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Abstract. Compositional question answering first maps natural lan-
guage sentences into meaning representations, then a meaning inter-
preter is used to evaluate the corresponding answers against a database.
A novel approach is proposed in this paper which involves a concept base
with rich hierarchical information. A new meaning representation form is
introduced correspondingly to match the hierarchical concept base. A set
of constructions which encode the correspondence of concept sequences
and their meaning representations are used for parsing. The experimen-
tal results show that the proposed semantic parser performs favorably
in terms of both accuracy and generalization performance compared to
existing semantic parsers.
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1 Introduction

Compositional question answering is important in natural language understand-
ing. Previous works involve semantic parsing which maps a natural language(NL)
sentence into its meaning representation(MR). Semantic parsers based on syn-
tax first derive syntactic trees from the NL sentences, then the syntactic trees
are converted to the corresponding MRs [1–3]. Semantic parsers based on
machine translation technologies use synchronous grammars, which match NL
string patterns and construct MRs synchronously [4–7]. Semantic parsers using
dependency-based compositional semantics(DCS) derive all the possible MRs
from NL sentences, then a probabilistic model is used to find the answers [8,9].
Recent years, semantic parsers using knowledge bases [10–13] such as Freebase
[14], or using grounded information [15,16] are developed to handle domain-
independent, large-scale corpus.

Overall, two kinds of information are used to improve the generalization
performance of a semantic parser. One is the syntactic information. Words or
phrases are generalized into syntactic non-terminals, which capture the unseen
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phrases in the training corpus. Another is the semantic information such as
knowledge bases, which capture the unseen relations in the training corpus.
However, traditional methods using syntactic information always tend to over-
generalize the NL words, and the methods using semantic information do not
capture the hierarchical relations which would further improve the generalization
of semantic parsers.

A novel approach for semantic parsing is proposed in this paper. A concept
base is introduced which contains hierarchical relations between concepts. A new
form of MR for the semantic parser is proposed to match the concept base. It
shares the same structure with the concept base. Compared to the widely used
Montague semantics based on lambda calculus, the proposed MR is easily to
combine with a concept base. Compared to DCS which constrains the concept
relations to several kinds, the proposed MR is free to contain all relations.

To integrate the concept base into the semantic parser, a set of constructions
are introduced which map concept sequences into their MRs. The construc-
tions have some resemblances to the rules in synchronous grammars. They both
capture the syntactic information in a specific way, which avoids the overgener-
alization of NL words. But constructions are based on the concept base. They
can also captures the semantic information between concepts.

The experiments in GeoQuery [17], a benchmark dataset, have shown that
the proposed system outperforms all existing systems both in accuracy and gen-
eralization performance.

2 Concept Base

The basic elements in the concept base are concepts. A string with the first letter
capitalized denotes the corresponding concept if no ambiguities exist. The formal
definition of the concept base is K =< E,A,R,Ei, Ai, Ri, Rh >, in which:

E represents entity, examples include City, State, Person, etc. Ei represents
the instances of entities. The extension of an entity is the set of the instances of
that entity. For example, Austin is an instance of City, so it’s an element in the
extension of City.

A represents attribute, examples include Height, Length, Area, etc. Ai rep-
resents the instances of attributes. The extension of an attribute is the set of the
instances of that attribute.

R represents relations. A relation relates a set of concepts which are rela-
tive elements of that relation. Ri are the instances of relations. The extension
of a relation is the set of instances of that relation. For example, a relation
Loc(City, State) means a City is located in a State, while Loc(Austin, Texas)
represents an instance of the relation Loc(City, State), where City and State
are instantiated as Austin and Texas.

Rh represents the hierarchical relations. They are a kind of relations. If a
concept C1 is the hypernym of another concept C2, then there exists a hierar-
chical relation between C1 and C2. Examples include the relation between City
and Capital, the relation between Attribute and Area, etc.
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The hypernym of a concept C is denoted as CC
h . The extension of a concept

C is denoted as Ext(C). Note that words in NL are also regarded as concepts,
they are instances of the entity Word.

Since there are no appropriate hierarchical concept bases for GeoQuery cur-
rently, a manually annotated one is used to conduct the experiments. Theoret-
ically the hierarchical concept base is domain-independent, and can be used in
any other systems.

3 Meaning Representation

3.1 Semantic Tree

The MRs of sentences also consist of concepts. A basic assumption is
made that all the MRs are trees. A semantic tree is represented as t =<
Root (C1) (C2) . . . (Cm) >, where Root is the root of the tree, and
C1, C2, . . . , Cm are the child trees of Root. Figure 1 shows some examples. Each
concept in the tree is a hyponym of some concept in the concept base, because
they have different extensions. In Fig. 1(a), the extension of State′ should be
the states bordering Texas, while its hypernym, State, has all the known states
in its extension. This specific form of MR shares the same structure with the
concept base, which allows convenient computation of the semantic tree.

Fig. 1. Some examples of semantic trees in our system

3.2 Computation

The computation of a semantic tree is defined as the procedure of finding the
extension of the focus concept in the semantic tree. Normally, the focus concept
is the root of the tree. If there exists interrogatives in the tree, such as When,
Where, What, How, etc., then focus concept is the concept connected to that
interrogative. There are two typical cases:

(1) The focus concept is a relation R, and all the concepts connected to it
are its relative elements, denoted as C1, C2, . . . , Cm. The instances of the focus
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concept should be included in the extension of its hypernym CR
h . Denote an

instance in the extension of RR
h as Ri. Its relative elements are C1i, C2i, . . . , Cmi,

which are all instances. If for every j ∈ 1, 2, . . . ,m, Cji is an instance of Cj , then
Ri is an instance of R. Formally:

Ext(R) = {Ri(C1i, C2i, . . . , Cmi) ∈ Ext(CR
h )|

C1i ∈ Ext(C1) ∧ C2i ∈ Ext(C2) ∧ · · · ∧ Cmi ∈ Ext(Cm)} (1)

This is called the “match” method. Since not all relation instances are known in
advance, several computing methods are needed in GeoQuery:

Count. This computing method is used when counting the number of instances
of a concept. Formally:

Ext(R) = {Ri(C1i, C2) ∈ Ext(CR
h )|C1i ∈ Ext(C1) ∧ C1i = |Ext(C2)|} (2)

Quantification. Examples of Quantification include Total, Average, etc. For
example, the computing method of Average is:

Ext(R) = {Ri(C1i, C2) ∈ Ext(CR
h )|C1i ∈ Ext(C1)∧

C1i =
1
N

|Ext(C2)|∑

j=1

C2j , C2j ∈ Ext(C2)}
(3)

Comparative and Superlative. This computing method is used when com-
paring entities C1 and C2, on a specific attribute A3. Formally:

Ext(R) = {Ri(C1i, C2, A3)|C1i ∈ Ext(C1),∀C2i ∈ Ext(C2),

Ri(C1i, C2i, A3) ∈ Ext(CR
h )} (4)

Negation. If the relation is negative, this computing method is used. Formally:

Ext(R) = {Ri(C1i, C2i, . . . , Cmi)|C1i ∈ Ext(C1) ∧ C2i ∈ Ext(C2)∧
· · · ∧ Cmi ∈ Ext(Cm) ∧ Ri(C1i, C2i, . . . , Cmi) �∈ Ext(CR

h )} (5)

(2) The concepts connected to the focus concept are relations, and each rela-
tion takes the focus concept as one of its relative elements. Denote the tree as
t =< C(R1)(R2) . . . (Rm) >. The extension of C is first set to be the extension
of its hypernym CC

h . Then the extensions of those relations are computed using
the computing methods introduced above. For each instance Ci in the extension
of C, if Ci is one relative element of some instance of R1, as well as R2, . . . , Rm,
then Ci is an instance of C. Usually, there exists a computing order. Absolute
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relations, such as relations computed using “match”, are computed before rela-
tive relations, such as ones computed using “comparative and superlative”.

S =
m⋂

j=1

{x ∈ Ext(CR
h )|∃Cj

1i, C
j
2i, . . . C

j
mi, Rj(C

j
1i, C

j
2i, . . . , x, . . . , Cj

mi)

∈ Ext(Rj), Rj is an absolute relation}
(6)

Ext(R) =
m⋂

j=1

{x ∈ S|∃Cj
1i, C

j
2i, . . . C

j
mi, Rj(C

j
1i, C

j
2i, . . . , x, . . . , Cj

mi)

∈ Ext(Rj), Rj is a relative relation}
(7)

For semantic trees containing the both cases, the result should be the inter-
section of the results obtained in them. Using the computing methods above
mentioned, a semantic tree can be recursively computed.

4 Construction

Construction Representation. A construction encodes the correspondence of
a concept sequence and its MR. Note that words in NL are regarded as concepts,
so constructions can also be used to denote the correspondence of words and their
MRs. A basic assumption for constructions is that except for the constructions of
words, the MR of a construction should have one and only one relation concept,
and all the other concepts in the MR are the relative elements of that relation.
Formally, cons =< P ;F ;T ;H;R >. Here P represents the concept sequence.
F represents morphological and semantic features(MSFs), such as number for
entities, participle for relations, affirmative or negative for relations, etc. They are
used to restrict the concept usage to appropriate syntax and semantic context.
They are universal and domain-independent. T is the corresponding semantic
tree which consists of the concepts in P , and H is the root of the semantic tree.
R represents the only relation in T .

Construction Annotation. The sentences in training corpus are manually
annotated into constructions. For a sentence S, the procedure is as follows:

(1)For every word W in S, the corresponding MSF is extracted as Fw. Assume
that W corresponds to only one MR in this context, denoted as C. The con-
struction is annotated as: < W ;Fw;< C >;C; ε >.

(2)For every phrase Pnl =< W1,W2, . . . ,Wm > in S, first map every word
in the phrase to corresponding MR, P =< C1, C2, . . . , Cm >, with the extracted
MSF sequence as F. Then for every concepts in P , find its highest level of
hypernym in the hierarchical concept base. This forms a new concept sequence,
denoted as Ph. Annotate the corresponding semantic tree T with head H for Ph.
Note that there should be only one relation R in T , otherwise the phrase should
be split into smaller phrases. Thus the construction is cons =< Ph;F ;T ;H;R >.
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Probabilistic Construction. In general, a word or a phrase may correspond
to multiple MRs. These ambiguities are the main motivation for extending con-
structions into probabilistic constructions. Given a word or a phrase, the prob-
ability of a MR derived from this phrase is p(T,H,R|P, F ). It can be obtained
from the corpus:

P (T,H,R|P, F ) =
count(< P ;F ;T ;H;R >)∑

(T,H,R) count(< P ;F ;T ;H;R >)
(8)

5 Semantic Parsing

A construction can be split into two parts, a production with H as its left
hand side (LHS) and P as its right hand side (RHS), and a semantic tree
T. Denote a random subsequence of the input concept sequence as Ps =
(Cs1, Cs2, . . . , Csm), whose MSF sequence is Fs. For a construction cons =<
Cc1, Cc2, . . . , Ccm;Fc;T ;H;R >, and for every j ∈ 1, 2, . . . , m, check the fol-
lowing propositions: (1) Csj is Ccj ; (2) Csj is one hyponym of Ccj ; (3) Csj is
an instance of Ccj . If one of them is true, then replace Ccj in T as Csj . This
forms a new semantic tree Ts, which is part of the meaning representation of
the input concept sequence. Denote the root of Ts as Hs. Hs can be further
used to combine with other concepts in the input concept sequence. The parsing
task has some resemblance with the probabilistic context-free grammar (PCFG)
parsing, and the Earley’s context-free parsing algorithm [18] is used. Unlike Ear-
ley’s algorithm which is operated on words and syntactic non-terminals, here the
parser operates on concepts. The probability of a semantic tree is obtained by
multiplying the probabilities of all the constructions used in that semantic tree.
Finally, the most probable one is selected from the semantic tree set Tset:

Tbest = argmaxT∈Tset
(P (T,H,R|S, F )

= argmaxT∈Tset
(

∏

Tj∈T

P (Tj ,Hj , Rj |Pj , Fj))) (9)

6 Experiments and Results

The experiments on GeoQuery are conducted. The dataset contains about 800
facts asserting relational information about U.S. geography, and 880 questions
annotated with the corresponding MRs. The average length of a sentence is 7.48
words. The proposed system is compared to: (1)WASP [4], which is based on
machine translation techniques; (2) λ-WASP [5], an extension of WASP for han-
dling MRs; (3) SYNSEM [1], which combines syntactic information and seman-
tic information together, here we choose its result based on the gold-standard
syntactic parses; (4) L2013 [9], which uses DCS as MRs; (5) W2014 [3], which
performs best in current CCG-based parsers.

In the first experiment, the accuracy of the proposed system is tested. The
corpus is split as 600 questions for training and 280 questions for testing.
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Table 1. The Accuracy on GeoQuery

System Accuracy(%)

WASP 74.8

λ-WASP 86.6

SYNSEM 88.2

L2013 91.4

W2014 90.4

New System 93.4

Fig. 2. Learning curves for various parsing algorithms on the GeoQuery corpus

Table 1 shows the results. A few observations can be made: (1)The new sys-
tem outperforms all existing systems; (2)Though the new system needs more
annotation, compared to SYNSEM which uses gold-standard syntactic parses,
it still performs better.

The second experiment is about the generalization performance. The stan-
dard 10-fold cross validation is used. Figure 2 shows the learning curves of differ-
ence systems. It can be observed that, the new system outperforms other systems
by wide margins, matching their best final accuracy with only 50 % of the total
training examples. This can greatly alleviate the burden of annotation.

7 Conclusion

Hierarchical information can greatly improve the performance of semantic
parsers. It includes a concept base which encodes the hierarchical relations
between concepts, and a set of constructions which encodes the correspondences
of concept sequences and their MRs. By using Earley’s algorithm in the semantic
parser, the accuracy and generalization performance on the standard semantic
parsing dataset, GeoQuery, is clearly improved.
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However, the constructions in the system were manually annotated. Learning
these constructions automatically will be the future work. This could alleviate
the burden of annotation, and also reduce the errors in the annotated corpus.
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