
Chapter 1
A Tipping Point in the Structural Formation
of Interconnected Networks

Alex Arenas and Filippo Radicchi

Abstract The interaction substrate of many natural and synthetic systems is well
represented by a complex mesh of networks where information, people and energy
flows. These networks are interconnected with each other, and present structural
and dynamical features different from those observed in isolated networks. While
examples of such dissimilar properties are becoming more abundant, for example
diffusion, robustness and competition, it is not yet clear where these differences
are rooted. Here we show that the composition of independent networks into an
interconnected network of networks undergoes a structurally sharp transition, a
tipping point, as the interconnections are formed. Depending on the relative impor-
tance of inter- and intra- layer connections, we find that the entire interconnected
system can be tuned between two regimes: in one regime, the various layers are
structurally decoupled and they act essentially as independent entities; in the other
regime, strong structural correlation arise, and network layers are indistinguishable
i.e. the whole system behaves as a single-level network. We analytically show that
the transition between the two regimes is discontinuous even for finite size networks.
Thus, any real-world interconnected system is potentially at risk of abrupt changes
in its structure, which may manifest new dynamical properties.

1.1 Introduction

The fundamental goals of network science are: to describe the structure of interac-
tions between the components, and to assess the emergent behavior of many-body
systems coupled to the underlying structure. Advances on the theory of complex
networks will improve our understanding and modeling capabilities so that we
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may control or predict the dynamics and function of complex networked systems.
In addition, this approach does not rely on a detailed knowledge of the systems
components and therefore allows universal results to be obtained that can be
generalized with relative ease (e.g., the study of epidemic spreading processes is
equivalent to the spread of computer viruses). For example, biological networks like
protein interaction networks share many structural (scale-freeness) and dynamical
(functional modules) features with other seemingly different systems such as the
Internet and interaction patterns in social systems. Thus, systems as diverse as peer-
to-peer networks, neural systems, socio-technical phenomena or complex biological
networks can be studied within a general unified theoretical and computational
framework.

However, almost all of the work to date is based on an ordinary 1-layer or simplex
view of the networks in question, where every edge (link) is of the same type
and consequently considered at the same temporal and topological scale. Generally
speaking, the description of networks so far has been developed using a snapshot
of the connectivity, this connectivity being a reflection of instantaneous interactions
or accumulated interactions in a certain time window. This description is limiting
when trying to understand the intricate variability of real complex systems, which
contain many different time scales and coexisting structural patterns forming the real
network of interactions. These more realistic multi-layer structures have received a
lot of attention from the physicist community [17, 38] with no common terminology
yet.

Interacting, interdependent or multiplex networks are different ways of naming
the same class of complex systems where networks are not considered as isolated
entities but interact with each other. In multiplex, the nodes at each network are
instances of the same entity, thus the networks are representing simply different
categorical relationships between entities, and usually categories are represented by
layers. Interdependent networks is a more general framework where nodes can be
different at each network.

Many, if not all, real networks are “coupled” with other real networks. Examples
can be found in several domains: social networks (e.g., Facebook, Twitter, etc.)
are coupled because they share the same actors [60]; multimodal transportation
networks are composed of different layers (e.g., bus, subway, etc.) that share the
same locations [4, 18]; the functioning of communication and power grid systems
depend one on the other [10]. So far, all phenomena that have been studied on
interdependent networks, including percolation [10, 58], epidemics [31, 32, 55],
and linear dynamical systems [30], have provided results that differ much from
those valid in the case of isolated complex networks. Sometimes the difference is
radical: for example, while isolated scale-free networks are robust against failures
of their nodes or edges [2], scale-free interdependent networks are instead very
fragile [10, 58].

The standard approach towards the characterization of topological and dynamical
properties of multiplex networks is similar to the one used for isolated networks.
This approach relies on a fundamental approximation about the local structure of
the network, generally indicated as tree-like approximation [1, 20, 21, 46]. The tree
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ansatz assumes the absence of finite loops in a network in the thermodynamic limit
and the presence of only infinite loops. Such an approximation is very convenient
because it allows one to use techniques typical of the theory of random branching
processes [34]. These mainly include degree-based mean field calculations, and the
application of the generating function formalism for the statistical characterization
of structural and dynamical properties of ensembles of networks [48, 63]. Under
this ansatz, the solutions of many problems, that are unsolvable in their exact
form, can be instead provided with very good accuracy [20]: percolation [15],
epidemiological [51] and opinion dynamical models [59, 61], controllability [42]
are just among the most celebrated examples. The same type of approach has been
applied to predict the behavior of special types of critical phenomena in multilayered
networks. Examples include the analysis of the nature of the percolation transition in
multiplex networks [5, 10, 28, 57, 58] and interconnected networks [27, 36, 50], and
the study of the features of several dynamical processes defined on these particular
type of network topologies [9, 19, 55].

Another theoretical approach used in the characterization of networks is the one
based on the analysis of the spectrum of special operators associated with the graphs.
This approach often relies on analytic results obtained in the branch of mathematics
research known as “Spectral Graph Theory” [13], and it has been proved to
be effective in the study of topological and dynamical properties of networks.
Fundamental features of networks can be understood by looking at the eigenvalues
and eigenvectors not only of the adjacency matrix, but also of other matrices
associated with the graph such as the normalized [13] and combinatorial [45]
laplacians, the non-backtracking matrix [35, 41], the modularity matrix [47], just
to mention a few of them.

The fundamental reason behind the effectiveness of spectral methods is that the
spectrum of a graph encodes fundamental physical features of the system: eigen-
values correspond to energy levels, and the corresponding eigenvectors represent
configurations of the system associated with them. Spectral graph theory has a
wide range of applicability. For example, many useful measures, such as graph
energy [12], graph conductance and resistance [22], and the Randić index [39],
are quantifiable in terms of the eigenvalues of the normalized laplacian of a graph.
Finding the minimal eigenpair of matrices associated with graphs is typically
equivalent to identifying the ground state of wide class of energy functions [40] and
fitness landscapes [54]. Examples include, among others, Ising spin models [44] and
combinatorial optimization problems such as the traveling salesman problem [33].
In the study of isolated networks, the spectrum of the matrices associated with
graphs has been successfully applied to several contexts: examples include percola-
tion transition [8], synchronization [3] and epidemiological models [11, 29].

Spectral approaches have recently been proved successful also for the under-
standing of structural [53] and dynamical [30, 52, 56] properties of networks
of networks. In the study of coupled networks, the great advantage of spectral
methods, with respect to those based on the tree-like approximation and the use
of the generating function formalism, is in their ability to predict the behavior of
multiplexes on the basis of features of the individual layers that composed them.
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In the remaining part of the chapter, we will illustrate a concrete example of a
successful application of spectral techniques to the characterization of structural
transitions in arbitrary multiplex networks.

1.2 Mathematical Modeling

Multiplex Networks Composed of Two Layers

For simplicity, we first consider the case of two interconnected networks. We will
later generalize the method to an arbitrary number of interconnected networks. We
assume that the two interconnected networks A and B are undirected and weighted,
and that they have the same number of nodes N. The weighted adjacency matrices of
the two graphs are indicated as A and B, respectively, and they have both dimensions
N � N. With this notation, the element Aij D Aji is equal to the weight of the
connection between the nodes i and j in network A. The definition of B is analogous.

We consider the case of one-to-one symmetric interconnectivity [10] between
nodes in the networks A and B (see Fig. 1.1a). The connections between inter-
connected nodes of the two networks are weighted by a factor p (see Fig. 1.1b),

Fig. 1.1 (a) Schematic example of two interconnected networks A and B. In this representation,
nodes of the same color are one-to-one interconnected. (b) In our model, inter-layer edges have
weights equal to p (From Ref. [53])
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any other weighted factor for the networks A and B is implicitly absorbed in their
weights. The supra-adjacency matrix G of the whole network is therefore given by

G D
�

A p�
p� B

�
; (1.1)

where � is the identity matrix with dimensions N � N. Using this notation we can
define the supra-laplacian of the interconnected network as

L D
�LA C p� �p�

�p� LB C p�

�
: (1.2)

The blocks present in L are square symmetric matrices of dimensions N � N, In
particular, LA and LB are the laplacians of the networks A and B, respectively.

Our investigation focuses on the analysis of the spectrum of the supra-Laplacian
to ascertain the origin of the structural changes of the merging of networks in an
interconnected system. The spectrum of the laplacian of a graph is a fundamental
mathematical object for the study of the structural properties of the graph itself.
There are many applications and results on graph Laplacian eigenpairs and their
relations to numerous graph invariants (including connectivity, expanding proper-
ties, genus, diameter, mean distance, and chromatic number) as well as to partition
problems (graph bisection, connectivity and separation, isoperimetric numbers,
maximum cut, clustering, graph partition), and approximations for optimization
problems on graphs (cutwidth, bandwidth, min-p-sum problems, ranking, scaling,
quadratic assignment problem) [6, 13, 14, 43].

Note that, for any graph, all eigenvalues of its laplacian are non negative numbers.
The smallest eigenvalue is always equal to zero and the eigenvector associated to it
is trivially a vector whose entries are all identical. The second smallest eigenvalue �2

also called the algebraic connectivity [23] is one of the most significant eigenvalues
of the Laplacian. It is strictly larger than zero only if the graph is connected. More
importantly, the eigenvector associated to �2, which is called the characteristic
valuation or Fiedler vector of a graph, provides even deeper information about its
structure [24, 25, 45]. For example, the components of this vector associated to
the various nodes of the network are used in spectral clustering algorithms for the
bisection of graphs [49].

Our approach consists in the study of the behavior of the second smallest
eigenvalue of the supra-laplacian matrix L and its characteristic valuation as a
function of p, given the single-layer network laplacians LA and LB. In the following,
we will make use of the standard bra-ket notation for vectors. In this notation, jxi
indicates a column vector, hxj indicates the transposed (i.e., row vector) of jxi,
hxjyi D hyjxi indicates the inner product between the vectors jxi and jyi, A jxi
indicates the action of matrix A on the column vector jxi, and hxj A indicates the
action of matrix A on the row vector hxj. According to the theorem by Courant
and Fisher (i.e., the so-called min-max principle) [16, 26], the second smallest
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eigenvalue of L is given by

�2 .L/ D min
jvi2V

hvjL jvi ; (1.3)

where jvi 2 V is such that hvj1i D 0; hvjvi D 1. The vector j1i has 2N entries
all equal to 1. Eq. (1.3) means that �2 .L/ is equal to the minimum of the function
hvjL jvi, over all possible vectors jvi that are orthogonal to vector j1i and that
have norm equal to one. The vector for which such minimum is reached is thus the
characteristic valuation of the supra-laplacian (i.e., L jvi D �2 jvi). We distinguish
two blocks of size N in the vector jvi by writing it as jvi D jvA; vBi. In this notation,
jvAi is the part of the eigenvector whose components correspond to the nodes of
network A, while jvBi is the part of the eigenvector whose components correspond
to the nodes of network B. We can now write

hvjL jvi D hvA; vBjL jvA; vBi D
hvAjLA jvAi C hvBjLB jvBi C
p .hvAjvAi C hvBjvBi � 2 hvAjvBi/

and the previous set of constraints as hvAj1iChvBj1i D 0 and hvAjvAiChvBjvBi D 1,
where now all vectors have dimension N. Accounting for such constraints, we can
finally rewrite the minimization problem as

�2 .L/ D p C min
jvi2V

fhvAjLA jvAi C hvBjLB jvBi � 2p hvAjvBig : (1.4)

First of all, we can simply state that the algebraic connectivity of Eq. (1.4) satisfies
the inequality

�2 .L/ � 1

2
�2 .LA C LB/ ; (1.5)

where this upper bound comes out directly from the definition of the minimum of a
function. For every Q � V , we have in fact that

min
jvi2V

hvjL jvi � min
jvi2Q

hvjL jvi

simply because we are restricting the domain where looking for the minimum of the
function hvjL jvi. The particular value of the upper bound of Eq. (1.5) is then given
by setting Q as

jvi D jvA; vBi 2 Q is such that jvAi D jvBi D jqi ;

with hqj1i D 0; hqjqi D 1=2:

Note that the upper bound of Eq. (1.5) does not depend on p, and thus represents the
asymptotic value of �2 .L/ in the limit p ! 1. This analytically proves the result
established by Gómez et al. [30] through approximation methods.
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The minimization problem of Eq. (1.4) can be solved using Lagrange multipliers.
This means finding the minimum of the function

M D hvAjLA jvAi C hvBjLB jvBi � 2p hvAjvBi
�r .hvAj1i C hvBj1i/ � s .hvAjvAi C hvBjvBi � 1/ ;

where the constraints of the minimization problem have been explicitly inserted in
the function to minimize through the Lagrange multipliers r and s. In the following
calculations, we will make use of the identities

@
@ jxi htjxi D @

@ jxi hxjti D htj
@

@ jxi hxjxi D 2 hxj
@

@ jxi hxj A jxi D 2 hxj A, if A D AT

;

where @
@ jxi indicates the derivative with respect to all the coordinates of the vector

jxi. Equating to zero the derivatives of M with respect to r and s, we obtain the
constraints that we imposed. By equating to zero the derivative of M with respect to
jvAi, we obtain instead

@ M

@ jvAi D 2 hvAjLA � 2p hvBj � r h1j � 2s hvAj D h0j ; (1.6)

and, similarly for the derivative of M with respect to jvBi,we obtain

@ M

@ jvBi D 2 hvBjLB � 2p hvAj � r h1j � 2s hvBj D h0j : (1.7)

Multiplying both equations with j1i, we have 2 hvAjLA j1i � 2p hvBj1i � r h1j1i �
2s hvAj1i D 0 and 2 hvBjLB j1i � 2p hvAj1i � r h1j1i � 2s hvBj1i D 0, that can
be simplified in 2.p � s/ hvAj1i � rN D 0 and 2.p � s/ hvBj1i � rN D 0 because
LA j1i D LB j1i D j0i and hvAj1i D � hvBj1i. Summing them, we obtain r D 0.
Finally, we can write

.p � s/ hvAj1i D 0

.p � s/ hvBj1i D 0
: (1.8)

These equations can be true in two cases: (i) hvAj1i ¤ 0 or hvBj1i ¤ 0 and s D p;
(ii) hvAj1i D hvBj1i D 0. In the following, we analyze these two cases separately.

First, let us suppose that s D p, and that at least one of the two equations
hvAj1i ¤ 0 and hvBj1i ¤ 0 is true. If we set s D p in Eqs. (1.6) and (1.7), they
become

hvAjLA � p hvBj � p hvAj D h0j (1.9)
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and

hvBjLB � p hvAj � p hvBj D h0j : (1.10)

If we multiply the first equation with jvAi and the second equation with jvBi, the
sum of these two new equations is

hvAjLA jvAi C hvBjLB jvBi � 2p hvAjvBi D p : (1.11)

If we finally insert this expression in Eq. (1.4), we find that the second smallest
eigenvalue of the supra-laplacian is

�2 .L/ D 2p : (1.12)

We can further determine the components of Fiedler vector in this regime. If we
take the difference between Eqs. (1.9) and (1.10), we have hvAjLA D hvBjLB. On
the other hand, Eq. (1.12) is telling us that hvAjLA jvAi D � hvBjLB jvBi because
the only term surviving in Eq. (1.11) is the one that depends on p. Since hvAjLA jvAi
(hvBjLB jvBi) is always larger than zero, unless jvAi D c j1i (jvBi D c j1i), with c
arbitrary constant value, we obtain

jvAi D � jvBi where jvAi D ˙ 1p
2N

j1i : (1.13)

Thus in this regime, both the relations hvAj1i ¤ 0 and hvBj1i ¤ 0 must be
simultaneously true. Eq. (1.13) also means that hvAjvBi D � 1

2
.

The other possibility is that Eqs. (1.8) are satisfied because hvAj1i D 0 and
hvBj1i D 0 are simultaneously true. In this case, the average value of the
components of the vectors jvAi and jvBi is zero, i.e.,

hvAj1i D hvBj1i D 0 ; (1.14)

and thus the coordinates of the Fiedler vector corresponding to the nodes of the same
layer have alternatively negative and positive signs.

To summarize, the second smallest eigenvalue of the supra-laplacian matrix L is
given by

�2 .L/ D
�

2p , if p � p�
� 1

2
�2 .LA C LB/ , if p � p� : (1.15)

Thus indicating that the algebraic connectivity of the interconnected system follows
two distinct regimes, one in which its value is independent of the structure of the
two layers, and the other in which its upper bound is limited by the algebraic
connectivity of the weighted superposition of the two layers whose laplacian is
given by 1

2
.LA C LB/. More importantly, the discontinuity in the first derivative



1 A Tipping Point in the Structural Formation of Interconnected Networks 9

of �2 is reflected in a radical change of the structural properties of the system
happening at p�, the tipping point. Such dramatic change is visible in the coordinates
of characteristic valuation of the nodes of the two network layers. In the regime
p � p�, the components of the eigenvector are given by Eq. (1.13). This means
that the two network layers are structurally disconnected and independent. For
p � p�, they instead obey Eq. (1.14), which means that the components of the
vector corresponding to interconnected nodes of network A and B have the same
sign, while nodes in the same layer have alternating signs. Thus in this second
regime, the system connectivity is dominated by inter-layer connections, and the
two network layers are structurally indistinguishable.

The tipping point p� at which the transition occurs is the point at which we
observe the crossing between the two different behaviors of �2, which means

p� � 1

4
�2 .LA C LB/ : (1.16)

Since inter-layer connections have weights that grows with p, the transition happens
at the point at which the weight of the inter-layer connections exceeds the half part
of the inverse of the algebraic connectivity of the weighted super-position of both
network layers (see Fig. 1.2).
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Fig. 1.2 Algebraic connectivity and Fiedler vector for two interconnected Erdős-Renyí networks
of N D 50 nodes and average degree Nk D 5. We consider a single realization of this model
in which the critical point is p� D 0:602.1/. (a) Characteristic valuation of the nodes in the
two network layers for p D 0:602. (b) Algebraic connectivity of the system (black line). The
discontinuity of the first derivative of �2 is very clear. The two different regimes 2p and �2.LACLB/

2

are shown as red dot-dashed and blue dashed lines, respectively. (c) Inner product hvAjvBi between
the part of the Fiedler eigenvector (jvAi) corresponding to nodes in the network A and the one (jvBi)
corresponding to vertices in network B as a function of p. (d) Inner products hvAj1i and hvBj1i as
functions of p. hvAj1i and hvBj1i indicate the sum of all components of the Fiedler vectors jvAi and
jvBi, respectively. (e) Characteristic valuation of the nodes in the two network layers for p D 0:603

(From Ref. [53])



10 A. Arenas and F. Radicchi

Multiplex Networks Composed of More Than Two Layers

The results presented in the previous section can be extended, with analogous
calculations, to multiplexes composed of ` network layers, with ` > 2. The main
result of Eq. (1.15) becomes

�2 .L/ D
(

`p , if p � p�

� 1
`

�2

�P`
iD1 Li

�
, if p � p� ; (1.17)

showing a discontinuity in the derivative of the algebraic connectivity at a certain
value p� estimated as

p� � 1

`2
�2

 X̀
iD1

Li

!
: (1.18)

The algebraic connectivity of the multiplex can be thus written in terms of the
algebraic connectivity of the superposition of all network layers that compose the
multiplex. Unfortunately in the case of a multiplex network with ` > 2, the Fiedler
eigenvector cannot be fully characterized, and it is no longer possible to generalize
Eqs. (1.13) and (1.14) to an arbitrary number of network layers.

Perturbed Multiplex Networks

The discontinuity in the first derivative of the algebraic connectivity �2 is due to
the crossing between different eigenvalues in the spectrum of the supra-laplacian
matrix L. In the case of a multiplex composed of two layers, the presence of this
crossing can be viewed as a simple consequence of the fact that the vector j1; �1i
is always an eigenvector of the matrix in Eq. (1.2) for any value of p. By invoking
the non crossing rule by von Neumann and Wigner [62], it is possible to show that
the eigenvalue corresponding to this eigenvector, i.e., � D 2p, must intersect all
other eigenvalues of L. Although in multiplex networks with an arbitrary number
of coupled networks there is not a trivial eigenvector that can explain the crossing
between eigenvalues, it is, however, worth asking if our results are still valid in
presence of disorder. To this end, we consider a perturbed version of the matrix
in Eq. (1.2). Essentially, instead of using the same p for every entry .i; j/ of the
off-diagonal blocks of Eq. (1.1), we use a weight of the type pij D f .p; �ij/

with �ij random variables such that the average hf .p; �ij/i D p. By applying this
transformation, the vector j1; �1i is not longer an eigenvector L for every value of
p. In presence of disorder, the non crossing rule by von Neumann and Wigner [62]
tells us that no eigenvalues can cross as p varies. It is very interesting to note that
the structural transition observed for the unperturbed case still holds, even for very
small networks and not so small perturbations (see Fig. 1.3).
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Fig. 1.3 Spectral properties of unperturbed and perturbed supra-laplacian matrices. The multiplex
networks analyzed are composed of two Erdős-Rényi network models with N D 50 nodes and
average degree Nk D 5 as in the case of Fig. 1.2. (a) Second smallest �2 and third smallest �3

eigenvalues for the unperturbed network (black lines) as functions of the coupling strength p
between different layers. We perturbed the coupling matrix by setting pij D p C 10�1.1=2 � �ij/,
with �ij uniform random variate in the interval Œ0; 1�. Red lines stand for average values of the
second smallest and third smallest eigenvalues obtained over 100 perturbed realizations of the
same starting network topology. (b) Sum of the eigenvector components corresponding to nodes in
the same network layer, hvAj1i, for the unperturbed and the perturbed network of panel a. hvAj1i is
rescaled by the factor

p
N to obtain values in the interval Œ0; 1�. (c) Same as in panel (a), but in this

case the perturbation applied is pij D p=2 C p�ij. (d) Same as in panel b, but for the perturbation
scheme described in panel c

1.3 Conclusions

A physical interpretation of the algebraic structural transition that we are able to
analytically predict can be given by viewing the function hvjL jvi as an energy-like
function. From this point of view, Eq. (1.3) becomes equivalent to a search for the
ground state energy, and the characteristic valuation can be viewed as the ground
state configuration. Such analogy is straightforward if one realizes that Eq. (1.3) is
equivalent to the minimization of the weighted cut of the entire networked system
[whose adjacency matrix G is defined in Eq. (1.1)], and that the minimum of this
function corresponds to the ground state of a wide class of energy functions [40] and
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fitness landscapes [54]. These include, among others, the energy associated to the
Ising spin models [44] and cost functions of combinatorial optimization problems,
such as the traveling salesman problem [33]. In summary, the structural transition of
interconnected networks involves a discontinuity in the first derivative of an energy-
like function, and thus, according to the Ehrenfest classification of phase transitions,
can be understood as a discontinuous transition [7].

Since the transition at the algebraic level has the same nature as the connectivity
transition that has been studied by Buldyrev et al. in the same class of networked
systems [10], it is worth to discuss about the relations between the two transitions.
We can reduce our model to the annealed version of the model considered by
Buldyrev et al. by setting A D t2A, B D t2B and p D t, being 1 � t the probability
that one node in one of the networks fails. All the results stated so far hold, with
only two different interpretations. First, the upper bound of Eq. (1.16) becomes a
lower bound for the critical threshold of the algebraic transition that reads in terms
of occupation probability as

tc � 4

�2 .LA C LB/
: (1.19)

Second, the way to look at the transition must be reversed: network layers are
structurally independent (i.e., the analogous of the non percolating phase) for values
of t � tc, while become algebraically connected (i.e., analogous of the percolating
phase) when t � tc.

As it is well known, the algebraic connectivity represents a lower bound for both
the edge connectivity and node connectivity of graph (i.e., respectively the minimal
number of edges or nodes that should be removed to disconnect the graph) [24].
Indeed, the algebraic connectivity of a graph is often used as a control parameter to
make the graph more resilient to random failures of its nodes or edges [37]. Thus, the
lower bound of Eq. (1.19) represents also a lower bound for the critical percolation
threshold measured by Buldyrev et al. Interestingly, our prediction turns out to be
a sharp estimate of the lower bound. For the Erdős-Rényi model, we have in fact
tc � 2=Nk, if the two networks have the same average degree Nk, and this value must
be compared with 2:455=Nk as predicted by Buldyrev et al. [10, 58]. Similarly, we
are able to predict that tc grows as the degree distribution of the network becomes
more broad [14], in the same way as it has been numerically observed by Buldyrev
et al. [10].

Although we are not able to directly map the algebraic transition to the
percolation one, we believe that the existence of a first-order transition at the
algebraic level represents an indirect support of the discontinuity of the percolation
transition. We further emphasize that the transition is effectively present only if
tc � 1, and thus accordingly to Eq. (1.19) only if �2 .LA C LB/ � 4. Such condition
is verified for network layers that have a sufficiently large connectivity, and this
qualitatively confirms the observation by Parshani et al. regarding a change in the
nature of the percolation phase transition in interdependent networks with variable
number of interdependent nodes [50].
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In conclusion, we would like to briefly discuss the deep practical implications
of our results. The abrupt nature of the structural transition is, in fact, not only
visible in the limit of infinitely large systems, but for networks of any size, even
if in presence of disorder. Thus, even real networked systems composed of few
elements may be subjected to abrupt structural changes, including failures. Our
theory provides, however, fundamental aids for the prevention of such collapses.
It allows, in fact, not only the prediction of the critical point of the transition, but,
more importantly, to accurately design the structure of such systems to make them
more robust. For example, the percolation threshold of interconnected systems can
be simply decreased by increasing the algebraic connectivity of the superposition of
the network layers. This means that an effective strategy to make an interconnected
system more robust is to avoid the repetition of edges among layers, and thus bring
the superposition of the layers as close as possible to an all-to-all topology.
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