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Preface

Accelerating materials discovery has been the theme of a number reports from the
Department of Energy’s Office (DOE) of Basic Energy Science (BES), the National
Science Foundation (NSF), the National Academies and other government agencies
and professional societies. As a driver for accelerating materials discovery, the
Materials Genome Initiative, announced by the President, is part of a bold plan to
boost US manufacturing over the next few decades by halving the time it takes
to discover and design new materials. In this plan, accelerating discovery relies on
using in the material sciences large databases, computation, mathematics, and
information science in a manner similar to the way that they were used to make the
Human Genome Initiative a success for the biological sciences. Novel approaches
are therefore being called for that can explore the enormous phase space presented
by complex materials and processes. If we are to achieve the desired performance
gains, then we must have a predictive capability that can guide experiments and
computations in the most fruitful directions by reducing the possibilities that need
to be tried.

Despite advances in computational and experimental techniques to generate
large volumes of data to screen the vast search space, it is clear that the outstanding
challenge remains to integrate information-theoretic tools and materials knowledge,
in the form of constraints imposed by theory, to develop, robust, predictive tools for
materials design and discovery. The rapidly emerging field of materials informatics
provides the critical methodology that enables the discovery, identification, and
harnessing of the materials “genes” for accelerated materials discovery and design.

We provide in this book a collection of articles in this nascent field which inte-
grates contributions from the information sciences and materials communities. The
collection is partly derived from a workshop held at Santa Fe, NewMexico, February
4–7, 2014 that was organized by the editors and sponsored with support from the
Centers for Nonlinear Studies and Information Science and Technology at Los
Alamos National Laboratory and National Science Foundation (Grant #: 13-07811).
It outlines challenges and opportunities in the use of information-theoretic tools and
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evaluates the state of the art on a number of materials-motivated problems. Presented
are contrasting but complementary approaches, such as those based on
high-throughput calculations or experiments, as well as data-driven discovery,
together with the merits and challenges of machine-learning and statistical inference
methods to accommodate searches within a high dimensional feature space.

The book is organized into three parts. In the first part, following a perspective
of the state of the art in materials design and discovery, Chaps. 2–6 focus largely on
information-theoretic tools and how they apply to specific materials problems.
Chaps. 2 and 3 discuss how aspects of decision theory within a Bayesian frame-
work can be used for optimal experimental design. In particular, Chap. 2 discusses
how to decide on the best pair of experiments for inferring the parameters of a given
model, as well as how to choose an experiment to distinguish between competing
models. Chapter 3 discusses strategies based on methods for global optimization for
choosing the next experiment to find a material with a desired property. Proceeding
from problems involving regression to those requiring classification, Chap. 4
focuses on Bayesian methods for classifying objects, especially in the limit of small
samples where classifier design procedures, which work well with large samples,
can have problems when data is limited. The first part of this monograph is
concluded with Chaps. 5 and 6 which deal with different aspects of clustering.
Chapter 5 considers the effectiveness of data visualization algorithms that look for
groupings of features and materials. Chapter 6 discusses how community detection,
studied in statistical physics, can be used to partition a complex system into
decoupled subsets at different spatial and temporal scales.

The focus of the second part of the book, Chaps. 7–12, is the application of
informatics tools to materials science problems. Chapter 7 discusses how param-
eters in the additive manufacturing process may be constrained by combining
simulations and experiments using feature selection and data-driven models.
Learning from high-throughput data generated from electronic structure calcula-
tions is the emphasis of Chaps. 8–11. Techniques such as principal component
analysis (PCA), support vector regression (SVR), partial least squares, and Kriging
using Gaussian process modeling suggest new features and materials with specified
properties. Chapter 8 shows how suitable dopants in an oxide may be identified for
increasing water-splitting processes. Applications in Chap. 9 include the discovery
of cathode materials for lithium-ion batteries and thermoelectrics. Chapter 10
focuses on the layered compounds known as MAX phases, and Chap. 11 discusses
ab initio methods and applied crystallography tools for descriptor development to
establish structure–property relationships. Chapter 12 describes hybrid methods that
integrate statistical learning techniques, to extract features from the density of states
for predicting elastic properties, such as bulk modulus and yet unexplored
chemistries.

The third and final part, Chaps. 13 and 14, discusses high-throughput experi-
ments, which generate large amounts of data. With appropriate characterization
tools, the idea is to quickly identify the subspace of the large parameter space where
a new compound with desired properties may be found. Such experiments, together
with informatics tools, provide opportunities for “combinatorial materials science.”
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Chap. 13 provides a review in the context of multifunctional materials, and
Chap. 14 incorporates aspects of informatics with a focus on solar fuel applications
and multicomponent oxide catalysts.

The book is aimed at an interdisciplinary audience as the subject spans aspects of
statistics, computer science, and materials science and will be of timely appeal to
those interested in learning about this emerging field. We are grateful to all the
authors for their articles as well as their support of the editorial process.

Los Alamos, USA Turab Lookman
Los Alamos, USA Francis J. Alexander
Buffalo, NY Krishna Rajan
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A Perspective on Materials Informatics:
State-of-the-Art and Challenges
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Abstract We review how classification and regression methods have been used on
materials problems and outline a design loop that serves as a basis for adaptively
finding materials with targeted properties.
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1.1 Introduction

There has been considerable interest over the last fewyears in accelerating the process
of materials design and discovery. The Materials Genome Initiative (MGI) [1], Inte-
grated Computational Materials Engineering (ICME) [2] and Advanced Manufac-
turing [3] initiatives have spurred considerable activity and brought new researchers
into the nascent field of materials informatics which includes the accelerated design
and discovery of new materials. The activity has also highlighted some of the open
questions in this emerging area and our objective here is to provide a perspective of
the field in terms of general problems and information science methods that have
been used to study classes of materials, and point to some of the outstanding chal-
lenges that need to be addressed. We are guided here by our own recent work at the
Los Alamos National Laboratory (LANL).

One of the earliest-studied problems inmodernmaterials informatics relates to the
classification of AB solids into their stable crystal structures, based on key attributes
of the chemistry and properties of the individual A and B constituents. The empha-
sis was on finding features that can give rise to easily visualized two-dimensional
structural maps by “drawing” boundaries between classes. The problem was first
studied in the 1960s [4] but Chelikowski and Phillips [5], studying the same problem
in 1978, recognized the connections to information science. Realizing that energy
differences between structures were rather small, they observed that “from the point
of view of information theory, …the available structural data already contain a great
deal of information: about 120 bits, in the case of the AB octet compounds. Thus one
can reverse the problem, and attempt to extract from the available data quantitative
rules for chemical bonding in solids.” They realized that suitable combinations of
orbital radii of the individual A and B atoms were appropriate features for predicting
the crystal structure of the AB solids. Over the last few years, this problem has been
revisited with a variety of machine learning methods (decision trees,support vector
machines, gradient boosting, etc.) [6–8] and there have been a number of studies that
have classified different materials classes, such as perovskites [9]. Feature selection
from data remains a fundamental exercise and here principal component analysis and
correlationmaps have been widely employed. Recently, high-throughput approaches
have been utilized to form combinations of features from a given set and then certain
key combinations are down-selected [6].

The problem of materials design is about predicting the composition and
processing of materials with a more desired targeted property and therefore involves
regression that leads to an inference model from training data. For example, for
ferroelectrics one may wish to discover lead-based or lead-free piezoelectrics with
a high transition temperature or high piezoelectric coefficient. For shape memory
alloys, one may seek compounds with reduced dissipation or low hysteresis. Typi-
cally, such materials are usually found in an Edisonian fashion using intuition and
time-consuming trial and error. In recent years, theory has become powerful enough
to predict very accurately some material characteristics, for example, ab initio cal-
culations predict elastic constants, inter-atomic distances, crystal structure, polar-
ization, etc. However, the parameter space is just too large and there are too many
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possibilities, and even if nature rules out many of the possible combinations, the
numbers are still staggering. Moreover, physical and chemical constraints make the
realization of many theoretically possible materials impossible. Thus, one needs to
successively improve or learn from available data candidate materials for further
experiments and calculations. Recently, a number of studies have utilized regression
methods to predict materials with given properties. However, most research in mate-
rials design has been based on high throughput approaches using electronic structure
calculations. Typically, a large database is assembled with calculated properties and
this is successively screened for materials with desired properties. High-throughput
experiments have also been undertaken more recently to screen for candidate mate-
rials for further experiments [10, 11]. When it comes to multicomponent alloys or
solid solutions, these methods have limitations. Moreover, very few studies have
combined statistical inference with the high-throughput approach.

1.2 Statistical Inference and Design: Towards Accelerated
Materials Discovery

Figure1.1 illustrates our vision for the overall materials informatics/design problem.
This shows a feedback loop that starts with the available assembled data (box 5),
whichmay be obtained frommultiple sources, including experiments or calculations.
Materials knowledge (box 1) is then key in selecting the features and prescribing the
constraints amongst them. Our aim is to train a statistical inference model that esti-
mates the property (regression) or classification label with associated uncertainties
(box 2). Classification models answer categorical questions: Is a compound stable?

Fig. 1.1 Statistical Inference and design: A feedback loop to find a material with a desired targeted
property. Prior or domain knowledge, including features, provide input to an inference model that
predicts a label or a property with uncertainty. An experimental design or decision making module
balances trade off between exploiting information or further exploring the high dimensional search
space where the desired material may be found. A material is suggested for experimentation or
calculation and the process repeats itself incorporating updated information
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Is it a piezoelectric?What is its crystal symmetry?Regressionmodels produce numer-
ical estimates: What is the material’s piezoelectric coefficient? What is its transition
temperature? Because there usually is a limited quantity of training data, and because
the space of possibilities is so high-dimensional, incorporation of domain knowl-
edge is of potentially great value. Here explicitly Bayesian approaches, in which
this knowledge is coded into prior probability distributions, and more traditional
machine learning algorithms (such as support vector machines) in which case the
domain knowledge could be incorporated as constraints or folded into the kernel
design, become important [12].

Much existing work is essentially based on going from box 1 to box 4 in Fig. 1.1.
A case in point are projects such as the Materials Project [13] and AFLOWLIB [14]
focused on establishing databases using electronic structure calculations to make
predictions. However, there are a few studies that use inference to make predictions.
Examples include predictions of melting temperature [7, 8, 15] or piezoelectrics
with high transition temperatures [16]. The search for piezoelectrics serves as a good
example to contrast the two approaches. Extensive ab initio calculations were per-
formed on a chemical space represented by 632 = 3969 possible perovskite ABO3

(up to Bi but excluding a few such as H and inert gases) end structures [17]. The
number of possibilities were filtered down to 49 by discarding compounds that are
nonmetallic or whose structures have small energy barriers to distortions across the
morphotropic phase boundary (MPB) according to preset values. Almost no opti-
mization or learning tools are used other than what may be involved in seeking an
optimal minimum energy solution at zero temperature. All the physics is contained
in this first-principles calculation, and we are not aware if any of this group’s pre-
dictions of piezoelectricity have been verified experimentally. On the other hand,
the approach of Balachandran et al. [16] on the same type of problem was to focus
on a given subclass of piezoelectrics (e.g. Bi based) with known crystallographic
and experimental data and use off-the-shelf inference tools to obtain candidates with
high transition temperatures and that were formable. The tools included principal
component analysis (PCA) for dimensionality reduction, partial least squares (PLS)
regression for predicting transition temperatures and recursive partitioning (or deci-
sion trees) with a metric such as Shannon entropy for classification. The training
data sets for PCA or regression studies were rather small (about 20 data points, 30
features) but data sets with 350 data points were also used to identify stable/formable
perovskite compounds. Two new compounds were predicted, of which one has been
synthesized [18], with the predicted transition temperature differing by 30–40%.
However, a key element lacking is the issue of uncertainties in predictions.

In Fig. 1.2, we demonstrate using an example, where we have used bootstrap
methods (i.e. sampling with replacement) to estimate prediction uncertainties. Here,
we took the same Bi-based piezoelectrics data set as that utilized in the work of
Balachandran et al. [16] We generated a large number of bootstrapped samples (as
opposed to using just one in the earlier work of Balachandran et al.) and utilized sup-
port vector regression (SVR) for predicting the Curie temperature (TC). Our results
with uncertainties are shown in Fig. 1.2. On average, we obtained a standard devi-
ation of 37 ◦C from the mean value of predicted TC. More importantly, we also
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Fig. 1.2 Predictions using support vector regression (SVR) with uncertainties from bootstrap
method. The piezoelectric data set of Bi-based PbTiO3 solid solutions was used for machine learn-
ing. TC (in ◦C, y-axis) is the predicted ferroelectric Curie temperature at the morphotropic phase
boundary (MPB). We use the SVR model and predicted TC for two new compounds, BiLuO3-
PbTiO3 and BiTmO3-PbTiO3, to be 552.5± 79 and 564.2± 97 ◦C, respectively. Experimentally,
TC for BiLuO3-PbTiO3 was measured as 565 ◦C [18]

predicted the TC for two new compounds, BiLuO3-PbTiO3 and BiTmO3-PbTiO3,
to be 552.5± 79 and 564.2± 97 ◦C, respectively with 95% confidence. Experimen-
tally, TC for BiLuO3-PbTiO3 was measured as 565 ◦C [18], in close agreement with
the current results from SVR. On the other hand, PLS predicted the TC for BiLuO3-
PbTiO3 to be 705 ◦C. The merit of this example is that it shows in a rather modest
manner that the informatics approach, even if manual and piecemeal, is potentially
capable of predicting new materials.

A key aspect of our design loop is the uncertainty associated with the properties
predicted from inference (box 2). These play a role in the adaptive experimental
design (box 3) which suggests the next material to be chosen for further experiments
or calculation (box 4) by balancing the tradeoffs between “exploration and exploita-
tion”. That is, at any given stage a number of samples may be predicted to have
given properties with uncertainties. The tradeoff is between exploiting the results by
choosing to perform the next experiment on the material predicted to have the largest
property or further improving the model by performing the experiment or calculation
on a material where the predictions have the largest uncertainties. By choosing the
latter, the uncertainty in the property is expected to (given the model, statistiscs)
decrease, the model will probably improve and this will influence the results of the
next iteration in the loop. While there is a considerable literature on error estima-
tion methodologies, accurate and reliable error estimation with limited data is harder
than simple prediction, and there is an even a stronger case for incorporating domain
knowledge. [8, 19, 20]

Extracting measures of confidence, while at the same time encoding prior knowl-
edge, is not an easy task but recent research in cancer genomics has demonstrated
that increasing confidence in classification analysis built on small databases benefits
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significantly from using prior knowledge [21, 22]. Prior domain knowledge con-
strains statistical outcomes byproducing classifiers that are superior to those designed
fromdata alone.How to use prior knowledge in classification and regression is a prob-
lem not only for materials and cancer genomics but for machine learning generally.
Developing ways of constructing and using prior domain knowledge will distinguish
the materials machine learning approach to classification and regression. The les-
son learned from high-throughput genomics concerning classification is that, in high
dimensional, small-sample settings, model-free classification is virtually impossible.
The reason is that the salient property of any classifier is its error rate because the
error rate quantifies its predictive capacity, which is the essential issue pertaining to
scientific validity. Since the error rate must be estimated, there must be an estimation
procedure and, with small samples, this procedure must be applied to the same data
as that used for designing the classifier. In cancer genomics, Dalton and Dougherty
[19, 20] addressed the problem by formulating error estimation as an optimization
problem in a model-based framework and leads to a minimum-mean-square-error
(MMSE) estimate of the classifier error. They formulate a prior probability distri-
bution over a class of possible distributional models governing the features to be
measured and the possible decisions to be made, each such model being known as a
feature-label distribution. They then design a classifier from the data and an optimal
MMSE error estimate is derived from the data. How well this approach will work
for materials problems remains an open question.

In Figs. 1.3 and 1.4 we provide more details of our loop. Figure1.3 shows how
the loop would actually work in practice, and some of the algorithms that may be

Fig. 1.3 The design loop in practice showing different stages of machine learning and adaptive
design strategies with an iterative feedback loop. For completeness, we have also included experi-
ments (synthesis and characterization), which are vital for validation and feedback. KG, EGO and
MOCU stand for knowledge gradient, effective global optimization and mean objective cost of
uncertainty, respectively
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Fig. 1.4 A sub-component of our adaptive design loop showing the synergy between statistical
models (box 2), experimental design (box 3) and validation (typically via experimental synthesis
or simulation as shown in box 4). Statistical models use the available data to fit a regression model
(f) along with an uncertainty measure (e). The experimental design component then evaluates the
tradeoff between exploitation and exploration and suggests the “best” material (yi) for validation.
Here the term “best” need not correspond to a material with the optimal response. Alternatively, it
refers to the choice of a material that would reduce the overall uncertainty in our model. Different
statistical learning (including Bayesian learning) and adaptive design methods are given

used as part of the statistical inference and design tools, are shown in greater detail
in Fig. 1.4. The green emphasize algorithms that can be utilized today and the red
represent areas requiring further study and development. Design algorithms include
well known exploitation-exploration strategies such as efficient global optimization
(EGO) [23], and the closely related knowledge gradient(KG) [24] based on single-
step look ahead.

1.3 Progress and Concluding Remarks

Our work at LANL has involved studying a number of materials problems along
the lines of the approach described. These include problems involving classification
learning and regression, which essentially involve an inner loop of Fig. 1.1with boxes
2, 4 and 5. We have examined the role of features in classifying AB octet solids [8]
and perovskites [9], as well as predicting new ductile RM intermetallics, where R
and M are rare earth and transition metal elements, respectively [25]. These studies
have suggested new features that led to better classification as well as new materials.
In the case of RM intermetallics, we have shown that machine learning methods
naturally uncover the functional forms that mimic most frequently used features
in the literature, thereby providing a mathematical basis for feature set construction
without a priori assumptions [25]. Our classificationmodels (Fig. 1.5) that use orbital
radii as features predicted that ScCo, ScIr, and YCd should be ductile, whereas each
was previously proposed to be brittle. These results show it is possible to design
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rMp

Brittle rMs

rMs

rMs

Ductile Brittle

Ductile

Brittle

≤ 0.311 > 0.311

> 1.286≤ 1.286

> 1.184≤ 1.184

≤ 1.139 > 1.139

RM-PC2

Brittle RM-PC4

Ductile Brittle

> 1.3419 ≤ 1.3419

> −0.7566 ≤ −0.7566

(a) (b)

Fig. 1.5 Classification learning using decision trees to predict whether a given RM intermetallic,
where R and M are rare earth and transition metal elements, respectively, is brittle and ductile. a
Decision tree that uses the orbital radii as features and (b) Decision tree that uses the principal
components (RM-PC2 and RM-PC4) that automatically extracts features in the form of the linear
combinations of orbital radii. For example, RM-PC2 is defined as −0.70rMp + 0.08rMs − 0.71rMd .

Features rMp , rMs and rMd are the p-, s- and d-orbital radii of atom-M, respectively

targeted mechanical properties in intermetallic compounds, which has significant
implications for next-generation multi-component alloy discovery.

Our on-going work on multi-objective regression includes predicting functional
polymers with large band gaps, as well as large dielectric constants for energy storage
applications. Similarly, we are also performing high-throughput density functional
theory (DFT) calculations to generate large data sets, which are subsequently mined
usingmachine learningmethods to identify new and previously unexplored candidate
water splitting compounds for catalysis.

In the area of adaptive design, our focus has been on demonstrating the feedback
loop of Figs. 1.1 or 1.3 with tight coupling to an “oracle”, which can be experiments
(synthesis and characterization) or calculations. Specific materials studies include
discovering new low thermal dissipation shape memory alloys, as well as Pb-free
piezoelectric solid-solutions starting fromexperimental data on specificmulticompo-
nent systems. The search spaces can bewell defined, for example, they can be a factor
of 105 greater than the size of the training data. In addition, extensive databases from
ab initio calculations become invaluable in benchmarking the various algorithms.
For example, elastic moduli data for the hexagonal layered M2AX phases consist of
a library of 240 compounds. The ab initio data of the elastic constants and moduli
were taken from the literature [26] with results well calibrated to experiments. In
the M2AX phases, X-atoms reside in the edge-connected M octahedral cages and
the A atoms reside in slightly larger right prisms [27]. These M2AX phases repre-
sent a unique family of materials with layered crystal structure and both metallic-
and ceramic-like properties. We used orbital radii of M, A, and X atoms from the
Waber-Cromer scale [28] as features, which include the s-, p-, and d-orbital radii
for M, while the s- and p-orbital radii were used for A and X atoms. With the M2AX
data, we benchmarked our adaptive design strategy, i.e. explored different train-
ing set sizes, regressors, regressor/optimization combinations, etc., and uncovered
invaluable guidelines that were eventually useful for real materials design problems.
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Implementing the loop using simulation codes allows us to optimize the use of
these codes in seeking awell defined set of parameters or constraints for given targeted
outcomes. For example, an industry standard code for simulating semiconducting
materials is APSYS (Advanced Physical Models of Semiconductor Devices). It is
based on 2D/3D finite element analysis of electrical, optical and thermal properties
of compound semiconductor devices, with silicon as a special case with an emphasis
on band structure engineering and quantum mechanical effects. Inclusion of various
opticalmodules allows one to configure applications involving photosensitive or light
emitting diodes (LEDs). We have been recently using APSYS to investigate how to
optimize the LED structure (number of quantum wells, indium concentration) of
GaAs based systems for highest internal quantum efficiencies at high currents.

In summary, the use of classification and regression methods, in combination
with optimization strategies, has the potential to impact discovery and design in
materials science. What is needed is to establish how these tools perform on an array
of materials classes with differing physics in order to distill some guiding principles
for use by the materials community at large.
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Chapter 2
Information-Driven Experimental Design
in Materials Science

R. Aggarwal, M.J. Demkowicz and Y.M. Marzouk

Abstract Optimal experimental design (OED) aims to maximize the value of
experiments and the data they produce. OED ensures efficient allocation of lim-
ited resources, especially when numerous repeated experiments cannot be per-
formed. This chapter presents a fully Bayesian and decision theoretic approach to
OED—accounting for uncertainties in models, model parameters, and experimental
outcomes, and allowing optimality to be defined according to a range of possible
experimental goals. We demonstrate this approach on two illustrative problems in
materials research. The first example is a parameter inference problem. Its goal is
to determine a substrate property from the behavior of a film deposited thereon.
We design experiments to yield maximal information about the substrate property
using only twomeasurements. The second example is amodel selection problem.We
design an experiment that optimally distinguishes between two models for helium
trapping at interfaces. In both instances, we provide model-based justifications for
why the selected experiments are optimal. Moreover, both examples illustrate the
utility of reduced-order or surrogate models in optimal experimental design.

2.1 Introduction

Experiments are essential prerequisites of all scientific research. They are the basis
for developing and refining mathematical models of physical reality. Experimental
data are used to infer model parameters, to improve the accuracy of model-based
predictions, to discriminate among competing models, to assess model validity, and
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to improve design and decision-making under uncertainty. Yet experimental obser-
vations can be difficult, time-consuming, and expensive to acquire. Maximizing the
value of experimental observations—i.e., designing experiments to be optimal by
some appropriate measure—is therefore a critical task. Experimental design encom-
passes questions of where and when to measure, which variables to interrogate, and
what experimental conditions to employ.

Conventional experimental design methods, such as factorial and composite
designs, are largely used as heuristics for exploring the relationship between input
factors and response variables. By contrast, optimal experimental design uses a con-
crete hypothesis—expressed as a quantitative model—to guide the choice of exper-
iments for a particular purpose, such as parameter inference, prediction, or model
discrimination. Optimal design has seen extensive development for linear models
(where the measured quantities depend linearly on the model parameters) endowed
with Gaussian distributions [5]. Extensions to nonlinear models are often based on
linearization and Gaussian approximations [15, 21, 36], as analytical results are oth-
erwise impractical or impossible to obtain. With advances in computational power,
however, optimal experimental design for nonlinear systems can now be tackled
directly using numerical simulation [48, 49, 64, 65, 84, 89, 93, 96].

This chapter will present an overview of model-based optimal experimental
design, connecting this approach to illustrative applications in materials science—a
field replete with potential applications for optimal experimentation. We will take a
fully Bayesian and decision-theoretic approach. In this formulation, one first defines
the utility of an experiment and then, taking into account uncertainties in both
the parameter values and the observations, chooses experiments by maximizing an
expected utility. We will define these utilities according to information theoretic
considerations, reflecting the particular experimental goals at hand.

The evaluation and optimization of information theoretic design criteria, in par-
ticular those that invoke complex physics-based models, requires the synthesis of
several computational tools. These include: (1) statistical estimators of expected
information gain; (2) efficient optimization methods for stochastic or noisy objec-
tives (since expected utilities are typically evaluated withMonte Carlomethods); and
(3) reduced-order or surrogate models that can accelerate the estimation of informa-
tion gain. For a simple film-substrate system, we will present an example of such a
reduced-order model, derived from physical scaling principles and an “offline” set
of detailed/full model simulations. This is but one example; reduced-order models
constructed through a variety of techniques have practical use in a wide range of
optimal experimental design applications [48].

The rest of this chapter is organized as follows. Section2.2 will present the foun-
dational tools of optimal experimental design, beginning with Bayesian inference
and proceeding to discuss several information theoretic design criteria. It will also
discuss the computational challenges presented by this formulation. Section2.3 will
illustrate the information-driven approach with two examples: optimal design for
parameter inference, in the context of a film-substrate system; and optimal design
for model selection, in the context of heterophase interfaces in layered metal com-
posites. Section2.4 will discuss open questions and topics of ongoing research.
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2.2 The Tools of Optimal Experimental Design

We will formulate our experimental design criteria in a Bayesian setting. Bayesian
statistics offers a foundation for inference from noisy, indirect, and incomplete data;
a mechanism for incorporating multiple heterogeneous sources of information; and
a complete assessment of uncertainty in parameters, models, and predictions. The
Bayesian approach also provides natural links to decision theory, which we will
exploit below.

2.2.1 Bayesian Inference

The essence of the Bayesian paradigm is to describe uncertainty or lack of knowledge
probabilistically. This idea applies to model parameters, to observations, and even to
competing models. For simplicity, we first describe the case of parameter inference.

Let θ ∈ � ⊆ R
n represent the parameters of a given model. We describe our state

of knowledge about these parameters with a prior probability density p(θ). (For the
remainder of this article, we assume that all parameter and data probability distrib-
utions have densities with respect to Lebesgue measure.) We would like to update
our knowledge about θ by performing an experiment at conditions η ∈ H ⊆ R

d .
η is therefore our vector of experimental design parameters. This experiment will
yield observations y ∈ Y ⊆ R

m . The relationship between the model parameters,
experimental conditions, and observations is captured by the likelihood function
p(y|θ, η), i.e., the probability density of the observations given a particular choice
of θ, η. The likelihood naturally incorporates a physical model of the experiment.
For instance, one often has a computational model G(θ, η) that predicts the quan-
tity being measured by a proposed experiment. This prediction may be imperfect,
and is almost always corrupted by some observational errors. A simple likelihood
then results from the additive model y = G(θ, η) + ε, where ε is a random vari-
able representing measurement and model errors. If ε is Gaussian with mean zero
and variance σ2, and independent of θ and η, then we have the Gaussian likelihood
p(y|θ, η) ∼ N

(
G(θ, η),σ2

)
. More complex likelihoods describe signal-dependent

noise, or include more sophisticated representations of model error (e.g., the discrep-
ancy models of [53]).

Putting these ingredients together via Bayes’ rule, we obtain the posterior proba-
bility density p(θ|y, η) of the parameters:

p(θ|y, η) = p(y|θ, η)p(θ)

p(y|η)
, (2.1)

wherewehave assumed (quite reasonably) that the prior knowledge on the parameters
is independent of the experimental design. The posterior density describes the state of
knowledge about the parameters θ after conditioning on the result of the experiment.
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The design criteria described below will formalize the intuitive idea of choosing
values of η to make the posterior distribution of θ as “informed” as possible.

Many problems, whether in materials science or other domains, do not have para-
meter inference as an end goal. Rather than learning about parameters that appear
in a single fixed model of interest, one may wish to collect data that help discrimi-
nate among competing models. For instance, different hypothesized physical mech-
anisms may lead to different models of a phenomenon. In this context, the Bayesian
approach involves characterizing a posterior probability distribution over models.
Let the model spaceM consist of an enumerable number of competing models Mi ,
i ∈ {1, 2, . . .}. Let each model Mi be endowed with parameters θi ∈ �i ⊆ R

ni . Then
Bayes’ rule writes the posterior probability of a model Mi as:

P(Mi |y, η) = p(y|Mi , η)P(Mi )

p(y|η)
, (2.2)

where the marginal likelihood of each model (i.e., p(y|Mi , η) for the i th model)
is obtained by averaging the likelihood over the prior distribution on the model’s
parameters:

p(y|Mi , η) =
∫

�i

p(y|θi , η, Mi )p(θi |Mi )dθi . (2.3)

Each model has its own parameters θi and its own prior p(θi |Mi ). The marginal like-
lihood incorporates an automatic Occam’s razor that penalizes unnecessary model
complexity [8, 66]. The effective use of the posterior distribution over models
P(Mi |y, η) can then depend on the goals at hand. For instance, one may wish to
know which model is best supported by the data; in this case, one simply selects the
model with the highest posterior probability, thus performing Bayesian model selec-
tion. Alternatively, if the end goal is to make a prediction that accounts for model
uncertainty, one can perform Bayesian model averaging [46] by taking a linear com-
bination of predictions from each model, weighed according to the posterior model
probabilities.

2.2.2 Information Theoretic Objectives

Following a decision theoretic approach, Lindley [63] suggests that an objective for
experimental design should have the following general form:

U (η) =
∫

Y

∫

�

u(η, y, θ) p(θ, y|η) dθ dy, (2.4)

where u(η, y, θ) is a utility function and U (η) is the expected utility. The utility
function u should be chosen to reflect the usefulness of an experiment at conditions
η, given a particular value of the parameters θ and a particular outcome y. Since
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we do not know the precise value of θ and we cannot know the outcome of the
experiment before it is performed, we obtain U by taking the expectation of u over
the joint distribution of θ and y; hence the name ‘expected’ utility.

The choice of utility function u reflects the purpose of the experiment. To accom-
modate nonlinear models and avoid restrictive distributional assumptions on the
parameters or model predictions, we advocate the use of utility functions that reflect
the gain in Shannon information in quantities of interest [42]. For instance, if the
object of the experiment is parameter inference, then a useful utility function is the
relative entropy or Kullback-Leibler (KL) divergence from the posterior to the prior:

u(η, y, θ) = u(η, y) = DKL (p(θ|y, η) ‖ p(θ))

=
∫

θ

p(θ|y, η) log
p(θ|y, η)

p(θ)
dθ. (2.5)

Taking the expectation of this quantity over the prior predictive of the data, as in (2.4),
yields a U equal to the expected information gain in θ. This quantity is equivalent to
the mutual information [26] between the data and the parameters, I (y; θ).

Inferring parameters may not be the true object of an experiment, however. For
many experiments, the goal is to improve predictions of some quantity Q. This
quantity may depend strongly on some model parameters and weakly on others.
Moreover, some model parameters might simply be “knobs” without a strict phys-
ical interpretation or meaning. In this setting, we can put u(η, y, θ) = u(η, y)

equal to the Kullback-Leibler divergence evaluated from the posterior predictive
distribution, p(Q|y, η) = ∫

p(Q|θ)p(θ|y, η)dθ, to the prior predictive distribution,
p(Q) = ∫

p(Q|θ)p(θ)dθ. Taking the expectation of this utility function over the
data yields U (η) = I (Q; y|η), that is, the conditional mutual information between
data and predictions. This quantity implicitly incorporates an information theoretic
“forward” sensitivity analysis, as the experiments that are most informative about
Q will automatically constrain the directions in the parameter space that strongly
influence Q.

Asmentioned above, another common experimental goal ismodel discrimination.
From the Bayesian perspective, we wish to maximize the relative entropy between
the posterior and prior distributions over models:

u(η, y) =
∑

i

P(Mi |y, η) log
P(Mi |y, η)

P(Mi )
. (2.6)

Moving from this utility to an expected utility requires integrating over the prior
predictive distributionof the data, as specified in (2.4). Since the utility functionu here
does not depend on the parameters θ, we simply have U (η) = ∫

Y u(η, y)p(y|η)dy.
Because we are now considering multiple competing models, however, the prior
predictive distribution is itself a mixture of the prior predictive distribution of each
model:
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p(y|η) =
∑

i

P(Mi )p(y|Mi , η) =
∑

i

P(Mi )

∫

�i

p(y|θi , η, Mi )p(θi |Mi )dθi .

(2.7)

The resulting expected information gain in model space favors designs that are
expected to focus the posterior distribution onto fewer models [75]. In more intuitive
terms, we will be driven to test where we know the least and where we also expect
to learn the most.

2.2.3 Computational Considerations

Evaluating expected information gain. Except in special cases (e.g., linear-
Gaussian models), the expected utilities described above cannot be evaluated in
closed form. Instead, the integrals in these expressions must be approximated numer-
ically. Note that, even in the simplest case of parameter inference—with utility given
by (2.5)—evaluating the posterior density of the parameters requires calculating the
posterior normalizing constant, which (like the posterior distribution itself) is a func-
tion of the data y and the design parameters η. In this situation, it is convenient to
rewrite the expected information gain in the parameters θ as follows:

U (η) =
∫

Y

∫

�

p(θ|y, η) log

(
p(θ|y, η)

p(θ)

)
dθ p(y|η) dy

=
∫

Y

∫

�

log

(
p(y|θ, η)

p(y|η)

)
p(y|θ, η) p(θ) dθ dy

=
∫

Y

∫

�

{log p(y|θ, η) − log p(y|η)} p(y|θ, η) p(θ) dθ dy, (2.8)

where the second equality is due to the application of Bayes’ rule to the quantities
both inside and outside the logarithm. IntroducingMonteCarlo approximations of the
evidence p(y|η) and the outer integrals, we obtain the nested Monte Carlo estimator
proposed by Ryan [84]:

U (η) ≈ ÛN ,M(η)

:= 1

N

N∑

i=1

⎧
⎨

⎩
log

(
p(y(i)|θ(i), η)

) − log

⎛

⎝ 1

M

M∑

j=1

p(y(i)|θ̃(i, j), η)

⎞

⎠

⎫
⎬

⎭
. (2.9)

Here {θ(i)} and {θ̃(i, j)}, i = 1 . . . N , j = 1 . . . M , are independent samples from the
prior p(θ), and each y(i) is an independent sample from the likelihood p(y|θ(i), η), for
i = 1 . . . N . The variance of this estimator is approximately A(η)/N + B(η)/(N M),
and its bias is (to leading order) C(η)/M [84], where A, B, and C are terms that
depend only on the distributions at hand. The estimator ÛN ,M is thus biased for finite
M , but asymptotically unbiased.
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Analogous, though more complex, Monte Carlo estimators can be derived for the
expected information gain in some predictions Q, or for the expected information
gain in the model indicator Mi .

Optimization approaches. Regardless of the particular utility function u used to
define U , selecting an optimal experimental design requires solving an optimization
problem of the form:

max
η∈H

U (η). (2.10)

Using theMonteCarlo approaches described above, only noisy estimates (e.g., ÛN ,M )
of the objective functionU are available. Hence, the optimal design problembecomes
a stochastic optimization problem, typically over a continuous design spaceH. Many
algorithms have been devised to solve continuous optimization problems with sto-
chastic objectives. While some do not require the direct evaluation of gradients (e.g.,
Nelder-Mead [76], Kiefer-Wolfowitz [54], and simultaneous perturbation stochastic
approximation [90]), other algorithms can use gradient evaluations to great advan-
tage. Broadly, these algorithms involve either stochastic approximation (SA) [56]
or sample average approximation (SAA) [87], where the latter approach must also
invoke a gradient-based deterministic optimization algorithm. SA requires an unbi-
ased estimator of the gradient of the objective, computed anew at each optimization
iteration. SAA approaches, on the other hand, “freeze” the randomness in the objec-
tive and solve the resulting deterministic optimization problem, the solution of which
yields an estimate of the solution of (2.10) [6]. Hybrids of the two approaches are
possible as well. [49] presents a systematic comparison of SA and SAA approaches
in the context of optimal experimental design, where SAA is coupled with a BFGS
quasi-Newton method for deterministic optimization.

An alternative approach to the optimization problem (2.10) involves constructing
and optimizing Gaussian process models of U (η), again from noisy evaluations. As
presented in [96], this approach generalizes the EGO (efficient global optimization)
algorithmof [51] by choosing successive evaluation points η according to an expected
quantile improvement criterion [80].

Surrogate models. An efficient optimization approach is only one part of the com-
putational toolbox for optimal experimental design. Evaluating estimators such as
ÛN ,M(η) (2.9) for even a single value of η can be computationally taxing when
the likelihood p(y|θ, η) contains a computationally intensive model G(θ, η)—a sit-
uation that occurs very often in physical systems, including in materials science.
As a result, considerable effort has gone into the development of reduced-order or
“surrogate” models, designed to serve as computationally inexpensive replacements
for G.

Useful surrogate models can take many different forms. [34] categorizes surro-
gates into three different classes: data-fit models, reduced-order models, and hierar-
chical models. Data-fit models are typically generated using interpolation or regres-
sion of the input-output relationship induced by the high-fidelity model G(θ, η),
based on evaluations of G at selected input values (θ(i), η(i)). This class includes
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polynomial chaos expansions that are constructed non-intrusively [41, 57, 100] and,
more broadly, interpolation or pseudospectral approximation with standard basis
functions on (adaptive) sparse grids [24, 40, 101]. Gaussian process emulators [53,
99], widely used in the statistics community, fall into this category as well. Indeed,
the systematic and efficient construction of data-fit surrogates, particularly for high-
dimensional input spaces, has been the focus of a vast body of work in computational
mathematics and statistics over the past decade. While many of these methods are
used in forward uncertainty propagation (e.g., the solution of PDEswith random input
data), recent work [48] has employed sparse grid polynomial surrogates specifically
for the case of optimal Bayesian experimental design.

Reduced-order models are commonly derived using a projection framework; that
is, the governing equations of the forward model are projected onto a subspace
of reduced dimension. This reduced subspace is defined via a set of basis vectors,
which, for general nonlinear problems, can be calculated via the proper orthogonal
decomposition (POD) [47, 81, 88] or with reduced basis methods [43, 77]. For
both approaches, the empirical basis is pre-constructed using full forward problem
simulations or “snapshots.” Systematic projection-based model reduction schemes
for parameter-dependent models have also seen extensive development in recent
years [17, 22]. To our knowledge, such reduction schemes have not yet been used
for optimal experimental design, but in principle they are directly applicable.

Hierarchical surrogate models span a range of physics-based models of lower
accuracy and reduced computational cost. Hierarchical surrogates are derived from
higher-fidelity models using approaches such as simplifying physics assumptions,
coarser grids, alternative basis expansions, and looser residual tolerances. These
approaches may not be particularly systematic, in that their success and applicability
are strongly problem-dependent, but they can be quite powerful in certain cases. One
of the examples in the next section will use a reduced order model derived from a
combination of simplifying physics assumptions and fits to simulation data from a
higher-fidelity model.

2.3 Examples of Optimal Experimental Design

In this section, we present two examples of Bayesian experimental design in
materials-related applications. The first illustrates experimental design for parame-
ter estimation in a simple substrate-film model. This example also demonstrates the
usefulness of reduced-order models in accelerating the design process. The second
example is concerned with experimental design for model selection. It will illus-
trate this process using competing models of impurity precipitation at heterophase
interfaces.
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2.3.1 Film-Substrate Systems: Design for Parameter
Inference

A classical application of Bayesian methods to physical modeling involves inferring
the properties of the interior of an object from observations of its surface, e.g., of
the mantle or core of the Earth from observations at the Earth’s crust [16, 44]. In
the context of materials science, similar problems arise when observing the surface
of a material and trying to infer the subsurface properties. One example of such
a problem involves observing a thin film deposited on a heterogeneous substrate.
The heterogeneity of the substrate—e.g., in temperature [58], local chemistry [3],
or topography [14]—induces some corresponding heterogeneity in the film—e.g.,
melting [58], condensation [3], or buckling [14]. The goal is to deduce information
about the substrate from the behavior of the film.

We have recently developed a convenient model for studying the inference of
substrate properties from film behavior [2]. Figure2.1 shows a film deposited on a
substrate. Though the substrate is not directly observable, we would like to infer its
properties from the behavior of the film deposited above. In the present example, we
will use this simple model to demonstrate aspects of Bayesian experimental design.
Our objective will be to choose experiments that provide maximal information about
a parameter of interest for a fixed number of allowed experiments.

2.3.1.1 Physical Background

In ourmodel problem, the substrate is described by a non-uniform scalar fieldT (x, y)

on a two-dimensional spatial domain, (x, y) ∈ � := [0, L D] × [0, L D]. In other
words, T (x, y) describes the variation of the substrate property T over a square
domain. Realizations of the substrate are random, and hence we model T (x, y) as a

Fig. 2.1 A film deposited on top of a substrate. The substrate is not directly observable, but some
of its properties may be inferred from the behavior of the film
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zero-mean Gaussian random field with a squared exponential covariance kernel [82].
One of the key parameters of this covariance kernel is the characteristic length scale
�s , which describes the scale over which spatial variations in the random field occur.
When �s is large, realizations of the substrate field have a relatively coarse structure,
while smaller values of �s produce realizations with more fine-scale variation. The
film deposited on the substrate is a two-component mixture represented by an order
parameter field c(x, y, t). The order parameter takes values in the range [−1, 1],
where c = −1 and c = 1 represent single-component phases and c = 0 represents
a uniformly mixed phase.

The behavior of the film is modeled by the Cahn-Hilliard equation [18]:

∂c

∂t
= �

(
∂g

∂c
− ε2�c

)
, (2.11)

where

g (c, T (x, y)) = c4

4
+ T (x, y)

c2

2
(2.12)

is a substrate-dependent energy potential function. The two components of the film
separate in regions of the substrate where T (x, y) < 0 and mix in regions where
T (x, y) > 0. Hence, the substrate field can be thought of as a difference from
some critical temperature, where temperatures above the critical value promote phase
mixing while those below the critical value promote phase separation. The parameter
ε in (2.11) governs the thickness of the interface between separated phases. Films
with larger values of ε have thicker interfaces between their phase-separated regions
than films with lower values of ε.

We model the time evolution of an initially uniform film c(x, y, t = 0) = 0
deposited on a substrate by solving the Cahn-Hilliard equation using Eyre’s method
for time discretization [35]. We find that the order parameter field c converges to a
static configuration in the long time limit for any combination of �s and ε. A detailed
description of the model implementation and analysis of the time-dependence of c
is given in [2]. For the purpose of the example presented here, it suffices to know
that the converged order parameter field has a characteristic length scale of its own,
which we call �∞.

Figure2.2 illustrates converged order parameter fields of films with two different
values of ε (ε = 0.02 and ε = 0.04) deposited on substrates with two different values
of �s (�s = 0.77 and ε = 0.13). For both substrates, we observe that increasing the
value of ε increases the value of�∞. Yet the behavior of the film on the two substrates
is qualitatively different. For the substrate with �s = 0.77, the thickness of interfaces
between phase-separated parts of the film is sufficiently small for fluctuations in c
to be correlated with fluctuations in T . By contrast, no direct correlation of this sort
exists for the substratewith �s = 0.13, because its characteristic length is smaller than
the thickness of interfaces between phase-separated parts of the films in Fig. 2.2e, f.
Instead, the fluctuations in c for these films reflects a local spatial average of T over
a length scale that depends on ε.
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Fig. 2.2 Substrate fields with (a) �s = 0.77 and (d) �s = 0.13. Plots b and c show converged
order parameter distributions for films deposited on the substrate in a with ε = 0.02 and ε =
0.04 respectively. Similarly, plots e and f show converged order parameter distributions for films
deposited on the substrate in d with ε = 0.02 and ε = 0.04 respectively. The converged length scale
�∞ is indicated for each film

The value of ε determines how �∞ changes with �s . For example, in films with
ε = 0.02, reducing the value of �s from 0.77 to 0.13 reduces �∞ from 1.05 to 0.83.
However, the opposite effect is observed for ε = 0.04, where reducing �s from 0.77
to 0.13 increases �∞ from 1.35 to 2.93. These observations show that �∞, �s , and
ε are related, albeit in a non-trivial way.

Our goal is to infer the substrate length scale �s from the value of �∞ of a film
of known ε, deposited on the substrate. In this context, �∞ is the data obtained from
an experiment, �s is the value to be inferred, and ε is a parameter of the experiment
that we control (e.g., by manipulating the chemical composition of the film). In
previous work, we showed how to perform this inference and how to improve it by
performing multiple measurements of �∞ using films with different ε values [2]. In
the experimental design problem described here, we would like to choose optimal
values of ε that lead to the most efficient inference of �s .

For any given �s and ε,�∞ may be obtained by solving the Cahn-Hilliard equation
for the time evolution of the film on the substrate. This calculation does not call for
extraordinary computational resources; indeed, it can be performed in roughly 100s
on amodern workstation. In Bayesian experimental design, however, this calculation
would have to be carried out many millions of times. The potential computational
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effort of this approach is compounded by the stochasticity of T (x, y); to evaluate
the likelihood function for any given value of �s , we must account for many possible
substrate field realizations. Therefore, tomake optimal experimental design tractable,
we construct a “reduced ordermodel” (ROM) relating�∞, �s , and ε.Weuse a relation
of the form

�∞ =
reduced order model

︷ ︸︸ ︷
f (ε, �s)︸ ︷︷ ︸

deterministic term

+ γ(ε, �s)︸ ︷︷ ︸
random term

. (2.13)

Thedeterministic termcaptures the average response of thefilm/substrate system, and
the random term captures the inherent stochasticity of the film/substrate system and
any systematic error in the deterministic term. The stochasticity of the film/substrate
system is due to the random nature of the substrate field and the initial condition of
the Cahn-Hilliard equation, among other factors [2].

The proposed ROM can be simplified using the Buckingham Pi theorem [102].
Since ε, �s , and �∞ all have dimensions of length, we can form two Pi groups:
(�∞/ε) and (�s/ε). The ROM may then be simplified to

�∞
ε

= F

(
�s

ε

)
+ �

(
�s

ε

)
. (2.14)

To obtain the form of F(�s/ε) and �(�s/ε), we carried out multiple runs of the Cahn-
Hilliard model, with values of �s sampled over [0.1, 1] and values of ε sampled
over [0.01, 0.1]. Figure2.3a plots �∞/ε as a function of �s/ε, confirming that these
quantities lie on a single curve, on average. However, there is a spread about this
curve as well. This is caused by the stochastic nature of the relation between �∞/ε
and �s/ε, and justifies the random term in the ROM. The exact forms of F(�s/ε) and
�(�s/ε) are then:

F

(
�s

ε

)
= �s

ε

(
a + b

(�s/ε − 1)c

)
(2.15)

�

(
�s

ε

)
∼ N

(
0,σ2

(
�s

ε

))
(2.16)

with parameters of the mean term F obtained by least squares fitting:

a = 1.05 b = 79.51 c = 1.54.

The dependence of σ2 on (�s/ε) is captured nonparametrically using Gaussian
process regression [82], as shown in Fig. 2.3b. Details of the derivation of the ROM
can be found in [2].

To perform inference, we use the Cahn-Hilliard model as a proxy for a physical
experiment. We generate multiple realizations of substrates with the same value of
�s . Then, using each substrate as an input, we run the Cahn-Hilliard model, which
also requires ε as a parameter. Given one or more choices for ε and the values of �∞
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(a) (b)

Fig. 2.3 a A plot of�∞/ε against �s/ε. b A plot of the non-stationary variance of the random term
�(�s/ε)

thus obtained, we infer the value of �s using the ROM. Inference may be conducted
using one or multiple (�∞, ε) pairs.

To infer �s in a Bayesian setting, we need to calculate the likelihood p(�∞, ε).
This can be done using the ROM as follows:

p (�∞|�s, ε) = 1√
2πσ(�s/ε)

exp

(
− (�∞/�s − F(�s/ε))

2

2σ2(�s/ε)

)
. (2.17)

Since runs of the Cahn-Hilliard equation are conditionally independent given �s and
ε, the likelihood for multiple (�∞, ε) pairs can be found using the product rule

p
(
�∞,1:n|�s, ε1:n

) =
∏

i

p
(
�∞,i |�s, εi

)
. (2.18)

Finally, the posterior density is calculated using Bayes’ rule

p(�s |�∞,1:n, ε1:n) = p(�∞,1:n|�s, ε1:n)p(�s)∫
p(�∞,1:n|�s, ε1:n)p(�s)d�s

. (2.19)

We use a truncated Jeffreys prior [50] for �s

p(�s) ∝ ln(1/�s), �s ∈ [0.1, 1]. (2.20)

The prior density is set to zero outside the range [0.1, 1]. This restriction is imposed
for reasons of computational convenience and may easily be relaxed.
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(a) (b)

Fig. 2.4 a Posterior probability densities for different numbers of (�∞, ε) pairs.With the inclusion
of ever more data, uncertainty in the posterior on �s decreases steadily. b Posterior variance and
error in posterior mean for different numbers of (�∞, ε) pairs. Both error and variance decrease
with increasing numbers of data points

The results of an iterative inference process that incorporates successive (�∞, ε)
pairs are shown in Fig. 2.4a. Here, the true value of the substrate length scale (i.e.,
the value used to generate the data) is �s = 0.4. Values of ε are selected by sampling
uniformly in log-space over the interval [0.01, 0.1]. The probability density marked
‘0’ (i.e., with zero data points) is the prior. The posterior probability density with one
data point (marked ‘1’) is bimodal, but the bimodality of the posterior vanishes with
two or more data points. As additional (�∞, ε) pairs are introduced, the peak in the
posterior moves towards the true value of �s = 0.4. Any number of point estimates of
�s may be calculated from the posterior, such as the mean, median, or mode, but the
posterior probability density itself gives a full characterization of the uncertainty in
�s . As an example, we have plotted in Fig. 2.4b both the posterior variance (ameasure
of uncertainty) and the absolute difference between the posterior mean and the true
value of �s (a measure of error) for different numbers of data points. As more data
are used in the inference problem, both the posterior variance and the error in the
posterior mean decrease. Note that the ultimate convergence of the posterior mean
towards the true value of �s , as the number of data points approaches infinity, is a
more subtle issue; it is related to the frequentist properties of this Bayesian estimator,
here in the presence of model error. For a fuller discussion of this topic, see [2].

2.3.1.2 Bayesian Experimental Design

Thus far, we have described a model problem wherein the characteristic length scale
�s of a substrate is inferred from the behavior of films with known values of ε,
deposited on the substrate. In the preceding calculations, we chose ε randomly from
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Fig. 2.5 Map of expected information gain U (ε1, ε2) in the substrate length scale parameter �s , as
a function of experimental design parameters ε1 and ε2. The three experiments discussed in the text
are marked with red squares

a distribution. Since ε is in fact an experimental parameter that we can control, this
choice is equivalent to performing experiments at random. Now we would like to
consider a more focused experimental campaign, choosing values of ε to maximize
the informationgainedwith each experiment. In the languageofSect. 2.2,wewill take
our utility function u to be the Kullback-Leibler (KL) divergence from the posterior
to the prior (2.5). The expected utility (2.4) will represent expected information gain
in the parameters �s . To connect the present problem to the general formulation
of Sect. 2.2, note that �∞ is the experimental data y, �s is the parameter θ to be
inferred, and ε is the experimental parameter η over which we will optimize the
expected utility.

The expected KL divergence from posterior to prior is estimated via the Monte
Carlo estimator in (2.9). To perform the calculation, we need to be able to sample
�(i)

s and �̃
(i, j)
s from the prior p(�s), and �

(i)∞ from the likelihood p(�∞|�(i)
s , ε). The

length scales �s can be sampled from the truncated Jeffreys prior using a standard
inverse CDF transformation [83]. The observation �∞ is Gaussian given ε and �s ,
and can be sampled by evaluating (2.14) with distributional information given in
(2.15)–(2.16).



28 R. Aggarwal et al.

We will use this formulation to design an optimal experiment consisting of two
measurements. In other words, two films with independently controlled values of ε
will be deposited on substrates with the same value of �s , and the two values of �∞
generated will be used for inference. The values of ε will be restricted to the design
range [0.01, 0.095]. As before, this restriction is not essential and is easily relaxed.
Figure2.10 shows the resulting Monte Carlo estimates of expected information gain
U (ε1, ε2).

Because the ordering of the experiments is immaterial, the map of the expected
information gain is symmetric about the ε1 = ε2 line, aside from Monte Carlo
estimation error. We draw attention to three points marked by squares in Fig. 2.10.
The first is at (ε1, ε2) = (0.025, 0.025), where U (ε1, ε2) = 0.49; it is near the
minimum of the expected utility function. This point corresponds to the least useful
pair of experiments. The second is at (ε1, ε2) = (0.01, 0.095), with U (ε1, ε2) = 2.9;
it is the maximum of the expected utility map and is expected to yield the most
informative experiments. The point (ε1, ε2) = (0.08, 0.08), where U (ε1, ε2) = 2.0,
lies midway between these extremes: it is expected to be more informative than the
first design but less informative than the second.

To illustrate how the three (ε1, ε2) pairs highlighted above yield different expected
utilities, we carry out the corresponding inferences of �s following the procedure
described in Sect. 2.3.1.1. To simulate each experiment, we fix �s and the desired
value of ε, then generate a converged order parameter length scale �∞ by gen-
erating a realization of the substrate and simulating the Cahn-Hilliard equation.
Given the data �∞,1 and �∞,2 corresponding to (ε1, ε2), we evaluate the corre-
sponding posterior density and calculate the actual KL divergence from posterior
to prior, DK L

(
p(�s |�∞,1:2, ε1:2)‖p(�s)

)
. The results of these three experiments

are summarized in Fig. 2.6a. As expected, the second experiment, performed at

(a) (b)

Fig. 2.6 a Experiments corresponding to the three (ε1, ε2) pairs indicated in Fig. 2.5. The posterior
densities from the three experiments are marked #1, #2, and #3. b �∞ = εF(�s/ε) versus �s for
ε = 0.01, 0.025, 0.095
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(ε1, ε2) = (0.01, 0.095) is the most informative, and has a large information gain
of DK L = 2.10 nats.1 The first experiment is the least informative, with a small
information gain of DK L = 0.99 nats. The third experiment, with DK L = 1.44 nats,
lies in between. The actual values of DK L are different from their expected values
because the expected information gains are calculated by averaging over all possible
prior values of �s and all possible experimental outcomes, whereas the actual values
are calculated only for particular �s and �∞ values, given ε. However, the values of
DK L follow the same trend as their expectations.

To better understand why these experiments produce different values of the infor-
mation gain, Fig. 2.6b plots �∞ = εF(�s/ε) as a function of �s for ε = 0.01, 0.025,
and 0.095. We observe that�∞ is not very sensitive to variations in �s for ε = 0.025.
This explains why an experiment with (ε1, ε2) = (0.025, 0.025) is not particularly
informative. On the other hand, �∞ is sensitive to variations in �s for ε = 0.095
and ε = 0.01. Additionally, �∞ is a decreasing function of �s for ε = 0.095, and
an increasing function for ε = 0.01. The complementarity of these trends makes the
experiment (ε1, ε2) = (0.01, 0.095) especially useful.

We can also compare the optimal experiment to the random experiments shown
in Fig. 2.4. The information gained in the optimal experiment (DK L = 2.10 nats),
with two values of ε, is comparable to the information gained from the experiment
with eight randomly selected values of ε (DK L = 2.29 nats). Hence by using optimal
Bayesian experimental design in this example, we are able to reduce the experimental
effort over a random strategy by roughly a factor of four! This reduction is especially
valuable when experiments are difficult or expensive to conduct.

2.3.2 Heterophase Interfaces: design for model
discrimination

Asnoted inSect. 2.2.1, experiments often yield data thatmaybe explainedbymultiple
models. Additional measurements may then be required to determine which of many
possible models is best supported by the data. In such situations, it is desirable to
determine which further experiments are likely to distinguish between alternative
models most efficiently. Naturally, this guidance is needed before the additional
work is actually carried out. Determining which experiments are most informative
for distinguishing between alternative models is the goal of Bayesian experimental
design for model selection [63, 75]. This capability is especially useful when the
experiments are very resource-intensive and brute force data acquisition over a wide
parameter range is not feasible. This section will illustrate Bayesian experimental
design for model selection on an example taken from investigations of heterophase
interfaces in layered metal composites.

1A nat is a unit of information, analogous to a bit, but with a natural logarithm rather than a base
two logarithm in (2.5).
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Fig. 2.7 A Cu-Nb multilayer composite synthesized by PVD [31]

2.3.2.1 Physical Background

Figure2.7 shows a multilayer composite of two transition metals—copper (Cu) and
niobium (Nb)—created by physical vapor deposition (PVD) [74]. In this synthesis
technique, atoms impinge upon a flat substrate, adhere to it, and aggregate into crys-
talline layers. By alternating the elements being deposited—e.g., first Cu, then Nb,
then Cu again, and so on—layered composites such as the one in Fig. 2.7 may be
made. The thickness of each layer may be controlled by changing the total deposi-
tion time for each element. Many multilayer compositions besides Cu/Nb have been
synthesized this way, including Cu/V (V: vanadium) [37, 105], Cu/Mo (Mo: molyb-
denum) [62], Ag/V (Ag: Silver) [97, 98], Al/Nb (Al: Aluminum) [37, 61, 62], Fe/W
(Fe: Iron, W: Tungsten) [60], and others [11, 12, 86].

Layered composites are ideal for studying the properties of heterophase interfaces.
In Fig. 2.7, each pair of adjacent Cu and Nb layers forms one Cu-Nb interface. The
total amount of interface area per unit volume of the material may be changed by
adjusting the thickness of the layers. For composites where all the individual layers
have identical thickness l, the volume of material corresponding to interface area
A is V = A × l. Thus, the interface area per unit volume is A/V = 1/ l: as the
layers are made thinner, A/V rises and the influence of interfaces on the physical
properties of the composite as a whole increases. For l in the nanometer range, i.e.,
l � 10nm, interfaces dominate the behavior of the multilayer composite, leading to
enhanced strength [73], resistance to radiation [72], and increased fatigue life [95].
In multilayer composites, all of these desirable properties are due to the influence
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of interfaces. Thus, considerable effort continues to be invested into elucidating the
structure and properties of individual interfaces [10, 19, 71].

The present example will consider the relationship between the structure of metal-
metal heterophase interfaces and trapping of helium (He) impurities. Implanted He is
a major concern for the performance of materials in nuclear energy applications [92,
106]. Trapping and stable storage of these impurities at interfaces is one way of
mitigating the deleterious effects of implantedHe [32, 78]. The influence of interfaces
on He may be clearly seen in multilayer composites. Experiments carried out on Cu-
Nb [29], Cu-Mo [62], and Cu-V [38] multilayers synthesized by PVD show that
implanted He is preferentially trapped at the interfaces. Moreover, not all interfaces
are equally effective at trapping He: the maximum concentration c of interfacial
He—expressed as the number of He atoms per unit interface area—that may be
trapped at an interface before detectable He precipitates form differs from interface
to interface [32].

Figure2.8 plots c for Cu-Nb, Cu-Mo, and Cu-V interfaces as a function of one
parameter: the interface “misfit” m. Cu, Nb, Mo, and V all have cubic crystal struc-
tures: Cu is face-centered cubic (fcc) while Nb, Mo, and V are body-centered cubic
(bcc). Thus, all three composites used in Fig. 2.8 are made up of alternating fcc (Cu)
and bcc (Nb,Mo, or V) layers. The edge length of a single cubic unit cell in fcc or bcc
crystals is the lattice parameter, afcc or abcc. The misfit m is defined as m = abcc/afcc.
Intuitively, m measures the mismatch in inter-atomic spacing in the adjacent crystals
that make up an interface.

According to Fig. 2.8, the ability of interfaces to trap He, as measured by c,
depends on the misfit: c = c(m). A simple model that may be proposed based on
this data is that the relationship between c and m is linear: c = α0 + α1m. Indeed, a
linear fit represents the available data reasonably well. Its most apparent drawback

Fig. 2.8 Maximum interfacial He impurity concentration, c, plotted as a function of misfit, m
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is that it predicts negative c values for m � 0.83. Thus, a better model might be
c = α|m − m0|. This model predicts that c drops to zero as m decreases to m0 and
begins to rise again as m is further reduced below m0. Physically, this model may be
rationalized by stating that at some special value of misfit, m0, the atomic matching
between adjacent layers is especially good, leading to few sites at the interface where
He impurities may be trapped. As m departs from m0 in either direction, the atomic
matching becomesworse, giving rise tomoreHe trapping sites and therefore higher c.

The structure of fcc/bcc interfaces—including the degree of atomic matching—
may be investigated in detail by constructing atomic-levelmodels [30, 33]. Figure2.9
shows such a model of the terminal atomic planes of Cu and Nb found at PVD
Cu-Nb interfaces. The pattern of overlapping atoms from the two planes contains
sites where a Cu atom is nearly on top of a Nb atom. Such sites are thought to
be preferential locations for trapping of He impurities [52]. They arise from the
geometrical interference of the overlapping atomic arrangements in the adjacent
crystalline layers and, in that sense, may be viewed as analogous to features in a
Moiré pattern.

The density and distribution of He trapping sites of the type shown in Fig. 2.9 may
be computed directly for any given fcc/bcc interface as a function of the geometry
of the interface using the well-known O-lattice theory [13]. In PVD Cu/Nb, Cu/Mo,
and Cu/V composites, the relative orientation of the adjacent crystals is identical.
Thus, differences in the geometry Cu-Nb, Cu-Mo, and Cu-V interfaces arise solely
from differences in the lattice parameters of the adjacent crystals, as described by
the misfit parameter, m. The areal density of He trapping sites for these interfaces is
therefore only a function of m and may be written as

f (m) =
∣∣∣(4m − 3)(

√
3m − √

2)
∣∣∣

3a2
Cum2

. (2.21)

Fig. 2.9 Left A Cu-Nb bilayer. Right The terminal Cu and Nb planes that meet at the Cu-Nb
interface. He trapping occurs at sites where a Cu atom is nearly on top of a Nb atom. One such site
is shown with the dashed circle
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Using this expression, we propose a second model for the dependence of c on m,
namely: c = β f (m). Here, the proportionality constant β determines the number of
He atoms that may be trapped at a single site of the type illustrated in Fig. 2.9. The
best fit for this secondmodel is plotted in Fig. 2.8. Both this model and the previously
described linear model fit the available experimental data reasonably well.Moreover,
both predict c values of zero for m ≈ 0.82–0.83. However, unlike the linear model,
c = β f (m) predicts that c is also zero at m ≈ 0.75.

We wish to determine what additional experimental data will help distinguish
between the two models described above. However, since measuring even a single
value of c requires considerable resources, our goal is to limit the additional data to
just one (c, m) pair. In an experiment, we may select m by choosing to synthesize
a fcc/bcc multilayer composite of specific composition. In other words, we control
m. However, we do not know c in advance. In this context, our goal is to determine
what one value of m is most likely to distinguish between the two models, regardless
of the c value actually found in the subsequent experiment. In the following section,
we will apply Bayesian experimental design to address this challenge. In addition to
the two models described above, we will also consider a third model encapsulating
the hypothesis that c does not depend on m at all: c = γ = constant.

2.3.2.2 Bayesian Experimental Design for Model Selection

As described in Sect. 2.2, the goal of experimental design is to maximize the expec-
tation of some measure of information. In the present example, we will maximize
the expected KL divergence, as applied to model discrimination, described in (2.6)
and (2.7). In this context, m is the experimental parameter η that we control; c is the
observed data y; M1, M2, and M3 are the competing models; (α, m0) are the para-
meters θ1 of model M1; β is the parameter θ2 of model M2; and γ is the parameter
θ3 of model M3.

The expected KL divergence can be computed by combining (2.6) and (2.7); this
requires knowing both the prior p(Mi ) and the posterior p(Mi |c, m) for each model.
We use a flat or “indifference” prior over models, p(Mi ) = 1/3. The posterior model
probabilities are calculated from Bayes rule as given in (2.2). Evaluating Bayes’ rule
in this setting requires that we calculate the marginal likelihood for each model and
proposed experiment, p(c|Mi , m), as shown in (2.3). We now detail this procedure.

The previous section identified three models connecting c and m. They are:

M1 : c = α|m − m0| + ε1 (2.22)

M2 : c = β f (m) + ε2 (2.23)

M3 : c = γ + ε3 (2.24)

where εi ∼ N (0,σ2
ε ). In addition to specifying the functional form of each model,

each expression above also contains an additive noise term εi . This term is a random
variable that describes uncertainty in the measured c, i.e., due to the observational
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process itself. For simplicity, we assume the observational error variance σ2
ε to be

known. The model parameters α, m0, β, and γ are endowed with priors that reflect
our state of knowledge after performing the three experiments shown in Fig. 2.8,
before beginning the current experimental design problem. These priors are taken to
be Gaussian. In other words, we suppose that they are the result of Bayesian linear
regression with Gaussian priors or improper uniform priors; the posterior following
the three previous experiments becomes the prior for the current experimental design
problem. We denote the current prior means by ᾱ, m̄0, β̄, and γ̄, and the current prior
standard deviations as σα, σm0 , σβ , and σγ .

Given these assumptions,we can express the probability density of the observation
c for each parameterized model as:

p(c|m,α, m0, M1) = 1√
2πσε

exp

(
− (c − α|m − m0|)2

2σ2
ε

)
(2.25)

p(c|m,β, M2) = 1√
2πσε

exp

(
− (c − β f (m))2

2σ2
ε

)
(2.26)

p(c|m, γ, M3) = 1√
2πσε

exp

(
− (c − γ)2

2σ2
ε

)
. (2.27)

Each of these densities is normal with mean given by the model and variance σ2
ε .

For fixed m and c, these densities can be viewed as the likelihood functions for the
corresponding model parameters, i.e.,α and m0 for model 1, β for model 2, and γ for
model 3. To obtain the marginal likelihoods p(c|m, Mi ), we marginalize out these
parametric dependencies as follows:

p(c|m, M1) =
∫ ∞

−∞
p(c|m,α, m0, M1)p(α)p(m0) dα dm0 (2.28)

p(c|m, M2) =
∫ ∞

−∞
p(c|m,β, M2)p(β) dβ (2.29)

p(c|m, M3) =
∫ ∞

−∞
p(c|m, γ, M1)p(γ) dγ (2.30)

Here, p(α), p(m0), p(β), and p(γ) denote the Gaussian prior probability densities
described above, e.g.,

p(α) = 1√
2πσα

exp

(
− (α − ᾱ)2

2σ2
α

)
, etc. (2.31)

In the expressions for p(c|m, Mi ), integration over α, β, and γ can be performed
analytically, e.g.,

p(c|m, M2) = 1

σβσε

√
2π
σ2

β

+ 2π f (m)2

σ2
ε

exp

(

− (c − β̄ f (m))2

2( f (m)2σ2
β + σ2

ε )

)

. (2.32)
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Table 2.1 Prior model parameters

Model Parameter Standard deviation

M1 ᾱ ≈ 94/nm2 σα ≈ 0.49/nm2

m̄0 ≈ 0.83 σm0 ≈ 0.62

M2 β̄ ≈ 26/nm2 σβ ≈ 4.2/nm2

M3 γ̄ ≈ 4.5/nm2 σγ = 2.0/nm2

The integral over m0 in the expression for p(c|m, M1) must be found numerically,
however. In the present example, this integral is easily computed using standard
numerical quadrature. If the integral had been too high dimensional, however, then
a Monte Carlo scheme might be used instead [83]. We carry out these calculations
using prior parameters listed in Table2.1. The experimental uncertainty was set to
σε = 2.5/nm2, following [29].

To calculate the expected information gainU in the model indicator, as a function
of the m value for a single additional experiment, we first substitute the prior and
posterior model probabilities calculated above into (2.6). Then we take the expec-
tation of this utility over the prior predictive distribution, as in (2.7), by integrating
over the data c. More explicitly, we calculate:

U (m) =
∫

u(m, c)p(c|m) dc, (2.33)

where the utility is

u(m, c) =
3∑

i=1

P(Mi |c, m) log
P(Mi |c, m)

P(Mi )
,

and the design-dependent prior predictive probability density is

p(c|m) =
3∑

i=1

P(Mi )p(c|m, Mi ).

The integral in (2.33) formally is taken over (−∞,∞), since this is the range of
the prior predictive. Negative values of c are not physical, of course, but they are
exceedingly rare: the mean predictions of models 1 and 2 are necessarily positive,
and the Gaussian prior on γ in model 3 is almost entirely supported above zero. The
Gaussian measurement noise ε can also lead to negative c values, but it too has a
relatively small variance.

Figure2.10 plots U (m) computed using all three models. For comparison, the
figure also shows U (m) found using only models 1 and 2, i.e., excluding the con-
stant model c = γ. Values of m that maximize U (m) are the best choices for an
experiment to distinguish between models. When all three models are considered,
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Fig. 2.10 Expected information gain for model discrimination U (m)

U (m) is greatest for high misfit, i.e., m ≈ 0.95. By contrast, when only models 1
and 2 are considered,U (m) is least in the high m limit. The reason for this difference
is clear from comparing Fig. 2.10 with Fig. 2.8: models 1 and 2 predict comparable
c at high m while model 3 predicts a markedly lower c. Thus, when all three models
are considered, the value of U (m) is high for m ≈ 0.95 because a measurement
at that m value makes it possible to distinguish models 1 and 2 from model 3. By
contrast, when only models 1 and 2 are considered, U (m) is least at high m because
a measurement in that m range has limited value for distinguishing between models
1 and 2.

Putting aside model 3,U (m) predicts greatest utility for an experiment carried out
in the range 0.74 < m < 0.84, i.e., in the vicinity of the minima of function f (m).
To understand the reason for the significance of thism range, it is important to realize
that the plots in Fig. 2.8 only showa single realization ofmodels 1 and 2, namely those
corresponding to α = ᾱ, m0 = m̄0, and β = β̄ (the prior means on the parameters).
Since we assume that α, m0, and β are normally distributed, many other realizations
of these models are possible. Figure2.11 shows 100 different realizations of models
1 and 2 obtained by drawing α, m0, and β at random from their prior distributions.

Figure2.11makes clear an important distinction betweenmodels 1 and 2 that is not
apparent in Fig. 2.8: model 1 exhibits an extreme sensitivity to its fitting parameters
within the range of uncertainty of those parameters. In particular, the minimum in c
predicted by model 1 may occur at many different m values. By contrast, model 2
is relatively less sensitive to its fitting parameters, especially for 0.74 < m � 0.84.
Unlike model 1, the locations of its minima are fixed. Thus, measuring a low c value
for 0.74 < m � 0.84 has the potential to exclude a large number of realizations of
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Fig. 2.11 100 different
realizations of models 1
(c = α|m − m0|) and 2
(c = β f (m)) obtained by
drawing parameters α, m0,
and β at random from their
prior distributions. The thick
lines plot the realizations of
the models at the prior mean
values of these parameters

model 1, while measuring a high c value in that range essentially excludes model 2.
Bayesianmethods naturally capture this subtle aspect of experimental designwithout
any special prior analysis of the competing models.

2.4 Outlook

The examples presented here demonstrate how the formalism of optimal Bayesian
experimental design, coupled with information theoretic objectives, can be adapted
to different questions of optimal data collection in materials science. In one exam-
ple, we seek the best pair of experiments for inferring the parameters of a given
model. In another example, we seek the single experiment that can best distinguish
between competing models, where each model has a distinct form and a distinct set
of uncertain parameters. Though simple, these examples also demonstrate the use
of key computational and analytical tools, including the Monte Carlo estimation of
expected information gain (in the nonlinear and non-Gaussian setting of our first
example) and the use of reduced-order models (also in the first example).

Reduced order models (ROMs) are increasingly being recognized as crucial to
materials science, especially computational materials design [39, 70, 94, 104]. The
reason for their utility is clear: strictly speaking, the complete set of degrees of
freedom describing a material is the complete set of positions and types of all its
constituent atoms. This set defines a design space far too vast to explore. Even if
mesoscale entities such as crystal defects (e.g., dislocations [45] or interfaces [91])
ormicrostructure [1] are used to define the degrees of freedomfor design, the resulting
design space may nevertheless remain too vast to examine comprehensively.

Therefore, it is crucial to identify only those degrees of freedom that significantly
affect properties of interest (e.g., those affecting performance metrics in a design)
and create a ROM to connect the two. Yet while formal methods of model order
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reduction are well established in many fields of science and engineering (as reviewed
in Sect. 2.2.3), the automated and systematic construction of ROMs in materials con-
texts is in an early stage of development. In practice, most ROMs inmaterials science
are constructed “manually.” The inherently collective and multiscale character of
many materials-related phenomena calls for the development and validation of new
methods of automaticmodel order reduction to addressmaterials-specific challenges.

Surrogate or reduced-order models are also essential to making Bayesian infer-
ence computationally tractable, particularly inferencewith computationally intensive
physics-based models. Indeed, the past several years have seen a steady stream of
developments inmodel reduction for Bayesian inference, mostly in the appliedmath-
ematics, computational science, and statistics communities. These include many
types of prior-based ROMs [67–69], posterior-focused approximations [59] and
projection-based reduced-ordermodels [27], hierarchical surrogates [23], andnumer-
ous other approaches [25, 85]. The utility of ROMs is increasingly being recognized
inmaterials-related inferenceproblems aswell. For instance, themodel film-substrate
problem described in Sect. 2.3.1 relies on a ROM to circumvent computationally
expensive forward problem evaluations, thereby making rapid inference of substrate
properties tractable [2]. Earlier examples of this approach in materials science prob-
lems include [28], which, starting with what is effectively a ROM for the energy-
temperature relation, inferred the melting point of Ti2GaN. Data-fit surrogates con-
structed based on existing literature may also serve an analogous purpose to a ROM.
Using such a surrogate, [103] modeled the creep rupture life of Ni-base superalloys.

Similar to reduced-order modeling, the usefulness of Bayesian approaches is now
becoming better recognized within the materials community. They can be applied to
parameter inference and model inference, as demonstrated here, but also to problems
involving prediction under uncertainty. For example, [55] used Bayesian inference
to assess the uncertainty of cluster expansion methods for computing the internal
energies of alloys. These authors point out that cluster expansions are also a kind of
surrogate model—i.e., a ROM—and that uncertainty quantification should, among
other goals, assess how well the surrogate reproduces the output of a more compu-
tationally expensive reference model.

Despite growing interest in Bayesian methods within the materials community,
there are fewer examples of their application to experimental design. An early (yet
very recent) effort is [4], which applies information-theoretic criteria and Bayesian
methods to stress-strain response and texture evolution in polycrystalline solids.
Nevertheless, opportunities for expanded application of optimal Bayesian experi-
mental design abound in materials-related work. In particular, detailed and resource-
intensive experiments such as those described in Sect. 2.3.2 are poised to benefit from
it immensely. One potential hurdle to widespread adoption is the up-front investment
of effort currently needed to understand and implement the associated mathemati-
cal formalism. Thus, expanded availability of user-friendly, well-documented, and
multi-functional software [79] is likely to accelerate the adoption and integration of
Bayesian experimental design into mainstream materials research.

Finally, we emphasize that optimal experimental design itself—not limited to
the materials science context—is the topic of much current research. This research
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focuses on both formulational issues and on computational methodology. Examples
of the latter include developing reduced-order or multi-fidelity models tailored to the
needs of stochastic optimization, or devising more efficient estimators of expected
information gain, using importance sampling, high-dimensional kernel density esti-
mators, and other approaches. An interesting foundational challenge, on the other
hand, involves understanding and accounting for model error or misspecification in
optimal design. If the model relating parameters of interest to experimental observ-
ables is incomplete or under-resolved, how useful—or close to optimal—are the
experiments designed according to this relationship? When a convergent sequence
of models of differing fidelity is available (as in the ROM setting), then this question
is more tractable. But if all available models are inadequate, many questions remain
open. One promising approach to this challenge uses nonparametric statistical mod-
els, perhaps formulated in a hierarchical Bayesianmanner, to account for interactions
and inputs missing from the current model of the experiment. Sequential experimen-
tal design is also useful in this context, as successive batches of experiments can help
uncover the unmodeled mismatch between a model and physical reality.

Sequential experimental design is useful much more broadly as well. Recall
that in all the examples of this chapter, we designed a single batch of experiments
all-at-once: even if the batch contained multiple experiments, we chose the design
parameters before performing any of the experiments. Sequential design, in con-
trast, allows information from each experiment to influence the design of the next.
The most widely used sequential approaches are greedy, where one designs the next
batch of experiments as if it were the final batch—using the current state of knowl-
edge as the prior distribution, with design criteria similar to those used here. But
greedy approaches are sub-optimal in general, as they do not account for the infor-
mation to be gained from future experiments. An optimal approach can instead be
obtained by formulating sequential experimental design as a problemof dynamic pro-
gramming [7, 9, 20]. Making this dynamic programming approach computationally
tractable, outside of specialized settings, remains a significant challenge.
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Chapter 3
Bayesian Optimization for Materials Design

Peter I. Frazier and Jialei Wang

Abstract We introduce Bayesian optimization, a technique developed for
optimizing time-consuming engineering simulations and for fittingmachine learning
models on large datasets. Bayesian optimization guides the choice of experiments
during materials design and discovery to find good material designs in as few exper-
iments as possible. We focus on the case when materials designs are parameterized
by a low-dimensional vector. Bayesian optimization is built on a statistical technique
calledGaussian process regression,which allows predicting the performance of a new
design based on previously tested designs. After providing a detailed introduction
to Gaussian process regression, we describe two Bayesian optimization methods:
expected improvement, for design problems with noise-free evaluations; and the
knowledge-gradient method, which generalizes expected improvement and may be
used in design problems with noisy evaluations. Both methods are derived using a
value-of-information analysis, and enjoy one-step Bayes-optimality.

3.1 Introduction

In materials design and discovery, we face the problem of choosing the chemical
structure, composition, or processing conditions of a material to meet design criteria.
The traditional approach is to use iterative trial and error, inwhichwe (1) choose some
material design that we think will work well based on intuition, past experience, or
theoretical knowledge; (2) synthesize and test the material in physical experiments;
and (3) use what we learn from these experiments in choosing the material design
to try next. This iterative process is repeated until some combination of success and
exhaustion is achieved.
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While trial and error has been extremely successful, we believe that mathematics
and computation together promise to accelerate the pace of materials discovery, not
by changing the fundamental iterative nature of materials design, but by improving
the choices that we make about which material designs to test, and by improving our
ability to learn from previous experimental results.

In this chapter, we describe a collection of mathematical techniques, based on
Bayesian statistics and decision theory, for augmenting and enhancing the trial and
error process. We focus on one class of techniques, called Bayesian optimization
(BO), or Bayesian global optimization (BGO), which use machine learning to build
a predictive model of the underlying relationship between the design parameters of
a material and its properties, and then use decision theory to suggest which design
or designs would be most valuable to try next. The most well-developed Bayesian
optimization methods assume that (1) the material is described by a vector of contin-
uous variables, as is the case, e.g., when choosing ratios of constituent compounds,
or choosing a combination of temperature and pressure to use during manufacture;
(2) we have a single measure of quality that we wish to make as large as possible; and
(3) the constraints on feasible materials designs are all known, so that any unknown
constraints are incorporated into the quality measure. There is also a smaller body of
work on problems that go beyond these assumptions, either by considering discrete
design decisions (such as small molecule design), multiple competing objectives, or
by explicitly allowing unknown constraints.

Bayesian optimization was pioneered by [1], with early development through
the 1970s and 1980s by Mockus and Zilinskas [2, 3]. Development in the 1990s
was marked by the popularization of Bayesian optimization by Jones, Schonlau,
and Welch, who, building on previous work by Mockus, introduced the Efficient
GlobalOptimization (EGO)method [4]. Thismethod became quite popular andwell-
known in engineering, where it has been adopted for design applications involving
time-consuming computer experiments, within a broader set of methods designed for
optimization of expensive functions [5]. In the 2000s, development of Bayesian opti-
mization continued in statistics and engineering, and the 2010s have seen additional
development from the machine learning community, where Bayesian optimization
is used for tuning hyperparameters of computationally expensive machine learning
models [6]. Other introductions to Bayesian optimizationmay be found in the tutorial
article [7] and textbooks [8, 9], and an overview of the history of the field may be
found in [10].

We begin in Sect. 3.2 by introducing the precise problem considered by Bayesian
Optimization.We then describe in Sect. 3.3 the predictive technique used byBayesian
Optimization, which is called Gaussian Process (GP) regression. We then show, in
Sect. 3.4, how Bayesian Optimization recommends which experiments to perform.
In Sect. 3.5 we provide an overview of software packages, both freely available and
commercial, that implement the Bayesian Optimization methods described in this
chapter. We offer closing remarks in Sect. 3.6.
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3.2 Bayesian Optimization

Bayesian optimization considersmaterials designs parameterized by a d-dimensional
vector x . We suppose that the space of materials designs in which x takes values is
a known set A ⊆ R

d .
For example, x = (x(1), . . . , x(d)) could give the ratio of each of d different

constituents mixed together to create some aggregate material. In this case, we would
choose A to be the set A = {x :∑d

i=1 x(i) = 1}. As another example, setting d = 2,
x = (x(1), x(2)) could give the temperature (x(1)) and pressure (x(2)) used in
material processing. In this case, we would choose A to be the rectangle bounded by
the experimental setup’s minimum and maximal achievable temperature on one axis,
Tmin and Tmax, and the minimum and maximum achievable pressure on the other. As
a final example, we could let x = (x(1), . . . , x(d) be the temperatures used in some
annealing schedule, assumed to be decreasing over time. In this case, we would set
A to be the set {x : Tmax ≥ x(1) ≥ · · · ≥ x(d) ≥ Tmin}.

Let f (x) be the quality of the material with design parameter x . The function f is
unknown, and observing f (x) requires synthesizing material design x and observing
its quality in a physical experiment. We would like to find a design x for which f (x)

is large. That is, we would like to solve

max
x∈A

f (x). (3.1)

This is challenging because evaluating f (x) is typically expensive and time-
consuming. While the time and expense depends on the setting, synthesizing and
testing a newmaterial design could easily take days or weeks of effort and thousands
of dollars of materials.

In Bayesian optimization, we use mathematics to build a predictive model for the
function f based on observations of previous materials designs, and then use this
predictivemodel to recommend amaterials design that would bemost valuable to test
next. We first describe this predictive model in Sect. 3.3, which is performed using
a machine learning technique called Gaussian process regression. We then describe,
in Sect. 3.4, how this predictive model is used to recommend which design to test
next.

3.3 Gaussian Process Regression

The predictive piece of Bayesian optimization is based on a machine learning tech-
nique called Gaussian process regression. This technique is a Bayesian version
of a frequentist technique called kriging, introduced in the geostatistics literature
by South-African mining engineer Daniel Krige [11], and popularized later by
Matheron and colleagues [12], as described in [13]. A modern monograph on
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Gaussian process regression is [14], and a list of software implementing Gaussian
process regression may be found at [15].

In Gaussian process regression, we seek to predict f (x) based on observations at
previously evaluated points, call them x1, . . . , xn . We first treat the case where f (x)

can be observed exactly, without noise, and then later treat noise in Sect. 3.3.5. In
this noise-free case, our observations are yi = f (xi ) for i = 1, . . . , n.

Gaussian process regression is a Bayesian statistical method, and in Bayesian
statisticsweperform inference by placing a so-calledprior probability distributionon
unknown quantities of interest. The prior probability distribution is often called,more
simply, the prior distribution or, even more simply, the prior. This prior distribution
is meant to encode our intuition or domain expertise regarding which values for
the unknown quantity of interest are most likely. We then use Bayes rule, together
with any data observed, to calculate a posterior probability distribution on these
unknowns. For a broader introduction to Bayesian statistics, see the textbook [16] or
the research monograph [17].

In Gaussian process regression, if we wish to predict the value of f at a single
candidate point x∗, it is sufficient to consider our unknowns to be the values of f
at the previously evaluated points, x1, . . . , xn , and the new point x∗ at which we
wish to predict. That is, we take our unknown quantity of interest to be the vector
( f (x1), . . . , f (xn), f (x∗)). We then take our data, which is f (x1), . . . , f (xn), and
use Bayes rule to calculate a posterior probability distribution on the full vector of
interest, ( f (x1), . . . , f (xn), f (x∗)), or, more simply, just on f (x∗).

To calculate the posterior, we must first specify the prior, which Gaussian process
regression assumes to be multivariate normal. It calculates the mean vector of this
multivariate normal prior distribution using a function, called the mean function and
written here as μ0(·), which takes a single x as an argument. It applies this mean
function to each of the points x1, . . . , xn, x∗ to create an n + 1-dimensional column
vector. Gaussian process regression creates the covariance matrix of the multivariate
normal prior distribution using another function, called the covariance function or
covariance kernel and written here as Σ0(·, ·), which takes a pair of points x, x ′ as
arguments. It applies this covariance function to every pair of points in x1, . . . , xn, x
to create an (n + 1) × (n + 1) matrix.

Thus, Gaussian process regression sets the prior probability distribution to,

⎡

⎢⎢
⎣

f (x1)
. . .

f (xn)

f (x∗)

⎤

⎥⎥
⎦ ∼ Normal

⎛

⎜
⎜⎜
⎝

⎡

⎢⎢
⎣

μ0(x1)
. . .

μ0(xn)

μ0(x∗)

⎤

⎥⎥
⎦ ,

⎡

⎢
⎢⎢
⎣

Σ0(x1, x1) · · · Σ0(x1, xn) Σ0(x1, x∗)
...

. . .
...

...

Σ0(xn, x1) · · · Σ0(xn, xn) Σ0(xn, x∗)
Σ0(x∗, x1) · · · Σ0(x∗, xn) Σ0(x∗, x∗)

⎤

⎥
⎥⎥
⎦

⎞

⎟
⎟⎟
⎠

(3.2)

The subscript “0” in μ0 and Σ0 indicate that these functions are relevant to the prior
distribution, before any data has been collected.
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We now discuss how the mean and covariance functions are chosen, focusing on
the covariance function first because it tends to be more important in getting good
results from Gaussian process regression.

3.3.1 Choice of Covariance Function

In choosing the covariance function Σ0(·, ·), we wish to satisfy two requirements.
The first is that it should encode the belief that points x and x ′ near each other

tend to have more similar values for f (x) and f (x ′). To accomplish this, we want
the covariance matrix in (3.2) to have entries that are larger for pairs of points that
are closer together, and closer to 0 for pairs of points that are further apart.

The second is that the covariance function should always produce positive semi-
definite covariance matrices in the multivariate normal prior. That is, if Σ is the
covariance matrix in (3.2), then we require that aT Σa ≥ 0 for all column vectors
a (where a is assumed to have the appropriate length, n + 1). This requirement is
necessary to ensure that the multivariate normal prior distribution is a well-defined
probability distribution, because if θ is multivariate normal with mean vector μ and
covariance matrix Σ , then the variance of a · θ is aT Σa, and we require variances
to be non-negative.

Several covariance functions satisfy these two requirements. The most commonly
used is called the squared exponential, or Gaussian kernel, and is given by,

Σ0(x, x ′) = α exp

(

−
d∑

i=1

βi (xi − x ′
i )
2

)

. (3.3)

This kernel is parameterized by d + 1 parameters: α, and β1, . . . ,βd .
The parameter α > 0 controls how much overall variability there is in the func-

tion f . We observe that under the prior, the variance of f (x) is Var( f (x)) =
Cov( f (x), f (x)) = α. Thus, when α is large, we are encoding in our prior dis-
tribution that f (x) is likely to take a larger range of values.

The parameters βi > 0 controls how quickly the function f varies with x . For
example, consider the relationship between some point x and another point x ′ =
x + [1, 0, . . . , 0]. When β1 is small (close to 0), the covariance between f (x) and
f (x ′) is α exp(−β1) ≈ α, giving a correlation between f (x) and f (x ′) of nearly 1.
This reflects a belief that f (x) and f (x ′) are likely to be very similar, and that learning
the value of f (x) will also teach us a great deal about f (x ′). In contrast, when β1

is large, the covariance between f (x) and f (x ′) is nearly 0, given a correlation
between f (x) and f (x ′) that is also nearly 0, reflecting a belief that f (x) and f (x ′)
are unrelated to each other, and learning something about f (x) will teach us little
about (x ′).
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Going beyond the squared exponential kernel

There are several other possibilities for the covariance kernel beyond the squared
exponential kernel, which encode different assumptions about the underlying behav-
ior of the function f . One particularly useful generalization of the squared exponen-
tial covariance kernel is the Matérn covariance kernel, which allows more flexibility
in modeling the smoothness of f .

Before describing this kernel, let r =
√
∑

i

(
xi −x ′

i
βi

)2
be the Euclidean distance

between x and x ′, but where we have altered the length scale in each dimension by
some strictly positive parameter βi . Then, the squared exponential covariance kernel
can be written as, Σ0(x, x ′) = α exp

(−r2
)
.

With this notation, the Matérn covariance kernel is,

Σ0(x, x ′) = α
21−ν

Γ (ν)

(√
2νr
)ν

Kν

(√
2νr
)

,

where Kν is the modified Bessel function. If we take the limit as ν → ∞, we obtain
the squared exponential kernel ([14], Sect. 4.2 p. 85).

TheMatérn covariance kernel is useful because it allowsmodeling the smoothness
of f in a more flexible way, as compared with the squared exponential kernel. Under
the squared exponential covariance kernel, the function f is infinitely mean-square
differentiable,1 whichmay not be an appropriate assumption inmany applications. In
contrast, under theMatérn covariance kernel, f is k-timesmean-square differentiable
if and only if ν > k. Thus, we can model a function that is twice differentiable but
no more by choosing ν = 5/2, and a function that is once differentiable but no more
by choosing ν = 3/2.

While the squared exponential and Matérn covariance kernels allow modeling
a wide range of behaviors, and together represent a toolkit that will handle a wide
variety of applications, there are other covariance kernels. For a thorough discussion
of these, see Chap.4 of [14].

Both the Matérn and squared exponential covariance kernel require choosing
parameters. While it certainly is possible for one to choose the parameters α and
βi (and ν in the case of Matérn) based on one’s intuition about f , and what kinds
of variability f is likely to have in a particular application, it is more common to
choose these parameters (especially α and βi ) adaptively, so as to best fit previously
observed points.We discuss thismore below in Sect. 3.3.6. First, however, we discuss
the choice of the mean function.

1Being “mean-square differentiable” at x in the direction given by the unit vector ei means that the
limit limδ→0( f (x + δei ) − f (x))/δ exists in mean square. Being “k-times mean-square differen-
tiable” is defined analogously.
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3.3.2 Choice of Mean Function

We now discuss choosing the mean function μ0(·). Perhaps the most common choice
is to simply set the mean function equal to a constant, μ. This constant must be
estimated, along with parameters of the covariance kernel such as α and βi , and is
discussed in Sect. 3.3.6.

Beyond this simple choice, if one believes that there will be trends in f that can
be described in a parametric way, then it is useful to include trend terms into the
mean function. This is accomplished by choosing

μ0(x) = μ +
J∑

j=1

γ jΨ j (x),

where Ψ j (·) are known functions, and γ j ∈ R, along with μ ∈ R, are parameters
that must be estimated.

A common choice for the Ψ j , if one chooses to include them, are polynomials
in x up to some small order. For example, if d = 2, so x is two-dimensional, then
one might include all polynomials up to second order, Ψ1(x) = x1, Ψ2(x) = x2,
Ψ3(x) = (x1)2, Ψ4(x) = (x2)2, Ψ5(x) = x1x2, setting J = 5. One recovers the
constant mean function by setting J = 0.

3.3.3 Inference

Given the prior distribution (3.2) on f (x1), . . . , f (xn), f (x∗), and given (noise-free)
observations of f (x1), . . . , f (xn), the critical step in Gaussian process regression is
calculating the posterior distribution on f (x∗).We rely on the followinggeneral result
about conditional probabilities andmultivariate normal distributions. Its proof, which
may be found in theDerivations and Proofs section, relies onBayes rule and algebraic
manipulation of the probability density of the multivariate normal distribution.

Proposition 1 Let θ be a k-dimensional multivariate normal random column vector,
with mean vector μ and covariance matrix Σ . Let k1 ≥ 1, k2 ≥ 1 be two integers
summing to k. Decompose θ, μ and Σ as

θ =
[
θ[1]
θ[2]

]
, μ =

[
μ[1]
μ[2]

]
, Σ =

[
Σ[1,1] Σ[1,2]
Σ[2,1] Σ[2,2]

]
,

so that θ[i] and μ[i] are ki -column vectors, and Σ[i, j] is a ki × k j matrix, for each
i, j = 1, 2.
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If Σ1,1 and Σ2,2 are invertible, then, for any u ∈ R
k1 , the conditional distribution

of θ[2] given that θ[1] = u is multivariate normal with mean

μ[2] + Σ[2,1]Σ−1
[1,1](u − μ[1])

and covariance matrix
Σ[2,2] − Σ[2,1]Σ−1

[1,1]Σ[1,2].

We use this proposition to calculate the posterior distribution on f (x∗), given
f (x1), . . . , f (xn).
Before doing so, however, we first introduce some additional notation. We let

y1:n indicate the column vector [y1, . . . , yn]T , and we let x1:n indicate the sequence
of vectors (x1, . . . , xn). We let f (x1:n) = [ f (x1), . . . , f (xn)]T , and similarly
for other functions of x , such as μ0(·). We introduce similar additional notation
for functions that take pairs of points x, x ′, so that Σ(x1:n, x1:n) is the matrix[

Σ0(x1,x1) ··· Σ0(x1,xn)

...
...

...
Σ0(xn ,x1) ··· Σ0(xn ,xn)

]

, Σ0(x∗, x1:n) is the row vector [Σ0(x∗, x1), . . . , Σ0(x∗,

xn)], and Σ0(x1:n, x∗) is the column vector [Σ0(x1, x∗), . . . , Σ0(xn, x∗)]T .
This notation allows us to rewrite (3.2) as

[
y1:n

f (x∗)

]
= Normal

([
μ0(x1:n)
μ0(x∗)

]
,

[
Σ0(x1:n, x1:n) Σ0(x1:n, x∗)
Σ0(x∗, x1:n) Σ0(x∗, x∗)

])
. (3.4)

We now examine this expression in the context of Proposition 1. We set θ[1] =
f (x1:n), θ[2] = f (x∗), μ[1] = μ0(x1:n), μ[2] = μ0(x∗), Σ[1,1] = Σ0(x1:n, x1:n),
Σ[1,2] = Σ0(x1:n, x∗), Σ[2,1] = Σ0(x∗, x1:n), and Σ[2,2] = Σ0(x∗, x∗).

Then, applying Proposition 1, we see that the posterior distribution on f (x∗) given
observations yi = f (xi ), i = 1, . . . , n is normal, with a mean μn(x∗) and variance
σ2

n(x∗) given by,

μn(x∗) = μ0(x∗) + Σ0(x∗, x1:n)Σ0(x1:n, x1:n)−1( f (x1:n) − μ0(x1:n)), (3.5)

σ2
n(x∗) = Σ0(x∗, x∗) − Σ0(x∗, x1:n)Σ0(x1:n, x1:n)−1Σ0(x1:n, x∗). (3.6)

The invertibility ofΣ0(x1:n, x1:n) (and alsoΣ0(x∗, x∗)) required by Proposition 1
depends on the covariance kernel and its parameters (typically called hyperparame-
ters), but this invertibility typically holds as long as these hyperparameters satisfy
mild non-degeneracy conditions, and the x1:n are distinct, i.e., that we have not mea-
sured the same point more than once. For example, under the squared exponential
covariance kernel, invertibility holds as long as α > 0 and the x1:n are distinct. If
we have measured a point multiple times, then we can safely drop all but one of
the measurements, here where observations are noise-free. Below, we treat the case
where observations are noisy, and in this case including multiple measurements of
the same point is perfectly reasonable and does not cause issues.
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Fig. 3.1 Illustration of Gaussian process regression with noise-free evaluations. The circles show
previously evaluated points, (xi , f (xi )). The solid line shows the posterior mean, μn(x), as a
function of x , which is an estimate f (x), and the dashed lines show a Bayesian credible interval
for each f (x), calculated as μn(x) ± 1.96σn(x). Although this example shows f taking a scalar
input, Gaussian process regression can be used for functions with vector inputs

Figure3.1 shows the output fromGaussian process regression. In the figure, circles
showpoints (xi , f (xi )), the solid line showsμn(x∗) as a function of x∗, and the dashed
lines are positioned atμn(x∗)±1.96σn(x∗), forming a95%Bayesian credible interval
for f (x∗), i.e., an interval in which f (x∗) lies with posterior probability 95%. (A
credible interval is theBayesian version of a frequentist confidence interval.) Because
observations are noise-free, the posterior mean μn(x∗) interpolates the observations
f (x∗).

3.3.4 Inference with Just One Observation

The expressions (3.5) and (3.6) are complex, and perhaps initially difficult to assimi-
late. To give more intuition about them, and also to support some additional analysis
below in Sect. 3.4, it is useful to consider the simplest case, when we have just a
single measurement, n = 1.

In this case, all matrices in (3.5) and (3.6) are scalars, Σ0(x∗, x1) = Σ0(x1, x∗),
and the expressions (3.5) and (3.6) can be rewritten as,

μ1(x∗) = μ0(x∗) + Σ0(x∗, x1)

Σ0(x1, x1)
( f (x1) − μ0(x1)), (3.7)

σ2
1(x∗) = Σ0(x∗, x∗) − Σ0(x∗, x1)2

Σ0(x1, x1)
. (3.8)
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Intuition about the expression for the posterior mean

We first examine (3.7). We see that the posterior mean of f (x∗), μ1(x∗), which we
can think of as our estimate of f (x∗) after observing f (x1), is obtained by taking our
original estimate of f (x∗), μ0(x∗), and adding to it a correction term. This correction
term is itself the product of two quantities: the error f (x1) − μ0(x1) in our original
estimate of f (x1), and the quantity Σ0(x∗,x1)

Σ0(x1,x1)
. Typically, Σ0(x∗, x1) will be positive,

and hence also Σ0(x∗,x1)
Σ0(x1,x1)

. (Recall,Σ0(x1, x1) is a variance, so is never negative.) Thus,
if f (x1) is bigger than expected, f (x1) − μ0(x1) will be positive, and our posterior
meanμ1(x∗)will be larger than our prior meanμ0(x∗). In contrast, if f (x1) is smaller
than expected, f (x1) − μ0(x1) will be negative, and our posterior mean μ1(x∗) will
be smaller than our prior mean μ0(x∗).

We can examine the quantity Σ0(x∗,x1)
Σ0(x1,x1)

to understand the effect of the position of
x∗ relative to x1 on the magnitude of the correction to the posterior mean. Notice
that x∗ only enters this expression through the numerator. If x∗ is close to x1, then
Σ0(x∗, x1) will be large under the squared exponential and most other covariance
kernels, and positive values for f (x1) − μ0(x1) will also cause a strong positive
change in μ1(x∗) relative to μ0(x∗). If x∗ is far from x1, thenΣ0(x∗, x1)will be close
to 0, and f (x1) − μ0(x1) will have little effect on μ1(x∗).

Intuition about the expression for the posterior variance

Now we examine (3.8). We see that the variance of our belief on f (x∗) under the
posterior, σ2

1(x∗), is smaller than its value under the prior, Σ0(x∗, x∗). Moreover,
when x∗ is close to x1, Σ0(x∗, x1) will be large, and the reduction in variance from
prior to posterior will also be large.

Conversely, when x∗ is far from x1,Σ0(x∗, x1)will be close to 0, and the variance
under the posterior will be similar to its value under the prior.

As a final remark, we can also rewrite the expression (3.8) in terms of the squared
correlation under the prior, Corr( f (x∗), f (x1))2 = Σ0(x∗, x1)2/(Σ0(x∗, x∗)Σ0

(x1, x1)) ∈ [0, 1], as

σ2
1(x∗) = Σ0(x∗, x∗)

(
1 − Corr( f (x∗), f (x1))

2
)
.

We thus see that the reduction in variance of the posterior distribution depends on
the squared correlation under the prior, with larger squared correlation implying a
larger reduction.

3.3.5 Inference with Noisy Observations

The previous section assumed that f (x∗) can be observed exactly, without any error.
When f (x∗) is the outcome of a physical experiment, however, our observations are
obscured by noise. Indeed, if we were to synthesize and test the samematerial design
x∗ multiple times, we might observe different results.
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To model this situation, Gaussian process regression can be extended to allow
observations of the form,

y(xi ) = f (xi ) + εi ,

where we assume that the εi are normally distributed with mean 0 and constant
variance, λ2, with independence across i . In general, the variance λ2 is unknown,
but we treat it as a known parameter of our model, and then estimate it along with
all the other parameters of our model, as discussed below in Sect. 3.3.6.

These assumptions of constant variance (called homoscedasticity) and indepen-
dence make the analysis significantly easier, although they are often violated in prac-
tice. Experimental conditions that tend to violate these assumptions are discussed
below, as are versions of GP regression that can be used when they are violated.

Analysis of independent homoscedastic noise

To perform inference under independent homoscedastic noise, and calculate a pos-
terior distribution on the value of the function f (x∗) at a given point x∗, our first step
is to write down the joint distribution of our observations y1, . . . , yn and the quantity
we wish to predict, f (x∗), under the prior. That is, we write down the distribution of
the vector [y1, . . . , yn, f (x∗)].

We first observe that [y1, . . . , yn, f (x∗)] is the sum of [ f (x1), . . . , f (xn), f (x∗)]
and another vector, [ε1, . . . , εn, 0]. The first vector has a multivariate normal dis-
tribution given by (3.4). The second vector is independent of the first and is also
multivariate normal, with a mean vector that is identically 0, and a covariance matrix
diag(λ2, . . . ,λ2, 0). The sum of two independent multivariate normal random vec-
tors is itself multivariate normal, with a mean vector and covariance matrix given,
respectively, by the sums of the mean vectors and covariance matrices of the sum-
mands. This gives the distribution of [y1, . . . , yn, f (x∗)] as
[

y1:n
f (x∗)

]
∼ Normal

([
μ0(x1:n)
μ0(x∗)

]
,

[
Σ0(x1:n, x1:n) + λ2 In Σ0(x1:n, x∗)

Σ0(x∗, x1:n) Σ0(x∗, x∗)

])
, (3.9)

where In is the n-dimensional identity matrix.
As we did in Sect. 3.3.3, we can use Proposition 1 with the above expression to

compute the posterior on f (x∗) given f (x1:n). We obtain,

μn(x∗) = μ0(x∗) + Σ0(x∗, x1:n)
[
Σ0(x1:n, x1:n) + λ2 In

]−1
(y1:n − μ0(x1:n))

(3.10)

σ2
n(x∗) = Σ0(x∗, x∗) − Σ0(x∗, x1:n)

[
Σ0(x1:n, x1:n) + λ2 In

]−1
Σ0(x1:n, x∗).

(3.11)

If we set λ2 = 0, so there is no noise, then we recover (3.5) and (3.6).
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Fig. 3.2 Illustration of Gaussian process regression with noisy evaluations. As in Fig. 3.1, the
circles show previously evaluated points, (xi , yi ), where yi is f (xi ) perturbed by constant-variance
independent noise. The solid line shows the posterior mean, μn(x), as a function of x , which is an
estimate of the underlying function f , and the dashed lines show a Bayesian credible interval for f ,
calculated as μn(x) ± 1.96σn(x)

Figure3.2 shows an example of a posterior distribution calculated with Gaussian
process regression with noisy observations. Notice that the posterior mean no longer
interpolates the observations, and the credible interval has a strictly positive width at
points where we have measured. Noise prevents us from observing function values
exactly, and so we remain uncertain about the function value at points we have
measured.

Going beyond homoscedastic independent noise

Constant variance is violated if the experimental noise differs across materials
designs, which occurs most frequently when noise arises during the synthesis of
the material itself, rather than during the evaluation of a material that has already
been created. Some work has been done to extend Gaussian process regression to
flexibly model heteroscedastic noise (i.e., noise whose variance changes) [18–21].
The main idea in much of this work is to use a second Gaussian process to model
the changing variance across the input domain. Much of this work assumes that the
noise is independent and Gaussian, though [21] considers non-Gaussian noise.

Independence is most typically violated, in the context of physical experiments,
when the synthesis and evaluation of multiple materials designs is done together,
and the variation in some shared component simultaneously influences these designs,
e.g., through variation in the temperature while the designs are annealing together, or
through variation in the quality of some constituent used in synthesis. We are aware
of relatively little work modeling dependent noise in the context of Gaussian process
regression and Bayesian optimization, with one exception being [22].
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3.3.6 Parameter Estimation

The mean and covariance functions contain several parameters. For example, if we
use the squared exponential kernel, a constant mean function, and observations have
independent homoscedastic noise, then we must choose or estimate the parameters
μ,α,β1, . . . ,βd ,λ. These parameters are typically called hyperparameters because
they are parameters of the prior distribution. (λ2 is actually a parameter of the like-
lihood function, but it is convenient to treat it together with the parameters of the
prior.) While one may simply choose these hyperparameters directly, based on intu-
ition about the problem, a more common approach is to choose them adaptively,
based on data.

To accomplish this, we write down an expression for the probability of the
observed data y1:n in terms of the hyperparameters, marginalizing over the uncer-
tainty on f (x1:n). Then, we optimize this expression over the hyperparameters to
find settings that make the observed data as likely as possible. This approach to
setting hyperparameters is often called empirical Bayes, and it can be seen as an
approximation to full Bayesian inference.

We detail this approach for the squared exponential kernel with a constant mean
function. Estimation for other kernels and mean functions is similar. Using the prob-
ability distribution of y1:n from (3.9), and neglecting constants, the natural logarithm
of this probability, log p(y1:n | x1:n) (called the “log marginal likelihood”), can be
calculated as

−1

2
(y1:n − μ)T

(
Σ0(x1:n, x1:n) + λ2 In

)−1
(y1:n − μ) − 1

2
log |Σ0(x1:n, x1:n) + λ2 In |,

where | · | applied to a matrix indicates the determinant.
To find the hyperparameters that maximize this log marginal likelihood (the

neglected constant does not affect the location of the maximizer), we will take partial
derivatives with respect to each hyperparameter. We will then use them to find maxi-
mizers of μ and σ2 := α+λ2 analytically, and then use gradient-based optimization
to maximize the other hyperparameters.

Taking a partial derivative with respect to μ, setting it to zero, and solving for μ,
we get that the value of μ that maximizes the marginal likelihood is

μ̂ =
∑n

i=1

(
(Σ0(x1:n, x1:n) + λ2 In)

−1y1:n
)

i∑n
i, j=1(Σ0(x1:n, x1:n) + λ2 In)

−1
i j

.

Define R as the matrix with components

Ri j =

⎧
⎪⎨

⎪⎩

1 i = j,

g exp

(
−

d∑

i=1
βi (xi − x j )

2

)
i �= j,
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where g = α
σ2 . Then Σ0(x1:n, x1:n) + λ2 In = σ2R and μ̂ can be written in terms

of R as μ̂ = Σn
i=1(R−1 y1:n)i

Σn
i, j=1 R−1

i j
. The log marginal likelihood (still neglecting constants)

becomes

log p(y1:n | x1:n) ∼ −1

2
(y1:n − μ̂)T (σ2R)−1(y1:n − μ̂) − 1

2
log |σ2R|.

Taking the partial derivative with respect to σ2, and noting that μ̂ does not depend
on σ2, we solve for σ2 and obtain

σ̂2 = 1

n
(y1:n − μ̂)R−1(y1:n − μ̂).

Substituting this estimate, the log marginal likelihood becomes

log p(y1:n | x1:n) ∼ − log

(
1

n
|R| 1

n (y1:n − μ̂)T R−1(y1:n − μ̂)

)
. (3.12)

The expression (3.12) cannot in general be optimized analytically. Instead,
one typically optimizes it numerically using a first- or second-order optimization
algorithm, such as Newton’s method or gradient descent, obtaining estimates for
β1, . . . ,βd and g. These estimates are in turn substituted to provide an estimate of R,
fromwhich estimates μ̂ and σ̂2 may be computed. Finally, using σ̂2 and the estimated
value of g, we may estimate α and λ.

3.3.7 Diagnostics

When using Gaussian process regression, or any other machine learning technique,
it is advisable to check the quality of the predictions, and to assess whether the
assumptionsmade by themethod aremet. Oneway to do this is illustrated by Fig. 3.3,
which comes from a simulation of blood flow near the heart, based on [23], for which
we get exact (not noisy) observations of f (x).

This plot is created with a technique called leave-one-out cross validation. In this
technique, we iterate through the datapoints x1:n , y1:n , and for each i ∈ {1, . . . , n},
we train a Gaussian process regression model on all of the data except xi , yi , and
then use it, together with xi , to predict what the value yi should be. We obtain from
this a posterior mean (the prediction), call it μ−i (xi ), and also a posterior standard
deviation, call it σ−i (xi ). When calculating these estimates, it is best to separately
re-estimate the hyperparameters each time, leaving out the data (xi , yi ). We then
calculate a 95% credible interval μ−i (xi ) ± 2σ−i (xi ), and create Fig. 3.3 by plotting
“Predicted” versus “Actual”, where the “Actual” coordinate (on the x-axis) is yi , and
the “Predicted” value (on the y-axis) is pictured as an error bar centered at μ−i (xi )

with half-width 2σ−i (xi ).
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Fig. 3.3 Diagnostic plot for
Gaussian process regression,
created with leave-one-out
cross validation. For each
point in our dataset, we hold
that point (xi , yi ) out, train
on the remaining points,
calculate a 95% credible
interval for yi , and plot this
confidence interval as an
error bar whose x-coordinate
is the actual value yi . If
Gaussian process regression
is working well, 95% of the
error bars will intersect the
diagonal line
Predicted=Actual

If the uncertainty estimates outputted by Gaussian process regression are behav-
ing as anticipated, then approximately 95% of the credible intervals will intersect
the diagonal line Predicted=Actual. Moreover, if Gaussian process regression’s pre-
dictive accuracy is high, then the credible intervals will be short, and their centers
will be close to this same line Predicted=Actual.

This idea may be extended to noisy function evaluations, under the assumption
of independent homoscedastic noise. To handle the fact that the same point may be
sampledmultiple times, letm(x) be the number of times that a point x ∈ {x1, . . . , xn}
was sampled, and let y(x) be the average of the observed values at this point. More-
over, by holding out all m(x) samples of x and training Gaussian process regression,
we would obtain a normal posterior distribution on f (xi ) that has mean μ−i (xi ) and
standard deviation σ−i (xi ).

Since y(xi ) is then the sum of f (xi ) and some normally distributed noise with
mean 0 and variance λ2/m(xi ), the resulting distribution of y(xi ) is normal with

mean μ−i (xi ) and standard deviation
√

σ2
−i (xi ) + λ2/m(xi ).

From this, a 95%credible interval for y(xi ) is then μ−i (xi )±2
√

σ2−i (xi ) + λ2/m(xi ).
We would plot Predicted versus Observed by putting this credible interval along
the y-axis at x-coordinate y(xi ). If Gaussian process regression is working well,
then approximately 95% of these credible intervals will intersect the line Pre-
dicted=Observed.

For Gaussian process regression to best support Bayesian optimization, it is typ-
ically most important to have good uncertainty estimates, and relatively less impor-
tant to have high predictive accuracy. This is because Bayesian optimization uses
Gaussian process regression as a guide for deciding where to sample, and so if
Gaussian process regression reports that there is a great deal of uncertainty at a par-
ticular location and thus low predictive accuracy, Bayesian optimization can choose
to sample at this location to improve accuracy. Thus, Bayesian optimization has
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a recourse for dealing with low predictive accuracy, as long as the uncertainty is
accurately reported. In contrast, if Gaussian process regression estimates poor per-
formance at a location that actually has near-optimal performance, and also provides
an inappropriately low error estimate, then Bayesian optimization may not sample
there within a reasonable timeframe, and thus may never correct the error.

If either the uncertainty is incorrectly estimated, or the predictive accuracy is
unsatisfactorily low, then the most common “fixes” employed are to adopt a different
covariance kernel, or to transform the objective function f . If the objective function
is known to be non-negative, then the transformations log( f ) and

√
f are convenient

for optimization because they are both strictly increasing, and so do not change the
set of maximizers (or minimizers). If f is not non-negative, but is bounded below
by some other known quantity a, then one may first shift f upward by a.

3.3.8 Predicting at More Than One Point

Below, to support the development of the knowledge-gradient method in Sects. 3.4.2
and 3.6, it will be useful to predict the value of f at multiple points, x∗

1 , . . . , x∗
k ,

with noise. To do so, we could certainly apply (3.10) and (3.11) separately for each
x∗
1 , . . . , x∗

k , and this would provide us with both an estimate (the posterior mean) and
a measure of the size of the error in this estimate (the posterior variance) associated
with each f (x∗

i ). It would not, however, quantify the relationship between the errors
at several different locations. For this, we must perform the estimation jointly.

As we did in Sect. 3.3.5, we begin with our prior on [y1:n, f (x∗
1:k)], which is,

[
y1:n

f (x∗
1:k)

]
∼ Normal

([
μ0(x1:n)
μ0(x∗

1:k)

]
,

[
Σ0(x1:n, x1:n) + λ2 In Σ0(x1:n, x∗

1:k)
Σ0(x∗

1:k, x1:n) Σ0(x∗
1:k, x∗

1:k)

])
,

We thenuseProposition 1 to compute the posterior on f (x∗
1:k)given f (x1:n), which

ismultivariate normalwithmean vectorμn(x∗
1:k) and covariancematrixΣn(x∗

1:k, x∗
1:k)

given by,

μn(x∗
1:k) = μ0(x∗

1:k) + Σ0(x∗
1:k , x1:n)

[
Σ0(x1:n, x1:n) + λ2 In

]−1
(y1:n − μ0(x1:n)),

(3.13)

Σn(x∗
1:k , x∗

1:k) = Σ0(x∗
1:k , x∗

1:k) − Σ0(x∗
1:k , x1:n)

[
Σ0(x1:n, x1:n) + λ2 In

]−1
Σ0(x1:n, x∗

1:k).
(3.14)

We see that setting k = 1 provides the expressions (3.10) and (3.11) from
Sect. 3.3.5.
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3.3.9 Avoiding Matrix Inversion

The expressions (3.10) and (3.11) for the posterior mean and variance in the noisy
case, and also (3.7) and (3.8) in the noise-free case, include a matrix inversion term.
Calculating this matrix inversion is slow and can be hard to accomplish accurately
in practice, due to the finite precision of floating point implementations. Accuracy
is especially an issue when Σ has terms that are close to 0, which arises when data
points are close together.

In practice, rather than calculating a matrix inverse directly, it is typically faster
and more accurate to use a mathematically equivalent algorithm, which performs a
Cholesky decomposition and then solves a linear system. This algorithm is described
below, and is adapted from Algorithm 2.1 in Sect. 2.3 of [14]. This algorithm also
computes the log marginal likelihood required for estimating hyperparameters in
Sect. 3.3.6.

Algorithm 1 Implementation using Cholesky decomposition
Require: x1:n (inputs), y1:n (responses), Σ0(x, x ′) (covariance function), λ2 (variance of noise),

x∗ (test input).
1: L = Cholesky

(
Σ0(x1:n, x1:n) + λ2 In

)

2: δ = LT \ (L\ (y1:n − μ0(x1:n)))

3: μn(x∗) = μ0(x∗) + Σ0(x∗, x1:n)δ
4: v = L\Σ0(x1:n, x∗)
5: σ2

n(x∗) = Σ0(x∗, x∗) − vT v

6: log p(y1:n | x1:n) = − 1
2 (y1:n − μ0(x1:n))T α − Σi log Lii − n

2 log 2π
7: return μn(x∗) (mean), σ2

n(x∗) (variance), log p(y1:n | x1:n) (log marginal likelihood).

3.4 Choosing Where to Sample

Being able to infer the value of the objective function f (x) at unevaluated points
based on past data x1:n ,y1:n is only one part of finding good designs. The other part
is using this ability to make good decisions about where to direct future sampling.

Bayesian optimization methods addresses this by using a measure of the value of
the information that would be gained by sampling at a point. Bayesian optimization
methods then choose the point to sample next for which this value is largest. A
number of different ways of measuring the value of information have been proposed.
Here, we describe two in detail, expected improvement [2, 4], and the knowledge
gradient [24, 25], and then survey a broader collection of design criteria.
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3.4.1 Expected Improvement

Expected improvement, as it was first proposed, considered only the case wheremea-
surements are free from noise. In this setting, suppose we have taken n measurements
at locations x1:n and observed y1:n . Then

f ∗
n = max

i=1,...,n
f (xi )

is the best value observed so far. Suppose we are considering evaluating f at a new
point x . After this evaluation, the best value observed will be

f ∗
n+1 = max( f (x), f ∗

n ),

and the difference between these values, which is the improvement due to sampling, is

f ∗
n+1 − f ∗

n = max( f (x) − f ∗
n , 0) = ( f (x) − f ∗

n )+,

where a+ = max(a, 0) indicates the positive part function.
Ideally, we would choose x to make this improvement as large as possible. Before

actually evaluating f (x), however, we do not know what this improvement will be,
so we cannot implement this strategy. However, we do have a probability distribution
on f (x), from Gaussian process regression. The expected improvement, indicated
EI(x), is obtained by taking the expectation of this improvement with respect to the
posterior distribution on f (x) given x1:n, y1:n .

EI(x) = En[( f (x) − f ∗
n )+], (3.15)

where En[ · ] = E[ · |x1:n, y1:n] indicates the expectation with respect to the posterior
distribution.

The expectation in (3.15) can be computed more explicitly, in terms of the nor-
mal cumulative distribution function (cdf) Φ(·), and the normal probability density
function (pdf) ϕ(·). Recalling from Sect. 3.3.3 that f (x) ∼ Normal(μn(x),σ2

n(x)),
where μn(x) and σ2

n(x) are given by (3.5) and (3.6), and integrating with respect
to the normal distribution (a derivation may be found in the Derivations and Proofs
section), we obtain,

EI(x) = (μn(x) − f ∗
n )Φ

(
μn(x) − f ∗

n

σn(x)

)
+ σn(x)ϕ

(
μn(x) − f ∗

n

σn(x)

)
. (3.16)

Figure3.4 plots this expected improvement for a problem with a one-dimensional
input space. We can see from this plot that the expected improvement is largest at
locationswhere both the posteriormeanμn(x) is large, and also the posterior standard
deviation σn(x) is large. This is reasonable because those points that are most likely
to provide large gains are those points that have a high predicted value, but that also
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Fig. 3.4 Upper panel shows the posterior distribution in a problem with no noise and a one-
dimensional input space, where the circles are previously measured points, the solid line is the
posterior mean μn(x), and the dashed lines are at μn(x)±2σn(x). Lower panel shows the expected
improvement EI(x) computed from this posterior distribution. An “x” is marked at the point with
the largest expected improvement, which is where we would evaluate next

have significant uncertainty. Indeed, at points where we have already observed, and
thus have no uncertainty, the expected improvement is 0. This is consistent with the
idea that, in a problem without noise, there is no value to repeating an evaluation that
has already been performed.

This idea of favoring points that, on the one hand, have a large predicted value, but,
on the other hand, have a significant amount of uncertainty, is called the exploration
versus exploitation tradeoff, and appears in areas beyond Bayesian optimization,
especially in reinforcement learning [26, 27] and multi-armed bandit problems [28,
29]. In these problems, we are taking actions repeatedly over time whose payoffs are
uncertain, andwish to simultaneously get good immediate rewards,while learning the
reward distributions for all actions to allow us to get better rewards in the future. We
emphasize, however, that the correct balance between exploration and exploitation
is different in Bayesian optimization as compared with multi-armed bandits, and
should more favor exploration: in optimization, the advantage of measuring where
the predicted value is high is that these areas tend to give more useful information
about where the optimum lies; in contrast, in problems where we must “learn while
doing” like multi-armed bandits, evaluating an action with high predicted reward is
good primarily because it tends to give a high immediate reward.
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Fig. 3.5 Contour plot of the
expected improvement, as a
function of the difference in
means Δn(x) := μn(x) − f ∗

n
and the posterior standard
deviation σn(x). The
expected improvement is
larger when the difference in
means is larger, and when the
standard deviation is larger
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We can also see the exploration versus exploitation tradeoff implicit in the
expected improvement function in the contour plot, Fig. 3.5. This plot shows the
contours of EI(x) as a function of the posterior mean, expressed as a difference from
the previous best, Δn(x) := μn(x)− f ∗

n , and the posterior standard deviation σn(x).
Given the expression (3.16), Bayesian optimization algorithms based on expected

improvement, such as the Efficient Global Optimization (EGO) algorithm proposed
by [4], and the earlier algorithms of Mockus (see, e.g., the monograph [2]), then
recommend sampling at the point with the largest expected improvement. That is,

xn+1 ∈ argmax
x

EI(x). (3.17)

Finding the point with largest expected improvement is itself a global optimiza-
tion problem, like the original problem that we wished to solve (3.1). Unlike (3.1),
however, EI(x) can be computed quickly, and its first and second derivatives can
also be computed quickly. Thus, we can expect to be able to solve (3.1) relatively
well using an off-the-shelf optimization method for continuous global optimization.
A common approach is to use a local solver for continuous optimization, such as
gradient ascent, in a multistart framework, where we start the local solver frommany
starting points chosen at random, and then select the best local solution discovered. In
Sect. 3.5 we describe several codes that implement expected improvement methods,
and each makes its own choice about how to solve (3.17).

The algorithm given by (3.17) is optimal under three assumptions: (1) that we
will take only a single sample; (2) there is no noise in our samples; and (3) that the
x we will report as our final solution (i.e., the one that we will implement) must be
among those previously sampled.

In practice, assumption (1) is violated, as Bayesian optimization methods like
(3.17) are applied iteratively, and is made simply because it simplifies the analy-
sis. Being able to handle violations of assumption (1) in a more principled way
is of great interest to researchers working on Bayesian optimization methodology,
and some partial progress in that direction is discussed in Sect. 3.4.3. Assumption
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(2) is also often violated in a broad class of applications, especially those involving
physical experiments or stochastic simulations. In the next section, we present an
algorithm, the knowledge-gradient algorithm [24, 25], that relaxes this assumption
(2), and also allows relaxing assumption (3) if this is desired.

3.4.2 Knowledge Gradient

When we have noise in our samples, the derivation of expected improvement meets
with difficulty. In particular, if we have noise, then f ∗

n = maxi=1,...,n f (xi ) is not
precisely known, preventing us from using the expression (3.16).

One may simply take a quantity like maxi=1,...,n yi that is similar in spirit to
f ∗
n = maxi=1,...,n f (xi ), and replace f ∗

n in (3.16) with this quantity, but the resulting
algorithm is no longer justified by an optimality analysis. Indeed, for problems with
a great deal of noise, maxi=1,...,n yi tends to be significantly larger than the true
underlying value of the best point previously sampled, and so the resulting algorithm
may be led to make a poor tradeoff between exploration and exploitation, and exhibit
poor performance in such situations.

Instead, the knowledge-gradient algorithm [24, 25] takes a more principled
approach, and starts where the derivation of expected improvement began, but fully
accounts for the introduction of noise (assumption 2 in Sect. 3.4.1), and the possibil-
ity that we wish to search over a class of solutions broader than just those that have
been previously evaluated when recommending the final solution (assumption 3 in
Sect. 3.4.1).

We first introduce a set An , which is the set of points from which we would
choose the final solution, if we were asked to recommend a final solution at time
n, based on x1:n , y1:n . For tractability, we suppose An is finite. For example, if A is
finite, as it often is in discrete optimization via simulation problems, we could take
An = A, allowing the whole space of feasible solutions. This choice was considered
in [24]. Alternatively, one could take An = {x1, . . . , xn}, stating that one is willing
to consider only those points that have been previously evaluated. This choice is
consistent with the expected improvement algorithm. Indeed, we will see that when
one makes this choice, and measurements are free from noise, then the knowledge-
gradient algorithm is identical to the expected improvement algorithm. Thus, the
knowledge-gradient algorithm generalizes the expected improvement algorithm.

If we were to stop sampling at time n, then the expected value of a point x ∈ An

based on the information available would be En[ f (x)] = μn(x). In the special case
when evaluations are free from noise, this is equal to f (x), but when there is noise,
these two quantities may differ. If we needed to report a final solution, we would then
choose the point in An for which this quantity is the largest, i.e., we would choose
argmaxx∈An

μn(x). Moreover, the expected value of this solution would be

μ∗
n = max

x∈An

μn(x).
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If evaluations are free from noise and An = {x1:n}, then μ∗
n is equal to f ∗

n , but in
general these quantities may differ.

If we take one additional sample, then the expected value of the solution wewould
report based on this additional information is

μ∗
n+1 = max

x∈An+1

μn+1(x),

where as before, An+1 is some finite set of points we would be willing to consider
when choosing a final solution. Observe in this expression that μn+1(x) is not neces-
sarily the same as μn(x), even for points x ∈ {x1:n} that we had previously evaluated,
but that μn+1(x) can be computed from the history of observations x1:n+1, y1:n+1.

The improvement in our expected solution value is then the difference between
these two quantities, μ∗

n+1 − μ∗
n . This improvement is random at time n, even fixing

xn+1, through its dependence on yn+1, but we can take its expectation. The resulting
quantity is called the knowledge-gradient (KG) factor, and is written,

KGn(x) = En
[
μ∗

n+1 − μ∗
n | xn+1 = x

]
. (3.18)

Calculating this expectation is more involved than calculating the expected
improvement, but nevertheless can also be done analytically in terms of the nor-
mal pdf and normal cdf. This is described in more detail in the Derivations and
Proofs section.

The knowledge-gradient algorithm is then the one that chooses the point to sample
next that maximizes the KG factor,

argmax
x

KGn(x).

The KG factor for a one-dimensional optimization problem with noise is pictured
in Fig. 3.6. We see a similar tradeoff between exploration and exploitation, where
the KG factor favors measuring points with a large μn(x) and a large σn(x). We also
see local minima of the KG factor at points where we previously evaluated, just as
with the expected improvement, but because there is noise in our samples, the value
at these points is not 0—indeed, when there is noise, it may be useful to sample
repeatedly at a point.

Choice of An and An+1

Recall that the KG factor depends on the choice of the sets An and An+1, through
the dependence of μ∗

n and μ∗
n+1 on these sets. Typically, if we choose these sets to

contain more elements, then we allow μ∗
n and μ∗

n+1 to range over a larger portion of
the space, andwe allow theKG factor calculation tomore accurately approximate the
value that would result if we allowed ourself to implement the best option. However,
as we increase the size of these sets, computing the KG factor is slower, making
implementation of the KG method more computationally intensive.
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Fig. 3.6 Upper panel shows the posterior distribution in a problem with independent normal
homoscedastic noise and a one-dimensional input space, where the circles are previously measured
points, the solid line is the posterior mean μn(x), and the dashed lines are at μn(x)±2σn(x). Lower
panel shows the natural logarithm of the knowledge-gradient factor KG(x) computed from this
posterior distribution, where An = An+1 are the discrete grid {1, . . . , 300}. An “x” is marked at
the point with the largest KG factor, which is where the KG algorithm would evaluate next

For applicationswith a finite A, [24] proposed setting An+1 = An = A, whichwas
seen to require fewer function evaluations to find points with large f , in comparison
with expected improvement on noise-free problems, and in comparison with another
Bayesian optimization method, sequential kriging optimization (SKO) [30] on noisy
problems. However, the computation and memory required grows rapidly with the
size of A, and is typically not feasible when A contains more than 10,000 points.

For large-scale applications, [25] proposed setting An+1 = An = {x1:n+1} in
(3.18), and called the resulting quantity the approximate knowledge gradient (AKG),
observing that this choice maintains computational tractability as A grows, but also
offers good performance. This algorithm is implemented in the DiceKriging pack-
age [31].

Finally, in noise-free problems (but not in problems with noise), setting An+1 =
{x1:n+1} and An = {x1:n} recovers expected improvement.
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3.4.3 Going Beyond One-Step Analyses, and Other Methods

Both expected improvement and the knowledge-gradient method are designed to be
optimal, in the special case where we will take just one more function evaluation
and then choose a final solution. They are not, however, known to be optimal for the
more general case in which we will take multiple measurements, which is the way
they are used in practice.

The optimal algorithm for this more general setting is understood to be the solu-
tion to a partially observable Markov decision process, but actually computing the
optimal solution using this understanding is intractable using current methods [32].
Some work has been done toward the goal of developing such an optimal algorithm
[33], but computing the optimal algorithm remains out of reach. Optimal strategies
have been computed for other closely related problems in optimization of expensive
noisy functions, including stochastic root-finding [34], multiple comparisons with
a standard [35], and small instances of discrete noisy optimization with normally
distributed noise (also called “ranking and selection”) [36].

Expected improvement and the knowledge gradient are both special cases of the
more general concept of value of information, or expected value of sample infor-
mation (EVSI) [37], as they calculate the expected reward of a final implementation
decision as a function of the posterior distribution resulting from some information,
subtract from this the expected reward that would result from not having the informa-
tion, and then take the expectation of this difference with respect to the information
itself.

Many other Bayesian optimization methods have been proposed. A few of these
methods optimize the value of information, but are calculated using different assump-
tions than those used to derive expected improvement or value of information. A
larger number of these methods optimize quantities that do not correspond to a value
of information, but are derived using analyses that are similar in spirit. These include
methods that optimize the probability of improvement [1, 38, 39], the entropy of
the posterior distribution on the location of the maximum [40], and other composite
measures involving the mean and the standard deviation of the posterior [30].

Other Bayesian optimization methods are designed for problem settings that do
not match the assumptions made in this tutorial. These include [41–43], which con-
sider multiple objectives; [6, 44–46], which consider multiple simultaneous func-
tion evaluations; [47–49], which consider objective functions that can be evalu-
ated with multiple fidelities and costs; [50], which considers Bernoulli outcomes,
rather than normally distributed ones; [51], which considers expensive-to-evaluate
inequality constraints; and [52], which considers optimization over the space of small
molecules.
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3.5 Software

There are a number of excellent software packages, both freely available and com-
mercial, that implement the methods described in this chapter, and other similar
methods.

• Metrics Optimization Engine (MOE), an open-source code in C++ and Python,
developed by the authors and engineers at Yelp. http://yelp.github.io/MOE/,

• Spearmint, an open-source code in Python, implementing algorithms described in
[6]. https://github.com/JasperSnoek/spearmint

• DiceKriging and DiceOptim, an open-source R package that implements expected
improvement, the approximate knowledge-gradient method, and a variety of algo-
rithms for parallel evaluations. An overview is provided in [31].
http://cran.r-project.org/web/packages/DiceOptim/index.html,

• TOMLAB, a commercial package for MATLAB. http://tomopt.com/tomlab/
• matlabKG, an open-source research code that implements the discrete knowledge-
gradient method for small-scale problems.
http://people.orie.cornell.edu/pfrazier/src.html

A list of software packages focused on Gaussian process regression (but not
Bayesian optimization) may be found at http://www.gaussianprocess.org/.

3.6 Conclusion

We have presented Bayesian optimization, including Gaussian process regression,
the expected improvement method, and the knowledge-gradient method. In mak-
ing this presentation, we wish to emphasize that this approach to materials design
acknowledges the inherent uncertainty in statistical prediction and seeks to guide
experimentation in a way that is robust to this uncertainty. It is inherently iterative,
and does not seek to circumvent the fundamental trial-and-error process.

This is in contrast with another approach to informatics in materials design, which
holds the hope that predictive methods can short-circuit the iterative loop entirely. In
this alternative view of the world, one hopes to create extremely accurate prediction
techniques, either through physically-motivated ab initio calculations, or using data-
driven machine learning approaches, that are so accurate that one can rely on the
predictions alone rather than on physical experiments. If this can be achieved, then
we can search over materials designs in silico, find those designs that are predicted
to perform best, and test those designs alone in physical experiments.

For this approach to be successful, one must have extremely accurate predictions,
which limits its applicability to settings where this is possible. We argue that, in con-
trast, predictive techniques can be extremely powerful even if they are not perfectly
accurate, as long as they are used in a way that acknowledges inaccuracy, builds
in robustness, and reduces this inaccuracy through an iterative dialog with physical

http://yelp.github.io/MOE/
https://github.com/JasperSnoek/spearmint
http://cran.r-project.org/web/packages/DiceOptim/index.html
http://tomopt.com/tomlab/
http://people.orie.cornell.edu/pfrazier/src.html
http://www.gaussianprocess.org/
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reality mediated by physical experiments. Moreover, we argue that mathematical
techniques like Bayesian optimization, Bayesian experimental design, and optimal
learning provide us the mathematical framework for accomplishing this goal in a
principled manner, and for using our power to predict as effectively as possible.

Acknowledgments Peter I. Frazier was supported by AFOSR FA9550-12-1-0200, AFOSR
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Derivations and Proofs

This section contains derivations and proofs of equations and theoretical results found
in the main text.

Proof of Proposition 1

Proof Using Bayes’ rule, the conditional probability density of θ[2] at a point u[2]
given that θ[1] = u[1] is

p(θ[2] = u[2] | θ[1] = u[1]) = p(θ[1] = u[1], θ[2] = u[2])
p(θ[1] = u[1])

∝ p(θ[1] = u[1], θ[2] = u[2])

∝ exp

(

−1

2

[
u[1] − μ[1]
u[2] − μ[2]

]T [
Σ[1,1] Σ[1,2]
Σ[2,1] Σ[2,2]

]−1 [u[1] − μ[1]
u[2] − μ[2]

])

. (3.19)

To deal with the inverse matrix in this expression, we use the following identity for

inverting a block matrix: the inverse of the block matrix

[
A B
C D

]
, where both A and

D are invertible square matrices, is

[
A B
C D

]−1

=
[

(A − B D−1C)−1 −(A − B D−1C)−1B D−1

−(D − C A−1B)−1C A−1 (D − C A−1B)−1

]
. (3.20)

Applying (3.20) to (3.19), and using a bit of algebraic manipulation to get rid of
constants, we have

p(θ[2] = u[2] | θ[1] = u[1]) ∝ exp

(
−1

2
(u[2] − μnew)T (Σnew)−1(u[2] − μnew)

)
,

(3.21)

where μnew = μ[2] −Σ[2,1]Σ−1
[1,1](u[1] −μ[1]) and Σnew = Σ[2,2] −Σ[2,1]Σ−1

[1,1]Σ[1,2].
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We see that (3.21) is simply the unnormalized probability density function of
a normal distribution. Thus the conditional distribution of θ[2] given θ[1] = u[1] is
multivariate normal, with mean μnew and covariance matrix Σnew.

Derivation of Equation (3.16)

Since f (x) ∼ Normal(μn(x),σ2
n(x)), the probability density of f (x) is p( f (x) =

z) = 1√
2π

exp
(
(z − μn(x))2/2σn(x)2

)
. We use this to calculate EI(x):

EI(x) = En[( f (x) − f ∗
n )+]

=
∫ ∞

f ∗
n

(z − f ∗
n )

1√
2πσn(x)

e
−(z−μn (x))2

2σ2n (x) dz

=
∫ ∞

f ∗
n

z
1√

2πσn(x)
e

−(z−μn (x))2

2σ2n (x) dz − f ∗
n

(
1 − Φ

(
f ∗
n − μn(x)

σn(x)

))

=
∫ ∞

f ∗
n

(μn(x) + (z − μn(x)))
1√

2πσn(x)
e

−(z−μn (x))2

2σ2n (x) dz − f ∗
n

(
1 − Φ

(
f ∗
n − μn(x)

σn(x)

))

=
∫ ∞

f ∗
n

(z − μn(x))
1√

2πσn(x)
e

−(z−μn (x))2

2σ2n (x) dz + (μn(x) − f ∗
n )

(
1 − Φ

(
f ∗
n − μn(x)

σn(x)

))

= σn(x)
1√
2π

e
−( f ∗

n −μn (x))2

2σn (x)2 + (μn(x) − f ∗
n )

(
1 − Φ

(
f ∗
n − μn(x)

σn(x)

))

= (μn(x) − f ∗
n )

(
1 − Φ

(
f ∗
n − μn(x)

σn(x)

))
+ σn(x)ϕ

(
f ∗
n − μn(x)

σn(x)

)

= (μn(x) − f ∗
n )Φ

(
μn(x) − f ∗

n

σn(x)

)
+ σn(x)ϕ

(
μn(x) − f ∗

n

σn(x)

)
.

Calculation of the KG factor

The KG factor (3.18) is calculated by first considering how the quantity μ∗
n+1 − μ∗

n
depends on the information that we have at time n, and the additional datapoint that
we will obtain, yn+1.

First observe that μ∗
n+1 − μ∗

n is a deterministic function of the vector [μn+1(x) :
x ∈ An+1] and other quantities that are known at time n. Then, by applying the
analysis in Sect. 3.3.5, but letting the posterior given x1:n, y1:n play the role of the
prior, we obtain the following version of (3.10), which applies to any given x ,

μn+1(x) = μn(x) + Σn(x, xn+1)

Σn(xn+1, xn+1) + λ2
(yn+1 − μn(xn+1)) . (3.22)
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In this expression, μn(·) and Σn(·, ·) are given by (3.13) and (3.14).
We see from this expression that μn+1(x) is a linear function of yn+1, with an

intercept and a slope that can be computed based on what we know after the nth
measurement.

We will calculate the distribution of yn+1, given what we have observed at time
n. First, f (xn+1)|x1:n, y1:n ∼ Normal (μn(xn+1),Σn(xn+1, xn+1)). Since yn+1 =
f (xn+1)+ εn+1, where εn+1 is independent with distribution εn+1 ∼ Normal(0,λ2),
we have

yn+1|x1:n, y1:n ∼ Normal
(
μn(xn+1),Σn(xn+1, xn+1) + λ2

)
.

Plugging the distribution of yn+1 into (3.22) and doing some algebra, we have

μn+1(x)|x1:n, y1:n ∼ Normal
(
μn(x), σ̃2(x, xn+1)

)
,

where σ̃(x, xn+1) = Σn(x,xn+1)√
Σn(xn+1,xn+1)+λ2

. Moreover, we can write μn+1(x) as

μn+1(x) = μn(x) + σ̃(x, xn+1)Z ,

where Z = (yn+1 − μn(xn+1))/
√

Σn(xn+1, xn+1) + λ2 is a standard normal random
variable, given x1:n and y1:n .

Now (3.18) becomes

KGn(x) = En

[
max

x ′∈An+1

μn(x ′) + σ̃(x ′, xn+1)Z | xn+1 = x

]
− μ∗

n.

Thus, computing the KG factor comes down to being able to compute the expectation
of themaximumof a collection of linear functions of a scalar normal randomvariable.
Algorithm 2 of [24], with software provided as part of the matlabKG library [53],
computes the quantity

h(a, b) = E

[
max

i=1,...,|a|(ai + bi Z)

]
− max

i=1,...,|a| ai

for arbitrary equal-length vectors a and b. Using this ability, and letting μn(An+1) be
the vector [μn(x ′) : x ′ ∈ An+1] and σ̃(An+1, x) be the vector [̃σ(x ′, x) : x ′ ∈ An+1],
we can write the KG factor as

KGn(x) = h(μn(An+1), σ̃(An+1, x)) + [max(μn(An+1)) − μ∗
n

]
.

If An+1 = An , as it is in the versions of the knowledge-gradient method proposed in
[24, 25], then the last term max(μn(An+1)) − μ∗

n is equal to 0 and vanishes.
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Chapter 4
Small-Sample Classification

Lori A. Dalton and Edward R. Dougherty

Abstract In a number of application areas, such as materials and genomics, where
one wishes to classify objects, sample sizes are often small owing to the expense or
unavailability of data points. Many classifier design procedures work well with large
samples but are ineffectual or, at best, problematic with small samples. Worse yet,
small-samples make it difficult to impossible to guarantee an accurate error estimate
withoutmodeling assumptions, and absent a good error estimate a classifier is useless.
The present chapter discusses the problem of small-sample error estimation and how
modeling assumptions can be used to obtain bounds on error estimation accuracy.
Given the necessity of modeling assumptions, we go on to discuss minimum-mean-
square-error (MMSE) error estimation and the design of optimal classifiers relative
to prior knowledge and data in a Bayesian context.

4.1 Introduction

Given several classes of objects, one of the most basic problems of engineering and
statistics is making a decision as to which class an object belongs to based on some
set of features. The standard approach to the problem is to utilize labeled training
data sampled from the class populations as inputs to a design algorithm that yields
a decision function, known as a classifier. The designed classifier is then used to
make decisions regarding future unlabeled observations. Classifier design alone is
insufficient: one must also use sample data to estimate the error of the classifier on
the class populations. A classifier whose misclassification rate is not known to some
satisfactory degree of approximation is useless.
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In application areas where data are plentiful and cheap, one can obtain a large
training sample to design a classifier and a large independent test sample on which to
estimate the error by the proportionof errors on the test sample.Whendata are limited,
not only does this impact classifier design, but it forces one to use the same data for
training and testing, else one would have little hope of obtaining a good classifier.
With a small training set, one might still hope to design a well-performing classifier
and let the estimated error decide if it is actually good.Unfortunately, error estimation
is problematic with small samples; indeed, this is the most fundamental problem
with small samples, which are ubiquitous in certain application areas, for instance
genomics and materials where sample sizes less than 100 are commonplace. This
chapter considers small-sample classification, demonstrating the issues with purely
data-driven methods, and how these can be addressed using Bayesian approaches.
For simplicity we restrict our attention to binary classification, where there are two
classes.

4.2 Classification

Classification involves a feature vector X = (X1, X2, . . . , X D) on D-dimensional
Euclidean space �D composed of random variables (features), a binary random
variable Y ∈ {0, 1} (0 and 1 are called labels), and a classifier ψ : �D → {0, 1}
to predict Y by ψ(X). Classification is probabilistically characterized via the joint
feature-label distribution F for the pair (X, Y ). The space of all classifiers, which
consists of the space of all binary functions on �D , will be denoted byF . The error
ε[ψ] of ψ ∈ F is the probability of misclassification,

ε[ψ] = P(ψ(X) �= Y ) = E[|Y − ψ(X)|], (4.1)

the probability and expectation being taken relative to F .Anoptimal classifier,ψBayes,
is one having minimal error, εBayes, among all ψ ∈ F . ψBayes and εBayes are called
a Bayes classifier and the Bayes error, respectively. A Bayes classifier, which need
not be unique, and the Bayes error, depend on F .

Defineη0(x) = fX,Y (x, 0)/ fX(x) andη1(x) = fX,Y (x, 1)/ fX(x),where fX,Y (x, y)

and fX(x) are the densities for (X, Y ) and X, respectively. The posteriors η0(x) and
η1(x) give the probability that Y = 0 and Y = 1, respectively, givenX = x. Classifier
error can be expressed as

ε[ψ] =
∫

{x|ψ(x)=0}
η1(x) fX(x)dx +

∫

{x|ψ(x)=1}
η0(x) fX(x)dx. (4.2)
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The right-hand side of (4.2) is minimized by

ψBayes(x) =
{
1, if η1(x) ≥ η0(x)

0, otherwise
. (4.3)

It follows from (4.2) and (4.3) that the Bayes error is given by

εBayes =
∫

{x|η1(x)<η0(x)}
η1(x) fX(x)dx +

∫

{x|η1(x)≥η0(x)}
η0(x) fX(x)dx (4.4)

= E [min{η0(X), η1(X)}] .

By Jensen’s inequality,

εBayes ≤ min{E[η0(X)], E[η1(X)]} = min{P(Y = 0), P(Y = 1)} ,

where P(Y = y) is the prior probability that a sample point is from class y. Thus,
if either prior is small, then the Bayes error is necessarily small. This occurs if one
class is much more likely than the other.

Each class, y ∈ {0, 1}, is described by its class-conditional distribution fX|Y (x|y).
In the Gaussian model, each sample point in a given class is a column vector of D
multivariate Gaussian features. In particular, the class-conditional distribution for
class y is Gaussian with mean μy and covariance matrix Σy . Letting c = P(Y = 0),
the optimal classifier is quadratic and given by

ψBayes(x) =
{
1, if gBayes(x) > 0
0, if gBayes(x) ≤ 0

, (4.5)

where

gBayes(x) = xT ABayesx + aT
Bayesx + bBayes, (4.6)

with constant matrix ABayes, column vector aBayes and scalar bBayes given by

ABayes = −1

2

(
Σ−1

1 − Σ−1
0

)
,

aBayes = Σ−1
1 μ1 − Σ−1

0 μ0,

bBayes = −1

2

(
μ1

T Σ−1
1 μ1 − μ0

T Σ−1
0 μ0

) + ln

(
1 − c

c

( |Σ0|
|Σ1|

)1/2
)

. (4.7)

When Σ = Σ0 = Σ1, this classifier is linear and defined by

gBayes(x) = aT
Bayesx + bBayes, (4.8)
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where

aBayes = Σ−1 (μ1 − μ0) ,

bBayes = −1

2
aT
Bayes (μ1 + μ0) + ln

1 − c

c
. (4.9)

In practice, the feature-label distribution is unknown and a classifier is designed
from sample data. A common assumption, and one we make here, is that a classifier
ψn is designed using a random sample Sn = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} of
vector-label pairs drawn from the feature-label distribution. While random sampling
is usually assumed, in some applications sampling is often not random and this leads
to misapplication of classification theory developed in the framework of random
sampling. For instance, with separate sampling data are drawn randomly from each
class but the number from each class is set outside the sampling procedure. Separate
sampling is common in biomedical areas such as genomics and this can lead to
serious problems for both classifier design [1, 2] and error estimation [3] if not taken
into account.

Classifier design requires a procedure that operates on a sample to yield a classifier.
A classification rule is a mapping Ψn : [�D ×{0, 1}]n → F . Given a sample Sn , Ψn

yields a designed classifier ψn = Ψn(Sn) ∈ F . To be fully formal, one might write
ψn(Sn; X) rather than ψn(X); however, we will use the simpler notation, keeping in
mind thatψn derives from a classification rule applied to a feature-label sample. Note
that a classification rule is really a sequence of classification rules, each depending
on the sample size, n.

Under a Gaussian assumption in which the means and covariances are unknown,
a natural classification rule when the covariance matrices are unequal is to replace
the means and covariances in (4.7) with the sample means and covariances computed
from sample data and to replace c by the estimate ĉ = n0/n, where ny is the number of
sample points in class y. This yields the quadratic discriminant analysis (QDA) clas-
sification rule. Assuming equal covariance matrices, the linear discriminant analysis
(LDA) classification rule results from replacing the means and covariance in (4.9)
by the sample means and a pooled sample covariance matrix, and replacing c by
ĉ = n0/n. Although constructed under the Gaussian assumption, QDA and LDA
can be used without a Gaussian assumption and may perform fairly well so long as
the true class-conditional distributions are not too far from Gaussian, and the sample
is sufficiently large that the sample estimates are accurate.

Since the optimal error is the Bayes error, sample-based design suffers a design
cost, Δn = εn − εBayes, where εn = ε[ψn] and εn and Δn are sample-dependent
random variables. The expected design cost is E[Δn], the expectation here being
relative to the random sample drawn from F . The expected error ofψn is decomposed
according to E[εn] = εBayes + E[Δn]. A classification rule is said to be consistent
for a feature-label distribution F if Δn → 0 in the mean, meaning E[Δn] → 0 as
n → ∞. For a consistent rule, the expected design cost can be made arbitrarily small
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for a sufficiently large amount of data. A classification rule is universally consistent
if Δn → 0 in the mean for any feature-label distribution of (X, Y ). Consistency is
useful for large samples, but has negligible value for small samples.

A classification rule can yield a classifier that makes few errors, or even no errors,
on the training data but performs poorly on the distribution as a whole, a situation
called overfitting. This situation is exacerbated by the use of complex classifiers with
small samples. The essential idea is that a classifier should not cut up the space too
finely for the amount of training data. Overfitting can be mitigated by constraining
classifier design, which means restricting classifiers to a subfamily C ⊆ F . The
aim is to find an optimal constrained classifier ψC ∈ C having error εC . Since
optimization inC is over a subfamily of classifiers, εC ≥ εBayes. The cost of constraint
is ΔC = εC − εBayes ≥ 0. When only data is available, a classification rule yields
a classifier ψn,C ∈ C , with error εn,C such that εn,C ≥ εC ≥ εBayes. The design
cost for constrained classification is Δn,C = εn,C − εC . For small samples, this
can be substantially less than Δn , depending on C and the classification rule. For
instance, although LDA is constructed under the assumption of equal covariance
matrices, with small samples it can outperform QDA when the covariance matrices
are unequal because it only requires estimation of a single covariance matrix rather
than two. The error of a designed constrained classifier is decomposed as εn,C =
εBayes + ΔC + Δn,C . Hence, the expected error of a constrained designed classifier
can be decomposed as

E[εn,C ] = εBayes + ΔC + E[Δn,C ]. (4.10)

The constraint is beneficial if and only if E[εn,C ] < E[εn], that is, ifΔC < E[Δn]−
E[Δn,C ]. If the cost of constraint is less than the decrease in expected design error,
then E[εn,C ] < E[εn]. The dilemma is that strong constraint reduces E[Δn,C ] at the
cost of increasing εC .

A fundamental theorem provides bounds for E[Δn,C ] [4]. The idea of choosing
a classifier in C that minimizes the number of errors on the sample data is known
as empirical risk minimization. A distribution-free bound on the design error for any
classification rule that employs empirical risk minimization is given by

E[Δn,C ] ≤ 8

√
VC log n + 4

2n
, (4.11)

where VC is a constant known as the VC (Vapnik-Chervonenkis) dimension of C
(see [5] for a detailed discussion of the VC dimension). It is obvious that n must
greatly exceed VC for the bound to be small.
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4.3 Error Estimation

With the feature-label distribution unknown, the classifier error must be estimated
by an estimation rule, Ξn , which given the random sample Sn yields an error esti-
mate ε̂[ψn] = Ξn(Sn). The key issue is accuracy. Given a feature-label distribution,
error estimation accuracy is commonly measured by the mean-square error (MSE),
MSE(ε̂) = E[(ε̂ − ε)2], where for notational ease we denote ε[ψn] and ε̂[ψn] by ε

and ε̂, respectively. The square root of the MSE is known as the root-mean-square
(RMS). The expectation is relative to the sampling distribution. The MSE is decom-
posed into the bias, Bias(ε̂) = E[ε̂ − ε], of the error estimator relative to the true
error, and the deviation variance, Vardev(ε̂) = Var(ε̂ − ε), according to

MSE(ε̂) = Vardev(ε̂) + Bias(ε̂)2. (4.12)

When a large amount of data is available, the sample can be split into independent
training and test sets, the error being estimated by the proportion of errors on the test
data. For this holdout estimate, we have the distribution-free bound RMS(ε̂holdout) ≤
1/

√
4m, wherem is the size of the test sample [6]. Form = 100, and any feature-label

distribution, F , we have that RMS(ε̂holdout) ≤ 0.05.
With small samples, training and error estimation must take place on the same

data set. The consequences of training-set error estimation are seen in the following
formula for the deviation variance:

Vardev(ε̂) = σ 2
ε̂ + σ 2

ε − 2ρσε̂σε, (4.13)

where σ 2
ε̂
, σ 2

ε , and ρ are the variance of the error estimate, the variance of the error,
and the correlation between the estimated and true errors, respectively. The devi-
ation variance is driven down by small variances or a correlation coefficient near
1. Unfortunately, for small samples, precisely the situation when one wishes to use
training-set error estimation, neither condition typically holds.

Consider the popular cross-validation error estimator. For it, the error is estimated
on the training data by randomly splitting the training data into k folds (subsets), Si

n ,
for i = 1, 2, . . . , k, training k classifiers on Sn − Si

n , for i = 1, 2, . . . , k, calculating
the proportion of errors of each designed classifier on the appropriate left-out fold,
and then averaging these proportions to obtain the cross-validation estimate of the
originally designed classifier. Various enhancements are made, such as by repeating
the process some number of times and averaging. Letting k = n yields the leave-
one-out estimator. The problem with cross-validation is that, for small samples, it
typically has large variance and little correlation with the true error. Hence, although
with large number of folds cross-validation does not suffer too much from bias, it
typically has large deviation variance.

To illustrate with a materials dataset, consider predicting the formability of ABO3

cubic perovskites. A dataset of 223 binary oxide systems, 34 of which can form cubic
perovskites, is available in [7]. From this dataset we use two features that have been
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shown to be predictive of formability: the octahedral factor and tolerance factor. We
emulate the classification and error estimation procedure by drawing a small subset of
examples from the full dataset for training, while using the left out points to estimate
the ground truth true error. In particular, suppose that only 50 of the 223 compounds
in the full dataset are available for classifier training, 8 of which can form a cubic
structure and 42 cannot (the proportion is kept close to that of the full dataset). We
train a radial-basis-function support vector machine (RBF-SVM) classifier on the 50
training points, use the same 50 points to estimate the error of this classifier using
cross-validation with 5 folds and 10 repetitions, and approximate the true error rate
of this classifier by evaluating the proportion of misclassified points among the 173
points left out of training (note the distribution free bound on the RMS of holdout
applies here with RMS ≤ 1/

√
4 × 173 ≈ 0.038). We repeat this process 10,000

times to emulate the sampling procedure, each time drawing a different training set
of 50 points. A scatter plot of the cross-validation error estimates and true errors is
shown in Fig. 4.1, along with the least-squares regression line. The mean of the true
errors and cross-validation estimates is indicated by a solid triangle, which shows
that the cross-validation estimate is approximately unbiased (in fact, slightly high-
biased). Because the class sizes are so unbalanced, the classifier error should be small,
in particular, if we assume that P(Y = 0) ≈ 34/223 ≈ 0.15 then εBayes is upper
bounded by min{0.15, 0.85} = 0.15. Relative to the small true error, the dispersion
of the scatter plot is very large. Moreover, the regression line has a slightly negative
slope, certainly not a desirable property if one is going to estimate the true error by
the cross-validation estimate.

What we observe in Fig. 4.1 is typical for small samples: large variance [8] and
negligible regression between the true and estimated errors [9]. As seen, negatively
sloping regression lines are possible; indeed, for cross-validation, negative correla-
tion between the true and cross-validation estimated errors has been mathematically
demonstrated in some basic models [10]. Such error estimates are worthless and

Fig. 4.1 Scatter plot and
linear regression between
cross-validation (horizontal
axis) and the true error
(vertical axis) with sample
size 50 for RBF-SVM
classification of the
formability of ABO3 cubic
perovskites
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can result in various problems that may not be immediately recognized: lack of
reproducibility [11], optimistic bias when evaluating performance over several data
sets [12], optimistic bias when considering several classification rules for a single
classification problem [13], and inaccurate ROC curves [14]. Optimistic bias occurs
because the high variance of the estimator gives a wide array of optimistic and pes-
simistic estimates when using different data sets or different classification rules, so
thatwhen one chooses the apparent best, hemerely selects the onemost optimistically
biased—and bias can be severe.

4.4 Validity

A pattern recognition model (ψ, εψ) consists of a classifier ψ and an error rate εψ ,
where εψ is simply a real number between 0 and 1. Intuitively, one might wish to
say that (ψ, εψ) is valid for the feature-label distribution F to the extent that εψ

approximates the classifier error, ε[ψ], on F , where the degree of approximation
is measured by some distance between εψ and ε[ψ]. For a classifier ψn designed
from a specific sample, this would mean that we want to measure some distance
between the true error ε = ε[ψn] and the estimated error ε̂ = ε̂[ψn], say |ε − ε̂|.
To know the true error we would need to know F , but if we knew F then we would
use the Bayes classifier and not design a classifier from sample data. Since it is
the precision of the error estimate that is of consequence, a natural way to proceed
would be to characterize validity in terms of the precision of the error estimator
ε̂[ψn] = Ξn(Sn) as an estimator of ε[ψn], say by RMS(ε̂). This makes sense because
theRMSmeasures the closeness of ε̂ and ε across the sampling distribution.However,
to compute the RMS again we need to know F , which we do not know. One way
to proceed is to find a distribution-free bound on the RMS. For instance, for the
leave-one-out error estimator with the discrete histogram rule and tie-breaking in the
direction of class 0 [6],

RMS(ε̂loo) ≤
√
1 + 6/e

n
+ 6√

π (n − 1)
. (4.14)

The discrete histogram rule applies to a finite sample space {1, 2, . . . , b}, and defines
ψn(i) = 0 if training sampleswith value i are labeled as class 0 at least as often as they
are labeled class 1, and ψn(i) = 1 otherwise. Although this bound is distribution-
free, it is useless for small samples: for n = 200 this bound is 0.506. In general, there
are very few cases in which distribution-free bounds are known and, when they are
known, they are useless for small samples.

Distribution-based bounds on the RMS are needed, which requires knowledge
concerning the second-order moments of the joint distribution between the true and
estimated errors. More generally, to fully understand an error estimator we need to
know its joint distribution with the true error. Given that a classifier is epistemolog-
ically vacuous absent an accurate estimate of its error, one might think that over the
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yearsmuch effort would have gone into studying themoments of the joint distribution
between the true and estimated errors, especially the mixed second moment; how-
ever, this has not been the case. Going back half a century, there were some results on
the mean and variance of some error estimators for the Gaussian model using LDA.
In 1966, Hills obtained the expected value of the resubstitution and plug-in estima-
tors in the univariate model with known common variance [15]. The resubstitution
error estimate is simply a count of the classification errors on the training data. The
plug-in estimate is found by using the data to estimate the feature-label distribution
and then finding the error of the designed classifier on the estimated distribution. In
1972, Foley obtained the expected value of resubstitution in the multivariate model
with known common covariance matrix [16]. In 1973, Sorum derived results for the
expected value and variance for both resubstitution and leave-one-out in the uni-
variate model with known common variance [17]. In 1973, McLachlan derived an
asymptotic representation for the expected value of resubstitution in the multivari-
ate model with unknown common covariance matrix [18]. In 1975, Moran obtained
new results for the expected value of resubstitution and plug-in in the multivariate
model with known covariance matrix [19]. In 1977, Goldstein and Wolf obtained
the expected value of resubstitution for multinomial discrimination [20]. In 1992,
Davison and Hall derived asymptotic representations for the expected value and vari-
ance of bootstrap and leave-one-out in the univariate Gaussian model with unknown
and possibly different covariances [21]. Prior to 2005, we know of no other paper
providing analytic results for moments of common error estimators. In total, none
of these papers provide representation of the joint distribution or representation of
second-order mixed moments, which are needed for the RMS.

Motivated by small samples ubiquitous in genomics, efforts commenced to obtain
these types of representations, in particular, for the resubstitution and leave-one-out
estimators. For the multinomial model, complete enumeration was used to obtain
marginal distributions for both error estimators [10], followed by the full joint dis-
tributions [22]. Subsequently, exact closed-form representations for second-order
moments, including the mixed moments, were obtained, thereby providing exact
RMS representations for both estimators [10]. For the Gaussian model using LDA,
in 2009 exact marginal distributions for both estimators in the univariate model (with
known but not necessarily equal class variances) and approximations in the multi-
variate model (with known and equal class covariance matrices) were obtained [23].
Subsequently, these were extended to joint distributions of the true and estimated
errors in a Gaussian model [24]. Recently exact closed-form representations for the
second-order moments in the univariate model without assuming equal covariances
were discovered, thereby providing exact expressions of the RMS for both estima-
tors [25].Moreover, double asymptotic representations for the second-ordermoments
in the multivariate model, sample size and dimension approaching infinity at a fixed
rate between the two, were found, thereby providing double asymptotic expressions
for the RMS [26]. Finite-sample approximations from the double asymptotic method
have been shown to possess better accuracy than various simple asymptotic repre-
sentations, although much more work is needed on this issue [27, 28].
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(a) (b)

Fig. 4.2 a RMS (y-axis) as a function of the Bayes error (x-axis) for leave-one-out with dimension
D = 10 and sample sizes n = 20, 40, 60; b maxBayes(λ) (y-axis) as a function of RMS (x-axis)
corresponding to the RMS curves in part (a)

To utilize mixed-moment theory, prior knowledge is required, in the sense that
the actual (unknown) feature-label distribution belongs to some uncertainty class,
U , of feature-label distributions. Once RMS representations have been obtained for
feature-label distributions inU , distribution-based RMS bounds follow: RMS(ε̂) ≤
maxG∈U RMS(ε̂|G), where RMS(ε̂|G) is the RMS of the error estimator under the
assumption that the feature-label distribution isG.We do not know the actual feature-
label distribution precisely, but prior knowledge allows us to bound the RMS. For
instance, consider using LDA with a feature-label distribution having two equally
probable Gaussian class-conditional densities sharing a known covariance matrix.
For this model the Bayes error is a one-to-one decreasing function of the distance,
m, between the means. Figure4.2a shows the RMS to be a one-to-one increasing
function of the Bayes error for leave-one-out in dimension D = 10 and sample sizes
n = 20, 40, 60, the RMS and Bayes errors being on the y and x axes, respectively.

Assuming a parameterized model in which the RMS is an increasing function
of the Bayes error, εBayes, we can pose the following question: Given sample size
n and λ > 0, what is the maximum value, maxBayes(λ), of the Bayes error such
that RMS(ε̂) ≤ λ? If RMS is the measure of validity and λ represents the largest
acceptable RMS for the classifier model to be considered meaningful, then the epis-
temological requirement is characterized by maxBayes(λ). Given the relationship
betweenmodel parameters and the Bayes error, the inequality εBayes ≤ maxBayes(λ)

can be solved in terms of the parameters to arrive at a necessary modeling assump-
tion. In the preceding Gaussian example, since εBayes is a decreasing function of m,
we obtain an inequality m ≥ m(λ). Figure4.2b shows the maxBayes(λ) curves cor-
responding to the RMS curves in Fig. 4.2a [29]. These curves show that, assuming
Gaussian class-conditional densities and a known common covariance matrix, fur-
ther assumptions must be made to insure that the RMS is sufficiently small to make
the classifier model meaningful.

To have scientific content, small-sample classification requires prior knowledge.
Regarding the feature-label distribution there are two extremes: (1) the feature-label
distribution is known, in which case the entire classification problem collapses to
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finding a Bayes classifier and Bayes error, so there is no classifier design or error
estimation issue; and (2) the uncertainty class consists of all feature-label distribu-
tions, the distribution-free case, and we typically have no bound on performance, or
one that is too loose for practice. In the middle ground, there is a trade-off between
the size of the uncertainty class and the size of the sample. The uncertainty class must
be sufficiently constrained (equivalently, the prior knowledge must be sufficiently
great) that an acceptable bound can be achieved with an acceptable sample size.

We have focused on cross-validation for two reasons: (1) it is probably the most
commonly used training-data-based error estimator and (2) its moments, along with
resubstitution, are themost studied. Another often employed re-sampling-based error
estimator is bootstrap [30]. It generally has smaller variance than cross-validation;
however, it can suffer from significant bias, depending on the feature-label distri-
bution and classification rule. Analytic representation of bootstrap expectation in
the Gaussian model with LDA classification has recently been found and, since the
bootstrap has a weighting parameter, under these conditions it can be weighted to be
unbiased [31]. In general, using its free weight together with the fact that the boot-
strap is formed by a convex combination, given the model and the classification rule,
the Lagrangian multiplier technique can be used determine a weight that minimizes
the RMS between this optimized bootstrap and the true error [32].

Given that one needs a distributional model to assure satisfactory performance
for classifier error estimation, a natural way to proceed is to define a prior distribu-
tion over the uncertainty class of feature-label distributions and then find an optimal
minimum-mean-square-error (MMSE) error estimator relative to the prior [33]. This
results in a Bayesian approach with the uncertainty class governed by the prior dis-
tribution and the data being used to construct a posterior distribution that quantifies
everything we know about the feature-label distribution. In this way we can incor-
porate prior knowledge in the whole classification procedure, both classifier design
and error estimation.

4.5 MMSE Error Estimation

If the class-conditional distribution for class y, denoted fθy (x|y), is parameterized
by θy , then the feature-label distribution is completely specified by the modeling
parameters θ = [c, θ0, θ1], where c = P(Y = 0). Writing the parameter space of
θy as Θy, the parameter space of θ is Θ = [0, 1] × Θ0 × Θ1. We denote the prior
distribution on θ by π (θ) and the posterior, derived from a random sample of size n
with ny points from class y, by π∗ (θ). Here we assume that c is independent from θ0
and θ1 prior to observing the data anddenote its prior byπ (c).Under a given sampling
method, the posterior π∗ (c) for c may be obtained from the number of sample points
in each class using Bayes’ rule. For instance, under random sampling and assuming
a beta

(
α0, α1

)
prior for c, the posterior of c is also beta with hyperparameters α0+n0

and α1 + n1. In particular, letting B be the beta function,
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π∗(c) = cα0+n0−1(1 − c)α
1+n1−1

B
(
α0 + n0, α1 + n1

) , (4.15)

Eπ∗ [c] = n0 + α0

n + α0 + α1
, (4.16)

where Eπ∗ represents expectation relative to the posterior (conditioned on the sam-
ple). A uniform prior on c is achieved with α0 = α1 = 1.

The Bayesian framework in [33, 34] not only assumes that c is independent,
but that c, θ0 and θ1 are all independent prior to observing the data. Writing the
prior for θy as π

(
θy

)
, this means that π (θ) = π (c) π (θ0) π (θ1). We also write the

posterior as π∗ (
θy

)
, where it has been shown that independence is preserved after

observing the data, that is, π∗ (θ) = π∗ (c) π∗ (θ0) π∗ (θ1). π∗ (
θy

)
is proportional

to the product of the prior and a likelihood function for sample points observed from
the corresponding class:

π∗(θy) ∝ π(θy)

ny∏

i=1

fθy (x
y
i |y), (4.17)

where xy
i is the i th sample point in class y and the constant of proportionality is found

by normalizing the integral of π∗(θy) to 1. When the prior is a proper density, this
follows from Bayes’ rule; if π(θy) is improper (i.e., if the integral of π(θy) cannot be
normalized to 1), then this is taken as a definition, but in all cases it is mandatory that
π∗(θy) be a proper density. Priors quantify the information we have about the distrib-
ution before observing the data. We have the option of using flat, or non-informative,
priors, as long as the posterior is a valid density function. Alternatively, informative
priors can supplement the classification problem with additional information.

The Bayesian model characterizes our initial uncertainty in the actual distribution
through the prior. As we observe sample points, this uncertainty should converge
to a certainty on the true distribution. More precisely, it has been proven in [35]
that under mild regularity conditions, the posteriors converge to a point mass at
the true parameters for an independent covariance Gaussian model, which we will
discuss shortly. More informative priors may help the posteriors converge faster, but,
essentially, as long as the prior does not assign zero probability to any a neighborhood
around the true distribution, convergence is assured.

The Bayesian model defines priors on the feature-label distribution itself; never-
theless, the posteriors of the distribution parameters imply a (sample-conditioned)
distribution on the true classifier error. This randomness in the true error comes from
our uncertainty in the underlying feature-label distribution (given the sample), which
is in contrast to the classical analysis discussed in previous sections, where random-
ness in the true error for a fixed distribution comes only from randomness in the
trained classifier through the sampling distribution. In addition, we may speak of
moments of the true error for a fixed sample and classifier.
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The true error of a designed classifier ψn may be decomposed as

ε (θ, ψn) = cε0 (θ0, ψn) + (1 − c)ε1 (θ1, ψn) , (4.18)

where εy(θy, ψn) is the probability that ψn mislabels a class y point under true
parameter θy . Since the Bayesian framework quantifies uncertainty in the feature-
label distribution parameters, we may find the MMSE estimate of the true error,
ε̂ (ψn, Sn), which is equal to the first moment of the true error conditioned on the
observed sample [33]. We call this the Bayesian error estimate. As long as c is
independent from θ0 and θ1 a posteriori,

ε̂ (ψn, Sn) = Eπ∗ [ε (θ, ψn)]
= Eπ∗ [c]ε̂0 (ψn, Sn) + (1 − Eπ∗ [c])ε̂1 (ψn, Sn) , (4.19)

where ε̂y (ψn, Sn) = Eπ∗ [εy(θy, ψn)] is the posterior expected error contributed by
class y. Both ε̂ and ε̂y are functions of the classifier ψn , and the sample via π∗.

The expectation of c depends on our prior model for c, but is straightforward
to find analytically. For example, if c is fixed, then the expectation can be replaced
with the fixed value of c, and if c has a beta

(
α0, α1

)
prior, then Eπ∗ [c] is available

in (4.16). Representation for ε̂y (ψn, Sn) is known for the discrete and independent
covariance Gaussian models [33, 34]. Owing to convergence of the posteriors,
classical frequentist consistency holds for Bayesian error estimators in both models
for any fixed distribution in the parameterized family [35].

We next present an example illustrating the optimal performance of MMSE error
estimation. Consider a D = 5 dimensional Gaussian model with a uniform prior on
c and independent arbitrary covariance matrices. In particular, we assume normal-
inverse-Wishart priors with hyperparameters νy = κy = 25, m0 = [0, 0, 0, 0, 0],
m1 = [1, 0, 0, 0, 0], and Sy = 13.19I5, where ID is a D × D identity matrix. This
is a moderately informative prior where the expected mean of class y is my and the
expected covariance for both classes is 0.74132 I5.We generate 100,000 feature-label
distributions from the prior, each including a random realization for c and random
μy and Σy pairs for each class y ∈ {0, 1}. For each fixed feature-label distribution,
we generate 10 samples of a given size n ranging from 30 to 200, first determining
the number of points in each class by drawing n0 from a binomial(n, c) distribution,
and then, for each class, drawing the appropriate number of i.i.d. points from a
Gaussian distribution with the corresponding mean and covariance pair. From each
sample we train an LDA classifier, we evaluate the true error of the trained classifier
under the corresponding true feature-label distribution, and we estimate the error
of this classifier using 4 training-data-based methods: the MMSE error estimator
(Bayes), resubstitution (resub), cross-validation (cv), and bolstered resubstitution
(bol). Bolstered resubstitution is similar to resubstitution except that each point of the
training set is replaced with a density kernel and the error is estimated by integrating
each kernel over the classifier decision region disagreeing with the label at the point,
thereby “spreading” the incorrect mass and giving more error weight to incorrectly
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Fig. 4.3 RMS deviation from true error for linear classification of Gaussian distributions, averaged
over all distributions and samples using a proper prior with D = 5

labeled points near the decision boundary (see [36] for details). We then approximate
an RMS for each error estimator, that is, we evaluate the square root of the average
square difference between each error estimator and the true error, where the average is
taken over all 100,000 feature-label distributions and 10 samples.A graph of theRMS
with respect to sample size is provided in Fig. 4.3. The performance of the MMSE
error estimator here, averaged over all distributions and samples under the assumed
prior, is optimal, outperforming all other error estimators, as it must. This does not
mean that performance is optimal for any fixed feature-label distribution, only that
it is optimal on average.

4.6 Optimal Bayesian Classification

An optimal Bayesian classifier (OBC) ψOBC is any classifier satisfying

Eπ∗ [ε(θ, ψOBC)] ≤ Eπ∗ [ε(θ, ψ)] (4.20)

for all ψ ∈ C , where C is a family of classifiers. Under the Bayesian framework,

P (ψ (X) �= Y |Sn) = Eπ∗ [P (ψ (X) �= Y |θ, Sn)] = Eπ∗ [ε(θ, ψ)] = ε̂ (ψ, Sn) .

Thus, optimal Bayesian classifiersminimize themisclassification probability relative
to the assumed model or, equivalently, minimize the Bayesian error estimate.

The following representation of the Bayesian error estimator facilitates a straight-
forward approach for finding an OBC [33, 34]: If ψ is a fixed classifier defined by
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ψ (x) = 0 if x ∈ R0 and ψ (x) = 1 if x ∈ R1, where R0 and R1 are measurable sets
partitioning the sample space, then the Bayesian error estimator is given by

ε̂ (ψ, Sn) = Eπ∗ [c]
∫

R1

f (x|0) dx + (1 − Eπ∗ [c])
∫

R0

f (x|1) dx (4.21)

=
∫

�D

(
Eπ∗ [c] f (x|0) Ix∈R1 + (1 − Eπ∗ [c]) f (x|1) Ix∈R0

)
dx, (4.22)

where IE is an indicator function equal to one if E is true and zero otherwise, and

f (x|y) =
∫

Θy

fθy (x|y) π∗ (
θy

)
dθy, (4.23)

which is called the effective class-conditional density with respect to the posterior.
An OBC can be found by brute force using the closed-form solutions for the

expected true error (the Bayesian error estimator), when available; however, if C
is the set of all classifiers (with measurable decision regions), then an OBC, in the
presence of model uncertainty, can be found analogously to a Bayes classifier under
a known feature-label distribution. To wit, an OBC relative to the set of all classifiers
with measurable decision regions exists and is given pointwise by [37]

ψOBC (x) =
{
0, if Eπ∗ [c] f (x|0) ≥ (1 − Eπ∗ [c]) f (x|1)
1, otherwise

. (4.24)

To find an OBC we can average the class-conditional densities fθy (x|y) relative to
the posterior distribution to obtain the effective class-conditional density, f (x|y),
whereby an OBC is found via (4.24). Essentially, the OBC is the Bayes classifier
using f (x|0) and f (x|1) as the true class-conditional distributions.

In regard to both optimal Bayesian classification and MMSE error estimation,
f (x|y) contains all of the necessary information in the model about the class-
conditional distributions and we do not have to deal with the priors directly. Upon
defining a model, we find f (x|y), which depends on the sample because it depends
on π∗, and then several problems are solved by treating f (x|y) as the true distribu-
tion: optimal (unconstrained) classification, the optimal error estimate for the optimal
classifier, and the optimal error estimate for arbitrary classifiers.

Henceforth, we will only consider optimal Bayesian classifiers over the space of
all classifiers. Moreover, note that if Eπ∗ [c] = 0 then the OBC is a constant given
by ψOBC = 1, and if Eπ∗ [c] = 1 then ψOBC = 0.

4.7 The Gaussian Model

In the Gaussian model, the uncertainty class is determined by the parameters θy =
[μy,Λy], where μy is the mean of the class-conditional distribution and Λy is a
collection of parameters that determine the covariance matrix, Σy , of the class.
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By defining Σy as a function of Λy , we may impose a structure on the covariance.
Three types of models are considered in [37]: a fixed covariance model (Σy = Λy

is known perfectly), a scaled identity covariance model having uncorrelated features
with equal variances (Λy = σ 2

y is a scalar and Σy = σ 2
y ID), and an arbitrary

(valid) covariance model (Σy = Λy may be any invertible covariance matrix). Here
we consider the known and arbitrary-covariance models in detail. If the arbitrary
covariancemodel is used in both classes, thenwe assume that the covariancematrices
in each class are independent. The parameter space of μy is �D , and the parameter
space of Λy must be carefully defined to permit only valid covariance matrices. As
Σy and Λy are equivalent in the cases we will consider, we will write Σy in place
of Λy without explicitly showing its dependence on Λy , i.e., we write Σy rather
than Σy(Λy). We also denote a multivariate Gaussian distribution with mean μ and
covariance Σ by fμ,Σ(x), so that the parameterized class-conditional distributions
can be written as fθy (x|y) = fμy ,Σy (x).

Under the independence assumption, c, θ0 = [μ0,Σ0] and θ1 = [μ1,Σ1] are all
independent prior to observing the data, so that π(θ) = π(c)π(θ0)π(θ1). Assuming
π(c) andπ∗(c) have been established,wemust define priorsπ(θy) and find posteriors
π∗(θy) for both classes.We begin by specifying conjugate priors for θ0 and θ1. Define

fm(μ; ν, m,Σ) = |Σ |−1/2 exp
(
−ν

2
(μ − m)T Σ−1 (μ − m)

)
, (4.25)

fc(Σ; κ, S) = |Σ |−(κ+D+1)/2 exp

(
−1

2
trace

(
SΣ−1)

)
, (4.26)

which involve several constants: ν,m,κ and S. If ν > 0, then fm is a (scaled)Gaussian
distribution with mean m and covariance Σ/ν. If κ > D −1 and S is symmetric and
positive definite, then fc is a (scaled) inverse-Wishart (κ, S) distribution. However, to
allow for improper priors we do not necessarily require fm and fc to be normalizable.

Consider class y ∈ {0, 1}. In the arbitrary covariance model, we assume Σy is
invertible with probability 1 and that for invertible Σy the prior for θy is of the form

π(θy) = π(μy|Σy)π(Σy), (4.27)

where

π(μy|Σy) ∝ fm(μy; νy, my,Σy), (4.28)

π(Σy) ∝ fc(Σy; κy, Sy), (4.29)

νy is a real number, my is a length D real vector, κy is a real number, and Sy is a
symmetric non-negative definite D × D matrix. If νy > 0, then the prior for the
mean conditioned on the covariance, π(μy |Σy), is proper and Gaussian with mean
my and covariance Σy/νy . The hyperparameter my is the prior expected mean of
class y, where the larger νy is the more confident we are that μy is close to my .
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In the arbitrary covariance model, π(Σy) is a proper inverse-Wishart distribution
if κy > D − 1 and Sy is symmetric and positive definite. If in addition νy > 0, then
π(θy) is a normal-inverse-Wishart distribution, which is the conjugate prior for the
mean and covariance when sampling from normal distributions [38, 39]. As long as
κy > D +1, the prior mean ofΣy exists and is given by Eπ [Σy] = Sy/(κy − D −1).
Thus, Sy determines the expected shape of the covariance, where the actual expected
covariance is scaled. If Sy is scaled appropriately, then the larger κy is the more
certainty we have about the covariance Σy .

In this model, the posterior has the same form as the prior [34],

π∗(θy) ∝ fm(μy; ν∗
y , m∗

y,Σy) fc(Σy; κ∗
y , S∗

y ), (4.30)

with updated hyperparameters

ν∗
y = νy + ny, (4.31)

m∗
y = νymy + nyμ̂y

νy + ny
, (4.32)

κ∗
y = κy + ny, (4.33)

S∗
y = Sy + (ny − 1)Σ̂y + νyny

νy + ny
(μ̂y − my)(μ̂y − my)

T , (4.34)

where μ̂y and Σ̂y are the samplemean and sample covariance of the ny training points
in class y. Improper priors can still be used so long as the posterior is proper: for a
proper posterior in the arbitrary covariance model we require ν∗

y > 0, κ∗
y > D − 1,

and that S∗
y is symmetric and positive definite. The previous discussion on properties

of a proper prior again apply to the posterior, namely that π∗(μy |Σy)must be a valid
Gaussian distribution and π∗(Σy) must be a valid inverse-Wishart distribution.

Continuing with the arbitrary covariance model, the parameter space of θy is the
product of the space of all valid mean vectors, �D , and the space of all positive-
definite matrices, which we denote by Σy > 0. By definition,

f (x|y) =
∫

Σy>0

∫

�D

fμy ,Σy (x) π∗(μy |Σy)π
∗(Σy)dμydΣy . (4.35)

Given that π∗(μy|Σy) is Gaussian and π∗(Σy) is inverse-Wishart, one can show that
evaluation of the double integral yields a multivariate student’s t-distribution [34]:

f (x|y) = 1

k D/2
y π D/2|Ψy |1/2

×
Γ

(
ky+D

2

)

Γ
(

ky
2

)
(
1 + 1

ky

(
x − m∗

y

)T
Ψ −1

y

(
x − m∗

y

))− ky+D
2

,

(4.36)



94 L.A. Dalton and E.R. Dougherty

with location vectorm∗
y , scalematrixΨy = ν∗

y +1
(κ∗

y −D+1)ν∗
y
S∗

y and ky = κ∗
y −D+1degrees

of freedom. This distribution is proper because
ν∗

y +1
(κ∗

y −D+1)ν∗
y

> 0 and S∗
y is symmetric

and positive definite (so the scale matrix is symmetric and positive definite) and
κ∗

y − D + 1 > 0. As long as κ∗
y > D the mean of this distribution is m∗

y , and as long

as κ∗
y > D + 1 the variance is

ν∗
y +1

(κ∗
y −D−1)ν∗

y
S∗

y .

Switching gears to the known covariance model, now assume that the prior for θy

is of the form
π(θy) = π(μy|Σy)π(Σy), (4.37)

where π(μy |Σy) is given in (4.28) and π(Σy) is simply a point mass at the known
value of Σy . Again, we require that νy be a real number and my be a length D real
vector, where if νy > 0 then the prior for the mean is proper and Gaussian with mean
my and covariance Σy/νy . Also as before, the posterior has the same form as the
prior with the same hyperparameter update equations, (4.31) and (4.32). For a proper
posterior, we require ν∗

y > 0. In the known covariance model, we may simplify the
effective density in (4.35) as,

f (x|y) =
∫

�D

fμy ,Σy (x) π∗(μy |Σy)dμy, (4.38)

where Σy is the known covariance matrix. One can show that this integral yields a

proper Gaussian distribution with mean m∗
y and covariance

ν∗
y +1
ν∗

y
Σy [34]:

f (x|y) = (ν∗
y )D/2

(ν∗
y + 1)D/2(2π)D/2|Σy |1/2 exp

(

− ν∗
y

2(ν∗
y + 1)

(
x − m∗

y

)T
Σ−1

y

(
x − m∗

y

)
)

.

(4.39)

4.8 Optimal Bayesian Classifier in the Gaussian Model

There are three cases to consider when finding the OBC: the covariances are known
in both classes, a covariance is known in only one class, and the covariances are
unknown in both classes (for derivation details see [37]). It is interesting to consider
the shape of the decision boundary for the OBC as compared to the shapes of the
decision boundaries for each feature-label distribution in the uncertainty class; in
particular, note how the effective class-conditional distributions becomemultivariate
student’s t-distributions.

When both covariances are known, in the previous section we showed that the
effective class-conditional distributions are Gaussian with mean m∗

y and covariance
ν∗

y +1
ν∗

y
Σy for y ∈ {0, 1}. The OBC, ψOBC(x), is the optimal classifier between the

effective Gaussians with class 0 probability Eπ∗ [c], and is of the same form as the
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Bayes classifier in (4.5) and (4.6) with discriminant gOBC(x) given by

AOBC = −1

2

(
ν∗
1

ν∗
1 + 1

Σ−1
1 − ν∗

0

ν∗
0 + 1

Σ−1
0

)
,

aOBC = ν∗
1

ν∗
1 + 1

Σ−1
1 m∗

1 − ν∗
0

ν∗
0 + 1

Σ−1
0 m∗

0,

bOBC = −1

2

(
ν∗
1

ν∗
1 + 1

m∗
1

T
Σ−1

1 m∗
1 − ν∗

0

ν∗
0 + 1

m∗
0

T
Σ−1

0 m∗
0

)

+ ln

(
1 − Eπ∗ [c]
Eπ∗ [c]

(
ν∗
1 (ν

∗
0 + 1)

ν∗
0 (ν

∗
1 + 1)

)D/2 ( |Σ0|
|Σ1|

)1/2
)

. (4.40)

The expected true error for theOBC is simply the true error for this quadratic classifier
under the effective Gaussian distributions.

If the covariance is known in only one class and modeled as arbitrary in the other,
then the effective class-conditional distribution for the known class, say class 0, is
Gaussian and the other class is a multivariate student’s t-distribution, hence,

f (x|0) = (ν∗
0 )D/2

(ν∗
0 + 1)D/2(2π)D/2|Σ0|1/2

exp

(

− ν∗
0

2(ν∗
0 + 1)

(
x − m∗

0
)T

Σ−1
0

(
x − m∗

0
)
)

,

(4.41)

f (x|1) = 1

k D/2
1 π D/2|Ψ1|1/2

×
Γ

(
k1+D

2

)

Γ
(

k1
2

)
(
1 + 1

k1

(
x − m∗

1
)T

Ψ −1
1

(
x − m∗

1
)
)− k1+D

2
,

(4.42)

and, from (4.36), Ψ1 = ν∗
1+1

(κ∗
1−D+1)ν∗

1
S∗
1 and k1 = κ∗

1 − D + 1. The discriminant of the
OBC can be simplified to

gOBC(x) = ν∗
0

ν∗
0 + 1

(
x − m∗

0

)T
Σ−1

0

(
x − m∗

0

)

− (k1 + D) ln

(
1 + 1

k1

(
x − m∗

1

)T
Ψ −1
1

(
x − m∗

1

)) + K ,

where

K = 2 ln

(
1 − Eπ∗ [c]
Eπ∗ [c]

(
2(ν∗

0 + 1)

ν∗
0k1

)D/2 ( |Σ0|
|Ψ1|

)1/2
Γ ((k1 + D)/2)

Γ (k1/2)

)

. (4.43)

The form of the OBC is not necessarily linear or quadratic.
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When the covariances of both classes are unknown and arbitrary, the effective
class-conditional distribution for each class is multivariate student’s t with location
vector m∗

y , scale matrix Ψy and ky degrees of freedom, as given in (4.36). The
discriminant of the OBC can be simplified to

gOBC(x) = K

(
1 + 1

k0

(
x − m∗

0

)T
Ψ −1
0

(
x − m∗

0

)
)k0+D

−
(
1 + 1

k1

(
x − m∗

1

)T
Ψ −1
1

(
x − m∗

1

))k1+D

, (4.44)

where

K =
(
1 − Eπ∗ [c]
Eπ∗ [c]

)2 (
k0
k1

)D |Ψ0|
|Ψ1|

(
Γ (k0/2)Γ ((k1 + D)/2)

Γ ((k0 + D)/2)Γ (k1/2)

)2

. (4.45)

This classifier has a polynomial decision boundary that is not necessarily linear or
quadratic as long as k0 and k1 are integers, which is satisfied for arbitrary covariance
models with independent covariances if κ0 and κ1 are integers.

Consider an example with D = 2 features, where each class is equally likely
(c = 0.5) and the class-conditional distributions are known to be Gaussian with
unequal and arbitrary invertible covariances. We assume that the mean and covari-
ance pairs associated with each class are independent and given by a normal-inverse-
Wishart prior with hyperparameters ν0 = ν1 = 0, κ0 = κ1 = 0, m0 = m1 = [0, 0]
and S0 = S1 = −2I2. Further suppose that we observe 40 sample points from class
0 and 4 sample points from class 1, where the sample mean of class 0 is [0, 0], the
sample mean of class 1 is [1, 1], and the sample covariance of both classes is I2.
Then the posteriors are proper normal-inverse-Wishart distributions given by hyper-
parameters ν∗

0 = κ∗
0 = 40, m0

∗ = [0, 0], S∗
0 = 37I2, ν∗

1 = κ∗
1 = 4, m1

∗ = [1, 1],
and S∗

1 = I2. We will consider three classifiers. The first is a plug-in classifier, which
substitutes the posterior expected means and covariances into the Bayes classifier,
that is, we assume that μ0 is Eπ∗ [μ0] = m∗

0 = [0, 0], μ1 is m∗
1 = [1, 1], and Σy is

Eπ∗ [Σy] = 1
κ∗

y −D−1 S∗
y = I2 . Since the expected covariances are equal, this classi-

fier is linear. Note for this prior the posterior expected parameters coincide with the
sample means and covariances, so that the plug-in classifier is also equivalent to an
LDA classifier. The second classifier that we consider is a state-constrained optimal
Bayesian classifier (SCOBC), which is found by searching across mean and covari-
ance pairs in the uncertainty class for aBayes classifier havingminimal expected error
[40]. Since theBayes classifier for anyGaussian distribution is quadratic, the SCOBC
is quadratic. Finally, we have the optimal Bayesian classifier, which is available in
closed form in (4.44). Since the effective densities are not Gaussian but multivariate
student’s t-distributions, theOBChas a polynomial decision boundary of greater than
quadratic order. Figure4.4 shows the plug-in classifier (light gray), SCOBC (dark
gray) and OBC (black). Level curves for the class-conditional distributions corre-
sponding to the expected parameters in the posteriors used in the plug-in rule are
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Fig. 4.4 Classifiers for an independent arbitrary covariance Gaussian model with D = 2
features and proper posteriors. The optimal Bayesian classifier is polynomial with expected true
error 0.2007 (averaged over the posterior on the uncertainty class of states), the state-constrained
optimal Bayesian classifier is quadratic with expected true error 0.2061 and the plug-in classifier is
linear with expected true error 0.2078

shown in light gray dashed lines, and level curves for the distributions corresponding
to the optimal parameters found in the SCOBC are shown in dark gray dashed lines.
Each classifier is quite distinct, and in particular, the optimal Bayesian classifier is
non-quadratic even though all class-conditional distributions in the uncertainty class
are Gaussian.

4.9 Concluding Remarks

This chapter follows a natural progression: with small samples distributional knowl-
edge has to be applied to obtain performance bounds, without which a classifier is
epistemologically meaningless, and once distributional knowledge is assumed the
obvious path to take is to engage in optimal error estimation and optimal classifier
design. There is nothing surprising about these developments. As far back as 1925,
R.A. Fisher wrote, “Little experience is sufficient to show that the traditional machin-
ery of statistical processes is wholly unsuited to the needs of practical research. Not
only does it take a cannon to shoot a sparrow, but it misses the sparrow! The elaborate
mechanism built on the theory of infinitely large samples is not accurate enough for
simple laboratory data. Only by systematically tackling small sample problems on
their merits does it seem possible to apply accurate tests to practical data.” [41]
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Before closing, let us mention some technical issues relating to the Bayesian
theory. For the Gaussian model, the effective class-conditional distributions, the
MMSE error estimate for linear classifiers, and the OBC can be found analytically;
in particular, the posterior distribution has the same form as the prior. Although
not covered herein, similar comments apply to the discrete multinomial model with
Dirichlet priors. However, closed-form analytic solutions are not generally possi-
ble. For instance, in the Gaussian model with nonlinear classifiers there is no ana-
lytic expression for the MMSE error estimator and Monte Carlo methods must be
employed [42]. Leaving the Gaussian model, one typically needs to employ numeri-
calmethods—for instance,Markov-chain-Monte-Carlo (MCMC)methods havebeen
used to find the OBC with a hierarchical Poisson model [43].

A fundamental problem for any Bayesian approach is prior construction. Histori-
cally, variousmethods have been proposed to construct prior probabilities in different
contexts [44–48]; however, these are general methodologies in that they do not tar-
get any specific type of prior information. If one tailors a prior to a specific problem
in hand, then one can do better. For instance, in genomics biological knowledge in
the form of regulatory pathways can be translated into feature-label knowledge for
classification. This has been achieved for Gaussian networkmodels [49], thereby sig-
nificantly improving classification accuracy. The basic idea is that regulatory control
constrains the feature-label distribution, in particular, the correlation between certain
features in the Gaussian model. Priors are built according to the heuristic that there
should be maximum uncertainty in the prior, given the regulatory constraints.

Under very general conditions, the posteriorπ∗(θ) converges to the true value of θ
as the sample size goes to infinity, but this is of little interest when samples are small.
What is of interest is the degree of uncertainty as it relates to classification accuracy.
An obvious measure of uncertainty is the entropy of the posterior; however, what
really matters is the uncertainty relating to our objective, not simply uncertainty
in general. To this end, one can define the objective cost of uncertainty, which
relates to the loss of classification performance obtained by the OBC relative to the
performance should one know the true feature-label distribution [50].

In closing, we point out a critical advantage of Bayesian MMSE error estimation
over classical non-Bayesian estimators. For standard data-driven error estimators,
nothing can be said about the MSE of an error estimator given the sample. One can
only compute the MSE as an expectation over all samples. However, in a Bayesian
framework, one can compute the sample-conditioned MSE for a Bayesian error
estimate, ε̂, on a fixed classifier, ψn . This is equivalent to the variance of the true
error conditioned on the observed sample [51],

MSE(ε̂|Sn) = Varπ∗ (ε(θ, ψn)) , (4.46)

where the variance is taken with respect to π∗(θ). The sample-conditioned MSE
converges to zero with probability 1 in both the discrete multinomial and indepen-
dent covariance Gaussian models and closed-form expressions for the MSE are
available [35].
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Chapter 5
Data Visualization and Structure
Identification

J.E. Gubernatis

Abstract For three datasets, all dealing with materials with ABO3 chemistries, the
two data visualizations algorithms of Tsafrir et al. [Bioinformatics 21, 2301 (2005)]
were studied and applied. These algorithms permute the distance matrix associated
with the data in a way to unveil structure in one case by keeping large-distanced
information afar or in the other case by keeping small-distanced information near.
Modifications to their proposed numerical implementations were made to enhance
effectiveness. The two algorithms were used both in space of the materials and the
features, looking for groupings of features and materials. In general, for the datasets
considered, when visualized, the features tended to show more distinctive structure
(clustering) than thematerials. For enhanced grouping of materials, the initial studies
point to the importance of feature selection.

5.1 Introduction

The pre-emptive focus of Materials Informatics is gathering materials data and
extracting from them sign-posts for candidate materials with enhanced properties.
We studied three datasets, previously used in materials informatics studies [1] that
had similar objectives, literally asking, What does the data look like? To assist in
visualizing the data, we used the recent work by Tsafrir et al. [2] in bioinformatics
that presented two seemingly simple algorithms to visualize the data in a way that
also revealed structure in them, that is, correlations among the materials and fea-
tures being visualized. Their algorithms reorder the data by permuting the rows and
columns of a distance matrix constructed from the data matrix. The permutations
minimize a cost function that favors placing data close together when the distances
between them are small. With addenda, the algorithms become clustering methods
which do not a priori assume the number of clusters [3, 4].
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The distancematrix D is usually formed after normalizing the data. Normalization
is necessary because the different features have different units and the values of
different features vary by orders of magnitude. The rows and columns of the data
set tables are viewed as an M × F matrix of materials and features. Each column of
features is regarded as a M−vector which is normalized by first computing the mean
value of its components and subtracting the mean from each component. Next, the
standard deviation for each mean-centered column is computed and each component
is divided by it. After normalization, the units have disappeared and the numerical
values in each column of data have the same center (mean of zero) and the same
range (variance of unity). The result is a new M × F-dimensional Data matrix,
Data = (f1, f2, . . . , fF).

Various definitions of a distance matrix exist. A Euclidean distance is the only
type considered in this report. We computed a Euclidean distance matrix from the
normalized data matrix in two ways. One way is what we call computing distances
in Materials Space. In this space, the components of the F × F distance matrix are

Di j = √
(f i − f j ) · (f i − f j ). (5.1)

Here, each feature i is regarded as a M-dimensional vector f i of materials. The
second way is what we call computing distances in Features Space. Here, we
work with the rows of the normalized Data matrix instead of the columns: Data =
(m1, m2, . . . mM)T, where each material i is a F-dimensional vector mi of features.
In this space, the components of the M × M distance matrix are

Di j = √
(mi − m j ) · (mi − m j ). (5.2)

We illustrate these vectors schematically in Fig. 5.1.
We applied the Tsafriar et al. algorithms to the data in both spaces. These algo-

rithms reorder the data so the points in the respective space are closer together than
they are in the tables. In Materials Space, they group together features; in Features
Space, they group together materials. Is there anything to be gained by viewing the
data in these two different ways?

5.2 Theory

The Tsafrir et al. algorithms find a permutation matrix P that minimizes

F(P) = Tr(PDPTW). (5.3)

A permutation matrix is a matrix whose elements are all zero except for one element
in each row and column that is unity. The permutationmatrixP is usually represented
as an integer array IP where IP(i) = j which gives the non-zero column j for the
i th row.



5 Data Visualization and Structure Identification 105

(a) (b)

Fig. 5.1 Different spaces in which to represent the data. a Space of the materials: The materials
point to a feature. b The space of the features: The features point to a material

Different W matrices define the two different algorithms [2]. The first algorithm
is called “Side-to-Side (STS)”. Here the matrix elements of W are

wi j = xi x j (5.4)

where the xi are components of any vectorX that satisfy xi < x j . The W created from
this vector pushes apart data separated by large distances. For the results reported
here,weused the choice ofTsafrir et al.X =(−N/2,−N/2 + 1, · · · , N/2), although
we found that multiplying this vector by a factor of two, three, or four often gave
more satisfying results. Shifting the vector so all its components are positive, typically
degraded the results. Their second algorithm is called “Neighborhood (NBRHD)”.
Here the matrix elements of W are

wi j = exp(−|i − j |/σ 2). (5.5)

This choice pulls together data separated by small distances.
Both minimizations are NP-hard problems, meaning obtaining a good (non-

unique) local minimum the best that one can expect. As the order of the matrix
increases, many good minima can exist. Side-to-Side belongs to a class of problems
called quadratic assignment problems; Neighborhood, linear assignment problems.
Tsafrir et al. give a numerical procedure to do theminimization for each choice of W .
The overall advice was to restart each procedure multiple times, each from a different
point, and keep the lowest value. For Neighborhood, they note that the parameter σ

could be used as an “annealing” parameter: get a solution for a small value, use that
solution for a larger value, and then repeat these two steps ten times or so. Because the
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W of Side-to-Side factorizes, the algorithm they proposed for it scales as the square
of the order of the matrices; for Neighborhood, their proposed procedure scales as
the cube. We found the suggested numerical procedures of Tsafrir et al. gave mixed
performance for the datasets under study. For each W , we instead used Algorithm 1.

Initialize t = 0, Pt−1 = 0, Pt = I , and W t = W .
while Pt �= Pt−1 do

t ← t + 1
Solve for Pt = argminP Tr PDWt−1

W t+1 = [Pt ]T

end while
D ← Pt D[Pt ]T

Algorithm 1: Minimization Procedure

This algorithm modestly differs from that of Tsafrir et al.’s Neighborhood algo-
rithms in the following respects: First, we are using it for both the Side-to-Side and
Neighborhood W . In other words, we are treating each problem as if it were a linear
assignment problem. The most important difference is our step “Solve ...”: Instead
of using their suggested procedures to find the permutation matrix, we are using the
Hungarian algorithm [5], a standard method for assignment problems. Our stopping
criterion also differs: Instead of using |F(Pt+1) − F(Pt )| < ε, or something simi-
lar, we are iterating until the permutation matrix ceases to change. This criterion in
general forced more iteration steps and produced a lower value for the minimum.
Restarts for the new algorithm for the cases considered seemed to gain little.

We also tried minimizing by using a greedy Monte Carlo optimization procedure
(making many random permutations many times and keeping the best) and a rudi-
mentary simulated annealing optimization. In general, the results from theHungarian
algorithm had the tightest structure in the visualization.

5.3 Results

We now report select results. All were obtained with Algorithm 1. The three datasets
studied were used by Balachandran et al. [1]. We call the datasets piezo.dat,
pls.dat, and tree.dat. All the materials in the dataset piezo.dat are known
ferroelectrics. Balachandran et al. used this data in a feature-reduction principal
component analysis. The pls.dat data was used for a partial least-squares (PLS)
analysis of the piezoelectric data, after a further somewhat ad hoc feature reduction, to
generate an analytic expression for the Curie temperature which they then used
to predicted possible Curie temperatures for perovskite chemistries not yet known to
exist. All the materials in tree.dat had the ABO3 chemistry but not all had a
perovskite crystal structure. This data was used by Balachandran et al. to construct a
binary decision tree giving rules for when a perovskite crystal structure should exist.
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5.3.1 The Piezo Data

This dataset has 22 materials and 31 features. In Fig. 5.2 are the distance matrices
before the re-ordering of the data, and in Figs. 5.3 and 5.4 are these matrices after the
re-ordering. Viewing Figs. 5.2 and 5.3 or Figs. 5.2 and 5.4 together, one can see small
groupings of materials and features. We can relate these groupings to materials or
features having the same A or B atoms. Otherwise, larger clumping of materials or
features is not prevalent. The initial distancematrix inFig. 5.2 showsonlyminor block
structure near the diagonal (zero distance), with a bit more in Features Space (left)
than in Materials Space (right). The Side-to-Side ordering produced more distinct
clumping in Features Space than in Materials Space. The Neighborhood ordering
produced very distinct clumping in Materials Space.

Fig. 5.2 Distance matrices for piezo.dat before reordering

Fig. 5.3 Distance matrices after re-ordering with Side-to-Side
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Fig. 5.4 Distance matrices after re-ordering with Neighborhood. σ = 10

Fig. 5.5 Distance matrices for pls.dat before reordering

5.3.2 The Pls Data

This dataset has 21 materials and 7 features. Figure5.5 is the distance matrices
before re-ordering, and Figs. 5.6 and 5.7 are thesematrices after re-ordering. Viewing
Figs. 5.5 and 5.6 or Figs. 5.5 and 5.7 together, one sees less clumping than seen in
Figs. 5.3 or 5.4. Presumably this is caused by simply having fewer features. The
initial distance matrices in Fig. 5.5 show little block structure along the diagonal.
The Side-to-Side ordering produced distinct clumping in the Features and Materials
Spaces. Neighborhood ordering produced virtually identical clumpings.

5.3.3 The Tree Data

Here, there are 355 materials and 13 features. Figure5.8 is the distance matrices
before re-ordering, and Figs. 5.9 and 5.10 are these matrices after re-ordering. As for
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Fig. 5.6 Distance matrices after re-ordering with Side-to-Side

Fig. 5.7 Distance matrices after re-ordering with Neighborhood. σ = 10

the pls.dat, the number of features is smaller than the number of materials. Here,
their number is much smaller. In Materials Space, Fig. 5.8 shows some clear block
structure along the diagonal. The Side-to-Side ordering tightened the clumping a bit
in Materials Space, but it is Neighborhood ordering that produced the most distinct
clumping in both spaces.

5.4 Concluding Remarks

This initial study suggests several recommendations and items for future study. First,
our findings are consistent those of Tsatrfir et al. that the Neighborhood method is
generally the most revealing algorithm.

Understudied to date is the potential for using σ to enhance the results.
Figures5.11, 5.12 and 5.13 show a brief study of what happens if the results in
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Fig. 5.8 Distance matrices for tree.dat before reordering

Fig. 5.9 Distance matrices after re-ordering with Side-to-Side

Fig. 5.10 Distance matrices after re-ordering with Neighborhood. σ = 10
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Fig. 5.11 Distance matrices after re-ordering with Neighborhood. σ = 100

Fig. 5.12 Distance matrices after re-ordering with Neighborhood. σ = 200

Fig. 5.13 Distance matrices after re-ordering with Neighborhood. σ = 300
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Fig. 5.10 were extended from σ = 10 to σ = 100, 200, and 300. The changes are
mainly exposing more structure in Features Space.1 In general, finding materials
clumping in Features Space for the tree.datwas the reason various modifications
of the Tsafrir et al. algorithms were attempted and several Monte Carlo optimization
methods were explored. Instead of using σ as an annealing parameter, suggested
by them, one could consider using it as a tempering parameter: Parallel tempering
is generally a more effective Monte Carlo minimization scheme than simulated or
quantum annealing. More effective still are the recently proposed partial and infinite
swapping methods [6, 7]. The upfront question first needing an answer is, How good
of a solution is needed for the intended applications? At this writing, the answer to
this question is unestablished.

The parameter σ likely has asmore immediate use in setting length scales. The dif-
ferences in Features Space between Figs. 5.10 and 5.11 illustrate this. Years ago, the
connection between a data clustering algorithm and a first-order phase transition was
noted [8]. Several physics-based algorithms have exploited this fact to develop suc-
cessful data clustering algorithms [9, 10]. The algorithms of Tsafrir et al. in a sense,
are part of this alternative perspective. In a first-order phase transition, clustering
(strong correlations) among interacting particles occurs at various length scales that
are the consequences of the distances overwhich the interaction between particles are
attractive or repulsive. The correlations become stronger as the temperature is low-
ered towards the transition temperature. σ is an analog to the temperature: Varying it
here varies a length length scale in the matrix W . Distinguishing the physics-based
algorithms from standard machine learning algorithms is the presence of several
length scales as opposed to none. Curiously, a seminal paper [11] on the k-means
clustering algorithm, one of themost popularmachine learning clustering algorithms,
proposed a “grouping” algorithm that had two length scales, one for refinement and
one for coarsening. Refinement increases the “attraction” of data to a particular mean
and coarsening provides a “repulsion” from it. This suggestion captures the “physics”
of a clustering method and is an algorithm needing implementation.

We remark that the classification and clustering problems are connected. For
classification problems using algorithms that have length scales in them is likely to
be highly desirable. Finding the effective scales for either type of problem for the
given data is likelymore important than trying a suite of machine learning algorithms
to find the one that is most effective or a few that are consistent.

A variety of choices for the distancematrix exist. It appears that for whichever one
is used, using it with a large number of features, at least with the current choices, has
the potential of “washing out” the few features that are most important. For example,
the datasets studied all had the tolerance factor as one of the features. By itself, the
tolerance factor is traditionally used to separate perovskites from non-perovskites
and ferroelectric perovskites form non-ferroelectric perovskites. For the analyses
performed here, this feature seemed to have no assertive role.

1These differences are likely more evident if the pdf file of this report is viewed on a monitor with
decent resolution than from a printed version of the report.
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As part of the feature selection issue, we suggest the following: Clustering and
classification methods start with data normalized relative to some fictitious material
that has the average features of the given dataset. The majority, not necessarily the
optimal, determines the average even though we are seekingmaterials that lie outside
the range of the average. Clustering takes the additional steps of scaling the data to
homogenize the range. The ideal perovskite is SrTiO3 in the sense that it has nearly the
ideal cubic crystal structure, but it is not a ferroelectric. PbTiO3, which has less than
the ideal crystal structure, in another sense is the ideal, except for having Pb, because
it an excellent ferroelectric. It seems that in contrast to current machine learning
clustering or classification schemes that define things relative to some average, we
would want schemes that define things close to PbTiO3 but in a direction that points
away from SrTiO3. It is unclear whether such schemes exist. On the other hand,
within the existing visualization/clustering scheme, one can at least start with the
data centered relative to PbTiO3 and then query the results for those cases that are
also far from SrTiO3.

Generally, it is Features Space in which we want to work as we want to asso-
ciate new materials with experimentally accessible features. Materials Space reveals
features that are close. In some cases working in this space might reveal redundant
features, that is, it might provide a means for feature reduction.

This work was supported by the Department of Energy’s Laboratory Directed
Research and Development Program.
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Chapter 6
Inference of Hidden Structures in Complex
Physical Systems by Multi-scale Clustering

Z. Nussinov, P. Ronhovde, Dandan Hu, S. Chakrabarty,
Bo Sun, Nicholas A. Mauro and Kisor K. Sahu

Abstract We survey the application of a relatively new branch of statistical physics—
“community detection”—to data mining. In particular, we focus on the diagnosis
of materials and automated image segmentation. Community detection describes
the quest of partitioning a complex system involving many elements into optimally
decoupled subsets or communities of such elements. We review a multiresolution
variant which is used to ascertain structures at different spatial and temporal scales.
Significant patterns are obtained by examining the correlations between different
independent solvers. Similar to other combinatorial optimization problems in the NP
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complexity class, community detection exhibits several phases. Typically, illuminat-
ing orders are revealed by choosing parameters that lead to extremal information
theory correlations.

6.1 The General Problem

A basic question that we wish to discuss in this work is whether machine learning and
data mining tools may be applied to the analysis of material properties. Specifically,
we will review initial efforts to detect, via statistical mechanics and the tools of
information science and network analysis, pertinent structures on all scales in general
complex systems. We will describe mapping atomic and other configurations onto
graphs. As we will explain, patterns found in these graphs via statistical physics
methods may inform us about the structure of the investigated materials. These
structures can appear on multiple spatial and temporal scales. In comparison to
standard procedures, the advantage of such an approach may be significant.

There are numerous classes of complex systems. One prototypical variety is
that of glass forming liquids. “Glasses” have been analyzed with disparate tools
[1–16]. Although they have been known for millennia, structural glasses still remain
ill understood. It is just over eighty years since the publication of one of the most
famous papers concerning the structure of glasses [2]. Much has been learned since
the early days of hand-built plastic models and drawings, yet basic questions persist.

Amorphous systems such as glasses strongly contrast with idealized simple solids.
In simple crystals, the structure of an atomic unit cell is replicated to span the entire
system. Long before scattering and tunneling technologies, prominent figures such
as Robert Hooke, Christiaan Huygens, and their contemporaries in the 17th cen-
tury proposed the existence of sharp facets in single crystals results from recurrent
fundamental unit cell configurations. The many years since have seen numerous
breakthroughs (including the advent of quantum mechanics and atomic physics) and
witnessed a remarkable understanding as to how the quintessential simple periodic
structure of crystals accounts for many of their properties. However, while simple
solids form a fundamental pillar of current technology (e.g., the transistor whose
invention was made possible by an understanding of the electronic properties of
nicely ordered periodic crystals and chemical substitution therein), there are many
other complex systems whose understanding is extremely important yet still lacking.
The discovery of salient features of these materials across all scales is important for
both applied and basic science. The recognized significance of this problem engen-
dered the Materials Genome Initiative [17]—a broad effort to develop infrastructure
for accelerating materials innovation.

This work discusses a path towards solving this problem in complex amorphous
materials. The framework that we will principally suggest is that of multi scale
community detection. This approach does not invoke assumptions as to which system
properties are important and construct resulting minimal toy models based on the
assumptions. The insightful guess-work that is typically required to describe complex
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materials is, in the work that we review, replaced by a computerized variant of the
wisdom of the crowds phenomena [18]. The key concepts underlying this approach
may be applied to general hard problems beyond those concerning the structure of
materials or even general data mining. In the next section, we review an “Information
theoretic ensemble minimization” method that may be suited for such tasks.

6.2 Ensemble Minimization

Before delving into complex material and network analysis, we first discuss a general
strategy for solving hard problems. The concept underlying this approach is perhaps
best conveyed by a simple cartoon such as that sketched in Fig. 6.1a. In this illus-
tration, each sphere corresponds to an individual solver (or “replica”) that explores
an energy landscape. On its own, each such sphere might get stuck in a local energy
minimum. The collective ensemble of solvers may, however, thwart such situations
more readily as compared to the same single solver algorithm [21]. In Fig. 6.1b,
the individual solvers not only roam the energy landscape but also interact amongst
themselves as schematically denoted by springs. If a single solver gets stuck in a

Fig. 6.1 The spheres in
panel (a) of the figure depict
solvers (or “replicas”)
independently navigating the
energy landscape defined by
(6.2). Strong correlations
among the replicas indicate
stable, well-defined partition.
We evaluate agreement
among all replica pairs using
the information correlations
(Sect. 6.4). In panel (b),
interactions between the
replicas assist the ensemble
in finding optimal low
energy states

(a)

(b)



118 Z. Nussinov et al.

false minimum, the other solvers may “pull it out” and explore broader regions of
the energy landscape.

This collective evolution of individual solvers is quite natural and has appeared in
different guises across many fields. It anthropological contexts, this basic principle is
known as “wisdom of the crowds” [18]. That is, the crowd or ensemble of individuals
might do far better than a single solver. Unlike ensemble related approaches such as
swarm intelligence [22] or genetic [23] algorithms, relevant problems in our context
do not focus exclusively on minimizing a given energy function. Rather, we will try
to maximize information theory correlations [the effect of the springs in Fig. 6.1b]
while simultaneously minimizing a cost function [20]. If all (or many) solvers agree
on a particular candidate solution then that solution may naturally arise in many
instances and may be of the high importance regardless of whether or not it is the
absolute minimum of the energy. In the physical problems that we will consider—that
of finding natural structures in materials—these considerations are pertinent.

The above discussion is admittedly abstract and may, in principle, pertain to any
general problem. We next briefly explain the basic mathematical framework—the
community detection problem—in which we will later couch the material structure
detection endeavor.

6.3 Community Detection and Data Mining

Community detection pertains to the quest of partitioning a given graph or network
into its optimally decoupled subgraphs (or so-called communities), e.g., [24–37]. As
the reader may anticipate, given the omnipresence of networks and the generality
of this task, this problem appears in disparate arenas including biological systems,
computer science, homeland security, and countless others. In what follows, we
introduce some of the key elements of community detection. The graphs of interest
will be composed of nodes where a node is a fundamental element of an abstracted
graph. An edge in the graph is a defined relationship between two nodes. Edges may
be weighted or unweighted where the unweighted case is the one most commonly
examined. In our applications, we will need to assign weights to the edges in the
graph as we will describe. Similarly, in general applications, edges may be either
symmetric or directed.

Now we come to a basic ingredient of community detection. A community corre-
sponds to a subset of nodes that are more cohesively linked (or densely connected for
unweighted edges) within their own community than they are to other communities.
The above definition might seem a bit loose. Indeed, there are numerous formulations
of community detection in the literature. As intuitively one may expect, most of these
do, more or less, the same thing. When clear community detection solutions exist, all
algorithms quantify the structure of large complex networks in terms of the smaller
number of the natural cohesive components. Rather general data structures may be
cast in terms of abstract networks. Thus, the community detection problem and other
network analysis methods can have direct implications across multiple fields. Indeed,
we will elaborate how this occurs for image segmentation and material analysis.
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Fig. 6.2 A small network partition where individual communities are represented by different node
shapes and colors. “Friendly” or “cooperative” relations are depicted by solid, black lines. These are
modeled as ferromagnetic interactions in (6.2). “Missing” or “undefined” relations work to break up
well-defined communities, so they are modeled with anti-ferromagnetic interactions, meaning they
are repulsive in terms of their energy contributions. The physical energy model trivially extends to
more general relations including weighted and adversarial relations (not depicted here)

In what follows we will briefly review the rudiments of an “Absolute Potts Model”
method for community detection [19] that avoids a “resolution limit” that an insight-
ful earlier Potts model [38] exhibited. To cast things generally, we make a simple
observation underlying the “Potts” characterization. Any partition of the numbered
nodes i = 1, 2, 3, . . . , N into q different communities (the ultimate objective of
any community detection algorithm) is an assignment i → σi where the integer
1 ≤ σi ≤ q denotes the community number to which node i belongs. With a charac-
terization {σi } in hand, we next construct an energy functional.

To illustrate the basic premise, we first consider an unweighted graph—one in
which the link strength Aij between the two nodes i and j is Aij = 1 if an edge is
present between the two nodes and Aij = 0 if there is no link. As Fig. 6.2 demon-
strates, for each pair of nodes there are four principal cases to consider. That is, either
(i) the two nodes belong to the same community and have an “attraction” between
them (i.e., Aij = 1), (ii) two nodes in the same community can have a missing link
between them (Aij = 0), (iii) the two nodes may belong to different communities yet
nevertheless exhibit cohesion between themselves (Aij = 1), or (iv) nodes i and j
may belong to different communities and have no edge connecting them (Aij = 0).
Situations (i) and (iv) agree with the intuitive expectation that nodes in the same
community should be connected to one another while those in different communities
ought to be disjoint. We may take these four possibilities as the foundation of an
energy function. That is, any given pair of nodes may be examined to see which of
these categories it belongs to. Thus, a contending cost function is given by the Potts
model Hamiltonian

H = −1

2

∑

i �= j

[Aijδ(σi , σ j ) + γ (1 − Aij)(1 − δ(σi , σ j ))]. (6.1)
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In (6.1), δ(σi , σ j ) is a Kroncker delta (i.e., δ(σi = σ j ) = 1, δ(σi �= σ j ) = 0) and γ is
a “resolution parameter” that will play a notable role in our analysis. Before turning
to the origin of the name of this parameter, we observe that, subtracting an innocuous
additive constant, (6.1) is trivially

H = −1

2

∑

i �= j

[Aij − γ (1 − Aij)]δ(σi , σ j ). (6.2)

As (6.2) makes clear, by virtue of the Kronecker delta δ(σi , σ j ), the sum is local—i.e.,
the sum only includes intra-community node pairs. The Hamiltonian of (6.2) may
be minimized by a host of methods. In practice, when the solution of the problem
is easy to find, nearly all viable approaches will yield the same answer. Amongst
many others, two approaches are afforded by spectral methods [in which the discrete
Potts model spins are effectively replaced by continuous spherical model (or large
n) spins] and a conceptually more primitive steepest descent type approach.

A simple incarnation of the relatively successful greedy algorithm [19, 20] that
extends certain ideas introduced in [29] is given by the following steps: (a) Initially,
each node forms its own community [i.e., if there are N (numbered) nodes then there
will be q = N communities].

(b) A node (whose number is i1) is chosen stochastically and then another edge
sharing node i ′ is picked at random. (c) If it is energetically profitable to move the
node i ′ together into the group formed by i1 then this is done (otherwise community
assignments are unchanged). (d) Yet another node i2 is next chosen and once again
it is asked whether moving yet another node into the community of i2 lowers the
energy. As earlier mentioned, if this change lowers the energy of (6.2), the nodes
will be merged. Otherwise no change will be made. (e) In this manner, we cycle
through each of the N nodes and repeat as necessary. (f) The process stops and a
candidate partition is found once all further possible mergers do not lower the energy
further. As the reader can appreciate, such a simple algorithm lowers the energy until
the system becomes trapped in a local minimum. To improve the accuracy (i.e.,
further lower the energy of candidate solutions), one may repeat the above steps
a finite number of times for a finite number of trials—i.e., repeat the above when
vertices i1, i2, . . . , iN are chosen in a different random order to see if a lower energy
solution may result.

For the wide range of examined problems, the number of trials for each replica of
the system is typically on the order of ten or smaller. When approaching the “hard
phase” (to be discussed in Sect. 6.6) with multiple false minima, an increase in the
number of trials may likely further increase the accuracy (this rise in the accuracy
was termed the “computational susceptibility” in [20, 61]). Typically, elsewhere the
improvement in the precision due to a further increase in the number of trials is nearly
nonexistent (see, e.g., Fig. 13 in [20]). Further embellishments of the bare algorithm
outlined above, include the acceptance of zero energy moves and other refinements
[19]. Other illuminating greedy type approaches for the inference of community
structure have been advanced, e.g., [39].
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6.4 Multi-scale Community Detection

We now turn to “multi-scale” community detection, e.g., [20, 40–45]. In certain
notable approaches, e.g., [45], detection of scale is performed without the resolution
parameter but rather by examining the effects of thermal fluctuations in a pure fer-
romagnetic system (one sans the antiferromagnetic interaction present in the second
term of (6.2)), and other considerations elsewhere. In what follows, we will build on
the ideas introduced in Sect. 6.3 that lead to an accurate determination of structure on
diverse pertinent scales. To understand the physical content of the resolution para-
meter (and the origin of its name) in (6.2), we consider several trivial limits. First,
we focus on the case of γ = 0. In such a situation, the energy of (6.2) is minimized
when all nodes belong to a single community. This is the lowest energy solution
since each intra-community link lowers the energy [the first term of (6.2)], but there
is no energy penalty from any missing links between nodes in the same community
since the second term in (6.2) is trivially zero. Thus, in order to maximize the num-
ber of internal links it is profitable to assign all nodes to the same community. In
the diametrically opposite limit—that of γ → ∞, the energy penalty diverges unless
every pair of nodes belonging to the same community share a link. Thus, in this limit,
the lowest energy states are those in which the system fragments into (typically) a
large number of communities where each node is connected to all other nodes in its
community. That is, the communities are “perfect cliques.” As γ is monotonically
increased from zero, the ground states of (6.2) lead to communities that veer from
the extreme global case (γ = 0) to the limit of many disparate densely internally
connected local communities (γ → ∞). Putting all of the pieces together, the reader
can see why γ is inherently related to the intra-community edge density and thus is
indeed a “resolution parameter”.

At this stage, it is not yet clear which values γ should be assigned in order to
lead to the most physically pertinent solutions. The non-uniqueness of γ is, actually,
a virtue of the Potts model based approach of (6.2). That is, in general, there may
be several relevant resolution scales that lead to different insightful candidate low
energy partitions of this Hamiltonian. This is the situation which is schematically
depicted in Fig. 6.3 for a synthetic system that exhibits a hierarchical structure. In such
cases as γ is increased, the minima of (6.2) unveil different resolutions in the hier-
archy. In practice, the multi-resolution community-detection method [20] systemat-
ically infers the pertinent scale(s) by information-theory-based correlations [46–49]
between different independent solvers (or “replicas”, as discussed in Sect. 6.2) of the
same community detection problem. In most studied systems, the number of replicas
used is s ≤ 12. As alluded to in Sect. 6.3, the lowest energy solution amongst a fixed
number of trials is taken for each of the individual replicas. If these solvers (i.e., the
replicas) strongly concur with each other about local or global features of the solution
[20], then these aspects are likely to be correct. Such an agreement between solvers
is manifest in the information correlations. Information theory extrema [50–52] then
provide all relevant system scales.
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Fig. 6.3 A partition of a synthetic network with 256 nodes having three resolution levels [19].
The random edge density (fraction of edges connecting pairs of points in different communities)
is 10 % on the global scale. At increasing resolution there are five groups with an inter-community
edge density of 30 %. At the highest resolution, these five groups are further split into small sub
clusters (16 in total) each having an internal edge density of 90 %. As described in Sect. 6.4, a
multi-resolution algorithm may identify different categories of partitions in hierarchical systems.
See Fig. 6.4 for a demonstration of how the multiresolution algorithm accurately isolates both levels
of the hierarchy

Figure 6.4 shows the results of our analysis as the resolution parameter γ is varied
for the synthetic system of Fig. 6.3. Plotted are three information theory correla-
tions between replicas—the average inter-replica variation of information (VI), the
mutual information (I), the normalized mutual information (NMI), the total number
of communities (q) found for different values of γ , and the Shannon entropy (H )
averaged over different replicas. Transitions between viable solutions are evident
as jumps in the number of communities q and, most notably, as transitions between
crisp information theory measure plateaux. As shown, each of the plateaux in Fig. 6.4
corresponds to a different level of the hierarchy of the synthetic network in Fig. 6.3.
Similar to our discussion in Sect. 6.3, in practice the replicas differ from one another
in the order in which consecutive vertices are picked and moved so as to minimize
the energy of (6.2). Thus, for any given problem has an ensemble of very similar
(or nearly identical) viable solutions associated with it. A detailed summary of this
approach appears in [20].

In accord with the above explanation, as γ is increased, the associated candidate
energy minima partition the system into more local, smaller communities (deeper
levels of the hierarchy). The inter-replica information theory correlations further
afford a measure of the quality of the viable partitions. High NMI values (i.e., of
size close to unity) indicate solutions that are likely to be pertinent. In the spirit of
Sect. 6.2, if the different replicas all agree with one another on a putative partition,
then that partition is likely to be physically meaningful. The variation of information
measures the disparity between candidate solutions; thus the VI values are high
between different NMI plateaux and are low within the NMI plateaux.
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Fig. 6.4 Information theoretic and other metrics of the multiresolution algorithm in Sect. 6.4 as
applied to the synthetic partition depicted in Fig. 6.3 [20]. In the top panel, the average inter-
replica normalized mutual information (IN ), (un-normalized) mutual information (I ), and number
of clusters (or communities) q are plotted as a function of the resolution parameter γ . In the bottom
panel, the Shannon entropy (H ) and the average inter-replica variation of information (V ) are
further provided. As described in the text, stable partitions lead to plateaux (or more general local
extrema) in the inter-replica information theory and other correlations as a function of the resolution
parameter. Two such candidate resolutions (marked (i) and (ii)) are seen in both panels (a) and (b).
These plateaux show how the multiresolution algorithm may isolate both level 2 (superclusters) and
level 3 (smallest clusters) of the hierarchy of Fig. 6.3

6.5 Image Segmentation

Our goal is to identify structure in materials, but before turning to this endeavor, we
first illustrate how patterns may, literally, be revealed by community detection. The
ideas underlying this objective will elucidate our approach to material genomics. The
aim of image segmentation [52–58] is to divide a given digital image into separate
objects (or segments) based on visual characteristics. Two somewhat challenging
examples are provided in Fig. 6.5 [59, 60].

To transform the problem into that of community detection, we map a digital
image into a network as follows. Each pixel in an image is regarded as a node in a
graph. (2) The edge weights between nodes in the graph are determined by the degree



124 Z. Nussinov et al.

Fig. 6.5 Examples of the image segmentation challenges [59, 60]. Left the left image is that of
zebra with the a similar “stripe” background. Right the image on the right is that of a dalmatian
dog. Most people do not initially recognize the dog before given clues as to its presence. Once the
dog is seen it is nearly impossible to perceive the image in a meaningless way

of similarity between the additive color RGB (i.e., the Red, Green, and Blue) strength
of individual pixels or, more generally, of finite size boxes geometrically centered
about a given pixel. The bare edge strengths may be embellished and replaced by
weights set by the Fourier weights associated with finite size blocks about a given
node. Alternatively, we can use exponential weighting of the inter-node edge strength
based on the geometric distance between them (the distance between the centers of
the finite size blocks about them) [52]. The edge value assignment is such that if
two pixels i and j (or boxes centered about them) have similar RGB values (or
absolute Fourier magnitudes), then a function Vij set by these differences will be
small. Analogously, if nodes i and j (or boxes centered around them) are dissimilar
then Vij will become large.

With such functions Vij at hand, a simple generalization of (6.2) is given by

H = 1

2

q∑

s=1

∑

i, j∈Cs

[
(Vij − V )[Θ(V − Vij) + γΘ(Vij − V )]

]
. (6.3)

Here, Θ(z) is the Heavyside function (Θ(x > 0) = 1 and Θ(x < 0) = 0) and V is an
adjustable background value. As the astute reader undoubtedly noticed, the locality
constraint imposed by the Kronecker delta in (6.2) has been made explicit in (6.3) by
having only intra-community sums for each of the q communities {Cs}. Details of the
construction of the weights Vij are provided in [52]. Following our more colloquial
description here, there are four or five adjustable parameters in (6.3): the resolution
parameter γ , the background value V , the block size L centered about each pixel
(or more general rectangular blocks of size Lx × L y), and the pixel distance � over
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Fig. 6.6 The application of
multiresolution algorithm for
the segmentation of the zebra
and dalmatian dog images of
Fig. 6.5. The results
correspond to typical
partitions found with the
optimal parameter set. The
first and the second rows
contain “camouflages” of a
similar stype. We are able to
detect the boundary of the
zebra and discern the body
and hind legs of the dog
albeit with some
“bleeding” [52]

which the pixel interconnection function Vij decays. Once these are set, the earlier
community detection algorithm of Sect. 6.3 may be applied. The determination of
the optimal value(s) of these parameters may be performed using the same procedure
outlined in Sect. 6.4.

While systems such as the synthetic hierarchical network of Fig. 6.4 exhibit well
defined plateaux in the information theory and other measures, we found more gen-
erally that the optimal values of parameters z correspond to local extrema whereby
variations in the parameters do not alter the outcome. That is, if Q is a measured quan-
tity of interest (e.g., information theory correlations, Shannon entropy, the energy
associated with the given Hamiltonian) then optimal parameters z are found by the
requirement that ∇z Q = 0. These may lead to multiple viable solutions correspond-
ing to very different meaningful partitions.

In practice, we found that in all but the hardest cases, meaningful solutions are
found when arbitrarily setting all parameters to a fixed value and that, similar to
Sect. 6.4, the multi-scale solutions may be found by only varying the resolution
parameter γ . The results of our method are given in Fig. 6.6; these correspond to
typical partitions found with the optimal parameter set. The above image analysis
ideas may be applied for the detection of the primitive cells in simple Bravais lattices,
the inference of domain walls in spin systems, and hierarchical structures in quasi-
crystals [52]. For a complete classification of contending partitions and, most notably,
a deeper understanding of whether the found solutions are meaningful or not, it
is useful to survey the canonical finite temperature phase diagram associated with
(6.3) when all of the above parameters, including temperature, are varied. In the
current context, by “temperature”, we allude to the finite temperature study of the
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Hamiltonian of (6.2) either analytically or via a thermal bath associated with, e.g.,
the acceptance of the moves in the algorithm outlined at the end of Sect. 6.3 [50, 52,
61–63].

6.6 Community Detection Phase Diagram

As the bare edge weights and additional parameters setting the values of Vij in the
Hamiltonian of (6.3) and temperature are modified, quantities such as the system
energy, Shannon entropy, the number of communities, and information theory corre-
lations amongst the found ground states generally attest to the presence of multiple
phases. Additional metrics including the “computational susceptibility” (the change
in the average inter-replica NMI as the number of trials, see Sect. 6.3, is increased [20,
61, 62]), the time required for convergence (when attainable), and the ergodic/non-
ergodic character (“chaotic” type feature) of the dynamics all delineate the very same
phase diagram boundaries inferred from each of the examined quantities. Informa-
tion theory measures have been used to study other specific interesting systems, e.g.,
[64]. The observed phases in the community detection problem naturally extend to
finite temperatures (T ) when the analysis of the system defined by the Hamiltonian
of (6.3) is broadened to include positive temperatures. Finite size systems such as
the real networks and images that we discuss cannot exhibit thermodynamic phase
transitions and all finite temperature functions are analytic. Nevertheless, practically,
sharp changes appear as temperature and other parameters are varied.

Similar to other NP hard [65] combinatorial optimization problems [66–68], three
prototypical phases were established in general community detection problems with
a distribution of varying community sizes [61]. Subsequently, these have been beau-
tifully explored in depth in several specific graph types—most notably the so-called
“stochastic block models”, in which a graph has equal size communities e.g., [69–
72] and in other penetrating works, e.g., [73–75]. Earlier signatures of a bona fide
transition in stochastic block and power law distributed models [19, 20] and limits
on detectability in the stochastic block model via the cavity approximation were sug-
gested [76]. To intuitively highlight the essential character of the prototypical phases
with a minimum of jargon, we will colloquially term these the “easily solvable”, the
“solvable hard”, and the “unsolvable” phases.

In realistic finite yet very large scale systems [62, 63] various results can be
established and these may be further examined in various limits. Of course, bona
fide transitions formally occur only in the thermodynamic limit. A trivial behavior
results in infinite size graphs when the average number of nodes per community is of
finite size [62, 63]. As one would expect, typically all community detection problems
are either solvable or unsolvable. In NP hard problems, the solvable phase splinters
into an “easy” and a “hard phase”. When the edge weights set by Vij are associated
with sharp community detection partitions, then finding a natural solution is rather
trivial (and nearly all algorithms, not only the Potts model described here, will readily
unearth such an answer). On the other hand, if the couplings Vij are sufficiently
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Fig. 6.7 The normalized mutual information IN as the function of the resolution log(γ ) and tem-
perature T for the “bird” image in the upper lefthand panel of Fig. 6.9. We mark the “easy” phase
(where IN is almost 1 as “A”, the “hard” phase where IN decreases as “B”, the “unsolvable” phase
where IN forms a plateau whose value is less than 1 as “C”. The “easy-hard-unsolvable” phases will
be further confirmed by the corresponding image segmentation results in Fig. 6.9, as these appear,
respectively, in panels A, B, and C therein)

“noisy” so as to be of, effectively, equally the same strength for edges between nodes
in the same putative community as for edges linking nodes belonging to different
supposed communities, then no well defined community detection solutions exist.
Similarly, at sufficiently high temperatures, in most cases, all traces of structures
found in the ground state(s) are lost. The most common variant of the community
detection problem has been proven to be NP complete [33].

As in disparate NP problems [68], it was found that in broad classes of the commu-
nity deception problem (and in its image segmentation variant) [52, 61–63, 69, 71,
73, 75], lying between the extremities of the “easy” and “unsolvable” phases there
often exists a “hard phase”; in this phase, solutions exist, but due to the plethora of
competing states, they may be extremely hard to find. Information theory measures
may be used to delineate phase boundaries [52, 61–63]. Using information theory
correlations and the global Shannon entropy, we show, in Figs. 6.7 and 6.8 respec-
tively, the phase diagram associated with the image shown in the upper lefthand side
of Fig. 6.9. In the solvable phase(s), typically, all partitions produced by parameters
that lie in the same basin, lead to qualitatively similar results. Moderate temperature
and/or disorder can lead to order by disorder or annealing effects (similar to those
found in other systems, e.g., [77–81]). However, at sufficiently high temperatures
and/or the introduction of noise about the initial Vij values, the system will be in the
unsolvable phase. By carefully studying the system phase diagram and the character
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Fig. 6.8 The Shannon entropy H as the function of the resolution log(γ ) and the temperature T for
the “bird” image in the upper lefthand panel of Fig. 6.9. The signatures of the three phases “easy”,
“hard” and “unsolvable” are easily detected in this phase diagram and agree with those ascertained
via the normalized mutual information of Fig. 6.7

and magnitude of the information theory overlaps or thermodynamic functions such
as the internal energy and entropy as well as the dynamics, one may assess whether
the perceived community detection solutions may be meaningful. When applied to
image segmentation, the consistency of this procedure may be inspected visually and
intuitively judged sans complicated analysis.

6.7 Casting Complex Materials and Physical Systems as
Networks

With all of the above preliminaries, we now finally turn to the ultimate data mining
objective of this work: that of the important detection of spatial and temporal struc-
ture in complex materials and other systems [50, 51, 82–87]. This problem shares a
common conceptual goal with image segmentation yet is, generally, far more daunt-
ing for human examination. Similar to the analysis presented thus far, the approach
that we wish to discuss casts physical systems as graphs in space or space-time and
then employs the above discussed multi-scale community detection to determine
meaningful partitions.
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Fig. 6.9 The image segmentation results of the “bird” image. The original image is on the upper
left. The other images denoted as “A”, “B”, and “C” correspond to the image segmentation results
with different parameter pairs (log(γ ), T ) marked in *. Both result A and B are able to distinguish
the bird from the “background”. However in panel B, the bird is composed of lots of small clusters.
Result C is unable to detect the bird. Thus, the results shown here demonstrate the corresponding
“easy-hard-unsolvable” phases in the phase diagram in Figs. 6.7 and 6.8. From [52]

In this case, nodes in the graph code basic physical units of interest (e.g., atoms,
electrons, etc.). Multi-particle interactions or experimentally measured correlations
in the physical system are then ascribed to edge weights Vij between the nodes (for
two-particle interactions or experimentally measured pair correlations [50, 51]), or to
three-node triangular weights (for three-particle interactions or correlations) Vijk , and
so on. Given these static or time-dependent weights, the graph is then (similar to the
discussion in earlier sections) partitioned into “communities” of nodes (e.g., clusters
of atoms) that are more tightly linked to or correlated with each other than with nodes
in other clusters [19]. As in the earlier examples explored in this work, information
theory based multi-scale community detection provides both local structural scales
(e.g., primitive lattice cell, nearest neighbor distance, etc.) as well as global scales
(such as correlation lengths) and any other additional intermediate scales if and when
these are present.

The results of this approach for a two-dimensional Lennard-Jones system with
vacancies are shown in Fig. 6.10. When the edge weights between nodes are set equal
to the Lennard-Jones strength associated with the distance between them, the multi-
scale community detection algorithm recognizes both the typical triangular unit cells
as well as larger scale domains (communities) in which the vacancy defects tend,
on average, to lie on their boundaries. Partitions in which defects tend to aggregate
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Fig. 6.10 A diluted two-dimensional Lennard Jones system with edge weight set equal to the
pair interaction energies. The ground state of a two dimensional Lennard Jones model is that of a
triangular lattice in which the lattice spacing is equal to the distance at which the Lennard Jones
potential attains its minimum. In this figure, the triangular lattice is diluted by introducing defects in
the form static vacancies (denoted by white holes). The found community boundaries are intuitively
relegated defects lying on the periphery of these domains [50]

at the domain boundaries is consistent with general expectations for stable domains
and is intuitively appealing.

As the reader may envisage, the community detection method may be extended
to general many-body systems with different types of species (e.g., disparate ion
types in metallic glass formers [50, 51]). One example is depicted in Figs. 6.11,
6.12, and 6.13 corresponding to a ternary system of Al88Y7Fe5based on a molecular
dynamics simulation of 1600 atoms in which edge weights were set by pair potentials
is provided in Figs. 6.12 and 6.13. As seen in the partition of Fig. 6.13, for which
the inter-replica information theory were extremal and which lies in the solvable
phase, below the liquidus temperature (the temperature at which the system is an
equilibrium liquid), large clusters were detected. Along similar lines, clusters may
be identified across many problems. In Fig. 6.16 we show typical clusters found in a
Kob-Andersen binary system. While for human analysis the complexity of potentially
identifying pertinent clusters may grow dramatically with the number of atom types,
for the mutli-resolution analysis there is no such increase (Figs. 6.14 and 6.15).
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Fig. 6.11 From [50, 51]. In
order to apply the algorithm
in Sect. 6.4 to complex
physical systems, we may
generally define two types of
replica sets. Panel (a) depicts
a few nodes as they appear
for a static system—i.e., one
with no time separation
between simulation replicas.
Panel (b) depicts a similar
set of replicas with each
separated by a successive
amount of simulation time
�t . In either case, we then
generate the replica networks
using the potential energy
between the atoms as the
respective edge weights in
the network. Consequently,
we minimize (6.1) using a
range of γ values in the
algorithm described in
Sect. 6.4

(a)

(b)

Time independent replicas

Time dependent replicas

Fig. 6.12 From [50]. A
static snapshot from a
molecular dynamics
simulation of Al88Y7Fe5
system of 1600 atoms that
has been quenched from an
initial temperature of 1500 to
300 K and then allowed to
partially equilibrate. The
atoms are Y, Al, and Fe,
respectively, in order of
increasing diameters. In this
figure, the atoms are color
coded—Fe atoms are red and
Y atoms are marked green



132 Z. Nussinov et al.

Fig. 6.13 The figure shows a static partition of Fig. 6.12. Here, different clusters are identified
by individual colors. It is also possible to incorporate overlapping nodes in neighboring clusters
to account for the possibility of multiple cluster memberships per node, yielding an interlocking
system of clusters [50]

In a similar manner, the edge weights can be set by experimentally measured
pair correlations. In [50], atomic configurations consistent with the experimentally
determined scattering data for quenched Zr80Pt20 [3–6] were generated [50, 51] using
Reverse Monte Carlo methods [7, 8].

At low temperatures, typically the found structures in all of these cases are far
larger than local patterns probed for and detected by current methods [88–92]. Four-
point correlations have long been employed to ascertain spatio-temporal scales and
the quantify “dynamical heterogeneities”, e.g., [91, 93]. A long-standing challenge is
the identification of structures of general character and scale in amorphous systems.
There is, in fact, a proof that as supercooled liquid falls out of equilibrium to become
an amorphous, there must be an accompanying divergent length scale [94]. Methods
of characterizing local structures [9–12] center on a given atom or link; as such, they
are restricted from detecting general structures. Because of the lack of a simple crys-
talline reference, the structure of glasses is notoriously difficult to quantify beyond
the very local scales. In [50–52], graph weights were determined empirically (poten-
tials in a model system, experimentally measured partial pair density correlations in
supercooled fluids, or pixels in a given image)—no theoretical input was invoked as
to what the important scales should be or if an exotic order parameter may be con-
cocted. Similarly, in a time dependent analysis for dynamically evolving systems, by
employing replicas at different time slices as well as regarding the system as a higher
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Fig. 6.14 The result of the multiscale community detection applied to a ternary glass former at
a simulation temperature of T = 300 K [50, 51]. Both panels (a) and (b) on the left depict the
information theory correlations between the replicas (as described in Sect. 6.4). In panel (c), each of
the communities found is assigned a different color. These structures correspond to the Normalized
Mutual Information (NMI) or Variation of Information (VI) extrema. These well-defined structures
contrast sharply with the lack of cohesive features in Fig. 6.15

dimensional “image” in space-time, using the inter-replica information theory cor-
relations, spatio-temporal patterns were found and time dependent structures were
quantified. In this approach, the data speak for themselves. We remark that notwith-
standing the aforementioned difficulties, recently extremely large growth of static
structure was observed by far simpler network analysis in certain binary metallic
glasses that exhibit crisp icosahedral motifs [96]. Similar to the description above,
one may likely find other motifs in other systems. The problem is that guessing and
hopefully finding pertinent patterns can be extremely challenging to do by conven-
tional analysis.

6.8 Summary

In this work, we reviewed key features of a statistical-mechanics-based “commu-
nity detection” approach to find pertinent features and structures (both spatial and
temporal) in complex systems. In particular, we illustrated how this method may
be applied to image segmentation and the analysis of amorphous materials. The
demand for automated data mining approaches may become more acute with ever
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Fig. 6.15 The structure of same ternary glass former of Fig. 6.15 at a simulation temperature of
T = 1500 K. Inter-replica information theory correlations are provided in panels (a) and (b). As is
evident in panel (c), depict the corresponding lack of structure by significantly higher VI or lower
NMI as compared to those in Fig. 6.14

Fig. 6.16 From [50]. A set
optimal clusters found in a
low temperature
Kob-Andersen system [95]
in which two types of atoms
(color coded red and silver)
appear

increasingly available data on numerous complex systems. The study of complex
materials may be extremely challenging to carry out by current conventional means
that rely on guessed patterns, simplified models, or brute force human examination.
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Chapter 7
On the Use of Data Mining
Techniques to Build High-Density,
Additively-Manufactured Parts

Chandrika Kamath

Abstract The determination of process parameters to build additively-manufactured
parts with desired properties remains a challenge, especially as we move from
machine to machine or process new materials. In this chapter, we show how we
can combine simple simulations and experiments to iteratively constrain the design
space of parameters, and quickly and efficiently identify parameters to create parts
with >99 % density. Our approach is based on techniques from statistics and data
mining, including design of physical and computational experiments, feature selec-
tion to identify important variables, and data-driven predictive models that can act
as surrogates for the simulations.

7.1 Introduction

Additive manufacturing (AM), a process for fabricating parts layer by layer directly
from a three-dimensional digital model, presents an opportunity for producing
complex, individually-customized parts not possible with traditional manufactur-
ing processes. While AM can reduce both the time to market and material waste,
a number of technical issues must still be addressed before widespread use of AM
technology becomes a reality. These include gaps in measurement methods, accuracy
of AM parts, process optimization to quickly build parts with desired properties, and
increased confidence in properties of parts fabricated using this process [16].

In this chapter, we focus on metal AM using selective laser melting (SLM), which
is a powder-based AM process where a three-dimensional part is produced layer by
layer by using a high-energy laser beam to fuse metallic powder particles. We are
interested in developing an approach that can be used to identify process parameters
that would result in high-density (>99 %) parts. We start by describing the process of
laser powder-bed fusion and discuss the current approaches to optimizing AM parts
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Fig. 7.1 Schematic
illustrating the SLM process
and some of the process
parameters that influence the
properties of a part

for high density. We then describe our approach that combines simple simulations
and experiments using techniques from data mining and statistics. We illustrate our
approach using 316L stainless steel as an example, and show that it is indeed possible
to efficiently arrive at process parameters that result in high-density AM parts.

7.1.1 Additive Manufacturing Using Laser Powder-Bed
Fusion

In SLM using metal powder-bed fusion, a three-dimensional digital model of the
part is first sliced into two-dimensional layers, each of a specified thickness, usually
in the range of 30–100 µm. Metal powder is then spread on a base plate and the
first layer is created by selectively melting the powder in the locations indicated in
the first slice of the part. The next layer of powder is then spread over the first layer
and the powder melted in the regions corresponding to the second slice of the part.
Thus, the part is built layer by layer, with the power and speed of the laser selected so
that the energy density is sufficient to melt the powder and the layer below it, inte-
grating the new layer into the rest of the part.

The design freedom afforded by AM comes with associated complexity. There are
a large number of parameters, more than 130 by some estimates [19], that influence
the process and thus the final quality of the part. Some of these parameters pertaining
to the laser and the powder bed are shown in Fig. 7.1. The large number of parameters
and the complex interactions among them make it challenging to determine the values
that should be used to create parts with desired properties.

7.2 Optimizing AM Parts for Density: The Current
Approach

There has been much work done in finding optimal parameters that result in
additively-manufactured parts with >99 % density (see for example, the summary in
[10] for the work done in 316L stainless steel). Initially, the approach taken was an
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experimental one, where small cubes were built to understand how various process
parameters, such as powder quality, layer thickness, laser power, laser speed, and
scanning strategies, would influence the density and surface roughness of a part [13,
18]. Other efforts performed a very systematic study, by carefully identifying the
factors that influenced the density, surface roughness, and mechanical properties of
a part, and using micrographs and various measurements to understand the effects of
these factors [21]. Since much of this work was done using systems with relatively
low laser powers of 50–100 W, the design space spanned by laser power and speed
was not very large, making optimization through experimentation a practical option.

A slightly different approach was taken by Kempen et al. in their study of process
optimization for AlSi10Mg. They started with single track experiments [20], where
single tracks are made on a layer of powder using a range of laser power and speed val-
ues. The resulting melt-pool characteristics were then analyzed to identify a process
window for use in optimization. Tracks considered for inclusion in the window were
those that met certain constraints, such as track continuity, a large height of the track
to build up the part, and a connection angle of near 90◦ with the previous layer so that
the part would be of high density and dimensionally accurate. A similar approach
was also taken by Laohaprapanon et al. [14], who used single track experiments to
narrow the space of power and speed values to use in building cubes for density
optimization.

More recently, with higher-powered lasers and new scan strategies expanding
the design space, techniques from statistics, including the design and analysis of
experiments [4, 17], have started playing a role in systematic studies to understand
the influence of the parameters on various properties of the parts. For example,
Delgado et al. [2] used a full factorial experimental design with three factors (layer
thickness, scan speed, and build direction) and two levels per factor in their study on
part quality for a fixed laser power. The outputs of interest were dimensional accuracy,
mechanical properties, and surface roughness. The results of the experiments were
analyzed using an ANOVA (ANalysis Of VAriance) approach to understand the
effects of various factors on the outputs.

To complement the insight gained into SLM using experiments, scientists are
also using computer simulations to understand the relationship between processing
parameters and the thermal behavior of the material as it is melted by the laser
[5, 7, 11, 15]. When these three-dimensional simulations include various aspects
of the physics underlying SLM, they can be quite expensive to run, even on high-
performance computer systems.

Our approach builds on these ideas and uses both simulations and experiments,
combining the insight from each using statistics and data mining techniques. Our
goal is to reduce the time it takes to determine the process parameters required to
build high-density parts.
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7.3 A Data Mining Approach Combining Experiments
and Simulations

Despite the wealth of literature on parameters used to create high-density parts with
commonly-used materials, such as 316L stainless steel, it is still a challenge to
determine the appropriate parameters to use as we move from one machine to another
with different power ranges or beam sizes, change powder sizes, or work with new
materials. Our work was motivated by the fact that our AM machine, a Concept
Laser M2 system, had a relatively narrow beam, with D4σ = 54µm, and maximum
power of 400 W. As a result, we could not use the parameters for optimal density
that were available in the literature as these were for machines with lower powers
of <225 W and larger beam sizes of D4σ ≈ 120µm. Given the large range of laser
power (0–400 W) for our machine, we realized that a design of experiments approach
would require a large number of samples to fully explore the design space, making
such an approach prohibitively expensive. We therefore needed an alternative that
would help us to determine the optimal parameters for our machine efficiently.

Figure 7.2 illustrates the systematic approach we devised that combines com-
puter simulations and experiments. The approach is an iterative one. Starting with a
densely-sampled design space of parameters, we run simple, and relatively inexpen-
sive, simulations and experiments to progressively narrow the space of parameters as
we move towards more expensive and accurate simulations and experiments. In each
cycle, we have a set of samples that span the space of interest, which is the space
of input SLM parameters. We run the experiments and/or simulations at the sample
points, extract the characteristics of interest (such as the melt-pool characteristics or
the density), and analyze the data that relate the sample points to the characteristics
of interest. This analysis could include visualization using scatter plots or parallel-
coordinate plots [8], feature selection to identify important parameters, building

Fig. 7.2 Schematic
illustrating the iterative
process that combines
simulations and experiments
to reduce the time and costs
to determine optimal density
parameters
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surrogate models for prediction, and uncertainty quantification to find regions that
are less sensitive to minor changes in the parameters. As a result of this analysis,
we identify a subset of samples that meet our requirements. We then perform more
complex simulations and experiments at these sample points, and iterate until we
have obtained the desired results.

This iterative approach has several benefits. First, by starting with simple sim-
ulations and experiments, we can quickly and efficiently identify which regions of
the design space are viable and which are unlikely to result in melt pools that are
deep enough so that a part can be built. This is particularly relevant when we are
working with materials that may not have been additively manufactured before, or
with machines with different process parameters, or with powders with different
size distributions. Second, the large number of parameters that have to be set in
laser powder-bed fusion implies that we need to identify sample points in a high-
dimensional space, where the dimension of the space is the number of parameters.
To span a space adequately, the number of samples we need is exponential in the
dimension. This makes it prohibitively expensive to start exploring the entire space
by building complex parts. Starting with simpler experiments and simulations allows
us to lower the cost of exploring the space of parameters more fully, thus increas-
ing the chance of finding all sets of parameters that yield desired properties. Third,
the iterative approach enables us to progressively make larger samples and perform
more complex simulations, while building on what we have learned from simpler
experiments and simulations. Finally, by using data mining techniques to analyze
the data from the simulations and experiments at each step, we can fully exploit the
data we do collect and better guide the next set of experiments and simulations.

We next describe how we used this approach to identify process parameters for
high-density 316L stainless steel. We have also successfully applied this approach
to create parts with >99 % density for other materials and the ideas can be extended
to other properties of a part as well.

7.3.1 Using Simple Simulations to Identify Viable Parameters

To identify the viable range of process parameters, we started with the very simple
Eagar-Tsai (E-T) model [3] to determine under what conditions we would obtain melt
pools that were deep enough to melt a layer of powder and the substrate below. E-T
considers a Gaussian beam on a flat plate to describe conduction-mode laser melting.
The resulting temperature distribution is then used to compute the melt-pool width,
depth, and length as a function of four parameters—laser power, laser speed, beam
size, and laser absorptivity of the powder.

Note that the E-T model does not directly relate the process parameters to the
density of a part. Further, it does not consider powder other than the effect of powder
on absorptivity, so its results provide only an estimate of the melt-pool characteristics.
However, we found that this estimate was sufficient to guide the next steps in our
work. In addition, the simplicity of the model made it computationally inexpensive,
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taking ≈1 min to run on a laptop. This allowed us to use the E-T model to sample
the input parameter space rather densely, ensuring that we considered all possible
viable cases.

7.3.1.1 Sampling the Design Space

We used a full factorial design of computer experiments [4, 17] to explore the four-
parameter input space. This method divides the range of each parameter into several
levels, and then randomly selects a point in each cell. We varied the speed from 50
to 2250 mm/s with 10 levels, the power from 50 to 400 W using 7 levels, the beam
size (D4σ ) from 50 to 68µm using 3 levels, and the laser absorptivity from 0.3 to
0.5 using 2 levels. This resulted in 462 parameter combinations that were input to
our simulation.

The range of values for each variable was selected as follows. Our CL20 machine
had a peak power of 400 W, which determined the upper bound on the power. The
lower limit on the speed was set to ensure sufficient melting at the low power values
such that the melt-pool depth would be at least 30µm (the layer thickness selected for
our experiments). The upper limit on the speed was estimated at a value that would
likely result in a relatively shallow melt pool at the high power value. The lower and
upper limits on the beam size were obtained from measurements of the beam size
on our machine at focus offsets of 0 and 1 mm. By varying the beam size and the
absorptivity, we were able to account for possible variations in these parameters over
time or build conditions as we built the parts.

7.3.1.2 Selecting Important Input Parameters

Having identified the sample points in the four-dimensional space of laser power,
laser speed, beam size, and laser absorptivity, we then ran the E-T simulations at
these samples points and obtained the melt-pool width, depth, and length. This output
from the simulations was analyzed in several different ways. In earlier work [10], we
showed how we can use parallel-coordinate plots [8] and feature selection methods
from data mining [9] to identify input variables that are more relevant to the melt-
pool characteristics. We use the term “feature” to refer to variables, such as the input
parameters, that describe a simulation. The feature selection methods we used were
designed for problems with discrete data, so we first discretized the continuous input
and output variables before applying the method. Since the results could potentially
depend on the discretization used, in this chapter, we consider two methods that work
directly with the continuous variables.

The Correlation-based Feature Selection (CFS) method [6] is a simple approach
that calculates a figure of merit for a feature subset of k features as

Merit = krcf√
k + k(k − 1)r f f

(7.1)
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where rc f is the average feature-output correlation and r f f is the average feature-
feature correlation. We use the Pearson correlation coefficient between two vectors,
X and Y , defined as

Cov(X, Y )

σXσY
(7.2)

where Cov(X, Y ) is the covariance between the two vectors and σX is the standard
deviation of X . A higher value of Merit results when the subset of features is such
that they have a high correlation (rc f ) with the output and a low correlation (r f f )
among themselves.

In the second feature selection method, the features are ranked using the mean
squared error (MSE) as a measure of the quality of a feature [1]. This metric is
used in regression trees (see Sect. 7.3.1.3) to determine which feature to use to split
the samples at a node of the tree. Given a numeric feature x , the feature values are
first sorted (x1 < x2 < · · · < xn). Then, each intermediate value, (xi + xi+1)/2, is
proposed as a splitting point, and the samples split into two depending on whether
the feature value of a sample is less than the splitting point or not. The MSE for a
split A is defined as

MSE(A) = pL · s(tL) + pR · s(tR) (7.3)

where tL and tR are the subset of samples that go to the left and right, respectively,
by the split based on A, pL and pR are the proportion of samples that go to the left
and right, and s(t) is the standard deviation of the N (t) output values, ci , of samples
in the subset t :

s(t) =
√√√√ 1

N (t)

N (t)∑

i=1

(ci − c(t)
2
) (7.4)

For each feature, the minimum MSE across the values of the feature is obtained and
the features are rank ordered by increasing values of their minimum. This method
considers a feature to be important if it can split the data set into two, such that the
standard deviation of the samples on either side of the split is minimized, that is, the
output values are relatively similar on each side. Note that unlike CFS that considers
subsets of features, this method considers each feature individually.

Table 7.1 presents the ordering of subsets of input features by importance for the
melt-pool width, length, and depth obtained using the CFS method. A noise feature
was added as another input; this is consistently ranked as the least important variable,
as might be expected. The table indicates that for the melt-pool depth and width, the
single most important input is the speed, while the top two most important inputs are
the speed and power. In contrast, for the length of the melt pool, the most important
single input is the power, while the top two most important inputs are power and
absorptivity.
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Table 7.1 Rank order of subsets of the input parameters to the Eagar-Tsai model using the CFS
filter

Speed Power Beam size Absorptivity Noise

Melt-pool width 5 4 2 3 1

Melt-pool length 3 5 2 4 1

Melt-pool depth 5 4 2 3 1

A higher rank indicates a more relevant input; to select the best subset of k features, select the k
features with the highest ranks

Table 7.2 Rank order of subsets of the input parameters to the Eagar-Tsai model using the MSE
filter

Speed Power Beam size Absorptivity Noise

Melt-pool width 5 4 2 3 1

Melt-pool length 3 5 2 4 1

Melt-pool depth 5 4 1 3 2

A higher rank indicates a more relevant input

Table 7.2 presents the results for the MSE filter. These are very similar to the CFS
filter, with the exception that the beam size is ranked lower than the noise variable
for the depth of the melt pool. For all three melt-pool characteristics, the three lowest
ranked variables have the MSE value roughly the same, so the corresponding three
variables have roughly the same order of importance.

Given these results, since the depth and width are the most important melt-pool
characteristics, we decided to investigate the effects of the two most important
inputs—laser power and speed—on these characteristics. While our simple simu-
lations relate just four inputs to the melt-pool characteristics, we expect that as we
move to more complex simulations, feature selection and other dimension reduction
techniques will become more useful in helping us to focus on the important variables,
potentially limiting the number of experiments or simulations required to create parts
with desired properties.

7.3.1.3 Data-Driven Predictive Modeling

The simulation inputs and outputs can also be used to build a data-driven predictive
model that can be used to predict the output values for a given set of inputs. A simple
predictive model is a regression tree [1], which is similar to a decision tree, but with
a continuous instead of a discrete output.

A regression tree is a structure that is either a leaf, indicating a continuous value,
or a decision node that specifies some test to be carried out on a feature, with a branch
and sub-tree for each possible outcome of the test. If the feature is continuous, there
are two branches, depending on whether the condition being tested is satisfied or
not. The decision at each node of the tree is made to reveal the structure in the data.
Regression trees tend to be relatively simple to implement, yield results that can be
interpreted, and have built-in dimension reduction.
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Regression algorithms typically have two phases. In the training phase, the algo-
rithm is “trained” by presenting it with a set of examples with known output values.
In the test phase, the model created in the training phase is tested to determine how
accurately it performs in predicting the output for known examples. If the results
meet expected accuracy, the model can be put into operation to predict the output for
a sample point, given its inputs.

The test at each node of a regression tree is determined by examining each feature
and finding the split that optimizes an impurity measure. We use the mean-squared
error, MSE, as defined in Sect. 7.3.1.2, as the impurity measure. The split at each
node of the tree is chosen as the one that minimizes MSE across all features for the
samples at that node.

To avoid splitting the tree too finely, we stop the splitting if the number of samples
at a node is less than 10 or the standard deviation of the values of the output variable
at a node has dropped below 10 % of the standard deviation of the output variable of
the original data set.

The regression tree acts as a surrogate for the data from the E-T simulations and
can be used to predict the width, depth and length of the melt pool for a given set
of inputs. The inputs for a sample point are used to traverse the tree, following the
decision at each node, until a leaf node is reached; the predicted value assigned to
the sample is the mean of the output values of the training data that end up at that
leaf node.

Figure 7.3 shows the melt-pool depth for the E-T simulations predicted by the
regression tree vs. the actual depth from the simulations. The predicted value for
each sample point was obtained by creating a regression tree with all other sample
points and using it to predict the melt-pool depth for the given sample point. The

Fig. 7.3 Plot of predicted
versus actual melt-pool depth
(in micron). The predicted
value for each sample point
in the E-T simulations was
obtained using a regression
tree built with the rest of the
sample points. The actual
depth is obtained from the
simulations. The blue line is
the y = x curve
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percentage deviation for the entire data set is 11.2 %. This is obtained by taking the
average over all sample points of the absolute value of the ratio of the residual to the
actual value. The residual is the difference between the actual and predicted values.

The accuracy of the regression tree depends on the number and location of the
sample points, as well as the complexity of the function being modeled. If there
are too few sample points, or they are in the wrong location, then the prediction
can be poor, especially if the function being predicted is quite complex. For our set
of simulations, the accuracy obtained is reasonable, though it could be improved
further by adding new sample points in appropriate locations or by using ensembles
of regression trees.

In comparison with the E-T simulations, where each simulation takes ≈1 min on
a laptop, it takes a few micro-seconds to build the regression tree surrogate from the
462 simulations and practically no time to generate the melt-pool depth for a set of
input variables using the surrogate.

7.3.2 Using Simple Experiments to Evaluate
Simulation Results

We next considered some simple single-track experiments [20] to evaluate the find-
ings from our simulations. In these experiments, a single layer of powder is spread on
a plate and a single track created at a specific laser power and speed. The powder is
then removed, and the plate cut so that the cross-section of the track can be obtained
and the melt-pool characteristics measured.

Based on prior work, we had decided to use a powder layer thickness of 30µm as
this had resulted in the highest density in experiments with 316L powder [21]. The
layer thickness is the amount by which the build platform is lowered in each layer of
the build. Since the powder is porous, its height decreases when it melts. Therefore,
the next layer of powder has a depth greater than the set value of layer thickness. Due
to the shrinkage on melting, the initial layers of powder are progressively deeper,
until the thickness of the powder reaches a steady state that is determined by the
amount of shrinkage of the powder on melting.

When we translate the results of the E-T model to single-track experiments, we
need to account for the fact that the simulations are just an approximation and there
is no powder considered in the model. So the melt-pool depth from the E-T model
should be sufficiently large compared with the thickness of the powder in the exper-
iment to ensure that the substrate melts as well. We therefore focused on the simula-
tions that gave a melt-pool depth of two to three-times the set layer thickness. Note
that this factor is just an approximation that helps us to constrain the range of para-
meters. In addition to avoiding process parameters that resulted in relatively shallow
melt pools, we also wanted to avoid those that gave very deep melt pools. Not only
would this have been wasteful, but a high energy density would have resulted in the
process going from conduction-mode melting to keyhole-mode melting, resulting in
voids that would have introduced porosity into the part [12].
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Fig. 7.4 The 40 mm ×
40 mm tilted build plate with
the 14 tracks, each generated
using a different value of
laser power and scan speed,
as listed in Table 7.3, where
track 1 corresponds to the
track at the top of the plate.
The layer thickness is near
zero at the left edge of the
plate, increasing linearly to
200µm at the right edge.
The plate is cut vertically to
analyze the melt-pool
cross-section at a specific
layer thickness

Using the results from the E-T simulations, we identified fourteen power and speed
combinations that we used to create tracks on a tilted plate as shown in Fig. 7.4. This
40 mm × 40 mm build plate has a tilt so that the layer thickness is 0 at the left and
200µm at the right, enabling us to evaluate the effect of the process parameters at
different layer thicknesses.

Table 7.3 presents the melt-pool characteristics at a layer thickness of 30µm. The
results for the melt-pool depth are very consistent, with higher laser powers and

Table 7.3 The melt-pool width, height, and depth for the 14 tracks, along with the laser power and
scan speed values

Track number Power (W) Speed (mm/s) Width (µm) Height (µm) Depth (µm)

1 400 1800 112 32 105

2 400 1500 103 79 119

3 400 1200 83 28 182

4 300 1800 94 57 65

5 300 1500 83 35 94

6 300 1200 111 76 114

7 300 800 118 54 175

8 200 1500 84 26 57

9 200 1200 104 45 68

10 200 800 123 24 116

11 200 500 121 61 195

12 150 1200 79 21 30

13 150 800 109 44 67

14 150 500 115 40 120

Track 1 corresponds to the track at the top of the plate in Fig. 7.4. Powder layer thickness is 30µm
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lower speeds resulting in deeper melt pools. In addition, we observe that as the laser
speed reduces, the tracks become more complete, melting more of the powder at the
deeper layer thicknesses. This can be clearly seen in the three tracks at the bottom
of the plate in Fig. 7.4 where, as the speed reduces from 1200 to 500 mm/s at 150 W,
more of the powder melts, resulting in a complete track. These results also indicate
that we have several tracks where the depth is between two and three times the layer
thickness of 30µm, making these likely process parameters for further investigation.

7.3.3 Determining Density by Building Small Pillars

Thus far we have shown how we can use simple simulations to constrain the parameter
space over which we perform simple experiments. These simple experiments, in turn,
enable us to constrain the space over which we perform more complex experiments,
which, in our case, are building small pillars to evaluate the density.

There are many factors that control the density of an additively-manufactured
part. Factors such as the laser power, speed, beam size, and powder layer thickness,
control the density locally. So, we select the values of these parameters to ensure that
the powder melts and sticks to the substrate, without leaving any un-melted powder
particles that may lead to porosity. There are other factors that could also introduce
porosity, such as the scan-line or hatch spacing, which controls the distance between
adjacent scan lines, and the scanning strategy. For example, if adjacent scans do
not overlap sufficiently, powder will accumulate in the space in-between the tracks,
potentially causing porosity in the part if the laser parameters are not sufficient to
melt this powder in subsequent scans. The use of island scanning could also result
in porosity. Here, instead of creating each layer with a series of continuous scans,
the region is divided into small “islands” that are scanned randomly [21, 22]. To
ensure that the islands are connected, that is, there are no gaps created in-between
adjacent islands, each island is scanned such that the scan vectors slightly overlap the
surrounding islands. If the amount of overlap is set too small, this could introduce
porosity in the part.

To identify process parameters that would result in high-density parts, we built
small pillars, 10 mm × 10 mm × 8 mm high using a variety of power and speed com-
binations. We used island scanning, with 5 mm × 5 mm islands. All other parameters
were set to the default, as summarized in our earlier work [10]. The power and speed
values for our initial set of twenty-four pillars were chosen based on the results from
the single track experiments. We then evaluated the density of these pillars using the
Archimedes method. Based on the results, we built another set of twenty-four pillars
at the same power values as the first set, but with the speed values chosen to complete
the density curves.
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Fig. 7.5 Relative density as a function of laser power and scan speed. Plot (b) excludes the values
for power = 150 W to illustrate the variation at high density. A quadratic function is fitted to the
points for each power value. a Density for 48 316L pillars using CL powder; power 150–400 W.
b Density for 40 316L pillars using CL powder; power 200–400 W
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7.4 Experimental Results

Figure 7.5 shows the relative density of the forty-eight pillars for a range of power and
speed values. We make several observations. First, we were able to use our approach
to create pillars with >99 % relative density for power values ranging from 150 to
400 W. Second, as expected, we found that for a given power value, increasing the
speed leads to insufficient melting and lower density. The density also reduces at
low speed due to voids resulting from keyhole mode laser melting; this reduction is
however not as large as the reduction due to insufficient melting. Finally, we found
that at higher powers, the density is high over a wider range of scan speeds, unlike
at lower powers. This indicates that higher powers could provide greater flexibility
in choosing process parameters that optimize various properties of a manufactured
part. However, it remains to be seen if operating at higher powers will have other
negative effects on the microstructure or mechanical properties of a part.

7.5 Summary

In this chapter, we showed how we can use techniques from statistics and data
mining to reduce the time and cost of determining process parameters that lead to
high-density, additively-manufactured parts. Specifically, we used design of compu-
tational experiments to understand the design space of input parameters using simple
simulations, feature selection to identify important inputs, and data-driven surrogates
for predictive modeling. We then built small pillars at various combinations of laser
power and speed. Our experiences with 316L stainless steel and other materials indi-
cates that our approach is a viable and cost-effective alternative to finding optimal
parameters through extensive experimentation.
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Chapter 8
Optimal Dopant Selection for Water Splitting
with Cerium Oxides: Mining and Screening
First Principles Data

V. Botu, A.B. Mhadeshwar, S.L. Suib and R. Ramprasad

Abstract We propose a powerful screening procedure, based on first principles
computations anddata analysis, to systematically identify suitable dopants in anoxide
for the thermochemical water splitting process. The screening criteria are inspired by
Sabatier’s principle, and are based on requirements placed on the thermodynamics of
the elementary steps. Ceria was chosen as the parent oxide. Among the 33 dopants
across the periodic table considered, Sc, Cr, Y, Zr, Pd and La are identified to be
the most promising ones. Experimental evidence exists for the enhanced activity of
ceria for water splitting when doped with Sc, Cr and Zr. The surface oxygen vacancy
formation energy is revealed as the primary descriptor correlating with enhanced
water splitting performance, while the dopant oxidation state in turn primarily gov-
erns the surface oxygen vacancy formation energy. The proposed screening strategy
can be readily extended for dopant selection in other oxides for different chemical
conversion processes (e.g., CO2 splitting, chemical looping, etc.).
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8.1 Introduction

Utilizing dopants to optimize, enhance, or fundamentally change the behavior of a
parent material has been exploited inmany situations ranging frommaterial strength-
ening to electronics to electrochemistry. The search and identification of suitable
dopant candidates has been laborious though, and dominated either by lengthy trial-
and-error strategies (guided by intuition) or plain serendipity. We are entering an
era where such Edisonian approaches are gradually being augmented (and some-
times, replaced) by rational strategies based on advanced computational screening
[1]. Often these strategies rely on first principles methods, that provide a reasonably
accurate description of the underlying chemistry [2–4]. More recently, it has been
shown that supplementing first principles investigations with data-driven approaches
can help identify meaningful correlations within the data [5–13]. In the present con-
tribution, we offer such a prescription for the selection of suitable dopants within
cerium oxides in order to enhance the thermochemical splitting of water.

Complete gas phase thermolysis ofwater is highly endothermic (ΔH = +2.53eV)
requiring temperatures in excess of 4000K to be thermodynamically favorable, mak-
ing such reactions unviable for H2 synthesis [14, 15]. On the other hand, partial ther-
molysis via a multistep process in the presence ofMO catalysts provides an attractive
practical alternative [15, 16]. The latter approach is performed at two distinct tem-
peratures (both well below 4000K): a high-temperature (≈2200K) reduction step
that involves creation of O vacancies in the MO (and the consequent evolution of
O2 gas), and lower-temperature (≈900K) oxidation steps in the presence of steam,
which lead to the filling up of O vacancy centers (resulting in the evolution of H2

gas). Owing to this multistep procedure, an additional step to separate the H2 and O2

products is eliminated entirely. Equations (8.1)–(8.3) below represent a reordered
version (for ease of subsequent discussion) of the multiple steps involved in this
process.

MO-Vo (s) + H2O(g) −→ MO-(H)(H)(s) (8.1)

MO-(H)(H)(s) −→ MO(s) + H2(g) (8.2)

MO(s) −→ MO-Vo (s) + (1/2)O2(g) (8.3)

The (s) and (g) subscripts represent solid and gas phases, respectively. Equations
(8.1) and (8.2) are the low-temperature steps, with MO-Vo and MO-(H)(H) repre-
senting, respectively, the oxide containing an O vacancy and the oxide in which the
O vacancy is filled up by a H2O molecule (with ‘(H)(H)’ indicating that the H atoms
of H2O are adsorbed on the oxide surface). Equation (8.3) is the high-temperature
activation step that leads to the creation of MO-Vo.

Unfortunately, several MOs require temperatures in excess of 2700K (leading to
poor H2 production efficiencies), leaving only a subset of oxides based on Zn, Fe and
Ce to be the most promising [17, 18]. Oxides of Zn and Fe are prone to sintering,
phase transformation or volatility due to the proximity of the high temperature step
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Fig. 8.1 Reaction pathway and energetics (red solid line) for the dissociation ofH2O on an undoped
ceria surface. CeO2-Vo is an oxide with a vacancy, CeO2-(H)(H) is an oxide with vacancy filled by
a H2O molecule and CeO2 is a stoichiometric surface. The green dotted line shows the minimum
energy pathway for dissociation. Ce, O and H are represented by beige, red and white colors
respectively

to their melting points [19]. CeO2, on the other hand, displays high stability and high
melting temperature (≈2600K), and is thus overwhelmingly favored [17].

Still, the efficiency of H2 production with CeO2 is quite low (<1%) [18]. This low
efficiency is rooted in the high temperatures (>1900K) required for the reduction
step (8.3), related directly to the large O vacancy formation energy of CeO2, along
with other operational difficulties [18, 20]. Figure8.1 shows the energies E1, E2

and E3 of (8.1), (8.2) and (8.3), respectively, computed here using density functional
theory (DFT) (details below), and helps identify the causes of the low efficiency. The
dotted line indicates the uphill nature of the water splitting process. The ideal system
should display E1 and E2 close to zero (for facile H2 evolution at low temperatures),
and small E3 values (to alleviate the burden on the reduction step). In the case of
CeO2, E1 is too negative and E3 is too positive.

A pathway to circumvent these hurdles is to control the energetics of (8.1)–(8.3)
individually by the introduction of dopants (although, of course, the overall energet-
ics of H2O splitting cannot be altered). For instance, this strategy may be used to
destabilize O in CeO2 (and thus reduce the O vacancy formation energy) [17, 21–
27]. Doping CeO2 with a plethora of elements has been explored in the recent past
[28–40], and many dopants (e.g., Zr, Cr, Sc) have been shown to help significantly
increase the efficiency of H2 production by reducing the temperatures required to
accomplish (8.3) [32, 34, 35]. Nevertheless, a clear rationale for why a given dopant
is desirable, and a framework for the systematic (non-Edisonian) selection of dopants
is currently unavailable.Thiswork attempts to fill that gap. First, we propose a frame-
work to systematically screen for dopants, based on guidelines inspired by Sabatier’s
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principle, then we identify the best candidates using first principles methods, and
finally we use data analysis methods, specifically feature selection, to identify the
primary factors that make these dopants attractive.

8.2 Screening Framework

In the present first principles/data-driven based work, we consider a host of dopants
in CeO2, including 33 elements spanning the 4th, 5th and 6th period of the Periodic
Table (specifically the alkali , alkaline earth and d series elements). Assuming
that the energetics of (8.1)–(8.3) determine whether a dopant is favorable or not, we
define the following screening criteria to be used in a successive manner:

• Criterion 1: 0 ≤ ED
3 ≤ E3

• Criterion 2: 0 ≤ ED
1 ≤ δ

• Criterion 3: 0 ≤ ED
1 + ED

2 ≤ δ

The superscripts D merely indicate that these are the energetics of doped ceria.
The rationale underlying this specific choice and sequence of screening criteria

stems from insights derived from Sabatier’s principle, and may be understood as
follows (cf. Fig. 8.1). Criterion 1 merely states that the O vacancy formation energy
(which is what ED

3 represents) should not be too small to prevent further water disso-
ciation nor too large (certainly not larger than that of undoped ceria (E3)) to mandate
higher activation temperatures. This criterion is listed first because ED

3 appears to
most strongly control the temperature requirement of the costly high-temperature
step, and also because ED

3 is the easiest quantity to compute (as it does not involve
the H2O species at all). Criterion 2 states that ED

1 should also be bracketed, but by
a smaller range. Noting that overall dissociation of water for undoped ceria is too
negative (see Fig. 8.1), thus potentially adding an energy penalty to subsequent steps,
we generously allow δ to be 1.5eV, which is a reasonable choice considering energy
uncertainties within DFT and the neglection of entropy. Criterion 3 is specific to
thermochemical water splitting and bounds the overall oxidation process within δ,
ensuring that ED

1 or ED
2 occur at a lower temperature compared to ED

3 . In the case
where this no longer holds, the process fails to fall within the realm of thermochem-
ical water splitting.

8.3 First Principles Studies

8.3.1 Methods and Models

To measure the thermodynamic quantity, ED
i , where i is 8.1, 8.2 or 8.3, DFT cal-

culations were performed using the VASP code with the semi-local Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional and a cutoff energy of 400 eV to
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accurately treat the valence O 2s, 2p and Ce 5s, 5p, 4f, 5d, 6s states [41–43]. The
electron-core interactions were captured by projector-augmented (PAW) potentials,
and all calculations were spin polarized to ensure the true electronic state of O and
reducedCewas captured [44]. The computed lattice parameter of bulk CeO2 (5.47Å)
is in good agreement with the corresponding experimental value (5.41 Å) [38].
A 96-atom bulk 2×2×2 supercell model and a 60-atom (2×2) surface model
(5 O-Ce-O trilayers) cleaved along the (111) plane were used in all calculations.
The bottom 3 trilayers of the slab were fixed to recover the bulk nature of the mate-
rial, and a vacuum of 15 Å along the c axis ensured minimal spurious interactions
between periodic images. A Γ -centered k-point mesh of 3×3×3 and 3×3×1 were
used for the bulk and surface calculations, respectively. The Hubbard (U) correc-
tion was not applied as no universal U value captures the true electronic state of all
elements. Also, given that we consider a dilute vacancy limit, the effect of electron
localization is insignificant as shown previously [45, 46].

8.3.2 Enforcing the 3-Step Criteria

Dopantswere introduced by replacing a singleCe atom at the center of the bulkmodel
and at the 1st trilayer of the surface model. Our analysis indicated that the majority
of the dopants favored the surface site to the bulk by ≈0.3eV. Upon exploring the
local coordination environment, a surface dopant was found to be 6-fold coordinated
whereas a bulk dopant was 8-fold coordinated. Given the preference of a surface site,
all dopants are assumed to occupy the surface unless specified otherwise.

The primary effect of introducing dopants is to induce a local perturbation to
disrupt bonding between the metallic and O atoms, thereby altering its ability to
form surface O vacancies, as measured by ED

3 (cf. Fig. 8.1), computed here as

ED
3 = ED

CeO2-Vo
− ED

CeO2
+ 1

2
μO2 (8.4)

where ED
CeO2-Vo

and ED
CeO2

are, respectively, the DFT energies of a doped surface with
and without an O vacancy, and μO2 is the chemical potential of O, taken here to be
the DFT energy of an isolated O2 molecule. In all cases, the O vacancy is created
adjacent to the dopant. Figure8.2 shows ED

3 for various choices of the dopants, with
the dot-dashed horizontal line indicating the corresponding value for the undoped
case. Dopants adopting a low valence state compared to Ce (e.g., alkali, alkaline
earth and late transition series metals) display low O vacancy formation energy,
consistent with the observed high O2 yield by ceria doped with Mn, Fe, Ni and Cu
[47]. Conversely, dopants adopting a similar or higher valence state than Ce lead to
high ED

3 values (e.g., Mo, Tc, and Ta). These trends are not entirely surprising, and
have been noted before in CeO2 as well as BaTiO3 [48–50].
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Fig. 8.2 Oxygen vacancy formation energy (ED
3 ) of doped ceria with elements from the (a) 4th,

(b) 5th and (c) 6th period of the Periodic Table. Dot-dashed maroon line indicates ED
3 for undoped

ceria. Light green region indicates dopants that survived Criterion 1, while � identifies dopants that
survived the 3 screening criteria

ED
1 helps assess the impact of dopants on the dissociative adsorption of water on

the doped surface, and is computed as

ED
1 = ED

CeO2-(H)(H) − ED
CeO2-Vo

− μH2O (8.5)

where ED
CeO2-(H)(H) is the DFT energy of a doped surface upon the dissociative adsorp-

tion of water at the vacancy site. Upon dissociation, OHfills the vacancy site, while H
has two possible adsorption sites; atop an adjacent O or a dopant atom. Interestingly,
dopants exhibiting spontaneous vacancy formation (ED

3 < 0eV) fail to accommodate
a H atop a dopant, while those dopants that do facilitate H atop a dopant have an
alternative lower energy pathway for dissociation. μH2O is the chemical potential of
water, taken here to be the DFT energy of an isolated H2O molecule.

With ED
1 and ED

3 at hand (and ED
2 given byΔH−ED

1 −ED
3 ), a plot that is equivalent

to Fig. 8.1 but for the case of doped ceria surfaces is shown in Fig. 8.3.Wenowenforce
Criterion 1, namely, 0 ≤ ED

3 ≤ E3, with E3 = 3.3eV (this value is consistent with
past work [45]). Of the 33 dopants originally considered, 19 dopants (Sc, Ti, V, Cr,
Mn, Co, Y, Zr, Nb, Ru, Rh, Pd, La, Hf, Re, Os, Ir, Pt and Au) satisfy this criterion
(given by the dopants within the shaded region in Fig. 8.2). Criterion 1 picks out
those dopants that alter the surface reducibility in just the appropriate manner.

Next, we enforce Criterion 2, namely, 0 ≤ ED
1 ≤ δ, with δ = 1.5eV, on the 19

dopants that pass Criterion 1, resulting in the selection of Sc, V, Cr, Co, Y, Zr, Pd,
La, Hf and Au. Lastly, enforcing Criterion 3 on the 10 dopants results in the down
selection of 4 promising candidates (Sc, Cr, Zr and La). Inspection of Fig. 8.3 shows
that Pd and Y, although they do not pass Criterion 3, can be viewed as ‘near misses’.
These are hence included in ourfinal list of favored candidates. Figure8.4 summarizes
the list of dopants that passed each stage of the screening process. The 6 dopants
identified, namely, Sc, Cr, Zr, La, Pd and Y, lead to desired energetic profiles, with
ED
1 and ED

2 low enough to allow for reasonable H2O dissociation yields at moderate
temperatures, and with ED

3 significantly smaller than undoped ceria allowing for low
reduction temperatures (c.f., Fig. 8.3). Dopants such as Mn, Fe, Ni, Cu, Sr, Ag, and
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Fig. 8.3 Reaction pathway and energetics for the multistep thermochemical splitting of H2O on a
doped ceria surface. CeOD

2 -Vo is a doped surface with vacancy, CeOD
2 -(H)(H) is a doped surface

with vacancy filled by aH2Omolecule andCeOD
2 is a doped stoichiometric surface. Color solid lines

identify the 4 promising dopants and undoped CeO2. Grey dashed lines identifies the non feasible
dopants, while partly colored and greyed dashed lines identifies dopants that pass Criterion 1

Fig. 8.4 Ahierarchical chart showing the list of dopants before and after each stage of the screening
process. Sc, Cr, Zr and La were identified as the promising dopant elements, whilst Pd and Y can
be viewed as the near miss cases

Ca, which display small or negative ED
3 , do not pass our tests. Although low ED

3
values imply facile surface reduction (this is in fact what is observed experimentally
for Mn and Fe) [47], such a tendency would not be appropriate for the multistep ther-
mochemical water splitting process targeted here (lower yields were observed for Ni,
Cu and Fe doped CeO2 compared to undoped CeO2) [28]. Criterion 1, as mentioned
above, is imposed precisely to eliminate such candidates. However, dopants that lead
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to small or negative ED
3 may be appropriate for photocatalytic water splitting which

require surface reduction to occur low temperatures (≈300K) [51].
Of the 6 promising dopants identified, experimental evidence exists for the

enhanced performance of ceria when doped with Sc, Cr and Zr for the thermo-
chemical water splitting process. Cr doped CeO2 is known to lower the reduction
and oxidation temperature to 750 and 350K, respectively [35]. Zr and Sc dopants
increase the H2 yield 4-fold and almost 2-fold, respectively, with respect to the
undoped situation [28, 29, 38]. Lastly, although not conclusive, La doping appears
to improve H2 yield [39, 52]. The observed performances are strong functions of
the synthesis, processing and measurement details. The present work ignores such
complexities, and probes only the dominant and primary chemical factors that may
control performance.

Irrespective of these difficulties, such a guided screening strategy has led us to
some promising candidates, shown as stars in Fig. 8.2. Clearly, the best candidates
display an O vacancy formation energy in the 1–2.5eV range, i.e., neither too high
nor too low, thereby respecting Sabatier’s principle. It thus appears that theO vacancy
formation energy may be used as a ‘descriptor’ of the activity of doped ceria. This
conclusion is consistent with an earlier similar proposal which was based on phase
boundaries in surface phase diagrams of ceria exposed to an oxygen reservoir [45].

Thus far, by relying on first principles methods we are able to recognize whether
a dopant increases or decreases the O vacancy formation energy, with respect to the
undoped material, followed by its corresponding impact on the dissociation of water.
However, an understanding of the complex dependence of the chemical attributes
of a dopant and the O vacancy formation energy is absent. In the next section, with
the help of data analysis methods we attempt to understand the results of the first
principles computations for the spectrum of dopants considered.

8.4 Data Analysis

The mining and extraction of information forms the core of the field of data analysis,
which lies under a broader umbrella of methods known as machine learning (ML)
[53]. Within data analysis a subset of methods, known as feature selection, allows us
to unearth correlations between variables [10, 13, 53–56]. In the context of this work,
the variables are the chemical factors characterizing a dopant and the corresponding
O vacancy formation energy of doped ceria. Given the strong correlation between
the O vacancy formation energy and the activity, as discussed above, by identifying
the key dopant factors that contribute to the O vacancy formation energy, a more
educated guess on its impact on the corresponding thermodynamic activity can be
made.

In order to discover such patterns, firstly, each dopant element needs to be repre-
sented numerically by a vector of numbers (also referred to as features or fingerprint
in the ML community) that uniquely identifies the dopant element. Our choice of
features stems from fundamental chemical factors, that are often used to describe
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elements in the periodic table. The 7 factors considered in this work are; atomic
radius (AR), ionic radius (IR), covalent radius (CR), ionization energy (IE), elec-
tronegativity (EN), electron affinity (EA) and oxidation state (OS). To eliminate any
bias induced by the spread of the feature values, the dataset was normalized to a
mean of 0 and variance of 1. On these set of chemical factors we use two feature
selection methods: (i) principal component analysis and (ii) random forests, to nar-
row down the dominant factors that govern the descriptor (O vacancy formation
energy). In the sections to follow we provide a brief overview of these methods and
discuss the insights gained.We refer the readers to [53, 57–61] for a more exhaustive
description. The data analysis routines used were implemented within the MATLAB
statistical toolkit and Scikit-learn python module [62, 63].

8.4.1 Principal Component Analysis

Principal component analysis (PCA) is a common dimensionality reduction tech-
nique, often used to identify the dominant subset of features from a larger pool. By
transforming the original features into uncorrelated and orthogonal pseudo variables,
that are a linear combination of the original features (as done in this work, although
non-linear combinations have been recently developed), it allows us to pin point the
dominant contributions [10, 55–58]. The new transformed variables are referred to as
principal components (PCs), which are solutions to the eigen-transformation of the
covariance matrix. As with any eigen-transformation problem, the eigenvalues and
eigenvectors play a critical role. The eigenvalue of a PC indicates the % of variance
captured within the original dataset, whilst the eigenvector provides the coefficients
that dictate the linear transformation. We shall make use of this information to down
select the dominant chemical factors of a dopant.

First, we plot the transformation coefficient values of the 7 features for the first
and second PCs in Fig. 8.5a. Such a plot is referred to as the loadings plot, in which
correlated features cluster together. Only the first and second PCs are used as it
captures ≈80% of the variance within the original dataset (c.f., inset of Fig. 8.5a).
Clearly, the dopant’s OS is strongly correlated with the O vacancy formation energy.
The CR, AR, IE and EN are close to orthogonal to the O vacancy formation energy,
suggesting a negligible contribution to the descriptor. On the other hand, the IR and
EA are not truly orthogonal, thus their contribution towards the descriptor cannot
be ignored. Another interesting phenomena is the congregation of subsets of the 7
features. This isn’t entirely surprising, as one would recognize that the AR, CR are
similar quantities, and their grouping in the loadings plot further validates this notion.
Similarly, the IE and EN group together and appear negatively correlated to the AR
and CR, given their ≈180◦ separation. By looking at the relative position of all the
features in Fig. 8.5a, we can conclude that of the original 7 features considered only
3 are important; OS, IR and EA, in governing the O vacancy formation energy.

Next, we use the linear transformation coefficients of the PCs to transform the
original dopant dataset (also referred to as the scores plot) and plot the first and
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Fig. 8.5 a PCA loadings plot showing the correlated dopant features. The features are; atomic
radius (AR), ionic radius (IR), covalent radius (CR), ionization energy (IE), electronegativity (EN),
electron affinity (EA) and oxidation state (OS). Evac is the O vacancy formation energy. The inset
shows the % contribution of each PC to the variance in the dataset. The oxidation state (OS) is the
dominant feature governing the O vacancy formation energy. b PCA scores plot for the first and
second principal components. The dopant elements group together based on their features and the
O vacancy formation energy. � represents the final 6 dopants after the 3 step screening processes.
The 6 dopants occupy a sub-space of the scores plot as highlighted by the grey region

second PCs in Fig. 8.5b. Each dopant element in Fig. 8.5b has further been classified
according to its relative location in the periodic table (as indicated by the different
marker type) and the corresponding O vacancy formation energy (marker fill color).
Firstly, dopants of similar type, groups 1–2, 3–7 and 8–12 can be seen aggregating
together. In particular, dopants that adopt a low valence state lie predominantly in the
top/left quadrants, whilst the high valence dopants lie in the bottom/right quadrants,
giving rise to an increasingO vacancy formation energy in the direction of the bottom
right quadrant. Not surprisingly, amongst the low valence dopants, the alkali and
alkaline earth metals further segregate from the late transition series metals, based on
their differences of atomic size, amongst others. Now, upon highlighting the location
of the 6 promising candidates (Sc, Cr, Y, Zr, Pd and La), as indicated by the stars,
they can be seen to occupy only a small subspace of the plot (highlighted by the grey
region of Fig. 8.5b). This suggests that in the high dimensional transformation these
elements have similar traits, and equivalentaly a similar thermodynamic activity.
Therefore, if one could identify other possible dopants that populate the grey region
in Fig. 8.5b, we can further extend the chemical space to achieve improved water
dissociation.

8.4.2 Random Forest

Another important class of feature selection algorithms are random forests (RF).
Unlike PCA, random forests work by constructing a regression (or classification)
model first, in this case between the 7 features and the O vacancy formation energy,
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Fig. 8.6 Relative feature importance arranged in descending order for the developedRFmodel. The
features are; atomic radius (AR), ionic radius (IR), covalent radius (CR), ionization energy (IE),
electronegativity (EN), electron affinity (EA) and oxidation state (OS). Evac is the O vacancy
formation energy. The inset shows a parity plot, comparing the density functional theory (DFT) and
RF predicted O vacancy formation energy (Evac). The regression model has an R2 value of 0.94.
The oxidation state (OS) is the dominant feature governing the O vacancy formation energy

followingwhich the important features are then extracted as a by-product. The frame-
work is built upon an ensemble of individual regression models, also known as deci-
sion trees [53, 59–61]. The prediction of each individual tree is then averaged across
the ensemble, resulting in the final or true predicted value. Given our limited dataset
size (based on 33 dopant elements), we selected a 75% split for training, with the
remaining kept aside as validation/testing. Each decision tree in the model is then
trained on a subset of the original training dataset, a procedure known as bootstrap-
ping. The combination of bootstrapping and ensemble averaging makes RF models
robust and devoid of overfitting, a common issue in ML. We generate a forest of 250
trees, based on the 7 dopant features described earlier and the O vacancy formation
energy. The final regression model we obtained has an R2 value of 0.95 (c.f., inset
Fig. 8.6), suggesting a good fit. Then by using mean decrease impurity metric, we
estimate the relative importance of each feature in the regression model [61].

In Fig. 8.6, we plot the relative importance of the 7 features in descending order.
Clearly, the role of a dopant’s OS supersedes all others. This observation is consistent
with the PCA analysis above. Also, it can be seen that IR and EA rank 2nd and
3rd in feature importance in the regression model, once again suggesting a small
contribution towards the descriptor.

Both the PCA and RF methods result in similar conclusions, leading us to believe
that the dopant’s OS primarily governs the role of the descriptor, i.e., O vacancy
formation energy, followed by a much smaller contribution of the IR and the EA.
Upon revisiting the OS of the 6 promising dopants, they adopt either a +3 or +4
state. Therefore as a first measure, by understanding the coordination environment of
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the dopant within the surface one can hazard a reasonable guess on its corresponding
impact on the O vacancy formation energy. Even though many other elements such
as Ti, V, Mn, Fe, Nb, Mo, Tc, Ru, Rh, Hf, Ta, Os, Ir adopt a similar OS state, the
combination of the OS, IR and EA skews them out of the optimal regime.

8.5 Summary and Outlook

In this work, we considered a host of dopants in cerium oxide, that span the 4th, 5th
and 6th period (specifically the alkali , alkaline earth and d series elements) of
the Periodic Table, in order to understand the impact on the dissociation of water.
Using a screening framework based on a first principles strategy augmented with
data analysis methods, we successfully identified 6 promising dopants (Sc, Cr, Y,
Zr, Pd and La), consistent with past experimental results, that are worthy of further
inquiry. A dopant’s oxidation state, ionic radius and electron affinity are found to be
the dominant chemical factors that primarily govern the oxygen vacancy formation
energy, which in turn governs the activity. The overall framework, we believe, can
be easily extended for dopant selection in ceria and other oxides as well as for dif-
ferent chemical conversion processes (e.g., thermochemical CO2 splitting, chemical
looping, etc.).

Nevertheless, some open questions remain on the true measure of activity. First,
kinetic factors, such as activation barriers, have been completely ignored in the
present work. All the screening criteria were based on the thermodynamic require-
ments of the elementary steps, and serve as necessary but not sufficient conditions.
Second, it is unclear what the impact of non-zero temperatures and gas phase compo-
nent pressures would be on the computed quantities and final outcomes. Preliminary
assessment based on first principles thermodynamics indicates that our main conclu-
sions will be largely unchanged even when such factors are accounted for. However,
by incorporatingmore of suchmetrics, along with the guidelines from the data analy-
sis methods, we can systematically refine the screening framework.
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Chapter 9
Toward Materials Discovery
with First-Principles Datasets
and Learning Methods

Isao Tanaka and Atsuto Seko

Abstract When the rule to determine the target property is known a priori, and the
computational cost for the predictors with the DFT accuracy is not too high to cover
the whole library within the practical time frame, “high throughput screening” of
first principles (DFT) database is a straightforward strategy for materials discovery.
Otherwise we need to adopt learning methods using predictors that can cover the
whole library. The learning techniques make a model to estimate the target property,
which canbeused for “virtual screening”of the library.Here,we showa fewexamples
how such techniques have been used for materials discovery.

9.1 Introduction

Historically materials discovery for a particular application was achieved by chance
after lengthy trial-and-error iterations, neither by rational exploration of chemical
compositional space, nor on the basis of clear design principles. The situation is
changing because of the emergence of two important tools: One is the establishment
of efficient first principles calculations with predictive performance. Thanks to the
recent progress of computational power and techniques, a large number of density
functional theory (DFT) calculations can be performed and the results are stored
as big databases. Such databases are available for public uses now, such as Mate-
rials Project Database (MPD) [1], Automatic Flow of Materials Discovery Library
(aflowlib) [2], andOpenQuantumMaterials Database(OQMD) [3]. The other impor-
tant progress can be seen on techniques capable of efficient data mining. Combining
DFT database and the data mining techniques, accelerated discovery of materials
can be expected. Information techniques to solve chemistry problems have been
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called “cheminformatics” (or “chemoinformatics”). A part of the cheminformatics
aiming at quantitative estimation of chemical or biological activities of chemicals
from physico-chemical and structural database is called “quantitative structure-
activity relationship (QSAR)” technique. The term “quantitative structure-property
relationship (QSPR)” is used for similar context. Such techniques have been success-
ful in the fields of drug discovery and organic chemistry. As for inorganic materials,
however, the use of informational techniques has started just recently. This can be
ascribed to the diversity of chemical elements, crystal structures and target prop-
erties of inorganic materials. Their structure-property relationships are often more
complicated. Before the emergence of the DFT database, quantitative description of
materials properties was very difficult.

Strategies of materials exploration with the DFT calculations should be differ-
ent depending upon many factors such as (1) availability of experts knowledge as a
physical or phenomenological rule, (2) abundance of experimental data, (3) compu-
tational cost for estimation of physical quantities with DFT accuracy, and (4) extent
of the exploration space. Figure9.1 shows two extreme cases ofmaterials exploration
with DFT calculations. When physical rule and descriptors for the target property
are well established, and all descriptors can be easily computed by an ordinary DFT
method, it is possible to perform DFT calculations of all compounds in a library in
order to make “high-throughput screening” as shown in Fig. 9.1a. Candidates can be
“discovered” in a straightforwardmanner. In another extreme case shown in Fig. 9.1b,
the rule to determine the target property is not known a priori. Therefore, we
should consider predictors that can cover thewhole exploration space. Then, learning

Fig. 9.1 a Scheme of
high-throughput screening
with DFT datasets. b Scheme
of virtual screening by
combination of DFT datasets
and learning methods
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techniques should be used to select predictors for making a model to estimate the
target property. A library can be used for “virtual screening” to find candidates.
Verification process may be required to examine the predictive power of the model
when “virtual screening” is made. After receiving the verification results, the model
can be revised. Models and the quality of the screening can be improved iteratively
through Bayesian optimization process. The virtual screening is also useful when
high-throughput screening is not realistic, i.e. when the computational cost for the
descriptors is too high to cover the whole library within the practical time frame. It
is the same if one needs to explore too large space to cover. In this article, some of
recent examples on the materials discovery with DFT dataset and learningmethods
are given.

9.2 High Throughput Screening of DFT Data—Cathode
Materials of Lithium ion Batteries

When physics behind the target property is simple and major ingredients of the
physical rule are computable by ordinary DFT methods, high throughput screening
(HTS) of the DFT database is a straightforward strategy for materials discovery as
shown in Fig. 9.1a. Phenomenological or empirical rules and experts knowledge can
be used instead of physical rules. In such cases, selection of “good” descriptors is
the critical step for the success of HTS.

HTS with DFT data has been used for materials discovery of lithium ion batteries
(LIB). Ceder [4] made a pioneering work to perform HTS of cathode materials for
LIB from dual viewpoints, namely charge/discharge capacity and safety. Average
battery voltage of a cathode material for fully delithated (charged) and fully lithiated
(discharged) conditions is given by the difference of chemical potentials between
fully delithated and fully lithiated conditions. Safety of oxygen-containing cathodes
(e.g., oxides, phosphates, silicates etc.) can be related to the equilibrium oxygen
chemical potential of the delithated state. If the oxygen chemical potential is lower,
the cathode is less susceptible to burn the coexisting electrolyte in the battery, which
is expected to increase the safety of the battery. The capacity-safety diagram made
by a set of DFT calculations was used for the HTS of cathode materials.

Many other properties are required for selecting cathode materials. When LIB
is designed for large-scale energy storage for efficiently utilizing renewable energy
power sources from solar and wind, a long cycle life is critical. This is different
from batteries for portable devices. Cycle life is typically defined as the number of
complete charge/discharge cycles before its capacity falls down to a certain level,
say 70%, of its initial value. The target of the long-life battery is more than 70%
capacity retention after 10,000 cycles. If this target is met then LIB can be practically
used over 30years with a daily charge/discharge cycle. The work by Nishijima and
coworkers [5] aimed to develop cathode materials which exhibit prolonged cycle
lives by substituting a range of solute elements onto the different cation sites of
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the LiFePO4 (LFP) material. LFP was chosen because it has advantages in cost,
safety and cycle life among the range of LIB cathode materials [6]. When renewable
energy-storage applications are considered, however, the cycle life of LFP needs to
be further improved. The cycle life of battery cathodes is not a quantity that can be
derived by a simple physical model. It is determined by the degradation rate during
repeated charge/discharge cycles which is influenced by many different factors. The
charge and discharge process for LFP proceeds via a two-phase reaction, and which
inevitably produces interphase boundaries with different lattice parameters [7]. The
volume change of crystalline lattice betweenLFP and fully delithiated FP is 6.5% [6].
Micro-cracks are often formed due to the stress inside the LFP cathodes during the
repeated charge/discharge cycle, which is widely accepted as the major degradation
mechanism of the LFP cathode [8]. The degradation could therefore be retarded by
reducing the volume change of the crystalline lattice during the charge/discharge
cycle. Nishijima et al. [5] assumed that the relative volume change (RVC) of a
compound between fully lithiated and delithiated conditions can be used as the
descriptor for the cycle life. Then they explored awide chemical compositional space
in order to optimize solute atoms in LFP cathode materials for prolonged cycle life
by systematic DFT calculations. Based upon the results of the screening, synthesis of
selected materials was targeted. The strategy is similar to that in Fig. 9.1a, although
the rule is based upon intuition or empirical knowledge.

A large set of DFT calculationswere systematicallymade formany different kinds
of solute elements that were substituted onto three possible cation sites of LFP. Co-
substitution of aliovalent elements were made to maintain the charge neutrality by
assuming that the formal ionic charges were unchanged. For example when Zr4+ and
Si4+ were incorporated and were located respectively at Fe2+ and P5+ sites, two Si
atoms and one Zr atom were put into the supercell of the DFT calculation. The situa-
tion can be expressed as (ZrFe + 2 SiP). DFT calculations were thoroughly made for
all possible solute arrangements within the unit cell composed of four formula units
of LFP (i.e., 28 atoms). The lowest energy structure among them was adopted as the
one representing the given chemical composition. Relative volume-change (RVC)
obtained for (ALi, MFe, XP) with X = Si is shown in Fig. 9.2a. RVC was defined
by 100 · (VL − VD)/VL (%), where VL and VD denote lattice volumes of lithiated
and delithiated materials, respectively. As can be seen in Fig. 9.2a, RVC is notably
small when M = Zr. Since substitution of Li-sites by other elements reduces the
battery capacity, Nishijima et al. decided to focus their efforts on the (ZrFe + 2 SiP)-
system, which was called Z2S. Its chemical formula is Li(Fe1−xZrx )(P1−2xSi2x )O4.
DFT calculations for Z2S with supercells composed of 8 and 16 formula units were
additionallymade, which corresponds to x = 0.125 and 0.0625, respectively. Results
of the RVC are shown in Fig. 9.2b. RVC decreases linearly with the solute concen-
tration. Synthesis experiments were then performed for Z2S with varying x based
on the results of HTS. By optimizing the processing parameters, single phase solid-
solution samples were successfully synthesized. Structural analysis by the pow-
der x-ray diffraction (XRD) showed that the Z2S samples were single phase up to
x = 0.125. The samplewas then supplied to electrochemical experiments. The exper-
imental RVC is shown in Fig. 9.2b to compare with the computed values. Satisfactory
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(ZrFe, SiP)

Experiment

DFT 

(a) (b)

Fig. 9.2 a Relative volume change (RVC) between lithiated and delithiated co-substituted LFP
for (ALi, MFe, SiP) by DFT calculations. b Comparison of experimental and DFT-RVC for Z2S
samples [5]

agreements between experiments and computed results can be seen. The experimen-
tal RVC decreased linearly with x from 6.3% (x = 0) to 3.7% (x = 0.125).

Finally the cycle life performance was examined for the Z2S cathode in a lami-
nated pouch cell using a natural graphite anode. A cell with a pristine LFP cathode
was prepared for comparison. The cycle life with 80% capacity retention was 10,000
cycles for the cell with Z2S (x = 0.050) cathode, whereas it was 1,800 cycles for
the cell with pristine cathode. The significant increase in cycle life was ascribed to
the difference in the cathodes, since all other components of the cell and cell testing
were the same. The cycle life for 70% capacity retention was estimated to be 25,000
cycles for Z2S (x = 0.050) cathode, which corresponds to the lifetime of 68years
by daily charge/discharge cycles.

HTS works using DFT database have been reported for many other applications.
Curtarolo and coworkers [9] made a review article of such works and gave a list of
descriptors for several problems such as nano-sintered thermoelectrics, topological
insulators, non-proportionality in scintillators, and so on.

9.3 Combination of DFT Data and Machine Learning
I—Melting Temperatures

In the previous section, examples ofHTSwithDFTdatawere described.As described
in the Introduction,HTS is not realisticwhen the computational cost for the predictors
with the DFT accuracy is too high to cover the whole library within the practical time
frame and/or when the rule to determine the target property is not known a priori.
Then we have two choices. One is to limit the exploration space: fixing to a certain
crystal structure and limiting chemical compositions are typical strategies. The other
is to adopt learning techniques using predictors that can cover the whole library. The
learning techniques make a model to estimate the target property, which can be used
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for “virtual screening” of a materials library. Here, we demonstrate applications of
combination of DFT data and machine learning for three kinds of target properties.
They are the melting temperature, the ionic conductivity in solid-state electrolytes,
and the lattice thermal conductivity in thermoelectric materials.

Experimental data for inorganic substances have been well collected for thermal
properties. Let us take an example of the melting temperature for which experi-
mental data are abundant. It may be also important that melting temperature is not
keen sensitive to microstructure and sub-percent level impurities. Scattering of the
experimental data by different experimental groups is therefore expected to be much
smaller than that for other structure or impurity-sensitive properties.

Lindemann rule [10] is often quoted as amodel for explaining themelting temper-
ature. It is based on a naive idea that melting occurs when the amplitude of thermal
vibration of atoms in a substance exceeds a certain critical fraction of the interatomic
distance. Although several modifications of Lindemann rule have been proposed
[11–13], it is still far from predicting the melting temperature quantitatively for an
arbitrary selected material. Trials to find other rules to determine melting temper-
atures were proposed for certain classes of materials, i.e., elemental metals [14],
covalent crystals [15] and intermetallic compounds [16]. Meanwhile, a machine
learning technique was applied to the prediction of the melting temperature for AB
suboctet compounds [17].

Seko et al. [18] made a combined study of DFT calculations and regression tech-
niques for prediction of the melting temperature for single and binary compounds.
Experimental dataset was obtained from a standard physics and chemistry handbook
[19]. Melting temperatures of the 248 compounds ranging from room temperature
to 3273K were used. The set of compounds did not contain transition metals and
their compounds to avoid complexity in the DFT calculations. Two sets of predic-
tors as shown in Table9.1 were used for the regression. One is a set of 4 predictors,
x1 to x4, such as crystalline volume and cohesive energy, which were obtained by
DFT calculations. DFT calculations were made for all polymorph structures that
were given in the Inorganic Crystal Structure Database (ICSD). The physical prop-
erties of the lowest energy crystal structure were then adopted as predictors [19].
The other set of predictors, x5 to x23, is raw or primitive information taken from the
Periodic Table and the handbook, such as atomic number, atomic mass and elec-
tronegativity. Ten variables were made to be symmetric with respect to the exchange
of atomic species in binary compounds to obtain 19 predictors. Note that the sum
form of the composition is always unity and it was not used as a predictor. Firstly
all of these 23 predictors, which were selected without much intuition, were used
for modelling by regressions. These predictors were divided into two sets. Predictor
set (1) is composed only of symmetric predictors of the primitive information, x5 to
x23, which does not contain information by the DFT calculations. Predictor set (2)
is composed of all 23 variables, x1 to x23, including 4 variables by the DFT calcula-
tions. In order to estimate the prediction error, the data set was divided into training
and test data. A randomly selected quarter of the data set and the rest of the data set
were regarded as the test and training data, respectively. This was repeated 30 times
and then averages of 10-fold cross-validation (CV) scores and the root-mean-square
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Table 9.1 Predictors used for a model of the melting temperatures

Volume V (x1)

Nearest-neighbor pair distance rNN (x2)

Cohesive energy Ecoh (x3)

Bulk modulus B (x4)

Sum form Product form

Composition, c cAcB (x5)

Atomic number, Z ZA + ZB (x6) ZAZB (x7)

Atomic mass, m mA + mB (x8) mAmB (x9)

Number of valence electrons, n nA + nB (x10) nAnB (x11)

Group, g gA + gB (x12) gAgB (x13)

Period, p pA + pB (x14) pA pB (x15)

van der Waals radius, rvdw rvdwA + rvdwB (x16) rvdwA rvdwB (x17)

Covalent radius, rcov rcovA + rcovB (x18) rcovA rcovB (x19)

Electronegativity, χ χA + χB (x20) χAχB (x21)

First ionization energy, I IA + IB (x22) IA IB (x23)

A set of 4 predictors, x1 to x4, was obtained by DFT calculations. The other set of predictors, x5 to
x23, is raw or primitive information taken from the Periodic Table and the handbook [19], which is
made to be symmetric with respect to the exchange of atomic species in binary compounds [18]

(RMS) errors between predicted and experimental melting temperatures for test data
were evaluated.

Figure9.3 summarizes results by both ordinary least square regression (OLSR)
and support vector regression (SVR) with predictor sets (1) and (2). CV scores and
RMS errors are shown together. The figures were taken from one of the 30 trials
of random divisions of the data set. The use of the predictor set (2) was found
to significantly improve the model. At the same time it can be pointed out that
SVR effectively reduced the error even when the predictor set without DFT results
was used. Systematic deviation of the predicted values from the experimental ones
can be seen for OLSR with the predictor set (1) in the high temperature region at
above 1500K. This can be ascribed to the difficulty in representing the high melting
temperature simply by linear combination of 19 predictors included in the set (1).
The situation was improved by the use of non-linear regression model of SVR with
the same predictor set (1). The fitting of the high temperature part by OLSR was
much improved when 4 additional DFT predictors were included as in the set (2).

All results shown in Fig. 9.3 were obtained with all predictors either in the set
(1) or (2). Let us think of selection of “good” predictors among them. For this
purpose a stepwise regression method with bidirectional elimination [20] based on
the minimization of the Akaike information criterion (AIC) [21] was adopted. The
best prediction model with the minimum AIC was found to be composed of 10
predictors and has a RMS error of 295K by the OLSR, which is smaller than the
RMS error by the OLSR with all of 23 predictors. Figure9.4a shows that the RMS
error decreased rapidly and almost converged at 5 predictors. The prediction model
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with 5 predictors showed the RMS error of 320K. The selected 5 predictors were
Ecoh, χA + χB, B, cAcB, and rNN. 3 of the 5 predictors were those computed by
the DFT calculation. Figure9.4b shows the standardized regression coefficients of
the prediction model with the 5 predictors. The absolute value of the standardized
regression coefficient for Ecoh, which is the first selected by the stepwise regression,
is the largest among the coefficients for the 5 predictors. Hence, Ecoh contributes the
most to the prediction of the melting temperature. It may sound natural to find a good
correlation between the melting temperature and Ecoh. Actually Guinea et al. [14]
proposed a linear relationship model between the melting temperature and Ecoh for
metals and alloys. Recently, a linear relationship between the melting temperature
and the bulk modulus, B, was also proposed by Lejaeghere et al. [22] for elemental
crystals. However, the prediction only with Ecoh provided poor prediction with the
RMS error exceeding 430K for the 248 compounds in the work by Seko et al. [18].
The error was even larger only with B. The facts imply that the models only with
Ecoh or B cannot be universally applicable for predicting the melting temperature,
but only useful for elemental crystals and alloys.

Once the model is made by the machine learning process, it can be supplied for
virtual screening as shown in Fig. 9.1b. The process will then be followed by the
Bayesian optimization procedure. Here we show an example of the optimization for
finding the compoundwith highestmelting temperature by kriging bySeko et al. [18].
Kriging was built on Gaussian processes. Figure9.5a shows a typical situation where
several sample points are available. In the kriging, a next sampling point is searched
where the chance of getting beyond the current best target property is optimal. To
this aim, a Bayesian regression method such as a Gaussian process is applied, and
the probability distribution of the target property at all possible parameter values can
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Fig. 9.5 a A typical situation of kriging. Gaussian process regression (GPR) is applied to the
available samples shown by asterisks to make a prediction model is shown by the blue line. The
probability distribution of the target property for all possible compounds is shown by orange closed
circles. b Highest melting temperature among the observed compounds in simulations for find-
ing the compound with the highest melting temperature based on kriging and random compound
selections [18]
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be obtained as illustrated in Fig. 9.5a. Then the next sampling point is determined as
the one with the highest probability of improvement. Here the kriging was applied to
find the compound with the highest melting temperature from a pool of compounds.
The procedure can be organized as follows: (1) An initial training set is first prepared
by randomly choosing compounds. (2) A compound is selected based on GPR. The
compound is chosen as the one with the largest probability of getting beyond the
current best value fbest. Since the probability is a monotonically increasing function
of the z score, z = [ f (x∗) − fbest] /

√
v(x∗), the compound with the highest z score

is chosen from the pool of unobserved materials. (3) The melting temperature of the
selected compound is observed. (4) The selected compound is added into the training
data set. Then the simulation goes back to step (2). Steps (2)–(4) are repeated until
all data of melting temperatures are included in the training set.

Here the kriging of the melting temperature was started from a data set of 12
compounds. For comparison, a simulation based on the random selection of com-
pounds was also performed. Both the kriging and random simulations were repeated
30 times and the average number of compounds required for finding the compound
with the highest melting temperature was observed. Figure9.5b shows the highest
melting temperature among observed compounds during one of the 30 kriging and
random trials. As can be seen in Fig. 9.5b, the compound with the highest melting
temperature was found much more efficiently using the kriging. The average number
of observed compounds required for finding the compounds with the highest melting
temperature over 30 trials using the kriging and random compound selections were
16.1 and 133.4, respectively; hence kriging substantially improved the efficiency of
discovery.

9.4 Combination of DFT Data and Machine Learning
II—Lithium ion Conducting Oxides

The lithium-ion conducting oxides in the systemLiO1/2–AOm/2–BOn/2 (wherem and
n denote the formal valences of cations A and B, respectively) is known as LISICON
(LIthium Super Ionic CONductors) [23]. It has general formula of Li8−cAaBbO4

(where c = ma + nb). Although the conducting properties of many different LISI-
CONs have been intensively studied since the 1970s, there are still many composi-
tions that have not been reported experimentally. In some cases, results from different
groups vary considerably [24–28]. Arrhenius plots of Li-ion conductivities by previ-
ous experimental data are shown in Fig. 9.6a. The conductivity changes considerably
depending on chemical compositions.

First principles molecular dynamics (FPMD) calculations can be used to estimate
the atomic diffusivity. However, high computational costs hinder their use for the
purpose of HTS over a wide range of materials. Typically FPMD can be done for
less than 100 ps (or 105 MD steps), which limits the lowest accessible diffusivity
by FPMD to be the order of D = 10−10 m2/s. FPMD results alone cannot be used
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(a) (b)
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Fig. 9.6 a Summary of Arrhenius plots of experimental Li-ion conductivities of LISICON com-
pounds in literature. b Comparison of experimental and FPMD results for Li2+2xZn1−xGeO4
(x = 0.25, 0.50 and 0.75) [29]

as predictors of lower diffusivity events. Fujimura et al. made systematic FPMD
calculations of LISICON materials at above 1000K [29]. Arrhenius plots of the cal-
culated Li-ion diffusion coefficients by FPMD calculations for Li-ion conductors,
Li2+2xZn1−xGeO4 (x = 0.25, 0.50 and 0.75) were compared with experimental data
shown as open circles [24] and open triangles [30], in Fig. 9.6b. The extrapolation of
the FPMD results to lower temperatures,< 800K, where the FPMDwere not practi-
cal, showed satisfactory agreementswith theFPMDresults for all three compositions.
At the same time, one can point out the presence of deflection points in the experi-
mental conductivity for x = 0.75 and 0.50, which is by no means reproduced by the
extrapolation from the high temperature FPMD results. Fujimura et al. [29] assumed
that the deflection point corresponds to the order/disorder transition temperature of
Li ions on octahedral sites within the LISICON structure. The transition temperature,
Tc, was then estimated by a systematic set of DFT calculations and cluster expansion
analyses. The estimated Tc were 380, 750 and 1150K for x = 0.75, 0.50 and 0.25 of
Li2+2xZn1−xGeO4, respectively. The tendency to increase the deflection point with
decrease of x was reproduced by the estimated Tc.

Although FPMD results can be well extrapolated to lower temperatures at above
Tc, prediction of the conductivity at below Tc is difficult. In order to estimate the diffu-
sivity near the room temperature, which is typically below Tc, one needs to use addi-
tional predictors on top of FPMD diffusivity and Tc. In order to select the predictors
and examine the prediction error, the raw experimental data-points shown in Fig. 9.6a
were used for machine learning. Experimental diffusivities, D(T ), at temperature T
were “learned” to make prediction models of the diffusivity at a given temperature,
T0. Fujimura et al. [29] used T , D1600 (D at 1600K), Tc and crystalline volume
of disordered structure, Vdis, as predictors for the ionic conductivity at T0 = 373K,
σ373 using the support-vector regression (SVR) method with a Gaussian kernel [31].
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Fig. 9.7 a Variation of RMS error for the Li-ion conductivities at 373K, σ373, with four different
sets of predictors. b Predicted σ373 for 72 compositions of LISICON compounds with the model
using all of four predictors [29]

The variance of the Gaussian kernel, the regularization constant and forms of inde-
pendent variables were optimized by minimizing the prediction error estimated by
the bootstrapping method [32]. Vdis was calculated by averaging volumes calculated
for a few structures with randomly selected Li ion-arrangements on octahedral sites
by the DFT method.

Prediction errors of the SVR prediction models for σ373 with four different sets of
predictors and are compared in Fig. 9.7a. The error increasedwhen only Tc was added
on T and D1600. This sounds odd from the physical mechanism viewpoint. However,
this can be understood by looking at the experimental data shown in Fig. 9.6a which
does not always exhibit two stages separated by the deflection point of the conduc-
tivity. The error was lower when Vdis was included in the predictor set. The lowest
error was obtained when all of T , D1600, Tc and Vdis were used. Figure9.7b shows
the predicted σ373 for 72 compositions. Even though the theoretical datasets do not
contain information about the activation energies explicitly, systems with high D1600

and low Tc tend to have high σ373 as expected. The conductivity of compounds with
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low Zn content such as Li2+2xZn1−xGeO4 (x = 0.75) with high D1600 and low Tc

were greater than those with high Zn content, such as Li2+2xZn1−xGeO4 (x = 0.25),
and high Tc. This result explained the trend observed by experimentalists, namely
that the original LISICON composition Li3.5Zn0.25GeO4 has one of the highest Li-
ion conductivity. In this study, Li4GeO4 was predicted to have the highest σ373 of
all 72 compounds. However, it has not yet been synthesized because it generally
crystallizes to a different crystal structure.

9.5 Combination of DFT Data and Machine Learning
III—Thermoelectric Materials

Thermoelectric generators are essential for utilizing waste heat. In order to increase
the conversion efficiency, the thermoelectric figure of merit should be increased.
Since the figure of merit is inversely proportional to thermal conductivity, many
efforts have been placed to decrease the thermal conductivity, especially the lattice
thermal conductivity (LTC). In order to evaluate LTC with the accuracy comparable
to experimental data, a method that is far beyond the ordinary density functional
theory (DFT) calculations is required. Since one needs to treat multiple interactions
among phonons, or anharmonic lattice dynamics, the computational cost is many
orders of magnitudes higher than the ordinary DFT calculations of primitive cells.
Such expensive calculations are practically possible only for a small number of simple
compounds. HTS of a large DFT database of LTC is not a realistic approach unless
the exploration space is narrowly confined. Carrete and coworkers concentrated their
efforts to search low LTCmaterials within half-Heusler compounds [33]. They made
HTS ofwide variety of half-Heusler compounds by examination of thermodynamical
stability via DFT results. Then LTC was estimated either by full first principles
calculations or by a machine-learning algorithm for a selected small number of
compounds. HTS of low LTC using a quasiharmonic Debye model was also reported
[34]. Efficient prediction of LTC through compressive sensing of lattice dynamics
was demonstrated as well [35].

Very recently, Togo et al. [36] reported a method to systematically obtain theoret-
ical LTC through first principles anharmonic lattice dynamics calculations. Results
were in quantitative agreement to available experimental data. Using these theoret-
ical data, Seko et al. [37] performed the virtual screening of a library containing
54,779 compounds was by Bayesian optimization using kriging method based on
the Gaussian process regressions (see Sect. 9.3). First principles anharmonic lattice
dynamics calculations were then performed for highly ranked compounds, which
actually showed very low LTC. The strategy is in the category given in Fig. 9.1b.
This type of method should be useful for searching materials for many different
applications in which chemistry of materials need to be optimized.
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Chapter 10
Materials Informatics Using Ab initio Data:
Application to MAX Phases

Wai-Yim Ching

Abstract We use a database constructed for a very unique class of laminated inter-
metallic compounds, theMAX (Mn+1AXn) phase, to showhowmaterials informatics
can be used to predict the existence of new, hitherto unexplored phases. The focus
of this Chapter is the correlation between seemingly disconnected descriptors and
the importance of high quality, computationally derived data. An extension of this
approach to other specific materials systems is discussed.

10.1 Introduction

In recent years, information gathering, analysis, and interpretation has emerged as
an interdisciplinary research skill involving computer science, information science,
and other various domains of science such as physics, chemistry, biology, medicine,
materials engineering, design technology, education and social science, etc. [1]. In
particular, materials informatics has developed into a flourishing field of study [2].
It aims to find more efficient ways of solving scientific problems related to all kinds
on materials using large databases. This started at the initiation of the materials
genome project at the federal level and it follows the same approach that the Human
Genome Project in the biomedical community did decades ago, which resulted in
the now mature discipline of bioinformatics. Creative software, genetic algorithms,
and visualization tools have been developed to do statistical analysis of data and
to explore the data via data mining aided by powerful high performance computers
[3]. There are many examples of highly successful applications for identifying and
understanding the structure-properties correlations and to formulate design rules
for better materials for specific applications. The information obtained from high
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throughput materials informatics greatly reduces the time that it takes to go from
frontier research to real applications.

There are many different ways of collecting large data and of building power-
ful databases for applications. Traditionally, the data for materials properties are
collected from experimentally measured values published in open literature such
as: crystal structures, density, heat of formations, melting temperature, electric con-
ductivity, thermal conductivity, refractive index, bulk modulus, hardness, phase dia-
grams, and much more. These data cover all kinds of material systems regardless of
the source or the reliability of the data. Such database are usually not vetted and they
are of varying quality. However, the argument is that in a statistical sense, any invalid
data that appears does so as noise and will not make much of a difference, as long
as the database is large enough and the method for analysis is carefully designed.
This modus operandi is more common in the biomedical arena when dealing with
experimental or clinical trials with large data collected over a long period of time
while looking for small effects [4]. Contrary to some approaches which aim to reduce
or avoid accurate atomistic simulations by instead relying purely on statistical pre-
dictions, is another approach that is based on the design of a specific data base with
high accuracy using computational genomics. This difference simply reflects the
emphasis on a different spectrum of the field of materials informatics with different
strategies for different systems although both are data driven.

More recently, large amounts of data may be obtained through calculations using
different computational methods and packages based on different theories. The trend
is usually to cover a focused groups of materials that are categorized either in their
structure, composition, functionality, or some specific materials property. Examples
for such recent endeavors include: piezoelectric perovskites [5], battery materials
comprising oxides, phosphates, borates, silicates sulphates, etc. [3, 6], Half-Heusler
semiconductors with low thermoconductivity [7], binary compounds [8], polymer
physics materials genome [9], and isotope substitution on phonons in graphene [10]
just to name a few. It is also possible to combine the measured data and the calculated
data into a bigger database.

In this Chapter, we present a specific case to illustrate the application of mate-
rials informatics using a large database of a unique class of materials, the MAX
(Mn+1AXn) phase [11]. Our approach is to select a specific material system with
well-defined structures and compositions for a focused study and then apply state-
of-the art computational tools to systematically generate a large amount of data on
their physical properties, and the analysis of correlations amongst them. We then
use this database to test the efficacy of exiting data mining and machine learning
algorithms. Simultaneously, this enables us to predict the existence of new MAX
phases that have not yet been synthesized or studied in the laboratory but which
may have outstanding properties. The identification of outliers that clearly do not
follow general trends helps to obtain deeper insights and reveal the fundamental
reasons behind such deviations. The predictive capability of the data mining is sub-
stantially controlled by the quality of the assigned descriptors. At the same time,
use of theoretical-based descriptors that demand a large computational time will be
impractical. Thus, delegating such types of descriptors to a combinations of less
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time-demanding descriptors will be the goal. This approach is certainly different
from other approaches which depend on collecting data from various sources but it
puts the data under better control with increased reliability in the interpretations.

Another important issue which is less frequently discussed in materials informat-
ics is the way that the data are presented. Many believe that materials informatics
relies on massive data collections and their statistical analysis. Everything is numeri-
cal and machine-based. On the other hand, we find that creative and insightful graph-
ical representations of the data can allow one to grasp some of the most important
points without laborious analysis. This will be amply demonstrated for the materials
presented in this Chapter.

The MAX phase is used as an example to illustrate various aspects of materials
properties and correlations between different descriptors.Wehave identified one such
descriptor in particular, the total bond order density (TBOD) that plays a dominating
role. We articulate on some other materials systems for which the application of the
same approach and the use of TBOD can be very fruitful.

10.2 MAX Phases: A Unique Class of Material

MAX phases or Mn+1AXn are transition metal ternary compounds with layered
structures where “M” is an early transition metal, “A” is a metalloid element, “X” is
either carbon or nitrogen, and n is the layer index. MAX compounds have attracted
a great deal of attention in recent decades due to many of their fascinating properties
and wide range of potential applications. Up to now, only about 70 of these phases
are confirmed or have been synthesized [12]. The majority of these confirmed phases
are 211 carbides with n = 1 or 2 and with M = Ti and Zr, and A = Al and Ga. It has
also been demonstrated that the formation of composite phases and solid solutions
in MAX phases between different “M” elements, “A” elements and C and N are
possible. Such possibilities have greatly extended the range of compositions beyond
the ternary phases.

The MAX phases are layered hexagonal crystals (space group: P63/mmc No.
194). Figure10.1 displays the crystal structure of MAX for n = 1, 2, 3, 4, which
are usually referred to as the 211, 312, 413, and 514 phases. An important feature is
that in MAX compounds, layer “A” remains constant whereas layers of “M” and “X”
increase with n. The “X” layers are always in between the “M” layers or blocks of
MX layers connected by single “A” layer which can significantly affect the properties
of a MAX phase. The physical properties of MAX phases vary over a wide range
depending on “M”, “A”, “X” and n. MAX phases with n ≥ 5 are known to exist but
are very rare. Most of the existing experimental work on the MAX phases has been
on the 211 and 312 carbides.

MAXphases behave both like ceramics andmetals with some very desirable prop-
erties such as machinability, thermal shock resistance, damage tolerance, fatigue,
creep, and oxidation resistance and elastic stiffness. They are also good thermal and
electrical conductors [12]. More recently, MAX phases have been considered for
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Fig. 10.1 Sketch of crystal
structures of four MAX
phases M2AX, M3AX2,
M4AX3, M5AX4 (i.e. with
n = 1, 2, 3, 4)
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high-temperature structural applications. Other applications include porous exhaust
gas filters for automobiles, heat exchangers, heating elements, wear and corrosion
protective surface coatings, electrodes, resistors, capacitors, rotating electrical con-
tacts, nuclear applications, as bio-compatible materials, cutting tools, nozzles, tools
for die pressing, impact-resistant materials, projectile proof armor, and much more.
Some of these applications already have products on themarket. The physical proper-
ties of MAX phases have been investigated by many groups both experimentally and
computationally (see extensive references in Aryal et al. [11]). We have been focus-
ing mostly on the mechanical properties and electronic structure of MAX phases.
The elastic coefficients and mechanical parameters such as the bulk modulus (K),
shear modulus (G), Young’s modulus (E), and Poisson’s ratio (η) are derived from
the calculated elastic coefficients under the VRH polycrystalline approximation and
were obtained. The G/K ratio, also known as the Pugh moduli ratio is a good indi-
cator of the ductility or brittleness of the alloy based on an analysis in pure metals
but it has also been quite effective when applied to metallic alloys [13]. The other
physical properties investigated are the optical conductivities in 20MAXphases [14]
and the core-level excitations in some of the compounds [15]. More recently, we also
estimated the high temperature lattice thermal conductivities of MAX phases (see
Sect. 10.4).

The electronic structure and bonding is the basic information needed to understand
the properties in any materials. It has been well studied for MAX phases using
density functional theory-based methods by many groups over the last 15years.
Most of the discussion tends to be on the band structure and the density of states
(DOS) and partial density of states (PDOS). In MAX phases, interatomic bonding
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are fairly complicated involving metallic, partly covalent and partly ionic types of
bonding which may extend beyond nearest neighbors. The structural complexity and
variations in chemical species make characterization of interatomic bonding inMAX
phases particularly challenging.We advocate the use of total bond order (TBO), total
bond order density (TBOD) and their partial components (PBOD) as useful metrics
to delineate the observed physical properties. TBO is the sum of all bond order pairs
in the crystal and when normalized by its volume, we get the TBOD. This will be
illustrated more in the following sections.

It is worth mentioning that in addition to the canonical MAX phases, there are
related materials derived from the MAX phases such as the solid solutions with dif-
ferent “M” or “A” elements and with mixtures of C and N. The MAX solid solutions
can expand the list of such compounds enormously and some of them may have
optimized compositions that enhance their properties. This provided a great oppor-
tunity to apply the techniques of materials informatics for facilitating the processing
of large amounts of data. Other related systems include the 2-dimentional Mn+1Xn

system called Maxenes by extracting the “A” layer from MAX by exfoliating in
solution which offers a variety of new applications. Last but not least, there are quite
a few layered intermetallic compounds with different types of stacking layers but
involving more or less similar chemical species that have not been fully exploited.

10.3 Applications of Materials Informatics to MAX Phases

10.3.1 Initial Screening and Construction of the MAX
Database

We first construct a database consisting of as many MAX phases in accordance with
the general guideline suggested by Barsoum (Barsoum’s Book, page 2, Fig. 1.2 [12]).
We chose 9 “M” elements (Sc, Ti, Zr, H, V, Nb, Ta, Cr, Mo), 11 “A” elements (Al, Ga,
In, Tl, Si, Ge, Sn, Pb, P, As, S), X = C and N and with the layer index n = 1, 2, 3, 4.
This gives us a total of 792 possible MAX (Mn+1AXn) phases. We used the Vienna
Ab initio Simulation Package (VASP) [16] to optimize the structure and obtain the
elastic constants for each crystal. However, not all of these phases will be stable.
We therefore screen these by using two stability criteria: the Cauchy-Born elastic
stability criteria for hexagonal crystals [17] which eliminated 71 crystals. Next, we
calculated the heat of formation (HoF) for the same 792 crystals based on the relative
stability of each MAX phase to the formation energy of its elements in their most
stable ground state structure. As a result, 45 additional phases with positive HoF
were eliminated, resulting in 665 viable MAX phases for a more focused study. The
use of these two criteria instead of a more rigorous but far more time consuming
one based on thermodynamic assessment on all potential competing phases in the
M-A-X ternary phase diagrams is a reasonable compromise. In principle, we can
consider these two sets of criteria employed as two descriptors in the data mining

http://dx.doi.org/10.1007/978-3-319-23871-5_1
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approach. This represents a substantial savings in computational time. The calculated
elastic and mechanical properties of the 665 MAX phases are tabulated as illustrated
in Table10.1 for 20 such phases. The electronic structure and bonding of the MAX
phases are calculated using the orthogonalized linear combination of atomic orbital
method (OLCAO) [18]. This is an extremely efficient and well-tested method using
atomic orbitals in the basis expansion. The main descriptors for electronic properties
are summarized in tabular form as illustrated in Table10.2 for 14 such crystals. Both
sets of data for the 665 MAX phases are publically available [11].

10.3.2 Representative Results on Mechanical Properties
and Electronic Structure of MAX

We selectively present some of the calculated results from the database for the 665
MAX phases. Figure10.2 shows a scattered plot of shear modulus G versus bulk
modulus K for all screened 665MAX phases. To have a broader perspective, we used
different colors for index n, and open or closed symbols for carbides and nitrides
respectively. We also include similar data for some metallic compounds and selected
binary MX compounds [19]. We note that the MAX phases cover a wide region of
bulk and shear moduli, overlapping with those of the common metals and alloys.
The dashed lines show the G/K ratios for these data which range from a minimum of
0.12 to a maximum of 0.8. The maximum G/K ratio is close to those of MN binary
compounds and the low G/K values are mostly from MAX nitrides. Figure10.2
illustrates a conventional graphical presentation in materials informatics to provide
an overview of the data from a large database.

The data for G/K values for all MAX phases shown in Fig. 10.2 as scattered plot
data are presented in Fig. 10.3 in a different way in the form of an innovative map
resembling the Periodic Table. For this plot we used the original 792 hypothetical
MAX phase data. This enables us to clearly see the locations of those phases that
have been screened out relative to those that have not. Here the “M” elements are
plotted on the Y-axes and the “A” elements are along the X-axes. The color of each
square cell represents the G/K value of that particular MAX phase along with other
information such as whether the phase has been synthesized or not. The phases that
have been eliminated by the Cauchy-Born criterion or the HoF criteria are marked
with a + or a × respectively. The experimentally confirmed phases are marked with
a white star. As can be seen, none of the experimentally confirmed phases are among
the ones judged to be unstable and screened out. There are many boxes of different
colors without the white star, suggesting the existence of a myriad of possible MAX
phases not yet explored. While the G/K ratio of MAX phases can vary over a wide
range as indicated by the variations in color for the different squares in Fig. 10.3, we
can delineate the boundaries of MAX’s materials properties within which optimized
functionalities can be further explored. Similar maps for other mechanical properties
for the MAX phases can be found in [11].
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Fig. 10.2 Shear modulus versus bulk modulus for 665 screenedMAX phases in the database. Solid
circles and open circles are for carbides and nitrides respectively. Different color is used for different
n in Mn+1AXn. Also shown are the locations of other metals and binary MC and MN compounds

Fig. 10.3 G/K ratiomap for 792MAXphases according to “M” (Y-axis) and “A” (X-axis) elements.
Top panel for carbides and lower panel for nitrides. Color in each cell represents the calculated G/K
value as indicated in the color bar. A star in the box indicates that this phase has been confirmed.
“+” means the phases is eliminated for elastic instability and “×” means the phase is screened out
for thermodynamic instability or positive HoF

We now present some of the results related to electronic structure. The density
of states (DOS) at the Fermi level (EF) or N(EF) is one of the important electronic
parameter for metallic systems. In MAX phases N(EF) is a strong function of com-
position. Some values are close to zero, whereas others are quite large, depending on
whether EF is located in the vicinity of the 3d or 4d orbitals of “M”. The calculated
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Fig. 10.4 Plot of DOS at Fermi level N(EF) against total number of valence electrons per unit
volume for the 665 MAX phases in the database. Solid symbols for carbides and open symbols for
nitrides. Note the outlying nature of the data for the M = Sc with X = C MAX phases

N(EF) per unit cell is found to be reasonably correlated with the total valance elec-
tron number per volume (Nval(Å

−3) as shown in Fig. 10.4. The total valance electron
number is the sum of the formal valance electrons of individual atoms in the crystal.
In general, larger Nval (Å−3) corresponds to larger N(EF) as expected. Also, as n
increases, (Nval(Å

−3) increases, the slope of the data distribution decreases. Tradi-
tionally, it has been speculated but not rigorously proved that the existence of a local
minimum (or pseudo gap) at the Fermi level in a metal or alloy signifies its structural
stability [20]. While all the DOS for the MAX phases are available, it is not practical
to present the DOS figures for all the phases. However, the relative magnitudes of
N(EF) and its decomposition into different atomic components for each phase is a
valid descriptor for the electronic structure.

Figure10.4 shows that nitrides have larger N(EF) values than the carbides. The
Sc-based carbides, however, are a notable exception. They have significantly higher
N(EF) than their nitride counterparts. The Sc-based carbides (but not the nitrides)
also show amarked deviation from the general trend ofN(EF) versus (Nval(Å

−3)with
increasing n. The approximate positive linear correlation between the two properties
becomes more pronounced with increasing n which can be attributed to the increased
M atoms as n increases. One can relate this linear trend to a similar behavior observed
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in the binary mono-carbides or nitrides [21]. However, a real distinction here with
respect to the MAX phases is the profound role of “A” which is not present in the
binary mono-carbides/nitrides. In general, the presence of the “A” element appears
to significantly lessen the degree of the linear correlation or increase in the scattering
of the data (see Fig. 10.4 for MAX 211). It is only at higher n values, where the “A”
content is reduced and consequently the bonding characteristics are less influenced
by “A”, that a stronger correlation between the two properties emerges, mimicking
those of binary mono-carbides/nitrides.

10.3.3 Classification of Descriptors from the Database
and Correlation Among Them

The MAX database consists of the calculated quantities of all MAX phases as illus-
trated in Tables10.1 and 10.2 shown earlier. These numerical quantities can be clas-
sified into descriptors or controlling factors to be used in data mining algorithms for
materials informatics and to explore their correlations. A simple flow chart is shown
in Fig. 10.5. For the MAX phases, we classify the descriptors into three categories
based on their level complexity and/or computational time required to obtain the
data:

(1) Basic chemistry descriptors: They are (i) number of valence electrons, (ii) atomic
number Z of the elements, and (iii) volume of the unit cell.
(2) Descriptors from the electronic structure and bonding: They are: (i) Total bond
order density (TBOD) (normalized to crystal volume), (ii) total bond order from

Fig. 10.5 Flow chart of the approach used for data mining inmaterials informatics forMAX phases
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different atomic pairs, or the M–M, M–A, M–X, A–X and X–X pairs, (iii) density
of states at the Fermi level N(EF).
(3) Descriptors for the elastic constants Cij and the bulk mechanical parameters, K,
G, E, η and G/K ratio.

We then seek to establish the correlations between these descriptors which are
interrelated. More specifically, correlations between elastic and mechanical descrip-
tors, correlations between electronic descriptors and correlation betweenmechanical
descriptors and electronic descriptors [11]. We have been able to demonstrate that
over 90% correlation can be achieved using a simple linear regressionmethod imply-
ing that the mechanical properties descriptors can be adequately represented by the
other two types of descriptors. This is illustrated in the following section.

10.3.4 Verification of the Efficacy of the Materials Informatics
Tools

The success in linking the electronic structure factors to complex bulk elastic proper-
ties has enabled us to advance the utility of the data mining approach for expanding
the materials database for MAX phases. We have also extended our analysis into the
components of the second order elastic constants of the MAX phases. Figure10.6
shows an example of such an analysis as applied to the 2-1-1 MAX carbides, a large
subset of our database. The three main elastic constants in the database, C11, C33,
C13, which were calculated using an ab initio method are compared to those same
values as predicted by a combination of electronic structure factors and valence elec-
tron information with reasonably high correlation coefficients of 0.83, 0.93, 0.95
respectively. This suggests that such a method is robust enough to probe orientation
dependent second-order elastic constants with a high accuracy.
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Fig. 10.6 Comparison of a C11, b C33, and c C13 of 211 MAX carbides obtained from ab initio
calculations (x-axis) and those from the data mining prediction (y-axis)
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Result of linear regression of C11, C33, and C13 with chemical and electronic
descriptors shown in Fig. 10.6 are as follows:

C11 = 0.6235×ZM+8.1344×(GN)M−0.8737×ZX+32.0051×QA−144.2461×
QX +10.9223× (BO)M−X +9.2461× (BO)M−A −7.8791× (BO)M−M +11.8688×
(BO)A−A + 470.6772 × (BO)A−X − 2.7405 × N(EF) + 243.5997.
Correlation coefficient = 0.83

C33 = 0.7155×ZM+19.8291×(GN)M−1.085×ZX+18.9992×(GN)X+18.4127×
(BO)M−A−8.9407×(BO)M−M+16.2802×(BO)A−A−1.0634×N(EF)+38.8039.
Correlation coefficient = 0.9264.

C13 = 36.994×(GN)M−0.402×ZX−7.3952×(GN)X+67.8729×QA−12.8243×
(BO)M−X + 15.916 × (BO)M−A + 7.6037 × (BO)M−M − 33.8152 × (BO)A−A −
11.1306.
Correlation coefficient = 0.9541.

whereZM = atomic number ofM, (GN)M = group number ofM fromPeriodicTable,
ZX = atomic number of X, (GN)X = group number of X, (BO)M−A = total bond
order of M–A pairs, (BO)M−X = total bond order of M–X pairs, (BO)M−M = total
bond order of M–M pairs, (BO)A−X = total bond order of A–X pairs, (BO)A−A =
total bond order of A–A pairs, N(EF) = DOS at the Fermi level. QA and QX are the
effective charges on A and X respectively (see [11] for more details).

Figures10.7 and 10.8 show a different way to test the efficacy of the data mining
algorithm.Here, we use 50%of randomly chosen data from the database as a training
set and use the existing algorithm WEKA [22] to predict the properties of the other
50% of theMAX phases by comparing predicted values with the ab initio data in the
database. Figure10.7 (top panel) shows the comparison between K obtained from
ab initio calculations versus those obtained from the formulas derived from the data
mining algorithm for the other 50% for the 211, 312, 413 and 514 MAX phases.
An excellent correlation with over 90% correlation factor for each type of the MAX
phase is obtained. The lower panel of Fig. 10.7 also shows pie charts of the relative

Fig. 10.7 Top panel Use of 50% of MAX data for bulk modulus K as training set to predict the
other 50% by comparing with ab initio data for 665MAX phases. Lower panel relative contribution
from different electronic structure descriptors
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Fig. 10.8 Same as Fig. 10.7 but for the shear modulus

contribution from each type of the electronic structure descriptors used to predict K.
The four most important factors are the total bond order density (TBOD), BOD of the
M–A pairs (M–ABOD), BOD of theM–X pairs (M–XBOD) and charge transfer for
the X elements. TBOD clearly stands out as the most important factor in determining
K for all MAX phases. Figure10.8 shows a similar prediction for G/K ratio using
the same procedure. Although the correlation factor is less impressive than for K,
the prediction from data mining is still reasonably good, with correlation coefficients
around 80% or higher. The prediction for Poisson’s ratio is at the same level as for
the G/K ratio. In both cases, they are strongly affected by the TBOD although it is
a negative correlation instead of the positive correlation exhibited by K. The linear
correlation is less definitive in this case, which is probably due to the fact that the G/K
ratio or Poisson’s ratio are more influenced by the nature of the “A” element. This is
an effect that apparently is not fully represented by the BO parameters. Nevertheless,
a reasonably good estimate for these two properties can be established solely from a
linear combination of electronic structure factors. Furthermore, the TBDO emerges
as a significant descriptor that controls the mechanical properties. This data mining
approach also demonstrates that a simple correlation can be used to link elastic
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parameters such as Poisson’s ratio or the Pugh ratio to a series of electronic structure
indicators. The use of only 50% of the data as a training set gives credence to the
particular machine learning software and the philosophy lying behind it.

10.4 Further Applications of MAX Data

Since the generation of the MAX database less than a year ago, additional results
that use this data to estimate the lattice thermal conductivity of MAX phases at high
temperature and the calculation of universal elastic anisotropy based on a recently
developed theory have been obtained. These are prime examples of the utility of
large database to easily get new information without lengthy calculations consistent
with the spirit of materials informatics. They are briefly described below.

10.4.1 Lattice Thermal Conductivity at High Temperature

Asystematic calculation of the lattice thermal conductivity κph andminimum thermal
conductivity κmin for the 211, 312, and 413 MAX phases using Slack’s equation and
the Clarke formula respectively has been carried out [23]. The parameters used
in these simplified calculations are extracted from the elastic coefficients Cij, bulk
mechanical properties, and equilibrium volume of all stable MAX phase compounds
in the database. Essentially, the calculation of κph , follows the equation derived by
Slack [24],

κph = A
M̄θ3

Dδ

γ 2n2/3T
(10.1)

where M is the average atomic weight (in units of kg/mol), δ is the average volume of
the mass equivalent to one atom in the primitive cell (in units of m3), T is the absolute
temperature, n is the number of atoms per unit cell, γ the Grüneisen constant derived
from Poisson’s ratio (υ) and A is a coefficient (in units of W mol/kg/m2/K3) that
depends on γ as determined by Julian [25]. These parameters can be obtained from
the database for the MAX phases.

Figure10.9 shows the calculated κph for the 211, 312, and 413 phases of MAX
carbides and nitrides presented in two separate ways in order to trace the trends
associated with variations in the atomic numbers of the “M” and “A” elements. The
top panel in Fig. 10.9 is for “M”-based plots and the lower panel is for “A”-based
plots. The x-axis lists the 9 “M” elements and 11 “A” elements for the top and bottom
panels respectively. To grasp the variations and overall trends in κph more easily, we
employ the following strategy: (1) the data for the carbides (solid circles) and nitrides
(open circles) are plotted on the same figure. (2) The horizontal x-axis is arranged
in the order of increasing atomic number Z. They are (Sc, Ti, V, Cr, Zr, Nb, Mo,
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Fig. 10.9 Scatter plots of calculated phonon thermal conductivity (κph) at 1300K of MAX phases:
a 211 in “M” trend; b 211 in “A” trend; c 312 in “M” trend; d 312 in “A” trend; e 413 in “M”
trend, f 413 in “A” trend. The trend for “M” elements (Sc, Ti, V, Cr, Zr, Nb, Mo, Hf and Ta) and
“A” elements (Al, Si, P, S, Ga, Ge, As, In, Sn, Tl and Pb) are along the x-axis in upper and lower
panels, respectively. Each differently colored subpanel contains 22 and 18 MAX phases for the top
and bottom respectively

Hf, Ta) for “M” and (Al, Si, P, S, Ga, Ge, As, In, Sn, Tl, Pb) for “A”. Further, each
column is separated by vertical blocks of differently shaded colors. Each colored
area encloses 22 MAX phases with different “A” in the upper panel and 16 MAX
phases with different ‘M’ in the lower panel. (3) The ordering of both ‘A’ and ‘M’ in
each block is in the order of increasing Z. The two panels contain the same number
of data points but they are plotted in different ways to facilitate the observation of
trends. (4) The vertical scale (0 to 20 Wm−1K−1) for κph is kept the same for easy
comparison. Despite the overwhelming amount of data, the following trends and
observations can be easily discerned with this creative display: (a) The MAX phases
with five highest κph at 1300K are all nitrides. (b) The Sc-based MAX phases (first
panel to the left in the upper panel) in 211 phases are more widely dispersed than
those from the 312 and 413 phases. The κph for carbides are much smaller than
those of nitrides. For the other M panels, nitrides have a lower κph than carbides
except in the 211 MAX phases where they are mixed. There is also the obvious
trend of reduced κph as Z increases. This observation is much more pronounced in
the variation of “A” for a given “M” than on the variation of “M” for a given “A”.
Thus, variation in “A” is the major controlling factor for κph . They also show more
distinctive separations between carbides and nitrides. The trend of reduced κph as
the Z value of “M” increases is much less pronounced. This is contrary to the notion
that “M” should be more influential than “A” since there are more “M” elements in a
given MAX phase. (c) In the panels for different “A”, data for carbides and nitrides
are rather scattered. Within each panel for a fixed “A”, the trends of decreasing κph

with increasing Z value of “M” is much less pronounced in striking contrast with
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that data for the variation of “A” for a fixed “M”. (d) Data for κph are more widely
distributed and have larger values in 211 phases. They generally scale inversely with
layer index n. The calculated data at 1300K shown in Fig. 10.9 are in reasonable
agreement with the only available experimental data on eight MAX phases (Ti2AlC,
Nb4AlC3, Ta4AlC3, Nb2AlC Nb2SnC, Ta2AlC, Cr2AlC, and Ti3SiC2) [12].

We used the same data to estimate the intrinsic minimum thermal conductivity
κmin in MAX phases which is the lowest value of thermal conductivity for perfect
crystals at high temperature when phonons are completely uncoupled and energy is
transferred between neighboring atoms over the Debye temperature [24]. According
to the simple theory advanced by Clarke, κmin is given by [26]:

κ
min

= kBvm�min = kBvm

(
M

n ρNA

)−2/3

(10.2)

where �min, NA, and ρ are the phonon mean free path, Avogadro’s constant, and
crystal density respectively. The calculated κmin values are consistent with those
using (10.1) at T = 2000K.

10.4.2 Universal Elastic Anisotropy in MAX Phases

Recently, Ranganathan and Ostoja-Starzewski [27] developed a new theory for the
universal elastic anisotropy AU for all types of crystals. This gives a single parameter
to quantify the crystal anisotropy similar to the Zener anisotropy index [28] which
is applicable only to cubic crystals. AU is given by:

AU = 5(GV/GR) + (KV/KR) − 6. (10.3)

Here K and G are the bulk and shear moduli and the superscripts V and R stand
for the Voigt and Reuss approximations [29, 30], respectively. The Voigt (Reuss)
approximation assumedauniformstrain (stress) distribution throughout the structure.
These two assumptions give the upper and lower limits of bulkmechanical properties
and the averaged value of these two limits is the Hill approximation [31] which is
usually the value used to compare with measured data. AU must be positive, and
is usually much less than 2.0, and seldom goes beyond 4.0 [27]. AU = 0 implies
zero anisotropy. The large data base of elastic coefficients for MAX phases is ideally
suited to evaluate AU, test the new theory, and to ascertain its efficacy when applied
to a single class of ternary hexagonal compounds, the MAX phases.

We have recently calculated the universal elastic anisotropy of the 665 MAX
phases according to (10.3) [32]. Figure10.10 shows the scattered plot of AU versus
the total bond order density (TBOD) which we advocate as the single most important
metric for the electronic part of the properties. Here, AU is supposed to be a single
parameter that describe the anisotropy inmechanical properties for a given crystal. As
can be seen, the majority of the MAX phases have a low AU of less than 0.5 although
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Fig. 10.10 Universal elastic anisotropy (AU) versus total bond order density (TBOD) for 665MAX
carbides and nitrides in the database. There is evidence of a bimodal distribution with a minimum
in AU corresponding to a TBOD near 0.035

Fig. 10.11 Universal elastic anisotropy (AU)maps for 792MAX phases according to “M” (y-axis)
and “A” (x-axis) elements. The description is the same as for Fig. 10.4 for the G/K map

some phases haveAU greater than 1.0. There is no apparent difference betweenMAX
carbides and MAX nitrides in the AU distribution, but there is evidence of a bimodal
distribution of the data, i.e. there is a broad minimum in the middle range of the
TBOD. The implication of this interesting result has yet to be explored.

Figure10.11 shows theAU map for all theMAXphases according to “M” (Y-axis)
and “A” (X-axis) elements similar to Fig. 10.4. Color in the square cell represents
calculated AU values as indicated in the color bar. Again, a star in the box indicates
that the phase has been confirmed. The symbol “+” stands for elastic instability and
“×” indicates that the phase is screened out for positive heat of formation. This map
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clearly shows with a glance that most of the MAX phases have low AU close to
0.1–0.5 and that all of the confirmed phases have low AU. Few of the phases with
highAU are easily identified. Oncemore, we used this innovative map of AU to easily
and clearly show the general trends in universal elastic anisotropy according to this
new theory and to identify some isolated MAX phases as outliers.

10.5 Extension to Other Materials Systems

10.5.1 MAX-Related Systems, MXenes, MAX Solid Solutions,
and Similar Layered Structures

A newly discovered class of 2Dmaterials, labeledMXenes, presents a unique oppor-
tunity for the development of exceptional functional properties with diverse appli-
cations [33, 34]. MXenes are anisotropic laminated transition metal compounds
derived from predecessor MAX phases. Very recently, a family of 2D materials was
derived from MAX phases by extracting the A element in MAX. These so-called
MXenes (Mn+1XnTx), have their surface terminated by Tx (O, OH, or F). Only a few
MXenes out of a large number of possibilities have been reported. Some of these
MXenes have high electric conductivities with hydrophilic surfaces making them
ideal for applications as electrodes in Li-ion batteries or Li-ion capacitors. Demon-
stration of spontaneous intercalation of cations of different sizes and charges (Li+,
Na+, K+, Mg2+, Al3+, (NH4)

+, N2H4) between 2D Ti3C2Tx surfaces in various salt
solutions presents a great opportunity for material tunability. Such a wide range of
choices of cation intercalations and the rich chemistry of the functionalized surfaces
offer truly unique functional applications beyond the limits of even themost advanced
2D structures. The underlying factors governing the design and syntheses ofMXenes
however is largely unknown at atomistic-scales. Thus, MXenes are an ideal system
to apply the techniques used in materials informatics similar to the ones we used for
the MAX phases in creating a database for Mn+1Cn,Mn+1Nn, and Mn+1ATx.

Another area is to consider extending MAX phases to their solid solutions. This
offers a much larger variation in composition range and in the fine tuning of the
desired properties. MAX solid solutions can be formed by partial substitutions in
“M”, “A” elements or between C and N. There have not been many accurate cal-
culations on the MAX solid solutions because such calculations require significant
computational resources. Solid solutions are no longer crystalline phases with well-
defined long range order. They are essentially a class of disordered solidswith random
site substitutions. A large number of supercells must be used to properly describe the
structure and property variationswith composition x. ThusMAXsolid solutions offer
another great opportunity to apply the methods of materials informatics for extensive
studies. The database for MAX phases and their various applications in data min-
ing schemes demonstrated above can facilitate the effort to investigate MAX solid
solutions. We have recently carried out a detailed investigation on one of the most
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important MAX solid solution phases, Ti2Al(CxN1−x) [35]. For this solid solution,
themechanical properties vary continuouslywith x between Ti2AlN and Ti2AlCwith
no evidence of improved mechanical parameters beyond the end members. They do
have subtle variations for x > 0.5 which are supported by some existing experimen-
tal observations. This does not rule out the possibility of strengthening MAX phases
in other solid solutions via substitutions in “M” or “A” elements.

In addition to MAX solid solutions, another route to significantly enlarge the
database of MAX or MAX-like compounds is to consider the quaternary alloys by
adding another metal element to create a new crystal structure with different crystal
symmetry. A recent example of achieving this goal is the theoretical suggestion of
a new compound (Cr2Hf)2Al3C3 [36]. The crystal structure and elastic properties
of this MAX-like compound are studied using similar computational methods as
in the MAX phases. Unlike MAX phases which have a hexagonal symmetry (space
group: P63/mmc, #194), (Cr2Hf)2Al3C3 crystallizes in themonoclinic structure with
a space group of P21/m (#11) with lattice parameters a = 5.1739 Å, b = 5.1974
Å, c = 12.8019 Å; α = β = 90◦, γ = 119.8509◦. The calculated total energy per
unit cell for this crystal is found to be energetically more favorable than potential
competing phases. The calculated total energy per formula unit of −102.11eV is
significantly lower than those of the allotropic segregation (−100.05eV) and solid
solution phases (−100.13eV). Calculations using a stress versus strain approach and
the VRH approximation for polycrystals show that (Cr2Hf)2Al3C3 has outstanding
elastic moduli, better than Cr2AlC or Hf2AlC. Obviously, this approach can be
used to explore many more new phases with some exotic properties. It is probably
premature to apply techniques ofmaterials informatics to study quaternaryMAX-like
compounds at this stage unless new creative algorithms can be designed.

10.5.2 CSH-Cement Crystals

Cement materials represent another system that is highly amenable for materials
informatics. They are very complicated in both composition and structure but have
well defined industrial standards for desirable attributes in properties.Most of all, they
are of great importance and relevance to the construction industry, the environment,
and the world economy. Calcium silicate hydrate (CSH) is the main binding phase of
Portland cement, the single most important structural material in use worldwide. Due
to the complex structure and chemistry of CSH, accurate computational studies at the
atomic level are almost non-existent. Recently, we studied the electronic structure
and bonding of a large subset of the known CSHminerals [37]. Table10.3 lists the 20
CS andCSHcrystal phaseswithwell-documented atomic positions used in this study.
They are divided into four groups according to the Strunz scheme [38]: a, Clinker
and hydroxide phase; b, nesosubsilicates; c, sorosilicates; and d, ionosilicates. Each
group in Table10.3 is arranged in ascending order of calcium to silicon (C/S) ratio.
The clinker phases (a.1 and a.2 with no H) and the Portlandite (a.3 with no Si) are
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placed in group a. Portlandite is included in this group because it forms the basis
for hydration of cement.

Our results reveal a wide range of contributions from each type of bonding, espe-
cially the hydrogen bonding. We find that the total bond order density (TBOD) is
again an ideal overallmetric for assessing crystal cohesion of these complexmaterials
and should replace the conventionally usedCa/Si ratio. A rarely known orthorhombic
phase Suolunite is found to have higher cohesion (TBOD) in comparison to Jennite
and Tobermorite, which are considered to be the backbone of hydrated Portland
cement [37, 39, 40].

Obviously the crystalline CSH phases listed in Table10.3 can be greatly expanded
to include additional elements such as Al in the Ca-Si-Al-hydrates. A large database
of cement crystals similar to the MAX phases can be built for materials informatics
to design new construction materials which are more economical, environmentally
friendly, and durable. This is another example of using the TBOD as a proper descrip-
tor for materials design.

10.5.3 Extension to Other Materials Systems: Bulk Metallic
Glasses and High Entropy Alloys

Another promising system formaterials informatics are bulkmetallic glasses (BMGs)
[41] and the related high entropy alloys (HEAs) [42]. Metallic glasses are a special
class of non-crystalline solid that are completely different from crystalline metals
due to the lack of long-range order. They have many excellent properties and sig-
nificant potential as next-generation structural materials. However, there is a lack
of fundamental understanding about the structure and dynamics of BMGs at the
atomic and electronic level despite many years of intense research. Many of the
fundamental issues in BMGs require accurate data that can only be obtained by first-
principles calculations. Detailed information about the atomic-scale interactions and
their implications on the short-range and medium range orders are still missing. Cur-
rent research efforts appear to focus mostly on the geometrical analysis of structures
to explain the mechanical properties, deformation behavior, glass forming ability,
etc. We again advocate for the use of TBOD from high quality electronic structure
calculations as a useful theoretical metric to characterize the overall properties of a
BMG which can be correlated with glass forming ability and other physical proper-
ties. The challenges we face are the requirement for both the accuracy and the size
of BMG models and the large number of models that are needed to reach valid con-
clusions. Most conventional BMGs are either binary (e.g. ZrxCu1−x and NixNb1−x)

or ternary alloys such as ZrxCuyAlz. However, there are BMGs with more than 3
or 4 components such as such as Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 (Vitreloy) [43]. In
these multi component BMGs, accurate ab initio modeling is sine qua non because
any classical molecular dynamic simulation are infeasible due to lack or inadequacy
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of appropriate potentials. The dependence of BMGs on the specific composition
requires a large number of calculations to validate any hypothesis.

High-entropy alloys (HEAs) represent another class of systems which are ideal
for using a materials informatics approach. Unlike the traditional alloys based on the
principal elements (Fe, Ni, Cu, Ti, Zr, Al etc.) as the matrix, HEA is essentially an
n-component alloy system with 5 ≤ n ≤ 13. The % of major (minor) component Xi
(Xs) where we have 5% ≤ Xi ≤ 35% andXs is≤ 5%.High-entropy implies high n.
The compositional possibilities for HEAs are almost unlimited. They have attracted
a great deal of attention in recent years as replacements for traditional alloys such
as Ni3Al, Ti3Al which have reached their ultimate limit of materials performance.
Many new applications in different industrial and medical areas require alloys with
special properties such as high hardness and strength at high temperature, resistance
to wear and oxidation, low thermal conductivity, special magnetic properties, and
easy formation of nanoparticles. The main effects offered by HEA are thermody-
namics (the high entropy effect), the dynamic effect, the lattice distortion effect due
to different sizes of the elements, and the effect due to interatomic interactions (the
so-called cocktail effect).

A major difference between HEAs and BMGs is that the underlying structure for
HEAs is crystalline, mostly in fcc lattice or a mixture of fcc and bcc lattice even
though both HEAs and BMGs are disordered alloys. HEAs are more suitable for the
systematic application of materials informatics tools because the structural part of
the alloy is much simpler to model than in BMGs. On the other hand, the challenge
is the enormous number of compositional possibilities which will make the database
extremely large.

10.6 Conclusions

In this Chapter, we have discussed the construction and analysis of a large database
for a unique class of materials, MAX phases, and we have articulated a specific
approach for using ab initio data for materials informatics. What we have learned is
that materials informatics is extremely useful but also that it faces a lot of challenges.
Our approach will need a large amount of computational resources depending on the
systems to be studied, but creative planning and targeted application together with the
ways and means the data are presented are very important. A data mining approach
can be very effective for accelerating the database generation as exemplified by the
MAX phase study. The selective process of establishing internal links amongst the
potential descriptors is the key. We have also found that the total bond order density
(TBOD) is a very useful descriptor for analyzing a variety of properties and in their
interpretations. We also described several other material systems that can employ
the similar approach for materials informatics research because they share some
common attributes with the MAX phase and they also have well-defined descriptors.
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Chapter 11
Symmetry-Adapted Distortion Modes
as Descriptors for Materials Informatics

Prasanna V. Balachandran, Nicole A. Benedek and James M. Rondinelli

Abstract In this paper, we explore the application of symmetry-mode analysis for
establishing structure-property relationships. The approach involves describing a dis-
torted (low-symmetry) structure as arising from a (high-symmetry) parent structure
with one or more static symmetry-breaking structural distortions. The analysis uti-
lizes crystal structure data of parent and distorted phase as input and decomposes the
distorted structure in terms of symmetry-adapted distortion-modes. These distortion-
modes serves as the descriptors for materials informatics. We illustrate the potential
impact of these descriptors using perovskite nickelates as an example and show that it
provides a useful construct beyond the traditional tolerance factor paradigm found in
perovskites to understand the atomic scale origin of physical properties, specifically
how unit cell level modifications correlate with macroscopic functionality.

11.1 Introduction

One of the common objectives in the paradigm of materials informatics is the robust
formulation of structure-property relationships. In materials informatics, normally,
the “properties” of interest (e.g. Curie temperature, melting point, tensile strength,
ductility, conductivity, polarization, hysteresis etc.) that we intend to optimize are
well defined. However, what constitutes a “structure” is often not clear a priori and
remains an outstanding issue. Note that in this paper, we restrict the scope of the
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definition of “structure” to crystal structures, i.e. spatial arrangement of atoms in
one, two or three-dimensions. Generally, the phenomenologically-derived descrip-
tors (also referred to as features), e.g. Shannon’s ionic radius, Pauling’s electroneg-
ativity, pseudopotential radii of atomic orbitals and Pettifor’s chemical scale (to
name a few), are utilized at a coarse-grained level to represent local or crystal struc-
tures and crystal chemistries. There are a number of reports in the literature, where
structure-property relationships have been formulated for bulk materials using these
descriptors that have even led to the discovery of new materials [1–6].

Although successful, these descriptors lack some desired characteristics. For
example,when using these descriptors it is difficult to separate twomaterials that have
the same chemical formula but different crystal symmetries (unless one appends the
crystal symmetry as a separate feature). Similarly, owing to the remarkable progress
in achieving high-quality coherent thin films, heterostructures and superlattices, het-
eroepitaxial synthesis has evolved into a reliable strategy to engineer new materials.
In such ultra-thin films, strain fields at the thin film-substrate interface directly tune
the local electronic states from which novel functionalities and phases prohibited or
are absent in bulkmaterials are stabilized.Once again, the aforementioneddescriptors
fail under these contexts. Clearly, there is a need to develop more refined descriptors
that carry physically relevant information, so that the constructed structure-property
relationships not only merely reflect statistical correlations, but also provide avenues
to probe mechanistic insights for better understanding. And this is not a trivial task.

Recently, computational codes based on ab initio [7–9] and classical methods
[10] have also been explored for descriptor development. This approach is desirable,
because these approaches contain the essential physics and enable rigorous materials
modeling, which are absent in the phenomenological descriptors. Having said that,
the cost of running expensive computer simulations on large systems could prove
prohibitive and it is important to be wary of this shortcoming.

11.2 Distortion Modes as Descriptors

In this paper, we focus on developing descriptors based on distortion-mode decom-
position analysis (or symmetry-mode analysis) that provide a rigorous basis set for
studying crystal structures. Particularly, these descriptors are best-suited for prob-
lems (e.g. ferroelectricity, piezoelectricity, shape memory effect, ion transport etc.,)
in condensed matter systems that rely on structure-based materials design. In such
materials, the ability to deterministically control local atomic structure would enable
tuning many important electronic and structural functionalities, in turn critical for
technological applications. In fact, one of the common themes is that these materi-
als show some form of symmetry-breaking structural phase transitions and/or local
structural distortions [e.g. cooperative atomic displacements (also known as “shuf-
fles”), lattice strain, coupling between shuffles and strain].
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Symmetry-mode analysis involves describing a distorted (low-symmetry) struc-
ture as arising from a (high-symmetry) parent structure with one or more sta-
tic symmetry-breaking structural distortions. In the undistorted parent structure,
symmetry-breakingdistortion-modes have zero amplitude.The low-symmetryphase,
however, will have finite amplitudes for each mode described by an irreducible rep-
resentation (irrep) of the high-symmetry structure compatible with the symmetry
breaking that are defined relative to specific k-points [11]. Additional details regard-
ing distortion-mode decomposition analysis may be found in the literature [12–15].

The distortion-mode analysis is powerful, because it provides a complete and
systematic basis to isolate multiple and complex distortions in crystals. By com-
parison of the amplitude of various modes, it is possible to directly assess each
modes contribution to the mechanism underlying a structural and electronic phase
transition. Furthermore, the distortion-mode analysis relies solely on crystal struc-
ture data, which enables both bulk and thin film stabilized structures with identical
compositions to be evaluated on equal footing [16]. What is of particular utility in
formulating quantitative structure-property relationships using distortion modes is
that each irrep carries a physical representation of the displacive distortions—the
unique atomic coordinates describing various symmetry-adapted structural modes.
The relative importance of these modes on properties may then be mapped by means
of ab initio computational methods or via detailed and systematic experimentation.
Accessibility to computational methodsmake the distortion-mode analysis powerful,
because it is possible to independently study various distortions and directly assess
their role in structural and electronic phase transition mechanisms and macroscopic
properties. Note that such direct comparison is not possible through aggregate para-
meters widely followed in the literature such as the tolerance factor, ionic radius, or
electronegativity, i.e., when the composition is fixed. The physical basis that supports
the usage of distortion-modes for materials informatics is grounded in Landau theory
[17], where the free energy of a crystalline solid undergoing a phase transition from
a high-symmetry parent phase to a low-symmetry distorted phase can be expressed
in terms of one or more order parameters.

In this paper, we discuss the implications of symmetry-mode analysis as descrip-
tors for materials informatics based on the perovskite structure class of materials.
One of the motivations for choosing perovskites and oxides is based on the works
of Benedek and Fennie [18] and Cammarata and Rondinelli [19], who used a com-
bination of symmetry arguments and first-principles calculations to explore the con-
nection between structural distortions and materials functionality. We have extended
these guidelines to the family of perovskite nickelates (originally not considered by
Benedek and Fennie [18]), where we uncover the meaning of the metric “tolerance
factor” (t = rA+rO√

2(rB+rO )
, where rA, rB and rO are the Shannon’s ionic radii [20] of A,

B and Oxygen elements in the ABO3 chemical formula) and show that it encodes
information that pertain to a set of the key distortion modes. It is this intriguing con-
nection between t and distortion modes that makes t such an informative descriptor
for capturing key structural and chemical trends in nickelates. Furthermore, we also
show that t does not account for all distortion modes present in the ground state
structure.
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11.3 Perovskite Nickelates

The structure of perovskite oxides (see Fig. 11.1) are characterized by a three-
dimensional network of corner-connected metal–oxygen octahedra, with alkali,
alkaline-earth or lanthanide elements filling holes in the body centers of the octahe-
dral network.

These nickelate oxides exhibit non-trivial changes in structure and physical prop-
erties, including sharp first-order temperature-driven metal to insulator transitions,
unusual antiferromagnetic order in the ground state, and site- or bond-centered charge
disproportionation owing to the valence and spin state flexibility of the Ni3+ cation
[21]. Furthermore, it has been shown that both the electronic and magnetic transition
temperatures can be modified by applying epitaxial strain when these materials are
grown as thin films [22, 23].

In Fig. 11.2, we show the rare earth (R) cation-temperature phase diagram of bulk
RNiO3 nickelate perovskites. In our earlier work [15], we focused on two important
characteristics in the phase diagram: the (i) metal to insulator transition temperature
(TMI) and the (ii) paramagnetic to antiferromagnetic phase transition temperatures
(TN, Néel Temperature). We uncovered key distortion modes and statistical correla-
tions that govern the temperatures of the two phase transitions. One of the important
findings is that R+

3 andM+
5 irreps capture the TN trends that were previously unknown

and the implications are that these distortions are not encoded in the widely recog-

Fig. 11.1 Crystal structure of an ideal cubic perovskite showing three-dimensional octahedral BO6
connectivity with A-site cations filling the holes of the octahedral network
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Fig. 11.2 Rare earth cation–temperature phase diagram of RNiO3 perovskite nickelates [21]

nized t metric.Note that inRNiO3, the rNi is fixed; therefore, t forRNiO3 is equivalent
to rR (i.e. the ionic size of the trivalent rare earth ion).

Our objective here is defined as follows, can we use informatics to uncover the
physical meaning of t in terms of the distortion modes? We address this question
by building a data set of distortion modes of known RNiO3 perovskites (see the
work of Balachandran and Rondinelli [15] for additional details on symmetry-mode
analysis). We used a total of 10 RNiO3 compounds for our analysis, where R = La,
Nd, Pr, Tm, Lu, Dy, Er, Y, Ho and Yb. Except LaNiO3, all other nickelates were
considered in the experimental ground state monoclinic P21/c structure; we used
the rhombohedral R3̄c ground state structure for LaNiO3.

11.3.1 Statistical Correlation Analysis

In Fig. 11.3, we show that the irreps are statistically correlated with one another, indi-
cating that the distortions occur cooperatively in bulk nickelates. A strong positive
correlation is found between irreps that describe distortions to the NiO6 octahedra:
M+

2 , M
+
3 , X

+
5 , R

+
4 , and R

+
5 and TMI. These five irreps fully describe the Pnma (space

group # 62) crystal structure relative to the cubic phase found in the metallic nicke-
lates at high temperature, reinforcing the concept that the orthorhombic distortions
are largely responsible for the electronic bandwidth-controlled transport behavior
in nickelates. Our analyses also reveal the existence of a strong linear relationship
between TN and two irreps, R+

3 and M+
5 . The linear relationship is valid for both

TMI = TN and TMI > TN nickelates, indicating that R+
3 and M+

5 contain additional
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Fig. 11.3 Statistical
correlation plot showing the
positive (blue) and negative
(red) pairwise correlation
between distortion modes
(M+

2 , M
+
3 , X

+
5 , R

+
4 , R

+
5 , R

+
1 ,

R+
3 and M+

5 ), TMI and TN.
© 2014 Reproduced with
permission of the American
Physical Society from [15]

information not captured by either the conventional 〈Ni–O–Ni〉 angle or tolerance
factor descriptors. Although there are eight algebraically independent irreps neces-
sary to decompose themonoclinic P21/c phase, the presence of statistical correlation
suggests redundancy—meaning, we can further reduce the complexity of the dataset
and transform the statistically correlated irreps as linear combinations of one another.
We used principal component analysis (PCA) to accomplish this objective.

11.3.2 Principal Component Analysis (PCA)

PCA is one of the well known linear data-dimensionality reduction methods [24].
PCA assumes that the dataset consists of a large number of intercorrelated descrip-
tors that lie on a linear manifold. The purpose here is to reduce the dimensionality
of a data set, while retaining maximum variability. This is achieved by transforming
the original set of variables to a new set of derived variables, called the principal
components (PCs), which are ordered so that the first few retain the most of the vari-
ation present in all of the original variables. The first PC accounts for the maximum
variance (highest eigenvalue) in the dataset; the second PC is orthogonal to the first
and accounts for most of the remaining variance. Thus, the mth PC is orthogonal to
all others and has the mth largest variance in the set of PCs. Once all the PCs have
been calculated, only those with eigenvalues above a critical level (a rule of thumb is
to retain only those PCs whose eigenvalue is greater than or equal to 1) are retained.

Each PC is a linear combination of the weighted contribution of all attributes and
the magnitude of the weight determines the relative impact of each descriptor in
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Fig. 11.4 Scree plot showing the relative variance of each principal component (PC) from the
RNiO3 data set. The first three PC’s together capture more than 95% variance in the data set. After
the third PC (circled), the relative variance captured by the subsequent PC’s are small and can be
ignored

affecting the PC. From the knowledge of the calculated PCs, one can determine the
relative importance of each descriptor and the correlation between any two descrip-
tors. Information pertaining to the relative importance of the descriptors will be
helpful in identifying the dominant descriptors, whereas the correlation information
will be helpful in screening the dominant descriptors to avoid choosing redundant
descriptors. Here, we find that the first three PCs together capture 95% of variation
in the dataset. The scree plot is shown in Fig. 11.4. As a result, we have reduced the
dimensionality of the dataset from 8 to 3. Therefore, we retain only the first three PCs
for further consideration. In fact, the first two PC’s alone capture 91% of variation
in the data.

In 11.1 and 11.2 , we show the weighted contribution from the linear combination
of irreps captured by PC1 and PC2, respectively.

PC1 = −0.38R+
1 − 0.12R+

3 − 0.41R+
4 − 0.42R+

5 − 0.38X+
5 − 0.41M+

2 − 0.42M+
3 − 0.06M+

5
(11.1)

PC2 = 0.17R+
1 + 0.66R+

3 − 0.17R+
4 − 0.10R+

5 − 0.12X+
5 − 0.01M+

2 − 0.06M+
3 − 0.69M+

5
(11.2)

Note that PC1 and PC2 captured 68 and 23% of variation, respectively, in the dataset.
PC1 captures descriptors associated with octahedral distortions that describe the
orthorhombic crystal symmetry (Pnma) and also note that there is a significant con-
tribution coming from the R+

1 irrep that describes the octahedral breathing distortion,
which is the primary order parameter for the phase transition from the paramagnetic
metallic Pnma structure to the paramagnetic insulating monoclinic P21/c structure.
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Fig. 11.5 Scatter plot between tolerance factor (t , y-axis) and left principal component 1 and right
principal component 2. We find that principal component 1 correlates strongly with t (R2=0.90),
relative to principal component 2 (R2=0.74)

On the other hand, in PC2 R+
3 (Jahn-Teller distortion) and M+

5 (out-of-phase tilting)
distortions have the dominant contribution, but are orthogonal to PC1. One of the
active areas of research in perovskite nickelates is to identify the mechanism respon-
sible for the metal-to-insulator and the paramagnetic to antiferromagnetic phase
transitions. Clearly, the insights hidden in the PC1 and PC2 should be rigorously
explored using additional experimentation and theoretical simulations to elucidate
the physical origin behind these correlations.

In Fig. 11.5, we show how PC1 and PC2 relate to the t . Clearly PC1 (Fig. 11.5a)
correlates strongly with t with a correlation coefficient (R2) of 0.9, relative to PC1
(Fig. 11.5b) whose R2 is only modest at 0.74. Note that Fig. 11.5 also includes
LaNiO3, whose ground state structure is R3̄c; in sharp contrast with other nick-
elates whose ground state is P21/c. The key implications are that the octahedral
distortions (in terms of M+

2 , M
+
3 , X

+
5 , R

+
4 , and R

+
5 ) that describe the Pnma symme-

try and the breathing distortion (R+
1 ) together collectively correlate strongly with the

t metric. The full description of PC1 is given in 11.1. On the other hand, octahedral
distortions described by irreps R+

3 and M+
5 (see 11.2) do not correlate strongly with

t , indicating that the geometric t metric is much less sensitive to electronic-based
structural effects such as Jahn-Teller distortions.

11.4 Summary

In summary, descriptor development is a critical component in the materials infor-
matics research paradigm. The choice of the descriptions must be such that, in addi-
tion to helping accomplish statistical correlations between structure and property, it
must provide mechanistic insights to address causal relationships. Distortion modes
based on symmetry-mode analyses satisfy these requirements, which makes it very
attractive for developing quantitative structure-property relationships in materials
informatics.
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Chapter 12
Discovering Electronic Signatures for Phase
Stability of Intermetallics via Machine
Learning

Scott R. Broderick and Krishna Rajan

Abstract In this paper, we identify the signatures of the density of states (DOS)
spectra which control the bulk modulus via a hybrid informatics driven analysis. The
signatures of the DOS spectra then constitute the electronic structure fingerprint of
the material. This provides an important step in the “inverse design” process because
if we are able to compute bulk modulus from the DOS, then we can also compute
the DOS from the bulk modulus, and in this way create a “virtual” DOS based on
optimized properties. In this paper, we identify the signatures for bulk modulus, and
associate the signatures with specific chemistry and crystal structure. Further, we
identify the details in the electronic structure that result in Ni3Al and Co3Al having
such different stabilities in L12 structure although they are seemingly isoelectronic.
This paper lays out the methodology for extracting these features and has signifi-
cant implications, such as in the identification of critical element substitutions, by
developing a framework for accelerated and targeted materials design.

12.1 Introduction

This paper develops a template for “inverse design” of alloy chemistries, which we
demonstrate for the density of states and bulk modulus of a material. The ques-
tions we are asking here is: (i) if we know the target property for a material we
want, can we from that compute the chemistry and structure of the material and
(ii) what signatures of the density states spectra dictate very different structural sta-
bilities of seemingly isoelectronic systems? These issues represent an inverse logic
to traditional materials design, such as through density functional theory (DFT),
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where the input is the chemistry and structure, and the output is property and sta-
bility [1–4]. This provides an alternate approach to other linkages of DFT and
informatics which seek to calculate properties for as many materials as possible,
and provide a database that can be searched for thematerial closest to having the target
properties [5]. We instead start with a relatively small database and require few, but
clearly defined, DFT calculations. This logic further differs from the traditional def-
inition of inverse design in materials science by going from property to condition, as
opposed to defining inverse design as going from calculation to experiment [6, 7].

We have previously employed informatics for modeling the density of states
(DOS) spectra as a function of the properties of constituent elements [8]. This work
represented a new approach for rapidly modeling DOS spectra with an accuracy
nearly equivalent to DFT calculations. Further, our prior work also demonstrated the
capability of informatics for extracting signatures of the DOS spectra correlating to
chemistry, crystal structure and stoichiometry [9, 10]. These prior works therefore
introduced an approach for modeling DOS spectra based on modifications in the
material chemistry and structure. This paper develops the next stage in the inverse
design problem of connecting bulk modulus and density of states. That is, if we can
extract modulus from the DOS spectra, then we can design a “virtual” DOS spectra
which is optimized based on our property requirements. When connected with our
prior works in connecting chemistry and DOS [8], and connecting crystal structure to
DOS [9, 10], the framework is completed for going from target property to “virtual”
DOS to crystal structure and chemistry, and therefore the computation of a “virtual”
material with the target properties.

As the DOS represents all electronic interactions of a system, it theoretically con-
tains information on all electronic properties [11–15]. However, the understanding
of how these properties are captured by the DOS is not well understood. Therefore,
another objective of this paper is in understanding the connection between DOS and
property. That is, to identify what signatures related to the intensities of the DOS are
controlling the material property. One example of a property which is known to be
at least qualitatively represented within the DOS spectra for single elements is bulk
modulus [16]. The Fermi energy (EF) indicates themaximumoccupancy by electrons
at ground state conditions, with DOS values at energies greater than EF representing
unoccupied available states, while the transition from bonding to antibonding states
is represented as a well-defined and extended valley [17]. Occupancy of a bonding
state corresponds with an increase in strength, while additional occupancy of an anti-
bonding state results in a decrease in strength. The bulk modulus can then be found
to be related with the distance between the bonding-antibonding transition and EF.
We expand that logic here but for alloy systems.

12.2 Informatics Background and Data Processing

The ability to predict properties of new alloy systems from an input of elemental
DOS requires the integration of principal component analysis (PCA) and partial least
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squares (PLS). This work represents a hybrid approach because we are predicting
the property as a summation of the PLS coefficients and the PCA weightings (i.e.
Property = f[�(Component of PLS result * Component of PCA result)] as opposed
to considering the two components independently (i.e. Property = f[�(Component
of PLS result)* �(Component of PCA result)]. That is, in the final development
of an equation, the PLS and PCA components of the analysis cannot be separately
extracted. This hybrid capacity of the approach is demonstrated in this paper.

The PCA serves to extract the unique patterns within the DOS spectra most corre-
lated to the information discriminating the materials. A dimensionally reduced map
can then be used to correlate the conditions of the materials to the signatures of the
DOS spectra. The primary application however in this paper is the parameterization
of the DOS spectra, where the parameterization is not based on a curve fitting, but
rather by correlating the conditions of the material with the features. PLS is then used
to develop a predictive model between these PCA derived parameters and material
property, in the form of a quantitative structure-property relationship (QSPR).

The input DOS curves were calculated using the full-potential linearized aug-
mented plane wave (FP-LAPW) method [18] within the density functional theory
(DFT) [19] approach and implemented in the WIEN2K code [20]. The exchange-
correlation term was determined within the generalized gradient approximation
(GGA) using the scheme of Perdew and Wang [21]. DFT is based on the discovery
that a relationship exists between the potential of a system and the electronic density
and is able to model the electronic structure based on the relationships between these
factors. The input into a DFT calculation is the chemistry and relative atom positions,
and using quantum mechanical approximations DFT is able to model the electronic
structure. Although the calculation is based on a k-space representation and structure
is not directly involved in the calculation, we have previously shown using statistical
learning that crystal structure is clearly represented within the DOS spectra [9, 10].

PCA classifies the data based on a set of orthogonalized axes (principal compo-
nents) comprised of a combination of descriptors whichmaximize the variance in the
data captured [22–25]. By applying PCA to the DOS spectra, the strongest patterns
in the data can be identified in a limited number of dimensions. PCA operates by
performing an eigenvector decomposition of the data. As such, the principal com-
ponents (PCs) capturing the most information are associated with the largest eigen-
values of the covariance matrix and their corresponding eigenvectors. The original
data is decomposed into two matrices: the scores (T ) and loadings (P). The scores
matrix classifies the samples, in this case different alloy chemistries and structures,
as defined by their differences in the DOS. The loadings matrix contains information
on how the different descriptors (here DOS at specific energy values) differentiate
the samples. The PCA equation is summarized by (12.1), where E is the residual
matrix, and X is the input data matrix.

X = T · PT + E (12.1)

The loadings and scores matrices contain the principle patterns within the DOS
curves and the scaling of those patterns to create the final DOS curve, respectively.
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Fig. 12.1 The development of each row of the input matrix (X in (12.1)), demonstrated for Ni3Al.
Each row of X contains a unique alloy chemistry and structure. The columns of the input matrix
contain every data point in the DOS curve, the rows contain different alloy systems, and the value in
the matrix is the DOS, or intensity, at the specified energy. The DOS is first normalized by dividing
every value by the maximum DOS value for the alloy, and then the mean of all DOS spectra at
each respective energy is calculated and subtracted from the normalized spectra for each alloy. This
processed (normalized and mean centered) DOS for each alloy is added as a separate row in the
input matrix

The number of dimensions of T and P may be equal to the number of data points
within the entire DOS curve and is on the order of hundreds of PCs in this case,
although typically a significantly reducednumber ofPCs is sufficient for capturing the
information of interest. The treatment of the input data is demonstrated in Fig. 12.1,
and defines how the data from the DFT calculations is processed prior to being
included in X . As an example, we show the DOS of Ni3Al in the L12 structure. As
our primary objective here is the extraction of patterns in the DOS spectra, we first
normalize the DOS spectra by dividing all points by the maximum DOS value, and
thereby the largest DOS value becomes unity. Then the mean for each energy value,
across all DOS spectra included in the analysis, is calculated, with the DOS aligned
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so that the Fermi energy (EF) is equal to zero. This mean spectra is then subtracted
from the DOS spectra. This processed DOS spectra is then used in the PCA analysis.
The DOS spectra shown as the informatics input in Fig. 12.1 represents an entire row
in matrix X from (12.1). This process is repeated on every system included in the
analysis.

In PLS the training data is converted to a data matrix with orthogonalized axes,
which are based on capturing the maximum amount of information in fewer dimen-
sions [26–30]. The relationships discovered in the training data can be applied to
a test dataset based on a projection of the data onto a high-dimensional hyperplane
within the orthogonalized axis-system. Typical linear regression models do not prop-
erly account for the co-linearity between the descriptors, and as a result the isolated
impact of each descriptor on the property cannot be accurately known. However, by
projecting the data onto a high-dimensional space defined by orthogonal axes which
are comprised of a linear combination of the spectral parameters defining the DOS
curves, the impact of the descriptor on the property can be identified independent of
all other descriptors.

PLS is used here to predict the relationship between spectral features and bulk
modulus for different alloy chemistries. The prediction serves to create a connection
between chemistry, electronic structure, and property. The PLS prediction requires
two inputmatrices: amatrixwhich contains descriptors related to the input conditions
(scores matrix) and a matrix containing the values which are to be predicted (bulk
modulus), building a model between the input descriptors and the descriptor to be
predicted. To ensure accuracy of the QSPR modeling and to verify that we are not
over-fitting the data, we employ a cross validation to the predicted results. To this
end, we compute both the root mean square error of calibration (RMSEC) and the
root mean square error of cross validation (RMSECV). We perform a leave-one-out
(LOO) cross validation and measure the accuracy of the model with and without
the variable left out in the LOO approach. This step is repeated for removing each
sample from the training data. That is, amodel is built removing each sample, thereby
ensuring that the physics captured in the model development is sufficiently robust
that it can be used on newmaterials. The RMSEC and RMSECV values are then used
to define the final predictive model. To select the number of latent variables with a
suitable combination of accuracy and robustness, we define a criteria for selection
of latent variables based on the ratio of RMSECV (m)/RMSECV (m + 1) where m is
equal to the number of latent variables. From our criteria, m is selected such that it
is the maximum number with the ratio below the threshold value of unity. To ensure
that we are not over-fitting the data, a minimal number of parameters (PC scores
values) are included so that the number of alloy chemistries is sufficiently larger than
the number of parameters used as terms in the QSPR.

The systems that were modeled via DFT and are used in the analysis are listed
in Table12.1, with the bulk modulus (B) values also provided. The crystal structure
type for each alloy is shown in parentheses.
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Table 12.1 List of alloys modeled via DFT (crystal structure in parentheses) and used as input
systems in this work

Alloy B (GPa)

CuZn (B2) 113.8

CoTi (B2) 177.5

Ni3Al (L12) 177.2

NiAl (B2) 189.0

CoAl (B2) 177.5

Co3Al (L12) 123.9

NiTi (B2) 159.0

Be3Co (D03) 156.5

TiAl (L10) 112.5

Fe3Ni (L12) 141.0

FeNi3 (L12) 189.1

FeNi (L10) 183.5

FePd3 (L12) 192.3

Fe3Pd (L12) 155.9

FePd (L10) 179.1

The modulus values are also listed, as calculated via DFT

12.3 Informatics-Based Parameterization of the DOS
Spectra

The analysis described here represents a general methodology, and can therefore
adapt with additional systems. As additional systems are added, the spectral patterns
and subsequently the parameters will change. This flexibility in the approach is one
of the primary benefits because it is robust enough to represent changes in systems or
more range of possible systems. The output from the PCA is then spectral parameters
for systems which we know the bulk modulus, and spectral parameters for systems
which we do not know the bulk modulus. The parameters for the systems with the
bulkmodulus known are input into the PLS approach, and amodel linking the spectral
patterns and bulk modulus is then developed. This model can then be used to predict
the bulk modulus of the new systems as a function of their spectral parameters.
This logic is demonstrated here for bulk modulus, but should be applicable to any
electronic property.

The results of the PCA on the DOS spectra is provided in Figs. 12.2 (scores plot)
and 12.3 (loadings spectra). In the scores plot, we are able to extract some trends
correlating to the new axis system. The first is that PC2 captures the crystal structures
of the alloys, with those having L12 structure having positive PC2 and those having
negative PC2 value being a structure besides L12. PC3 captures subtleties in the DOS
spectra correlated with chemistry, which we observe through Co and Ni containing
alloys trending towards positive PC3 and those with Fe and Pd trending towards
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Fig. 12.2 PCA scoresmappings of the alloys based solely on aDOS input. These values correspond
withmatrix T in (12.1). From thesemappings of the first three PCs,we identify trends corresponding
with crystal structure, chemistry, and electron valency. Our information based parameterization
therefore captures variances related to these various factors which will then be represented in the
development of the QSPR. The axes of the plots are defined by the loadings plots of Fig. 12.3

negative PC3. The physics captured by PC1 is harder to define, although it largely
captures the relationship with d-electron valency, as those alloys with elements with-
out d-electrons (Al and Be) generally having lower PC1 values. Therefore, the PCA
analysis is able to capture subtle variations in the DOS associated with crystal struc-
ture, chemistry, and valency.

The loadings plot mathematically define the axes of the scores plots, with the axes
a sum of the values at each energy but weighted according to the loadings values.
Therefore, those features with larger loadings values more prominently define the
axes. For example, in loadings spectra 1, the DOS at lowest energy have a negative
correlation with PC1 scores value, while increasing DOS near EF increases the PC1
value, which is also relatively insensitive to the changes at higher energy values,
as seen by the loadings values closer to zero. This loadings pattern fits with our
interpretation of the PC1 axis, as those elements without d-orbitals will increase
the DOS at lower energies, and therefore decrease the PC1 scores value. Similar
interpretation can be applied to the other PCs, as is shown for PC2 in Fig. 12.4. In
this case, we identify the features in the DOS which promote the L12 structure.
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Fig. 12.3 The three most
significant spectral patterns
for differentiating the DOS
spectra. These spectra
represent the first three rows
of matrix P in (12.1). These
spectra define the axes of
Fig. 12.2, and also define the
physics associated with our
parameterization which will
be connected to bulk
modulus. Further, the
features of the DOS can be
correlated with material
conditions, such as is
demonstrated in Fig. 12.4 for
crystal structure

An issuewhen developingQSPRs is that we need the number of conditions (in this
case unique chemistries and structures) to be well larger than the number of predictor
variables (in this case the parameterization of theDOS spectra as represented through
the PC scores values). Otherwise, the risk of over-fitting the model becomes high. To
address this challenge, beyond employing the cross validation approach discussed in
Sect. 12.2, we reduce the number of parameters included. The importance of each PC,
as measured through variance, is listed in Table12.2.We select six PCs as the number
to include, as this represents a dimensionality lower than the number of conditions
(fifteen), while capturing greater than 90% of the total variance in the DOS spectra.
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Fig. 12.4 Correlating signatures in the DOS spectra with the L12 crystal structure. In Fig. 12.2, we
identified PC2 as separating L12 from other structures, and specifically with L12 structures having
positive PC2 value. Increasing the DOS at the regions with positive loadings values increases
the PC2 scores value, while increasing DOS at the regions with negative PC2 loadings decreases
the scores value. Therefore, we find that those compounds with larger DOS values below and at the
Fermi energy are more like L12, while those with higher DOS above EF are less correlated with the
L12 structure

Table 12.2 Variance captured by each PC

PC % Variance % Total variance

1 62.6 62.6

2 11.2 73.8

3 6.4 80.1

4 4.6 84.8

5 4.3 89.0

6 2.8 91.8

7 2.1 93.9

8 1.9 95.8

9 1.3 97.1

10 0.8 98.0

11 0.8 98.8

12 0.5 99.3

13 0.4 99.7

14 0.2 99.9

15 0.1 100.0

16 0.0 100.0

In order to reduce the number of predictor variables used in developing our QSPR, we select only
the first six PCs, which capture over 90% of the information contained by the DOS spectra. We
therefore include six parameters derived from the DOS in modeling bulk modulus. The information
represented by the other PCs is moved to the residual matrix (E in (12.1))



232 S.R. Broderick and K. Rajan

Fig. 12.5 Residual spectra for Ni3Al. This spectra represents the information captured in PC7
through PC16, and which is not included in modeling bulk modulus. By removing this residual sig-
nal, we have reduced noise or other information not contributing relevant information for modeling
material properties for Ni3Al. A comparable residual spectra is calculated for every alloy system
in the analysis

In (12.1), matrices T and P therefore have six dimensions each. The loadings spectra
from the other PCs after the first six are put into the residual matrix (E in (12.1)).
As an example of the information in the residual matrix, the row corresponding to
Ni3Al is shown in Fig. 12.5. This information is therefore further removed from the
input spectra shown in Fig. 12.1 for Ni3Al.

We have decomposed the DOS spectra for each alloy into seven components (PC1
through PC6 and the residual spectra). The components corresponding to relevant
signal for Ni3Al are shown in Fig. 12.6, with each spectra corresponding to a different
PC.The sumof these components then is the rowcorresponding toNi3Al in thematrix
TPT in (12.1). This sum also is equal to the informatics input spectra from Fig. 12.1
minus the residual matrix from Fig. 12.5. The deconvolution to these six spectra is
based on the processing of the DFT output, the PCA analysis and the removal of
the residual signal. These spectra are then used to determine the parameters used
in extracting the modulus. The parameter is calculated as ratio of these patterns to
the respective loadings spectra. For example, T1P1T for Ni3Al divided by the PC1
spectra of Fig. 12.3 results in a value of −3.94. Similar logic is used for calculating
the other five parameters for Ni3Al, and is also repeated for every alloy system.
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Fig. 12.6 Ni3Al spectra from the first six PCs. The parameters used in the modeling are then
these spectra divided by the respective loadings spectra for each PC. The scaling value is then the
parameter for that PC. For example, the six parameters resulting from Ni3Al are −3.94, 3.43, 1.13,
−3.16, −1.94 and 1.68. Parameters are computed in the same way for each alloy. The collection of
these parameters are then the predictor matrix for extracting the bulk modulus

12.4 Identifying the Bulk Modulus Fingerprint

Based on the predictor matrix we developed as described in Sect. 12.3, we develop a
QSPR for the bulk modulus using PLS. The PLS prediction is based on correlating
the features of theDOS (as represented throughT) with the bulkmodulus. The output
of the PLS model is then a coefficient matrix β and a constant C, such that the bulk
modulus is defined as in (12.2), where the bulk modulus (B) of material i is a function
of the product of the PLS coefficient and the scores value corresponding to each PC j.
The correlation between the input mean-centered DOS curve, with the DOS input
for every energy k, is then defined by (12.3).

Bi =
∑6

j=1
βj ∗ Ti,j + C (12.2)
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Fig. 12.7 The result of the
hybrid approach for
predicting bulk modulus
from an input of alloy DOS
spectra. The accuracy of the
results demonstrates that
bulk modulus is clearly
represented within the DOS
spectra, and that it can be
quantitatively extracted via
statistical learning

Bi =
∑6

j=1

∑1000

k=1
βjXi,kPj,k + C (12.3)

Based on (12.2) and (12.3), the terms of β were calculated as 1.09, −1.65, 1.27,
−3.19,−2.77 and 2.48, in order of j from one to six. To test and ensure the robustness
of the model, the cross-validation approach described in Sect. 12.2 was utilized. The
result of the model comparing the informatics modeled B with that calculated via
DFT is shown in Fig. 12.7. The high accuracy of this approach shows that we are
capturing the features in the DOS which control the bulk modulus.

Based on a comparison of the magnitudes of the coefficients in β, PC1 which
has the fewest features impacts the bulk modulus the least. The other PCs, such
as PC4, PC5 and PC6, which have higher weighting, also contain more features
as seen in Fig. 12.6. For Co3Al, the fourth and fifth patterns were most important
(as determined by the value for parameter times coefficient) for determining the
bulk modulus. To extract the features which most impact the modulus, we utilize
(12.4), which also highlights the hybrid approach, as the PLS and PCA derived
components are summed together based on the component number, and not using
the two approaches individually. This therefore converts the single modulus value to
a spectra with dimensionality equivalent to the number of values at unique energy
intervals. The spectral values (Bi,k) are a measure of the contribution of the DOS at
each energy to the bulk modulus. We therefore develop spectra which correlate the
features of the DOS with the modulus, as the features with largest intensity represent
the signatures of the DOS which impact the modulus.

(12.4)
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Fig. 12.8 Identification of signatures of the DOS spectra for Ni-Al alloys in L12 and B2 structure.
The circled regions define the energies where the largest magnitude features are. The corresponding
features of the DOS spectra at those energies are then extracted. We notice for both structures, the
bonding-anti-bonding transition is identified as a feature of theDOS corresponding to bulkmodulus,
and therefore we identify this transition as a signature of the Ni-Al alloys

The comparison between the weighting on the bulk modulus and the DOS spectra
is possible as they have the same energy values. Therefore, we can trace the energy
corresponding to the signature back to the original input spectra. This is represented
in Figs. 12.8 and 12.9, wherewe compared, respectively, the signature ofNi-Al alloys
in different structures and L12 structures with different chemistries. In this way, we
identify the signatures common to crystal structure and the features common to
chemistry. The circles regions in these figures correspond to the highest intensity
features in terms of contribution to the bulk modulus. The circled regions within the
input DOS spectra are at the same energies and therefore identify the most important
features of the DOS in terms of contribution to bulk modulus. In the case of changing
chemistry, we identify similarities in terms of Ni-Al chemistries (structure-modulus
relationship). We find that for both L12 and B2 structure, the bonding-anti-bonding
transition is a prominent feature. Conversely,when comparingL12 structures butwith
different chemistries (chemistry-modulus relationships), we find that a doublet peak
between larger peaks is identified in each case, with only the bonding-anti-bonding
transition identified as a signature for Ni3Al.

We therefore have through this work identified two signatures of the DOS for
Ni3Al and used them to explain the differences in bulk moduli of alloys, as well as
the differences in stability for alloys with similar electronic structures. We have also
for Ni3Al correlated one signature to structure and two signatures to chemistry. This
result is summarized in Fig. 12.10. In the case of bonding-anti-bonding transition as
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Fig. 12.9 Identification of signatures of the DOS spectra of L12 structures for Ni3Al and Co3Al.
The interpretation of this figure is the same as in Fig. 12.8. In this case, we identify the circled
doublet peak in both, and therefore identify it as a signature of the L12 structure. This difference
in features define the difference in stability for Co3Al and Ni3Al, which have similar electronic
structures but very different stabilities in L12 structure

Fig. 12.10 We identified two signatures of the DOS for Ni3Al in the L12 structure which determine
the bulk modulus. The first signature is the circled doublet peak which is due to the L12 structure, as
described in Fig. 12.9. Further, the signature correspondingwith the bonding-anti-bonding transition
is due to the chemistry. The correlation with modulus, electronic signatures, crystal structure and
chemistry provide a pathway for inverse design for chemical substitutions
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a signature, this is not surprising as that is a factor in determining single element
transition metal bulk modulus, as discussed in the introduction. However, the sig-
nature of the peaks correlating to L12 structure would not be identified otherwise.
As discussed, engineering the intensity of these peaks leads to controlling the bulk
modulus of thematerial.When combined with our prior work in connecting structure
and chemistry to the DOS, we now have a template for multi-scale “inverse design”
of new alloys.

12.5 Summary

In this paper, we developed a hybrid informatics approach for extracting bulk mod-
ulus from the DOS spectra and identifying subtle features in the DOS spectra which
dictate differences in stability of electronically similar alloys. By connecting prop-
erty and DOS spectra, we can now develop “virtual” DOS which correspond to
target property, thereby representing an inverse design approach where we start with
the property and calculate the material, as opposed to the traditional approach. The
approach developed here first extracted parameters based on the comparison of the
DOS spectra with the signals corresponding to material characteristics. The mod-
ulus was then modeled based on the quantitative relationship between the spectral
weightings and the property, thus developing electronic structure-crystal structure-
property relationships. The natural extension of this work is predicting the influence
of alloying additions onDOS and the use of our approach as ameans for searching for
stability of multicomponent systems without doing large numbers of first principles
calculations, as well as rapidly exploring the role of rare earth additions compared
to non-rare earth additions in terms of electronic structure.
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Chapter 13
Combinatorial Materials Science,
and a Perspective on Challenges in Data
Acquisition, Analysis and Presentation

Robert C. Pullar

Abstract Combinatorial Materials Science is the rapid synthesis and analysis of
large numbers of compositions in parallel, created through many combinations of a
relatively small number of starting materials. It is, therefore, essential that for a truly
combinatorial approach both synthesis and measurement must be high-throughput,
to handle the large number of samples required. Since the first serious attempts at
combinatorial searches in Materials Science in the mid 1990s, the technique is still
very much in its infancy, falling way behind the progress made in biomedical and
organic combinatorial chemistry, despite attracting increasing interest from industry.
The most investigated materials by combinatorial methods are catalysts and phos-
phors, and most work has been on libraries in deposited thin film form. This chapter
will give a broad overview of the different synthetic strategies used, with a particular
look at the difficulties of producing thick film or bulk ceramic/metal-oxide libraries.
A vast number of characteristics can be quantified in combinatorial materials
libraries, from compositional, crystal phase, structural and microstructural informa-
tion, to functional properties including catalytic/photocatalytic, optical/luminescent,
electrical/dielectric, piezoelectric/ferroelectric,magnetic, oxygen-conducting,water-
splitting,mechanical, thermal/thermoelectric,magnetoelectric/optoelectric/magneto-
optic/multiferroic, bioactive/biocompatible, etc. This chapter will cover the range of
high-throughput measurements open in combinatorial Materials Science, and espe-
cially the challenges in presenting and displaying the large and complex amount
of data obtained for functional materials libraries. To this end, the use of glyphs is
looked at, glyphs being data points that also contain extra levels of information/data
in graphic form.
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13.1 Combinatorial Materials Science—20 Years
of Progress?

Combinatorial materials science is the rapid synthesis and analysis of large numbers
of compositions in parallel, created through many combinations of a small number
of starting materials. It is, therefore, essential for a truly combinatorial approach
that both synthesis and measurement must be high-throughput, to handle the large
number of samples required. Combinatorial searching was initiated in the 1960s for
the solid-phase synthesis of peptides by Merrifield [1] (Fig. 13.1), who later won a
Nobel prize for this, but it took until the 1990s for industry to adopt this technique,
which is now deemed essential in the pharmaceutical industry, where both sample
preparation and analysis are carried out by robots.

The first compositional gradients studied were those naturally occurring in co-
deposited thin films to construct alloy phase diagrams [2]. In 1970, Hanak proposed
his ‘multiple sample concept’ in the Journal of Materials Science as a way around the
traditional, slow, manual, laboratory preparation procedures used to make samples
for testing [3]. Robotic search methods for cuprate superconductor ceramics was
explored by the GEC Hirst Laboratories (Wembley UK) in the early 1990s [4], and
a series of combinatorial searches in Materials Science were carried out in 1995
by Xiang, Schultz et al. [5], on a 128 sample combinatorial library of luminescent
materials obtained by co-deposition of elements on a silicon substrate. Thismilestone
paper was published in Science, and had a picture of the combinatorial library on the
cover (Fig. 13.2).

Since then, the interest in combinatorial materials science searches has increased
greatly over the last 20years, to the extent that there are now regular conferences on
this specific field [6, 7]. The existence of a whole journal dedicated to Combinato-
rial Chemistry since 1999 (now renamed ACS Combinatorial Science), and special
issues of Measurement Science and Technology on combinatorial materials science
(e.g. 2005, vol. 16, issue 1), show how the field is growing (Fig. 13.3). There have
also been several high-profile review papers on combinatorial methods [8] and high-
throughput analysis [9, 10]. Using data fromScopus, it can be seen that the number of

Fig. 13.1 The first true combinatorial synthesis, created byR.B.Merrifield, for the high-throughput
parallel synthesis of peptides [1]
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Fig. 13.2 The cover of the Science issue in 1995 containing the paper by Xiang and Schultz, with
a photograph of a section of the luminescent thin film combinatorial library [5]

combinatorial and high-through put papers is steadily increasing each year, but that
clearly progress in Materials Science is lagging behind severely (Fig. 13.4). Indeed,
if all the publications on combinatorial and high-throughput are broken down into
their Scopus subject areas (Fig. 13.4), it can be seen that a quarter are in Biochem-
istry, and another quarter in Medicine or Engineering, indicating the dominance of
the biomedical sector in this field. Materials Science accounts for only 4% of all
combinatorial and high-throughput articles over this period, and the situation is not
rapidly improving, as looking at 2014 only, Materials Science is still in last place of
all these categories, with only 6%.

Breaking down research into general combinatorial and high-throughput by coun-
try, it can be seen that the USA dominates hugely producing over 1/3 of all papers,
but that a rapidly industrialising China is now in second place, ahead of the UK,
Germany, Japan andFrance (Fig. 13.5). Looking at the institutions that have produced
the most articles, all are in North America except for the University of Cambridge
(UK) in 5th place, and the University of Tokyo, in 14th Place (Fig. 13.5).



244 R.C. Pullar

Fig. 13.3 A selection of journals and special issues devoted to combinatorial synthesis

However, if this data is analysed only for articles related to Materials Science
(Fig. 13.6) it paints a different picture, with Japan now in a clear second place to the
USA, which dominates even more, and four Japanese institutions are in the top ten,
including first (Tokyo Institute of Technology), third (National Institute forMaterials
Science Tsukuba) and fourth (Japan Science and Technology Agency) places. In
second position is the National Institute of Standards and Technology (NIST, USA),
which has initiated a very large research programme into Combinatorial Materials
Science.

Currently, industry is already heavily involved in the development of synthe-
sis techniques, and the development and automation of measurements, suitable
for combinatorial searches—indeed, it should be noted in Fig. 13.5 that the bio-
medical company Pfizer is in 13th place. Major companies investing in such
research also include Hitachi, General Electric, Kodak, Ciba, Hoechst, Bosch, Bayer,
BF Goodrich, Siemens, Dow, Englehard, Dupont, L’Oreal, ICI, PPG, Unilever,
Procter & Gamble, Intel, Heraeus, Alcoa, Celanese, Rhodia, Shell, Exon-Mobil,
Volkswagen,Honeywell,Degussa,AzkoNobel, LucentTechnologies (Bell Labs) and
BASF [11], and Kurt J Lesker Co. have developed commercial combinatorial PLD
(Pulsed Laser Deposition) systems. However, combinatorial and high-throughput
methods for materials science are in still their infancy. The main activity is in the
USA and Japan, with the leading countries in the EU being Germany and the UK,
reflecting the output of academic papers shown above. A search on Scopus revealed
a total of 17 800 patents on combinatorial and high throughput synthesis, but only
1000 of these were related to materials science.
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Fig. 13.6 The countries and institutions that have published the most articles on combinatorial and
high-throughput Materials Science between 1995–2014 (data from Scopus)

13.2 Combinatorial Materials Synthesis

Much current high-throughput combinatorial research is focused on biotechnology
and biological systems [12]. However, here I shall only look at the state of the
art in Materials Science of metals, oxides and ceramics. To date, most such com-
binatorial high-throughput methods use thin films, deposited on the nanoscale by
various methods. If we break down the combinatorial and high throughput Materials
Science papers by type of material investigated, we can see that the vast major-
ity are on thin films and/or nanoparticles and nanosynthesis, usually by deposition
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(Fig. 13.7), and that very few are on bulk or thick film ceramics despite the fact that
such materials can have completely different properties and applications than their
thin film/nanoscale analogues. In fact, it can be seen that research into such materials
peaked in 2008, while the other categories have continued to increase, demonstrat-
ing both the difficulty and the need in developing combinatorial techniques for bulk,
sintered ceramics.

Several methods of high-throughput thin-film synthesis techniques have been
developed for exploring new compositions, as well as for optimising process para-
meters of materials. Methods to prepare different types of combinatorial thin-film
libraries include discrete sequentiallymasked depositions [13] or composition spread
co-deposition [14] bymolecular beamepitaxy (MBE), pulsed laser deposition (PLD),
liquid source misted chemical deposition (LSMCD) [15], composition-gradient
molecular layer epitaxy [16], ion beam sputtering deposition (IBSD) and chemi-
cal vapour deposition (CVD) [17]. All of these techniques tend to result in libraries
with uneven thickness and stoichiometry, but they allow for easy mapping of the
structural changes or functional properties.

MBE, or combinatorial laser MBE (CLMBE), uses a mask pattern which can
be designed on a computer to use a masked carrousel, evaporating several targets
with a laser to deposit epitaxial layers on the substrate, with variations in relative
stoichiometry across the library (Fig. 13.8). MBE can be more accurate than PLD, as
is involves monolayer epitaxial growth, but this naturally makes it very slow, which
is not ideal for high-throughput synthesis. Other deposition methods such as PLD,
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Fig. 13.8 Combinatorial laser molecular beam epitaxy (CLMBE) process: a Mask designed
on computer; b compositional spread created on substrate one layer at a time using masks;
c rapid high-throughput analysis possible, such as luminescence under UV light; d photograph
of Tb1−x−yScxPryCa4O (BO3)3 library under 254nm UV excitation; e emission intensity map
same ternary thin film library of Tb1−x−yScxPryCa4O (BO3)3 [18]

Fig. 13.9 The pulsed laser deposition (PLD) combinatorial film deposition process

CVD and IBSD are quicker, and use similar masking effects or shutters (Fig. 13.9),
but result in more variable compositions.

Combinatorial methods which can be applied to bulk or thick film ceramics usu-
ally use either high-throughput synthesis of powders [19] (Fig. 13.10) or ink-jet
printing methods [20] (Fig. 13.11). Much of the work on combinatorial powder syn-
thesis involves only the production of a library of powders with a compositional
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Fig. 13.10 Combinatorial powder library of doped TiO2 made continuous hydrothermal synthesis
[24], andSEMimages of a 48 sample library of perovskite powders also produced via a hydrothermal
batch process [19]

spread, with no subsequent high-throughput processing, e.g. autopipetting of sols
to produce small amounts of combinatorial powders [21], powder metallurgy using
acoustic vibration valves to dispense powders [22], solution combustion synthesis
of combinatorial libraries of photocatalytic perovskites in microwells [23], or con-
tinuous hydrothermal synthesis of combinatorial libraries of oxide powders from
nanoparticle suspensions [24, 25] (Fig. 13.10). Some workers also incorporate a
high-throughput processing method with synthesis, e.g. a combinatorial robot sys-
tem for measuring, mixing and moulding liquid samples by automatic micropipette
to produce a library for ceramics on a pallet [26], or robotic dosing and planetary
ball milling of 40 different samples with a parallel pressing of 5 samples at a time
[27].

The ink-jet printing process creates a thick film library already laid out on a sub-
strate ready for processing [28, 29], and this method has been particularly successful
in the discovery of new phosphors [30, 31], such as the 121 sample library of the
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Fig. 13.11 Schematic diagram of the combinatorial inkjet printing process, and libraries thus
created of red Y2−x−yEuxBiyO3 and blue KrSr1−x−yPO4:Tb3+xEu2+y phosphors under UV light
[31, 32]

KrSr1−x−yPO4:Tb3+xEu2+y UV phosphor system or the red Y2O3-based phosphor
libraries created by Chan et al. [31, 32] (Fig. 13.11).

The author, R. C. Pullar, was part of the Functional Oxides Discovery using Com-
binatorial Methods (FOXD) project, using the London University Search Instrument
(LUSI) robot tomake sintered combinatorial libraries of ceramic compositions. LUSI
automatically created sintered bulk ceramic libraries by ink-jet printingmulticompo-
nentmixtures on substrates, then robotically loading the libraries into a flatbed 4-zone
furnace for firing, with up to 100 ◦C difference between each zone, unloaded the sam-
ples, and could also place them on a test bed for measurement [33]. The ceramics
under investigation in the FOXD project were dielectrics, ferroelectrics [34–36] and
ionic conductors [37], and libraries were made and characterised (Fig. 13.12).
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Fig. 13.12 The LUSI robot [33], a printed and sintered Ba1−xSrxTiO3 library on a single 50mm
long substrate (each dot 1–2mm wide), SEM images of the sintered library, EDS measurements
showing the variation in composition cross the library, and dielectric measurements showing the
functional gradient in Curie temperature across the library [34, 35]
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Other workers have also made and characterised libraries of thin film dielec-
tric ceramics, such as ternary oxide ZrOx -SnOy-TiOz [14], microwave dielectrics
[38], high εr (50–80) HfO2-TiO2-Y2O3 dielectrics [39], sol-gel piezoelectrics [40],
and a 64 sample LSMCD ferroelectric Bi3.75LaxCe0.25−xTi3O12 library [15]. Bulk
ceramic piezoelectrics have also been studied via combinatorial methods [41].
Many other ceramics have been investigated such as high-throughput analysis of
semi-conductors [42], combinatorial physical vapour deposition of gold nanoparti-
cles [43], sol-gel metal oxide nanoparticles [26], SOFC ceramics [24], catalysts [44],
pigments [45], gas sensor materials [46], electrochemical electrodes [47] and hydro-
gen energy storagematerials [48].Maybe the best known newmaterial discovered via
combinatorial methods is the Co-doped TiO2 dilute magnetic semiconductor [49],
discovered by chance in a combinatorial search of 162 thin film photocatalyst can-
didate materials [16], and leading to an explosion of interest in such materials. In
his review [10], Zhao lists 23 new materials successfully discovered by combina-
torial high-throughput searches, and examples include Zr0.2Sn0.2Ti0.6O2 dielectrics
from libraries of 30 multicomponent systems [50], high εr microwave dielectrics
[14, 39, 51], cobalt oxide magnetoresistance materials [52], hydrogen storage can-
didates [48], novel photocatalysts [23], and improved catalysts from a library of
thousands of samples [44]. In their analysis of new generation capacitance materi-
als for random access memory devices, replacing amorphous silica with optimised
materials based on ZrO2-SnO2-TiO2, Koinuma and Takeuchi [8] suggest that 900
one-by-one sputtering preparations would have been required to fully explore the
combinations of the ternary Zr-Sn-Ti oxide system prepared in the compositional
spread by van Dover et al. [50].

Most combinatorial materials searches involve thin film techniques, and for some
applications where the end product will be exclusively in thin film form, this does
make sense. However, many materials are also required in bulk form, and the bulk
properties can be quite different to those of thin films, where surface diffusion, strain
effects from substrate-lattice mismatch, and surface and skin electrical effects dom-
inate. For example, ferroelectric functions are highly dependent upon strain effects
in thin films. Also, most thin films are epitaxial or single crystal, and hence have no
grain boundaries, which can have a large effect on electrical, magnetic, dielectric,
mechanical and transport properties. From the point of view of constructing large
materials properties data bases for data mining and prediction of novel compositions,
it could be argued that bulk properties are much more relevant than those of thin
films. Furthermore, for many applications bulk or thick film ceramics are required,
e.g. multilayer chip capacitors, low temperature co-fired ceramics (LTCC), struc-
tural and engineering ceramics, refractories, clays, glazes and household ceramics,
SOFC and ionic conductors, electromagnetic and radar absorbing materials (RAM),
catalyst supports, substrates, etc.

As discussed above all current bulk ceramic combinatorial projects either just
make a combinatorial library of powders through a high-throughput synthesis process
(e.g. hydrothermal) [24], or they use a solution based process to deposit or print
a library on a substrate (e.g. ink-jet printing) [29]. In the first case, there is no
high-throughput processing, and each sample in the library must be individually
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prepared (e.g. pressed in a die) from the powder, usually by hand. In the second
case, the solution chemistry, stability during a printing run, drying in a regular shape,
and reaction with, or lack of adherence to, the substrate, becomes a serious issue,
especially in complex multi-component systems. The issue of reactions with, or
lack of adherence to, substrates is also an issue for all ink-jet based combinatorial
processes, as they need a substrate that can be both printed on and heated during
sintering [28].

It was Dr. Pullar’s experiences with ink-jet printing that led him to consider an
alternative solution, which gave the benefits of a bulk or thick film ceramic library,
but in a much simplified, novel adapted tape casting process. Using a minimum of
solvent, the combinatorial components could be mixed with a commercial mixer
tip, designed for mixing adhesives, polymers and dental cements. Unlike a solution
based process, much less volume is lost on drying, leading to a denser green body that
should produce dense ceramics, and no segregation or precipitation effects should
occur. The libraries can be made either on a substrate, or a release tape which can be
removed before firing, avoiding substrate problems if necessary. As the sintering step
is often a rate limiting step in combinatorial ceramics, a multiple zone furnace was
used to simultaneously fire five libraries at different temperatures. This technique has
been used to create sintered libraries of magnetoelectric SrFe12O19/BaTiO3 compos-
ite ceramics, in compositional steps of 10%, in which the two phases, one mag-
netic and the other dielectric, did not react, maintaining their respective characters
(Fig. 13.13) [53].

13.3 High-Throughput Measurement and Analysis

The importance of combinatorial high-throughput materials science has been clearly
shown above, and although still in its infancy, the fact that so many industries are
investing in developing such techniques demonstrates their belief in its future signif-
icance. Once established, its impact on Materials Science will be enormous, like on
that of the pharmaceutical industry, and increasingly biomedicine and biochemistry.
However, to be successful, combinatorial materials synthesis also requires high-
throughput measurement. The diverse spectrum of functionalities in materials repre-
sents a significant challenge in high-throughput characterisation, and often involves
development of novel measurement methods [9]. Zhao’s review paper [10] is good
overview of the techniques available for combinatorial high-throughput analysis,
although it does concentrate on the low-micro and nanoscale, which is by no means
all that is of interest. It must be understood that the aim of characterisation in com-
binatorial science is a broad brush mapping or analysis of the sample to show trends
and unexpected or complimentary properties, not a precise measurement—that can
come later on materials of interest. The properties of combinatorial libraries can be
measured as a function of composition to give a functional gradient, which can also
vary with processing conditions between identical libraries processed differently.
Properties that can be investigated include:
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Fig. 13.13 A photograph of sintered, bulk SrFe12O19/BaTiO3 library (with compositional ratios
long the library from 9:1 to 1:9 for SrM:BT); a diagram of the parallel high-throughput firing
process; SEM images of the microstructure of the library; EDS spectra of compositional variation
along the library; magnetic measurements showing the functional variation in magnetisation (Ms)

along the library [53]

• Composition and phase purity/solid solutions/lattice parameters/crystal structure
• Microstructure/density/porosity/grain boundaries and segregation
• Mechanical properties: hardness, elastic modulus, stress/strain, etc.
• Electrical properties: Conductivity, superconductivity, ionic conduction, oxygen
vacancies
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• Dielectric properties: permittivity, ferroelectricity, piezoelectricity, capacitance,
Cuie points

• Magnetic properties: domains, magnetisation, hysteresis loops, Curie points,
• Optical properties: electro-optics, magneto-optics, luminescence/fluorescence
• Thermal properties: Thermal conductivity, thermoelectrics, thermal creep, ther-
mal expansion

• Multiferroics: multiferroic and magnetoelectric coupling, responses to direct and
indirect stimuli

• Chemical reactions: catalysis, selectivity, redox reactions, fuel cells, water
splitting/H2 production

• Band gaps: photocatalysis, solar energy, semiconductivity, smart materials, etc.
• Biomaterials: antibacterials, human compatibility, biological markers, etc.

Many of these parameters can also vary with changes in measurement temperature,
pH, wavelength of light, or applied electrical or magnetic fields, adding yet another
layer of complexity, and creating yet more data.

The most basic tools for characterising or mapping composition and phases
present are XRD (x-ray diffraction) and EDS (energy dispersive spectroscopy, also
known as EDX—energy dispersive x-ray analysis). Use of Real Time Multiple Strip
(RTMS) XRD detectors, such as the PANalytical PIXcel range or Shimadzu One-
Sight, has become essential for the rapid high-throughput structural characterisation
of combinatorial libraries, by greatly speeding up the measurement time with lit-
tle or no loss of resolution, meaning that scans that would normally take hours
can be carried out instead in a few minutes (Fig. 13.14). As well as identifying the
phases present, XRD also gives structural information, lattice parameters, etc., and
the coefficient of thermal expansion (CTE) can be evaluated from changes in lattice
parameters with temperature [10].

EDS is another very rapid technique, in which measurements take a few minutes,
which can be used to identify elements present in a scanning electron microscope
(SEM) image (see Fig. 13.13), and can also map the distribution of those elements.
While doing EDS, SEM images can also be rapidly taken, to study microstructure,
porosity, sintering, liquid phases, phase/grain boundaries, etc., and Electron Back-
Scatter Diffraction (EBSD) is also a useful tool for identifying crystal structures in
reference to a library of known structures. Many points can be measured in a minute
on polished samples, and it can also measure changes in orientation in anisotropic
samples.

Scanning probe techniques such as Atomic Force Microscopy (AFM), Piezore-
sponse Force Microscopy (PFM) and Magnetic Force Microscopy (MFM) are often
collectively called Scanning ProbeMicroscopy (SPM, Fig. 13.15), and are ideal tools
for high-throughput mapping of the functional gradients of combinatorial libraries,
and can map a library in minutes. PFM can show piezoelectric grains and domains,
and with measurements before and after poling, hysteresis loops and piezo coeffi-
cients (d33) can be measured. MFM can show magnetic domain structure, and with
an external magnetic field it can show hysteresis loops and coercivity (Hc) values
for each point measured, but it cannot be used to measure magnetic moments or
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Fig. 13.14 RTMSXRDdetectors, whichwork by simultaneouslymeasuring over a range of angles,
greatly speed up XRD measurements of combinatorial libraries. The measurements below, taken
in only 2min each by the author over a range of 20–70◦, clearly show the change in structure from
tetragonal BaTiO3 to orthorhombic CaTiO3 across a bulk ceramic Ba1−xCaxTiO3 library [36]

saturation magnetisation (Ms) values, as it is measuring the remnant magnetisation.
Nanoindentation can be carried out by the AFM tip to give mechanical proper-
ties such as hardness and elastic modulus. A related technique is Atomic Force
Acoustic/ultrasonic Microscopy (AFAM), which vibrates the AFM cantilever in
contact mode, the change in resonant frequencies giving information about stiffness
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Fig. 13.15 Scanning Probe Microscopy (SPM) techniques useful for high-throughput combina-
torial libraries: Top, Magnetic Force Microscopy (MFM) can measure magnetic properties and
map magnetic domains, and Piezoresponse Force Microscopy (PFM) can measure piezoelectric
hysteresis loops at different spots on a library, and map piezoelectric domains. Bottom, the Evanes-
cent Microwave Probe (EMP), or Scanning Evanescent Microwave Microscope (SEMM), can map
dielectric properties over a library such as permittivity (εr) or dielectric loss (tan δ), as shown by
the tan δ maps of a Ba1−xSrxTiO3 thin film library with varying growth temperature, and the εr and
tan δ maps of a ternaryBa1−x−ySrxCayTiO3 thin film library [54]

and local elastic constants. The Evanescent Microwave Probe (EMP), or Scanning
Evanescent Microwave Microscope (SEMM), is a kind of SPM that measures the
change in dielectric properties of a metal tip embedded in a microwave resonator
just above, or in contact with, the surface [54]. Interaction with the sample changes
the resonant frequency and dielectric loss of the resonator, and from this electrical
conductivity, permittivity (εr) and quality factor (Q) of the sample can be calcu-
lated and mapped in minutes, and although accurate quantitative measurements are
problematic, EMP has been used on combinatorial libraries [54] (Fig. 13.15).

Electrical conductivitymeasurements are very important in combinatorial searches
for insulators, superconductors, semiconductors and thermoelectrics, and also in
dielectrics and ferroelectrics along with permittivity and dielectric loss (tan δ, Q ≈
1/ tan δ). Bulk samples and thick films can be analysed by a simple capacitance
method, if top and bottom electrodes are applied, to measure all of these values
quickly, and over a range of temperatures with longer runs to give Curie points (Tc)

and ferroelectric/relaxor behaviour. The author has used such a method to simulta-
neously measure multiple points in bulk dielectric ceramic combinatorial libraries
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Fig. 13.16 Example of amultiple electrode array used for high-throughput electricalmeasurements
of libraries, and the map of permittivity over a ternary Ti-Hf-Y oxide thin film library [39]

Fig. 13.17 General schematic diagram for the high-throughput optical measurement of combina-
torial libraries, where light could be of various wavelengths (UV, visible, laser) and many kinds
of spectrometer could be applied, and optical measurements of transmittance and band gap at UV
wavelengths for a Zn1−xMgxO thin film library

between 150–450K, clearly showing Tc and phase transitions [35, 36]. An 8mm2,
64 multielectrode array for high-throughput impedance spectroscopy, suitable for
dielectrics, semiconductors and electrocatalysts, has also been developed [55] and
used to test for gas sensing abilities across a library, and εr and leakage current
have also been mapped from capacitance-voltage (C-V) and current-voltage (I-V)
measurements of ferroelectric PLD thin film libraries [39] (Fig. 13.16).

Optical techniques such as FTIR, Raman and UV-Vis spectroscopy, colourimetry,
cathodoluminescence (CL) and photoluminescence (PL) are clearly suitable for high-
throughput analysis and mapping (Fig. 13.17), needing short measurement times and
measuring only the spot in the beam at one time. The first two techniques can give
information on chemical bonding, phonon modes (and dielectric loss), polarisation,
2D spectra with changes over time/environment/temperature, and fingerprints of
molecules and structures. The others have been used in combinatorial searches for
pigments, phosphors, diodes and displaymaterials. CCDcameras have also been used
to measure the output/absorption of combinatorial libraries [10, 56], and spatially
resolved infrared imaging used as a high throughput hydrogen storage candidate
screening technique [48].
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Fig. 13.18 Left SMOKE map of Co-Fe-Ni ternary system, showing the magnetic hysteresis
loop extracted from just one of the pixels/data points [10]. Right scanning SQUID images of
La1_xCaxMnO3 taken at 7K, showing the magnetic domains and the transition from strong to weak
magnetization [57]

Magnetic techniques other than MFM of great interest, and needing more devel-
opment, are Scanning Magneto-Optical Kerr Effect (SMOKE) probes and scanning
SQUID microscopy (Fig. 13.18). SMOKE can measure Ms if an external magnetic
field is applied, and a hysteresis loop and coercivity data can be extracted from every
pixel on the combinatorial map [10], but it is difficult to measure low electrically
conductive oxides. Scanning SQUIDs have also been used to map combinatorial
thin films [57], and a recent development is one that can operate at room tempera-
ture, although they cannot use an external field, and therefore only measure remnant
magnetisation and are not currently capable of quantitative measurements.

Thermal conductivity mapping can be measured by the change in thermore-
flectance of sample, heated by a femto-second pulsed laser, which has been coated
with an Al film to absorb the 770nm Ti:sapphire laser [10]. Mass spectroscopy (MS)
has been used a lot in high-throughput catalytic analysis [44, 58], and a robot system
measuring with an electrode array to form 16 electrochemical cells has been used
in combinatorial searches for new electrode materials [47]. Catalysis is probably the
field where the most progress has been made in combinatorial Materials Science,
driven by industry and the relative ease of high-throughput measurement, and such
synthesis and measurement systems are quite well established now, with automatic
data extraction and analysis [58] (Fig. 13.19).

IR-sensographyhas beendevelopedwhere an IR-camera acts as an external optical
detector system for sensor libraries, detecting small temperature changes due to
physisorption or chemisorption [59], and high-throughput impedance screening has
been used on gas-sensing materials in variable atmospheres and temps [55? ]. There
has been a lot of development on the high-throughput search for electrochemical
and gas sensor materials, including a 16 sample SnO2-based gas sensor library for
testing as an electronic nose, and a complete high throughput assembly consisting of
a 64 sample reactor for the sensor libraries (Fig. 13.20), with IR-cameras, switching
multimeter for dc-resistance measurements and impedance measurements, a test
gas supply array for different test gases, and software for control of experimental
flow, data recording, data evaluation, data mining and a database [46, 60]. Ambitious
projects like this arewhere the eventual future of combinatorialmaterials science lies,
in fully integrated, automated high-throughput synthesis and measurement systems,
with artificial intelligence (AI) driven control, analysis and data mining [61].
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Fig. 13.19 High-throughput set up for discovery of catalysts, where the same probe is used to both
deposit the samples and measure the library after processing. a A schematic diagram of the setup
and a photograph of the 207 sample library produced, b measured screening results for catalysis
across the library and c visualisation of the results on the layout of the sample [58]

13.4 Data Analysis and Presentation

If we are going to generate large amounts of data, we also need to be able to analyse
it, understand it, and interpret it in a way which is comprehensible. In an ideal
combinatorial system, the flow would be as shown in Fig. 13.21, with synthesis,
processing andmeasurement of libraries all carried out by a single robot,whichwould
then feed the data to a data base, which could be data mined and used to predict the
next likely candidate systems to be investigated based on all results so far, feeding
back to the next step in the synthesis process. In reality, combinatorial Materials
Science is still a long way from such an automated feedback process, although much
progress is being made on data mining using various forms of statistical analysis, AI
and evolutional software [62–65].

Other authors will deal with this topic, but also of great importance is how we
can interpret and present such a multitude of results and data to a human audience,
in such a way that it can be easily comprehended. The number of degrees of free-
dom in a simple binary component system are staggering—in A1−xBx we have x



262 R.C. Pullar

Fig. 13.20 Schematic diagram of the set up for the combinatorial synthesis and high-throughput
measurement of 64 sample gas sensor libraries, the multi-electrode array used for the library, and
measured results showing the Argand plots of impedance, and sensitivity to 25 ppm of H2 (S, height
of bar) with measuring temperature (each progressive bar, at 250, 300, 350 and 400 ◦C) for all 54
samples in the library [60]
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Fig. 13.21 The ideal combinatorial synthesis, processing, measurement and analysis set-up
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Fig. 13.22 Triangular phase diagrammapof a ternary librarywere change in colour/contrast depicts
variation in a property

compositions, which could be processed for various temperatures, periods or pres-
sures/atmospheres, and we want to show evolution/existence of crystalline phases,
perhaps details on microstructure, and functional properties, ideally all in a single
image or graphic. Clearly this is quite a challenge, and with ternary A1−x−yBxCy

systems it becomes even more so. Triangular phase diagram maps can be used to
show variation in composition with position and variation in a property with change
in colour or contrast (Fig. 13.22). However, problems arise when we want to see the
effects on various properties, or a plot of data, for each data point. A very interesting
overview of the various possibilities for high-throughput analysis, and examples of
unusual ways to display those results, is detailed in the review by Potyrailo et al. [66].

A solution to this is the use of glyphs—a glyph being a single data point that con-
tains extra data in graphic form. A simple way to achieve this is to have each point
on a binary or ternary plot as a different colour, size, shape or transparency, where
the variation in these characteristics represents variations in functional or structural
properties, for example the plot by the author showing the ternary BaxSryCazTiO3

system in Fig. 13.23. In this plot the position represents the composition, the colour
shows the position of the main XRD peak, telling us whether we have orthorhombic
or tetragonal phases and solid solutions, and the size of the point shows the measured
permittivity, from 147 for the smallest to 3573 for the largest. Further changes in
feature such as point shape or transparency/fill could be used to indicate other prop-
erties in the same plot. Another example is shown in Fig. 13.24, from the author’s
paper [53], of a binary magnetoelectric composite SrM-BT combinatorial library.
The black line shows the real change in composition, with the red area representing
SrM and green BT, the plotted spheres show the magnetisation (the centre of each
sphere being the data point), and the relative volume of the 3D spheres represents the
permittivity (the larger permittivity values are too big to be represented as areas of
2D circles). It can easily be seen that the evolution in composition is not completely
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Fig. 13.23 Plot by the author of the ternary BaxSryCazTiO3 system, using glyphs to show compo-
sition (position), position of the main XRD peak (colour) and permittivity (size of the point)

linear along the library (or else the red/green diving line would a straight diagonal),
that these non-linear variations in composition are reflected in the magnetisation
values, and as magnetisation of the composite decreases permittivity increases. The
second image in Fig. 13.24 shows seven degrees of data in a single plot: The quater-
nary Co-Te-Mn-Cr oxide catalyst system composition is depicted by the 3D pyramid,
and the activity of each sample in the library towards one of three different molecules
is shown by changes in colour, size and transparency of the data point [66, 67].

Another approach is to use pie chart glyphs for each point, as also shown in
Fig. 13.24. One example is from the author’s paper [53], showing the same magneto-
electric composite library, but this timewith the points representing themagnetisation
on the y axis and the supposed % of SrM on the x axis, and a pie chart showing the
actual measured relative proportions of the two ceramic phases in that sample of
the composite library, in an easy-to-comprehend manner. It can again been seen that
non-linear behaviour in the magnetisation through the library matches discontinu-
ities in the quantity of the SrM magnetic phase. The final image in Fig. 13.24 shows
a structural phase diagram produced using the weights various x-ray diffraction pat-
terns, with the position of each point showing the composition in a ternary Fe-Pd-Ga
material, and the glyph pie charts showing the relative proportions in that compo-
sition of seven possible phases found throughout the library, indicated by different
coloured sections in the pie charts [68].

Data point glyphs can also be used to contain actual images, such as plots, SEM
images or photographs. Two examples are shown in Fig. 13.25. The first example
shows a compositional triangle in a ternary substituted ferroelectric BiFeO3 library,
but at each data point is a small image glyph of the measured ferroelectric polar-
isation hysteresis loop [69]. Not only can the general shape of each loop also be
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Fig. 13.24 Various uses of glyphs in displaying complex series of combinatorial data. From top
left a chart showing relative proportions of two phases (red and green, black line), magnetisation
(position on left axis) andpermittivity (volumeof 3Dsphere) [53];A four component catalyst library,
with composition shown by position in the 3D pyramid, and catalytic activity with three molecules
shown by colour, size and transparency of the data point [66, 67]; A chart showingmagnetisation (on
left axis), supposed % of SrM in the composite (bottom axis) and actual compositional proportion
by a pie chart glyph for the data points [53]; Triangular map of composition, with pie charts and
the use of 7 different colours for the data point glyphs to show the composition of phases at each
point [68]

seen qualitatively, and those compositions with a good hysteresis loop easily identi-
fied, the individual loops can then be enlarged to give fully quantitative information
on that loop. The second shows the compositional map of a Fe-Co-Mo alloy, with
a magnetic hysteresis loop glyph at each data point, which again can be enlarged
to give fully quantitative magnetic data [63]. In this case, the plot contains both
in-plane (IP) and out-of-plane (OP)measurements. This last paper was part of a com-
binatorial search for replacements for the increasingly expensive rare earth magnets.

Clearly, many other kinds of glyph could be used as a data point. Furthermore,
if plots are in online or electronic form, they can be interactive, with enlarged plots,
more details, or even several different properties plots and images given when the



266 R.C. Pullar

Fig. 13.25 Top, pseudoternary compositional map of ferroelectric BiFeO3, co-doped with
(Bi, Sm) and (Fe, Sc), with the ferroelectric hysteresis loop measured at each point shown as a
glyph. The six loops highlighted in the red rectangle as shown in enlarged form below, demon-
strating the fully quantitative nature of these data [69]. Bottom, compositional map of a Fe-Co-Mo
alloy, with magnetic hysteresis loop glyphs at each data point (a), which can be enlarged to give
fully quantitative magnetic data (b) [63]
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relevant glyph is clicked upon, touched or activated. This opens up a whole new
area of interactive combinatorial data display and analysis, and exciting new way to
handle and explore the large amount of data generated in high-throughput searches.
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Chapter 14
High Throughput Combinatorial
Experimentation + Informatics =
Combinatorial Science

Santosh K. Suram, Meyer Z. Pesenson and John M. Gregoire

Abstract Many present, emerging and future technologies rely upon the develop-
ment high performance functional materials. For a given application, the performance
of materials containing 1 or 2 elements from the periodic table have been evaluated
using traditional techniques, and additional materials complexity is required to con-
tinue the development of advanced materials, for example through the incorporation
of several elements into a single material. The combinatorial aspect of combining
several elements yields vast composition spaces that can be effectively explored with
high throughput techniques. State of the art high throughput experiments produce
data which are multivariate, high-dimensional, and consist of wide ranges of spatial
and temporal scales. We present an example of such data in the area of water split-
ting electrocatalysis and describe recent progress on 2 areas of interpreting such vast,
complex datasets. We discuss a genetic programming technique for automated iden-
tification of composition-property trends, which is important for understanding the
data and crucial in identifying representative compositions for further investigation.
By incorporating such an algorithm in a high throughput experimental pipeline, the
automated down-selection of samples can empower a highly efficient tiered screen-
ing platform. We also discuss some fundamental mathematics of composition spaces,
where compositional variables are non-Euclidean due to the constant-sum constraint.
We describe the native simplex space spanned by composition variables and provide
illustrative examples of statistics and interpolation within this space. Through further
development of machine learning algorithms and their prudent implementation in the
simplex space, the data informatics community will establish methods that derive
the most knowledge from high throughput materials science data.
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14.1 Tailoring Material Function Through Material
Complexity: The Utility of High Throughput
and Combinatorial Methods

Many technological industries ranging from manufacturing to renewable energy rely
on the discovery of new high-performance solid state materials. A common approach
to discovery of advanced materials is through increasing chemical complexity, for
example through the incorporation of several elements into a single material. This
long-standing approach in materials research traditionally involves the synthesis and
evaluation of one composition at a time. Most of the single-element and binary-
composition spaces were effectively investigated in the 20th century by this low-
throughput method, and the frontier has thus been pushed to higher order ternary,
quaternary, etc. composition spaces. Due to the vast number of possible sets of
elements and compositions in a given composition space, systematic experimental
investigation of these high-order composition spaces require sophisticated tools for
high throughput synthesis and evaluation of new compositions. Recent advancements
in experimental methods for the rapid synthesis of material libraries and rapid mea-
surement of material properties are yielding vast ensembles of complex data [14, 17,
19, 46, 49, 60, 66]. A tenet of materials science is the development of composition-
property relationships, and the automated identification of relationships within high
throughput datasets requires the development of new informatics tools.

In this chapter we discuss a high throughput experimental pipeline which moti-
vates the development of specific informatics tools. In particular, we note the impor-
tance of tiered screening wherein a high throughput pipeline contains a series of
experimental measurements that operate at disparate sample throughput. To avoid
bottlenecks, a sample down-selection method must be implemented. The informat-
ics challenge arises in the automated identification of a subset of samples for lower
throughput measurements such that the selected subset retains maximal “information
content,” or maximal ability to establish composition-property relationships with the
incomplete dataset. With high throughput datasets in hand, analysis of compositional
trends requires prudent practices for the statistical analysis of compositional data.
We review unique attributes of compositional data, and through illustrative examples,
show that informatics and statistical algorithms for compositional data must account
for the non-Euclidean nature of compositional variables.

14.2 Materials Datasets as an Instance of Big Data

High throughput materials science requires handling enormous amounts of complex
data produced by modern high-throughput experimental technologies. Many modern
techniques produce data beyond what can be readily processed, and even fields with
well-established data archives and methodologies, such as genomics, are facing new
and mounting challenges in data management and exploration. Besides the size in
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Table 14.1 The number of unique compositions in a discrete composition library is shown for
several values of the number of components n and composition steps δ

num. steps 10 20 30 40 50

δ 10 % 5 % 3.33 % 2.5 % 2 %

n = 2 11 21 31 41 51

n = 3 66 231 496 861 1,326

n = 4 286 1,771 5,456 12,341 23,426

n = 5 1,001 10,626 46,376 135,751 316,251

n = 6 3,003 53,130 324,632 1,221,759 3,478,761

The number of δ steps (“num. steps”) between 0 and 100 % is also listed

bytes, these modern data sets are multivariate, high-dimensional and consist of wide
ranges of spatial and temporal scales. All of this severely restricts the capability of
traditional approaches to modeling, analysis, and visualization of data. The data not
only consist of vectors in Euclidean spaces, but may also include new types of data
(e.g. tensor fields), or any of those data types defined not just on a Euclidean space,
but on manifolds or graphs as we discuss for compositional variables.

To conceptualize the extent of data in explorations of high order composition
spaces, one can count the number of discrete composition samples required to cover
the composition space with a fixed composition interval. A composition space of n
components contains n − 1 degrees of freedom due to closure, the requirement that
the individual concentrations sum to 1. Table 14.1 provides the number of unique
compositions in an n-component composition space with composition interval δ, for
several illustrative values of these parameters. For unexplored composition spaces,
using a fine composition step is desirable to mitigate the possibility of missing a
new high performance material, and to explore high order composition spaces, high
throughput techniques are required. The systematic exploration of the various com-
binations of the components is an example of combinatorial materials science, and
given the vast number of possible combinations and the speed at which they are
probed experimentally, we refer to these investigations as high throughput (HiTp).

For each composition, experimental investigations may include a scalar measure-
ment of performance (so-called “FOM”, Figure of Merit), multi-dimensional data
such as images and spectra, or any combination thereof. In particular, the extent of
data may vary for each composition in a given library, and the disparate dimensional-
ity of data increases the data complexity and the challenges for informatics algorithm
development.

Data mining and machine learning embrace many sophisticated data structures.
One of the main difficulties in data mining is caused by dependencies between mul-
tiple variables/parameters. Identifying a set of independent variables/parameters can
be seen as a particular case of a general approach called data dimensionality reduc-
tion. When data points are close to a hyperplane in a Euclidean space, methods such
as principal component analysis (PCA) and correspondence analysis (CA) are widely
used for dimension reduction. These methods allow one to extract major dependen-
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cies between physical variables. In case when data lie on a non-Euclidean space,
more sophisticated methods of analysis are required. Complex data sets cannot be
adequately understood without detecting various scales that might be present in the
signal. However, traditional multiresolution analysis (MRA) tools based on wavelets
are restricted mostly to one-dimensional or two-dimensional signals. Thus, in order
to accurately extract information from modern data sets, the development of mul-
tiscale analysis applicable to functions defined on manifolds and graphs is of great
importance. Extending multiresolution analysis from Euclidean to curved spaces and
networks presents a significant challenge to applied mathematics. This is an emerg-
ing field, which is still being developed. Wavelet-type bases and frames consisting of
nearly exponentially localized band-limited functions are imperative for computa-
tional harmonic analysis and its applications in statistics, approximation theory, and
so on. For the two-dimensional sphere and group of its rotations, frames have already
found a number of important applications in statistics and crystallography [6, 18,
58]. An adaptive multiscale approach to data analysis based on synchronization was
suggested in [59]. The approach is nonlinear, data driven in the sense that it does not
rely on a priori chosen basis, and can be extended to automatically determine the
scale for complex signals defined on graphs/manifolds (regarding analysis on com-
pact manifolds, see also remarks in section “Composition Spread and Distances”
in this chapter). Overall, MRA is a necessary, indispensable approach to efficient
representation/analysis of complex information (signals, images, etc.) produced in
high throughput and combinatorial experiments.

Traditional statistical methods may lead to erroneous dependencies and incorrect
inferences when applied to modern complex data, as we demonstrate in this chapter.
But even if data consist of usual vectors in a Euclidean space, there are still many
open issues. One of them is related to the so-called null-hypothesis testing (NHST).
It has been recognized lately that it is necessary to perform NHST to more instruc-
tional effect sizes, confidence intervals (CIs) by applying Meta-analysis [7, 15, 30].
Although CIs are more informative than NHST approach since, in some form, they
quantify the uncertainty, their meaning is often misunderstood. In fact, CIs are inti-
mately connected with NHST, and both are superseded by Bayesian techniques [42,
43, 73].

The complexity of data calls for application and development of adequate tech-
niques, which are more powerful than the conventional ones and tailored to spe-
cific types of experimental data. Statistical methods are often considered simply a
toolbox and are consequently utilized superficially in data analysis. To make full
use of the deluge of complex data, researchers must transcend the notion of tool-
box statistics and engage in the independent applied science of statistics and infor-
matics. Combinatorial Science is Data-Driven and its main premise is that discov-
ery and optimization of materials can be made efficient if directed by statistical
inference based on the experimental data. In other words, Combinatorial Materials
Science cannot be truly realized without modern statistics and more generally, infor-
matics. Informatics here refers to the management of complete data-lifecycle: the
storage, integration, compression of data as well as quantification of uncertainty and
mining/analysis of data via statistical learning and data mining techniques.
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Moreover, experimental techniques for the generation of data are often developed
independent from the development of analysis techniques for that data. Statistical
analysis should not be subsequent, but should rather be a part of the experimen-
tal design [12]. In this chapter we describe the development of both experimental
techniques and analytical methods, and while these developments cannot take place
strictly simultaneously, we note the importance of iterative developments of both
sides of the high throughput methods.

14.3 High Throughput Experimental Pipelines:
The Example of Solar Fuels Materials Discovery

A high throughput experimental pipeline is comprised of a network of experimental
methods that are interlinked in a process workflow to enable a complete cycle of high
throughput experiments [26]. The high-level summary of a high throughput pipeline
for the discovery of solar fuels materials is shown in Fig. 14.1. The pipeline contains
3 primary sectors: the synthesis of material libraries, the screening of materials via
measurements of material performance, [29, 31, 32, 34, 39, 51, 74, 75] and the
characterization of materials [28]. The materials screening portion is split according
to two primary types of functional materials for solar fuels technology, and the
screening of light absorber and of electrocatalyst materials each involves unique
experiments.

Several data-related aspects of the pipeline that are not shown are data man-
agement, data analysis, and design of experiments. The informatics-based aspect
that is shown relates to the active down-selection of samples. That is, to create a
throughput-matched series of screening experiments, a higher throughput coarse
screening method is coupled to a lower throughput fine screening method through
the judicious selection of a subset of the samples. The 3 electrocatalyst screen-
ing experiments listed in Fig. 14.1 have been described in recent publications with
the higher throughput method being the parallel imaging of O2 bubbles produced
by electrocatalysis of the oxygen evolution reaction (OER) [75]. The two other
experiments are serial experiments performed by a scanning drop cell (SDC) device

Fig. 14.1 (top) Sectors of the accelerated discovery pipeline, with the screening sector split for the
2 general material functions of light absorption and electrocatalysis [26]. (bottom) Tiered screening
experiments are shown for evaluating electrocatalyst libraries where sample down-selection occurs
between subsequent screening experiments
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to quantify OER electrocatalytic activity [29]. These experiments include the collec-
tion of cyclic voltammogram with rapid sweep rate and then a longer measurement of
catalyst overpotential at a fixed current density, with the experiment duration being
sufficiently long to demonstrate that any anodic current could not be dominated by
a sample corrosion process. While the throughput of each technique depends on
the choice of experimental parameters, for the screening of material libraries with
approximately 1800 composition samples on a library plate, the throughput of each
stage is approximately 180, 10 and 2 samples per minute, respectively. While some
throughput matching can be achieved through duplication of instruments for per-
forming the lower-throughput techniques, practical throughput matching is attained
through sample down-selection at each juncture.

Transition from the screening portion of the pipeline to materials characterization
often involves another substantial down-selection of samples. While development
of HiTp materials characterization [27, 35, 40] and related analysis techniques [44,
45] is an active field of research, the characterization throughput is often lower than
the final screening in a tiered screening pipeline. For a given composition region,
a systematic variation in a materials characterization attribute may correspond to a
variation in the performance metric. By partitioning a composition space into regions
which exhibit systematic trends in performance, samples can be selected for detailed
characterization to capture the attribute-property relationships both within and among
the composition regions. Implementing this strategy into a down-selection algorithm
is a primary goal of informatics for high throughput pipelines.

14.4 An Illustrative Dataset: Ni-Fe-Co-Ce Oxide
Electrocatalysts for the Oxygen Evolution Reaction

In the following sections, we present the challenges and initial progress in two areas
of informatics related to high throughput materials discovery: the automated down-
selection of samples in a tiered screening pipeline, and the statistical analysis of
compositional variables as a critical aspect of identifying composition-property rela-
tionships. Both of these discussions will use simple, synthetic datasets as illustrative
examples. In addition, examples will be provided using an experimental dataset from
the high throughput mapping of OER catalyst activity over a pseudo-quaternary com-
position space of metal oxides containing all possible combinations of Ni, Fe, Co
and Ce with 3.33 at.% intervals. For details on materials synthesis and experimental
methods, we refer the reader to previous reports. [31, 34] Here we provide a map of
a primary figure of merit for OER electrocatalysts for solar fuels applications, the
overpotential required to provide 10 mA cm−2 geometric catalytic current density.
The results are summarized in Fig. 14.2 with Fig. 14.2a showing an example map of
the FOM for an array of samples on a library plate, which are mapped onto composi-
tion space in Fig. 14.2b. The composition mapping of the pseudo-quaternary spread
is performed as a stack of pseudo-ternary triangles with increasing Ce concentration.
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Fig. 14.2 A FOM for solar fuels applications, the overpotential for delivering OER geometric
current density of 10 mA cm−2, is measured on composition libraries a and mapped to composition
space b using a false color scale c. The (Ni-Fe-Co-Ce)Oz composition space is shown as a stack of
Ni-Co-Ce composition plots with increasing Ce concentration [26]

The common FOM color scale is shown in Fig. 14.2c. This dataset is most repre-
sentative of the third tier of electrocatalyst screening described above, although it
is a full dataset for which we can perform down-selection informatics to choose a
sample subset for additional screening or characterization experiments. We can also
analyze FOM trends with (sub-)compositional variables, as will be illustrated in the
final section.

14.5 Automating Sample Down-Selection for Maximal
Information Retention: Clustering by
Composition-Property Relationships

As described above, HiTp experimentation typically involves the coarse, rapid mea-
surement of a FOM or property of interest for each sample in a material library. Appro-
priate down-selection methods are essential to ensure generation of information-rich
experimental data that lead to knowledge and discovery. While a combinatorial mate-
rial library may include variation of a number of process parameters such as synthesis
temperature or processing parameters, [11, 13] we continue this discussion in the
context of composition libraries.

For demonstration purposes, a synthetic dataset with four distinct composition
regions that are governed by different composition-property relationships is shown
in Fig. 14.3a and the resulting down-selection using top ‘z’ percentile performing
compositions is shown in Fig. 14.3b. It is evident that down-selection based on top ‘z’
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Fig. 14.3 a A ternary composition space (with 5 at.% step) is partitioned into 4 property fields (left),
and a synthetic composition-property plot is obtained by applying distinct polynomial functions to
the compositions of each property field (right), b down-selection of compositions by selecting top ‘z’
percentile of compositions based on their property value. The downselected compositions, colored
red, are very sensitive to the choice of ‘z,’ which is usually fixed based on throughput matching of
successive experiments. The property field boundaries are overlaid for comparison and c Clustering
of the ternary composition library using a Euclidean distance metric on the property space (left)
and composition-property space (right). Clustering using only the property yields clusters with
compositions scattered over the library, while adding the compositions to the clustering metric
yields clusters that are mostly connected in composition space but do not match the original property
fields, whose boundaries are overlaid for comparison

performers is highly sensitive to the value of z, typically imposed by the throughput
capabilities of the HTE workflow and more importantly are incapable of capturing the
composition-property relationships thus necessitating the need for more sophisticated
partitioning/clustering techniques.
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Traditional clustering techniques such as k-means clustering on either
composition-property space or property space (Fig. 14.3c) alone that depend on
spatial statistics are incapable of capturing composition-property relationships. In
this context, we discuss the role of evolutionary statistical methods and informa-
tion theory concepts in identifying several composition-property relationships and
generating information rich experimental databases.

14.5.1 Down-Selection for Maximal Information Content

The above discussion on tiered pipeline screening introduces the importance of
down-selection for maximal information content in the context of a high-throughput
workflow. From a materials discovery point of view, maximal information down-
selection in a HiTp pipeline allows generation of information-rich experimental
databases that allow us to extract knowledge pertinent to composition-(micro)
structure-experimental parameters-property relationships. This knowledge is typ-
ically un-accessible via other main facets of materials design based discoveries
namely, first principles computations and materials informatics as applied to exist-
ing databases. Thus, generation of information rich experimental databases provides
a unique opportunity to exploit the capabilities of HiTp to simultaneously perform
exploratory and knowledge based search for new materials. These experimental data-
bases can be used as an input to data mining methods to extract empirical relation-
ships, they also form an important resource to develop sophisticated first principles
based models that are applicable to higher order compositions spaces and in-operando
conditions.

Distance and density based clustering approaches that are typically ubiquitous
in the field of clustering and have been successfully applied for materials science
applications where spatial statistics are relevant are inapplicable for partitioning the
composition space for maximizing information content. Alternately, information the-
ory based metrics provide access to higher order statistics [22, 36, 37] necessary for
clustering/classification in complex data structures. Specifically, Shannon entropy
criterion has been successfully applied as a supervised classification algorithm for
unravelling crystal chemistry design rules [41] and discovery of materials [4]. The
selection, crossover and mutation based evolutionary operations of genetic program-
ming enable complex data relationships to be captured as genetic trees, resulting in
its application for supervised classification of complex data [52]. Other evolutionary
techniques such as genetic algorithms [5] and particle-swarm optimization [72] have
also been used for clustering data. However, they use cluster variance-based objec-
tive functions and thus are unable to capture non-hyperspherically shaped clusters
which are typical of phase/property fields in materials science.

While several data mining algorithms have been applied to a) capture the function
relating the input and output variables [9, 68] and/or b) cluster data based on input
variables [63] and/or c) classify complex data structures in supervised classification;
[47] these approaches are insufficient to cluster data based on the (dis)similarity
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in the function relating input and output variables. For this purpose an approach
that is capable of capturing and classifying several underlying composition-property
relationships is required. Mathematically, this is achieved by identifying clusters
that maximize divergence amongst composition-property relationships described by
them. Genetic programming is a well-accepted and robust methodology for capturing
functional relationships, whereas, divergence is measured using information theory
based concepts. In the following sections, the concepts of multi-tree genetic program-
ming as applied to a materials discovery problem using an information theory based
objective function are introduced and refined. We utilize genetic programming trees
to represent the functions that map compositions and HiTp property measurements
to memberships in a fixed number of clusters. The clustering is defined over the com-
position space such that the optimized trees cluster the compositions based on the
functional relationships between composition and measured property. This method
of clustering allows selection of representative compositions from each cluster for
further investigation and characterization, resulting in an information rich experimen-
tal materials genome with respect to composition-characterization attribute-property
relationships.

14.5.2 Information-Theoretic Approach

Using information-theoretic approach, clustering composition space such that the
similarity of composition-property relationships among different clusters is mini-
mized while similarity of composition-property relationships within a given cluster
is maximized can be represented as minimizing cross “between cluster” information
potential while maximizing self “within cluster” information potential. An attractive
metric to achieve this for a two class system is the Cauchy-Schwarz divergence [38,
64] and is expressed as

Dcs(p1, p2) = − ln

∫
p1(x)p2(x)dx

√∫
p2

1(x)dx
∫

p2
2(x)dx

, (14.1)

where pk(x) is the probability distribution of x in class Ck and x is the (multi-
dimensional) composition coordinate.

In case of discrete data; probability distribution functions can be estimated using
a Parzen window [38] with a Gaussian kernel:

p(x) = 1

n

n∑

i=1

G(x − xi , σ
2) , where G(x − xi , σ

2) = 1

(2πσ 2)d/2 exp

(

−‖ (x − xi )‖ 2

2σ 2

)

(14.2)

The kernel width, σ , is an apriori specified parameter; n is number of observations;
d is the dimension of the dataset.
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Using (14.2), Jenssen et al. [37] show that the divergence function of (14.1) can
be estimated as

Dcs(p1, p2) ≈ − ln

∑

xi ∈C1

∑

x j ∈C2

Gij,2σ 2

√ ∑

xi ,xi ′∈C1

Gii′,2σ 2

∑

x j ,x j ′ ∈C2

Gjj′,2σ 2

(14.3)

where Gij,σ 2 = G(xi − x j , σ
2)

The fact that every composition in a composition library belongs to exactly one
property field is imposed using a membership value (i mk) for data point i in cluster
k as

i mk ′ = 1 for k ′ = k & i mk ′ = 0 for k ′ �= k. (14.4)

And, i m is defined as the vector of membership values for a data point i over the
set of clusters. Using these membership notations, [8] extend the Cauchy-Schwarz
divergence function to a c-cluster problem (c ≥ 2), as:

Dcs(p1, p2, . . . pc) ≈ −ln
1
2

∑n
i, j=1(1 − i mT j m)Gij,2σ 2

√
�c

k=1

∑n
i, j=1

i mk
j mk Gij,2σ 2

(14.5)

In this objective function, the denominator scales as a power of the number of clusters
(c) whereas the numerator varies comparatively very slowly with c, resulting in
a denominator dominated objective function with increasing number of clusters.
Therefore, we introduce a modified form of Cauchy-Schwarz divergence function
such that the numerator and denominator remain invariant to the number of clusters
and is described as:

Dcs(p1, p2, . . . pc) ≈ −ln

√(∑n
i, j=1(1 − i mT j m)Gij,2σ 2

) (
c

c−1

)

c
(
�c

k=1

∑n
i, j=1

i mk
j mk Gij,2σ 2

) 1
2c

(14.6)

To introduce the modified Cauchy-Schwarz divergence function (14.6) in an
optimization algorithm, a continuous membership function is required, because the
binary membership defined in (14.4) does not provide a continuous divergence func-
tion with respect to alterations in membership of a given data point in a given clus-
ter. Further, to accurately cluster property fields, the membership values should be
based on composition-property relationships. To facilitate this, continuous member-
ship values in the range [0, 1] are introduced by defining a membership function
mk(xf) for each cluster such that i mk = mk(xfi ) . The domain for the probability
distribution functions for Parzen window estimation is the composition space which
enables compositional connectedness in the clusters, whereas the domain for mem-
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bership functions is a combined composition and property space, with coordinate
represented as xf which enables the membership functions to represent composition-
property relationships. Additionally, by constraining the membership values to sum
to one, they can be regarded as a set of posterior probabilities:

mk(xf) = P (Ck |xf),
c∑

k=1

mk(xf) = 1. (14.7)

14.5.3 Genetic Programming Based Clustering

Genetic trees are computer programs capable of learning complex relationships
present in the data. In a c-class dataset, there are c functional relationships between
composition and property that need to be learnt or distinguished from each other.
Thus, we utilize a multi-tree genetic programming (MT-GP) framework developed
by Muni et al., [52] and [8] such that each tree learns the functional relationship
between composition and property for one of the classes in the data. In this rep-
resentation each tree (Tk) is defined on the composition-property space where the
scalar is used Tk(xf) to generate membership values, mk(xf) as described below. This
reduces the functional relationship based clustering problem to optimal identification
of composition-property relationships by MT-GP such that the resulting membership
values maximize the Cauchy-Schwarz divergence function (14.6).

The algorithm is based upon the construct illustrated in Fig. 14.4, where each
cluster is represented by a hierarchical tree of root, leaf and terminal nodes in the
MT-GP chromosome. The leaf nodes and the root nodes are chosen from the set of
operators {+,−, x,÷}. The terminal nodes are numerical and the domain includes
the composition, property parameter space and random integer constants in [0, 10].
For the tree representing a cluster k, the sequence of operators that terminate with
numeric values comprise a nested algebraic function Tk(xf).

Initialization, mutation, selection, crossover and termination proceed using stan-
dard genetic programming techniques and are discussed elsewhere, [69] although
crossover in a MT-GP approach differs from crossover in traditional genetic pro-
gramming. A crossover between any two selected parent chromosomes with ‘c’
trees can occur in cC2 ways because the kth tree in chromosome ‘i’ does not have to
crossover with the kth tree in chromosome ‘ j’ given that genetic tree-property field
mapping is not necessarily the same for all chromosomes. For each pair of multi-
tree chromosomes selected as parents (using a probability pcross here, set to 1), pairs
of trees are randomly selected with one tree from each of the parent chromosomes
contributing to the pair such that every tree in the parent chromosomes is present
in exactly one pair. To balance between exploratory and exploitative capabilities of
genetic programming, we define a base probability (ptreecross) and probability multi-
plier (pcm) such that the probability for crossover of the kth randomly selected pair
of trees for a given pair of parent chromosomes is pcm. Values of ptreecross in the range
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Fig. 14.4 A schematic of a multi-tree chromosome in an MT-GP approach for 3 clusters and
maximum depth 3. Abbreviations used are TN: terminal node, LN: leaf node, RN: root node

0.6–0.8 and ptreecross × (pcm)k−1 in the range 0.8–1.0 are found to be reasonable esti-
mates to ensure robust convergence. However, further research is required to identify
optimal values of these parameters using various case studies.

14.5.4 Calculating Membership

Boric and Estévez [8] related the output of the trees Tk(xf) to membership values
mk(xf) using a Sigmoid transformation followed by normalization:

T ′
k (xf) = 1

1 + e−Tk (xf)
& mk(xf) = T ′

k (xf)
c∑

k ′=1
T ′

k ′(xf)
(14.8)

The scalar outputs from different trees could be of varying magnitudes depending
on the distinct composition-property function they map, and thus could result in
membership values that are skewed towards a particular function. To avoid this,
relative memberships within each class are obtained by first normalizing the output
of the trees Tk(xf) with respect to the minimum and maximum values of Tk(xf) for a
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given ‘k’ and then normalizing the relative memberships such that mk(xf) represent
posterior probabilities (14.9).

T
′

k (xf) = Tk(xf) − T min
k (xf)

T max
k (xf) − T min

k (xf)
& mk(xf) = T

′
k (xf)

c∑

k ′=1

T
′

k ′ (xf)
(14.9)

The most representative class label set k̂(x) is computed using

k̂(x) = argmax
k

(mk(xf)) (14.10)

To ensure that variations in each feature vector are given equal importance, the
composition vectors and the property vectors need to be converted to unit standard
deviation prior to the MT-GP analysis.

14.5.5 Application to a Synthetic Library

Figure 14.5 shows the optimal membership set obtained after clustering the dataset
shown in Fig. 14.1 assuming the presence of four clusters, using a Gaussian kernel
width, σ = 0.17 at. %. Figure 14.5 also shows the clustering of compositions based
on their maximum membership class (̂k(x)). Given that the number of property fields
in the synthetic dataset and the number of clusters used in the MT-GP algorithm are
equal, the association of a synthetic property field and calculated cluster is easily made
by evaluating the maximum intersection of the composition points. The clusters in
Fig. 14.5 are colored corresponding to the association of property fields in Fig. 14.1,
and comparison between these composition maps reveals 14 misclassified samples,
approximately 8 % of the data points. The misclassified samples lie on the boundaries

Fig. 14.5 (left) Maps of the membership of each composition in the four optimized MT-GP trees.
(right) The four clusters obtained by taking the maximum membership for each composition with the
property field boundaries from Fig. 14.1 overlaid for comparison. The 14 misclassified compositions
are marked by red borders
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between different property fields, where the continuous membership parameters show
partial membership in each of the neighboring fields. That is, the MT-GP algorithm
produces the correct property fields with the boundaries blurred by 1 or 2 composition
intervals.

14.5.6 Experimental Dataset

To demonstrate structure-property relationship clustering on experimental data, we
use the (Ni-Fe-Co-Ce)Ox catalyst performance dataset from Fig. 14.2. The 5429
FOM values and corresponding 4-component compositions are used as the input for
the MT-GP algorithm with 4 trees, each with maximum depth 4, and σ = 0.17. We
choose 4 clusters (4 trees) to demonstrate the capability of our algorithm to capture
important composition-FOM relationships.

One of the essential genetic operators is division which allows capturing of com-
plex composition-property relationships. However, this adds special constraints for
treatment of compositions along ternary faces, binary lines, and unary end points
which have at least one composition component as zero. To avoid division by zero,
we shift all the compositions by � = 0.01 at. %. Using maximum membership
to define representative clusters, the stacked-ternary representation of the 4 optimal
clusters obtained from MT-GP is shown in Fig. 14.6.

Fig. 14.6 Mapping of the most representative cluster onto quaternary compositions in a (Ni-Fe-
Co-Ce)Ox library
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In any experiment dataset of composition-property information, there is no known
optimal solution for composition clusters. For the dataset of Fig. 14.2, two unique,
highly-active catalyst composition regions have been identified and classified through
additional electrochemical characterization [33]. The recently discovered catalyst
composition region contains little to no Fe and approximately 50 % Ce, which is
identified as the α cluster. Traditional mixed-transition-metal oxides with at least
approximately 50 % Ni comprise the low-Ce region of highly active catalysts, which
is identified as the χ cluster. The MT-GP algorithm provides information for two other
clusters with lower catalytic activity. Given that the FOM explored is convoluted due
to experimental noise and has limited dynamic range, the excellent clustering results
suggest that the MT-GP algorithm can be successfully deployed for automated down-
selection routines.

While further research is necessary to develop a non-parametric MT-GP based
clustering algorithm, the approach presented establishes a protocol for identifying
distinct, complex composition-property relationship fields from combinatorial mate-
rials science data and presents a significant step towards developing information rich
experimental materials genomes. In addition, the compositional connectedness of
clusters is encouraged by Euclidean metric based Gaussian kernels. While Gaussian
kernels capture clusters effectively for the test cases demonstrated, compositional
data are defined on the simplex, as described below, requiring additional develop-
ment of clustering and down-selection methods.

14.6 The Simplex Sample Space and Statistical Analysis
of Compositional Data

A primary objective of Combinatorial Materials Science is to unravel the composition
dependence of materials properties. Probably no other field has so much of its data
intrinsically expressed as percentages (compositional data) as do chemistry and com-
binatorial materials science. Since the percentages sum to a constant the composition
sample space is not the usual Euclidean space. Indeed, the constraint of constant sum
doesn’t allow the components of a composition to vary from –∞ to ∞ and a compo-
sition of N elements is confined to a restricted part of the Euclidean space called the
simplex SN = {x; xk ≥ 0, 	N

k=1xk = 1} [1, 2, 53]. Conventional statistical analysis
of such data does not incorporate the inherent relationships between the elements,
even though they are crucial for the physics and chemistry of materials. Moreover,
conventional processing of compositional data introduces artifacts such as spurious
correlation, while compositional statistical methods enable more accurate extraction
of composition-property relationships. The relationships between compositions and
their properties are intrinsically multivariate and compositional data require special
methods of processing.
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Fig. 14.7 Demonstration of subcompositional incoherence using the dataset of Fig. 14.2. For each
Fe concentration, the lowest overpotential value from the set of samples with that Fe concentration
is shown under 2 subcompositional representations of the quinary oxides: (black) quantification of
Fe, Co, Ce and Ni and (red) quantification of Fe, Co and Ce

In this section we present the importance of CDA for materials science. The con-
cepts and importance of closure and sub-compositional incoherence are discussed,
and to demonstrate the consequences of these concepts for interpretation of exper-
imental data, we begin with an analysis of composition trends within the data of
Fig. 14.2. An illustrative, practical compositional analysis is to evaluate the relation-
ship between Fe concentration and electrocatalytic activity. To generate Fig. 14.7,
we consider the discrete Fe concentration intervals of 3.33 at.% and for the set of
samples with a given Fe concentration, extract the lowest overpotential value. The
corresponding compositional trend indicates how good a catalyst can be with a given
Fe concentration. An important realization about the discussion of this composition
library is that the above figures have only considered the composition of the 4 cations,
as the oxygen stoichiometry is unknown. That is, the samples have been treated as
quaternary subcompositions of the quinary parent compositions. Figure 14.7 shows
the composition trend calculated using the Fe-Co-Ce-Ni subcomposition space and
the analogous trend using Fe-Co-Ce compositions, which may result from an exper-
iment wherein the Ni concentrations are unknown. The striking differences between
the overpotential trends using these two subcomposition spaces highlight an inherent
complexity of compositional data.

Using illustrative synthetic datasets and mathematical descriptions of CDA, we
demonstrate that Euclidean-based correlation structure should not be used to interpret
associations among measured elemental concentrations. In particular, we demon-
strate induced correlations and subcompositional incoherence of the Pearson corre-
lation coefficient. These effects are caused by the constant sum constraint that restricts
the sampling space to a simplex instead of the usual Euclidean space. Since statistical
measures such as mean, standard deviation, etc., are defined for the Euclidean space,
traditional correlation studies, multivariate analysis, and hypothesis testing may lead
to erroneous dependencies and incorrect inferences when applied to compositional
data. These issues demonstrate that prior to applying usual statistical methods data
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should be transformed to remove the constant sum constraint. Logratio transforms
remove the data-sum constraint by mapping the components of the compositions
into a Euclidean space, thus enabling one to apply classical statistical methods.
Moreover, a metric vector space structure can be introduced in the simplex (via the
simplicial metric based on logratios), thus enabling meaningful statistical analy-
sis of compositional data. We apply logratio analysis to interpolation of simulated
composition data. Comparison of a consistent compositional interpolation based on
balances with traditional linear approach reveal discrepancies between their results
that are crucial for correct statistical analysis of composition-property relationships.
Altogether these results demonstrate the importance of using physically/chemically
adequate and mathematically consistent approaches to compositional data, particu-
larly in high-order composition spaces.

14.6.1 The Closure Effects—Induced Correlation

The traditional way to describe the pattern of variability of data is through the esti-
mates of the raw mean, covariance, and correlation matrices. Individual components
of compositional data are not free to vary independently: if the proportion of one
component decreases, the proportion of one or more other components must increase,
thus leading to an artificial correlation that is, in fact, caused by the constant sum
constraint. Indeed, the closure, or in other words the constant sum constraint, affects
correlation between variables. Consider for example a set of N -part compositions
that can be treated as a M × N matrix W where N is the number of elements in the
composition, and M is the number of measurements, or samples, with the component
sum 	N

k=1 wik = 1, where i = 1, . . ., M . Let us denote Yk = wik, i = 1, . . ., M , to
be the kth column of the matrix W . Since

cov(Yk, 	
N
j=1Y j ) = 0

we have

	cov(Yk, Y j ) = −var(Yk), j �= k (14.11)

so the sum of the covariances of any variable is negative. Thus each variable must be
negatively correlated with at least one other variable and, in general, there is a strong
bias toward negative correlation between variables of (relatively) large variance. One
of the critical consequences of closure for materials science is that usual correlation
analysis can produce misleading associations between elemental concentrations. This
is especially consequential since visualization of results by Composition-Structure-
Property correlation maps is so important in materials science [10, 76]
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Fig. 14.8 a A set of 100 compositions generated from normal distributions of element quantities
with normalization into the quaternary (N = 4), ternary (N = 3) and binary (N = 2) composition
spaces. b The correlation of the concentration of element 1 with each other element is shown, with
the magnitudes demonstrating induced correlation, and their variation with respect to N showing
sub-compositional incoherence [61]

14.6.2 Illustrative Example

As an example, consider a set of M materials each containing N elements for which
we would like to ascertain if there is correlation in the concentration of element 1
with respect to the other elements. As shown in Fig. 14.8a, a synthetic dataset is
created by generating random quantities of the N = 4 elements from normal distri-
butions. Due to the randomness, the element-pairwise correlation over the M = 400
materials is negligible when considering the quantities of the elements, which is non-
normalized data. Measurements of the (normalized) composition of each material
produce the M × N closed dataset wik. Using this simulated data, the Pearson corre-
lation coefficient 4Ck,l of the concentration vectors Yk and Y l (elements k and l) can
be calculated, where the superscript 4 indicates the dimension of the composition
space (N = 4). Consider an extension of this example in which the concentration of
the 4th element cannot be measured so instead composition measurements are made
in the N = 3 space and correlations 3Ck,l are calculated, and a similar exercise can
by performed for N = 2.

The values of N Ck,l plotted in Fig. 14.8b demonstrate some limitations of the usual
statistics. Indeed, the correlation coefficients are skewed towards negative values
due to the normalization-induced correlation, as indicated by (14.11). In fact, for
the N = 2 case, the correlation coefficient is −1 because due to the normalization
xi,2 = 1−xi,1. In other words, correlation structure of a composition cannot be used to
interpret correlations among the measured elemental concentrations and vice versa.
It should be mentioned that other distance-based statistics like means, variances and
standard deviations, as well as tasks such as clustering and multidimensional scaling
have similar limitations.
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14.6.3 Sub-Compositional Coherence

An n-part composition (x1, x2, . . ., xn) with 	n
i=1xi = 1 is called a subcomposition of

an m-part composition (x1, x2, . . ., xm) with 	m
i=1xi = 1, if m > n and (x1, . . ., xn) is

a subset of the elements (x1, . . ., xm). A consequence of the constant sum constraint
for compositional data is that sub-compositions may not reflect the variations present
in the parent data, and as a result covariance of elements may change substantially
between different subsets of the parent data set. Every composition is a sub- or a
parent- composition depending on the objective of an experiment or the goal of data
analysis. An experimentalist or a data analyst may not be able to take into account
all elements (some elements may not be accessible), or may disregard some of the
available elements if they are not pertinent to the objective. The following principle of
sub-compositional coherence is an important concept of compositional analysis: any
compositional data analysis should be done in a way that produces the same results in
a sub-composition, regardless of whether we analyzed only that sub-composition or a
parent composition. Subcompositional incoherence of Pearson correlation coefficient
is demonstrated in Fig. 14.8, where for a given pair of elements, N Ck,l varies with
the order N of the composition space.

These effects of closure on statistical analysis of compositional data, induced
correlations and subcompositional incoherence, make traditional statistical methods
invalid, and artificial correlation obtained by applying such techniques may lead
to false scientific discoveries and incorrect predictions. Moreover, methods that are
based on a correlation matrix of observations, such as: factor analysis, principal
component analysis (PCA), cluster analysis, kriging interpolation to name just a few,
would lead to inaccurate, warped results. Thus correlation analysis, and multivariate
statistical analysis in general, of compositional data require special techniques in
order to avoid producing false results.

14.6.4 Principled Analysis of Compositional Data

The fundamental building block of statistical analysis is the probabilistic model. A
well-defined sample space is one of the basic elements in a probabilistic model, and
as noted above, the composition sample space is a simplex [2]. All standard statistical
methods assume that the sample space is the entire Euclidean space, while compo-
sitional data clearly do not satisfy this assumption. In order to deal with the closure
effects described in the previous section, an approach based on a family of trans-
formations, the so-called logratio transformations, has been introduced [1]. These
transformations based on logarithm of ratios of compositions map the components of
the compositions onto a Euclidean space, thus enabling one to apply classical statisti-
cal methods. In what follows, we briefly describe a few key concepts of such analysis
[2]. The so-called alr transform is defined for a given N-element composition x as
an (N − 1)-element vector z with the following components:
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z = alr(x) = (ln(x1/xN ), . . ., ln(xN −1 /xN )) (14.12)

where one of the composition components is chosen as common divisor. This logratio
transform is invertible since there is a one-to-one correspondence between any N -
part composition x and its logratio vector z. This means that any statement about the
components of a composition can be expressed in terms of logratios and vice versa.

By defining the sum

si = 	 j �=i exp(z j − zi ) = 	 j �=i x j/xi

the transformation from logratio to composition coordinates is given by

xi = 1/(si + 1). (14.13)

Because alr depends on the choice of xN , this transform is not employed in our
calculations and a more suitable transform is discussed below. Later we utilize (14.12)
and (14.13) only to illustrate the results of spatial compositional interpolation. To
build a vector space structure on the simplex the following operations were introduced
by Aitchison. The closure operation C is defined as follows

x = C[u1, . . ., uN ] = (u1/(u1 + · · · + uN ), . . ., uN /(u1 + · · · + uN )); ui≥0, x ∈ SN ⊂ RN−1

where ui represent the raw data such as element quantities. Perturbation ⊕ is an
equivalent of addition in the Euclidean space and defined as

w = x ⊕ y = C[x1 y1, x2 y2, . . ., xN yN ]; w, x, y ∈ SN ⊂ RN−1 (14.14)

Powering � is an equivalent of multiplication a vector by a scalar and defined as

w = a � x = C[xa
1 , xa

2 , . . ., xa
N ]; x ∈ SN ,, a ∈ R

Aitchison inner product replaces the Euclidean inner product and defined as

< x,y >A= 1/N
∑N

i=1

∑N

j>i
ln(xi/x j )ln(yi/y j ); x, y ∈ SN ⊂ RN−1 (14.15)

Thus the norm of a vector, or its simplicial length, is ||x|| = √
<x,y >A . This enables

one to compute distances between compositional vectors, projections of composi-
tional vectors, etc.

The Aitchison distance is defined as

dA(x,y) = {1/N
∑N

i=1

∑N

j>i
[ln(xi/x j ) − ln(yi/y j )]2}1/2; x, y ∈ SN ⊂ RN−1

(14.16)
Establishing a metric vector space structure in the simplex and utilizing orthonormal
bases facilitates application of complex statistical methods to analysis of composi-
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tional data. The so-called isometric logratio (ilr) transform has important conceptual
advantages and enables one to use balances, a particular form of ilr coordinates in
an orthonormal basis. A balance is defined as

bpq = ([pq/(p + q)]1/2)ln(g(x p)/g(xq)) (14.17)

where g(·) is the geometric mean of the argument, x p is the group with p parts and
xq is the group of q parts which are obtained by sequential binary partition (see
[53] and references there). However, there is no obvious ‘optimal’ basis, and the
compositional biplot approach should be used to find one [2]. For an analysis to be
subcompositionally coherent, it suffices to define variables using the ratios of the
composition values. The quantities x1/x2 and ln(x1/x2) are invariant under changes
of the composition order as they quantify the relative magnitudes of elemental con-
centration rather than their absolute values, though the interpretation of the results
in terms of the original variables is not always trivial. To study correlation structure
of compositions Aitchison introduced a variation matrix T = {τij} of dimensions
N × N , with the elements

τij = var [ln(Yi/Y j )] (14.18)

When τij are large, there is no proportionality between the corresponding elements.
If, however, the elements i and j are exactly proportional then τij = 0. The scale
of these variations can be determined by introducing total variance as a normalized
sum of the variances of all logratios

Vtot = 1/(2N )
∑N

i=1

∑N

j=1
τij (14.18a)

The variation matrix T (14.18, 14.18a) is instrumental in the analysis of associations
between elemental concentrations in compositions. Such analysis will be discussed in
greater detail in our forthcoming paper dedicated to covariance structures of screening
libraries [62]. In what follows we apply balances (14.17) to spatial interpolation of
compositional data.

14.6.5 Composition Spread and Distances

The evaluation of a composition spread is crucial in elucidating the composition
dependence of materials properties. As a global measure of spread, one can use the
metric variance (also known as total variance or generalized variance) that is the
average squared distance from the center to the dataset [70, 71]. There are various
measures of spread for compositional data and they all are based on the distance
defined in (14.16). that is very different from the Euclidean distance. As it is always
the case with non-Euclidean geometries, there is more than meets the eye, so to get
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Compositions

(a)

(b)
 c1 c2 c3 c4 c5 c6 c7 

c1 0.000 1.165 2.297 5.488 4.802 5.302 1.931 

c2  0.000 1.132 4.323 3.727 5.457 1.837 

c3   0.000 3.191 2.754 5.831 2.373 

c4    0.000 1.895 7.727 5.078 

c5     0.000 5.927 3.786 

c6      0.000 3.620 

c7       0.000 

Fig. 14.9 Distances and straight lines in the composition space (see the text for details). a straight
lines in a simplex. b Log-ratio distance matrix for Aitchison distances dA

a better feel for simplex’s geometry, let us consider an illustrative example. Since
there is a vector space structure within the simplex, one can define geometric elements
such as straight lines. Figure 14.9a displays seven compositions and ‘straight’ lines
between them. Red square: c1 = (0.333, 0.333, 0.333)—center point; black star:
c2 = (0.446, 0.446, 0.107); magenta star: c3 = (0.485, 0.485, 0.029); blue star:
c4 = (0.499, 0.499, 0.001); green star: c5 = (0.091, 0.908, 0.001); red star: c6 =
(0.001, 0.972, 0.027); cyan star: c7 = (0.067, 0.837, 0.097).

Figure 14.9b shows the log-ratio (see below) distance matrix. It is instructive to
note that the largest distance is dA(c5, c6) = 5.93, and the following holds
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dA(c4, c5) = 1.90 < dA(c1, c3) = 2.30 < dA(c3, c4) = 3.19

In real data, zero components, missing values are often present. Moreover, concentra-
tions below instrument detection limit (DL) are routinely encountered in experiments.
Usually such nondetects and missing values are erroneously replaced by zeros. Since
the statistical analysis of compositional data is based on logratios it cannot be applied
to data with zero components.

One approach to this problem is to transform N-element compositional data onto
the surface of (N−1) dimensional hypersphere [48], thus bringing the well-developed
methods of directional data analysis to compositional data and allowing to deal with
zero components. After applying such transforms, the multiscale methods developed
for general compact manifolds and for a sphere in particular, will be especially useful
for multiscale analysis of functions (like FOMs) defined on compositional space [6,
18, 20, 21, 50, 54–59].

Another recent approach is based on finding that logratio analysis is in fact inti-
mately connected with correspondence analysis (CA) [23–25]. There exists a family
of methods parameterized by a power-transformation of the original compositional
data: when this power is equal to 1 the ensuing method is exactly CA, and when
this power tends to zero the limiting method is exactly LRA. In between we have a
continuum of interesting special cases, for example, square root and double square
root transformations, but the main point is that these two apparently unrelated and
competing methods are really members of a wider common family [24, 25].

14.6.6 Interpolation of Compositional Data: Composition
Profiles from Sputtering

In this section we use spatial interpolation of composition measurements, a stan-
dard operation in combinatorial research, to demonstrate how behavior of logratio
variables differs from that of raw compositional variables. To create a synthetic
dataset, we employ a common combinatorial synthesis technique, multi-source co-
sputtering of a composition spread thin film. Combinatorial sputtering is commonly
used for synthesis of binary, ternary, and quaternary thin film libraries. See for more
details [61]

We will assume that accurate, noise-free measurements of the 4 compositional
variables are made on a set of 25 substrate positions chosen as a 55 square grid with
25 mm spacing. An appropriate spatial interpolation method should at least guaran-
tee that the non-negativity and constant-sum constraints are satisfied. In fact, among
the conventional unconstrained interpolation techniques, linear interpolation satisfies
these requirements. However, usual straightforward approaches, even if they satisfy
the constraints, interpolate each component xi independently, thus ignoring the inner
relationships between the compositional elements. Since our end goal is to enable
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the analysis of covariance structure of compositions without the artifacts of induced
correlation and sub-compositional incoherence, an approach that leads to accurate
logratio values employed by the simplicial distance (14.16) and compositional covari-
ance matrix T (14.18) is required. To achieve this, we utilize a broadly-applicable
and highly versatile technique based on kriging. The kriging-based interpolation was
computed with R language and environment for statistical computing by applying
the R-package “compositions” [65] van der Boogaart and Tolosana-Delgado 2013).
The method exploits codependences in the composition and takes into account the
spatial covariance structure by modeling the set of variograms for all possible pair-
wise balances (14.17). It takes into account various effects and parameters including
the nugget effect, the choice of exponential and spherical variograms which parame-
ters we chose to be 62.5 and 162.0 respectively. Since this interpolation technique
is specialized for compositional data, we refer to it as “compositional interpolation”
and represent the result of compositional interpolation of the 25 zi measurements as
CompInterp(zi ). To attain an analogous result using traditional linear interpolation, xi

and xN can be independently interpolated followed by calculating zi (14.12), result-
ing in a spatial map of zi referred to as LinInterp(zi ). The results of compositional and
linear interpolations and their comparisons with the “perfect” data calculated from
the model compositions are shown in Fig. 14.10. By definition, both interpolation
methods produce exact values at each of the 25 locations in the sampling grid. The
assessment of the performance of a given interpolation is thus performed by evaluat-

Fig. 14.10 Interpolation of a 4-element composition. z1: logratio of compositions x1 and x4 with
the 25 sampling points marked by “×”; LinInterp(z1): logratio of the linearly interpolation of x1
and x4; CompInterp(z1): logratio of the compositionally interpolated z1; the difference between the
model data and its linear interpolation; the difference between the model data and its compositional
interpolation [61]
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ing the absolute magnitude and pattern of interpolation error in the regions between
the sampling points (the grid). Compared to linear interpolation, the compositional
interpolation provides more accurate results and the discrepancy varies smoothly
over the entire interpolation region. It is important to note that artificial ‘patchiness’
of the linear interpolation would distort simplicial distances (14.16) between differ-
ent compositions. Such distortions would lead to artificial associations in the analysis
of correlational structure of compositions and, more generally, to erroneous results
in all calculations that involve distances, e.g. mean and standard deviation.

Kriging assumes that the observed values are a realization of a stochastic process,
so the quantitative advantages of compositional interpolation based on kriging should
become more pronounced as variation of the composition variables increases. It
is worth noting, that there are other interpolation methods that preserve the non-
negativity and constant-sum constraints such as local sample mean, inverse distance
interpolation, and triangulation (since the weights they use range from 0 to 1, and
sum to unity). However, unlike the approach utilized here (Tolosana-Delgado and van
den Boogaart, [53, 71], those methods do not take into account the spatial covariance
structure which may be critical for statistical analysis. As combinatorial materials
science continues to expand into high order compositions spaces, the prudent applica-
tion of statistical methods developed specifically for CDA will be required to enable
accurate data mining.

14.7 Summary and Conclusions

A central premise of high throughput combinatorial science is that systematic mea-
surements of material libraries can reveal relationships among material composi-
tion, structure, performance and other properties. To facilitate accurate and effective
extraction of information from large, complex data sets created by high throughput
experiments, the materials scientists must engage in close interdisciplinary commu-
nication/collaboration with researchers in other disciplines such as statistics, com-
puter science, applied mathematics, and artificial intelligence. One step in fostering
a close interdisciplinary communication/collaboration between materials scientists
and researchers in other disciplines would be to follow the example of top journals
in other fields and have statisticians as members of the Editorial Boards of journals
concerned with high throughput and combinatorial materials science. This would
ensure that the adequacy of the statistical analysis used in papers is properly eval-
uated and, more importantly, will enable journals to formulate statistics guidelines
for contributors [3, 30, 67]. Moreover, it is important to emphasize that statisticians
should not only be consulted after data had already been generated, but rather should
be involved in the design of experiments. It is only through prudent incorporation of
informatics in high throughput workflows that combinatorial materials science can
be fully realized. This chapter introduced high throughput experimental pipelines
and example data to illustrate 2 areas of informatics that are central to combinatorial
materials science. The high throughput strategy of tiered screening and resulting
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complex datasets demonstrate the need for new statistical techniques that enable
the generation of information rich databases and provide accurate assessment of
composition-property relationships. While further research is required to assimilate
and advance these informatics techniques, foundational work in these research areas
is presented.
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