Chapter 2
Multilayer Networks: Metrics and Spectral
Properties

Emanuele Cozzo, Guilherme Ferraz de Arruda, Francisco A. Rodrigues,
and Yamir Moreno

Abstract Multilayer networks represent systems in which there are several topo-
logical levels each one representing one kind of interaction or interdependency
between the systems’ elements. These networks have attracted a lot of attention
recently because their study allows considering different dynamical modes con-
currently. Here, we revise the main concepts and tools developed up to date.
Specifically, we focus on several metrics for multilayer network characterization
as well as on the spectral properties of the system, which ultimately enable
for the dynamical characterization of several critical phenomena. The theoretical
framework is also applied for description of real-world multilayer systems.

2.1 Introduction

Complex network science relies on the hypothesis that the behavior of many
complex systems can be explained by studying structural and functional relations
among its components by means of a graph representation. The emergence of
interconnected network models responds to the fact that complex systems include
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multiple subsystems organized as layers of connectivity. In this way, interconnected
networks have emerged during the last few years as a general framework to deal
with hyperconnected systems [1]. With the term interconnected networks one may
refer to many types of connections among different networked systems: dependency
relations among systems of different objects, cooperative or competitive relations
among systems of different agents, or different channels of interactions among
the same set of actors, to name a few. What these examples have in common is
that different interaction modes among a differentiated or indistinguishable set of
components/actors might exist.

Although this framework has been used for many years, only in the last several
years it has attracted more attention and a number of formalisms have been proposed
to deal with multilayer networks [2, 3]. Here we elaborate on a formalism developed
recently and discussed at length in the review paper by Kivela et al. [4]. To this
end, we report on a more refined formalism that is aimed at optimizing the study
of a particular case of interconnected networks that is of much interest: Multiplex
Networks.

In Multiplex Networks a set of agents might interact in different ways, i.e.,
through different means. Since a subset of agents is present at the same time
in different networks of interactions (layers), these layers become interconnected.
Examples of such type of systems can be founded in different fields, from biological
systems, where the web of molecular interactions in a cell make use of many
different biochemical channels and pathways, to technological systems, where
person-to-person communication (usually machine-mediated) happens across many
different modes. We take the last example as a paradigmatic one, which gave rise to
the now popular term “hyperconnectivity” [5].

Suppose we are interested in analyzing a set of social agents (individuals,
institutions, firms, etc. ), who interact among them through a number of online social
networks (OSNs) like Twitter, Facebook, etc. Some of these agents might be present
in several OSNs and exchange information through them, using the information
obtained in one network to communicate in another one, or integrating information
across all of those in which they are active. We represent such a system as a set of
graphs, one for each OSN, in which each actor who participates in it is represented
by a node. These networks are the layers of the graph. In this scheme, the same
actors are represented by a number of different nodes (as many nodes as the number
of layers in which the actor is present). At the same time, we represent the fact
that different nodes might denote the same actors, thus being related, by a coupling
graph in which nodes representing the same actors are connected.

The rest of the chapter is organized as follows. The first section translates the
aforementioned structural features in the formal language of graph theory. By doing
that, we synthesize the topology of such a system in terms of matrices. In addition,
as many years of research [6] have demonstrated, the relation between structure
and function can be studied by means of the spectral properties of the matrices
representing the graph structure. This is also studied in the second part of this
chapter, where we give a simple example of the epidemic spreading process and
analyze real world multilayer networks.
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2.2 Notation, Basic Definitions and Properties

A multiplex network is a quadruple M = (£,n,B,9MM). £ = {1,...,m} is an index
set that we call the layer set. Here we have assumed £ C N for practical reasons
and without loss of generality. We indicate the general element of £ with Greek
lower case letters. Moreover, n is a set of nodes and p = (n, £,97), T C nx £
is a binary relation. Finally, the statement (n, @) € 91 is read node n participates in
layer a. We call the ordered pair (n, ) € D1 a node-layer pair and we say that the
node-layer pair (1, ) is the representative of node # in layer o.

On the other hand, 9 = {G,}q4ce is a set of graphs, that we call layer-graphs,
indexed by means of £. The node set of a layer-graph Gg € 9 is a sub-set ng C N
such that ng = {(n,a) € P | @ = B}, so the nodes of Gg are node-layer pairs; in
that sense we say that node-layer pairs represent nodes in layers. The edge set of a
graph G, € M is €5 C ngxng. Additionally, the binary relation J3 can be identified
with its graph Gyz. G has nodes set given by nU £, and edge set Ep = I, and we
call it the participation graph.

Consider the graph G¢ on 91 in which there is an edge between two node-layer
pairs (n,«) and (m, §) only if n = m; that is, only if the two edges in the graph
Gy are incident on the same node n € n, which means that the two node-layer pairs
represent the same node in different layers. We call G¢ the coupling graph. It is easy
to realize that the coupling graph is formed by n =| n | disconnected components
that are clicks or isolated nodes. Each clique is formed by all the representatives of
a node in the layers, we call the components of G¢ supra-nodes.

Let’s now also consider the graph Gy on the same nodes set 1, and in which there
is an edge between two node-layer pairs (n, ), (m, §) only if @« = f; that is, only
if the two edges in the graph Gy are incident on the same node @ € £. We call G,
the layer graph. It is easy to realize that graph is formed by m =| £ | disconnected
components that are clicks.

Finally, we can define the supra-graph G, as the union of the layer-graphs
with the coupling graph: G¢ U 9. G has node set 91 and edge set |, €, U E¢.
G is a synthetic representation of the Multiplex Network M. It results that each
layer-graph G, is a sub-graph of G induced by n,. Furthermore, when all nodes
participate in all layer-graphs the Multiplex Network is said to be fully aligned [4]
and the coupling graph is made of n complete graphs of m nodes.

It is useful to come back to our system of social agents as a paradigmatic
multiplex network to make sense of the previous definitions. The layer set is the
list of OSNs, for example £ = {Facebook, Twitter, Google—+}. Since for practical
purposes we want a set of indexes that are natural numbers, we may say that:
Facebook is 1, Twitter is 2, and Google+ is 3. The set of nodes is the set of
social actors, for example n = {Marc, Alice, BiFi, Nick, Rose}. The binary relations
represent the participation of each of these agents in some of the OSNs, thus we have
that an statement of the type Alice has a Facebook account is represented by the pair
(Alice, 1), that is a node-layer pair. Each set of relation in each OSN is represented
by a graph, for example the link [(Alice, 1), (Nick, 1)] means that Alice and Nick are
friends on Facebook. If Alice has a Facebook account and a Twitter account, but not
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a Google+ account, in the coupling graph we will have the connected component
[(Alice, 1), (Alice, 2)] that is the supra-node related to Alice. If only the BiFi, Nick,
and Rose have Google+ accounts, in the layer graph we will have the connected
component [(Bifi, 3), (Nick, 3), (Rose, 3)].

2.3 Multiplex Networks Related Matrices

Adjacency Matrices

In general, the adjacency matrix of a (unweighted, undirected) graph G with N nodes
is a N x N (symmetric) matrix A = {a;}, with a; = 1 only if there is an edge
between i and j in G, and a; = 0 otherwise. We can consider the adjacency matrix
of each of the graphs introduced in the previous section. The adjacency matrix of a
layer graph G, is a ny X n, symmetric matrix A% = aj;, with a; = 1 only if there is
an edge between (i, @) and (j, o) in G*. We call them layer adjacency matrices.

Likewise, the adjacency matrix of Gy is an n X m matrix P = pj,, with p;, = 1
only if there is an edge between the node i and the layer « in the participation graph,
i.e. only if node i participate in layer o. We call it the participation matrix. The
adjacency matrix of the coupling graph Ge is an N x N matrix C = {c;}, with
cjj = 1 only if there is an edge between node-layer pair i and j in G, i.e. if they are
representatives of the same node in different layers. We can arrange the rows and
the columns of C such that node-layer pairs of the same layer are contiguous and
layers are ordered. We assume that C is always arranged in that way. It results that
C is a block matrix with zero diagonal blocks. Thus, ¢;; = 1, with i,j = 1,...,N
represents an edge between a node-layer pair in layer 1 and a node-layer pair in
layer 2 if i < n; and n; < j < n,. Figure 2.1 shows a multiplex network and the
respective matrices A and C.

01010
10101
1 2 A=:01000]
8 1000 1 2
01010 C, A
3 ':
\\\\4./.5

A 0O [0 C,
0

Fig. 2.1 Example of a multiplex network. The structure of each layer is represented by an
adjacency matrix A', where i =1, 2. Cj, stores the connections between layers / and m. Note
that the number of nodes in each layer is not the same
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The Supra-adjacency Matrix

The supra-adjacency matrix is the adjacency matrix of the supra-graph G 4. Just as
G a1, A is a synthetic representation of the whole multiplex M. By definition, it can
be obtained from the intra-layer adjacency matrices and the coupling matrix in the
following way:

A:@A“+C, 2.1

where the same consideration as in C applies for the indices. We also define A =
P A“, and we call it the intra-layer adjacency matrix. Figure 2.1 shows the supra-
adjacency and the intra-layer adjacency matrices of a multiplex network. Some basic
metrics are easily calculated from the supra-adjacency matrix.

The degree of a node-layer i is the number of node-layers connected to it by an
edge in G4 and is given by

K=Y Ay 2.2)
J

Sometimes we write i(«) as an index, instead of simply i, to explicitly indicate
that the node-layer i is in layer o even if the index i already uniquely indicates a
node-layer pair. Since .A can be read as a block matrix, with the A* on the diagonal
blocks, the index i(«) can be interpreted as block index. It is also useful to define
the following quantities

ey = Znﬁ, (2.3)

B<a

which we call the excess index of layer . The layer degree of a node-layer i, ki),
is the number of neighbors it has in G%, i.e., ki) = > i a‘;‘.. By definition of .4

ng+ey
= 3. A (2.4)

j=l+€u

The coupling degree of a node-layer i, ¢;(q), is the number of neighbors it has in the
coupling graph, i.e., cjw) = )_; ;. From A we get

Ca= Y Ay (2.5)
Jj<eaq,
Jj>ngteq
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Finally, we note that the degree of a node-layer can be expressed as

Kiw) = Z Ajj = ki + Cia. (2.6)
J

Equation (2.6) explicitly expresses the fact that the degree of a node-layer pair is the
sum of its layer-degree plus its coupling-degree.

The Supra-Laplacian Matrix

Generally, the Laplacian matrix of a graph with adjacency matrix A, or simply the
Laplacian, is given by

L=D-A 2.7

where D = diag(ky, k;, . ..) is the degree matrix.
Thus, it is natural to define the supra-Laplacian matrix of a Multiplex network
as the Laplacian of its supra-graph

L=D-A, (2.8)

where D = diag(Ky, K, ..., Ky) is the degree matrix. Besides, we can define the
layer Laplacian of each graph G, as

L, = D% — A%, (2.9)

and the Laplacian of the coupling graph

Lc=A-C (2.10)
where A = diag(cy, ca, - .., cn) is the coupling-degree matrix.
By definition, we have
L=EcL+Le. 2.11)

Equation (2.11) takes a very simple form in the case of a node-aligned multiplex,
i.e.,

L=PW +cly) - K, ®1, (2.12)

where /C,, is the adjacency matrix of a complete graph of m nodes, I is the k x k
identity matrix and ¢; = ¢, Vi € 91 is the coupling degree of a node-layer pair.
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Characteristic Matrices

2.3.1 Supra-nodes Characteristic Matrix

The supra-nodes characteristic matrix S, = {s;;} is an N Xn matrix with s;; = 1 only
if the node-layer i is a representative of node j, i.e., it is in the connected component
Jj in the graph G¢. We call it a characteristic matrix since supra-nodes partitions the
node-layer set and S, is the characteristic matrix of that partition.

2.3.2 Layers Characteristic Matrix

The layer characteristic matrix Sy = {s;} is an N x m matrix with s; = 1 only
if the node-layer i is in the connected component j in the graph G;. We call it a
characteristic matrix since it is the characteristic matrix of the partition of the node-
layer set induced by layers.

2.4 The Coarse-Grained Representation of a Multiplex
Network

Nodes Partitions and Quotient graphs

We next briefly introduce the notion of network quotient associated to a partition
of the node set. Suppose that Vi, ..., V, is a partition of the node set of a network
G with adjacency matrix A, and write n; = |V;|. The quotient network Q of G is a
coarse-grained representation of the network with respect to the partition. It has one
node per cluster V; and an edge from V; to V; weighted by an average connectivity
from V; to V;

1

b = — an. 2.13
i= Z kil (2.13)
keV;
leV;
Different choices are possible for the normalization parameter 0: 0; = n;, 0; =
n; or o;; = ,/m;n;. Depending on the choice for o we call the resulting quotient

respectively: left, right or symmetric quotient. We can express the left quotient Q;(A)
in matrix form. Consider the n X m characteristic matrix of the partition S = s;;, with
s; = lif i € V; and zero otherwise. Then

0i(A) = A'STAS, (2.14)

where A = diag{n,, ..., ny,}.
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Aggregate Network and Network of Layers of a Multiplex
Network

In the context of Multiplex Networks two quotient graphs arise naturally [7] by
considering coupled node-layer pairs and layers. Supra-nodes partition the supra-
graph, and the supra-nodes characteristic matrix S, is the associated characteristic
matrix. Then, we define the aggregate network of the multiplex network as the
quotient associated to that partition:

A=A"ISTAS,, (2.15)
where A = diag{ki, ..., k,} is the multiplexity degree matrix. Since, the Laplacian
of the quotient is equal to the quotient of the Laplacian, the Laplacian of the
aggregate network is given by:

L=A"'SILS,. (2.16)

In the same way, layers partition the supra-graph, thus the network of layers is
defined by

A= ATISTAS,, (2.17)
and its Laplacian is given by

L= A7'STLS,. (2.18)

2.5 Spectral Properties

The Largest Eigenvalue of A

In the following we will interpret A as a perturbed version of A, C being the
perturbation. This choice is reasonable whenever

IIC <ALl (2.19)

Consider the largest eigenvalue A of A. Since A is a block diagonal matrix, the
spectrum of A, o (A), is

o(A) = Jo (A%, (2.20)

o
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o (A%) being the spectrum of the adjacency-matrix A* of layer «. So, the largest
eigenvalue A of A is

A = max A, (2.21)

with A, being the largest eigenvalue of A%. We will look for the largest eigenvalue
A of A as

A=A+ AL, (2.22)

where AA is the perturbation to A due to the coupling C. For this reason, we call the
layer 6 for which A = A the dominant layer. Let 1, be a vector of size m with all
entries equal to 0 except for the 8-th. If ¢ is the eigenvector of A% associated to A5,
we have that

¢=¢s Q14 (2.23)

is the eigenvector associated to A. Observe that ¢ have dimension ng, while 1, have
dimension m, where n; is the number of nodes on the dominant layer 6, yielding to
a product of dimension ng x m, however it is not true if the number of nodes in is
not the same on all layers. In such case we must construct the vector ¢ with zeros
on all positions, except on the position of the leading eigenvector of the dominant
layer. Then, we can approximate AA as

9'Co n 14'C%¢
T A PT
Because of the structure of ¢ and C, the first term on the rA.s. is zero, while only

the diagonal blocks of C? take part in the product ¢’ C?¢. The diagonal blocks of
C? are diagonals and

AL ~ (2.24)

(CPi = Z CirCri = ci. (2.25)

Thus, we have that the perturbation is

AX ~ (2.26)

2
PR
where we have defined the effective multiplexity z as the weighted mean of the

coupling degree with the weight given by the squares of the entries of the leading
eigenvector of A:

z= Z Cimgr ¢T 7 (2.27)
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where z = 0 in a monoplex -single layer- network or z = m — 1 in a node aligned
multiplex. Summing up, we have that the largest eigenvalue of the supra-adjacency
matrix is equal to the largest eigenvalue of the dominant layer adjacency matrix at
a first order approximation. As a consequence, for example, the critical point for an
epidemic outbreak in a multiplex network is settled by that of the dominant layer at
a first order approximation [8]. At second order, the deviation of A from A depends
on the effective multiplexity and goes to zero with A. See Figs. 2.2 and 2.3.

The approximation given in Eq.(2.26) can fail when the largest eigenvalue is
near degenerated. We have two cases in which this can happen:

 the dominant layer is near degenerated,
* there is one (or more) layers with the largest eigenvalue near that of the dominant
layer.

The accuracy of the approximation is related to the formula

(t)Tc¢)

AL~ ¢Tc¢+2(¢ R

(2.28)

where 1) and ¢ are the non-dominant eigenvalues and the associated eigenvec-
tors. In the first case it is evident that the second term on the 7 A.s. will diverge, while
in the latter, because of the structure of C, ¢, and q&(i), it is zero. In that case, we say
that the multiplex network is near degenerated and we call the layers with the largest
eigenvalues co-dominant layers.

When the multiplex network is near degenerated, ¢ used in the approximation of
equation (2.26) has a different structure. Consider that we have / co-dominant layers
8i, i =1,..., L If ¢s, is the eigenvector of A% associated to As;, we have that

1
p=> ¢ ® 1. (2.29)

i=1

Note that the same comment on Eq. (2.23) also applies here. The term linear in C in
the approximation of equation (2.26) is no more zero. We have

c 1
Ze= ";T ¢¢ o 7, Z o s, (2.30)

and we name z. the correlated multiplexity. We can decompose z. in the contribution
of each single node-layer pair

Zei = ¢T 7 > 65,Cits- 2.31)

mm#l j
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Fig. 2.2 Effective
multiplexity z as a function of
the fraction of nodes coupled
s for a two layers multiplex
with 800 nodes with a power
law distribution with y = 2.3
in each layer. For each value
of s, 40 different realizations
of the coupling are shown
while the intra-layer structure
is fixed. In the panel on the
top the z shows a two band
structure, while in the panel
on the bottom, it is
continuous. The difference is
due to the structure of the
eigenvector
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Fig. 2.3 Same setting of top

panel of previous figure. On

the top: calculated A. We can 12.7
see two branches

corresponding to the two

branches of the previous

figure. Bottom: calculated vs

approximated A |<
12.6 s s ‘ ‘
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z
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12.68 | ]
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x
3 ]
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a
® 1264 | ]
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and we call z.; the correlated multiplexity degree of node-layer i. By definition,
coupled node-layer pairs have the same correlated multiplexity degree. So, if we
have m, co-dominant layers in the multiplex, we get
Z Z § i
A~z + - = o + =5 2.32
Zet 5 =ma Zz += (2.32)

i€

Spectral Relations Between Supra and Coarse-Grained
Representations

The fundamental spectral result related to a quotient network is that adjacency
eigenvalues of a quotient network interlace the adjacency eigenvalues of the parent
network. That is, if w;,...,u, are the adjacency eigenvalues of the quotient
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network, and A;,...,A, are the adjacency eigenvalues of the parent network, it
results that

Ai = Wi = Ai+n—m- (233)

The same result applies for Laplacian eigenvalues. We can derive directly from that
result a list of bounds for the supra-adjacency and the supra-Laplacian in terms of
the aggregate network and of the network of layers [7]. Besides, in the case of node
aligned multiplex networks, we have that the eigenvalues of the laplacian of the
network of layers are a sub-set of the spectrum of the supra-Laplacian. This result is
of special relevance in studying the structural properties of a multiplex network,
since it states that the adjacency (Laplacian) eigenvalues of the coarse-grained
representation of a multiplex interlace the adjacency (Laplacian) eigenvalues of the
parent. In the case of a node-aligned multiplex, the Laplacian eigenvalues of the
network of layers are a sub-set of the Laplacian eigenvalues of the parent Multiplex
network.

The Second Eigenvalue of L

A number of structural and dynamical properties of a network can be derived from
the value of the first non-zero eigenvalue of the Laplacian. In the particular case of
Multiplex Networks it has been shown that its behavior reflects a structural transition
of the system [9]. We investigate the first non-zero eigenvalue of the supra-Laplacian
of a node-aligned multiplex network. From the interlacing results of the previous
section, we know that

A2 < fla, (2.34)
and that

fa < m. (2.35)
m is always an eigenvalue of the supra-Laplacian, so, we can look for the condition

under which 1, = m holds. By combining equations (2.34) and (2.35), we arrive to
the conclusion thatif m > ji,,, then ji; 7 m. On the other hand, we can approximate

o as
fa = ua + Ao, (2.36)

where [, is the eigenvalue of £. We have

Apn =) cijlxi —x)%, (2.37)

i<j
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where x; are the elements of the eigenvector x associated to u,. Because of the
structure of C and x, it results

A, ~m—1 (2.38)

for a node aligned multiplex. Thus, since m is always an eigenvalue of M, for that
approximation to be correct, the following condition must hold

o+ m—1<m, (2.39)

from which we can conclude that if y, < 1 then i, # m.
In summary, we have that, if fi,», < m or u, < 1 then fi, # m, but the converse
is not true in general.

2.6 Applications

Dynamical Processes: Epidemic Spreading

An important application are the dynamical consequences of the interlacing prop-
erties on both adjacency and Laplacian matrices (see Sect.2.5 and Ref. [7]). Here,
as an example, we show the SIS epidemic spreading on the top of a multilayer
network and the comparison with the aggregate network. Such dynamical process
is based on the contact between individuals, or nodes, which can be infected or
susceptible to the disease. Infected nodes, also called spreaders, spread the disease
to its neighbors inside a time windows with probability 8 and recover from it
with probability . Considering a discrete time approach, the Markov chain that
formalizes this processes can be formally written by the iterative equation

pilt+1) =B Aypi(t) — upi(t), (2.40)
J

where p;() is the probability of the node-layer pair i be infected at time 7, Aij are
the elements of the supra-adjacency matrix A, while B and y are the infection and
recovery probabilities, respectively. Such model consider the inter-layer and intra-
layer as equal, which is a special case of the model presented in [8]. The critical
point can be obtained by the first order approximation of Eq. (2.40) on its stationary
regime, yielding

g = M (2.41)



2 Multilayer Networks: Metrics and Spectral Properties 31

where 4, (A) is largest eigenvalue of the supra-adjacency matrix A (see Eq. (2.1)).
From the interlacing properties

A (A%) < X, (A), (2.42)

Hence, the critical value S, is bounded by the individual critical values and it is
always lower or equal to the lowest individual layer critical value. In addition,
observe that when the effective multiplexity, z ~ 0 in Eq.(2.27), the approxi-
mated leading eigenvalue of the multilayer supra-adjacency is given by the A =
max{A(A)}. Furthermore, exploiting the network of layers spectra,

Am < Au(A), (2.43)

where A,, is the largest eigenvalue of the network of layers, whose matrix is given
by Eq. (2.17), implying another constraint to the critical point. In other words, the
critical point of the network of layers bound from above the critical point of the
multilayer.

Contrasting with the first model, now we consider a spreading process on the
aggregate network, Eq. (2.15), hence

pilt+1) =B ayp;(t) — upi(o), (2.44)
J

where p;(f) is the probability of the node i be infected at time ¢, a;; are the elements
of the aggregated adjacency matrix A, B is the infection probability and pu is the
recovery probability. Observe that such process is different from the spreading
described on Eq. (2.40), in which each node can infect its neighbors on any layer.
On the other hand, in Eq.(2.44) each supra-node chooses a layer with uniform
probability, than spreads the disease to all neighbors in that layer. Moreover, the
critical point can be obtained using the same arguments as before, yielding to

5 H

c = T—=_» (245
P An(A) :
where )Ln([&) is largest eigenvalue of the aggregated adjacency matrix. Once again,
for the interlacing results we have

Be > Be. (2.46)

Such result imply that the spreading process on the multilayer structure is more
efficient, or in the worst case as efficient as, than the process on the aggregate
network [7].

The results of this section were formerly presented in [7]. In addition, it is
noteworthy that a more complete model is proposed in [8], which consider the



32 E. Cozzo et al.

activity of the nodes and different spreading probabilities for the intra-layer and
inter-layer edges. However, here we show the simplest cases, similar to the ones
exposed in [8], in order to be more didactic. In spite of that, the examples shown
here exemplify the importance of considering the multilayer structure and the role
of the aggregated network and the network of layers.

Real-World Multilayer Networks

In order to evaluate real-world multilayer structures we study some networks avail-
able at http://deim.urv.cat/~manlio.dedomenico/data.php. We separate them into
three different categories: (i) transportation networks; (ii) biological networks and
(iii) social networks. We evaluate the maximum of the individual layer eigenvalues
and the eigenvalue of the supra-adjacency matrix .A. Moreover, the approximations
of the leading eigenvalues are also computed for comparison. Table 2.1 presents
the results. Contrasting with monoplex systems, instead of one type of relationship,
here we have m different types and also the connections between different layers.
The average of the k;, contains information about the relationship inside each layer,
whereas the average of c;, summarizes the relations between layers, i.e., between a
given structure in two different contexts.

Regarding the networks studied here, we observe that biological networks tend
to be sparser than social nets, specially considering the inter-layer relations. In
addition, observe that there is a relationship between the average of the matrix C and
the effective multiplexity z. For most of the networks, the first order approximation
is accurate. However, some networks are better approximated by the second order
approximation, for instance the CS. Furthermore, among all networks analyzed the
only one that presented a poor approximation is the EU air transportation network,
which can be explained by the high density of inter-layer couplings compared with
the density of intra-layer connections.

2.7 Conclusion

The last years of research have just started to show that interconnected networks
exhibit specific structural and dynamical properties that cannot be directly deduced
from isolated networks. In order to gain understanding of such a system, a complete
new toolbox is needed. On the other hand, such a new framework cannot be a naive
extension of what has been developed for isolated, single layered, networks: we need
that those tools be adapted to particular questions posed by interconnected networks.
It is our conviction that the best way to tackle the problems ahead is to came back to
the very basic concepts of graph theory and to build on them. The supra-adjacency
matrix and the supra-Laplacian are examples of such basic objects, and the specific
structural features of the interconnected system are reflected in them. In this way,
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the rigorous study of these objects, as well as of their spectral properties, is likely
to lead us to the correct understanding of the systems under study. Additionally we
presented two applications, firstly the difference an epidemic spreading process that
takes place on top of a multilayer or the aggregated network. Secondly, we have
shown that perturbation theory is accurate enough when it comes to approximate
the eigenvalue of a multilayer structure using the dominant (or co-dominant) layers.
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