. The algorithm terminates as the cost achieves some
predefined threshold.

Note that the cost of adding a word may be negative ( πr

1−πr
> 1). In this

case, the word is so strongly motivated, that the lexicon containing it is more
likely than the one without it. Thus, even setting the cost threshold to 0 can
result in generating new words.

6 Experiments

A full morphological analysis under the presented model would mean producing
a graph akin to the one shown in Fig. 1, or equivalently, providing a derivation
sequence for each word. This task is not yet approached. On one hand, evalua-
tion and supervised learning would be difficult because of the lack of appropriate
datasets (to our knowledge). On the other hand, first experiments with unsu-
pervised learning produced results, that are not directly usable. For example,
German prefixed verbs, like erheben, beheben, anheben, etc. are analyzed as a
“chain” of derivations (erheben → beheben → anheben, etc.) instead of all being
derived directly from a common base heben. This behaviour is understandable:
a rule like /erX/ → /beX/ has much higher productivity than /X/ → /beX/,
because the former applies to a more restricted set of words. Also, no property
of the model punishes long chains. Such analysis might even correspond to the
speaker’s competence, since the knowledge, that a stem occurs with prefix er-
makes its occurrence with prefix be- more likely and the whole process could also
take place in the absence of heben. However, a method of obtaining a grammati-
cally meaningful and practically usable analysis in the unsupervised setting still
has to be found.

Nevertheless, some more specific tasks have been approached with good
results, demonstrating the usefulness of the model. The following sections
describe its performance in predicting unseen words, lemmatization, and
inflected form generation.
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6.1 Lexicon Expansion

This experiment measures the capability of the model to generate new words
using morphological rules. The model has been trained in the unsupervised set-
ting on top-50k untagged wordlists obtained from the corpora of the Wortschatz
Project6 for German and Polish. All words have been lowercased; words con-
taining characters from outside the language’s alphabet were removed. Then,
the lexicon expansion algorithm is used with the cost threshold of 5.0. For each
language, two models were trained: with and without frequency class as a feature.
The root distribution rt(·) is based on letter unigrams.

The precision of the results has been evaluated by matching them against
lexical resources: the list of inflected words of the Dictionary of the Polish Lan-
guage7 and the German morphological analyzer Morphisto [27], respectively. An
appropriate recall measure seems impossible to calculate: we would need to know
all words, that can be predicted given the input. Instead, we plot the precision
against the number of words generated.

The results are shown in Fig. 3. For both languages, the benefit of using
frequency class as a feature is clearly visible, especially when generating a small
number of words. At 50k words – the amount that corresponds to doubling the
size of the lexicon – the precision is still around 60 %. It is important to point
out, that those results may be slightly lowered, because the resources used for
evaluation are not perfect. In particular, the worse results on German dataset
can be due to the errors of Morphisto, which fails to recognize some existing
words, e.g., Tschetschene or korrelieren.
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Fig. 3. Results of the unsupervised lexicon expansion task.

6 http://corpora.uni-leipzig.de.
7 http://sjp.pl/slownik/odmiany/.

http://corpora.uni-leipzig.de
http://sjp.pl/slownik/odmiany/
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6.2 Lemmatization and Tagging

The model can also be used for inflectional analysis of unknown words. In this
case, the lexicon is a bipartite graph: the L0 layer contains lemmas, and L1

contains inflected forms. The analysis of a new word is computed by the word
insertion algorithm described in Sect. 5.3. For the evaluation, we used wordlists
extracted from the following tagged corpora: TIGER [4] for German and KIPI-
PAN [17] for Polish. Only open lexical classes (nouns, verbs, adjectives and
adverbs) were used. The only preprocessing was removing circular lemmati-
zations, e.g., between Aufsichtsratsvorsitzende and Aufsichtsratsvorsitzender in
TIGER, which are obvious errors. In the supervised learning task, both wordlists
have been divided into a training set of around 30k words and a testing set of
around 10k words. Both frequency class and a full inflectional tag (containing
information like case, number, gender, etc. in addition to the part of speech)
were used as features. The root distribution rt(·) is based on letter trigrams
and the tag distribution P (t|w) is conditioned on the last three letters of the
word. Such choices account for some morphological knowledge, which improves
generating unknown lemmas through back-formation.

In the unsupervised learning task, the input data are a list of inflected forms
and a (separate) list of lemmas. The unsupervised training algorithm has been
slightly modified to incorporate the knowledge of the list of lemmas: after the
full graph is generated in the preprocessing step, it is filtered so that only edges
connecting a lemma to an inflected form are left.

For each language and each learning task (unsupervised/supervised), four
experiments have been conducted, depending on two parameters. The Lem para-
meter set to ‘+’ means, that all necessary lemmas are known in advance, while ‘–’
means, that only lemmas, that are contained in the training data, are known. In
the latter case, the missing lemmas have to be generated using back-formation.
The Tags parameter states whether the tag of the analyzed word is known in
advance.

Baselines. The comparison of the evaluation results to other approaches is diffi-
cult, because the results depend greatly on the datasets used and the details of
task formulation. Instead, we use simple ad-hoc approaches as baselines for com-
parison. In the unsupervised task, each inflected form is matched to the nearest
lemma in terms of string edit distance. Finding the tag of the analyzed word is
not attempted. For the supervised setting, a maximum-entropy classifier imple-
mented by the LogisticRegression class of the Python module scikit-learn
is trained. As features, prefixes and suffixes of length from 1 to 3 characters are
used, along with the tag, provided that Tags parameter is set. The classifier
outputs the postulated lemmatizing rule (an idea borrowed from [7]).

Results. Table 1 shows results for the unsupervised task. The three results given
for each experiment correspond to the number of words, that were correctly
lemmatized, correctly tagged, and both. The string edit distance-based base-
line is outperformed in all experiments. Especially the discrepancy between the
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baseline and the model in the case, where not all lemmas are known in advance,
shows, that the model is successful in generating unknown lemmas through back-
formation. The performance of tag guessing is rather poor. This is not surprising,
because the correct tagging often requires knowledge of the context and should
be token-based, rather than type-based. However, the model could be used as a
lexical predictor for a stochastic tagger.

The results for the supervised task are given in Table 2. Also here the baseline
is clearly outperformed. The top-3 experiments for both languages display very
good lemmatization correctness of around 90 %, which means, that only the
simultaneous absence of tags and lemmas poses a major problem for the model,
while absence of only one of those is handled well. The baseline classifier on
the other hand displays a sharp drop of performance in the absence of tags and
cannot benefit from knowing the lemmas in advance (its results do not depend
on Lem parameter at all).

Table 1. Results for unsupervised lemmatization and tagging.

Data enilesaBstluseR

Language Lem Tags Lem Tags Lem+Tags Lem Tags Lem+Tags

German

Polish

+ +
+ –
– +
– –

+ +
+ –
– +
– –

93% 100% 93% 84% – –
80% 46% 45% 76% – –
76% 100% 76% 44% – –
61% 34% 28% 43% – –

84% 100% 84% 80% – –
80% 61% 59% 67% – –
80% 100% 80% 41% – –
79% 61% 55% 40% – –

Table 2. Results for supervised lemmatization and tagging.

Data enilesaBstluseR

Language Lem Tags

German

Polish

+ +
+ –
– +
– –

+ +
+ –
– +
– –

Lem Tags Lem+Tags Lem Tags Lem+Tags

97% 100% 97% 89% 97% 89%
92% 38% 38% 19% 20% 19%
90% 100% 90% 89% 97% 89%
57% 20% 19% 19% 20% 19%

94% 100% 94% 83% 94% 83%
93% 56% 56% 33% 36% 33%
88% 100% 88% 83% 94% 83%
68% 40% 38% 33% 36% 33%
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6.3 Inflected Form Generation

Another experiment concerning inflectional morphology is generating an
inflected word form given the lemma and the tag of the target form. For this pur-
pose, the supervised models and datasets from the previous section were used.
The baseline is a similar classifier as in the previous experiments: it also uses
prefixes and suffixes of length from 1 to 3 as features, in addition to the lemma
tag and the target tag. The resulting class is the rule that produces the inflected
form. The results are given in Table 3. The baseline is slightly outperformed by
our model.

Table 3. Results for supervised inflected form generation.

Language Result Baseline

German 84 % 83%

Polish 86 % 84%

7 Further Work

Compounds. Conforming to the WWM theory, the model treats compound-
ing rules as simple derivational rules, with one of the parts fixed. However, a
generalization which would allow to create new compounds, in which neither
part has previously been seen as a part of a compound, would be desirable. It
is planned to introduce “meta-rules” (or “second-order rules”) into the model:
a kind of rules that would apply to words and produce rules. For example, a
meta-rule /X/ → (/Y/ → /XsY/) would apply to the word Arbeit to create
/Y/ → /arbeitsY/, which could be futher applied to Markt to derive Arbeits-
markt. In this fashion, the analysis of compounding postulated by WWM would
be maintained and the productivity of this phenomenon would be fully accounted
for. However, a serious unsolved problem is that it would make the rule set
depend on the lexicon, which means, that the dependency between those two
would become circular.

Learning Paradigms. The notion of paradigm could be understood in our model
as “a group of rules that frequently occur together”. Those could be incorpo-
rated into the model by using a paradigm ID in the same way as a PoS tag.
Knowing the paradigm IDs of words would greatly increase the productivity of
rules by decreasing the μr-values (see (12)), because each rule could only apply
to words following a certain paradigm. The paradigm IDs could thus be assigned
automatically, in a fashion that maximizes the log-likelihood.
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Segmentation. Although not all morphological phenomena can be described in
terms of morphemes, word segmentation remains a useful description in many
cases. The relational description produced by our model identifies groups of
related words. Such groups can be used for segmentation into morphemes, for
example with multiple sequence alignment methods explored by Kirschenbaum
[12]. This additional output would make it easier to compare our model to other
tools and help make it available for users, who are not convinced by the WWM
theory.

Token-Based Tagging. As pointed out in Sect. 6.2, finding the right tag of an
unknown word requires knowledge of the context, in addition to morphological
criteria. Therefore, integrating the model with a stochastic tagger (e.g., HMM-
based) will be attempted.

8 Conclusion

We have presented a probabilistic model based on the Whole Word Morphology
theory. The model is an alternative to the widely used segmentation-oriented
approaches. It employs a relational description of morphology, without attempt-
ing to decompose words into smaller structural units. In this way, both concate-
native and non-concatenative morphological phenomena can be described in a
unified way. The underlying linguistic theory is minimalistic and the behaviour
of the model can be controlled by training data and prior distributions, which
makes it appliable for many languages and use cases. Contrary to many machine
learning approaches, the trained model, which consists of a lexicon and a set of
rules with assigned probabilities, is easily interpretable and can be edited by a
human expert.

The generative model contains broad knowledge, which can be attributed to
“morphological competence.” By manipulating its probability distributions, a
single trained model can be applied to various tasks, like for instance lemmatizing
unknown words, producing inflected forms, or anticipating unknown vocabulary.
It is also flexible with respect to the data employed in solving those tasks: features
like PoS-tag and word frequency (and possibly others) are optional, as well as
labeled training data.

In addition to its machine learning capabilities, the model could perhaps also
contribute to empirical linguistic studies. The definition of “productivity” as the
probability of applying a rule, when the necessary conditions for applying it are
met, seems reasonable from a linguistic point of view. The model accounts for
phenomena like back-formation or analogy, the latter being justified in reducing
the number of rules and the preference of more productive rules over less produc-
tive. As the lexicon is a part of the model and its content affects the probabilities
assigned to words, the differences in morphological competence between various
speakers of a language could be modeled through the differences in the content
of their lexica, whereas the rules tend to be a property of the language and thus
same for every speaker.
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Abstract. To recognize semantic frames in languages with a rich mor-
phology, we need computational morphology. In this paper, we look at
one particular framework, HFST–Helsinki Finite-State Technology, and
how to use it for recognizing semantic frames in context. HFST enables
tokenization, morphological analysis, tagging, and frame annotation in
one single framework.

1 Introduction

Language technology enables text mining, e.g., by recognizing semantic frames.
In this paper we will look at one particular framework, HFST–Helsinki Finite-
State Technology, and its use in processing text from tokenization to recognizing
semantic frames in context.

HFST–Helsinki Finite Technology is a framework for building morpholo-
gies including morphological lexicons [13–15]. We present how HFST identifies
semantic frames in context. To do so, we first present how HFST supports build-
ing tokenizers and taggers, which is the minimum requirement for recognizing
semantic frames in languages with a rich morphology. In Sect. 2, we give an
overview of the HFST p-match syntax and some examples of how to develop a
tokenizer based on a lexicon containing multi-word expressions. In Sect. 3, we
give an introduction to building morphological taggers with HFST using machine
learning. In Sect. 4, we give an introduction to semantic frame recognition with
HFST. In Sect. 5, we give a brief evaluation of developing a rule set for seman-
tic frame annotation. In Sect. 6, we discuss our results compared with other
approaches to semantic frame annotation.

2 Tokenization Using hfst-pmatch

Tokenization is a necessary first step in most text-based natural language
processing tasks. For some languages, e.g., English, it is often considered to
be a mechanical preprocessing task without linguistic importance, whereas for
others, e.g., Chinese, it is an intricate task called segmentation. However, even in
languages that generally insert spaces between words, there are issues that influ-
ence the quality or feasibility of tools down the pipeline. We may, for example,
c© Springer International Publishing Switzerland 2015
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want to be able to identify multi-word units, identify compound words and mark
their internal boundaries, control various dimensions of normalization, or pro-
duce possible part-of-speech tags or deeper morphological analyses. We describe
a general approach to these issues based on morphological transducers, regular
expressions and the pattern matching operation pmatch [10].

2.1 A Short Introduction to pmatch

pmatch [13] is a pattern-matching operation for text based on regular expres-
sions. In HFST, it has been further developed from the ideas in Xerox fst. The
regular expressions, i.e., rules, are named, and are invoked ultimately by a root
expression, i.e. the top level, which by convention has the name TOP. Expres-
sions may refer to themselves or each other circularly by special arcs which are
interpreted at runtime, allowing context-free grammars to be expressed.

Matching operates in a loop, accepting the largest possible amount of input
from the current position, possibly modifying it according to the rules and tag-
ging left and right boundaries of sub-rules, and continuing on the the next
position in the input. When the rules successfully accept (and possibly trans-
form) some length of input, that is a match. When the match has triggered the
operation of a tagging directive, e.g., EndTag(TagName) or [].t(TagName), the
enclosed length of the input is tagged with TagName. For example, here is a
very näıve tokenizer for English

define TOP [[ ("’") Alpha+ ] | Sigma({,.;!?)]] EndTag(w);

where Sigma() is a function that extracts the alphabet of its argument, which in
this case is some punctuation marks given as a string denoted by curly braces.
When operated on the sentence “If I am out of my mind, it’s all right with me,
thought Moses Herzog.”, it produces output that looks like this

<w>If</w> <w>I</w> <w>am</w> <w>out</w> <w>of</w> <w>my</w>
<w>mind</w> <w>,</w> <w>it</w> <w>’s</w> <w>all</w> <w>right</w>
<w>with</w> <w>me</w><w>,</w> <w>thought</w> <w>Moses</w>
<w>Herzog</w> <w>.</w>

in normal matching mode. The runtime operation of matching can be controlled
to only output the matched parts, or give positions and lengths of tagged parts
in locate mode as well as operating as a more conventional tokenizer outputting
one token per line in extract-matches mode.

2.2 Tokenizing with a Dictionary

A tokenizer consists of the input side of a morphological dictionary. Good coverage
in vocabulary and derivation can satisfactorily solve many tokenization headaches
on its own. For example, consider the plural possessive of the compound in



126 K. Lindén et al.

(1) The Attorney-Generals’ biographies are over there.

To get the tokenization of the example exactly right, a tokenization rule needs
to understand that the hyphen is joining parts of a compound word, unlike in
e.g., Borg-McEnroe, and that the apostrophe is indicating the possessive form,
not the end of a quotation. A dictionary can also be augmented to recover from
formatting or digitization issues. For example, a text may split words at line
boundaries with hyphens, as in

(2) He seemed suddenly to have been endowed with super-human strength

In this example, the correct tokenization is superhuman rather than super and
human, but a dictionary would miss this possibility. However, we can use a
finite-state operation to allow the string −\n (hyphen followed by a newline) to
appear anywhere inside the words in the dictionary. In regular expressions this
operation is sometimes called ignoring.

2.3 Preserving the Parts of a Multi-word Unit

Dictionaries are often equipped with a collection of short idioms, e.g., in view
of, and other tokens which include whitespace, e.g., New York. While these are
useful, it may be too early at this stage to fix the tokenization as the longest
possible match. A discriminative tagger may not be able to make the correct
choice in

(3) The ball was in view of the referee.

if it only sees a tokenization where in view of is a single token.
We can extend the dictionary in a simple way to also contain the other pos-

sible tokenizations and, in the case of a morphological dictionary, the analyses,
as follows

define combined tokens [dict].u .o. [dict | [" " dict]*]

where dict is our dictionary and [dict].u is its input projection. We compose
it with arbitrarily many copies of itself, interspersed with space characters. The
result contains every multi-word expression both as itself, and as a combination
of other words found in the dictionary.

In addition to bare tokens, many downstream tools use analysis cohorts,
i.e., the full set of possible base forms and morphological tags for the token in
question. The hfst-pmatch utility exposes an API that allows retrieval of the
position, length, input, output, tag and weight of each of the longest matches, so
cohort formatters can be written. For example, suppose our dictionary includes
the following entries when tokenizing in view of. The combined dictionary will
then produce the full set of combinations which may be formatted as follows
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in in AVP in NN0 in PRP

view view NN1 view VVB view VVI

of of PRF of PRP

in view of in view of PRP

"<in view of>"
"in view of" PRP
"in" AVP "view" VVI "of" PRF
"in" NN0 "view" VVB "of" PRF
"in" NN0 "view" VVB "of" PRP
"in" NN0 "view" VVI "of" PRF
etc.

Since in pmatch multiple rules operate on the same input, it is possible to
integrate higher-level tokenization, such as chunking, named-entity recognition,
grouping tokens into sentences and sentences into paragraphs in the same ruleset.

3 Morphological Tagging using hfst-finnpos

In this section, we describe the morphological tagger hfst-finnpos.
FinnPos [20] is a data driven morphological tagging toolkit distributed with

the HFST interface. The term morphological tagging [6] refers to assigning one
full morphological label, including for example part-of-speech, tense, case, and
number, to each word in a text. It can be contrasted with POS tagging where
the task is to infer the correct part-of-speech for each word.

The FinnPos toolkit is based on the Conditional Random Field (CRF) frame-
work [12] for data driven learning. Most work on CRF taggers and other dis-
criminative taggers has concentrated on POS tagging for English, which has
a very limited selection of productive morphological phenomena. In contrast,
FinnPos is especially geared toward morphologically rich languages with large
label sets, that cause data sparsity and slow down estimation when using stan-
dard solutions. FinnPos gives state-of-the-art results for the morphologically rich
language Finnish [20] both with regard to runtime and accuracy. In addition to
morphological tagging, FinnPos also performs data driven lemmatization. More-
over, it can be combined with a morphological analyzer to make a data-driven
morphological disambiguator. The capability of FinnPos to take advantage of
the linguistic choices made by developers of morphological lexicons is the reason
for including FinnPos in the HFST tool set.

In this section, we will focus on describing FinnPos from a practical point
of view. A more detailed description of the theoretical foundations as well as
evaluation can be found in [20].
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3.1 FinnPos for Morphologically Rich Languages

In part-of-speech (POS) tagging, the label sets are usually fairly small. For exam-
ple, the Penn Treebank uses only 45 distinct label types. When tagging morpho-
logically complex languages, where full morphological labels are required, vastly
larger label sets are used. Label sets of around 1,000 distinct label types fre-
quently occur.

Large label sets create a data sparsity problem. For example, for a second
order language model and a label set of 1,000 distinct label types, an overwhelm-
ing majority of the one billion possible (1,0003) label trigrams are never seen in
a training corpus of realistic scope. Even label unigrams may be rare as many
label unigrams tyically occur only a couple of times in a training corpus.

Although morphological label sets can be very large, individual labels are
usually created by combining smaller sub-units from a relatively small inven-
tory. A typical example of such a structured morphological label is the label
Noun|Sg|Nom, which consists of three sub units: the main word class Noun, the
singular number Sg and the nominative case Nom. FinnPos utilizes the internal
structure of complex labels by extracting features for sub-units as well as for
the entire labels [19]. This alleviates the data sparsity problem because features
relating to sub-units of entire tags are used as fall-back. Additionally, sub-unit
features allow FinnPos to model grammatical generalizations such as case con-
gruence in isolation of the full labels.

In addition to data sparsity, large label sets cause long training times because
the complexity of standard CRF training of an nth order model depends on the
(n + 1)st power of the label set size. To speed up training, FinnPos uses an
adaptive beam search and a label guesser [20] during inference and estimation.
These substantially reduce run-time.

3.2 Training and Using a Model

FinnPos uses an averaged perceptron algorithm with early stopping for estima-
tion of model parameters. The error-driven perceptron training algorithm iter-
ates through the training corpus one sentence at a time, labels the sentences and
adjusts model weights when erroneous labels are detected. Usually the Viterbi
algorithm [2] is used for labeling. This, however, is too slow in practice when
dealing with large label sets.

Instead of the Viterbi algorithm, FinnPos uses beam search with an adaptive
beam width [18]. Additionally FinnPos uses a generative label guesser modeled
after the OOV word model used in [1] to restrict label candidates during training.
Because of inexact inference during the training phase, FinnPos additionally uses
violation fixing [8].

3.3 FinnPos and Morphological Analyzers

FinnPos benefits from a morphological analyzer for morphological disambigua-
tion. The analyzer can be used in two ways: to provide label candidates for
words and as a generator of features. For words not recognized by the analyzer,
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FinnPos will use a data-driven suffix-based guesser to generate label candidates.
In addition to the morpological label, FinnPos also uses the morphological ana-
lyzer for determining the lemma of a given word. For words not recognized by the
analyzer, a data-driven lemmatizer is used instead. The data-driven components
are learned from the training corpora, which means that the FinnPos tagger
could be used without a morphological analyzer, but a lexicon with reasonable
coverage improves the tagging performance.

4 Semantic Tagging Using hfst-pmatch

In this section, we outline a scheme for extracting semantic frames from text using
hand-written rules. The rules and approach have been demonstrated in [7]. The
current paper is more extensive and includes an evaluation of the rule set. While
it does not currently represent a system for extracting a large number of different
frames, the hfst-pmatch tool has been extensively tested in a full-fledged named-
entity recognizer for Swedish [11]. Our motivation here is to present additional
capabilities of hfst-pmatch as a natural language processing system for extract-
ing factoids from textual data to be used in text and data mining.

4.1 Introduction

A semantic frame [5] is a description of a type of event, relation or entity and
related participants. For example, in FrameNet, a database of semantic frames,
the description of an Entity in terms of physical space occupied by it is an
instance of the semantic frame Size. The frame is evoked by a lexical unit (LU),
also known as a frame evoking element (FEE), which is a word, in this case an
adjective, such as big or tiny, descriptive of the size of the Entity. Apart from
an Entity, which is a core or compulsory element, the frame may identify a
Degree to which the Entity deviates from the norm, e.g., a really big dog, and
a Standard with which it is compared, e.g., tall for a jockey (Tables 1 and 2).

Table 1. The semantic frame Size.

Lexical unit (LU) Adjective describing magnitude (large, tiny, ...)

Entity (E) That which is being described (house, debt, ...)

Degree (D), optional Intensity or extent of description (really, quite, ...)

Standard (S), optional A point of comparison (for a jockey, ...)

For example:

Table 2. A tagged example of Size

[
Size

[
E
He

]
is

[
D
quite

][
LU

tall
][

S
for a jockey

]]
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4.2 A Rule

A simple and common syntactic realization of the Size frame is a single noun
phrase containing one of the LUs, such as the big brown dog that ran away. Here
we would like to identify big as LU, brown dog as Entity and the combination
as Size. Our first rule for identifying this type of construction might be

Table 3. A simplified first rule

This rule set has been simplified for brevity—it only has a few of the permitted
LUs, and word boundary issues have not been addressed. The [].t() syntax in
the definition of Size1 is a tag delimiter controlling the area tagged as Entity.
The extra Adjective is optional, which is conveyed by the surrounding paren-
theses (Table 3).

We can verify that our rules extract instances of our intended pattern by
compiling them with hfst-pmatch2fst and running the compiled result with
hfst-pmatch --extract-tags. In the following we have input the text of the
King James Bible from Project Gutenberg1 and allowed some extra characters
on both sides for a concordance-like effect:

...

there lay a <Size><LU>small</LU> round <Entity>thing</Entity></Size>

...

there was a <Size><LU>great</LU> <Entity>cry</Entity></Size> in Egypt

...

saw that <Size><LU>great</LU> <Entity>work</Entity></Size> which

...

A natural next step is to add optional non-core elements, such as an adverb
preceding the LU being tagged as Degree and a noun phrase beginning with for
a following it as Standard (Table 4).

Table 4. Extending the rule with optional elements

and here are some examples this rule finds in the British National Corpus2:
1 http://gutenberg.org.
2 http://www.natcorp.ox.ac.uk/.

http://gutenberg.org
http://www.natcorp.ox.ac.uk/
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...
presence of an <Size><Degree>arbitrarily</Degree>

<LU>small</LU> <Entity>amount</Entity></Size> of dust
...
one <Size><LU>small</LU> <Entity>step</Entity>

<Standard>for a man</Standard> </Size>
...

We can see that in small amount of dust, we might want to tag not just the imme-
diate noun as Entity but the entire noun phrase which could be implemented
up to a context-free definition of a noun phrase, and in one small step for a man
a common indirect use of the Standard construction. As well as correct matches,
such as small round thing in the biblical example, we have metaphorical mean-
ings of Size, such as great cry. This may or may not be desired—perhaps we
wish to do further processing to identify the target domains of such metaphors,
or perhaps we wish to be able to annotate physical size, and physical size only.

4.3 Incorporating Semantic Information

Size is a very metaphorical concept, and syntactic rules as above will produce a
large amount of matches that relate to such uses, e.g., a great cry or a big deal. If
we wish to refine our rules to detect such uses, there are a few avenues to explore.
First of all, some LUs are much more metaphorical than others. A great man
is almost certainly a metaphorical use, whereas a tall man is almost certainly
concrete. Accuracy may be improved by requiring great to be used together with
common nouns meaning several individuals like a great crowd. In addition, there
are semantic classifications of words, such as WordNet [17]. We may compile the
set of hyponyms of physical entity and require them to appear as the nouns in
our rules as shown in Table 5.

Table 5. Reading an external linguistic resource

4.4 Incorporating Part-of-Speech Information

We have so far used named rules for matching word classes like Noun, with-
out specifying how they are identified. Also our collection of LUs might need
some closer attention—for example little could be an adverb. Considering that
in writing our rules, we are effectively doing shallow syntactic parsing, even a
very simple way to identify parts of speech may suffice, e.g., a morphological
dictionary. For example, a finite-state transducer representing English morphol-
ogy may be used to define the class of common nouns as in Table 6. If we have
the use of a part-of-speech tagger, we may write our rules to act on its output,
as in Table 7 where W refers to some word delimiter.
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Table 6. Using a dictionary to extract words of a given word-class

Table 7. Using tags in pre-tagged text

4.5 Increasing Coverage

Having considered for each rule where Degree and Standard may occur, coverage
may be evaluated by also finding those cases where a LU is used as an adjective
but does not match the current rules, for example:

define TOP Size1 | Size2 | [LU].t(NonmatchingLU);

The valid match is always the longest possible one, so NonmatchingLU will
be the tag only if no subsuming SizeN rule applies. For example in

the moving human body is <NonmatchingLU>large</NonmatchingLU>,
obtrusive and highly visible

we see another realization of the Size frame: the Entity is followed by a copula,
and the LU appears to the right. We can write a new rule Size2 to capture
this, adding positions for non-core elements either by linguistic reasoning or by
searching the corpus.

5 Evaluation

FrameNet has published a tagged extract of the American National Corpus3,4,
consisting of 24 texts. Of these, one uses the Size frame 35 times, but the
remainder use it only an additional 6 times for a total of 41 times. This is too
thin a selection and suggests some inconsistency in the use of this frame vs.some
3 http://www.anc.org.
4 The FrameNet-annotated texts are at https://framenet.icsi.berkeley.edu/fndrupal/

index.php?q=fulltextIndex.

http://www.anc.org
https://framenet.icsi.berkeley.edu/fndrupal/index.php?q=fulltextIndex
https://framenet.icsi.berkeley.edu/fndrupal/index.php?q=fulltextIndex
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alternative ones such as Dimension, and various metaphorical sub-cases of that
frame. Evaluating the extraction of the Size frame on the basis of this minute
corpus was unfeasible, but we used it as a reference when developing our own
training and test set.

To develop our rule set, we took 200 sentences of the British National Corpus
containing, as a token, one of the LUs, and tagged them by hand. We considered a
LU to be any inflected form of a word of the synonyms to size given by WordNet
including metaphorical meanings of size. The sentences had POS tags from the
original material, but punctuation and information about multi-word units was
removed before developing the rule set. This corresponds to running surface text
through a POS tagger which does not recognize multi-word expressions before
running the frame extractor.

We had one person spend a working day developing rules based on our set
of training samples, iterating a process of spotting the difference between the
hand-tagged samples and the tagging produced by our rules, and modifying the
rule set. This resulted in two top-level rules, one corresponding to cases where
the LU precedes the Entity, and one to cases where it follows as these were the
only compulsory elements in the frame. Overall, the rule set was 46 lines long,
excluding comments and whitespace.

To get an idea of the quality of the rules, we also hand-tagged another 100
sentences from the same corpus. These do not necessarily contain the Size frame
to test that the rules do not over-generate. Of these sentences, 81 were tagged
completely correctly by the rule set. Results by LU are in Table 8.

Table 8. LU-level semantic tagging performance on the 100 sentence test set

Number of sentences 100

Number of LUs 113

Number of LUs corresponding to a Size frame 56

Number thereof matched by the rules 50

Total number of matches made by the rules 54

Coverage 89%

Accuracy 93%

In Table 8, a match in the test material is considered correct if the relevant
LU is correctly identified. We explore some further details regarding the quality
of both correct and incorrect test matches in Table 9.

We note that the test tagging was not independent of us but no other tagging
existed and that the overall amount of both training and test material is rather
small. We do not think this is a conclusive result, but it is an indication of the
semantic tagger that could be developed in a relatively small amount of time
with this approach.
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Table 9. Quality of matches made by the rules in the test samples

Matches where wrong Entity was tagged 4(8%)

Matches where Entity was partially wrongly tagged 8(16%)

Matches where Degree was incorrectly tagged 2(33% of hand-tagged Degrees)

Incorrect tagging due to insufficient rule sophistication 9(53% of mistakes)

Incorrect tagging due to mistakes in POS tagging 5(29% of mistakes)

Incorrect tagging due to lacking multi-word unit information 2(12%)

Incorrect tagging due to lacking multi-word unit information 1(16%)

6 Discussion

In this section, we contrast HFST with some other semantic frameworks for
recognizing semantic frames, i.e., Shalmaneser [4], LTH [9] and SEMAFOR [3].

Shalmanser treats semantic frame extraction as a pipeline of syntactic pars-
ing, frame identification, semantic argument identification and semantic role
labeling. Syntactic parsing uses an external toolkit. Note that frame identifica-
tion precedes role labeling, i.e., they are not done in parallel. However, Erk and
Pado [4] claim that this would give very small gains in accuracy while incurring
huge CPU cost. Shalmaneser can be trained for any semantic annotation scheme
provided appropriate training data exists. Users can replace some components of
the system with customized components. Full scale models for English and Ger-
man are available. Evaluation was done on manually annotated data. FrameNet
1.2 for English and the SALSA corpus for German. Evaluation is with regard
to the F1-score on unlabeled argument chunks and labeling accuracy for argu-
ment labels. The F1-score for argument chunks was 0.751 for English and 0.6 for
German. Argument label accuracy was 0.784 for English and 0.673 for German.

LTH also treats semantic frame extraction as a pipeline of syntactic pars-
ing, frame identification, semantic argument identification, and semantic role
labeling. In contrast to many other systems, LTH uses a dependency syntac-
tic parser instead of a constituent parser. Frame identification is accomplished
using a classifier based on input words and dependency structure. To aid argu-
ment identification, the FrameNet lexical database was extended with WordNet
data. A classifier was trained to identify words that were likely to belong to a
given semantic frame. Evaluation was with regard to F1-score for frames and
frame elements. As training data, FrameNet 1.3 was used; as test data, three
manually annotated segments from the American National Corpus were used.
The data sets come from the SemEval 2007 joint task on frame semantic struc-
ture extraction. The F1-score for English on the test data was 0.621.

The basic architecture of SEMAFOR is similar to Shalmaneser and LTH.
The frame parsing task is divided into two sub-tasks: predicate identification
and argument identification. SEMAFOR features a latent-variable model, semi-
supervised extension of the predicate lexicon and joint identification of the entire
argument set of a predicate using linear programming. This allows for integration
of linguistic constraints on the argument sets in a principled way. A model for
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English is available. The evaluation and data was the same as for LTH. The
F1-score on English is 0.645.

In contrast, HFST treats semantic frame extraction as a pipeline in only two
stages: morphological tagging and semantic labeling, i.e., frame identification,
semantic argument identification, and semantic role labeling are done in parallel.
The fact that HFST recognizes the whole frame in one step, means that HFST
has access to the whole frame element configuration when making the decision
to commit to the frame and the argument labels. In addition, HFST can take
linguistic constraints into consideration both in the morphological and the frame
and role labeling tasks. This contributes to the high coverage and accuracy
in the evaluation which no doubt is still much too limited. When the whole
semantic frame and all its argument roles are considered at the same time, HFST
removes part of the need for syntactic processing as an intermediate step, but
nothing prevents a user from replacing or enriching the morphological tagging
with information from a syntactic parser. Future work is a large-scale evaluation
of HFST for semantic frame and role labeling of a semantically rich language like
Finnish where we will draw on the availability of FinnWordNet [16] to extend
the lexical unit coverage.

7 Conclusion

In this paper, we have outlined the steps involved when using HFST–Helsinki
Finite-State Technology for recognizing semantic frames in context. A small-
scale evaluation indicates that the setup is capable of highly accurate semantic
information labeling.
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Abstract. Serbian Lexical Web Service (SLaWS) is a resource-oriented web
service designed to offer multiple functionalities—including morphosyntactic,
lexicographic, and canonical text services—to create the backbone of a digital
humanities infrastructure for the Serbian language. In this paper, we describe a
key component of this service called Morpho-SLaWS, the atomic morphosyn-
tactic component of the service infrastructure. The goal of Morpho-SLaWs is to
offer a reliable, programmatic way of extracting morphosyntactic information
about word forms using a revised version of the MULTEXT-East specification.
As a service-oriented lexical tool, Morpho-SLaWS can be deployed in a variety
of contexts and combined with other linguistic and DH tools.

Keywords: API design � Service architecture � Morphological lexicon �
Serbian language � Digital humanities

1 Intro: A Language in Search of an Infrastructure

A recent white paper evaluating the state of the Serbian language technologies has
shown that Serbian rates poorly in most categories, including the quantity and avail-
ability of lexical resources (Vitas et al. 2012).1 The lack of easily accessible,
open-sourced language resources and ready-made frameworks for quantitative textual
analysis that take into consideration the specificities of Serbian morphology and syntax
has been a major stumbling block in the development of Serbian Digital Humanities.

Serbian Lexical Web Service (SLaWS) is a resource-oriented web service designed
to offer multiple functionalities, including morphosyntactic, lexicographic, and
canonical text services that are the backbone of a digital humanities infrastructure for
the Serbian language. In this paper, we focus on one key aspect of SLaWS:
Morpho-SLaWS, the atomic morphosyntactic component of the service infrastructure
and the API for the query-driven extraction of Serbian morphosyntactic data. The web
service and the API follow standard practices in the field of web-based language
resources, while also making provisions for the peculiarities of contemporary Serbian,

1 At the same time, it is important to keep in mind that Serbian is not the only language suffering from
the predicament of underdeveloped resources. “It is estimated that for most European languages,
“even the basic resources are not yet available.” (Váradi et al. 2008).
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such as active Cyrillic/Latin digraphia and substandard Latin orthographic practices in
computer-mediated communication.

Morpho-SLaWS is a flexible and easily pluggable Digital Humanities (DH) tool,
developed in conjunction with recent developments in language service infrastructures
(Ishida 2006; Váradi et al. 2008; Murakami et al. 2010) and the goals of interopera-
bility, collaborative creation, management, and sharing of language resources by means
of distributed architectures (Calzolari 2008). For an under-resourced language like
Serbian, Morpho-SLaWS (and the SLaWS Framework in general) represents a major
departure in the way language resources are conceptualized, developed, and dissemi-
nated. We see Morpho-SLaWS as part of a long-term effort to build an infrastructure,
which will encourage programmatic accessibility and manipulability of Serbian textual
data in various DH contexts, including text annotation, indexing, cross-referencing, text
analysis, and visualization.

2 The Infrastructural Turn in Digital Humanities

DH encompass a wide range of scholarly activities ranging from digital philology and
creation of digital editions to text mining, distant reading, algorithmic criticism (see
Ramsay 2011; Berry 2012; Gold 2012; Liu 2012). As a community of practice, digital
humanists deal with electronic text not as a static artifact, but rather as a complex,
multi-dimensional and multi-layered datasets that need to be analyzed, annotated, and
manipulated in order to produce new knowledge. It should come as no surprise that one
of the most important challenges facing Digital Humanities today is how to consolidate
and repurpose available tools; how to create reusable but flexible workflows; and,
ultimately, how to integrate and disseminate knowledge, instead of merely capturing it
and encapsulating it. This technical and intellectual shift is what makes the ‘infra-
structural turn’ in Digital Humanities.

The increasing appeal of web services in the context of this infrastructural turn is
both technical and social. On the technical level, web services let heterogeneous agents
dynamically access and reuse the same sets of data using application programming
interfaces (API) and standardized workflows. On the social level, web services help
overcome the problem of “shy data,” i.e., data you can “meet in public places but you
can’t take home with you.” (Cooper 2010) Designing DH projects in line with the
principles of the service-oriented architecture (SOA) is, therefore, an important step in
the creation of open scholarly ecosystems.

A growing number of large-scale, international projects is delineating the contours
of the infrastructural turn in digital humanities and related fields, in which web ser-
vices, APIs, and Open Linked Data play a significant role. Large European consortia
such as CLARIN and DARIAH coordinate and direct efforts in the realm of digital
research infrastructures for language technologies and digital arts and humanities.
Initiatives such as the Open Annotation Collaboration (OAC) and the Web Annotation
Working Group are working on data models and interoperability specifications for a
distributed Web annotation architecture (Hunter et al. 2010; Haslhofer et al. 2011;
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Sanderson et al. 2013). While emerging protocols such as the Canonical Text Services
(CTS) identify and retrieve XML-structured textual passages of Classical authors using
an URN scheme (Smith 2009; Tiepmar et al. 2014).

The trend of open, shareable, and easily accessible “infrastructuralized” data is
catching on in individual DH projects as well: Open Siddur’s API (Nosek 2013)
retrieves, for instance, Jewish liturgical resources, while Folger Digital Texts offers a
simple API to identify and retrieve words, lines, or other segments of Shakespeare
plays, concordances as well as the so-called witness scripts for individual characters,
i.e., portions of the play that characters witness by virtue of being on stage.2 The
correspSearch API provides access to metadata of diverse scholarly letter editions with
regard to senders, addresses, as well as places and time of origin.3 APIs are nowadays
used not only to deliver content but also to document and make easily accessible the
encoding choices made in creating digital editions (Holmes 2014).

3 Morphosyntactic Annotation in the Service of Serbian DH

We know from experience that serious textual work in Digital Humanities, especially
with highly inflected languages such as Serbian, cannot be imagined without mor-
phosyntactic analysis. Lemmatization, POS-tagging, and removal of function or most
frequent words are basic pre-requirements for a variety of DH practices, including, for
instance, annotating a scholarly digital edition, performing a quantitative analysis of a
collection of electronic texts, or topic modeling.

In view of both the state of the Serbian language technologies and the infrastruc-
tural turn in Digital Humanities, we judged it essential to invest both time and effort in
developing a web service that would help with some of those tasks.

As a web service compliant with the REpresentational state transfer (REST)
architecture (Richardson and Ruby 2007), Morpho-SLaWS provides a framework for
query-based extraction of morphosyntactic data over the network. It follows the
principles of Resource Oriented Architecture (ROA): it makes the components of the
underlying lexical dataset addressable through URIs; it uses the HTTP GET method to
retrieve a representation of the resource; and every HTTP request happens in stateless
isolation, which makes backend implementation and architectural integration much
simpler.

Compared to conventional XML transport mechanisms such as SOAP, RESTful
protocol provides a lighter solution, more suitable for an online infrastructure,
including light mobile solutions (see Muehlen et al. 2005). These aspects happen to be
particularly important for under-resourced languages, where communities of devel-
opers and crowdsourced editors can lead to significant improvements in resource
availability and quality.

2 http://www.folgerdigitaltexts.org/api.
3 http://correspsearch.bbaw.de/index.xql?id=api.
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4 Morpho-SLaWS

4.1 The Morpho-SLaWS Lexicon

The morphosyntactic dataset that forms the backbone of Morpho-SLaWS was origi-
nally developed as part of Transpoetika, a bilingualized, WordNet-based
Serbian-English dictionary (Tasovac 2009; Tasovac 2012). It has been extended over
time and used internally in various contexts including encoding and indexing of literary
texts (Tasovac and Ermolaev 2011a; Tacoвaц and Jepмoлaeв 2012) as well as dic-
tionary backends (Tasovac and Ermolaev 2011b; Чемерикић 2013).

The Morpho-SLaWS Lexicon (MSL) links individual word forms with their cor-
responding lemmas and morphosyntactic annotation. The MSL tagset relies on the
revision of the MULTEXT-East morphosyntactic specification (Erjavec 2010; Tasovac
and Petrović, forthcoming). The specification defines a formal set of feature structures
for annotating salient word-level grammatical properties for each of the languages
concerned. The specification also provides a mapping between its feature structures and
the so-called morphosyntactic descriptions (MSD)—a compact annotation scheme
which can be used in a variety of natural language processing tasks. For instance, the
MSD Ncnpg--n corresponds to the feature structure consisting of attribute-value
pairs Category = Noun, Type = common, Gender = neuter, Number = plu-
ral, animate = no.

The full paradigm of the Serbian noun пиcмo (letter) in the Morpho-SLaWS lex-
icon looks like this:

The MSL is itself under active development. As of this writing, it consists of 3,948,328
morphological entries for 114,932 lemmas. In comparison, the morphological dictio-
nary of the Serbian language in the LADL/DELA format (Krstev 2008) covers a total
of around 4.5 million word forms and 130,000 lemmas (Krstev et al. 2011).
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4.2 The Morpho-SLaWS Backend

The Morpho-SLaWS backend is implemented as a JavaScript service running in the
NodeJS runtime environment, supported by the light Express web application framework
and MongoDB persistent storage. MongoDB is a non-relational (NoSQL), schema-less,
document-oriented, persistent storage solution, which offers multiple benefits over
conventional storage solutions (Wei-ping 2011), such as architectural design patterns
greater scalability and standardized solutions for easier replication scenarios.

4.3 The Morpho-SLaWS API

Query Parameters

Method: GET.

https://api.slaws.info/v1/forms/wordForm?fields=apikey,limit,offset,filter,paradigm,
transliterate,strict,created_since,modified_since,form,lemma,ana
The following table outlines a list of possible parameters, indicating whether they are required
(y) or not (n), briefly describing their functions, default values and data types (Table 1).

Table 1. Morpho-SlaWS parameters

Parameter Req. Function Data
Type

apikey y API key String
limit n The maximum number of results to return. Default: 10. Number
offset n The pagination of results to return. Default: 0. Number
filter n Filters results based on the MSD notation. * returns all forms, N*

returns all nouns, Nc* all common nouns, Nps* proper nouns in
the singular, etc. Default: *.

String

paradigm n By default, the system returns the MSD for the queried word form.
If true, the system returns a full inflectional paradigm of the
word form, regardless of whether the requested word form is a
lemma or not.

/forms/pyкe?paradigm = false =>pyкe (gen. sg),
pyкe (nom. pl.), pyкe (acc. pl.)

/forms/pyкe?paradigm = true =>pyкa, pyкe, pyци,
pyкy, etc.
Default: false

Boolean

transliterate n Transliterate the requested word form from Latin to Cyrillic. This
does not affect the output. Default: false.

Boolean

strict n If transliterate is set to true and strict is set to false, the system
will try to match and offer results for loose transliteration:

/forms/reci?transliterate = true&strict =
true =>peци
/forms/reci?transliterate = true&strict =
false =>peци,

peћи, peчи.
Default: true

(Continued)
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Most of the parameters and functionalities described in the above table are
self-explanatory. Two of them, however, deserve special attention, as they address a
peculiarity of contemporary Serbian as an actively digraphic language, which can be
natively written in both Cyrillic and Latin alphabets (Magner 2001). The API provides
two parameters: transliterate and strict to accommodate this feature. The
former instructs the system to transliterate from Latin to Cyrillic:

etc. Unlike the transliteration from Cyrillic to Latin, which is unambiguous, the
transliteration from Latin to Cyrillic poses some additional difficulties. Cyrillic
graphemes љ, њ, and џ correspond to Latin digraphs: lj, nj, and dž. Unicode does
provide single characters for the Latin digraphs, but they are hardly ever used in word
processing and in web content. While in majority of cases, the Latin digraphs can be
safely transliterated to their monographic Cyrillic counterparts, there are exceptions
that require a digraphic Cyrillic representation: for instance, džak = џaк (dž = џ), but
nadživeti = нaдживeти (dž = дж).

The system deploys what we call a maximal transliteration approach: every
Latin-script word is internally transformed into all of its theoretically possible Cyrillic
representations: džak =>[џ|дж]aк and nadživeti becomes нa[џ|дж]ивeти; the
system then returns the results for all the forms that it has encountered in the lexicon.

A further difficulty for the processing of web-based Serbian texts is that a large
portion of Serbian speakers in computer mediated communication employs
non-standard orthographic practices, most notably the diacritic-free versions of Latin
graphemes č, ć, š, đ, ž, and dž (Брборић 2000; Ivković 2013). Keeping in mind that
diacritics in the Serbian Latin alphabet are markers of distinct phonemes rather than
accent marks, the substandard orthographic practices can interfere with morphosyn-
tactic annotation.

Table 1. (Continued)

Parameter Req. Function Data
Type

created_since n Either zero or the Unix timestamp. Default: 0. Returns entries
created since a given time and date.

Number

modified_since n Either zero or the Unix timestamp. Default: 0. Returns entries
modified since a given time and date.

Number

form n Include the requested word form in the response. Default: true. Boolean
lemma n Include the lemma of the requested word form in the response.

Default: true.
Boolean

msd n Include the morphosyntactic analysis of the form in the response.
Default: true.

Boolean
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As we saw above, Morpho-SLaWS can transliterate standard orthographic con-
ventions by employing a maximal approach to compensate for the potential graphemic
ambiguities. In cases of non-standard orthographic practices, the API accepts an
additional parameter, strict, to indicate whether the system should try or not to
resolve the potential substandard graphemic alternatives.

Setting the parameter strict to false will search for all possible substandard
transliterations and return those that have an entry in the lexicon: in the case of reci, the
client will receive MSDs for reci (peци), reći (peћи), and reči (peчи):

The system accounts for multiple orthographic mappings:

1. the “traditional” non-standard Latin: c => [cčć]; dj => [dj|đ]; s => [sš]; z => [zž];
dz => [dz|dž];

2. the “Anglicized” non-standard Latin: ch => [čć]; cj => ć; zh => ž; sh => š;
dzh =>dž;

3. the “telegraphic” non-standard Latin: cc => č; ch =>ć; zz => ž; ss => š; dzz = > dž;

Output Formats. Morpho-SLaWS returns lexicon entries in two formats: as JSON
objects and as TEI-XML documents.

JSON notation.
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TEI Notation. Entries from the Morpho-SLaWS Lexicon can also be returned as valid
TEI documents, consisting of a teiHeader (Fig. 1) and lexicon entries encoded as
TEI feature structures. The header, which is a required TEI element, provides basic
metadata about the service as well as the full request query (Fig. 2).

Fig. 1. TEI header response

Fig. 2. TEI body response
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5 Conclusion and Future Work

Currently, Morpho-SLaWS provides atomic access to the morphosyntactic lexicon
through the read-only GET interface. It is the first-ever such web service for the Serbian
language. It has been successfully tested with ongoing projects at the Belgrade Center
for Digital Humanities, including the Transpoetika Dictionary (Tasovac 2012),
LitTerra4, and Bukvik.5

Further work on Morpho-SLaWS will continue in two parallel tracks: technically,
we will focus on expanding the scope of the service, on the one hand, to cover batch
processing of both plain-text and TEI-encoded XML files; and, on the other, to handle
creating, updating and deleting resources. At the same, we will pursue the development
of API-based applications in the realm of collaborative editing, crowdsourcing and
gamification of annotation tasks and morphosyntactic disambiguation.
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Abstract. To efficiently extract and manage extremely large quantities
of meaningful data in a delicate sector like healthcare requires sophisti-
cated linguistic strategies and computational solutions. In the research
described here we approach the semantic dimension of the formative
elements of medical words in monolingual and bilingual environments.
The purpose is to automatically build Italian–English medical lexical
resources by grounding their analysis and generation on the manipu-
lation of their consituent morphemes. This approach has a significant
impact on the automatic analysis of neologisms, typical for the med-
ical domain. We created two electronic dictionaries of morphemes and a
morphological finite state transducer, which, together, find all possible
combinations of prefixes, confixes, and suffixes, and are able to anno-
tate and translate the terms contained in a medical corpus, according to
the meaning of the morphemes that compose these words. In order to
enable the machine to “understand” also medical multiword expressions,
we designed a syntactic grammar net that includes several paths based
on different combinations of nouns, adjectives, and prepositions.

Keywords: Morphosemantics · Machine translation · Dictionary
population · Neoclassical formative elements

1 Introduction

In the age of Big Data, which clearly affects also the healthcare sector, one of
the most important challenges is the extraction of information from raw data.
This implies the automatic detection of significant facts in unstructured texts
and their transformation into structured documents, indexable and queryable
exactly like databases.

The volume, the variety, the velocity, the verification, and the value of data
raise the necessity of managing information with the most sophisticated linguistic
and computational architectures, able to approach the semantic dimension of
words and sentences.

A satisfying computational treatment of the language, above all in the medical
domain, requires a large quantity of lexical resources, accurately described from
a linguistic point of view. Unfortunately, not all the languages are provided with
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complete and freely available lexical databases, like the English one. As regards
the Italian language, that is the language under examination in this work, in the
rare cases in which the lexical resources are accessible for free, they are not as reach
as their English counterparts (think of the differences between the Italian and the
English version of WordNet, cf. [24]).

Anyway, the manual elaboration of these resources (that can take the shape
of monolingual and/or bilingual electronic dictionaries, thesauri, ontologies, etc.)
represents a strong time-consuming activity. The human-built databases can not
be updated in real time, and, for this reason, they are not so flexible to the
proliferation of neologisms, typical of the medical domain.

All that strengths the idea that sometimes the elaboration of strategies and
tools for the automatic creation and enlargement of lexical databases is preferable
to the (more accurate but slower) manual formalization of them.

The present paper summarizes the techniques used to build Italian medical
thesauri and dictionaries in which every lemma is automatically associated with
its own terminological and semantic properties. The starting point is a large-sized
corpus of medical records, the output, medical thesauri and electronic dictionar-
ies enriched with semantic information, that can be easily used as knowledge
base in every clinical decision support system.

Furthermore, we explored the possibility to ground a machine translation
task in the medical special language on morphology: starting from the Italian
list of medical morphemes, we built an Italian–English multilingual electronic
dictionary, which is usable for the generation and the translation of medical
words on the base of morphological correspondences.

The whole work is grounded on the productive morphology and on the seman-
tics of the word formation elements. The basic intuition is that, in the special
language of the medicine, the meaning of a relatively small number of morphemes
can be used to inherit the meaning of the words that are formed with them.

In this research we basically reorganize the information derived from the
semantics of the word formation elements, by making the medical words derive
the meaning of the morphemes which they are formed with.

The paper is structured as follows. Section 2 recapitulates the state of the art
contributions on both the morpheme-based population of linguistic resources and
the machine translation based on morphological clues in the medical domain.
Section 3 briefly describes the morphosemantic method used in this work.
Sections 4 and 5 present, respectively, in more detail the ad hoc electronic dictio-
naries and the morphological and syntactic local grammars created for the auto-
matic annotation of a corpus of 5,000 medical diagnoses and for the generation of
English medical words, on the base on the morphological correspondences with
the Italian ones. In Sect. 6 we report the results regarding both the realization
of medical dictionaries and thesauri, based on the annotations extracted from
the medical corpus, and the automatic generation of the Italian-English bilingual
medical database.
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2 State of the Art

Due to the variety of the topics and tasks faced in the present research, this
section will approach every one of them separately. In detail, we will firstly define,
from a linguistic point of view, the neoclassical formative elements, on which the
entire work has been based. Then, we will briefly present the most important
studies on the automatic population of thesauri, with special attention to the
ones that exploited a morpho-semantic approach. In the end, we will focus on
the researches that exploited morphological rules in machine translation tasks.

2.1 Linguistic Studies on Neoclassical Formative Elements

The neoclassical formative elements are those morphological elements that come
into being from Latin and Greek words and that are used to form both technical-
scientific words and ordinary words. They can combine themselves with other
formative elements or with independent words.

Due to their heterogeneous nature, we can notice in literature difficulties in
the classification and in the definition of such entities. The denominations they
received in the course of time are prefixoids, suffixoids [23]; cultured elements[6];
formative elements of Latin and Greek origin [37]; semiwords [33]; scientific
formative elements [34]; compound words with “lexical stems” or semiwords [32];
confixes [4,9,18,22,35]; neoclassical elements [38]. For the sake of simplicity, from
now on we will use the term “confixes,” which has been predominantly used in
literature.

The terms that are created with the neoclassical formative elements are called
“neoclassical compounds,” but actually they do not find a correct definition
neither in “compounds” nor in “derivatives” [16].

In this work we will just focus only on the technical-scientific word formation
in order to avoid unpredictable and more important ambiguity problems.

2.2 Morphosemantic Approaches for the Automatic Population
of Thesauri

Morphosemantic approaches, similar to the one presented here, have been
already applied to the medical domain in many languages.

Works that deserve to be mentioned are Pratt [31] on the identification and
on the transformation of terminal morphemes in the English medical dictionary;
Wolff [42] on the classification of the medical lexicon based on formative elements
of Latin and Greek origin; Pacak et al. [30] on the diseases words ending in
-itis; Norton e Pacak [29] on the surgical operation words ending in -ectomy or
-stomy ; Dujols et al. [11] on the suffix -osis.

Between the 1990s and the 2000s, many studies were published on the auto-
matic population of thesauri. We recollect among others Lovis et al. [21], who
derived the meaning of the words from the morphemes that compose them;
Lovis et al. [20], who identified ICD codes in diagnoses written in different lan-
guages; Hahn et al. [15], who segmented the subwords in order to recognise
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and extract medical documents; and Grabar and Zweigenbaum [14], who used
machine learning methods on the morphological data of the SNOMED thesaurus
(French, Russian, English).

An advantage of the morphosemantic method is that complex linguistic
analyses designed for a language can be often transferred to other languages.
Delger, Naner, and Zweigenbaum [10], for example, adapted the morphoseman-
tic analyzer DériF [28], designed for the French language, for the automatic
analysis of English medical neoclassical compounds.

2.3 Morphem-Based Approaches in Machine Translation Tasks

With regard to the studies which exploited morphological clues in machine
translation tasks, we mention the work of Cartoni [3], who implemented lex-
ical morphology principles into an Italian–French machine translation tool, in
order to deal with the computational treatment of neologisms. We also consider
Toutanove, Suzuki, and Ruopp [39] and Minkov, Toutanova, and Suzuki [25],
who proposed models for the prediction of inflected word forms for the genera-
tion of morphologically rich languages (e.g., Russian and Arabic) into a machine
translation context.

Furthermore, Virpioja et al. [41] exploited the Morfessor algorithm, a method
for the unsupervised morph-tokens analysis, with the purpose of reducing the
size of the lexicon and improving the ability to generalize in machine translation
tasks. Their approach, which basically treated morphemes as word-tokens, has
been tested on the Danish, Finnish, and Swedish languages.

Daumke, Schulz, and Mark [7] exploited a set of subword (morphologically
meaningful units) to automatically translate biomedical terms from German to
English, with the purpose to morphologically reduce the number of lexical entries
to sufficiently cover a specific domain.

Lee [19] explored a novel morphological analysis technique that involved lan-
guages with highly asymmetrical morphological structures (e.g., Arabic and Eng-
lish) in order to improve the results of statistical machine translations.

Finally, Amtrup [1] proposed a method that involved finite state technologies
for the morphological analysis and generation tasks compatible with machine
translation systems.

3 Methodology

As stated by [2], linguistic sub-codes can be described as varieties of the linguistic
code that possess peculiarities that depend on specific knowledge domains. Such
sub-codes are provided with special lexicons, thanks to which it is possible to
determine concepts that go beyond the common use of the language.

The technical-scientific language of the medicine, endowed with an amount
of technical lemmas that is larger than any other sub-code, is a part of the set
of sub-codes that are organized in taxonomies and strong notional fields [5].
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This large number of terms, besides, occurs in texts with a very low frequency.
To accept that a key term could be a “rare event” [26], has clearly a strong impact
on the performances of the statistical and the machine learning methods, that
hardly take into account these kinds of problems.

In our work we took advantage from a number of Italian and English word-
formation strategies for the automatic analysis of Italian words and for the gen-
eration of Italian/English bilingual lexicons in the medical sub-code.

The basic hypothesis in that the global meaning of the words is often strongly
connected with the meaning of the formative elements that compose them.

3.1 Semantic Relations and Morphological Families

The morphosemantic approach allows the analytical description of the meaning
of the words that belong to the same subdomain or to the same “morphological
family” [17]. In this subsection we will introduce the possibility to exploit mor-
phemes in order to detect and describe the semantic relations existing between
those words that share portions of meaning.

With our method it is easy to find (almost-)synonym sets [27] on the base
of the words that share morphemes endowed with a particular meaning (e.g.,
-acusia, hearing disorders). Moreover, we can infer the domain of the medical
knowledge to which the synonym set belongs (e.g., “otolaryngology”) and, in the
end, we can differentiate any item of the set by exploiting the meaning of the
other morphemes involved in the words.

– synset: iper-acusia, ipo-acusia, presbi-acusia, dipl-acusia;
– subdomain: -acusia “otolaryngology”;
– description: ipo- “lack,” iper- “excess,” presbi- “old age,” diplo- “double”).

On the base of the morphemes meaning, we can also infer relations between
words that are not morho-phonologically related, but which are composed of
morphemes that share at least one semantic feature and/or the medical subdo-
main. Examples of this are reported below.

– related to tumors: cancero-, carcino-, -oma, “oncology”;
– related to stomach disorders: stomac-, gastro-, “gastroenterology”;
– related to skin fungus: fung-, miceto-, mico-, “dermatology”.

It is for all these benefits that we grounded the automatic creation of medical
lexical databases on specific formative elements that are able to define the mean-
ing in a univocal way, thanks to the regular combination of modules indepen-
dently defined. Such elements do not represent mere terminations, but possess
their own semantic self-sufficiency [16].

3.2 Natural Language Processing Tools

The NLP tool that we used in this work for both the language formalization and
the corpus processing is NooJ1 [36].
1 www.nooj4nlp.net.

www.nooj4nlp.net
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Among the great number of modules, developed by the international NooJ
community, the Italian Lingware [40] has been built by the Maurice Gross Labo-
ratory of the University of Salerno, which focuses its research interest on language
formalization and text parsing and grounds its works on the Lexicon-grammar
(LG) theoretical and practical framework since the beginning of the ’80s [13].

The Italian module for NooJ can be any time integrated with other ad hoc
resources.

The lexical and grammatical resources that the NooJ user can build in order
to parse texts and analyze their semantic content are the followings.

– Electronic Dictionaries. Characterized by completeness, explanation and cod-
ing, electronic dictionaries are lexical databases, which are usable with every
kind of computerized document.

– Local Grammars. They are algorithms on the form of finite-state automata
(FSA) that, thanks to grammatical, morphological and lexical instructions,
contribute to the formalization of linguistic phenomena and in the parsing of
texts. FSA are non-deterministic graphs characterized by a finite set of nodes
and transitions that allow us to locate patterns related to a particular path.
They are called finite-state transducers (FST) if the pattern recognition goes
together with the pattern annotation; in other words, if the grammar not only
matches specific linguistic sequences, but also writes outputs on them.

4 Lexical Resources

In the present work, the corpus analysis has been preceded by the planning of
a number of subclasses of the medical domain. With the support of a domain
expert the macro class of the medicine has been divided into 22 subcategories,
shown in Table 1.

A class “undefined” has been used as residual category, in order to collect
the words particularly difficult to classify.

Thanks to the electronic version of the GRADIT [8] it has been possible to
collect the morphemes (prefixes, suffixes and confixes) related to the medical
domain, to classify them on the base of their subdomain of origin and to enrich
them with other semantic information, concerning the meaning they express.

Each of these morphemes has been compared with the morphemes presented
into the Open Dictionary of English by the LearnThat Foundation2. The respec-
tive English translation has been added to the NooJ Dictionary (Table 2).

The electronic dictionary of medical morphemes is classified in the follow-
ing way:

– Confixes (CPX): neoclassical formative elements with a full semantic value
(i.e. pupillo-, mammo-, -cefalia);

– Prefixes (PFX): morphemes that appear in the first part of the word and are
able to connote it with a specific meaning (i.e. -ipo, -iper);

2 https://www.learnthat.org/.

https://www.learnthat.org/
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Table 1. Tag set for the morphemes description

Label Description Number

Intern Internal medicine 108

Ortoped Orthopedics 78

Cardio Cardiology 54

Neuro Neurology 42

Ginec Gynecology 42

Urolog Urology 38

Gastro Gastroenterology 36

Endocrin Endocrinology 36

Chirur Surgery 26

Otorino Otolaryngology 24

Oftalmo Ophtalmology 20

Oncol Oncology 13

Pneumo Pneumology 12

Dermat Dermatology 10

Dermat Dermatology 10

Trauma Traumatology 10

Psic Psychiatry 6

Pediat Pediatrics 6

Virolog Virology 6

Farmaco Pharmacology 4

Allergo Allergology 2

Geriatr Geriatrics 2

Table 2. Morphemes of the bilingual dictionary of medical morphemes

Manner of use Category Number Translated

Medicine Confixes 451 349

Medicine Suffixes 14 13

Medicine Prefixes 7 7

Anatomy Confixes 45 27

General Suffixes 19 18

– Suffixes (SFX): morphemes that appear in the final part of the word and are
able to connote it with a specific meaning (i.e. -oma, -ite);

– Suffixes for the adjectives formation: derivational morphemes that make it
possible to derive and distinguish in the medical domain the adjectives
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(i.e. polmonare, “pulmonary”) from the nouns that have a morpho-
phonological relation with them (i.e. polmone, “lung”).

Fig. 1. Electronic dictionary of morphemes

As shown in Fig. 1 the medical morphemes have been formalized into an Elec-
tronic Dictionary that specifies their category (PFX, SFX, etc.), and provides
semantic descriptions about the meaning they confer to the words composed
with them. Such semantic information regard the three following aspects:

– Meaning: introduced by the code “+Sens,” this semantic label describes the
specific meaning of the morpheme (e.g., -oma corresponds to the descriptions
tumori, “tumours” and -ite to infiammazioni, “inflammations”);

– Medical Class: introduced by the code “+Med,” this terminological label gives
information regarding the medical subdomain to which the morpheme belongs
(e.g., cardio- let the machine know that every word formed with it pertains
to the subdomain of cardiology);

– Translation: introduced by the code “+EN,” presents the corresponding trans-
lation of the morpheme in English.

The dictionary, compiled into the file “morphemes IT EN.nod,” contains the
three categories presented in Fig. 1 (CFX for the confixes, SFX for the Suffixes
and PFX for the Prefixes).

Another category, CFXS, includes all the Confixes that can appear before
a suffix, with its correspondent English morpheme deprived of the final part,
in order to avoid vocal repetition in case of suffixation. The word Ateroscelrosi,
“Atherosclerosis,” for example, that is composed by three morphemes, atero,
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sclero and osi, with the respective translation of morphemes, “athero,” “sclero”
and “osis”; when translated, produces the sequence “atheroscleroosis.” Since is
not possible to operate directly on English morphemes, to prevent these kind of
errors, the system contemplates the new category CFXS for Confixes that are
followed by a Suffix. While the sequence of morphemes CFX-CFX-SFX produce
“Atheroscleroosis,” a sequence CFX-CFXS-SFX translate correctly the medical
term.

A supplemental resource used to annotate our corpus is a dictionary com-
posed of more than 700 concrete nouns of body parts (“+Npc,” e.g., braccio,
“arm”) and organism parts (“+Npcorg,” e.g., cervello, “brain”) and of more
than 400 concrete nouns of drugs and medicines (“+Nfarm,” i.e., morfina, “mor-
phine”) developed by the Maurice Gross Laboratory of the University of Salerno.

Also this dictionary, shown in one of its parts in Fig. 2, is enriched with Parts
of Speech (“N,” nouns), Inflectional (“+FLX,” that specifies the inflectional par-
adigm followed by the lemmas) and Semantic properties (e.g., “+Conc”: con-
crete; +Npcorg: organism part; “+Med=NEURO”: neurology).

Fig. 2. Electronic dictionary of organism parts

5 Grammatical Rules

It has been shown in the previous section how to formalize the electronic dic-
tionaries required for the annotation of our corpus and for the medical lexical
databases creation. However, this represents just the first step of our method,
which, in order to automatically recognize and tag medical words occurring in
real texts, needs the support of morphological and syntactic local grammars,
which take the shape of FST. The grammar net designed for this work includes
two kinds of grammars: syntactic grammars, in which every node represents a
word and morphological grammars, in which every node represents a morpheme.
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5.1 Rules for the Automatic Population of Medical Lexical
Databases

The recognition of medical terms is based on seven parallel morphological gram-
mars that automatically assign semantic tags to the simple words found in free
texts, according to the meaning of the formative elements that compose the
same words. Below are summarised the seven grammars built with NooJ, which
include the following combination of morphemes:

1. confix-confix/prefix-confix/prefix-confix-confix ;
2. confix-suffix/prefix-confix-suffix ;
3. confix-confix-suffix/prefix-confix-confix-suffix ;
4. noun-confix ;
5. prefix-noun-confix ;
6. confix-noun-confix ;
7. noun-suffix ;

Together, the morphemes dictionary and the morphological grammar net
allow the recognition and the annotation of simple words of the medical domain.

In Fig. 3 is presented a sample of the morphological grammar: the graph is
composed by a finite number of states which are always included between an
input node and an output node. Yellow nodes represent metanodes, nodes that
contain other embedded graphs. The code 〈+MEDICINA$1S$2S〉 allows the
grammar to assign to the words the information inherited by the morphemes
that compose them.

Fig. 3. Extract from the morphological grammar

Figure 4 shows the content of the metanode “CONFISSI”, which connects
the local grammar with the dictionaries of medical morphemes and human
body/organism parts. In order to enable the machine to extract and “under-
stand” also the multiword expressions, we exploited a network of NooJ syntactic
grammar. The one designed for this work includes seven main paths based on
different combinations of Nouns (N), Adjectives (A) and Prepositions (PREP).

1. N;
2. N+N;
3. A+N;
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4. N+A;
5. N+N+A;
6. N+A+A;
7. N+PREP+N;

Fig. 4. Example of the confix metanode of the morphological grammar

Every path attributes to the matched sequence the label that belongs to the
head of the compound. In the case in which the head is not endowed with a
semantic label, the compound receives the residual tag “undefined”. The first
path matches the simple words, all the other paths match multiword expressions.

Fig. 5. Extract from the syntactic grammar

Figure 5 shows the syntactic grammar number 6, in which the restriction
$ONE$Med is used to assign to the compound the grammatical category corre-
sponding to its head (in this case N).

In technical languages the presence of multiword expressions is extremely
relevant. Often these expressions exceed the 90 % of the amount of the words
that are characteristic of a specialized jargon [12].

A terminological compound is a particular sequence of simple words sepa-
rated by blanks, which is characterized by a restriction of distribution, by a
shared and established use and, above all, by a want of ambiguity.
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Their semantic atomicity is extremely important in the annotation of texts,
e.g., the simple word cisti, “cyst” alone cannot provide the specific information
contained in the compounds cisti ovarica, “ovarian cyst” (GINEC, “genecology”)
or cisti spinale “spinal cyst” (NEURO, “neurology”).

5.2 Rules for the Machine Translation of Medical Words

Similarly to the task presented in Sect. 5.1, the machine translation of medical
words in English is based on a morphological grammar, and a syntactical gram-
mar or a finite-state transductor that transform the Italian term into the English
term.

The morphological grammar, named “MOMENIT.nom”, recognizes Italian
medical terms and tag every morpheme that composes the word with informa-
tion regarding its meaning. In order to preform this operation, the morpho-
logical grammar includes seven patterns which recognize different sequences of
morphemes (Fig. 6):

– CFX-CFX
– PFX-CFX
– PFX-CFX-CFX
– PFX-CFXS-SFX
– CFXS-SFX
– CFX-CFXS-SFX
– PFX-CFX-CFXS-SFX

Fig. 6. The morphological grammar for recognition of Italian medical terms of the
Machine Translation Module

Subsequently, the syntactic finite-state transducer “TRANSITEN.nog” takes
as input the morphemes and, then, outputs the respective translations, see Fig. 7.
In the end, using the same morpheme sequences defined for the morphological
grammar, it tags every Italian Medical Term with the respective English trans-
lation.
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Fig. 7. Syntactic finite-state transducer

6 Discussion and Results

The corpus on which the annotation has been performed consists of 5,000 medical
records, from the Italian region Campania, in electronic format. The hospitals’
information and the sensitive data of patient they belong to have been hidden,
due to privacy reasons.

The medical codes, the record numbers and the medical laboratory tests
and results have been excluded from the analysis, that had to be carried out on
unstructured texts. So, the annotation has been realized on the diagnoses, which
are the largest non-structured fields of the medical records.

In order to facilitate the pre-processing stage (tokenization, normalization
and lemmatization), the corpus has been split into 20 subsections with a total
of 64, 360 tokens and 41, 468 word forms annotated.

Then the lexical and grammatical resources built for this work have been
applied in tandem to the texts, thanks to the command-line program “noojap-
ply.exe”.

The procedure followed by the algorithm of the program follows three stages:
the application of the NooJ resources; the removal of the redundancies and, in
the end, the proper extraction of the classes. All that provides two kinds of
outputs exemplified below:

– an Electronic Dictionary of simple medical words, in which the lemmas
extracted from the diagnoses are systematically associated with their termi-
nological (“Med”) and semantic (“Sens”) descriptions:
Gastrite acuta. Cardiopatia ipertensiva. Insufficienza aortica lieve-moderata.
“Acute gastritis. Hypertensive heart disease. Mild-to-moderate aortic regur-
gitation”
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gastrite,N+SensCP=apparatoGastrico+Med=GASTRO+SensS=infiammazione

cardiopatia,N+SensCP=cuore+Med=CARDIO+SensCS=malattia

ipertensiva,A+SensP=eccesso+SensCP=tensione+Med=CARDIO

aortica,A+SensCP=aorta+Med=CARDIO

– a Thesaurus of simple and compound medical words, which are grouped
together on the base of their medical classes:

#〈CARDIO〉
insufficienza aortica
cardiopatia ipertensiva
vasculopatia aterosclerotica
aritmia ectopica sopraventricolare
aritmia extrasistolica ventricolare

#〈GASTRO〉
duodenite bulbare
colonpatia discinetica
gastrite erosiva
coliche addominali resistenti
colecistite litiasica

#〈PNEUMO〉
broncopatia cronica
broncopenumopatia cronica enfisematosa
enfisema polmonare
fibrosi polmonare
insufficienza respiratoria

In order to have a measure of the performances of our morphosemantic med-
ical analyser we evaluated its Precision (on a sample of 500 entries of the The-
saurus automatically extracted from a sample of about 5,000 medical diagnoses),
that underlined strong variances connected with the different medical classes.
A summary of the obtained results is reported in Table 3. Although the Pre-
cision percentage on the whole sample (69.50 %) is more than satisfying for a
complex semantic task like the one performed in this work, many improvements
must be carried out on the dictionaries and grammars of the domains with the
lowest levels of Precision.

The medical classes on which the results have been evaluated are the ones
located in the sample of the corpus. The size and the nature of the lexical
databases that can be created with the proposed method depend on the largeness
and on the content of the corpus on which the NooJ resources are applied.
Therefore, in order to obtain widespread medical databases, it is preferable to
use corpora that cover many areas of the medicine.
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Table 3. Evaluation of the automatically generated thesaurus

Classes Precision %

Traumatology 100.00

Surgery 97.82

Pneumology 95.83

Gastroenterology 89.18

Orthopedic 80.95

Urology 76.19

Intern medicine 69.04

Cardiology 66.96

Endocrinology 23.80

Undefined 50.80

Tot 69.50

At a later stage, the syntactic transducer have been applied to the same
corpus in order to generate a list of English medical terms preceded by the
respective Italian words.

Table 4. Morphological machine translation

Italian word English translation Morpheme 1 Morpheme 2 Domain

Encefalo-patia Encephalo-pathy Brain Disease Neurology

Cardio-patia Cardio-pathy Heart Disease Cardiology

Ipo-tensione Hypo-tension Under Tension Cardiology

Colon-scopia Colon-scopy Colon Medical exam Gastroenterology

In Table 4 we exemplify the information generated by our lexical and gram-
matical resources. The procedure extracted 3,138 English medical terms, 2,103
of which were correct, with a Precision score of 67.87 %.

Although the Precision percentage on the whole sample is more than sat-
isfying for complex semantic tasks like the ones performed in this work, many
improvements must be carried out on the dictionaries and grammars of the
domains with the lowest levels of Precision.

7 Conclusion

In the present work we presented a morphosemantic method for the automatic
population of medical lexical databases in the Italian language and for the Ita-
Eng machine translation of medical words. Our outputs, in its electronic format,
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can be used as Knowledge base by every kind of NLP tools or Clinical Decision
Support Systems.

We demonstrated, with satisfactory results, that starting from a corpus writ-
ten in technical-scientific language and from a small sized dictionary of neoclas-
sical formative elements it is possible to “understand” the meaning of a large
number of medical simple and compound expressions.

Moreover, we introduced the possibility to compare languages that share a
significant number of morphemes, in order to take advantages from such simi-
larities in machine translation tasks.

Because the creation of the medical dictionary and thesaurus comes from the
annotations produced by our linguistic resources, a collateral output of this work
is a large annotated corpus that can be used for the training of many machine
learning tools that deal with the medical domain. Another secondary effect of our
work is a multilingual electronic dictionary of semantically annotated medical
words, which can be tested and applied on many multilingual medical corpora
for many statistical purposes.

We conclude our contribution by specifying that, in order to enlarge and to
perfect our medical sub-domain classification, the work of domain experts would
be needed. Thus, the performances of our tool could be improved by making
medical practitioners enhance our morphological and grammatical resources.
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11. Dujols, P., Aubas, P., Baylon, C., Grémy, F.: Morpho-semantic analysis and trans-
lation of medical compound terms. Meth. Inf. Med. 30(1), 30 (1991)



164 A. Elia et al.

12. Elia, A., Cardona, G.R.: Discorso scientifico e linguaggio settoriale. un esempio di
analisi lessico-grammaticale di un testo neuro-biologico. In: Cicalese, A., Landi, A.
(eds.) Simboli, linguaggi e contesti. Carocci, Roma (2002)

13. Elia, A., Martinelli, M., D’Agostino, E.: Lessico e Strutture sintattiche: Intro-
duzione alla sintassi del verbo italiano. Liguori, Napoli (1981)

14. Grabar, N., Zweigenbaum, P.: Automatic acquisition of domain-specific morpho-
logical resources from thesauri. In: Proceedings of RIAO, pp. 765–784. Citeseer
(2000)

15. Hahn, U., Honeck, M., Piotrowski, M., Schulz, S.: Subword segmentation-leveling
out morphological variations for medical document retrieval. In: Proceedings of the
AMIA Symposium, p. 229. American Medical Informatics Association (2001)

16. Iacobini, C.: Composizione con elementi neoclassici. In: Grossmann, M., Rainer,
F. (eds.) La formazione delle parole in italiano, pp. 69–95. Niemeyer, Tübingen
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Abstract. Perhaps the dominant method for building morphological
parsers is to use finite state transducer toolkits. The problem with this app-
roach is that finite state transducers require one to think of grammar writ-
ing as a programming task, rather than as providing a declarative linguis-
tic description. We have therefore developed a method for representing the
morphology and phonology of natural languages in a way which is closer
to traditional linguistic descriptions, together with a method for automati-
cally converting these descriptions into parsers, thus allowing the linguistic
descriptions to be tested against real language data.

But there is a drawback to this approach: the fact that the descriptive
level is different from the implementation level makes debugging of the
grammars difficult, and in particular it provides no aid to visualizing the
steps in deriving surface forms from underlying forms. We have therefore
developed a debugging tool, which allows the linguist to see each interme-
diate step in the generation of words, without needing to know anything
about the finite state implementation. The tool runs in generation mode;
that is, the linguist provides an expected parse, and the debugger shows
how that underlying form is converted into a surface form given the gram-
mar. (Debugging in the opposite direction—starting from an expected sur-
face form—might seem more natural, but in fact is much harder if that
form cannot be parsed, as presumably it cannot be if the grammar needs
debugging.)

The tool allows tracing the application of feature checking constraints
(important when there is multiple exponence) and phonological rules.
It will soon allow viewing the application of suppletive allomorphy con-
straints, although we describe some theoretical linguistic issues with how
the latter should work. The tool can be run from the command line (use-
ful when repeatedly testing the same wordforms while tweaking the gram-
mar), or from a Graphical User Interface (GUI) which prompts the user for
the necessary information. The output can be displayed in a browser.

In addition to its use in debugging, the debugger could have an edu-
cational use in explicating the forms in a paradigm chart: each cell of the
paradigm could be run through the debugger to produce the cell’s deriva-
tion, showing how forms which might seem counter-intuitive or irregular
are derived. We have not yet implemented this.

1 Introduction

When converting descriptive grammars of some language to a computational
implementation as a parser, one often finds problems with the descriptions:
c© Springer International Publishing Switzerland 2015
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vagueness, gaps, and contradictions (generally contradictions between differ-
ent linguists’ descriptions, but sometimes within a single linguist’s description).
This is in part a result of the difficulty of providing an unambiguous and clear
description of any complex system; another example of this would the difficulty
of providing clear and explicit software specifications (cf. [2]).

Our own work at the University of Maryland on writing descriptive grammars
is not immune to this, and it has shown up especially clearly where one linguist
(or team of linguists) is writing the description, while another person or team
of computational linguists is building a parser. While having both teams under
the same roof allows resolution, we are now trying a different approach: making
parser building easier for the linguists themselves to do.

For at least a decade, the standard resource for building morphological trans-
ducers has been finite state tools such as the Xerox Finite State Tool (XFST and
LEXC, [1]) and the Stuttgart Finite State Tools (SFST, [19]). However, linguists
with whom we have worked, who are mostly not computer scientists or even
computer programmers, have found using such computational tools daunting.
We have therefore created a descriptive mechanism—a way of formally model-
ing grammars—that more closely models views of morphology and phonology
that linguists are already familiar with.1 Our formal grammars are written as
XML documents adhering to a schema that defines such constructions as parts
of speech, affixes, allomorphs, morphosyntactic features, and phonological rules.
Allomorphs can be listed and conditioned by phonological features and inflection
classes (modeling an item-and-arrangement morphology), or they can be derived
by phonological rules, which can also be sensitive to phonological features and
inflection classes (modeling an item-and-process morphology, in one sense of that
term). Affixation can also be modeled as affix process rules, including redupli-
cation (modeling item-and-process morphology, in the other sense in which that
term has been used). All these sorts of descriptions can be mixed when modeling
a single language. For example, some allomorphs of a given affix can be listed,
while forms of that same affix are derived by affix process rules.2

1 Another approach to writing computational grammars is the ‘Grammatical Frame-
work’ (http://www.grammaticalframework.org/). To an even greater extent than
most finite state toolkits intended for linguists, the Grammatical Framework
takes a programming language approach to writing rules. Indeed, the first lesson
in the tutorial (http://www.grammaticalframework.org/doc/tutorial/gf-tutorial.
html#toc4) starts out by saying “we learn the way of thinking in the GF theory.” In
contrast, our approach is to assume the linguist already knows linguistics, and prefers
to think in linguistic terms, not in “a typed functional language, borrowing many
of its constructs from ML and Haskell” (http://www.grammaticalframework.org/
doc/gf-refman.html#toc1). For the same reason, we have not attempted to model
two-level sorts of analyses; as [1] note, that formalism tends not to appeal to most
linguists.

2 Some linguistic issues arise when combining different models. For example, should
phonologically conditions on listed allomorphs be applied before or after phonological
rules are applied?

http://www.grammaticalframework.org/
http://www.grammaticalframework.org/doc/tutorial/gf-tutorial.html#toc4
http://www.grammaticalframework.org/doc/tutorial/gf-tutorial.html#toc4
http://www.grammaticalframework.org/doc/gf-refman.html#toc1
http://www.grammaticalframework.org/doc/gf-refman.html#toc1
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In order to build a parser, such a formal grammar description must be auto-
matically translated into a different form, which can be used by available parser-
building tools. We have therefore built a Python program which converts our
XML-based descriptions into the programming language of a parsing engine;
we are currently using SFST as that engine, but the converter could easily be
ported to another such engine. For this conversion to succeed, the constructs of
the model must be mappable into the constructs available in the transducer, and
this mapping must work for all instances of such constructs.

Many linguistic structures indeed have a fairly straightforward mapping into
the formalism of finite state technology. Phonological rules (in rule-based theories
of phonology) for example map reasonably well to replace rules in XFST and
SFST (although phonological rules expressed in terms of phonological features
would not map so easily3).

However, not all linguistic structures have such a straightforward mapping.
Some structures are simply beyond the reach of finite state systems; recursive
syntactic structures are an obvious example. Within morphology, full (unlimited)
reduplication is another, although XFST provides a work-around for this. In
some cases, however, a linguistic structure may be finite state, but still difficult
to express in a natural and general way using existing finite state formalisms.

One linguistic phenomenon which has proven surprisingly hard to map to
our chosen finite state formalism (particularly since it is obviously finite state)
is suppletive allomorphy. We have succeeded in developing and implementing an
algorithm to map a simple description of suppletive allomorphy into SFST code;
while each allomorph can be described in a single XML element, this translates
in about half a dozen steps in SFST [16].

We have also broken some other linguistic constructs into multiple steps in
SFST, for efficiency reasons. Early on, we noticed that compiling complex finite
state expressions in SFST was sometimes very slow. It turned out that we could
speed up the compilation by breaking it into several sub-steps. For example, in
order to compile a phonological rule, we first separately compile the left- and
right-hand sides of the environment, storing each of those compiled results as
variables, and then compile the rest of the rule using the stored environment
variables. This means that phonological rules are compiled in three steps.4

The use of two different representations—an XML-based representation
which the linguist writes, and an SFST-based representation which the parser

3 To my knowledge, the only morphological parser that directly supports the use
of phonological features is SIL’s Hermit Crab. An outdated description of this
program is at http://www.sil.org/computing/hermitcrab/. Hermit Crab has been
re-implemented in SIL’s Fieldworks Language Explorer system, FLEx: http://
www-01.sil.org/sil/news/2009/flex3.htm. Alternatively, it would be possible to con-
vert feature-based descriptions of phonological environments into phoneme-based
descriptions; so far as I know, there is no computational tool which does that. There
has been only a little work on implementing Optimality Theory-based descriptions,
see [9].

4 Rules of epenthesis require additional steps, as do rules which apply to a lexically
defined subclass of words (e.g., to a particular conjugation class).

http://www.sil.org/computing/hermitcrab/
http://www-01.sil.org/sil/news/2009/flex3.htm
http://www-01.sil.org/sil/news/2009/flex3.htm
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uses—creates a problem: debugging the grammar is difficult, because there is
no longer a one-to-one relation between what the user wrote and how the user’s
construct is implemented. The method I have used when debugging such gram-
mars (and more often when debugging the output of the converter program,
which I wrote) is to edit the file containing the SFST code produced by the
converter, so that I can see intermediate results. While this works, it is clumsy;
and more importantly, since our goal is to allow the linguist to write grammars
using linguistic constructs without having to know anything about SFST, the
linguist cannot be expected to debug the grammar in this way.

The problem is of course similar to the difficulty faced by computer program-
mers who use a high level programming language, particulary one compiled into
assembly code (and eventually machine language code). Most such programmers
are not familiar with assembly language, nor do they want to see that code. Pro-
gramming language debuggers therefore provide ways to step through the code
and examine intermediate stages. The solution to our problem is analogous: we
provide a debugger, which allows the linguist to step through the application of
their constraints and rules, examining the input and output at each intermediate
step.

The rest of this paper describes briefly how our formal grammar system
works, and then turns to the implementation of the debugger. The debugger cur-
rently explains to the user any conflicts in morphosyntactic features (which can
arise when there is multiple exponence), and then steps through the phonological
rules, showing the output at each stage. The debugger does not yet explain to
the user how listed (suppletive) allomorphs are constrained; this capability will
be added in future work.

2 A Descriptive System for Morphology

Our descriptive system is an XML-based representation of morphology and
phonology, which readily accomodates most morphological and rule-based
phonological structures. A converter translates this linguistic representation into
the SFST code needed to build a parser. For the working linguist who does not
consider him or herself to be a programmer, the XML representation offers sev-
eral advantages over encoding grammars directly in the programming language
of finite state transducers:5

Software Independence: The use of XML means that we can create formal
grammar specifications which are independent of any particular transducer.

Longevity: As a result of software independence, our formal grammar descrip-
tions will be portable to future generations of software (an important con-
sideration when documenting endangered languages).

Linguistic Basis: By basing our XML schema on linguistically recognized con-
cepts, we ensure that the resulting descriptions are linguistically sound.

5 The motivations behind this work have been more thoroughly documented elsewhere,
e.g., [5,14,15,17].
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Theory Agnosticism: At the same time, adhering too closely to a particular
linguistic theory would both limit the current audience and threaten the
longevity of data encoded in the schema, limiting the potential audience of
users to those linguists who know (and like) that theory. Our schema there-
fore attempts to follow as much as possible the notion of “Basic Linguistic
Theory” [6,7].6

Alternative Analyses: It not always possible to provide a schema that is
general enough to accomodate a wide variety of theories; instead, the schema
must provide options—different ways to analyze phenomena—which jointly
allow for different theoretical approaches, or different analyses within a single
approach.

Ease of Use by Linguists: A linguistically-based description language allows
linguists to construct grammars in a way that should already be familiar to
them, making it easier for them to build and maintain parsers. This is partic-
ularly evident where a linguistic structure is not straightforwardly mappable
into a finite state transducer’s programming language: our system is adapted
to the user, rather than the user having to adapt to the programming lan-
guage.

In order for such a system to be useable by linguists, a number of tools must be
provided:

XML Schema: An XML schema is used to provide an explicit format for
writing formal grammars. We have written such a schema, and used it to
build a number of grammars for typologically distinct languages.

Editor: While it is possible to edit XML documents in an ordinary text editor
(or better, a programmer’s editor, which helps ensure proper matching and
nesting of XML tags), most linguists will balk at this. Rather, an editor
which can present an editable view of the XML document looking more like
a traditional linguistic description (paradigm tables, templates with slots for
agglutinating languages, phonological rules and so forth) is needed. In addi-
tion, the editor should enforce the restrictions of our XML schema, so that
information cannot wind up in the wrong place.

We have not yet implemented this editing environment, but it will prob-
ably be done in a specialized XML editor such as XMLMind7 or oXygen8,
both of which allow for displaying styled versions of XML code using Cas-
cading Style Sheets (css), and which use a specified XML schema to prevent
users from building XML structures which violate the schema.9

6 The caveat “as much as possible” refers to the inherent conflict between informal
verbal descriptions and formal descriptions which can be processed computationally.
One example of this is affix processes (such as reduplication), for which the model
presents an explicit formalism based on early work in reduplication by generative
linguists [13].

7 http://www.xmlmind.com/xmleditor/.
8 http://www.oxygenxml.com/.
9 SIL’s Fieldworks Language Explorer (FLEx) provides similar capabilities for editing

grammars conforming to a slightly different schema.

http://www.xmlmind.com/xmleditor/
http://www.oxygenxml.com/
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Typesetting: In some cases, one is writing a descriptive grammar of a language
for publication and human consumption, and building the parser is a way of
testing the description against real data, as well as making the descriptive
grammar less ambiguous. It would be helpful if the formal grammar, which
is used in our approach to build the parser, could also be typeset as part
of the descriptive grammar. Typesetting an XML document as XML (which
we can currently do) is not helpful to the reader, for much the same reason
that an editable view of the grammar which displays all the XML tags and
attributes is not helpful to the linguist writing the grammar. We therefore
wish to provide automatic conversion from our XML-based formal grammars
into a format useable for typesetting to give a more typical linguistic view.
This work remains to be done; it will probably use Extensible Stylesheet
Language Transformations (XSLT), or else the existing Python converter
could be used to produce LaTEX code, which can then be directly typeset.

Parsing Engine: A parsing engine takes as input a formal grammar written
in some format (typically a programming language specific to the parsing
engine), plus one or more lexicons (also in the parsing engine’s required
format), and produces a parser. As discussed, present-day parsing engines
are usually finite state transducers, which come with a way to “compile” such
a formal grammar and lexicons into the internal finite state representation.10

Converter: There must be a way of converting an XML-based formal grammar
into the code which will be acceptable to the parsing engine. We have built
such a converter. It takes as input the XML file representing the formal
grammar, and converts each XML element into an internal representation as
an object; it also derives from the name of each part of speech the expected
location of lexical files for that part of speech (see below for how those files are
created). Some of the elements in the XML grammar are full descriptions of
linguistic objects, such as natural classes of phonemes or phonological rules,
while others are named references to such definitions elsewhere. After the
initial object-based representation is created, the converter then replaces
all such references with a pointer to the actual object (this is analogous
to the linking step in traditional programming language compilers). The
converter then traverses this object-based representation, beginning at the
root object, and outputs the formal grammar in the format required by
the parsing engine, by calling on each object to produce a representation
of itself in the parsing engine’s format. (Most objects have more than one
representation, depending on how they are being used.) This representation
of the formal grammar is then ready for “compilation” by the parsing engine.

Dictionary Importation: A parser needs both a grammar and a machine-
readable dictionary. Electronic dictionaries may use any number of XML
formats or HTML formats, or they may be PDF or text documents.

10 The scare quotes around the word “compile” are intended to indicate that this
compilation is not the same thing as compiling a C program, say, to executable
code. Rather, it represents the conversion of some text-based format into a highly
compressed and rapidly interpretable internal format as a finite state network.
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A mechanism therefore needs to be provided to import the relevant infor-
mation from such dictionaries and convert it to the format needed by the
parsing engine. In addition, dictionaries (or their digitized forms, if they
were born as print media) often have inconsistencies, ranging from the triv-
ial (e.g., spelling the name of a part of speech as ‘noun’ or ‘Noun’) to the
complex (representing the inflection class of each word implicitly by some
aspect of the citation form, such as an affix, or by the citation form plus one
or more other paradigm forms). Thus far, we have needed to approach each
dictionary as a separate importation task, even when they conform to a sin-
gle model (such as Lexical Markup Framework, LMF). We have no reason to
suppose we can eliminate all the dictionary-specific aspects of importation,
but we hope to provide at least a generic framework for importation.

Debugger: As discussed above, the user must be able to follow how the imple-
mentation treats the grammar rules and lexical elements to generate surface
forms from underlying forms.

As the reader can tell, this represents a work in progress. Some of the pieces
are more or less complete (the converter from the XML representation to SFST
code is mature), other pieces (the editor, for instance) are only envisioned. This
paper presents a part of the project which is partially mature, the debugger.

To demonstrate how the XML-based representation differs from the parsing
engine’s internal representation, and how this difference makes it hard for the
linguist to debug a grammar, we now turn to a description of how finite state
transducers are built, and then to the representation of suppletive allomorphy
in these two representations.

3 Construction of Finite State Transducers

It will help in the following discussion to know how finite state transducers (or
FSTs) are built (or “compiled”). The following description pertains to trans-
ducers which are built by creating something like the traditional notion of an
underlying form of a word, and then applying phonological rules (usually called
“replace rules” in the finite state terminology) to produce a surface form. This
method should sound familiar to most practicing linguists; it is used in the Xerox
xfst program, in FOMA (a re-implementation of xfst and related programs, see
[8]), and can be used in the Stuttgart finite state tools (SFST). Another app-
roach, dubbed “two level morphology” [12] is perhaps less familiar to most lin-
guists, and will not be discussed here.

The FST may be viewed as consisting of two “sides” or levels, which I will
refer to as the lexical side and the surface side.11 These two sides are generally,
but not always, distinct. The network is organized into a large number of “paths,”

11 Descriptions of FST implementations use the terms “upper” and “lower,” but incon-
sistently: documentation of xfst refers to the lexical side as upper and the surface as
lower, while documentation of SFST uses the opposite convention.
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where each path represents the pairing of some underlying representation with
a possible wordform at some non-underlying level of representation.

The initial form of such an FST is created by concatenating the morphemes
of each word according to the morphotactics of the language. At this initial
stage, the lexical side and surface side often use the same representation for
the stem, or the lexical side may contain the dictionary citation form, while
the surface side (which is obviously not the true surface form, as this term is
used in rule-based generative descriptions) contains the stem, not including for
instance any affix found on the citation form. Affixes are most often represented
by their glosses on the lexical side, and by an underlying form on the surface side.
The representation is character-based, where each character on the surface side
may represent a grapheme, phoneme, or boundary marker. Other characters—
auxiliary symbols—may be used to represent such things as morphosyntactic
features, part of speech, or inflection classes, generally on the lexical side.12

After this initial representation of the network is created, some paths may be
eliminated because they violate some constraint—in the cases we are consider-
ing here, a path may be eliminated because it violates an allomorph constraint.
A path may also be changed, e.g., by replacing one phoneme with another
because of the application of a phonological rule.

Finally, any boundary markers and auxiliary symbols are removed from the
surface side (and possibly from the lexical side).

At the end of a derivation—after all the constraints have been satisfied and
all phonological rules have applied—the result should be a network in which
each path represents a word of the language in its underlying and surface forms.

4 Suppletive Allomorphy

Suppletive allomorphy is phonologically conditioned allomorphy (that is, it is not
driven by inflection classes) for which phonological processes cannot reasonably
be posited. Carstairs [4, p. 21] and Paster [18] give examples, of which one is the
Turkish passive suffix. This takes the form –n after a vowel-final stem, and –l
elsewhere. While this can be expressed using phonological rules, it is not natural
to do so, and attempting to do so could easily lead to improper application of
the rule elsewhere.

Generative phonologists often avoid the use of allomorphs, assuming instead
a single underlying form of each affix, and generating alternative forms of mor-
phemes by the use of phonological rules. Where such rules can be easily defined,
and when they handle the allomorphy of a large number of morphemes (for
instance stem allomorphy, or suffixal allomorphy due to vowel harmony, as in
Turkish), this makes sense. But phonological rules have a drawback: if not writ-
ten carefully, they can apply to the wrong forms. Working linguists often use
allomorphy in situations where they could write a reasonable phonological rule,
12 FST tools often provide for multi-character symbols, which can be useful to represent

such non-phonemic entities. The FST engine generally views them as if they were
single characters.
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but have not gotten around to writing it yet, or because the rule would require
refinement in order to prevent incorrect application. In fact even generative
linguists debate the boundary between suppletive allomorphy and allomorphy
that can be attributed to general phonological rules [3,11]. This situation thus
presents an example of our desideratum mentioned in Sect. 2, namely to allow
alternative descriptive methods, rather than forcing the linguist to model a phe-
nomenon in a particular way.

Hence, the need for our system to handle suppletive allomorphy has two
motivations: some allomorphy cannot reasonably be treated with phonological
rules, and even where it can, the linguist may simply prefer to use suppletion.

Allomorphs by definition appear in mutually exclusive phonological environ-
ments. While it is always possible to state each allomorph’s environment as
mutually exclusive, it is often easier to represent them as a sequence from most
specific to least specific; the first allomorph in this list whose environment is
satisfied in a particular inflected wordform is chosen. The last allomorph in such
a list is usually an elsewhere case, chosen if none of the preceding allomorphs in
the list have environments which are satisfied [10].

As a simple example, consider the English noun plural suffix.13 This suffix
has three phonologically conditioned allomorphs: a voiced /z/, a voiceless /s/,
and /@z/.14 While these may be derived by phonological rules (which could also
handle the verbal third person singular and the possessive clitic, and perhaps
the verbal past tense –ed), for illustrative purposes assume the allomorphs are
to be represented suppletively:15

/@z/: (s|z|S|Z|Ù|Ã)
/s/: (p|t|k)
/z/: elsewhere

(after b, d, “hard” g, vowels...; but not after s, z, S...p, t, k...)

The order is important. In particular, the elsewhere case must apply last, lest
it bleed the application of the other cases. This is represented here as extrinsic
ordering. The first and second cases do not need to be ordered in this character-
based formulation.16

13 We use this affix and its allomorphs for illustrative purposes precisely because of its
simplicity. A full regular expression capability is available in the XML formalism,
and can be translated into SFST code, allowing much more complex allomorph (and
phonological rule) environments.

14 We will not discuss unusual plurals, such as the –en of oxen or the –i/–us alternation
of words like octopus˜octopi ; nor irregular plurals such as geese, mice. I also ignore
stems ending in /f/, since in many words this voices to become /v/, which then takes
the /z/ suffix allomorph: wife/wives.

15 The examples are represented using IPA characters, since the standard orthography
does not make the distinctions in a consistent way.

16 If the allomorph environments were stated intensionally in terms of phonological fea-
tures, rather than extensionally as lists of phonemes, the first and second allomorphs
of this affix would be need to be extrinsically ordered with respect to each other as
well.
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The representation in our XML-based formalism of the above affix looks
something like this:17

<affix gloss="-PL">
<allomorph>

<form spelling="-@z"/>
<environment>

<leftEnvironment>
<AlternativesContext>

<SimpleContextNC>
<NCSegment>

<refPhoneme idref="S"/>
<refPhoneme idref="Z"/>
<refPhoneme idref="Sh"/>
<refPhoneme idref="Zh"/>
<refPhoneme idref="J"/>
<refPhoneme idref="Ch"/>

</NCSegment>
</SimpleContextNC>

</AlternativesContext>
</leftEnvironment>

</environment>
</allomorph>
<allomorph>

<form spelling="-s"/>
<environment>

<leftEnvironment>
<AlternativesContext>

<SimpleContextNC>
<NCSegment>

<refPhoneme idref="P"/>
<refPhoneme idref="T"/>
<refPhoneme idref="K"/>

</NCSegment>
</SimpleContextNC>

</AlternativesContext>
</leftEnvironment>

</environment>
</allomorph>
<allomorph>

<form spelling="-z"/>
</allomorph>
<fs>

17 I have simplified this somewhat, e.g., the prefixes on the XML tags designating the
namespace for our XML schema are not shown.
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<f name="Number>
<symbol value="plural"/>

</f>
</fs>

</affix>

The correspondence of the above, apart from the verbosity caused by XML
tags, to the linguistic description should be apparent;18 In particular, this XML
representation is directly mappable to the linguistic display, and this mapping
will be leveraged when we implement the editor and typesetting goals described
in Sect. 2.

It is not, however, immediately obvious how to express such a structure in
finite state terms. In general, one of two methods might be used: either the
allomorphs could be tested one by one on each wordform, and the first one that
matches would be chosen; or each allomorph in the list could be allowed to
occur in its phonological environment, and also forbidden to occur in any of the
environments of the allomorphs preceding it in the list. Both approaches result
in essentially the same finite state network, but the way that network is derived
differs.

The approach we have taken is a form of the first method. First, we con-
catenate all allomorphs of all affixes with the set of stems for the appropriate
part of speech; if relevant, we limit the allomorphs to those which are consistent
with each stem’s inflection class; but we do not attempt at this step to constrain
allomorphs to appear in their specific phonological environments. This is simply
the first step of building an FST, as described in Sect. 3. But in addition, we tag
each allomorph with the name of its affix.19

We then proceed through the allomorphs of each affix in order from most
specific to least specific (usually the elsewhere case). For each allomorph, we copy
into an SFST variable all paths through the finite state network which contain
that allomorph, and remove those paths from the main finite state network. At
this point, then, the allomorph under consideration is found in only this auxiliary
network, not in the main network.

We then apply the phonological environment specified for this allomorph to
the auxiliary network, eliminating all paths in which the desired allomorph does
not appear in its environment; we then remove all instances of the affix name tag.
Likewise, we eliminate from the main network all instances of the affix which are
(still) tagged by the affix name, regardless of the allomorph, and which appear

18 One point that may be unclear is the use of the ‘idref’ attribute to refer to phonemes.
The phonemes are defined elsewhere in the XML grammar, with unique IDs, and
these IDs are referred to here. The representation of morphosyntactic features would
use a similar notation, but for reasons of compatibility with the TEI and ISO
encodings of features and feature structures, we instead use the ‘name’ and ‘value’
attributes.

19 The name we use is a multi-character symbol containing the affix gloss. The tag
appears on both sides of the allomorph, bracketing it; this allows us to avoid confu-
sion between the allomorph and any homographic sequence of characters.
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in the allomorph’s environment. Now the auxiliary network contains only paths
in which the allomorph appears in its specified environment, while the main
network contains no intances of the affix in that environment.

Finally, we combine the two networks. The allomorph appears in its desired
environment, and no other allomorphs of that affix appear in that environment.
We then cycle through the loop again, with the next allomorph.

The removal of the affix tag from the each allomorphs as it is processed
allows us to ignore that allomorph in subsequent passes through the loop. This is
crucial, since in general the environment of each successive allomorph represents
a superset of the environment of preceding allomorphs. If we did not remove the
affix tags, we would therefore incorrectly remove allomorphs which were licensed
by previous passes through the loop. The SFST code for one pass through this
loop is similar to the following:

$TemporaryLexicon$ =
$TemporaryLexicon$
|| (.*(s|z|S|Z|Ù|Ã)<PL>\-@z<PL>.*))
|| (<PL>:<> ^-> <> __)

$Lexicon$ =
$Lexicon$
|| (!(.*(p|t|k)<PL>.*<PL>.*))

$TemporaryLexicon$ =
$TemporaryLexicon$
|| (.*(p|t|k)<PL>\-s<PL>.*))
|| (<PL>:<> ^-> <> __)

$Lexicon$ =
$Lexicon$ | $TemporaryLexicon$

While the steps in this SFST code correspond to the description of the algo-
rithm given above, the relationship of the code to what the linguist intended is
less clear. In particular, the use of the temporary variable$TemporaryLexicon$,
the negation of the environment in the second step, and the deletion of the affix
tag <PL> are explict representations of information which is implicit in the lin-
guist’s notation, and their appearance in the SFST code may therefore seem
extraneous, confusing and even impenetrable. It is for this reason that we have
built a debugger, which steps through the constraints and rules not at the level
of the SFST code, but rather at the level of the linguist’s constraints and rules.

5 How the Debugger Works

The purpose of the debugger is to determine why the parser—and hence the
grammar—does not give the expected results. One usually tests a morphological
parser by having it parse a list of words; the words may be obtained from a
corpus, from examples (including example paradigms) in a computer-readable
document, or from the user. The parses returned for each word may be validated
against a set of expected parses, or (less accurately), one may simply look at
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the un-parsed words. In either case, the question then arises of why some words
parse incorrectly, or not at all. In some cases, this will be obvious; the word
which fails to parse is not an ordinary word at all: it is a number; or perhaps a
proper name, abbreviation, or acronym which is not in the dictionary that the
parser was built from; or the word is misspelled. But some incorrect or failed
parses will be for less obvious reasons.

Given the nature of finite state transducers, it is quite difficult to determine
why a word does not parse. An FST parses by generating from the dictionary
and affixes, and perhaps phonological rules, all possible surface forms. A form
that does not parse is therefore not in the FST’s network at all, and it is futile
to attempt to trace its parse to find the failure point.20

The approach we have taken to parser debugging is therefore to work from
the parse that the linguist expects for a given word, and to generate the surface
form21 from that. This generated form will be different from the form the linguist
expects, else the parse would not have failed. The linguist may immediately
realize why the unexpected form results, but if not, the debugger provides a way
to visualize why the unexpected form results. In some cases, no surface form will
result, because the user has tried to combine incompatible affixes, or for other
reasons discussed below.

We have implemented the debugger with two different interfaces; apart from
the interface, both debuggers share programming code. One uses a graphical user
interface (GUI) to elicit the lexeme, its part of speech, and either the affixes or
the morphosyntactic features which should select the affixes; the surface form
is generated from this input; the other debugger obtains the input information
from parameters on the command line. We use the GUI version of the debugger
to illustrate the steps.

The linguist is first prompted to enter the lexeme whose stem is to be
inflected, along with its part of speech (in case the lexeme has more than one);
this is shown in Fig. 1.

Fig. 1. Lexeme selection

20 One can build a parser-as-guesser, in which the “lexicon” is a regular expression
representing all possible lexemes, including those which do not correspond to real
lexemes. But this seldom reveals the problem with a failed parse either.

21 Or forms, should there be optional phonological rules.
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The system then allows the user to choose a set of affixes to be attached to
this lexeme, or a set of features to be realized by inflectional affixes. The choice
of affixes is illustrated in Fig. 2, and the choice of features in Fig. 3.

Fig. 2. Affix selection

Fig. 3. Feature selection

The parser attempts to construct an underlying form representing the
requested lexeme plus affixes or morphosyntactic features, using the morphotac-
tics of the grammar (the morphotactics are specified in inflectional templates).
Several things can go wrong here:

Non-existent Lexeme: The user may have chosen a lexeme which is not in the
parsers’s dictionary for any of several reasons: the user misspelled the lexeme,
the lexeme is misspelled in the dictionary (or was incorrectly digitized), the
grammatical information is incorrect, or some defect in the digital dictionary
or the dictionary import process prevented the lexeme from being imported.
The debugger informs the user that the specified word does not exist in the
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expected form in its lexicon. The non-parse thus becomes a lexicographic
problem.

Grammatical Mismatch: The user may have requested a lexeme with one
part of speech, but it does not appear in the dictionary with that part of
speech. Again, the debugger informs the user that the word does not exist
with that part of speech.

Morphotactic Error: If the user specified a set of affixes to be attached to the
stem, the affixes may not match the morphotactics expected for the part of
speech of the lexeme. There may either be too many affixes (for example, the
user may have given an object agreement suffix, but the verb is intransitive),
or too few (some obligatory affix may be missing). This is a fatal error
in the command line debugger; in the GUI debugger, the system prevents
the user from supplying too many affixes, or affixes in the wrong order; if the
user supplies too few affixes (by forgetting to choose an affix in a slot in the
inflectional template), the debugger simply tells the user to supply further
affixes.

Morphosyntactic Feature Error: If the user has selected too few features
to pick out a unique set of affixes, then the debugger tells the user to select
additional features. If on the other hand the user has selected feature values
which are incompatible, in the sense that they do not pick out any set of
affixes, then the debugger tells the user to deselect one or more feature
values.22

Incompatible Affixes, due to Morphosyntax: When a language has mul-
tiple exponence (two affix slots contain affixes which realize the same mor-
phosyntactic feature), and if the user has chosen a set of affixes (rather than
a set of morphosyntactic features), a morphosyntactic mis-match will arise
if two of the affixes bear conflicting values for some feature.23 This response
is shown in Fig. 4.

Assuming the underlying form does not violate any of the above constraints,
the next step is to constrain any suppletive allomorphs defined by the grammar.
This part of the debugger has not yet been built, but the parser already does
this selection in a step-wise fashion. What remains is to display each step in
this constraint process, showing how each allomorph is licensed in its allowable
environments, or disallowed (removed from further processing) in other environ-
ments.

22 This problem happens when two features are not completely orthogonal. For exam-
ple, in Spanish the feature value of [Mood subjunctive] is incompatible with the
feature value [Tense future]: while there is a present subjunctive and a past sub-
junctive in Spanish, there is no future subjunctive.

23 The situation is somewhat more complicated than this, since the formal grammar
treats features as part of feature structures. There may thus be conflicting values
for features which appear in distinct parts of the feature structure. For example,
a language which marked transitive verbs for agreement with the person of both
subject and object could have distinct values of the number feature for subject and
for object, without conflict.
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Fig. 4. Incompatible affixes

Finally, after the allomorphs have been chosen, each remaining form is passed
through the phonological rules; the output of each rule application is displayed.24

If a rule applies vacuously, or does not apply at all, a ditto mark is shown,
indicating that the rule made no change. This has proven easier to interpret
than showing the unchanged form each time.

Figure 5 illustrates the view of a derivation in a browser. In this example,
there are two sources of multiple derivations. First, the affix glossed --INF
(infinitive) has two variant forms, –n and –i. Second, there are two optional
phonological rules, here named LongEEtoE (which applies only to the first form)
GlideInsertion (which optionally applies to both forms). Optional application of
a phonological rule results in a choice point, hence the derivation is shown as
splitting at the application of these rules.

If the environment in which a phonological rule applies is complicated, it is
possible that the reason for non-application of a rule will not be obvious. (It is
possible, but perhaps less likely, that the reason for over-application of a rule will
not be obvious.) A planned enhancement will allow for the rule’s environment
to be iteratively simplified until the rule does apply, thus helping the user debug
the environment of a rule by finding what part of the rule’s environment prevents
application.

The debugger outputs rule applications in the form of an XML file, which is
a simple table. Columns represent ambiguities (such as dialectal variant forms of
an allomorph, or the optional application of a phonological rule). The first row
represents the input forms (currently, the stage after suppletive allomorph selec-
tion); the last row represents the final output form (after deletion of boundary
markers); and intermediate rows represent each rule’s application.

24 In the case of multiple application of a rule, e.g., vowel harmony rules, the output
of the entire rule application is shown.
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Fig. 5. Derivation

6 Conclusion

We have described a debugger for morphological and phonological parsing. This
debugger enables linguists to think in terms of concepts they are familiar with,
without worrying about how they are encoded in a parsing engine like SFST.
At present, the debugger enables the user to debug errors arising from lexical,
morphotactic, and morphosyntactic feature choices, as well as errors arising from
the unexpected application of phonological rules. Future work will also enable
debugging of phonological constraints on allomorph selection.
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