
Chapter 3
Bayesian Optimization for Materials Design

Peter I. Frazier and Jialei Wang

Abstract We introduce Bayesian optimization, a technique developed for
optimizing time-consuming engineering simulations and for fittingmachine learning
models on large datasets. Bayesian optimization guides the choice of experiments
during materials design and discovery to find good material designs in as few exper-
iments as possible. We focus on the case when materials designs are parameterized
by a low-dimensional vector. Bayesian optimization is built on a statistical technique
calledGaussian process regression,which allows predicting the performance of a new
design based on previously tested designs. After providing a detailed introduction
to Gaussian process regression, we describe two Bayesian optimization methods:
expected improvement, for design problems with noise-free evaluations; and the
knowledge-gradient method, which generalizes expected improvement and may be
used in design problems with noisy evaluations. Both methods are derived using a
value-of-information analysis, and enjoy one-step Bayes-optimality.

3.1 Introduction

In materials design and discovery, we face the problem of choosing the chemical
structure, composition, or processing conditions of a material to meet design criteria.
The traditional approach is to use iterative trial and error, inwhichwe (1) choose some
material design that we think will work well based on intuition, past experience, or
theoretical knowledge; (2) synthesize and test the material in physical experiments;
and (3) use what we learn from these experiments in choosing the material design
to try next. This iterative process is repeated until some combination of success and
exhaustion is achieved.

P.I. Frazier (B) · J. Wang
School of Operations Research & Information Engineering, Cornell University,
Ithaca, NY14853, USA
e-mail: pf98@cornell.edu

© Springer International Publishing Switzerland 2016
T. Lookman et al. (eds.), Information Science for Materials
Discovery and Design, Springer Series in Materials Science 225,
DOI 10.1007/978-3-319-23871-5_3

45

46 P.I. Frazier and J. Wang

While trial and error has been extremely successful, we believe that mathematics
and computation together promise to accelerate the pace of materials discovery, not
by changing the fundamental iterative nature of materials design, but by improving
the choices that we make about which material designs to test, and by improving our
ability to learn from previous experimental results.

In this chapter, we describe a collection of mathematical techniques, based on
Bayesian statistics and decision theory, for augmenting and enhancing the trial and
error process. We focus on one class of techniques, called Bayesian optimization
(BO), or Bayesian global optimization (BGO), which use machine learning to build
a predictive model of the underlying relationship between the design parameters of
a material and its properties, and then use decision theory to suggest which design
or designs would be most valuable to try next. The most well-developed Bayesian
optimization methods assume that (1) the material is described by a vector of contin-
uous variables, as is the case, e.g., when choosing ratios of constituent compounds,
or choosing a combination of temperature and pressure to use during manufacture;
(2) we have a single measure of quality that we wish to make as large as possible; and
(3) the constraints on feasible materials designs are all known, so that any unknown
constraints are incorporated into the quality measure. There is also a smaller body of
work on problems that go beyond these assumptions, either by considering discrete
design decisions (such as small molecule design), multiple competing objectives, or
by explicitly allowing unknown constraints.

Bayesian optimization was pioneered by [1], with early development through
the 1970s and 1980s by Mockus and Zilinskas [2, 3]. Development in the 1990s
was marked by the popularization of Bayesian optimization by Jones, Schonlau,
and Welch, who, building on previous work by Mockus, introduced the Efficient
GlobalOptimization (EGO)method [4]. Thismethod became quite popular andwell-
known in engineering, where it has been adopted for design applications involving
time-consuming computer experiments, within a broader set of methods designed for
optimization of expensive functions [5]. In the 2000s, development of Bayesian opti-
mization continued in statistics and engineering, and the 2010s have seen additional
development from the machine learning community, where Bayesian optimization
is used for tuning hyperparameters of computationally expensive machine learning
models [6]. Other introductions to Bayesian optimizationmay be found in the tutorial
article [7] and textbooks [8, 9], and an overview of the history of the field may be
found in [10].

We begin in Sect. 3.2 by introducing the precise problem considered by Bayesian
Optimization.We then describe in Sect. 3.3 the predictive technique used byBayesian
Optimization, which is called Gaussian Process (GP) regression. We then show, in
Sect. 3.4, how Bayesian Optimization recommends which experiments to perform.
In Sect. 3.5 we provide an overview of software packages, both freely available and
commercial, that implement the Bayesian Optimization methods described in this
chapter. We offer closing remarks in Sect. 3.6.

3 Bayesian Optimization for Materials Design 47

3.2 Bayesian Optimization

Bayesian optimization considersmaterials designs parameterized by a d-dimensional
vector x . We suppose that the space of materials designs in which x takes values is
a known set A ⊆ R

d .
For example, x = (x(1), . . . , x(d)) could give the ratio of each of d different

constituents mixed together to create some aggregate material. In this case, we would
choose A to be the set A = {x :∑d

i=1 x(i) = 1}. As another example, setting d = 2,
x = (x(1), x(2)) could give the temperature (x(1)) and pressure (x(2)) used in
material processing. In this case, we would choose A to be the rectangle bounded by
the experimental setup’s minimum and maximal achievable temperature on one axis,
Tmin and Tmax, and the minimum and maximum achievable pressure on the other. As
a final example, we could let x = (x(1), . . . , x(d) be the temperatures used in some
annealing schedule, assumed to be decreasing over time. In this case, we would set
A to be the set {x : Tmax ≥ x(1) ≥ · · · ≥ x(d) ≥ Tmin}.

Let f (x) be the quality of the material with design parameter x . The function f is
unknown, and observing f (x) requires synthesizing material design x and observing
its quality in a physical experiment. We would like to find a design x for which f (x)

is large. That is, we would like to solve

max
x∈A

f (x). (3.1)

This is challenging because evaluating f (x) is typically expensive and time-
consuming. While the time and expense depends on the setting, synthesizing and
testing a newmaterial design could easily take days or weeks of effort and thousands
of dollars of materials.

In Bayesian optimization, we use mathematics to build a predictive model for the
function f based on observations of previous materials designs, and then use this
predictivemodel to recommend amaterials design that would bemost valuable to test
next. We first describe this predictive model in Sect. 3.3, which is performed using
a machine learning technique called Gaussian process regression. We then describe,
in Sect. 3.4, how this predictive model is used to recommend which design to test
next.

3.3 Gaussian Process Regression

The predictive piece of Bayesian optimization is based on a machine learning tech-
nique called Gaussian process regression. This technique is a Bayesian version
of a frequentist technique called kriging, introduced in the geostatistics literature
by South-African mining engineer Daniel Krige [11], and popularized later by
Matheron and colleagues [12], as described in [13]. A modern monograph on

48 P.I. Frazier and J. Wang

Gaussian process regression is [14], and a list of software implementing Gaussian
process regression may be found at [15].

In Gaussian process regression, we seek to predict f (x) based on observations at
previously evaluated points, call them x1, . . . , xn . We first treat the case where f (x)

can be observed exactly, without noise, and then later treat noise in Sect. 3.3.5. In
this noise-free case, our observations are yi = f (xi) for i = 1, . . . , n.

Gaussian process regression is a Bayesian statistical method, and in Bayesian
statisticsweperform inference by placing a so-calledprior probability distributionon
unknown quantities of interest. The prior probability distribution is often called,more
simply, the prior distribution or, even more simply, the prior. This prior distribution
is meant to encode our intuition or domain expertise regarding which values for
the unknown quantity of interest are most likely. We then use Bayes rule, together
with any data observed, to calculate a posterior probability distribution on these
unknowns. For a broader introduction to Bayesian statistics, see the textbook [16] or
the research monograph [17].

In Gaussian process regression, if we wish to predict the value of f at a single
candidate point x∗, it is sufficient to consider our unknowns to be the values of f
at the previously evaluated points, x1, . . . , xn , and the new point x∗ at which we
wish to predict. That is, we take our unknown quantity of interest to be the vector
(f (x1), . . . , f (xn), f (x∗)). We then take our data, which is f (x1), . . . , f (xn), and
use Bayes rule to calculate a posterior probability distribution on the full vector of
interest, (f (x1), . . . , f (xn), f (x∗)), or, more simply, just on f (x∗).

To calculate the posterior, we must first specify the prior, which Gaussian process
regression assumes to be multivariate normal. It calculates the mean vector of this
multivariate normal prior distribution using a function, called the mean function and
written here as μ0(·), which takes a single x as an argument. It applies this mean
function to each of the points x1, . . . , xn, x∗ to create an n + 1-dimensional column
vector. Gaussian process regression creates the covariance matrix of the multivariate
normal prior distribution using another function, called the covariance function or
covariance kernel and written here as Σ0(·, ·), which takes a pair of points x, x ′ as
arguments. It applies this covariance function to every pair of points in x1, . . . , xn, x
to create an (n + 1) × (n + 1) matrix.

Thus, Gaussian process regression sets the prior probability distribution to,

⎡

⎢
⎢
⎣

f (x1)
. . .

f (xn)

f (x∗)

⎤

⎥
⎥
⎦ ∼ Normal

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎣

μ0(x1)
. . .

μ0(xn)

μ0(x∗)

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎢
⎣

Σ0(x1, x1) · · · Σ0(x1, xn) Σ0(x1, x∗)
...

. . .
...

...

Σ0(xn, x1) · · · Σ0(xn, xn) Σ0(xn, x∗)
Σ0(x∗, x1) · · · Σ0(x∗, xn) Σ0(x∗, x∗)

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

(3.2)

The subscript “0” in μ0 and Σ0 indicate that these functions are relevant to the prior
distribution, before any data has been collected.

3 Bayesian Optimization for Materials Design 49

We now discuss how the mean and covariance functions are chosen, focusing on
the covariance function first because it tends to be more important in getting good
results from Gaussian process regression.

3.3.1 Choice of Covariance Function

In choosing the covariance function Σ0(·, ·), we wish to satisfy two requirements.
The first is that it should encode the belief that points x and x ′ near each other

tend to have more similar values for f (x) and f (x ′). To accomplish this, we want
the covariance matrix in (3.2) to have entries that are larger for pairs of points that
are closer together, and closer to 0 for pairs of points that are further apart.

The second is that the covariance function should always produce positive semi-
definite covariance matrices in the multivariate normal prior. That is, if Σ is the
covariance matrix in (3.2), then we require that aT Σa ≥ 0 for all column vectors
a (where a is assumed to have the appropriate length, n + 1). This requirement is
necessary to ensure that the multivariate normal prior distribution is a well-defined
probability distribution, because if θ is multivariate normal with mean vector μ and
covariance matrix Σ , then the variance of a · θ is aT Σa, and we require variances
to be non-negative.

Several covariance functions satisfy these two requirements. The most commonly
used is called the squared exponential, or Gaussian kernel, and is given by,

Σ0(x, x ′) = α exp

(

−
d∑

i=1

βi (xi − x ′
i)
2

)

. (3.3)

This kernel is parameterized by d + 1 parameters: α, and β1, . . . ,βd .
The parameter α > 0 controls how much overall variability there is in the func-

tion f . We observe that under the prior, the variance of f (x) is Var(f (x)) =
Cov(f (x), f (x)) = α. Thus, when α is large, we are encoding in our prior dis-
tribution that f (x) is likely to take a larger range of values.

The parameters βi > 0 controls how quickly the function f varies with x . For
example, consider the relationship between some point x and another point x ′ =
x + [1, 0, . . . , 0]. When β1 is small (close to 0), the covariance between f (x) and
f (x ′) is α exp(−β1) ≈ α, giving a correlation between f (x) and f (x ′) of nearly 1.
This reflects a belief that f (x) and f (x ′) are likely to be very similar, and that learning
the value of f (x) will also teach us a great deal about f (x ′). In contrast, when β1

is large, the covariance between f (x) and f (x ′) is nearly 0, given a correlation
between f (x) and f (x ′) that is also nearly 0, reflecting a belief that f (x) and f (x ′)
are unrelated to each other, and learning something about f (x) will teach us little
about (x ′).

50 P.I. Frazier and J. Wang

Going beyond the squared exponential kernel

There are several other possibilities for the covariance kernel beyond the squared
exponential kernel, which encode different assumptions about the underlying behav-
ior of the function f . One particularly useful generalization of the squared exponen-
tial covariance kernel is the Matérn covariance kernel, which allows more flexibility
in modeling the smoothness of f .

Before describing this kernel, let r =
√
∑

i

(
xi −x ′

i
βi

)2
be the Euclidean distance

between x and x ′, but where we have altered the length scale in each dimension by
some strictly positive parameter βi . Then, the squared exponential covariance kernel
can be written as, Σ0(x, x ′) = α exp

(−r2
)
.

With this notation, the Matérn covariance kernel is,

Σ0(x, x ′) = α
21−ν

Γ (ν)

(√
2νr
)ν

Kν

(√
2νr
)

,

where Kν is the modified Bessel function. If we take the limit as ν → ∞, we obtain
the squared exponential kernel ([14], Sect. 4.2 p. 85).

TheMatérn covariance kernel is useful because it allowsmodeling the smoothness
of f in a more flexible way, as compared with the squared exponential kernel. Under
the squared exponential covariance kernel, the function f is infinitely mean-square
differentiable,1 whichmay not be an appropriate assumption inmany applications. In
contrast, under theMatérn covariance kernel, f is k-timesmean-square differentiable
if and only if ν > k. Thus, we can model a function that is twice differentiable but
no more by choosing ν = 5/2, and a function that is once differentiable but no more
by choosing ν = 3/2.

While the squared exponential and Matérn covariance kernels allow modeling
a wide range of behaviors, and together represent a toolkit that will handle a wide
variety of applications, there are other covariance kernels. For a thorough discussion
of these, see Chap.4 of [14].

Both the Matérn and squared exponential covariance kernel require choosing
parameters. While it certainly is possible for one to choose the parameters α and
βi (and ν in the case of Matérn) based on one’s intuition about f , and what kinds
of variability f is likely to have in a particular application, it is more common to
choose these parameters (especially α and βi) adaptively, so as to best fit previously
observed points.We discuss thismore below in Sect. 3.3.6. First, however, we discuss
the choice of the mean function.

1Being “mean-square differentiable” at x in the direction given by the unit vector ei means that the
limit limδ→0(f (x + δei) − f (x))/δ exists in mean square. Being “k-times mean-square differen-
tiable” is defined analogously.

3 Bayesian Optimization for Materials Design 51

3.3.2 Choice of Mean Function

We now discuss choosing the mean function μ0(·). Perhaps the most common choice
is to simply set the mean function equal to a constant, μ. This constant must be
estimated, along with parameters of the covariance kernel such as α and βi , and is
discussed in Sect. 3.3.6.

Beyond this simple choice, if one believes that there will be trends in f that can
be described in a parametric way, then it is useful to include trend terms into the
mean function. This is accomplished by choosing

μ0(x) = μ +
J∑

j=1

γ jΨ j (x),

where Ψ j (·) are known functions, and γ j ∈ R, along with μ ∈ R, are parameters
that must be estimated.

A common choice for the Ψ j , if one chooses to include them, are polynomials
in x up to some small order. For example, if d = 2, so x is two-dimensional, then
one might include all polynomials up to second order, Ψ1(x) = x1, Ψ2(x) = x2,
Ψ3(x) = (x1)2, Ψ4(x) = (x2)2, Ψ5(x) = x1x2, setting J = 5. One recovers the
constant mean function by setting J = 0.

3.3.3 Inference

Given the prior distribution (3.2) on f (x1), . . . , f (xn), f (x∗), and given (noise-free)
observations of f (x1), . . . , f (xn), the critical step in Gaussian process regression is
calculating the posterior distribution on f (x∗).We rely on the followinggeneral result
about conditional probabilities andmultivariate normal distributions. Its proof, which
may be found in theDerivations and Proofs section, relies onBayes rule and algebraic
manipulation of the probability density of the multivariate normal distribution.

Proposition 1 Let θ be a k-dimensional multivariate normal random column vector,
with mean vector μ and covariance matrix Σ . Let k1 ≥ 1, k2 ≥ 1 be two integers
summing to k. Decompose θ, μ and Σ as

θ =
[
θ[1]
θ[2]

]

, μ =
[
μ[1]
μ[2]

]

, Σ =
[
Σ[1,1] Σ[1,2]
Σ[2,1] Σ[2,2]

]

,

so that θ[i] and μ[i] are ki -column vectors, and Σ[i, j] is a ki × k j matrix, for each
i, j = 1, 2.

52 P.I. Frazier and J. Wang

If Σ1,1 and Σ2,2 are invertible, then, for any u ∈ R
k1 , the conditional distribution

of θ[2] given that θ[1] = u is multivariate normal with mean

μ[2] + Σ[2,1]Σ−1
[1,1](u − μ[1])

and covariance matrix
Σ[2,2] − Σ[2,1]Σ−1

[1,1]Σ[1,2].

We use this proposition to calculate the posterior distribution on f (x∗), given
f (x1), . . . , f (xn).
Before doing so, however, we first introduce some additional notation. We let

y1:n indicate the column vector [y1, . . . , yn]T , and we let x1:n indicate the sequence
of vectors (x1, . . . , xn). We let f (x1:n) = [f (x1), . . . , f (xn)]T , and similarly
for other functions of x , such as μ0(·). We introduce similar additional notation
for functions that take pairs of points x, x ′, so that Σ(x1:n, x1:n) is the matrix[

Σ0(x1,x1) ··· Σ0(x1,xn)

...
...

...
Σ0(xn ,x1) ··· Σ0(xn ,xn)

]

, Σ0(x∗, x1:n) is the row vector [Σ0(x∗, x1), . . . , Σ0(x∗,

xn)], and Σ0(x1:n, x∗) is the column vector [Σ0(x1, x∗), . . . , Σ0(xn, x∗)]T .
This notation allows us to rewrite (3.2) as

[
y1:n

f (x∗)

]

= Normal

([
μ0(x1:n)
μ0(x∗)

]

,

[
Σ0(x1:n, x1:n) Σ0(x1:n, x∗)
Σ0(x∗, x1:n) Σ0(x∗, x∗)

])

. (3.4)

We now examine this expression in the context of Proposition 1. We set θ[1] =
f (x1:n), θ[2] = f (x∗), μ[1] = μ0(x1:n), μ[2] = μ0(x∗), Σ[1,1] = Σ0(x1:n, x1:n),
Σ[1,2] = Σ0(x1:n, x∗), Σ[2,1] = Σ0(x∗, x1:n), and Σ[2,2] = Σ0(x∗, x∗).

Then, applying Proposition 1, we see that the posterior distribution on f (x∗) given
observations yi = f (xi), i = 1, . . . , n is normal, with a mean μn(x∗) and variance
σ2

n(x∗) given by,

μn(x∗) = μ0(x∗) + Σ0(x∗, x1:n)Σ0(x1:n, x1:n)−1(f (x1:n) − μ0(x1:n)), (3.5)

σ2
n(x∗) = Σ0(x∗, x∗) − Σ0(x∗, x1:n)Σ0(x1:n, x1:n)−1Σ0(x1:n, x∗). (3.6)

The invertibility ofΣ0(x1:n, x1:n) (and alsoΣ0(x∗, x∗)) required by Proposition 1
depends on the covariance kernel and its parameters (typically called hyperparame-
ters), but this invertibility typically holds as long as these hyperparameters satisfy
mild non-degeneracy conditions, and the x1:n are distinct, i.e., that we have not mea-
sured the same point more than once. For example, under the squared exponential
covariance kernel, invertibility holds as long as α > 0 and the x1:n are distinct. If
we have measured a point multiple times, then we can safely drop all but one of
the measurements, here where observations are noise-free. Below, we treat the case
where observations are noisy, and in this case including multiple measurements of
the same point is perfectly reasonable and does not cause issues.

3 Bayesian Optimization for Materials Design 53

50 100 150 200 250 300
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

va
lu

e

Fig. 3.1 Illustration of Gaussian process regression with noise-free evaluations. The circles show
previously evaluated points, (xi , f (xi)). The solid line shows the posterior mean, μn(x), as a
function of x , which is an estimate f (x), and the dashed lines show a Bayesian credible interval
for each f (x), calculated as μn(x) ± 1.96σn(x). Although this example shows f taking a scalar
input, Gaussian process regression can be used for functions with vector inputs

Figure3.1 shows the output fromGaussian process regression. In the figure, circles
showpoints (xi , f (xi)), the solid line showsμn(x∗) as a function of x∗, and the dashed
lines are positioned atμn(x∗)±1.96σn(x∗), forming a95%Bayesian credible interval
for f (x∗), i.e., an interval in which f (x∗) lies with posterior probability 95%. (A
credible interval is theBayesian version of a frequentist confidence interval.) Because
observations are noise-free, the posterior mean μn(x∗) interpolates the observations
f (x∗).

3.3.4 Inference with Just One Observation

The expressions (3.5) and (3.6) are complex, and perhaps initially difficult to assimi-
late. To give more intuition about them, and also to support some additional analysis
below in Sect. 3.4, it is useful to consider the simplest case, when we have just a
single measurement, n = 1.

In this case, all matrices in (3.5) and (3.6) are scalars, Σ0(x∗, x1) = Σ0(x1, x∗),
and the expressions (3.5) and (3.6) can be rewritten as,

μ1(x∗) = μ0(x∗) + Σ0(x∗, x1)

Σ0(x1, x1)
(f (x1) − μ0(x1)), (3.7)

σ2
1(x∗) = Σ0(x∗, x∗) − Σ0(x∗, x1)2

Σ0(x1, x1)
. (3.8)

54 P.I. Frazier and J. Wang

Intuition about the expression for the posterior mean

We first examine (3.7). We see that the posterior mean of f (x∗), μ1(x∗), which we
can think of as our estimate of f (x∗) after observing f (x1), is obtained by taking our
original estimate of f (x∗), μ0(x∗), and adding to it a correction term. This correction
term is itself the product of two quantities: the error f (x1) − μ0(x1) in our original
estimate of f (x1), and the quantity Σ0(x∗,x1)

Σ0(x1,x1)
. Typically, Σ0(x∗, x1) will be positive,

and hence also Σ0(x∗,x1)
Σ0(x1,x1)

. (Recall,Σ0(x1, x1) is a variance, so is never negative.) Thus,
if f (x1) is bigger than expected, f (x1) − μ0(x1) will be positive, and our posterior
meanμ1(x∗)will be larger than our prior meanμ0(x∗). In contrast, if f (x1) is smaller
than expected, f (x1) − μ0(x1) will be negative, and our posterior mean μ1(x∗) will
be smaller than our prior mean μ0(x∗).

We can examine the quantity Σ0(x∗,x1)
Σ0(x1,x1)

to understand the effect of the position of
x∗ relative to x1 on the magnitude of the correction to the posterior mean. Notice
that x∗ only enters this expression through the numerator. If x∗ is close to x1, then
Σ0(x∗, x1) will be large under the squared exponential and most other covariance
kernels, and positive values for f (x1) − μ0(x1) will also cause a strong positive
change in μ1(x∗) relative to μ0(x∗). If x∗ is far from x1, thenΣ0(x∗, x1)will be close
to 0, and f (x1) − μ0(x1) will have little effect on μ1(x∗).

Intuition about the expression for the posterior variance

Now we examine (3.8). We see that the variance of our belief on f (x∗) under the
posterior, σ2

1(x∗), is smaller than its value under the prior, Σ0(x∗, x∗). Moreover,
when x∗ is close to x1, Σ0(x∗, x1) will be large, and the reduction in variance from
prior to posterior will also be large.

Conversely, when x∗ is far from x1,Σ0(x∗, x1)will be close to 0, and the variance
under the posterior will be similar to its value under the prior.

As a final remark, we can also rewrite the expression (3.8) in terms of the squared
correlation under the prior, Corr(f (x∗), f (x1))2 = Σ0(x∗, x1)2/(Σ0(x∗, x∗)Σ0

(x1, x1)) ∈ [0, 1], as

σ2
1(x∗) = Σ0(x∗, x∗)

(
1 − Corr(f (x∗), f (x1))

2
)
.

We thus see that the reduction in variance of the posterior distribution depends on
the squared correlation under the prior, with larger squared correlation implying a
larger reduction.

3.3.5 Inference with Noisy Observations

The previous section assumed that f (x∗) can be observed exactly, without any error.
When f (x∗) is the outcome of a physical experiment, however, our observations are
obscured by noise. Indeed, if we were to synthesize and test the samematerial design
x∗ multiple times, we might observe different results.

3 Bayesian Optimization for Materials Design 55

To model this situation, Gaussian process regression can be extended to allow
observations of the form,

y(xi) = f (xi) + εi ,

where we assume that the εi are normally distributed with mean 0 and constant
variance, λ2, with independence across i . In general, the variance λ2 is unknown,
but we treat it as a known parameter of our model, and then estimate it along with
all the other parameters of our model, as discussed below in Sect. 3.3.6.

These assumptions of constant variance (called homoscedasticity) and indepen-
dence make the analysis significantly easier, although they are often violated in prac-
tice. Experimental conditions that tend to violate these assumptions are discussed
below, as are versions of GP regression that can be used when they are violated.

Analysis of independent homoscedastic noise

To perform inference under independent homoscedastic noise, and calculate a pos-
terior distribution on the value of the function f (x∗) at a given point x∗, our first step
is to write down the joint distribution of our observations y1, . . . , yn and the quantity
we wish to predict, f (x∗), under the prior. That is, we write down the distribution of
the vector [y1, . . . , yn, f (x∗)].

We first observe that [y1, . . . , yn, f (x∗)] is the sum of [f (x1), . . . , f (xn), f (x∗)]
and another vector, [ε1, . . . , εn, 0]. The first vector has a multivariate normal dis-
tribution given by (3.4). The second vector is independent of the first and is also
multivariate normal, with a mean vector that is identically 0, and a covariance matrix
diag(λ2, . . . ,λ2, 0). The sum of two independent multivariate normal random vec-
tors is itself multivariate normal, with a mean vector and covariance matrix given,
respectively, by the sums of the mean vectors and covariance matrices of the sum-
mands. This gives the distribution of [y1, . . . , yn, f (x∗)] as
[

y1:n
f (x∗)

]

∼ Normal

([
μ0(x1:n)
μ0(x∗)

]

,

[
Σ0(x1:n, x1:n) + λ2 In Σ0(x1:n, x∗)

Σ0(x∗, x1:n) Σ0(x∗, x∗)

])

, (3.9)

where In is the n-dimensional identity matrix.
As we did in Sect. 3.3.3, we can use Proposition 1 with the above expression to

compute the posterior on f (x∗) given f (x1:n). We obtain,

μn(x∗) = μ0(x∗) + Σ0(x∗, x1:n)
[
Σ0(x1:n, x1:n) + λ2 In

]−1
(y1:n − μ0(x1:n))

(3.10)

σ2
n(x∗) = Σ0(x∗, x∗) − Σ0(x∗, x1:n)

[
Σ0(x1:n, x1:n) + λ2 In

]−1
Σ0(x1:n, x∗).

(3.11)

If we set λ2 = 0, so there is no noise, then we recover (3.5) and (3.6).

56 P.I. Frazier and J. Wang

50 100 150 200 250 300
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

va
lu

e

Fig. 3.2 Illustration of Gaussian process regression with noisy evaluations. As in Fig. 3.1, the
circles show previously evaluated points, (xi , yi), where yi is f (xi) perturbed by constant-variance
independent noise. The solid line shows the posterior mean, μn(x), as a function of x , which is an
estimate of the underlying function f , and the dashed lines show a Bayesian credible interval for f ,
calculated as μn(x) ± 1.96σn(x)

Figure3.2 shows an example of a posterior distribution calculated with Gaussian
process regression with noisy observations. Notice that the posterior mean no longer
interpolates the observations, and the credible interval has a strictly positive width at
points where we have measured. Noise prevents us from observing function values
exactly, and so we remain uncertain about the function value at points we have
measured.

Going beyond homoscedastic independent noise

Constant variance is violated if the experimental noise differs across materials
designs, which occurs most frequently when noise arises during the synthesis of
the material itself, rather than during the evaluation of a material that has already
been created. Some work has been done to extend Gaussian process regression to
flexibly model heteroscedastic noise (i.e., noise whose variance changes) [18–21].
The main idea in much of this work is to use a second Gaussian process to model
the changing variance across the input domain. Much of this work assumes that the
noise is independent and Gaussian, though [21] considers non-Gaussian noise.

Independence is most typically violated, in the context of physical experiments,
when the synthesis and evaluation of multiple materials designs is done together,
and the variation in some shared component simultaneously influences these designs,
e.g., through variation in the temperature while the designs are annealing together, or
through variation in the quality of some constituent used in synthesis. We are aware
of relatively little work modeling dependent noise in the context of Gaussian process
regression and Bayesian optimization, with one exception being [22].

3 Bayesian Optimization for Materials Design 57

3.3.6 Parameter Estimation

The mean and covariance functions contain several parameters. For example, if we
use the squared exponential kernel, a constant mean function, and observations have
independent homoscedastic noise, then we must choose or estimate the parameters
μ,α,β1, . . . ,βd ,λ. These parameters are typically called hyperparameters because
they are parameters of the prior distribution. (λ2 is actually a parameter of the like-
lihood function, but it is convenient to treat it together with the parameters of the
prior.) While one may simply choose these hyperparameters directly, based on intu-
ition about the problem, a more common approach is to choose them adaptively,
based on data.

To accomplish this, we write down an expression for the probability of the
observed data y1:n in terms of the hyperparameters, marginalizing over the uncer-
tainty on f (x1:n). Then, we optimize this expression over the hyperparameters to
find settings that make the observed data as likely as possible. This approach to
setting hyperparameters is often called empirical Bayes, and it can be seen as an
approximation to full Bayesian inference.

We detail this approach for the squared exponential kernel with a constant mean
function. Estimation for other kernels and mean functions is similar. Using the prob-
ability distribution of y1:n from (3.9), and neglecting constants, the natural logarithm
of this probability, log p(y1:n | x1:n) (called the “log marginal likelihood”), can be
calculated as

−1

2
(y1:n − μ)T

(
Σ0(x1:n, x1:n) + λ2 In

)−1
(y1:n − μ) − 1

2
log |Σ0(x1:n, x1:n) + λ2 In |,

where | · | applied to a matrix indicates the determinant.
To find the hyperparameters that maximize this log marginal likelihood (the

neglected constant does not affect the location of the maximizer), we will take partial
derivatives with respect to each hyperparameter. We will then use them to find maxi-
mizers of μ and σ2 := α+λ2 analytically, and then use gradient-based optimization
to maximize the other hyperparameters.

Taking a partial derivative with respect to μ, setting it to zero, and solving for μ,
we get that the value of μ that maximizes the marginal likelihood is

μ̂ =
∑n

i=1

(
(Σ0(x1:n, x1:n) + λ2 In)

−1y1:n
)

i∑n
i, j=1(Σ0(x1:n, x1:n) + λ2 In)

−1
i j

.

Define R as the matrix with components

Ri j =

⎧
⎪⎨

⎪⎩

1 i = j,

g exp

(

−
d∑

i=1
βi (xi − x j)

2

)

i �= j,

58 P.I. Frazier and J. Wang

where g = α
σ2 . Then Σ0(x1:n, x1:n) + λ2 In = σ2R and μ̂ can be written in terms

of R as μ̂ = Σn
i=1(R−1 y1:n)i

Σn
i, j=1 R−1

i j
. The log marginal likelihood (still neglecting constants)

becomes

log p(y1:n | x1:n) ∼ −1

2
(y1:n − μ̂)T (σ2R)−1(y1:n − μ̂) − 1

2
log |σ2R|.

Taking the partial derivative with respect to σ2, and noting that μ̂ does not depend
on σ2, we solve for σ2 and obtain

σ̂2 = 1

n
(y1:n − μ̂)R−1(y1:n − μ̂).

Substituting this estimate, the log marginal likelihood becomes

log p(y1:n | x1:n) ∼ − log

(
1

n
|R| 1

n (y1:n − μ̂)T R−1(y1:n − μ̂)

)

. (3.12)

The expression (3.12) cannot in general be optimized analytically. Instead,
one typically optimizes it numerically using a first- or second-order optimization
algorithm, such as Newton’s method or gradient descent, obtaining estimates for
β1, . . . ,βd and g. These estimates are in turn substituted to provide an estimate of R,
fromwhich estimates μ̂ and σ̂2 may be computed. Finally, using σ̂2 and the estimated
value of g, we may estimate α and λ.

3.3.7 Diagnostics

When using Gaussian process regression, or any other machine learning technique,
it is advisable to check the quality of the predictions, and to assess whether the
assumptionsmade by themethod aremet. Oneway to do this is illustrated by Fig. 3.3,
which comes from a simulation of blood flow near the heart, based on [23], for which
we get exact (not noisy) observations of f (x).

This plot is created with a technique called leave-one-out cross validation. In this
technique, we iterate through the datapoints x1:n , y1:n , and for each i ∈ {1, . . . , n},
we train a Gaussian process regression model on all of the data except xi , yi , and
then use it, together with xi , to predict what the value yi should be. We obtain from
this a posterior mean (the prediction), call it μ−i (xi), and also a posterior standard
deviation, call it σ−i (xi). When calculating these estimates, it is best to separately
re-estimate the hyperparameters each time, leaving out the data (xi , yi). We then
calculate a 95% credible interval μ−i (xi) ± 2σ−i (xi), and create Fig. 3.3 by plotting
“Predicted” versus “Actual”, where the “Actual” coordinate (on the x-axis) is yi , and
the “Predicted” value (on the y-axis) is pictured as an error bar centered at μ−i (xi)

with half-width 2σ−i (xi).

3 Bayesian Optimization for Materials Design 59

Fig. 3.3 Diagnostic plot for
Gaussian process regression,
created with leave-one-out
cross validation. For each
point in our dataset, we hold
that point (xi , yi) out, train
on the remaining points,
calculate a 95% credible
interval for yi , and plot this
confidence interval as an
error bar whose x-coordinate
is the actual value yi . If
Gaussian process regression
is working well, 95% of the
error bars will intersect the
diagonal line
Predicted=Actual

If the uncertainty estimates outputted by Gaussian process regression are behav-
ing as anticipated, then approximately 95% of the credible intervals will intersect
the diagonal line Predicted=Actual. Moreover, if Gaussian process regression’s pre-
dictive accuracy is high, then the credible intervals will be short, and their centers
will be close to this same line Predicted=Actual.

This idea may be extended to noisy function evaluations, under the assumption
of independent homoscedastic noise. To handle the fact that the same point may be
sampledmultiple times, letm(x) be the number of times that a point x ∈ {x1, . . . , xn}
was sampled, and let y(x) be the average of the observed values at this point. More-
over, by holding out all m(x) samples of x and training Gaussian process regression,
we would obtain a normal posterior distribution on f (xi) that has mean μ−i (xi) and
standard deviation σ−i (xi).

Since y(xi) is then the sum of f (xi) and some normally distributed noise with
mean 0 and variance λ2/m(xi), the resulting distribution of y(xi) is normal with

mean μ−i (xi) and standard deviation
√

σ2
−i (xi) + λ2/m(xi).

From this, a 95%credible interval for y(xi) is then μ−i (xi)±2
√

σ2−i (xi) + λ2/m(xi).
We would plot Predicted versus Observed by putting this credible interval along
the y-axis at x-coordinate y(xi). If Gaussian process regression is working well,
then approximately 95% of these credible intervals will intersect the line Pre-
dicted=Observed.

For Gaussian process regression to best support Bayesian optimization, it is typ-
ically most important to have good uncertainty estimates, and relatively less impor-
tant to have high predictive accuracy. This is because Bayesian optimization uses
Gaussian process regression as a guide for deciding where to sample, and so if
Gaussian process regression reports that there is a great deal of uncertainty at a par-
ticular location and thus low predictive accuracy, Bayesian optimization can choose
to sample at this location to improve accuracy. Thus, Bayesian optimization has

60 P.I. Frazier and J. Wang

a recourse for dealing with low predictive accuracy, as long as the uncertainty is
accurately reported. In contrast, if Gaussian process regression estimates poor per-
formance at a location that actually has near-optimal performance, and also provides
an inappropriately low error estimate, then Bayesian optimization may not sample
there within a reasonable timeframe, and thus may never correct the error.

If either the uncertainty is incorrectly estimated, or the predictive accuracy is
unsatisfactorily low, then the most common “fixes” employed are to adopt a different
covariance kernel, or to transform the objective function f . If the objective function
is known to be non-negative, then the transformations log(f) and

√
f are convenient

for optimization because they are both strictly increasing, and so do not change the
set of maximizers (or minimizers). If f is not non-negative, but is bounded below
by some other known quantity a, then one may first shift f upward by a.

3.3.8 Predicting at More Than One Point

Below, to support the development of the knowledge-gradient method in Sects. 3.4.2
and 3.6, it will be useful to predict the value of f at multiple points, x∗

1 , . . . , x∗
k ,

with noise. To do so, we could certainly apply (3.10) and (3.11) separately for each
x∗
1 , . . . , x∗

k , and this would provide us with both an estimate (the posterior mean) and
a measure of the size of the error in this estimate (the posterior variance) associated
with each f (x∗

i). It would not, however, quantify the relationship between the errors
at several different locations. For this, we must perform the estimation jointly.

As we did in Sect. 3.3.5, we begin with our prior on [y1:n, f (x∗
1:k)], which is,

[
y1:n

f (x∗
1:k)

]

∼ Normal

([
μ0(x1:n)
μ0(x∗

1:k)

]

,

[
Σ0(x1:n, x1:n) + λ2 In Σ0(x1:n, x∗

1:k)
Σ0(x∗

1:k, x1:n) Σ0(x∗
1:k, x∗

1:k)

])

,

We thenuseProposition 1 to compute the posterior on f (x∗
1:k)given f (x1:n), which

ismultivariate normalwithmean vectorμn(x∗
1:k) and covariancematrixΣn(x∗

1:k, x∗
1:k)

given by,

μn(x∗
1:k) = μ0(x∗

1:k) + Σ0(x∗
1:k , x1:n)

[
Σ0(x1:n, x1:n) + λ2 In

]−1
(y1:n − μ0(x1:n)),

(3.13)

Σn(x∗
1:k , x∗

1:k) = Σ0(x∗
1:k , x∗

1:k) − Σ0(x∗
1:k , x1:n)

[
Σ0(x1:n, x1:n) + λ2 In

]−1
Σ0(x1:n, x∗

1:k).
(3.14)

We see that setting k = 1 provides the expressions (3.10) and (3.11) from
Sect. 3.3.5.

3 Bayesian Optimization for Materials Design 61

3.3.9 Avoiding Matrix Inversion

The expressions (3.10) and (3.11) for the posterior mean and variance in the noisy
case, and also (3.7) and (3.8) in the noise-free case, include a matrix inversion term.
Calculating this matrix inversion is slow and can be hard to accomplish accurately
in practice, due to the finite precision of floating point implementations. Accuracy
is especially an issue when Σ has terms that are close to 0, which arises when data
points are close together.

In practice, rather than calculating a matrix inverse directly, it is typically faster
and more accurate to use a mathematically equivalent algorithm, which performs a
Cholesky decomposition and then solves a linear system. This algorithm is described
below, and is adapted from Algorithm 2.1 in Sect. 2.3 of [14]. This algorithm also
computes the log marginal likelihood required for estimating hyperparameters in
Sect. 3.3.6.

Algorithm 1 Implementation using Cholesky decomposition
Require: x1:n (inputs), y1:n (responses), Σ0(x, x ′) (covariance function), λ2 (variance of noise),

x∗ (test input).
1: L = Cholesky

(
Σ0(x1:n, x1:n) + λ2 In

)

2: δ = LT \ (L\ (y1:n − μ0(x1:n)))

3: μn(x∗) = μ0(x∗) + Σ0(x∗, x1:n)δ
4: v = L\Σ0(x1:n, x∗)
5: σ2

n(x∗) = Σ0(x∗, x∗) − vT v

6: log p(y1:n | x1:n) = − 1
2 (y1:n − μ0(x1:n))T α − Σi log Lii − n

2 log 2π
7: return μn(x∗) (mean), σ2

n(x∗) (variance), log p(y1:n | x1:n) (log marginal likelihood).

3.4 Choosing Where to Sample

Being able to infer the value of the objective function f (x) at unevaluated points
based on past data x1:n ,y1:n is only one part of finding good designs. The other part
is using this ability to make good decisions about where to direct future sampling.

Bayesian optimization methods addresses this by using a measure of the value of
the information that would be gained by sampling at a point. Bayesian optimization
methods then choose the point to sample next for which this value is largest. A
number of different ways of measuring the value of information have been proposed.
Here, we describe two in detail, expected improvement [2, 4], and the knowledge
gradient [24, 25], and then survey a broader collection of design criteria.

62 P.I. Frazier and J. Wang

3.4.1 Expected Improvement

Expected improvement, as it was first proposed, considered only the case wheremea-
surements are free from noise. In this setting, suppose we have taken n measurements
at locations x1:n and observed y1:n . Then

f ∗
n = max

i=1,...,n
f (xi)

is the best value observed so far. Suppose we are considering evaluating f at a new
point x . After this evaluation, the best value observed will be

f ∗
n+1 = max(f (x), f ∗

n),

and the difference between these values, which is the improvement due to sampling, is

f ∗
n+1 − f ∗

n = max(f (x) − f ∗
n , 0) = (f (x) − f ∗

n)+,

where a+ = max(a, 0) indicates the positive part function.
Ideally, we would choose x to make this improvement as large as possible. Before

actually evaluating f (x), however, we do not know what this improvement will be,
so we cannot implement this strategy. However, we do have a probability distribution
on f (x), from Gaussian process regression. The expected improvement, indicated
EI(x), is obtained by taking the expectation of this improvement with respect to the
posterior distribution on f (x) given x1:n, y1:n .

EI(x) = En[(f (x) − f ∗
n)+], (3.15)

where En[·] = E[· |x1:n, y1:n] indicates the expectation with respect to the posterior
distribution.

The expectation in (3.15) can be computed more explicitly, in terms of the nor-
mal cumulative distribution function (cdf) Φ(·), and the normal probability density
function (pdf) ϕ(·). Recalling from Sect. 3.3.3 that f (x) ∼ Normal(μn(x),σ2

n(x)),
where μn(x) and σ2

n(x) are given by (3.5) and (3.6), and integrating with respect
to the normal distribution (a derivation may be found in the Derivations and Proofs
section), we obtain,

EI(x) = (μn(x) − f ∗
n)Φ

(
μn(x) − f ∗

n

σn(x)

)

+ σn(x)ϕ

(
μn(x) − f ∗

n

σn(x)

)

. (3.16)

Figure3.4 plots this expected improvement for a problem with a one-dimensional
input space. We can see from this plot that the expected improvement is largest at
locationswhere both the posteriormeanμn(x) is large, and also the posterior standard
deviation σn(x) is large. This is reasonable because those points that are most likely
to provide large gains are those points that have a high predicted value, but that also

3 Bayesian Optimization for Materials Design 63

50 100 150 200 250 300
−2

−1

0

1

2

x

va
lu

e

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

x

E
I

Fig. 3.4 Upper panel shows the posterior distribution in a problem with no noise and a one-
dimensional input space, where the circles are previously measured points, the solid line is the
posterior mean μn(x), and the dashed lines are at μn(x)±2σn(x). Lower panel shows the expected
improvement EI(x) computed from this posterior distribution. An “x” is marked at the point with
the largest expected improvement, which is where we would evaluate next

have significant uncertainty. Indeed, at points where we have already observed, and
thus have no uncertainty, the expected improvement is 0. This is consistent with the
idea that, in a problem without noise, there is no value to repeating an evaluation that
has already been performed.

This idea of favoring points that, on the one hand, have a large predicted value, but,
on the other hand, have a significant amount of uncertainty, is called the exploration
versus exploitation tradeoff, and appears in areas beyond Bayesian optimization,
especially in reinforcement learning [26, 27] and multi-armed bandit problems [28,
29]. In these problems, we are taking actions repeatedly over time whose payoffs are
uncertain, andwish to simultaneously get good immediate rewards,while learning the
reward distributions for all actions to allow us to get better rewards in the future. We
emphasize, however, that the correct balance between exploration and exploitation
is different in Bayesian optimization as compared with multi-armed bandits, and
should more favor exploration: in optimization, the advantage of measuring where
the predicted value is high is that these areas tend to give more useful information
about where the optimum lies; in contrast, in problems where we must “learn while
doing” like multi-armed bandits, evaluating an action with high predicted reward is
good primarily because it tends to give a high immediate reward.

64 P.I. Frazier and J. Wang

Fig. 3.5 Contour plot of the
expected improvement, as a
function of the difference in
means Δn(x) := μn(x) − f ∗

n
and the posterior standard
deviation σn(x). The
expected improvement is
larger when the difference in
means is larger, and when the
standard deviation is larger

σ
n
(x)

Δ n(x
)

0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

We can also see the exploration versus exploitation tradeoff implicit in the
expected improvement function in the contour plot, Fig. 3.5. This plot shows the
contours of EI(x) as a function of the posterior mean, expressed as a difference from
the previous best, Δn(x) := μn(x)− f ∗

n , and the posterior standard deviation σn(x).
Given the expression (3.16), Bayesian optimization algorithms based on expected

improvement, such as the Efficient Global Optimization (EGO) algorithm proposed
by [4], and the earlier algorithms of Mockus (see, e.g., the monograph [2]), then
recommend sampling at the point with the largest expected improvement. That is,

xn+1 ∈ argmax
x

EI(x). (3.17)

Finding the point with largest expected improvement is itself a global optimiza-
tion problem, like the original problem that we wished to solve (3.1). Unlike (3.1),
however, EI(x) can be computed quickly, and its first and second derivatives can
also be computed quickly. Thus, we can expect to be able to solve (3.1) relatively
well using an off-the-shelf optimization method for continuous global optimization.
A common approach is to use a local solver for continuous optimization, such as
gradient ascent, in a multistart framework, where we start the local solver frommany
starting points chosen at random, and then select the best local solution discovered. In
Sect. 3.5 we describe several codes that implement expected improvement methods,
and each makes its own choice about how to solve (3.17).

The algorithm given by (3.17) is optimal under three assumptions: (1) that we
will take only a single sample; (2) there is no noise in our samples; and (3) that the
x we will report as our final solution (i.e., the one that we will implement) must be
among those previously sampled.

In practice, assumption (1) is violated, as Bayesian optimization methods like
(3.17) are applied iteratively, and is made simply because it simplifies the analy-
sis. Being able to handle violations of assumption (1) in a more principled way
is of great interest to researchers working on Bayesian optimization methodology,
and some partial progress in that direction is discussed in Sect. 3.4.3. Assumption

3 Bayesian Optimization for Materials Design 65

(2) is also often violated in a broad class of applications, especially those involving
physical experiments or stochastic simulations. In the next section, we present an
algorithm, the knowledge-gradient algorithm [24, 25], that relaxes this assumption
(2), and also allows relaxing assumption (3) if this is desired.

3.4.2 Knowledge Gradient

When we have noise in our samples, the derivation of expected improvement meets
with difficulty. In particular, if we have noise, then f ∗

n = maxi=1,...,n f (xi) is not
precisely known, preventing us from using the expression (3.16).

One may simply take a quantity like maxi=1,...,n yi that is similar in spirit to
f ∗
n = maxi=1,...,n f (xi), and replace f ∗

n in (3.16) with this quantity, but the resulting
algorithm is no longer justified by an optimality analysis. Indeed, for problems with
a great deal of noise, maxi=1,...,n yi tends to be significantly larger than the true
underlying value of the best point previously sampled, and so the resulting algorithm
may be led to make a poor tradeoff between exploration and exploitation, and exhibit
poor performance in such situations.

Instead, the knowledge-gradient algorithm [24, 25] takes a more principled
approach, and starts where the derivation of expected improvement began, but fully
accounts for the introduction of noise (assumption 2 in Sect. 3.4.1), and the possibil-
ity that we wish to search over a class of solutions broader than just those that have
been previously evaluated when recommending the final solution (assumption 3 in
Sect. 3.4.1).

We first introduce a set An , which is the set of points from which we would
choose the final solution, if we were asked to recommend a final solution at time
n, based on x1:n , y1:n . For tractability, we suppose An is finite. For example, if A is
finite, as it often is in discrete optimization via simulation problems, we could take
An = A, allowing the whole space of feasible solutions. This choice was considered
in [24]. Alternatively, one could take An = {x1, . . . , xn}, stating that one is willing
to consider only those points that have been previously evaluated. This choice is
consistent with the expected improvement algorithm. Indeed, we will see that when
one makes this choice, and measurements are free from noise, then the knowledge-
gradient algorithm is identical to the expected improvement algorithm. Thus, the
knowledge-gradient algorithm generalizes the expected improvement algorithm.

If we were to stop sampling at time n, then the expected value of a point x ∈ An

based on the information available would be En[f (x)] = μn(x). In the special case
when evaluations are free from noise, this is equal to f (x), but when there is noise,
these two quantities may differ. If we needed to report a final solution, we would then
choose the point in An for which this quantity is the largest, i.e., we would choose
argmaxx∈An

μn(x). Moreover, the expected value of this solution would be

μ∗
n = max

x∈An

μn(x).

66 P.I. Frazier and J. Wang

If evaluations are free from noise and An = {x1:n}, then μ∗
n is equal to f ∗

n , but in
general these quantities may differ.

If we take one additional sample, then the expected value of the solution wewould
report based on this additional information is

μ∗
n+1 = max

x∈An+1

μn+1(x),

where as before, An+1 is some finite set of points we would be willing to consider
when choosing a final solution. Observe in this expression that μn+1(x) is not neces-
sarily the same as μn(x), even for points x ∈ {x1:n} that we had previously evaluated,
but that μn+1(x) can be computed from the history of observations x1:n+1, y1:n+1.

The improvement in our expected solution value is then the difference between
these two quantities, μ∗

n+1 − μ∗
n . This improvement is random at time n, even fixing

xn+1, through its dependence on yn+1, but we can take its expectation. The resulting
quantity is called the knowledge-gradient (KG) factor, and is written,

KGn(x) = En
[
μ∗

n+1 − μ∗
n | xn+1 = x

]
. (3.18)

Calculating this expectation is more involved than calculating the expected
improvement, but nevertheless can also be done analytically in terms of the nor-
mal pdf and normal cdf. This is described in more detail in the Derivations and
Proofs section.

The knowledge-gradient algorithm is then the one that chooses the point to sample
next that maximizes the KG factor,

argmax
x

KGn(x).

The KG factor for a one-dimensional optimization problem with noise is pictured
in Fig. 3.6. We see a similar tradeoff between exploration and exploitation, where
the KG factor favors measuring points with a large μn(x) and a large σn(x). We also
see local minima of the KG factor at points where we previously evaluated, just as
with the expected improvement, but because there is noise in our samples, the value
at these points is not 0—indeed, when there is noise, it may be useful to sample
repeatedly at a point.

Choice of An and An+1

Recall that the KG factor depends on the choice of the sets An and An+1, through
the dependence of μ∗

n and μ∗
n+1 on these sets. Typically, if we choose these sets to

contain more elements, then we allow μ∗
n and μ∗

n+1 to range over a larger portion of
the space, andwe allow theKG factor calculation tomore accurately approximate the
value that would result if we allowed ourself to implement the best option. However,
as we increase the size of these sets, computing the KG factor is slower, making
implementation of the KG method more computationally intensive.

3 Bayesian Optimization for Materials Design 67

50 100 150 200 250 300
−2

−1

0

1

2

x

va
lu

e

50 100 150 200 250 300

−14

−12

−10

−8

−6

−4

−2

x

lo
g(

K
G

 fa
ct

or
)

Fig. 3.6 Upper panel shows the posterior distribution in a problem with independent normal
homoscedastic noise and a one-dimensional input space, where the circles are previously measured
points, the solid line is the posterior mean μn(x), and the dashed lines are at μn(x)±2σn(x). Lower
panel shows the natural logarithm of the knowledge-gradient factor KG(x) computed from this
posterior distribution, where An = An+1 are the discrete grid {1, . . . , 300}. An “x” is marked at
the point with the largest KG factor, which is where the KG algorithm would evaluate next

For applicationswith a finite A, [24] proposed setting An+1 = An = A, whichwas
seen to require fewer function evaluations to find points with large f , in comparison
with expected improvement on noise-free problems, and in comparison with another
Bayesian optimization method, sequential kriging optimization (SKO) [30] on noisy
problems. However, the computation and memory required grows rapidly with the
size of A, and is typically not feasible when A contains more than 10,000 points.

For large-scale applications, [25] proposed setting An+1 = An = {x1:n+1} in
(3.18), and called the resulting quantity the approximate knowledge gradient (AKG),
observing that this choice maintains computational tractability as A grows, but also
offers good performance. This algorithm is implemented in the DiceKriging pack-
age [31].

Finally, in noise-free problems (but not in problems with noise), setting An+1 =
{x1:n+1} and An = {x1:n} recovers expected improvement.

68 P.I. Frazier and J. Wang

3.4.3 Going Beyond One-Step Analyses, and Other Methods

Both expected improvement and the knowledge-gradient method are designed to be
optimal, in the special case where we will take just one more function evaluation
and then choose a final solution. They are not, however, known to be optimal for the
more general case in which we will take multiple measurements, which is the way
they are used in practice.

The optimal algorithm for this more general setting is understood to be the solu-
tion to a partially observable Markov decision process, but actually computing the
optimal solution using this understanding is intractable using current methods [32].
Some work has been done toward the goal of developing such an optimal algorithm
[33], but computing the optimal algorithm remains out of reach. Optimal strategies
have been computed for other closely related problems in optimization of expensive
noisy functions, including stochastic root-finding [34], multiple comparisons with
a standard [35], and small instances of discrete noisy optimization with normally
distributed noise (also called “ranking and selection”) [36].

Expected improvement and the knowledge gradient are both special cases of the
more general concept of value of information, or expected value of sample infor-
mation (EVSI) [37], as they calculate the expected reward of a final implementation
decision as a function of the posterior distribution resulting from some information,
subtract from this the expected reward that would result from not having the informa-
tion, and then take the expectation of this difference with respect to the information
itself.

Many other Bayesian optimization methods have been proposed. A few of these
methods optimize the value of information, but are calculated using different assump-
tions than those used to derive expected improvement or value of information. A
larger number of these methods optimize quantities that do not correspond to a value
of information, but are derived using analyses that are similar in spirit. These include
methods that optimize the probability of improvement [1, 38, 39], the entropy of
the posterior distribution on the location of the maximum [40], and other composite
measures involving the mean and the standard deviation of the posterior [30].

Other Bayesian optimization methods are designed for problem settings that do
not match the assumptions made in this tutorial. These include [41–43], which con-
sider multiple objectives; [6, 44–46], which consider multiple simultaneous func-
tion evaluations; [47–49], which consider objective functions that can be evalu-
ated with multiple fidelities and costs; [50], which considers Bernoulli outcomes,
rather than normally distributed ones; [51], which considers expensive-to-evaluate
inequality constraints; and [52], which considers optimization over the space of small
molecules.

3 Bayesian Optimization for Materials Design 69

3.5 Software

There are a number of excellent software packages, both freely available and com-
mercial, that implement the methods described in this chapter, and other similar
methods.

• Metrics Optimization Engine (MOE), an open-source code in C++ and Python,
developed by the authors and engineers at Yelp. http://yelp.github.io/MOE/,

• Spearmint, an open-source code in Python, implementing algorithms described in
[6]. https://github.com/JasperSnoek/spearmint

• DiceKriging and DiceOptim, an open-source R package that implements expected
improvement, the approximate knowledge-gradient method, and a variety of algo-
rithms for parallel evaluations. An overview is provided in [31].
http://cran.r-project.org/web/packages/DiceOptim/index.html,

• TOMLAB, a commercial package for MATLAB. http://tomopt.com/tomlab/
• matlabKG, an open-source research code that implements the discrete knowledge-
gradient method for small-scale problems.
http://people.orie.cornell.edu/pfrazier/src.html

A list of software packages focused on Gaussian process regression (but not
Bayesian optimization) may be found at http://www.gaussianprocess.org/.

3.6 Conclusion

We have presented Bayesian optimization, including Gaussian process regression,
the expected improvement method, and the knowledge-gradient method. In mak-
ing this presentation, we wish to emphasize that this approach to materials design
acknowledges the inherent uncertainty in statistical prediction and seeks to guide
experimentation in a way that is robust to this uncertainty. It is inherently iterative,
and does not seek to circumvent the fundamental trial-and-error process.

This is in contrast with another approach to informatics in materials design, which
holds the hope that predictive methods can short-circuit the iterative loop entirely. In
this alternative view of the world, one hopes to create extremely accurate prediction
techniques, either through physically-motivated ab initio calculations, or using data-
driven machine learning approaches, that are so accurate that one can rely on the
predictions alone rather than on physical experiments. If this can be achieved, then
we can search over materials designs in silico, find those designs that are predicted
to perform best, and test those designs alone in physical experiments.

For this approach to be successful, one must have extremely accurate predictions,
which limits its applicability to settings where this is possible. We argue that, in con-
trast, predictive techniques can be extremely powerful even if they are not perfectly
accurate, as long as they are used in a way that acknowledges inaccuracy, builds
in robustness, and reduces this inaccuracy through an iterative dialog with physical

http://yelp.github.io/MOE/
https://github.com/JasperSnoek/spearmint
http://cran.r-project.org/web/packages/DiceOptim/index.html
http://tomopt.com/tomlab/
http://people.orie.cornell.edu/pfrazier/src.html
http://www.gaussianprocess.org/

70 P.I. Frazier and J. Wang

reality mediated by physical experiments. Moreover, we argue that mathematical
techniques like Bayesian optimization, Bayesian experimental design, and optimal
learning provide us the mathematical framework for accomplishing this goal in a
principled manner, and for using our power to predict as effectively as possible.

Acknowledgments Peter I. Frazier was supported by AFOSR FA9550-12-1-0200, AFOSR
FA9550-15-1-0038, NSF CAREER CMMI-1254298, NSF IIS-1247696, and the ACSF’s AVF.
Jialei Wang was supported by AFOSR FA9550-12-1-0200.

Derivations and Proofs

This section contains derivations and proofs of equations and theoretical results found
in the main text.

Proof of Proposition 1

Proof Using Bayes’ rule, the conditional probability density of θ[2] at a point u[2]
given that θ[1] = u[1] is

p(θ[2] = u[2] | θ[1] = u[1]) = p(θ[1] = u[1], θ[2] = u[2])
p(θ[1] = u[1])

∝ p(θ[1] = u[1], θ[2] = u[2])

∝ exp

(

−1

2

[
u[1] − μ[1]
u[2] − μ[2]

]T [
Σ[1,1] Σ[1,2]
Σ[2,1] Σ[2,2]

]−1 [u[1] − μ[1]
u[2] − μ[2]

])

. (3.19)

To deal with the inverse matrix in this expression, we use the following identity for

inverting a block matrix: the inverse of the block matrix

[
A B
C D

]

, where both A and

D are invertible square matrices, is

[
A B
C D

]−1

=
[

(A − B D−1C)−1 −(A − B D−1C)−1B D−1

−(D − C A−1B)−1C A−1 (D − C A−1B)−1

]

. (3.20)

Applying (3.20) to (3.19), and using a bit of algebraic manipulation to get rid of
constants, we have

p(θ[2] = u[2] | θ[1] = u[1]) ∝ exp

(

−1

2
(u[2] − μnew)T (Σnew)−1(u[2] − μnew)

)

,

(3.21)

where μnew = μ[2] −Σ[2,1]Σ−1
[1,1](u[1] −μ[1]) and Σnew = Σ[2,2] −Σ[2,1]Σ−1

[1,1]Σ[1,2].

3 Bayesian Optimization for Materials Design 71

We see that (3.21) is simply the unnormalized probability density function of
a normal distribution. Thus the conditional distribution of θ[2] given θ[1] = u[1] is
multivariate normal, with mean μnew and covariance matrix Σnew.

Derivation of Equation (3.16)

Since f (x) ∼ Normal(μn(x),σ2
n(x)), the probability density of f (x) is p(f (x) =

z) = 1√
2π

exp
(
(z − μn(x))2/2σn(x)2

)
. We use this to calculate EI(x):

EI(x) = En[(f (x) − f ∗
n)+]

=
∫ ∞

f ∗
n

(z − f ∗
n)

1√
2πσn(x)

e
−(z−μn (x))2

2σ2n (x) dz

=
∫ ∞

f ∗
n

z
1√

2πσn(x)
e

−(z−μn (x))2

2σ2n (x) dz − f ∗
n

(

1 − Φ

(
f ∗
n − μn(x)

σn(x)

))

=
∫ ∞

f ∗
n

(μn(x) + (z − μn(x)))
1√

2πσn(x)
e

−(z−μn (x))2

2σ2n (x) dz − f ∗
n

(

1 − Φ

(
f ∗
n − μn(x)

σn(x)

))

=
∫ ∞

f ∗
n

(z − μn(x))
1√

2πσn(x)
e

−(z−μn (x))2

2σ2n (x) dz + (μn(x) − f ∗
n)

(

1 − Φ

(
f ∗
n − μn(x)

σn(x)

))

= σn(x)
1√
2π

e
−(f ∗

n −μn (x))2

2σn (x)2 + (μn(x) − f ∗
n)

(

1 − Φ

(
f ∗
n − μn(x)

σn(x)

))

= (μn(x) − f ∗
n)

(

1 − Φ

(
f ∗
n − μn(x)

σn(x)

))

+ σn(x)ϕ

(
f ∗
n − μn(x)

σn(x)

)

= (μn(x) − f ∗
n)Φ

(
μn(x) − f ∗

n

σn(x)

)

+ σn(x)ϕ

(
μn(x) − f ∗

n

σn(x)

)

.

Calculation of the KG factor

The KG factor (3.18) is calculated by first considering how the quantity μ∗
n+1 − μ∗

n
depends on the information that we have at time n, and the additional datapoint that
we will obtain, yn+1.

First observe that μ∗
n+1 − μ∗

n is a deterministic function of the vector [μn+1(x) :
x ∈ An+1] and other quantities that are known at time n. Then, by applying the
analysis in Sect. 3.3.5, but letting the posterior given x1:n, y1:n play the role of the
prior, we obtain the following version of (3.10), which applies to any given x ,

μn+1(x) = μn(x) + Σn(x, xn+1)

Σn(xn+1, xn+1) + λ2
(yn+1 − μn(xn+1)) . (3.22)

72 P.I. Frazier and J. Wang

In this expression, μn(·) and Σn(·, ·) are given by (3.13) and (3.14).
We see from this expression that μn+1(x) is a linear function of yn+1, with an

intercept and a slope that can be computed based on what we know after the nth
measurement.

We will calculate the distribution of yn+1, given what we have observed at time
n. First, f (xn+1)|x1:n, y1:n ∼ Normal (μn(xn+1),Σn(xn+1, xn+1)). Since yn+1 =
f (xn+1)+ εn+1, where εn+1 is independent with distribution εn+1 ∼ Normal(0,λ2),
we have

yn+1|x1:n, y1:n ∼ Normal
(
μn(xn+1),Σn(xn+1, xn+1) + λ2

)
.

Plugging the distribution of yn+1 into (3.22) and doing some algebra, we have

μn+1(x)|x1:n, y1:n ∼ Normal
(
μn(x), σ̃2(x, xn+1)

)
,

where σ̃(x, xn+1) = Σn(x,xn+1)√
Σn(xn+1,xn+1)+λ2

. Moreover, we can write μn+1(x) as

μn+1(x) = μn(x) + σ̃(x, xn+1)Z ,

where Z = (yn+1 − μn(xn+1))/
√

Σn(xn+1, xn+1) + λ2 is a standard normal random
variable, given x1:n and y1:n .

Now (3.18) becomes

KGn(x) = En

[

max
x ′∈An+1

μn(x ′) + σ̃(x ′, xn+1)Z | xn+1 = x

]

− μ∗
n.

Thus, computing the KG factor comes down to being able to compute the expectation
of themaximumof a collection of linear functions of a scalar normal randomvariable.
Algorithm 2 of [24], with software provided as part of the matlabKG library [53],
computes the quantity

h(a, b) = E

[

max
i=1,...,|a|(ai + bi Z)

]

− max
i=1,...,|a| ai

for arbitrary equal-length vectors a and b. Using this ability, and letting μn(An+1) be
the vector [μn(x ′) : x ′ ∈ An+1] and σ̃(An+1, x) be the vector [̃σ(x ′, x) : x ′ ∈ An+1],
we can write the KG factor as

KGn(x) = h(μn(An+1), σ̃(An+1, x)) + [max(μn(An+1)) − μ∗
n

]
.

If An+1 = An , as it is in the versions of the knowledge-gradient method proposed in
[24, 25], then the last term max(μn(An+1)) − μ∗

n is equal to 0 and vanishes.

3 Bayesian Optimization for Materials Design 73

References

1. H.J. Kushner, A new method of locating the maximum of an arbitrary multi- peak curve in the
presence of noise. J. Basic Eng. 86, 97–106 (1964)

2. J. Mockus, Bayesian Approach to Global Optimization: Theory and Applications (Kluwer
Academic, Dordrecht, 1989)

3. J. Mockus, V. Tiesis, A. Zilinskas, The application of Bayesian methods for seeking the
extremum, in Towards Global Optimisation, ed. by L.C.W. Dixon, G.P. Szego, vol. 2 (Elsevier
Science Ltd., North Holland, Amsterdam, 1978), pp. 117–129

4. D.R. Jones, M. Schonlau, W.J. Welch, Efficient Global Optimization of Expensive Black-Box
Functions. J. Global Optim. 13(4), 455–492 (1998)

5. A. Booker, J. Dennis, P. Frank, D. Serafini, V. Torczon, M.W. Trosset, Optimization using
surrogate objectives on a helicopter test example. Prog. Syst. Control Theor. 24, 49–58 (1998)

6. J. Snoek, H. Larochelle, R.P. Adams, Practical bayesian optimization of machine learning
algorithms. in Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)

7. E. Brochu, M. Cora, N. de Freitas, A tutorial on bayesian optimization of expensive cost func-
tions, with application to active user modeling and hierarchical reinforcement learning. Tech-
nical Report TR-2009-023, Department of Computer Science, University of British Columbia,
November 2009

8. A. Forrester, A. Sobester, A. Keane, Engineering Design Via Surrogate Modelling: A Practical
Guide (Wiley, West Sussex, UK, 2008)

9. T.J. Santner, B.W. Willians, W. Notz, The Design and Analysis of Computer Experiments
(Springer, New York, 2003)

10. M.J. Sasena, Flexibility and Efficiency Enhancements for Constrained Global Design Opti-
mization with Kriging Approximations. Ph.D. thesis, University of Michigan (2002)

11. D.G.Kbiob,A statistical approach to somebasicmine valuation problems on thewitwatersrand.
J. Chem. Metall. Min. Soc. S. Afr. (1951)

12. G. Matheron, The theory of regionalized variables and its applications, vol 5. École national
supérieure des mines (1971)

13. N. Cressie, The origins of kriging. Math. Geol. 22(3), 239–252 (1990)
14. C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning (MIT Press,

Cambridge, MA, 2006)
15. C.E. Rasmussen (2011), http://www.gaussianprocess.org/code, Accessed 15 July 2015
16. A.B. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin, Bayesian Data Analysis (CRC Press, Boca

Raton, FL, second edition, 2004)
17. J.O. Berger, Statistical decision theory and Bayesian analysis (Springer-Verlag, New York,

second edition) (1985)
18. B. Ankenman, B.L. Nelson, J. Staum, Stochastic kriging for simulation metamodeling. Oper.

Res. 58(2), 371–382 (2010)
19. P.W. Goldberg, C.K.I. Williams, C.M. Bishop, Regression with input-dependent noise: a

gaussian process treatment. Advances in neural information processing systems, p. 493–499
(1998)

20. K. Kersting, C. Plagemann, P. Pfaff, W. Burgard, Most likely heteroscedastic Gaussian process
regression. In Proceedings of the 24th international conference on Machine learning, ACM,
pp. 393–400 (2007)

21. C.Wang,Gaussian Process Regression with Heteroscedastic Residuals and Fast MCMC Meth-
ods. Ph.D. thesis, University of Toronto (2014)

22. P.I. Frazier, J. Xie, S.E. Chick, Value of information methods for pairwise sampling with
correlations, in Proceedings of the 2011 Winter Simulation Conference, ed. by S. Jain, R.R.
Creasey, J. Himmelspach, K.P. White, M. Fu (Institute of Electrical and Electronics Engineers
Inc, Piscataway, New Jersey, 2011), pp. 3979–3991

23. S. Sankaran,A.L.Marsden,The impact of uncertainty on shapeoptimizationof idealizedbypass
graft models in unsteady flow. Physics of Fluids (1994-present), 22(12):121–902 (2010)

http://www.gaussianprocess.org/code

74 P.I. Frazier and J. Wang

24. P.I. Frazier, W.B. Powell, S. Dayanik, The knowledge gradient policy for correlated normal
beliefs. INFORMS J. Comput. 21(4), 599–613 (2009)

25. W. Scott, P.I. Frazier, W.B. Powell, The correlated knowledge gradient for simulation opti-
mization of continuous parameters using gaussian process regression. SIAM J. Optim. 21(3),
996–1026 (2011)

26. L.P. Kaelbling, Learning in Embedded Systems (MIT Press, Cambridge, MA, 1993)
27. R.S. Sutton, A.G. Barto, Reinforcement Learning (The MIT Press, Cambridge, Massachusetts,

1998)
28. J. Gittins, K. Glazebrook, R.Weber. Multi-armed Bandit Allocation Indices. Wiley, 2nd edition

(2011)
29. A. Mahajan, D. Teneketzis, Multi-armed bandit problems. In D. Cochran A. O. Hero III, D. A.

Castanon, K. Kastella, (Ed.). Foundations and Applications of Sensor Management. Springer-
Verlag (2007)

30. D. Huang, T.T. Allen, W.I. Notz, N. Zeng, Global Optimization of Stochastic Black-Box Sys-
tems via Sequential Kriging Meta-Models. J. Global Optim. 34(3), 441–466 (2006)

31. O. Roustant, D. Ginsbourger, Y. Deville, Dicekriging, diceoptim: two R packages for the
analysis of computer experiments by kriging-based metamodelling and optimization. J. Stat.
Softw. 51(1), p. 54 (2012)

32. P.I. Frazier, Learning with Dynamic Programming. John Wiley and Sons (2011)
33. D. Ginsbourger, R. Riche, Towards gaussian process-based optimization with finite time hori-

zon. mODa 9–Advances in Model-Oriented Design and Analysis, p. 89–96 (2010)
34. R.Waeber, P.I. Frazier, S.G.Henderson,Bisection searchwith noisy responses. SIAMJ.Control

Optim. 51(3), 2261–2279 (2013)
35. J. Xie, P.I. Frazier, Sequential bayes-optimal policies for multiple comparisons with a known

standard. Oper. Res. 61(5), 1174–1189 (2013)
36. P.I. Frazier, Tutorial: Optimization via simulation with bayesian statistics and dynamic pro-

gramming, in Proceedings of the 2012 Winter Simulation Conference Proceedings, ed. by C.
Laroque, J. Himmelspach, R. Pasupathy, O. Rose, A.M. Uhrmacher (Institute of Electrical and
Electronics Engineers Inc., Piscataway, New Jersey, 2012), pp. 79–94

37. R.A. Howard, Information Value Theory. Syst. Sci. Cybern. IEEE Trans. 2(1), 22–26 (1966)
38. C.D. Perttunen, A computational geometric approach to feasible region division inconstrained

global optimization. in Proceedings of 1991 IEEE International Conference on Systems, Man,
and Cybernetics, 1991.’Decision Aiding for Complex Systems, pp. 585–590 (1991)

39. B.E. Stuckman, A global search method for optimizing nonlinear systems. Syst. Man Cybern.
IEEE Trans. 18(6), 965–977 (1988)

40. J. Villemonteix, E. Vazquez, E. Walter, An informational approach to the global optimization
of expensive-to-evaluate functions. J. Global Optim. 44(4), 509–534 (2009)

41. D.C.T. Bautista, A Sequential Design for Approximating the Pareto Front using the Expected
Pareto Improvement Function. Ph.D. thesis, The Ohio State University (2009)

42. P.I. Frazier, A.M. Kazachkov, Guessing preferences: a new approach to multi-attribute ranking
and selection, in Proceedings of the 2011 Winter Simulation Conference, ed. by S. Jain, R.R.
Creasey, J. Himmelspach, K.P. White, M. Fu (Institute of Electrical and Electronics Engineers
Inc, Piscataway, New Jersey, 2011), pp. 4324–4336

43. J. Knowles, ParEGO: A hybrid algorithm with on-line landscape approximation for expensive
multiobjective optimization problems. Evol. Comput. IEEE Trans. 10(1), 50–66 (2006)

44. S.C. Clark, J. Wang, E. Liu, P.I. Frazier, Parallel global optimization using an improved multi-
points expected improvement criterion (working paper, 2014)

45. D. Ginsbourger, R. Le Riche, L. Carraro, A multi-points criterion for deterministic parallel
global optimization based on kriging. In International Conference on Nonconvex Programming,
NCP07, Rouen, France, December 2007

46. D. Ginsbourger, R. Le Riche, and L. Carraro, Kriging is well-suited to parallelize optimization.
In Computational Intelligence in Expensive Optimization Problems, Springer, vol. 2, p. 131–
162 (2010)

3 Bayesian Optimization for Materials Design 75

47. A.I.J. Forrester, A. Sóbester, A.J. Keane, Multi-fidelity optimization via surrogate modelling.
Proc. R. Soc. A: Math. Phys. Eng. Sci. 463(2088), 3251–3269 (2007)

48. P.I. Frazier,W.B. Powell, H.P. Simão, Simulationmodel calibrationwith correlated knowledge-
gradients, in Proceedings of the 2009 Winter Simulation Conference Proceedings, ed. by M.D.
Rossetti, R.R.Hill, B. Johansson,A.Dunkin,R.G. Ingalls (Institute ofElectrical andElectronics
Engineers Inc, Piscataway, New Jersey, 2009), pp. 339–351

49. D. Huang, T.T. Allen, W.I. Notz, R.A. Miller, Sequential kriging optimization using multiple-
fidelity evaluations. Struct. Multi. Optim. 32(5), 369–382 (2006)

50. J. Bect, D. Ginsbourger, L. Li, V. Picheny, E. Vazquez, Sequential design of computer experi-
ments for the estimation of a probability of failure. Stat. Comput. 22(3), 773–793 (2012)

51. J.R. Gardner, M.J. Kusner, Z. Xu, K. Weinberger, J.P. Cunningham, Bayesian optimization
with inequality constraints. In Proceedings of The 31st International Conference on Machine
Learning, pp. 937–945 (2014)

52. D.M. Negoescu, P.I. Frazier, W.B. Powell, The knowledge gradient algorithm for sequencing
experiments in drug discovery. INFORMS J. Comput. 23(1) (2011)

53. P.I. Frazier (2009–2010), http://people.orie.cornell.edu/pfrazier/src.html

http://people.orie.cornell.edu/pfrazier/src.html

	3 Bayesian Optimization for Materials Design
	3.1 Introduction
	3.2 Bayesian Optimization
	3.3 Gaussian Process Regression
	3.3.1 Choice of Covariance Function
	3.3.2 Choice of Mean Function
	3.3.3 Inference
	3.3.4 Inference with Just One Observation
	3.3.5 Inference with Noisy Observations
	3.3.6 Parameter Estimation
	3.3.7 Diagnostics
	3.3.8 Predicting at More Than One Point
	3.3.9 Avoiding Matrix Inversion

	3.4 Choosing Where to Sample
	3.4.1 Expected Improvement
	3.4.2 Knowledge Gradient
	3.4.3 Going Beyond One-Step Analyses, and Other Methods

	3.5 Software
	3.6 Conclusion
	References

