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Preface

Ten years ago, researchers in multi-agent systems became more and more aware that
agent systems consist of more than only agents. The series of workshops on Envi-
ronments for Multi-Agent Systems (E4MAS 2004-2006) emerged from this awareness.
One of the primary outcomes of this endeavor was a principled understanding that the
agent environment should be considered as a primary design abstraction, equally
important as the agents.

At AAMAS 2014 in Paris, researchers in the E4MAS domain organized a workshop
on E4MAS – 10 Years Later with the following aims: (1) to reflect on the past 10 years
of research and engineering on agent environments for multi-agent systems; (2) to
investigate to what extent the challenges identified a decade ago have been tackled; (3)
to outline challenges for future research on a short and longer term.

This book reports the results of the workshop and subsequent efforts. We start with a
roadmap paper that consolidates knowledge from past research and from these insights
defines a path for future research in the field. The roadmap focusses on three partic-
ularly relevant topics of modern software intensive systems from the viewpoint of
agent environments for multi-agent systems: the large scale of systems, the openness of
systems to deal with parts that enter and leave the system dynamically, and humans in
the loop that interact with the system.

After the roadmap follow 13 contributions that span a wide variety of topics grouped
in four parts. The first part presents three papers on the connection between agents,
environments, and humans. The second part contains a set of interesting papers on
environments for complex and stigmergic systems. The third part presents four papers
on virtual and simulated environments. Finally, the fourth part concludes with two
papers on open agent environments and interoperability. All papers presented in this
volume were carefully reviewed.

We are grateful to all those who contributed to the successful organization of
E4MAS 2014, in particular, the Program Committee, the AAMAS Committee, and the
local organizers. We hope that the papers of this volume will stimulate further research
in agent environments for multi-agent systems and contribute to enhancing engineering
practice.

July 2015 Danny Weyns
Fabien Michel
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Abstract. Ten years ago, researchers in multi-agent systems became more and
more aware that agent systems consist of more than only agents. The series of
workshops on Environments for Multi-Agent Systems (E4MAS 2004-2006)
emerged from this awareness. One of the primary outcomes of this endeavor was
a principled understanding that the agent environment should be considered as a
primary design abstraction, equally important as the agents. A special issue in
JAAMAS 2007 contributed a set of influential papers that define the role of
agent environments, describe their engineering, and outline challenges in the
field that have been the drivers for numerous follow up research efforts. The goal
of this paper is to wrap up what has been achieved in the past 10 years and
identify challenges for future research on agent environments. Instead of taking
a broad perspective, we focus on three particularly relevant topics of modern
software intensive systems: large scale, openness, and humans in the loop. For
each topic, we reflect on the challenges outlined 10 years ago, present an
example application that highlights the current trends, and from that outline
challenges for the future. We conclude with a roadmap on how the different
challenges could be tackled.

Keywords: Agent environment � Multi-agent systems � Middleware �
Large-Scale Systems � Open systems � Human in the loop

1 Introduction

Ten years ago, the awareness grew among researchers in the multi-agent systems
community that agent systems consist of more than only agents. The Environments for
Multi-Agent System workshop (E4MAS [1]) that was organized in conjunction with

© Springer International Publishing Switzerland 2015
D. Weyns and F. Michel (Eds.): E4MAS 2014 – 10 years later, LNAI 9068, pp. 3–21, 2015.
DOI: 10.1007/978-3-319-23850-0_1



AAMAS 2004 emerged from this awareness. The driver for E4MAS 2004 was the
following statement:

There is a general agreement in the research community that agent environments are essential
for multi-agent systems, yet researchers neglect to integrate the agent environment as a primary
abstraction in their models and tools for multi-agent systems.

During three successful editions of the E4MAS workshop [1, 2, 3] and various
additional activities, a substantial group of researchers worked intensively on the
subject of agent environments. One of the primary outcomes of this endeavor was a
principled understanding that the agent environment should be considered as a primary
design abstraction, equally important as the agents. Different models and architectures
have been proposed to design agent environments, and these designs have been vali-
dated in a variety of application domains. A special issue devoted to agent environ-
ments in multi-agent systems in the Journal on Autonomous Agents and Multi-Agent
Systems in 2007 [4] included a set of influential papers that define the role of agent
environments, describe their engineering, and outline challenges in the field that have
driven numerous follow-up research efforts [6–10].

At AAMAS 2014 in Paris, researchers in the E4MAS domain organized a work-
shop on “E4MAS—10 Years Later,” and this paper builds upon discussions at that
workshop. The goal of this paper is:

• To reflect on the past 10 years of research and engineering on agent environments
for multi-agent systems;

• To investigate to what extent the challenges identified a decade ago have been
tackled;

• To outline challenges for future research on a short and longer term.

Instead of taking a broad perspective, we focus on three particularly relevant topics of
modern software intensive systems: the large scale of systems, the openness of systems
to deal with parts that enter and leave the system dynamically, and humans in the loop
that interact with the system. Evidently, we focus on these topics from the viewpoint of
agent environments for multi-agent systems. For each topic, we explain the topic and
highlight challenges outlined 10 years ago, we present an example application illus-
trating the current trends, and then we outline challenges for the future. We conclude
the paper with a roadmap to tackle the different challenges.

The remainder of this paper is structured as follows. Section 2 focuses on the
impact on agent environments for large-scale multi-agent systems. Section 3 zooms in
on open agent environments for multi-agent systems. Section 4 discusses the impact of
humans in the loop on agent environments. Finally, Sect. 5 outlines a possible roadmap
for future research in this important field.

2 Agent Environments for Large-Scale Multi-agent Systems

Many real world problems are of high dimension (lots of interacting features), large in
size and often stochastic by nature [20]. Such Large-Scale Systems (LSSs) are intri-
cately multifarious, with multiple objectives that can lead to conflicts among the

4 D. Weyns et al.



multiple decision makers present in these systems. A system can be considered as an
LSS if one (or both) of the following perspectives holds [21]: (i) It can be decomposed
into a number of interconnected subsystems, either for practical reasons (design) or
because computation needs to be distributed (performance); (ii) Its high dimensionality
leads to a combinatorial explosion in its space of possible behaviors, so that the usual
methods for modeling analyzing, controlling or designing cannot find a solution in a
reasonable amount of time. As a result, these systems require that the control of the data
and/or computation be decentralized over the subsystems. The engineering of LSSs has
been subject of extensive research, including approaches proposed for dealing with
complexity within the field of multi-agent systems.

In particular, MASs are a natural approach for modeling and implementing LSSs
because they rely on decentralized loci of control by means of agents [20]. A Large
Scale MAS (LSMAS) is a MAS that is hard to (i) engineer (e.g. coordination among
thousands of agents) or (ii) deploy (e.g., real-time interaction may no longer hold due to
the computational requirements). Bottlenecks in an LSMAS are usually related to the
size of the system in terms of the number of agents and the amount of data in the
system. Indeed, regardless of the application domain, each additional agent requires
some computational resources. Moreover, the MAS should be able to accept new
agents without compromising its functioning. This section discusses the crucial role of
agent environments for an LSMAS, i.e., a MAS with a large number of agents evolving
in application environments that potentially involve a huge amount of data.

2.1 Large Scale and Agent Environments

The agent environment is now broadly recognized as a first class abstraction for building a
MAS, especially because it mediates interactions between agents and their access to
resources [6]. In an LSMAS, the number of interactions and resources could be very large,
hence the design of the agent environment is even more crucial because it directly impacts
scaling issues and plays an important role in managing potential bottlenecks. We put
forward four requirements that are central to engineering agent environments for LSMAS:

1. Scalable Structure: refers to distributing the computation and state of the agent
environment. The agent environment may have different structures: multi-level or
hierarchical, multi-stage or dynamic. For example, the agent environment may be
structured in segments, each representing a local view on the physical environment;
segments may be connected via a P2P network.

2. Access to Resources: Typically, LSMASs are composed of heterogeneous agents
deployed in an agent environment, which defines laws that regulate access to
resources. At a large scale, monitoring, trust, and security aspects are to be carefully
designed so that the cost induced by managing access to resources does not become
a bottleneck.

3. Scalable Communication: When coordination among thousands of entities is
required, the agent environment should provide means for communication between
agents that do not involve any central point of access or control.

4. Interaction model: to achieve scalable agent environments, it is important to pro-
vide agents with efficient means for perceptions, actions, and interactions. Central

Agent Environments for Multi-agent Systems 5



here are suitable abstractions, e.g., the agent environment should offer high-level
primitives to agents for perception, coordination etc., that support efficient pro-
cessing by the agents.

2.2 Challenges on Large Scale Agent Environments in Retrospect

While scalability was not a prominent topic in the past E4MAS efforts, the four
requirements mentioned in the previous section have been partly identified or addressed
in different contexts during the period 2004-2007.

Scalable Structure and Access to Resources. Several researchers showed that the
structural scalability of the agent environment is strongly related to the ability to
achieve decentralized control over the environmental data and dynamics, so that one
can move easily from a monolithic structure to a distributed one. In [22], the agent
environment is decomposed into independent interaction spaces, each of which defines
explicitly local environmental rules. In the domain of large-scale traffic simulation, [23]
applies a holonic modeling of the agent environment so that the environmental pro-
cesses apply only locally. These examples show that decentralizing the structure of the
agent environment and managing access to resources based on the principle of locality
are already identified as key principles for achieving scalability of agent environments.

Scalable Communication and Interaction Model. A decade ago, considering
dynamics in the agent environment as a efficient means for achieving communication
and coordination in an (LS)MAS was already a topic of interest in the E4MAS com-
munity. Especially, nature-inspired mechanisms supporting indirect communications
through the agent environment, such as digital pheromones and force fields, were
considered to scale better than direct message exchanges (see e.g. [24–27]), thus
providing scalable interaction models for achieving coordination among numerous
agents using stigmergic principles. Nevertheless, it is interesting to note that the
mechanisms for engineering the agent environment discussed in [7] do not consider
explicitly scalability as a main feature of interest. Since then, the dramatic evolution of
the technological context, especially with respect to the exponential increase of smart
mobile devices, has put scalability on the agenda as a major topic. Nowadays, scala-
bility is no longer an option, but a requirement for many MAS applications.

2.3 Example Application

We illustrate a recent effort on agent environments for LSMASs in the context of
Personalized Health Systems (PHSs). PHSs are systems that support patient-centered
healthcare by assisting patients in self-managing their medical conditions. Using a
PHS, patients and caregivers are connected so that health data are accessible inde-
pendently from their geographical location. Since the patient’s data is generated in a
distributed setting, these systems require reliable, scalable and interoperable models of
information flow. For example, [28] models the discovery and exchange of health
records with a dynamic interoperable MAS network. A high-level model of this system
is illustrated in Fig. 1.

6 D. Weyns et al.



Different health communities (i.e. hospitals) store the patient’s data. A Peer-to-Peer
(P2P) architecture connects these communities dynamically and at large scale. Figure 1
shows how the agent environment is organized. Health communities are connected as
Nodes in a P2P network. A set of coordination rules (Coordination Center) defines
how agents can find patients’ data and how they can propagate updates in the network
of communities. Since the data in different communities may be organized differently,
the querying of data follows a semantic knowledge base (Semantic Queries). In this
model, the agents specialize on performing specific tasks (i.e. finding the data about a
patient) while the agent environment itself defines how the interactions can take place
across communities. More specifically, the Coordination Center specifies how data can
be queried in a distributed level and how new data can be propagated to different
communities. The Agent Environment uses the TuCSoN coordination model [29]
where agents retract, write or read (called in-out or rd primitives) data in the Coor-
dination Center using specific tuple templates. These actions trigger reactions that
coordinate the tasks of different agents, despite these agents may not share the same
space, may not know each other’s reference, and may not be synchronized.

2.4 Challenges Ahead

Realizing the requirements of LSMASs outlined in Sect. 2.1, namely: (1) making the
structure scalable, (2) ensuring efficient access to resources, providing (3) scalable

Fig. 1. SemHealthCoord: An agent-based LSMAS model for health data exchange
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communication means and (4) interaction models, are still major challenges. In this
respect, previous research emphasizes the crucial role of locality and decentralization
when engineering the agent environment’s structure and mechanisms. Not addressing
these aspects puts more responsibility on the agents, which leads to complex agents and
hampers scalability. However, achieving locality and decentralization is not sufficient if
the system cannot be adapted and evolved over time. Therefore, future research on
scalable agent environments is about addressing the different aspects in an integrated
manner. We outline two key aspects for future efforts.

As we move toward LSMASs that have to deal with huge amounts of data, elab-
orating efficient structures and dynamics is not only a solution for achieving scalable
communication and interaction, but also a key to more effective processing of data and
information. To that end, we see two important challenges that agent environments
have to address: (i) Preprocessing data: data should be modeled and structured so that
they can be easily managed and evolved using large scale dynamics compliant to the
underlying environment (e.g., by taking inspiration from map reduce approaches), and
(ii) Post-processing data: data should be synchronized with the agents’ needs. In other
words, the agent environment could anticipate requests by processing data accordingly,
through internal dynamics.

Another central challenge lies in designing agent environment structures and
dynamics in an integrated way; e.g., design agent environment dynamics so that they
accommodate the underlying physical infrastructure [2, 8]. Considering this aspect, one
can take inspiration from the General-Purpose computing on Graphics Processing Units
(GPGPU) community (High Performance Computing). In this context, computation
and data models are explicitly considered so that they can benefit from the underlying
physical infrastructure of the GPU (a massively parallel architecture). Performance and
scalability are directly influenced by how the data model accommodates the underlying
hardware. So, it is possible to design scalable agent environment dynamics very effi-
ciently because they are modeled matching the physical infrastructure. One recent
example is the use of digital pheromones in LSMAS simulations [30].

3 Open Agent Environments for Multi-agent Systems

Living in an environment, perceiving it, and being affected by it intrinsically imply
openness. Software systems are no longer isolated, but become permeable sub- sys-
tems, whose boundaries permit reciprocal side effects. The reciprocal influence
between system and environment is often extreme and complex, making it difficult to
identify clear boundaries between the system and its environment.

In several cases, to achieve their objectives, software systems must interact with
external software components, either to provide services and data, or to acquire them.
More generally, different software systems, independently designed and modeled, are
likely to “live” in the same environment and interact explicitly with each other.
These open interactions call for common ontologies, communication protocols, and
suitable broker and coordination infrastructures to enable interoperability.

8 D. Weyns et al.



A major advance in engineering multi-agent systems has been the recognition of
the importance of the agent environment in which the agents are situated, and through
which they interact, as a first-class abstraction. However, current environment-based
multi-agent systems rely on a fixed, a priori definition of the agent environment, and
only agents that conform to that definition can exploit it. A powerful next step is the
notion of an open agent environment, one that adapts in response to the agents that
inhabit it.

This section explores the theme of open agent environments for multi-agent sys-
tems. We start by explaining the viewpoint we take on openness of agent environments
in this paper. Then we look at challenges of open agent environments that have been
identified earlier and reflect on these. We continue by illustrating a typical existing
approach to deal with openness in multi-agent systems. Finally, we reflect and outline
challenges ahead.

3.1 What Is Openness?

The concept of openness of software systems is not well defined in the literature. [11]
refers to open software systems as systems that are specifically built to allow for
extensions. [12] considers openness as a property of software systems that are subject
to decentralized management and can dynamically change their structure. [16] refers to
openness as the system’s ability to deal with entities leaving and entering the system.
[13] refers to openness of a MAS as “the ability of introducing additional agents into
the system in excess to the agents that comprise it initially.” He categorizes openness in
three levels: (1) off-line openness, which allows addition of new agents only off-line,
e.g., by halting the system, adding agents, updating some connection information, and
re-starting the system, (2) static openness where agents can be added to the system
without re-starting it, but all of the agents either are notified of such an addition, or they
hold in advance a list of prospective additional agents, and (3) dynamic openness that
allows agents to leave or enter the system dynamically, during run time, without
explicit global notification.

Our particular interest here is in dynamic openness, which enables a system to
adjust itself dynamically to uncertainty in the environment, tasks, and availability of
resources. As outlined by numerous researchers, this type of uncertainty is particularly
relevant for systems that are deployed in environments with high levels of dynamicity
and change, which are nowadays the rule rather than the exception [13, 14, 15].

3.2 Challenges on Openness of Agent Environments in Retrospect

In the period 2004 to 2007, several researchers pointed out challenges on the openness
of agent environments. [1] poses the following question:

What responsibilities does the agent environment have and what services can it provide to
increase its openness to heterogeneous agents?

Openness of agent environments was primarily seen as an engineering challenge.
For example, [6] identifies the need for suitable software architectures for the agent

Agent Environments for Multi-agent Systems 9



environment, while [17] argues for suitable abstractions and infrastructures to support
agent environment design. [18] stresses the need of suitable mechanisms for the agent
environment to support social interactions. On a more concrete level, [16] poses the
question whether electronic institutions can be further exploited to handle openness.
The emphasis on openness of agent environments has been primarily on the need for
architectures and infrastructures that allow different agents to join or leave a
multi-agent system at will. The uncertainty in the deployment context, tasks, the
availability of resources and changing system requirements, and its impact on the
openness of multi-agent systems was not of primary concern a decade ago. This is not
surprising, as the dramatic change of operating conditions in which software intensive
systems are expected to operate has only become clear over the years.

3.3 Example Application

We illustrate the efforts on openness in engineering agent environments with an example
in the domain of supply chain management. Modern supply chain management requires
the collaboration of distributed and heterogeneous systems of multiple companies,
which naturally maps to open multi-agent systems. However, developing such collab-
orative applications and building the supporting information systems poses several
engineering challenges. [19] presents Macodo, an architectural approach that aims to
address the problem of managing the design complexity of collaborative applications.

Central to Macodo are five abstractions: actor, collaboration, role, behavior, and
interaction. Macodo offers a middleware infrastructure that supports these abstractions
at the levels of design and implementation. An actor is an entity that has access to the
collaboration environment and is capable of participating in collaborations by playing
roles. In a concrete system, actors can be business entities, software agents, services, or
even people. A collaboration is a controlled process, taking place in the collaboration
environment, of a group of actors working together towards a set of goals. A collab-
oration consists of a set of roles, representing the different actors and their responsi-
bilities in the collaboration, and a set of interactions among the actors of these roles.
Collaborations are reusable and can be created and destroyed by the manager of the
collaboration. A role is the embodiment of the participation of an actor in a collabo-
ration that defines the actor’s responsibilities in that participation. When an actor enters
a collaboration, a new role instance is created. When the actor leaves the collaboration,
the corresponding role instance is destroyed. The distinction between role and role
instance is similar as in [51] that distinguishes between role types and role instances.
Within the context of a role, an actor can execute behaviors and participate in inter-
actions with other actors in the collaboration. A behavior is a coherent unit of reusable
functionality that is executed in the context of a role. A behavior is typically
application-specific and can encapsulate the execution of a task or the participation in
an interaction. Finally, an interaction is a controlled exchange of information between
the actors of a set of roles in a collaboration. An interaction can have an
application-specific protocol.

10 D. Weyns et al.



Macodo offers a set of architecture views that support engineers in modeling
applications using these abstractions. The Collaboration View models collaborations as
reusable modules and shows how they are decomposed into reusable submodules (i.e.,
roles, interactions, and behaviors). The Collaboration View is used to describe the
collaborations in a system in terms of implementation units. The Collaboration &
Actor View models the actors in a system and the concrete collaboration instances
among them. In this view, actors are represented as components, and collaborations as
connectors. The Collaboration & Actor View is used to describe the runtime archi-
tecture of a system in terms of actors and the collaborations between them, assigning
responsibilities to actors, while making abstraction of collaboration details. The Role &
Interaction View models the internal runtime architecture of a collaboration in detail.
This view allows documenting the concrete role and interaction instances in a col-
laboration, the active behaviors of roles, and how roles delegate the participation in
interactions to behaviors. A behavior is executed in the context of a role, giving the
actor of the role access to the interfaces of the behavior.

The Macodo abstractions and architectural views allow the modeling and docu-
mentation of collaborative applications. The Macodo middleware provides an agent
environment to design and implement collaborative applications that are modeled in the
Macodo architectural views. The platform supports the Macodo abstractions as pro-
gramming abstractions by mapping them to concrete technology. Figure 2 shows the
primary elements of the Macodo middleware.

[19] Presents a concrete realization of the Macodo middleware using Web Services
technology. Once specified, collaboration modules can be loaded in the Macodo mid-
dleware. The management service of the middleware can then be used to register actors
and to manage the life-cycle of concrete collaboration and role instances. After a role has
been assigned to an actor, the actor can ‘play’ the role. To play a role, an actor uses
interactions and behaviors. The information flow between the actors, interactions, and

Fig. 2. Macodo middleware
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behaviors is mediated by the middleware, which routes messages to the correct inter-
actions, behaviors, and actors. Messages between the middleware and actors contain
additional Macodo data, which uniquely identifies the role to which a message belongs.
By decoupling actors from the roles they play, the Macodo middleware offers an open
agent environment where different agents can join and leave collaborations at will.

In a concrete supply chain, the supply chain partners are the actors that can play the
roles of vendor, warehouse, retailer, and transporter. Each supply chain network can be
modeled as a collaboration. For example, in a vendor-managed inventory (VMI), the
vendor is responsible for managing the inventory. Products in the inventory, kept in an
intermediate warehouse, remain property of the vendor until consumed, or called-off,
by the retailer. The warehouse regularly reports inventory levels to the vendor. Based
on these inventory levels, the vendor replenishes the warehouse. The retailer can
call-off products from the warehouse, after which it reports the consumption to the
vendor. To model these collaborations, we can define roles, behaviors, and interactions.
For example, we can define an Inventory Reporting Behavior for the Warehouse role to
collect inventory levels and pass it to another role using an Inventory Reporting
Interaction (send inventory levels to interested parties).

The architecture views then support modeling concrete applications. For example,
with the Role & Interaction View can be used to model runtime qualities, such as
throughput of interactions or robustness of behaviors. We can, for example, specify that
the Call-Off Fulfillment Behavior should always reply to a Call-Off Interaction, even if
the actor of the Warehouse role is not reacting. The specifications can then be
implemented using the Macodo middleware programming abstractions and concrete
instanced can be loaded in the Macodo middleware. At runtime, actors can dynamically
enter, participate, and leave collaborations, and new actors can join. For example, a
new transporter can enter a collaboration and supply chain partners may switch the
transport service dynamically taking into account ongoing agreements.

3.4 Challenges Ahead

In previous research, openness of agent environments has primarily been approached
from an engineering perspective, emphasizing the ability of different agents to join or
leave a multi-agent system at will. As illustrated with the example above, the main
focus has been on identifying suitable modeling abstractions, architectures and
infrastructures to support open agent environments. However, the ever-growing com-
plexity of software systems introduces a variety of uncertainties that need to be handled
at runtime, including dynamics in operating conditions that are difficult to predict and
the need to handle changing system requirements that may not be anticipated at design
time. Several researchers have pointed out that traditional engineering approaches may
not be sufficient to deal with these uncertainties, and call for new engineering solutions.
To support openness, we see the following key challenges for the next generation of
agent environments:

• Handling uncertainty as a first-class citizen to deal with the inherent dynamics of the
context in which multi-agent systems are deployed.
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• Reducing seamless integration of online runtime adaptation and offline evolution.
• Support for agents to form sustainable ecosystems (e.g., infrastructure that enables

integration of mobile applications developed by different vendors).
• Efficient integration of a wide spectrum of services, from integrating ‘things’ to

supporting intelligent cooperation between and among agents and humans.

4 Agent Environments and Humans in the Loop

Emerging technologies such as wireless sensor networks, Internet of Things (IoT), and
smart and wearable devices, provide the basis for new types of applications where the
physical world can be accessed or modified by computational systems. Examples of
such systems are energy management, health care, and traffic systems. These appli-
cations are characterized by humans in the loop, i.e., humans are an essential part of the
realization of the rich functionalities of such systems. Humans can have the role of
users of the system, where they are in continuous interaction with the system through
computational devices (PC, tablet, smartphones, etc.), or with the physical environment
itself, as in IoT. Humans can also have a role as being integral parts of the system itself,
i.e., socio-technical systems. Examples include incorporating users to perform
security-critical functions, and incorporating activity models in smart homes to
improve the independence of elderly people.

Multi-agent systems are an effective approach for modeling and designing systems
with humans in the loop, given their characteristics of autonomy and sociality. In
particular, the notion of agent environment can play a crucial role, since the envi-
ronment is a natural place to model the shared distributed physical and social world
with which systems and people interact, and it offers rich forms of communication,
either explicit or implicit, temporary or persistent, with manageable levels of coupling.

In this section, we explore the role of the agent environment in the design of
multi-agent systems with humans in the loop. We start by outlining the position of
humans in the loop in computing systems. Then we look at challenges that have been
identified earlier and reflect on these. We provide a recent example application that
shows how humans are integrated in the loop in a multi-agent system, and conclude
with challenges ahead in this promising area for future research.

4.1 Humans in the Loop

Based on a cursory review of the literature we identified several levels of involvement
of humans in the loop in computing systems. We noticed a particular interest for
humans-in-the-loop systems in the control systems community; see for example [31,
32, 34]. Example efforts in the context of MAS are [36–39, 45].

1. Humans-in-the-loop monitoring. This level is characterized by a system that
monitors humans and takes appropriate actions when needed. An example is
AlarmNet [33], which is a smart home health care application that monitors
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activities of daily living by using environmental and wearable sensors and creates a
continuous medical history. Authorized health care providers are allowed to mon-
itor activity patterns to determine if the residents need immediate attention or new
healthcare services.

2. Humans-in-the-loop interaction. This level is characterized by humans that are in
continuous interaction with the system through computational devices. An example
is a mobile application that supports users to find each other based on particular
criteria such as locality, preferences, social contacts etc.

3. Minimizing human intervention. This level is characterized by a system that only
invokes a human operator when necessary, and does so in a minimally intervening
manner. An example is a human who is responsible for security-related configu-
ration decisions and enacting particular policies [35]. Such tasks require knowledge
that may be very hard to codify.

4. Humans-in-the-loop supervisory control. This level is characterized by intermittent
human operator interaction with a remote, automated system in order to manage a
controlled process or task environment. Examples include air traffic control, military
and space command and control, crises response management, and unmanned
vehicle operations.

Our interest in this section is on the different levels of human involvement in the loop
in multi-agent systems.

4.2 Challenges on Humans in the Loop in Retrospect

In the period 2004 to 2007, humans-in-the-loop in the context of agent environments
has not been explored very well in E4MAS research. [6] distinguishes between three
levels of support provided by the agent environment in MAS:

1. Providing support to agents for accessing the deployment context. Agents have
low-level knowledge to directly access hardware and software resources.

2. Providing agents an abstraction level to the deployment context. The abstraction
level bridges the conceptual gap between the agent abstraction and low-level details
of the deployment context.

3. Providing support to agents for interaction-mediation. The interaction-mediation
level offers support to regulate the access to shared resources, ensure restrictions are
met and mediate interaction between agents.

The three levels of support of the agent environment represent different degrees of
functionality that agents can use to achieve their goals. The obvious question in the
context of this section is: where are humans situated in this three level reference model?
Given the different levels of involvement of humans in the loop in MAS, bringing
humans in this picture is not a simple task. Straightforward modeling of humans as
either part of the deployment context or “special agents” will not be satisfactory for the
different responsibilities of humans in the loop in MAS. The key point is to understand
how the agent environment as first-class abstraction can support different levels of
involvements of humans in the loop in MAS.
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4.3 Example Application

We illustrate current research on humans in the loop in MAS with an example
application from the domain of pervasive and ubiquitous computing that is called a
sociotechnical superorganism [40]. Pervasive and ubiquitous computing is a
well-known and obvious case where humans are in the loop. In these kinds of systems,
the infrastructure is used ubiquitously to access and deploy new services for interacting
with the surrounding physical world and with the social activities occurring in it.

A sociotechnical superorganism comprises networks of entities – ICT devices and
citizens – that continuously and seamlessly cooperate in highly decentralized activities.
Entities can be involved in participatory sensing activities, and the results of real-time
sharing of knowledge at city scale enables a shared understanding, via machine-based
computing and humans-based reasoning, of urban issues of interest and their dynamics.
This in turn makes it possible to plan and direct responses or fix problems with
collective actions. Consequently, intelligent, coordinated responses to city-scale
problems emerge from a closed feedback loop involving collective sensing activities,
understanding and sharing of ideas, and collaborative actions.

In the SAPERE approach [41] pervasive service environments are modeled and
architected as a non-layered spatial substrate, laid above the actual pervasive network
infrastructure, on top of which human users act as prosumers continuously producing
and consuming data. Figure 3 shows the SAPERE Reference Model. The agent
environment (MAS Environment) abstractions support the design of agents’ activities
and interactions.

The substrate embeds the basic eco-laws that rule the activities of the system.
There, individuals of different species – agents/services, data, and devices – interact
and combine with each other (in respect of the eco-laws and typically based on their
spatial relationships), so as to serve their own individual needs as well as the

Fig. 3. SAPERE Reference Model [52]
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sustainability of the overall ecology. In this data-centric approach, the agent environ-
ment supports human/agent interaction and coordination by providing an open dis-
tributed set of data spaces, hosting streams of tuples – generated by sensors, actuators,
human actions and reactions – semantically combined, aggregated, manipulated, and
diffused according to the eco-laws.

[52] proposes “In good company”, a distributed application for the food court of a
shopping mall, that is based on SAPERE, The application enables people to spend
some time with friendly persons or anyhow sharing common affinities. A typical use
case scenario is the following: (1) a user running the application on its mobile phone
approaches the mall’s food court willing to launch “in good company”; (2) user’s
request for friendly locations is shared between the displays associated to a food
provider of the court; (3) for each given restaurant, the display takes care of polling its
costumers (using the app) to provide a measure of friendship affinity towards the
requesting user; (4) each display aggregates such measures and pushes back the answer
to the requesting user; (5) given such information the user can decide in which
restaurant to have lunch and which group of people to join.

For this application, a SAPERE node with the app code is running on users’
smartphones and restaurants’ display stands. Different agents running on different
devices interact with one another by sharing data via the spatial structure (see Fig. 3).
For example, the restaurant Agent propagates the affinity query (AQ) – with a gradient
indicating the number of hops and decay time – to surrounding displays. The agent
environment regulates the distribution of data through spread eco-laws and aggregation
eco-laws. This example shows how the agent environment can provide support for
humans-in-the-loop interaction.

4.4 Challenges Ahead

Bringing humans-in-the-loop in MAS applications through a supporting agent envi-
ronment is an open research topic. These kinds of systems pose complex challenges for
an agent environment such as to how model humans, how to design a humans-aware
communication infrastructure, how to provide decision and co-ordination support, and
how to implement regulation mechanisms. We conclude this section by listing some of
the key challenges we see in this exciting research area:

• Obtaining a comprehensive understanding of the spectrum of different types of
human-in-the-loop functions in MAS. The levels of human involvement in com-
puting systems provide a starting point.

• Defining and incorporating human models into agent environments to support
humans in the loop in MAS, incl. positioning these models into the levels of support
of the agent environment [6], or revision or extending the levels.

• Defining agent environment mechanisms and effective means for enabling inter-
action, coordination, cooperation not only among agents, but among humans and
agents too.

• Understand the engineering implications of bringing humans in the loop in agent
environments. This challenge includes identifying methodologies for designing and
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developing scalable agent environments for human-agent MAS, that integrate with
the technology stack, e.g., Internet-of-Things and the cloud.

• Take an inter-disciplinary perspective, by bringing together researchers and
expertise from both the human and the agent side, with the objective of designing
mixed agent environments with agents and humans.

5 Roadmap

Figure 4 shows the typical progressing levels of maturity to solve problems of com-
puting systems over time [42]. Software/system engineers typically start by solving
specific problems in a specific way. When problems recur, the expertise is turned into
reusable solutions, for example in the form of frameworks or libraries. In the next stage,
engineers abstract from concrete realizations and document design knowledge in the
form of architectural approaches to solve the problems, such as tactics, patterns and
reference solutions. Then, the knowledge is often consolidated in stable middleware
solutions, offering developers programming abstractions and supporting infrastructure.
Finally, language support is developed that provides an integrated solution to software
developers.

In terms of Fig. 4, researchers and engineers have explored solutions for the dif-
ferent agent environment aspects we have discussed in this paper – large scale,
openness, humans in the loop – at different levels. Most efforts have focused on solving
specific problems with specific solutions, as testified in [1, 2, 3, 5]. Some of these
solutions have been consolidated in reusable frameworks, e.g., [49, 50]. A few
researchers have presented patterns to solve problems related to agent environment;
examples are [43] with a set of patterns for self-organizing systems, and [44] presenting

Fig. 4. Maturity levels of computing system solutions

Agent Environments for Multi-agent Systems 17



the results of a recent systematic survey of patterns applied in MAS. [48] presents an
architecture framework for collective intelligence systems, comprising three viewpoints
that support architects with designing agent environment for knowledge sharing plat-
forms that are based on stigmergic principles. Different middleware solutions and a few
component models have been developed. Prominent examples are electronic institu-
tions [45] and coordination artifacts [46]. Recently, some initial efforts have been done
on programming support for agent environments, e.g., [47].

A closer look at existing work shows that most efforts are at lower levels of solution
maturity, in particular ad-hoc implementations and frameworks. This is a natural sit-
uation for research that has been in an explorative stage. However, we believe that the
time has come to balance exploration with consolidation. In Sect. 4 we have presented
a variety of opportunities for exploratory research on agent environments for MAS. We
conclude with complementary opportunities to consolidate research efforts:

• Perform empirical research to validate the claims of existing solutions of agent
environments for multi-agent systems.

• Consolidate existing knowledge on agent environments for multi-agent systems;
one effective way to do so is by performing a systematic survey of the state of the
art in the field;

• Consolidate existing know-how on agent environments for multi-agent systems by
documenting recurring solutions in the form of patterns, reference models and
reference architectures;

• Define model problems and exemplars to drive and communicate research advan-
ces, establish research agendas, and compare and contrast alternative approaches.

Computing systems are increasingly intertwined with the surrounding world in which
they are deployed and used. Furthermore, the growing dynamics, integration, and
expanding scale of software-intensive systems calls for decentralization. The agent
environment lies at the intersection of these two evolutions and will be more relevant
for future computing systems than ever before. We hope that both the opportunities for
further exploration and suggestions for consolidation may be a stimulus to further
study, development and maturation of the field of agent environments in multi-agent
systems.
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Abstract. Interfacing the agents with their environment is a classical
problem when designing multiagent systems. However, the models per-
taining to this interface generally choose to either embed it in the agents,
or in the environment. In this position paper, we propose to highlight
the role of agent bodies as primary components of the multiagent system
design. We propose a tentative definition of an agent body, and discuss
its responsibilities in terms of MAS components. The agent body takes
from both agent and environment: low-level agent mechanisms such as
perception and influences are treated locally in the agent bodies. These
mechanism participate in the cognitive process, but are not driven by
symbol manipulation. Furthermore, it allows to define several bodies for
one mind, either to simulate different capabilities, or to interact in the
different environments - physical, social- the agent is immersed in. We
also draw the main challenges to apply this concept effectively.

Keywords: Multi-agent systems · Embodied agent · Environment ·
Interface · Influence · Laws · Rules

1 Introduction

Immersing agents in dynamic physical, virtual or mixed environments is still a
challenge for Multiagent systems (MAS) researchers. As has been established
in [31], an essential part of such systems is the MAS environment, in order to
provide the services allowing agents to interact with it. However, to define what
is the interface between the agents and their environment is not obvious. A key
c© Springer International Publishing Switzerland 2015
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aspect is to both respect their autonomy and ensure that environment rules are
enforced. In the following, we call agent environment the software layer between
the external world and the agents.

As has been shown in several simulation models, adding a component between
the agents and the agent environment enables to encapsulate responsibilities
such as influence-reaction mechanisms [14,26] and observability and perception
management [10], while keeping the internal integrity of the agents. A suitable
concept to manage this interface is the agent body, i.e. a component that is
attached to each agent to manage its interface with the environment.

The distinction between mind and body when talking about AI systems in
general has been proposed mainly for robotics [3], and more recently virtual
companions [28]. Its application to multiagent systems, where there is not nec-
essarily a physical body, has not been discussed extensively in the literature. In
this paper, we argue that introducing agent bodies enables to propose a flexible
agent design separating sensory and control modules from high level reasoning,
thus allowing to design the mind once for several action/perception capabilities,
while keeping the agent adaptive -to its body and to its dynamic environment(s).

Investigating the concept of body implies to also investigate the different
kinds of environment an agent can be in. The physical metaphor is obvious,
and that is why it is firstly in the simulation domain that the concept appeared.
However, abstracting the concept of environment as being any topological space,
such as social spaces, in which the agent may interact with others, also allows
to envision different uses of bodies depending on the environment type, while
being consistent across all the agents environments.

This article is a position paper in support of the introduction of agent bodies
as environment abstractions. In Sect. 2, we review the state of the art related
to the use of this concept as interfaces between agents and environment. Then,
we propose a tentative definition of the concept in Sect. 3, and draw on this
definition to distinguish agent body and mind responsibilities. Section 4 discusses
the advantages and limits of this approach. Section 5 proposes a typology of
bodies and minds across two dimensions: cardinality and type of environment,
and we discuss how these relate to functionalities that have to be implemented
in the different components of the MAS. Finally, we identify in Sect. 6 the main
issues and challenges for the introduction of this concept in mainstream MAS,
and link them to previously established challenges in environment design.

2 State of the Art

Although the situatedness of the agents has been part of the multiagent systems
community practice for a long time, it has long been tackled in an ad hoc way [32].
Situated agents interacting with their environment have shown the advantages
of using the environment for problem solving via indirect interactions such as
stigmergy [19] and limited cognitive capabilities of the agents [30]. Works of
E4MAS workgroup have then put forward the view of the environment as a
first-order abstraction for the design of MASs [31]. However, the body/mind
differentiation has not received the same attention as the environment role.
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As we have seen in introduction, the distinction between mind and body in
the context of artificial intelligence was mainly proposed in robotics [3]. Never-
theless, there has been a few works on the concept of body in the MAS commu-
nity. Two works addressing explicitly bodies in the MAS literature are the ELMS
model [15] and Soft-Bodies [16]. In these works, the body is considered as con-
trolled by the environment, and encapsulates several responsibilities including
observability and accessibility of the public state of the agents.

Other works introduce the use of a mediator between agents and environment,
such as Interaction Objects [10] and Smart Objects [27], which can be viewed as
functionally similar to bodies. Artifacts [20,21] are dynamic objects, independent
from the agents, that enable the agent to interact with its environment.

In the simulation domain, the addition of an interface between mind and
agent environment has been done in a number of works, although never using the
same naming [1,2,7,14,23,25,28]. These works deal with situated interactions,
where the modeling of imperfect coupling between the decision process and its
effects on the environment (and the other agents) is necessary. In these works,
the body is a component of the environment (Fig. 1). It contains a collection of
sensors and effectors related to the associated environment. It is able to filter
the percepts and the actions according to its state variables and attributes. The
body has its own dynamics that can not be controlled by the agents.

The agent environment controls the dynamic properties of the bodies (posi-
tion, orientation, etc.) in order to ensure that they follow the rules and laws
of the universe [15,16]. However, the agent can influence its body by using a
mechanism such as the Influence/Reaction model [14].
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Fig. 1. The body at the interface between the agent mind and the environment,
extracted from [7].

In a specific kind of environments, Intelligent Virtual Environments, the
meta-model MAM5 [1,23] has been developed. It allows to model the Vir-
tual Environment by means of artifacts, including the distinction between mind
(agent) and body. It defines the body as an artifact belonging to the Virtual
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Environment. In Virtual Environments, the body is naturally represented. For
instance, in games users and agents avatars may have different bodies, with dif-
ferent capabilities or features. In this case it is not unusual to be able to switch
between different bodies so that each body may relate to a particular environ-
ment, while it is always controlled by the same mind.

Furthermore, let us note that the representation (observability) role of the
body is not its only role. It mediates the whole processes between mind and
environment in terms of perception, action and accessibility.

3 Refining the Body Concept

In this section, we define the concept of body and its major responsibilities in
a MAS. We also propose a formalization of the perception process to illustrate
this approach.

3.1 Definition

Drawing on the related works, we propose the following definition of an agent
body:

The agent body is a component of the multiagent system working as an inter-
face between mind (agent) and environment. It is embedded in the environment to
enforce body rules and ecological laws, but is influenced by -and allows introspec-
tion for- the mind. An agent may have one or more bodies in the environment(s)
it participates in.

Figure 2 illustrates this definition in a UML class diagram. The goal of the
body is to embed parameters and methods that mediate the interaction between
the agent and its environment(s). In this way, the body is not a simple interface
between the agent and the environment, defining how they interact with each
other. It is also a dynamic - though not proactive - component.

Fig. 2. UML class diagram of the model.

The body embeds tendencies that influence the mind as well as the mind
influences the body. In this sense, the body has its own dynamics that is not
controlled by the mind. Furthermore, the body is situated in an environment,
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and follows its rules. Hence, while respecting the agent integrity - the mind is
autonomous from the body, the body ensures its situation in the multiagent
system by (1) being consistent with the environment rules and (2) enforcing the
dynamics.

However, since the body state and processes may evolve without agent action,
agreement or even knowledge, it has to propose some kind of introspection prim-
itives, for the mind to be aware of the state of its body.

Finally, in most simulation cases, mind and body are related 1 to 1, so that
there is one mind, that is one agent, associated to one and only one body. But
the concept of body fits more complicated relations. For instance, one mind can
be related to several different bodies, each one with different interfaces with
the environment, or each one with access to different parts of the environment.
This can be related to [11], where several environments –one for each specific
aspect of the application– are composed through a unified modeling. In this
work, actuators and sensors are defined in each environment and reified in the
agents.

Moreover, different minds can have access to the same body, at different times
or even at the same time, having some mechanism, as for instance a negotiation
process or multiple influences fusion, to decide which action to carry out. The
different cardinalities are discussed in Sect. 5.1.

3.2 Component Responsibilities

Figure 3 shows the different interactions between body, mind and environment.
The introduction of agent bodies (or soft-bodies) imply the introduction of feed-
back loops, since it is a dynamic entity that may change without influences from
the mind, and its reactions to the mind’s influences are not ensured.

Fig. 3. Mind, body and environment interactions.
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From our definition, we can derive the following responsibilities of the agent
body in the multiagent system design:

1. Representation of the agent
2. Perception mediation
3. Action mediation
4. Life cycle
5. Activity (rules and dynamics)

In the following, we detail each of these responsibilities.

Agent Representation. Deriving from the works on virtual companions with
a physical representation, the body acts as a representative of the agent in the
agent environment. Hence, it provides the public part of the agent in terms of
observability. In virtual reality environments, this public part is a 2D or a 3D
model; in software agents (such as in [16] it is a set of attributes or even a set
of accessible methods (like in artifacts) to interact with this agents. This can be
related to the affordance [9] concept, the object carrying its functionalities itself.

In non-physical agent environments, this representation may be a profile - as
in social media; or any set of properties and interfaces.

Perception Mediation. Concerning perception, the body defines the percep-
tion capabilities of the agent, the simplest example being a maximal field of
view. It may also provide more refined perception methods, such as aggregate or
“macroscopic” views of the agent (or real) environment. Hence, it both defines
capabilities and limits, in a similar way to perception filters [24] or active per-
ception [33].

This approach enables to define a mixed bottom up and top down approach
of perception [13]: the classical perception methods, which are requests from the
agent to the environment, are top-down, since they are driven by the agent, may
be mixed with “awareness” filters, defining percepts that are perceived by the
agents event if they do not request them [16,25].

Another part of perception, from the point of view of the mind, is that of
its own body through introspection. Since the agent body state is not decided
by the agent, but only influenced by it, the body has to provide self-awareness
methods for the agent to adapt to it. Hence, the layer provides observability for
its owner agent, for both attributes, inner and outer methods.

Furthermore, it may provides alerts (in a bottom up style) if its state is
modified by the environment to internal (dynamics) or external (environment or
other agents interaction with it) influences.

Action Mediation. In the same way as perception, the body defines action
capabilities of the agents, for example the set of actions it is able to achieve in
the agent environment. These action methods are limited by the rules of the
environment, and possible rules of this particular body, which may differ from
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one agent to another, in terms of action set, but also of accuracy, success rate,
performance... This combines into an influence, that is then received by the
environment for it to compute its reaction.

Since the agents actions are mediated by both its body and the environment,
the result of its actions (or perceptions attempts) is not ensured. Hence, feedback
methods are provided, in order for the agent to learn how its influences are met.
These feedback are both those from the environment and those from the body,
when the agent tries to modify its state.

These feedback may be processed online, for an agent to adapt to its action
and perception results, or offline by the agent designer.

Life Cycle. As has been evoked in the previous sections, an agent may have one
or more bodies in the different agent environments it participates in. Furthermore,
the agent body may change at run-time, for example in modular robotics [34].

Hence, bodies are considered as a service of the agent environment. An agent
may request one or more bodies from an environment in order to interact with
it. Let us note that since bodies are embedded in the environment, the agent
may not receive a body, or not one with the characteristics it requested.

Dynamics and Rules. The body must respect the laws of the agent environ-
ment. Furthermore, it may be embedded with a set of dynamics that correspond
to the laws of the environment. For example, in [25], the agents are influenced
by their neighbor’s emotion contagion, and each agent body has its own emotion
dynamics.

This set of laws is enforced at run-time by the body, under the responsibility
of the environment.

3.3 Example of Formalism: The Perception Process

In order to illustrate this definition, we propose a formalization of the percep-
tion process. This enables to show how the perception, or more generally the
interactions between mind, body and environment, becomes a composition of
successive processes managed by each component.

Equation 1 illustrates the four steps of perception for the body and agent i
on the instant state of the environment σt:

Perceptioni(σt) = Assimilationi ◦ Filteri ◦ Alteri ◦ Extracti(σt)
= Assimilationi(Filteri(Alteri(Extracti(σt)))) (1)

= Γ i
d

where the characteristics of an agent or more generally an entity, form the set Γ .
The first step is the raw extraction from the environment. For an agent agi in
can be expressed as the function Extracti detailed on (2).
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Extracti : Σ × Γ −→ σ
σt, Γ

i
e �−→ Et, Et ⊆ σt

(2)

The second step is the alteration of the produced subset in the agent body.
This alteration, for agi can be expressed as the function Alteri detailed on
equation (3) where Ξt is the altered subset. As a reminder, the produced subset
may not be a subset of σt.

Alteri : Σ × Γ −→ Ξ
Et, Γ

i
e �−→ Ξi

t
(3)

The third step consists in filtering the provided subset depending on the
request of the agent mind. This filtering can be expressed, for agi, as the function
Filteri detailed on (4).

Filteri : Ξ × Γ −→ Ξ

Ξi
t , Γ

i
d �−→ Ξi′

t

(4)

Finally, the assimilation, for agi, can be expressed as the function
Assimilationi detailed on (5).

Assimilationi : Ξ × Γ −→ Γ

Ξi′
t , Γ i

d �−→ Γ i′
d

(5)

4 Discussion

The definition of agent bodies and their responsibilities enumerated in the pre-
vious section present several advantages in terms of software engineering, flexi-
bility, and cyber-physical systems.

From a Software Engineering point of view, since the environment controls
the body, it may enforce rules regarding body dynamics in the case of several
agent designers, thus acting as an electronic institution [4] in all aspects of agent
interactions. Secondly, it enables to manage the design complexity by separating
high-level decision from low-level (operational) mechanisms.

Concerning the flexibility in agent design, designing one mind that can be
coupled with different bodies enables to manage body heterogeneity without
changing the high-level decision process; for example in the case of multiagent
simulation where a population of agents with different parameter sets coexist.

Finally, in cyber-physical systems were agents are immersed in both software
and physical worlds, it enables to create agents that can be interfaced with
physical or simulated worlds seamlessly, as long as the interface is consistent.
This multiple interface may be done simultaneously or not, depending on the
context.

The main limits of this approach are (i) that another component, the agent
body, is added, and (ii) that the choice of where to divide mind/body/environ-
ment responsibilities is yet to be fully understood.
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Concerning the first point, the functionalities have to be implemented in any
case, so that their location is a design choice that does not add complexity.

Concerning the second point, we have proposed a division of functionalities
in the previous section. This is a basis for further discussion about the location
of each basic module to unify this view of a MAS architecture. However, the
responsibilities may in certain cases be divided in other ways. For example, some
authors have proposed to not separate body and mind processes, considering only
interconnected modules [17] that make up the whole cognition. Although we also
consider that both body and mind processes are components of the cognition,
not separating nor defining the responsibilities of each fails to simplify the agent
design from an architecture point of view.

5 Typology

Having defined the responsibilities of agent bodies, we then study how agents
(or minds) and bodies relate, on two scales: cardinality and environment nature.
Then, we propose examples for each type of subdivision.

5.1 Based on Cardinality

One possible typology of the relationship between body and mind in agents is
the one given by the cardinality of such relationship:

– 1 to 1: one body is related to one mind. So, an agent can be identified as a
mind and its corresponding body.
In this case, the transition between an integrated agent approach and a
body/mind differentiation is straightforward, considering it as a decompo-
sition of previous modules in order to improve modularity.

– n to 1: n bodies are related to the same mind. As the body can be seen as
interfaces to the environment, this case is related to one agent which is able to
access in different ways to the environment (i.e. normal or supervisor modes;
different bodies in a video-game kind of application, with different capabilities;
an evolving body as in a modular robots) or to different environments.
In this case, the mind has to be able to manage each body, considering each of
those may have different capabilities in terms of action, perception and inter-
nal dynamics. A solution is to transparently merge these capabilities across
the agent environments, as in [11].

– 1 to n: 1 body controlled by n minds. This seemingly schizophrenic relation
represents the use of a common vessel for different intentions. In this case, the
body may be subject to contradictory influences, and must therefore either
have a rights management system and an influence disambiguation mechanism
to manage the different influences. It is quite similar to previous works on
influence reaction mechanisms, which in this case must be implemented in the
body itself.
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5.2 Based on the Environment Nature

Another parallel classification of the agent’s body - mind relationship is the one
according to environment nature, that is, according to the features that the body
may have:

– Physical: Either the environment is the true physical world (as could be if
the body corresponds to a robot) or it is a simulated world (as in Second Life
or World Of Warcraft). The body has some physical features such as shape,
volume, position, . . . , that also define the sensing and actuation that can be
carried out by means of such body.

– Non-Physical: The agent is not situated in a physical-related environment,
but it may be related to a body seen as an interface it can be perceived and a
that gives it some way of perceiving the environment. In a social network, it
will be related to the agent’s profile.

It should be underlined here that this classification is parallel to the previous
one. So, for instance, an agent’s mind could be controlling one or several robots,
or to different social network’s profiles. We propose in Table 1 examples across
both classifications.

Table 1. Examples

Cardinality Physical - real Physical - virtual Social

1 Agent/N bodies Centralized
control robot
swarm

Macro or
mesoscopic
simulation

One representation in each
social space e.g. several
Social Networks

1 agent/1 body Robot Virtual agent Personal profile e.g. Online
Social Networks

N Agents/1 body Decentralized
control robot

Decentralized
controlled
agent

Organization/Group interface;
e.g. profile: macro/aggregate
view

6 Modeling and Deployment Challenges

As we have mentioned earlier in this article, the realization of the mind/body
paradigm is far from being an easy task. Let us acknowledge the risk that the
Mind/Body paradigm could be counterproductive if the significance of both
concepts is not rigorously established. In this section, we discuss the different
challenges that have to be carried out in order to concretely take advantage
of the distinction between the mind and body from a modeling and deployment
perspective, and how they relate to previous challenges identified by the E4MAS
workgroup.
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6.1 Mastering the Body Concept

If the body is part of the environment, it means that the way we build an instance
of an agent in a multi-agent system needs to be examined closely. This is related
to the definition of the abstractions and concepts that may be used for defining
an agent environment [12,29] that has constituted one of the major challenges
on the environment in MAS during the past 10 years. The introduction of the
body concept raises the question: what is specific to the body and could be
implemented regardless of the mind? To answer this critical question we suggest
the following two tracks.

The Body is Part of the Environment. The fact that the body is part of
the environment means that the former provides conditions for the body to exist.
Furthermore, assuming that the body is an interface between the agent and its
environment, we can also conclude that the environment embodies an important
part of the capacities of agents, namely, those that allow the agent to act on its
environment and to interact with other agents. Therefore the action model and
the interaction model could be embedded within the environment regardless of
agents’ Mind : agents are not driven by the environment, but it is clearly the
environment that defines the means for their perception, action and interaction.
We believe that this is a critical separation that has to be handled by designers
at the very start of a MAS modeling process.

In [11], the authors argue for this responsibility separation. In particular, they
note that this enables the agent environment to be independent from the agent
design. The environment providing its means to interact with it (and through it
with the other agents), the agent design is thus simplified, even in the case of
multiple environments. We propose to take this idea one step further, including
other aspects of software bodies such as dynamics and observability.

According to [31], suitable software architectures, and suitable architectural
patterns and reference architectures for the agent environment must be defined.
The previous separation principle participates to the building of a general soft-
ware architecture for the agent environment. Figure 1 illustrates that the bod-
ies are at the interface between the agent environment and the agents. The
body-mind separation may also be a starting point for determining if general-
purpose or special-purpose simulation environments for executing multi-agent
simulations involving dynamic agent environments are needed, that was a chal-
lenge considered in [12]. In [5,6], the authors consider two dimensions of the
agent environment: the physical and communication dimensions. The body con-
cept is used in the two dimensions (the physical body, and the Internet avatar)
as the representations of the agents in these dimensions. This concept may be
considered as a general abstraction, and may participate to the definition of a
general-purpose simulation environment.

The Environment Holds its Own Dynamics. Another important aspect to
account for is the notion of body tendencies. Since the environment is dynamic,
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the body, being part of the environment, inherits the dynamicity of this environ-
ment. Tendencies could be seen as a realization of this dynamicity and therefore
implemented within agents’ bodies regardless of their mind. Tendencies could
be considered as permanent : agents can cope with them, eventually influence
them, but cannot erase them. An important challenge from a modeling perspec-
tive could be therefore to define the different type of bodies’ tendencies that
are relevant for the agent behaviour and how the agent cope with it. Previous
works (e.g. [11,31] propose to use an ontology of the environment, a part of
which should concern (and be embedded in) the agent bodies to increase the
environment openness to heterogeneous agents [32].

6.2 Mastering the Mind Concept

As with the body concept in the previous section, the following question could
be raised concerning the mind concept : what is specific to the mind and could
be implemented regardless of the body? We suggest the following tracks to shape
the discussion.

Activities Specific to the Mind. With the introduction of the body concept,
it is legitimate to consider the activity of the mind specifically. It seems natural
to assume that the proper of the mind is concepts (symbol) manipulation and
reasoning. Those activities are ruled by constraints, different from that of the
body, that could be native or acquired from the experience. Rigorously speaking,
the mind life cycle does not depend on that of the body, both entity evolving
in parallel. Hence, their respective activities could be implemented separately.
Anyway, the mind experience proceed from the evolution of the body in the
environment, so feedbacks from the evolution of the body to the mind have to
be clearly established by the designer.

One of the responsibilities of the environment is ensuring the locality of the
perception and of the actions [32]. The body participates to the solving of this
challenge by providing sensors that are defined or constrained by geometries.
For example, the view perception may be supported by a camera in the real
world [8], or by a geometrical shape in a simulated environment [7]. In this last
case, the shape of the field-of-view is defined by geometrical elements that have a
position relative to the position of the agent’s body in the physical environment.
On the one hand, this definition ensures a local perception for the agents. On
the other hand, the actions are local since they are always related to an object
in the environment such as moving the object or doing an action on it.

Connexion Between the Mind and the Body. We believe that one of the
biggest challenge is to instantiate the link between the Mind and the Body,
since both entities are implemented separately. The mind activity is different by
nature with that of the body, but they are strongly coupled.

Several works are already proposed in the literature for defining the connex-
ion between the mind and the body. For example, the influence/reaction [14]
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model models the joint actions of the actions. Another example is the model
of smart objects [27] that defines how the agents obtain the possible actions
in the environment. These approaches constitute answers for the handling of
the interferences between the agents’ actions that constitute one of the research
challenges related to the environment in MAS [12].

To properly apprehend the coupling, at least three types of knowledge have
to be considered: (i) knowledge of the agent about the capacities of its body, (ii)
knowledge of the agent about the consequences of its actions on the integrity
of its body only, (iii) knowledge about the consequences of its actions on the
environment in general (beyond the agent’s body). The dynamics of these three
types of knowledge need to be addressed early in the design.

6.3 Supporting the Body in the Engineering of the Agent
Environment

One of the past 10-years research challenges concerned the difference between
the agent environment and the agents that inhabit it [32]. The distinctions that
were highlighted (activity vs proactivity, maintenance-driven behaviour vs goal-
driven behaviour, dynamics embodiment vs reaction, observability vs opacity)
clearly support the view of the body as an abstraction, or even service, of the
environment.

Based on the principle that agents are autonomous entities, and that the
environment is not autonomous and does not contain (in a software sense)
autonomous entities, the question of defining what is an agent and what is not
has arisen. In our view, every entity that exists in the agent environment and
is perceivable by agents is a component of this environment: a body represents
one or more agent(s) in the agent environment. The agents become therefore the
autonomous entities that control the bodies. They are able to perceive and act
in the agent environment through their bodies.

Another research challenge is related to the need of a specific language for
describing the agent environment, including its structural and dynamical fea-
tures [12]. Artifact [18] and CArtAgO [22] may be considered for proposing a
language that is able to describe the bodies and their dynamics, for instance.
They provides programming languages for describing the artifacts inside the
agent environment that may be used for defining a programming language that
has keywords dedicated to the body concept.

The introduction of agent bodies does not solve the architectural issues in
effectively engineering environments [31], however it can serve –once properly
defined– as an architectural building element and pattern for agent-environment
interactions.

7 Conclusions

The interface between agent and environment has given rise to a number of
different proposals in the multiagent systems literature. This paper has argued
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that this interface can be reified through the concept of agent body, and that it
answers partially to previous research challenges for agent environments, such as
perception and action local management, local dynamics and rules, and multiple
environments management. We have discussed the main questions raised by the
adoption of this new abstraction: the localization of the interface between agent
and body, the definition of body properties and processes, the cardinality of
agent/body relationships, and the relations of the bodies with different kinds of
environment.

To take advantage of the Mind/Body paradigm, we have stressed that sev-
eral aspect need to be considered early in the modeling process. They are orga-
nized into three main issues: (i) Body-specific, (ii) Mind-specific, (iii) Body/Mind
interface. These considerations give an overview of the challenges raised by the
Mind/Body paradigm from a modeling and deployment perspective.

In order to mainstream this paradigm, the next step is therefore the integra-
tion of the body and environment components in agent-oriented methodologies
and in agent-oriented platforms. The heterogeneity of previous related works
does not allow to draw methodological guidelines for the design of this compo-
nent, hence calling for more work in this direction.

Finally, we have also given an informal definition of the agent body. Another
challenge is then to propose a formal definition of the concept of body in order to
propose an architectural building block for an agent environment unified model.
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Abstract. Semantic Web Agents have been considered as main type of software
to consume the semantic data since the Semantic Web concept was raised first
time in the well-known “The Semantic Web” article in 2001. More than a decade
passed and there is no collaboration between multi-agent systems and semantic
web (or its current realization: linked data web) communities that can be con-
sidered important. In this paper, it is argued that initial vision was right and two
communities need each other to scale up their current practice. Thus, a conceptual
framework is proposed to establish necessary links between agent and linked data
web infrastructures. Environment abstraction has a special role in this framework
and this role is especially discussed throughout the paper.

1 Introduction

In the beginning of the Semantic Web movement, agents have been considered as
first-class abstractions. The first article that put the Semantic Web concept forward is
the well-known “The Semantic Web” article written by Berners-Lee et al. [4]. The first
two paragraphs of that article describe a semantic web scenario where Lucy tries to
schedule a series of physical therapy sessions for her mom together with her brother
Pete. The second paragraph of the article is rewritten below to emphasize the impor-
tance of Semantic Web Agent concept in the initial vision.

“At the doctor’s office, Lucy instructed her Semantic Web agent through her
handheld Web browser. The agent promptly retrieved information about Mom’s
prescribed treatment from the doctor’s agent, looked up several lists of providers, and
checked for the ones in-plan for Mom’s insurance within a 20-mile radius of her home
and with a rating of excellent or very good on trusted rating services. It then began
trying to find a match between available appointment times (supplied by the agents of
individual providers through their Web sites) and Pete’s and Lucy’s busy schedules.
(The italicized keywords indicate terms whose semantics, or meaning, were defined for
the agent through the Semantic Web.)”

As the sample scenario given above indicates, (semantic web) agents are playing the
leading role in the scenario. Six years later, James Hendler wrote a letter as IEEE
Intelligent System editor in May–June 2007 issue and asked an important question
“Where are all the Intelligent Agents”. He commented in the letter that the key obstacle
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to the wider deployment of agents is the need for interoperability and intercommuni-
cation. He also argued that well established web services standards (and vendor(s)
support) provide necessary interoperability infrastructure and semantic web standards
provide the knowledge sharing infrastructure for intelligent agents’ intercommunication.

In 2007 when Hendler wrote the letter, RDF, RDF Schema and OWL had become
standards. There was huge research effort on many areas of the semantic web such as
the development of new standards (e.g. SPARQL), inference optimization, construction
of new ontologies for different domains, development of ontology mapping and
alignment languages and so on. Also, there were significant efforts on tool develop-
ment, which resulted with some great open source tools such as Protégé, Pellet, Jena
and many others that can be used to create and manipulate ontologies.

Despite the huge research efforts in mid-2000s, it was very doubtful to argue that
there was a Semantic Web in that time as envisioned. Because, the Semantic Web was
defined as a universal knowledge graph from the beginning where every concept
named by a URI and these concepts are progressively linked into a universal web [4].
In 2007, there were lots of necessary standards, tools, and independent information
systems that use these standards and tools, but universal linked knowledge web was
lacking. Thus, the question would be “Where is the Semantic Web We Envisioned” for
that time.

But, today it is certain that we are living in the era of transformation of web into a
knowledge web which is also called Linked Data Web. There were 1014 linked data
sets in the Linked Data Cloud as of April 2014 including billions of triples and more
than 500 million out links [2]. Linked data web, which includes data sets in many
domains such as government, media, life sciences, geographic places, social web, is
constantly and exponentially growing.

Thus, it is time for agent researchers and practitioners to ask themselves how they
can link agents to this new web. Since abstraction of the resources at low level
deployment context is one of the many duties of the agent environments, agent-linked
data web linkage can be achieved by means of them. Thus, in this paper, a conceptual
framework for such an environment is proposed. This framework allows agents to
access and monitor the data on the linked data web through an abstraction layer as
given in [8].

2 Architectural Patterns of Linked Data Web

In July of 2006, Tim Berners-Lee published a personal note named as Linked
Data-Design Issues [4]. The note was beginning with the following sentences; “The
Semantic Web isn’t just about putting data on the web. It is about making links, so that
a person or machine can explore the web of data.” We believe that this note is crucial
for the Semantic Web evolution. Because, it changed the focus of the whole com-
munity to real problem; creating a web of data by making links. At that time, com-
munity was considering the ontologies like silver bullet and putting them into almost
any information system problem known. There were many projects which use ontol-
ogies and related tools and many proposed domain ontologies, but creating a web of
data was not a common vision within the community. Tim Berners-Lee reminded the
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community the original vision and renamed this vision as Linked Data Web to get rid
of the confusion within the community.

After the publishment of Linked Data-Design Issues, community has taken the
message and began to create linked data web. Actually, there were only 4 principles in
Linked Data-Design Issues note:

1. Use URIs as names for things.
2. Use HTTP URIs, so that people can look up those names.
3. When someone looks up a URI, provide useful information, using the standards

(RDF, SPARQL).
4. Include links to other URIs, so that they can discover more things.

By applying these principles, community has created a Linked Data Cloud which
included billions of triples and more than 500 million out links in April 2014 (last
measurement, but constantly expanding). Today, we have a well-established infra-
structure to publish and consume the linked data from the cloud.

To publish data, there are various ready-to-use data wrappers and converters for all
widely used structural and semi-structural data models. Since most of the structural
data on the Web are stored by relational databases, the most mature wrappers are for
transforming relational databases structures to RDF model. W3C published a recom-
mendation in September 2012 for a standard language called as R2RML to express
customized mappings from relational databases to RDF datasets. R2RML has been
widely accepted by tool developers, even well-known open source D2R [5] uses
R2RML as the mapping language.

There are, of course, many tools to convert application specific format such as
CVS, Excel, and XML ext. into RDF. These tools are known as RDFizing tools and a
list of them can be found in [6]. The output of these tools can be static RDF files
accessed through a web server or converted RDF data can be loaded to a RDF Store.

Once the internal data sources are converted to RDF and/or necessary mappings are
defined through wrappers to create RDF view, these created RDF data can be accessed
via Web by two ways: querying with SPARQL protocol through SPARQL endpoints
(RDBtoRDF wrappers and RDF stores provides endpoint support) or accessing RDF
files (by dereferencing URL address) through web server.

Now consider that there hundreds (thousands in very near future) data sources
publishing their data, there are many links (billions of them) between published sources
and there is very dynamic environment where new sources enters and new links are
created constantly in an uncontrolled manner. Although the tools and approaches for
publishing RDF data are stable and deployed successfully in hundreds of data sources
in LOD cloud, consuming the desired data from such a highly dynamic environment is
a very challenging task. So, linked data community’s main focus is to find effective
ways to consume data from linked data cloud. This focus is also very critical for
semantic agent researchers since agents have been considered as the main consumer as
it is discussed in the introduction.

There are three well understood architecture patterns for consuming linked data
depending of the applications’ requirements: the On-The-Fly Dereferencing Pattern, the
Crawling Pattern and the Query Federation Pattern. These patterns have been described
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in detail in [3], and they are briefly introduced in the following paragraphs to identify
the alternative ways of consuming linked data cloud.

On-The-Fly Dereferencing Pattern is also known as follow your nose approach.
This pattern conceptualizes the web as a graph of documents which contains
derefe-rencable URIs. So, an application executes a query by accessing an RDF file by
dere-ferencing the URL address then follows the URI links by parsing the received file
on-the-fly. The problem with this pattern is the performance of the complex operations
especially when it is needed to dereference thousands of URIs.

The Crawling Pattern follows the approach of web search engines like Google,
Yahoo. In this approach, collection of data and usage of the collected (cached) data are
two separate tasks. So the data collection task constantly crawls the web by derefer-
encing URLs, following links and integrating the discovered data on the local site. The
main advantage of the crawling pattern is its performance. Applications can use high
volume of integrated data in much higher performance than other patterns. On the other
hand, the main disadvantage of this pattern is that original data may change while you
use it from replicated local cache (stale data problem). Also, integration of the dis-
covered data is a very challenging task since different publishers may use different
URLs to identify the same concept. In this case, one has to resolve this identity problem
and also to consider the quality of the data (using the provenance knowledge) while
integrating the all collected data.

Query Federation Pattern is based on dividing a (complex) query into sub-queries
and distributing sub-queries to relevant datasets which are selected using metadata
about datasets. It rises on the findings of the database literature on distributed query
processing. Query federation contains two main steps before performing a query.
Firstly, query is divided into sub-queries and datasets relevant with sub-queries are
selected using some metadata which reflects dataset content. Then, the query execution
plan is constructed using statistics about datasets in the query optimization step. For the
purpose of executing sub-queries on distributed data sources, query federation requires
accessing datasets via SPARQL endpoints. SPARQL endpoints have become the
standard approach to publish high volume of data since all relational database wrappers
and RDF stores support data publishing through endpoints. Also, publishing metadata
about the data sources was added to the Linked Data-Design Issues note as a new
principle in 2009 and an RDF scheme called as VoID (Vocabulary of Interlinked
Datasets) which is used to express metadata about the data sources was proposed [11]
and has become a defacto standard. So, there is a well-established infrastructure to
execute Query Federation Pattern and it is the one of the most researched topic within
the linked data community. The main problem is again performance of the complex
queries especially when query needs to join data from large number of data sources.
But, recent federated query engines like SPLENDID [12], and WODQA [10] show
reasonable performances even with complex queries.

When these three patterns are examined, it can be easily noticed that Query Fed-
eration an On-the-fly Dereferencing patterns query data from its original data sources,
on the other hand Crawler pattern brings and integrates all crawled data in the appli-
cation’s local site. At this point, an important question that needs to be answered is
which pattern(s) are more suitable for semantic agent and linked data cloud interaction.
Let’s remember the semantic web scenario again to answer this question.
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Lucy’s semantic agent looks up several lists of providers, and checks for the ones
in-plan for Mom’s insurance within a 20-mile radius of her home and with a rating of
excellent or very good on trusted rating services. In the world of linked data web, it can
be easily assumed that there are two datasets publishing medical providers’ knowledge
(types of services, location ext.) and rating knowledge as SPARQL end points. There
will be links in these datasets and also links from medical provider data to the insurance
dataset published somewhere else. So, the answer of the question is clear, semantic
agents first able to discover right dataset(s) and query linked data in their original place
by using Query Federation or On-the-fly Dereferencing patterns. Another issue with the
scenario is taking an appointment from a suitable therapist. In order to establish this,
the schedule datasets of the therapists with the desired rank and address can be crawled
from their original locations periodically and collected in a local knowledge base which
can be queried for appointment times. Of course, semantic agents can take role in
crawling process like handling identity resolution, quality handling and management of
high volume of crawled data, but agent researchers first need to find effective ways to
incorporate linked data querying patterns with the agent systems.

3 A Conceptual Architecture for Linking Agents
with the Linked Data Web

As it is discussed in the preceding section, semantic agents should be able to discover
the relevant dataset(s) and crawl them if necessary according to the agent’s running
task requirement(s) and then able to query these dataset as the part of task execution.
But querying is not enough in situations where agent needs to react to the changing
conditions in the linked data cloud. For example, ratings of medical providers may
change and agent needs to monitor these changes to inform Lucy about the fall of her
medical service rating numbers. In addition to the rating numbers, many parameters of
surrounding linked data cloud such as new medical provider entrance, insurance
conditions or laws, conditions of provider services may change over time and semantic
agent may need to monitor all of these parameters depending on its requirements.

Linked data cloud changes constantly in two dimensions. In the first dimension,
cloud itself expands by entrance of new data sources and creations of new links
between the sources. Keeping track of these changes is a must for a semantic agent to
be able to discover right knowledge sources to query depending of its task’s require-
ments. In the second dimension, actual data may change in the data sources and these
changes may be critical for agent’s internal tasks (such as Lucy’s medical provider
information) and need to be monitored by the agent. Consequently, semantic agent has
to monitor and interpret the changes in the linked data cloud structure and also changes
in specific data sources which its task(s) depend on. It is obvious that handling all of
these linked data dynamism within the agents makes agent implementation very
complex and it is against the well-known software engineering best practice known as
separation of concerns. Agent researches encountered this problem before and defined
the environment abstraction [8] to cope with it.

Environment is defined as the first class entity used during the design of multi-agent
systems, and it includes all the resources and services that an agent needs. Thus,
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environment shields the agent developer from the complexity of the outside world. In
the similar manner, it is necessary to shield semantic agent developer from the com-
plexity of handling linked data cloud dynamism. So, it is time to think how linked data
dynamism can be managed within the environment abstraction and what kind of ser-
vices (interfaces) of environment should be provided to semantic agents to simplify the
usage of linked data cloud.

To define internal structure of the proposed architecture, the well-known A&A
(Agents and Artifact) [9] meta-model will be used. Thus, to form a basis for our
discussion on the proposed conceptual architecture, an overview of the A&A
meta-model is given first. The artifact concept lies at the core of the A&A metamodel.
Artifacts are the building blocks of the environment and provide specific functionalities
for agents. An artifact has a usage interface which defines the operations that an agent
can execute on that artifact. There are two types of actions provided for an agent that
can be performed on an artifact. The first one is the use action through which the agent
can execute the operations in the usage interface of the artifact. The other one is the
focus action through which an agent can start to observe specific properties of the
artifact. These two actions can be used by semantic agents to query the linked data
cloud and to monitor the chances in specific data source(s).

Additionally, events generated as a result of the operations triggered by other
agents can also be observed by a specific agent. Finally, the artifacts can interact with
each other through their link interfaces. A workspace is defined as a logical container of
agents and artifacts. It organizes agents and artifacts from a topological perspective and
defines the scope for interacting with the environment. In terms of semantic agents’
perspective, workspace defines the scope of a specific domain that a group of agents
aim to interact. For example Lucy’s scenario is in the medical domain and workspace
knows and manages the linked data view of (national) medical domain. Of course, not
just Lucy’s agent but many agents may interact with this workspace and other domains
are represented by different workspaces.

The proposed conceptual architecture has two layers as shown in Fig. 1: Agent-
Linked Data Integration Services (A&LDIS) layer and Linked Data Access Services
(LDAS) layer. A&LDIS layer appears in every workspace. On the other hand, LDAS
layer can be used by all workspaces in the environment or can be replicated in different
workspaces if data volume or performance considerations requires. The scope of the
workspace is defined by theVoID documents stored in theVoID store about the dataset(s)
in a specific domain. If there is one VoID store in the environment, then each workspace
should be able to access the VoID documents in its domain of interest.

Semantic agents interact with the environment through six specially designed
artifacts as seen in the figure. Four of these are artifacts that monitor the four types of
SPARQL queries. The other artifacts are Query Engine Artifact which is for federated
query processing and the Crawler Artifact for forming a local knowledge base when
many distinct datasets with no SPARQL end point should be monitored.

For the Query Artifacts the first problem is to define the basic entity(ies) that is
passed by agents to artifacts. As it is discussed before, environment provides three
basic services to agents: it executes queries, crawls datasets to form a local knowledge
base and monitor changes of data that are requested by agent. For query service, it is
obvious that the basic entity is SPARQL query. On the other hand, monitoring service
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seems more complex since changes in one data source effect other sources if there are
link(s) between them. But, SPARQL query can also be considered as the best entity for
monitoring linked data cloud. Because, a SPARQL query defines a sub-graph (or a
node as the minimal graph) of the linked data cloud and any data (even the linked one)
within the cloud can be defined with a SPARQL query. Changes in this sub-graph may
occur because of any changes in linked datasets that constitute this sub-graph and
observing changes in a SPARQL query enables semantic agents to observe any kind
of subgraph within the cloud. Therefore, semantic agents use SPARQL queries for both
querying and monitoring the linked data cloud. However, when there are many dis-
tributed small datasets like the schedule datasets of the therapists within 20-mile radius
of her mother’s home in Lucy’s scenario, it may be necessary to crawl these datasets
frequently, daily e.g., and form a local knowledge base which may be monitored using
SPARQL queries. It is important to emphasize that semantic agent only knows the
ontology(ies) which are also in the environment’s scope and construct SPARQL
queries either for querying or monitoring based on its local knowledge. Note that
accessing the URL address is not defined as one of the environment services, because it
is a simple task for semantic agent to retrieve and interpret an RDF file by itself.

Querying service is handled by Query Engine Artifact. This artifact directly uses
Linked Data Query Engine module located in LDAS layer to execute queries. Linked
Data Query Engine module incorporates the Query Federation Pattern to the proposed
architecture. As discussed in Sect. 2, Linked Data Query Engines execute SPARQL
queries in two steps. In the first step, query is divided to sub-queries and datasets
relevant with each subquery are selected using the metadata about the datasets. In the
proposed architecture, VoID vocabulary is selected to manage datasets’ metadata since
it is widely accepted as standard vocabulary to represent dataset metadata and there are
well known Linked Data Query Engines such as SPLENDID [12], WODQA [11]
which use VoID as the metadata vocabulary. In the second step, a query plan is
constructed and sub-queries executed on SPARQL end points of selected dataset(s) and
intermediate results are joint following the plan. So, semantic agent just deploys the
query to the Query Engine Artifact, it then distributes it to relevant datasets according
to its view of the cloud (based on its VoID store).

Crawling service is handled by the Crawler Artifact. This artifact crawls the
datasets at a given URI and forms a local knowledge base at a local RDF store. This
artifact implements the crawling pattern and handles issues like identity resolution, data
quality management as discussed by Bizer [3]. The local knowledge base then can be
monitored by local Query Artifact using the local SPARQL end point.

Proposed architecture includes only a Linked Data Query Engine for querying
which means the exclusion of the On-The-Fly Dereferencing pattern from the archi-
tecture. This decision depends on the fact that SPARQL end points become a defacto
standard to publish high volume of data to the cloud. But, On-The-Fly Dereferencing
algorithms found in the literature [13] can be incorporated to the architecture so that
when there is no VoID description is found to execute the query, Query Engine Artifact
can create an artifact that is responsible from On-The-Fly Dereferencing execution.
This extension makes the architecture more complex but more adaptable in terms of
query execution.

Where Are All the Semantic Web Agents: Establishing Links 47



Ontology Management System Artifact (OMSA) is responsible of monitoring
service. To do so, it creates a separate Query Artifact for each SPARQL monitoring
request coming from registered semantic agent(s). Query Artifact first executes query
with Linked Data Query Engine and stores the result in the RDF store of the envi-
ronment. Then it divides the query to sub-queries and selects the relevant dataset(s)
using Linked Data Query Engine capabilities and creates a separate Sub-Query artifact
for each identified sub-query. Each Sub-Query artifact begins to monitor its query by
periodically querying selected dataset(s) and compares the result with the previous one.
Once a change is detected by a Sub-Query artifact, it is notified to the related Query
Artifact. In this case, Query Artifact re-executes the SPARQL query using Linked Data
Query Engine and compares the result with the stored result. If a change is detected, the
result is notified to each registered agent(s) and store in the RDF store.

Fig. 1. Environment architecture for linking semantic agents with linked data cloud
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Monitoring the data changes of SPARQL query is not enough. Each SPARQL
query depends on one or more ontologies and these ontologies may change dynami-
cally (name of a concept or property may change and/or new concept may added or
removed ext.) in the linked data cloud without the control of the semantic agent(s).
Therefore, changes of ontologies, that monitored queries are built upon, should be
monitored too. Query Artifact creates Ontology Artifact(s) to monitor changes of
ontologies used in the query. Each Ontology Artifact creates separate Ontology Artifact
(s) for each ontology imported in itself. Then, each Ontology Artifact monitors its
assigned ontology by periodically retrieving original ontology and identifies the
changes (if any) using an ontology comparison algorithm like OWLDIFF [14].
Ontological changes are notified to registered agents with Ontology Change Notifi-
cation Artifact using a special ontology which represents the changes within an
ontology like the one proposed in [15].

As a result, Lucy’s semantic agent can query medical providers’ information and
ratings from the linked data cloud without any knowledge about the dataset(s) and how
they are distributed and linked in the cloud. Moreover, agent may monitor any related
information like changes in provider information, rating information, insurance policy
or any changes in ontologies it depends on.

4 Evaluation of the Proposed Framework

The reference architecture given in [8] divides the agent environment into three layers:

• basic level which enables agents to access the deployment context,
• abstraction level which fills the conceptual gap between the agents and deployment

context by hiding the low level details of the deployment context and the resources
in it by providing observation, synchronization, data processing and translation
services, and

• interaction-mediation level which regulates resource usage and mediates the inter-
action among agents by providing perception, communication, interaction and
environment dynamics services.

The framework we propose in this paper supports agents at the interaction-
mediation, abstraction and basic levels. Perception, interaction and environment
dynamics services that should be given at the interaction-mediation level are provided
by the A&A metamodel. The services provided by our framework which is built on top
of the A&A metamodel are at the abstraction and basic levels.

The artifacts in our framework

• observe the queries given by the agents by running them periodically, which cor-
responds to a basic level support for accessing the datasets in the deployment
context and an abstraction level support for observing the results of those queries,

• comparing the results and processing them for differences, which corresponds to an
abstraction level support for data processing,

• updating the cached results when a difference is found, which corresponds to an
abstraction level support for data synchronization,
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• translating the differences found between two versions of the results of a query into
an ontological representation, which corresponds to an abstraction level support for
translation.

Although change monitoring and querying are the two basic services a semantic agent
needs, there are others like provenance, search, crawling etc. Like monitoring and
querying, all these services also belong to the abstraction layer. The agent environment
framework we propose can be easily extended with additional functionality due to its
artifact based nature. Therefore, our framework can be extended with these additional
services as future work.

Another feature of the proposed framework, which is important for agent envi-
ronment research [17], is its domain independency. Once the VoID documents of the
datasets to be used in an application domain are given to the system, data can be
monitored regardless of the domain it belongs to. Therefore, it is possible to specialize
the framework for the domain at hand.

5 Conclusion

In this paper, an environment architecture is proposed to facilitate the interaction
between semantic agents and the linked data cloud. Proposed architecture is based on
the experience of the implementation attempt of such a domain independent environ-
ment that gives agents support at the abstraction layer [16]. These efforts can be
considered as initials steps to attract attention of both agent and linked data researchers
to this challenging area of linking agents to linked data web.
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Abstract. In many application domains for agents and MAS, the inter-
action between the systems and human users is a main element. In some
cases, the interaction occurs behind a traditional computing device, such
as a computer desktop or a smartphone. In other cases, the interac-
tion occurs through the physical world. This is the case, for instance,
of smart/intelligent environment applications, and more generally in the
wide context of Internet-of-Things based apps. Can the concept of agent
environment for MAS play a role in the design of such systems, where
humans are in the loop? In this position paper we further develop this
question, providing some reflections and suggestions for future works.

1 Introduction

Emerging technologies such as wireless sensor networks, Internet of Things (IoT),
smart and wearable devices, or even volunteer geographic information, provide
a whole new virtual layer where the physical world can be accessed or modified
by any computational system. This information gathering capabilities from dis-
tributed sources is poised to revolutionize the way MAS environments interact
with our real world.

These are main examples of application domains where humans are in the
loop. By being in the loop we mean to be an essential part of the picture, either
as: (i) a user of the system, engaging in continuous interactions with it through
traditional computational devices (PC, tablet, smartphones, . . . ) or with the
physical environment itself, in the IoT perspective; or (ii) part of the system
itself, like in the case of socio-technical systems.

Multi-agent systems appear as an effective approach for modelling and
designing this kind of systems given their characteristics. In that, the notion
c© Springer International Publishing Switzerland 2015
D. Weyns and F. Michel (Eds.): E4MAS 2014 – 10 years later, LNAI 9068, pp. 52–60, 2015.
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of (application) environment in MAS as elaborated by the community [11] is
called to play a relevant role. In fact, in these systems the interaction with a
shared distributed physical and social world is a primary aspect, as well as the
presence of rich forms of communication, either explicit or implicit, uncoupled,
and persistent.

However, research contributions about environments for MAS so far have
mainly focused on cases where the first-class citizens acting, perceiving, and
interacting have typically been artificial agents—either software or robots. What
about first-class agent environments where both human and artificial agents are
first-class citizens? This is the type of environments we focus on in this paper.
Therefore, we are interested in a new type of agent environments that henceforth
we shall refer to as mixed environments since they are meant to realise mixed
multi-agent systems populated by both human and artificial agents.

2 Background: Agent Environment Support Levels

To elaborate the question raised in the introduction above, we start by recall-
ing the three levels describing the environment level of support reported in the
literature [11]. These levels include:

– Basic Level — At the basic level, the agent environment enables agents to
access the deployment context (see Fig. 1). That is, agents know low-level
language, details and directly access hardware and software resources.

– Abstraction Level — The abstraction level bridges the conceptual gap between
the agent abstraction and low-level details of the deployment context (see
Fig. 2). Agents access an interface shielding specific details of the resource
hidden behind.

– Interaction-Mediation Level — The interaction-mediation level offers support
to regulate the access to shared resources, ensure restrictions are met and
mediate interaction between agents (see Fig. 3).

The three levels of support represent different degrees of functionality provided
by the environment that agents can use to achieve their goals. The first question
is: where do we put humans in these layers?.

3 Modelling Humans in the Loop

On the one side, one could consider humans as part of the deployment context—
so the basic level. However, as soon as we consider modern application domains
such as pervasive computing/smart environments, we realize that such a model-
ing is not fully satisfactory, from an abstraction point of view in particular.

An alternative modeling could be considering humans as part of the agents,
so that the application environment becomes the glue also among human users
and agents at different levels. But in this case we are considering part of the
MAS something which is – actually – outside the system, being the users of the
system.
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Fig. 1. Basic support level (from [11]).

Fig. 2. Abstraction support level (from [11]).

Fig. 3. Interaction-mediation support level (from [11]).
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A further solution in the middle could be to introduce “special agents”, kind
of user agents, that have the goal of modeling/representing the human users
inside the system, with the goal of reflecting their actions and intentions, and
collecting perceptions and information that should be brought back to the human
users that they represent. This kind of agents is quite recurrent in agent-based
applications. From an agent environment point view, they function as kind of
facilitators, making it possible to bring inside the system actions that human
user aim to perform and bring outside the system the perceptions/information
targeted to them. From an abstraction point of view, they could be still con-
sidered part of the application environment. In fact, in a conceptual model like
A&A [8], these facilitators are better modelled in terms of artifacts – not agents –
designed in this case to make human actions observable (from an agent point of
view) or agents’ actions (from a human point of view).

Being represented either as agents or not, the problem is the model adopted
to define the interaction between humans and the MAS. This issue is not new
for the agent research community: the point here is to understand if the idea
of environment as first-class abstraction inside a MAS can be helpful for that
purpose.

4 Reifying Human Actions and Perceptions
into the Agent Environment

Now we consider some relevant examples in the literature of agent-based systems
with humans in the loop.

4.1 Pervasive Ecosystems and Human-Aware Superorganisms

The first is given by pervasive ecosystems and human-aware superorganisms, as
introduced and developed by Zambonelli and colleagues in [9,12,13].

Generally speaking, pervasive and ubiquitous computing is a well-known
and obvious case where humans are in the loop. These technologies promise to
notably change the future ICT landscape, letting us envision the emergence of
an integrated and very dense socio-technical infrastructure for the provisioning
of innovative general-purpose digital services. The infrastructure will be used to
ubiquitously access services for better interacting with the surrounding physical
world and with the social activities occurring in it.

Following this line, future urban environments can be depicted as sociotechni-
cal superorganism [12], where networks of entities – ICT devices and citizens –
will continuously and perhaps invisibly cooperate in highly decentralized and
participatory sensing activities. The real-time sharing of the results of such activ-
ities at city scale will enable a shared understanding, via computing and thinking,
of urban issues and their dynamics. This in turn will make it possible to plan and
direct responses or fix problems with specific collective actions.

In order to tackle the design of this kind of systems, the SAPERE project [13]
envisioned an approach based on modeling and architecting pervasive service
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environments as a non-layered spatial substrate, laid above the actual pervasive
network infrastructure, on top of which human users act as “prosumers” contin-
uously producing and consuming data. The substrate embeds the basic laws of
nature (or eco-laws) that rule the activities of the system. There, individuals of
different species – agents/services, data, and devices – interact and combine with
each other (in respect of the eco-laws and typically based on their spatial rela-
tionships), so as to serve their own individual needs as well as the sustainability
of the overall ecology.

The approach is clearly data-centric, in that the environment supporting
humans/agents interaction and coordination can be implemented as an open
distributed set of data spaces, hosting streams of tuples – generated by sensors,
actuators, so human actions and reactions – semantically combined, aggregated,
manipulated, and diffused according to some nature-inspired laws.

4.2 Human-Agent Collectives

A second example stems from recent works on human-agent collectives
(HACs) [6]. HACs refer to all those systems where humans and software agents
continually and flexibly establish a range of collaborative relationships with one
another, to meet their individual and collective goals, operating at a global scale.
In HACs, depending on the task at hand, different constellations of people,
resources, and information must come together, operate in a coordinated fash-
ion, and then disband. The openness and presence of many distinct stakeholders,
each with their own resources and objectives, means participation is motivated
by a broad range of incentives – extrinsic (for example, money or tax-benefit),
social, or image motivation (for example, public accreditation or leader-board
position), or intrinsic (for example, personal interest in a social cause, altruism,
or hobby) rather than diktat. Moreover, once presented with such incentives,
the stakeholders need to be evaluated and rewarded in ways that ensure they
sustain behaviours that are beneficial to the system they partially form.

4.3 Virtual Institutions

A third example comes from research on virtual institutions [2], a concept that
combines electronic institutions [1] and 3D virtual worlds.

Virtual worlds technology has recently emerged in computing with enormous
strength [7]. A virtual world is an online immersive environment where, using 3D
visualisation, humans participate represented as graphically embodied characters
(avatars) and interact with others and the environment by using simple and
intuitive control facilities. Because humans are social, the concept of virtual
worlds is very appealing to mediate their remote interactions. Nowadays, there
are millions of people connecting to virtual worlds every day. Such immersive
and interactive environment provides many possibilities to represent the system
state and the regulations defined by the coordination model. For instance, the
other participants are represented also as avatars and their appearance can be
used to display the role they are playing. We argue that 3D virtual worlds can be
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successfully used to incorporate humans into MAS. To illustrate this hypothesis,
next we outline the work carried out to open electronic institutions to humans
by using virtual worlds.

The aim of virtual institutions is to design regulated environments where both
human and software agents can participate. In this context, electronic institu-
tions are used to define the rules that structure participants interactions (for
both humans and artificial agents), while 3D virtual worlds facilitate human
participation in the system. Notice that virtual institutions provide different
interfaces with the interaction-mediation level in Fig. 3 to artificial agents and
humans agents. On the one hand, artificial agents are allowed to directly interact
with the electronic institutions’ coordination infrastructure by means of an agent
communication language. On the other hand, humans visualise and interact in a
virtual world where they actions are collected and translated to be processed by
the electronic institutions’ coordination infrastructure. Thus, the environment’s
façade is different for human and artificial agents.

4.4 Mirror Worlds

A forth example is based on mirror worlds, as introduced in [4]. Originally
inspired by Gelernter’s book with the same name [5], mirror worlds can be
conceived as an agent-based extension of augmented and mixed reality. Both
human and artificial agents inhabit an environment which is both physical and
augmented of a digital virtual layer (the mirror), coupled to the physical one.

Mirroring is given by the fact that physical things, which can be perceived
and acted upon by humans in the physical world, have a digital counterpart
(or augmentation, extension) in the mirror, so that they can be observed and
acted upon by agents. Viceversa, an entity (artifact) in the MW that can be
perceived and acted upon by software agents may have a physical appearance
(or extension) in the physical world – e.g. augmenting it, in terms of AR – so that
it can be observed and acted upon by humans (by means of e.g. smart-glasses).
This implies a form of coupling, such that an action on an object in the physical
world causes some kind of changes in entities in the mirror, perceivable then by
software agents. Viceversa an action by agents on an artifact in the MW can
have an effect on things in the physical world, perceivable by people.

In this case, the abstraction support level provided by the agent environment
is twofold: from the artificial agents point of view, it provides a way to repre-
sent, perceive and interact with physical things, represented and abstracted by
artifacts; from the human agents point of view, the virtual environment provides
a way to augment the physical world with further functionalities, as well as to
empower humans with further cognitive/sensing/acting capabilities. The inter-
action mediation support level in this case allows for designing environment-
meditated coordination and cooperative strategies – possibly self-organising,
emerging – that exploit both the physical and digital layer, towards new forms
of Behavioural-Implicit Communication and stigmergy [3,10].
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4.5 Commonalities: Stigmergy Among Humans and Agents

In spite of the differences, in all three approaches it is possible to recognise the
introduction of different levels of mechanisms that can be framed as stigmergic.
At a lower level, these mechanisms make it possible to track, reify, and make
it persistent and observable information about human/agent actions and their
effect, at the semantic level. At a higher level, this information can be con-
tinuously aggregated, elaborated and distributed according to high-level rules
designed with some social goal in mind, so as to support high-level and emer-
gent forms of coordination and cooperation between human and artificial agents.

5 Humans Inside

There are situations where it is necessary that real-world humans become an
integral part of the system and live together within the same virtual environ-
ment with intelligent agents. These systems require facing complex decisions
for an agent environment as to how model humans, how to design a human-
aware communication infrastructure, how to provide decision and co-ordination
support, and how to implement laws. More precisely,

– Real-World Human Modelling: It is necessary to capture the representative
human attributes for the system and translate them into an environment
entity that corresponds to reality. These attributes need to be aligned and
harmonized with the layers where artificial agents perform their duties.

– Communication Infrastructure: Different types of artificial agents in the envi-
ronment must be able to recognize human entities and have mechanisms to
communicate with them. Thus, agents can sense the humans and get infor-
mation for their decision making processes.

– Decision and Coordination Support: Endowing an environment with capabili-
ties to assist humans in their interactions is a must. Decision and coordination
support appear as fundamental environment features to help humans reduce
the scope of their reasoning with the aim of achieving their goals.

– Constraints and Laws Implementation: The agent environment should contain
rules that all entities and agents must fulfill so as to define both their existence
and behavior with others. The environment and its agents, need to add new
restrictions to know how to interact with humans.

Putting real-world humans in the loop entails having elements that can not
be controlled, modified or even expected to have a rational behavior. Although
the environment enforces its laws on the artificial agents, it is not possible to
change a human’s state or attributes. Therefore, one of the main questions of
this position paper is: can humans break the environment rules?

It is now, more than ever, when the need for an explicit environment entity
that ensures the integrity and consistence of the entire ecosystem becomes
unavoidable. It is necessary to seek consensus on the role the environment must
play when unstable situations are given and how to cope with them. The envi-
ronment needs to be prepared to cope with impossible situations without coming
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into faulty performance. All events and behaviours that take place inside, need to
be decomposed into atomic actions that go from one consistent state to another.
Not only that, but considering that the real world is receiving actions from the
system too, even with impossible situations the environment must preserve the
consistence of the ecosystem and avoid creating damage or harming any human.

6 Towards Environments Where Humans and Agents
Are Happy to Live in – Open Challenges

The objective of this position paper was to raise some basic questions about an
issue that we believe could be important for future research about environments
for MAS.

By considering humans in the loop, we are pushed towards identifying first-
class environments that provide effective means for enabling and interaction,
coordination, cooperation not only among agents, but among humans and agents
too. Open challenges in that path include:

– devising effective environment mechanisms effectively modelling human-agent
interaction and coordination, paying particular attention to providing decision
and coordination support;

– the introduction of high-level environment abstractions and mechanism
to effectively model and design augmented realities and worlds where
(human/software) agents live in;

– methodologies for designing and developing scalable agent environment tech-
nology stacks to deal with open, large-scale human-agent environments, even-
tually integrating mainstream architectures and technologies related to e.g.
Internet-of-Things and the cloud.

Existing explorations and visions about sociotechnical urban superorganisms,
mirror worlds or human-agent collectives can be considered just a starting point.
We believe that in order to tackle these challenges, a broader inter-disciplinary
perspective is needed, bringing together studies and results from both the human
and the agent side, with the specific objective of designing environments where
both humans and agents are happy to live in.
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Abstract. SAPERE is a general multiagent framework to support the
development of self-organizing pervasive computing services. One of the
key aspects of the SAPERE approach is to have all interactions between
agents take place in an indirect way, via a shared spatial environment. In
such environment, a set of nature-inspired coordination laws have been
defined to rule the coordination activities of the application agents and
promote the provisioning of adaptive and self-organizing services.

1 Introduction

Progresses in mobile and ubiquitous computing are making possible to conceive a
variety of innovative general-purpose pervasive computing services for interacting
with the physical and social worlds around us [2,5,12]. However, the effective
design and development of such services requires the capability of promoting
flexible and adaptive interactions among a multiple of distributed devices and
software components.

To support the vision, a great deal of research activity in pervasive com-
puting has been devoted to meet the requirements of pervasive service systems,
i.e.: supporting self-configuration and context-aware composition; enforcing self-
adaptability and self-organization; and ensuring that service frameworks can be
highly flexible and long-lasting [29]. The SAPERE (“Self-aware Pervasive Service
Ecosystems”) approach [27,28] tackles the problem at the foundation, conceiving
a radically new way of modeling integrated pervasive services and their execu-
tion environments, such that the apparently diverse issues of context-awareness,
dependability, openness, flexibility, can all be uniformly addressed.

SAPERE models a pervasive service framework as a distributed multia-
gent system, in which the coordination between the application agents rely on
spatially-situated and environment-mediated interactions [21]. In particular, in
the SAPERE environment, a set of simple yet very expressive nature-inspired
interaction laws dictates how agents will interact with each other, e.g., how they
will compose and orchestrate their activities and how they will exchange infor-
mation.

As it will be backed up in the following of this paper, the SAPERE app-
roach effectively supports the provisioning of adaptive self-organizing services,
suitable to meet the requirements of pervasive service systems. In addition, with
c© Springer International Publishing Switzerland 2015
D. Weyns and F. Michel (Eds.): E4MAS 2014 – 10 years later, LNAI 9068, pp. 63–75, 2015.
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SAPERE, we have somewhat answered to some long-standing research questions
related to environment engineering in multiagent systems. For instance:

– SAPERE defines a set of general-purpose interaction laws, embedded and
enforced in the abstract spatial environment, which shows that valuable
application-independent approaches can be defined as far as environmental
abstractions are concerned [23].

– The SAPERE approach, with its peculiar environment-mediated coordination
model, makes it possible to properly encapsulate any kind of resources and
services within the environment, yet preserving the full observability of such
resources and of the related coordination events [22]

– In general, SAPERE properly frames the needed abstractions and archi-
tectural building elements to engineer environment-mediated (and nature-
inspired) multiagent systems [20].

To elaborate on the above, we introduce the SAPERE environment-centered
coordination architecture (Sect. 2) and the key characteristics of the SAPERE
middleware and its programming model (Sect. 3). Following, we present the set
of nature-inspired coordination laws (Sect. 4) and discuss how they can be used
to enforce a variety of self-organization scheme (Sect. 5), also with the help of a
simple application example. Finally, we discuss related work (Sect. 6) and con-
clude (Sect. 7).

2 The SAPERE Approach and Its Reference Architecture

SAPERE takes its primary inspiration from nature, and starts from the con-
sideration that the dynamics and decentralization of future pervasive networks
will make it suitable to model the overall world of pervasive services, data, and
devices as a sort of distributed computational ecosystem.

As from Fig. 1, SAPERE conceptually architects such pervasive service
ecosystem as a non-layered spatial environment, laid above the actual perva-
sive network infrastructure [8]. The environment embeds the basic interaction
laws (which we also call eco-laws) that rule the activities of the system. The
environment mediates all interactions and represents the ground on which com-
ponents of different species indirectly interact and combine with each other. Such
interactions take place in respect of the eco-laws and typically based on the spa-
tial relationships between components, so as to serve their own individual needs
as well as the sustainability of the overall ecology. Users can access the ecology
in a decentralized way to use and consume data and services, and they can also
act as “prosumers” by injecting new data or service components, possibly also
for the sake of controlling the ecology behavior.

For the components living in the ecosystem, all of which can be abstracted
as autonomous software agents (and whether being sensors, actuators, services,
users, data, or resources in general), SAPERE adopts a common modeling and
a common treatment. Each of them has an associated semantic representation
which we call “LSA” (Live Semantic Annotations), to be injected in the spatial
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environment as it it were a sort of shared spatial memory (or tuple space [11]).
This is a basic ingredient for enabling dynamic environment-mediated interac-
tions between components. To account for the high dynamics of the scenario and
for its need of continuous adaptation, SAPERE defines LSAs as living, active
entities, tightly associated to the agent they describe, and capable of reflect-
ing its current situation and context. This supports semantic and context-aware
interactions both for service aggregation/composition and for data/knowledge
management. In the case of pure data items, the entity and its LSA coincide.

The approach based on LSA makes it possible to encapsulate within the
The eco-laws define the basic interaction policies among the LSAs of the

various agents of the ecology. In particular the idea is to enforce on a spatial
basis, and possibly relying on diffusive mechanisms, dynamic networking and
composition of data and services by composing their LSAs and exchanging data
via them. Data and services (as represented by their associated LSAs) will be sort
of chemical reagents, and interactions and compositions will occur via chemical
reactions, relying on semantic pattern-matching between LSAs.

As detailed later on, the set of eco-laws includes: Bond, which is the basic
mechanism for local interactions between components, and acts as a sort of
virtual chemical bond between two LSAs (i.e., their associated agents); Spread,
which diffuses LSAs on a spatial basis, and is necessary to support propagation
of information and interactions among remote agents; Aggregate, which enforces
a sort of catalysis among LSAs, to support distributed data aggregation; Decay,
which mimics chemical evaporation and is necessary to garbage collect data. As
discussed in Sect. 5, set of eco-laws are general enough to be applicable to a wide
range of application domains.

Adaptivity in SAPERE is not in the capability of individual components, but
in the overall self-organizing dynamics of the ecosystem. In particular, adaptiv-
ity will be ensured by the fact that any change in the system (as well as any
change in its components or in the context of the components, as reflected by
dynamic changes in their LSAs) will reflect in the firing of new eco-laws, thus
possibly leading to the establishment of new bonds or aggregations, and/or in
the breaking of some existing bonds between components.

3 The SAPERE Middleware and Its Programming
Interface

In this section we shortly overview how SAPERE applications can be pro-
grammed, by introducing the API of the SAPERE middleware and exemplifying
its usage.

3.1 The Middleware

The execution of SAPERE applications is supported by a middleware infrastruc-
ture [26] which reifies the SAPERE architecture in terms of a lightweight software
support, enabling a SAPERE node to be installed in tablets and smartphones.
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Fig. 1. The SAPERE Architecture based on environment-mediated interactions

Operationally, all SAPERE nodes (whether fixed at the infrastructure level or
mobile) are considered at the same level since the middleware code they run
could support the same services and provides the same set of functions.

Each SAPERE node hosts a local tuple space [11], that acts as a local repos-
itory of LSAs for local agents, and a local eco-laws engine. The LSA-space of
each node is connected with a limited set of neighbor nodes based on spatial
proximity relations. Such relations consequently determine the spatial shape of
the SAPERE substrate. From the viewpoint of individual agents (that will con-
stitute the basic execution unit) the middleware provides an API to access the
local LSA space, to advertise themselves (via the injection of an LSA), and to
support the agents’ need of continuously updating their LSAs. In addition, such
API enables agents to detect local events (as the modifications of some LSAs)
or the enactment of some eco-laws on available LSAs.

Eco-laws are realized as a set of rules embedded in SAPERE nodes. For each
node, the same set of eco-laws applies to rule the dynamics between local LSAs
(in the form of bonding, aggregation, and decay) and those between non-locally-
situated LSAs (via the spreading eco-law that can propagate LSAs from a node
to another to support distributed interactions).

From the viewpoint of the underlying network infrastructure, the middle-
ware transparently absorbs dynamic changes at the arrival/dismissing of the
supporting devices, without affecting the perception of the spatial environment
by individuals.
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3.2 The SAPERE API

In the SAPERE model, each agent executing on a node takes care of initializing
at least one LSA (representing the agent itself), of injecting it on the local LSA
space, and of keeping the values of such LSA (and of any additional LSA it
decides to inject) updated to reflect its current situation. Each agent can modify
only its own LSAs, and eventually read the LSAs to which it has been linked by
a proper eco-law. Moreover LSAs can be manipulated by eco-laws, as explained
in the following sections.

At the middleware level, a simple API is provided to let agents inject LSA –
injectLSA(LSA myLSA) – and to let agents atomically update some fields of
an LSA to keep it “alive” – updateLSA(field = new-value). In addition, it is
possible for an agent to sense and handle whatever events occur on the LSAs
of an agent, e.g., some match that triggers some eco-laws. E.g., it is possible to
handle the event represented by the LSA being bound with another LSA via the
onBond(LSA mylsa) method.

The eco-laws assure self-adaptive and self-organizing activities in the ecosys-
tems. Eco-laws operate on a pattern-matching schema: they are triggered by the
presence of LSAs matching with each other, and manipulate such LSAs (and the
fields within) according to a sort of artificial chemistry [29].

3.3 LSAs

LSAs are realized as descriptive tuples made by a number of fields in the form
of “name-value” properties. By building over tuple-based models and extending
upon them [11], the values in a LSA can be: actual, yet possibly dynamic and
changing over time (which makes LSAs live); formal not tied to any actual
value unless bound to one and representing a dangling connection (typically
represented with a “?”).

Pattern matching between LSAs – which is at the basis of the triggering of
eco-laws – happens when all the properties of a description match, i.e., when for
each property whose names correspond (i.e., are semantically equivalent) then
the associated values match. As in classical tuple-based approaches, a formal
value matches with any corresponding actual value.

For instance, the following LSAa:(sensor-type = temperature; accuracy
= 0.1; temp = 45), that can express the LSA of a temperature sensor, can
match the following LSAb:(sensor-type = temperature; temp = ?), which
can express a request for acquiring the current temperature value. LSAa and
LSAb match with each other. The properties present in LSAa (e.g., accuracy)
are not taken into account by the matching function because it considers only
inclusive match.

4 The Eco-Laws Set

Let us now detail the SAPERE eco-laws and discuss their role in the SAPERE
ecosystem.
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4.1 Bond

Bonding is the primary form of interaction among co-located agents in SAPERE
(i.e., within the same LSA space). In particular, bonding can be used to locally
discover and access information, as well as to get in touch and access local
services. All of which with a single and unique adaptive mechanism. Basically,
the bond eco-law realizes a sort of a virtual link between LSAs, whenever two
LSAs (or some SubDescriptions within) match.

The bond eco-law is triggered by the presence of formal values in at least one
of the LSAs involved. Upon a successful pattern matching between the formal
values of an LSA and actual values of another LSA, the eco-law creates the
bond between the two. The link established by bonding in the presence of the
“?” formal fields is bi-directional and symmetric.

Once a bond is established, the agents holding the LSAs are notified of the
new bond and can trigger actions accordingly. After bond creation, the two
agents holding the LSAs can read each other LSAs. This implies that once a
formal value of an LSA matches with an actual value in an LSA it is bound
to, the corresponding agent can access the actual values associated with the
formal ones. For instance, with reference to the LSAa and LSAb of the previous
subsection, the agent having injected LSAb, upon bonding with LSAa (which
the agent can detect with the onBond method) it can access the temperature
measure by the sensor represented by LSAb.

As bonding is automatically triggered upon match, debonding takes place
automatically whenever some changes in the actual “live” values of some LSAs
make the matching conditions no longer holding.

We emphasize that bonding can be used to enable two agents to sponta-
neously get in touch with each other and exchange information, all of which
with a single operation and with both having injected an LSA in the space.
That is, unlike in traditional discovery of data and services, without distinguish-
ing between the roles of the involved agents and subsuming the traditionally
separated phases of discovery and invocation.

4.2 Aggregate

The ability of aggregating information to produce high-level digests of some
contextual or situational facts is a fundamental requirement for adaptive and
dynamic systems. In fact, in open and dynamic environments, one cannot know
a priori which actual information will be available (some information source
may disappear, other may appear, etc.) and the availability of ways to extract a
summary of all available information (without having to explicitly discover and
access the individual information sources) is very important.

The aggregate eco-law is intended to aggregate LSAs together so as to com-
pute summaries of the current system’s context. An agent can inject an LSA
with the aggregate and type properties. The aggregate property identifies a func-
tion to base the aggregation upon. The type property identifies which LSAs to
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aggregate. In particular it identifies a numerical property of LSAs to be aggre-
gated. In the current implementation, the aggregate eco-law can perform most
common order and duplicate insensitive aggregation functions [4].

The aggregate eco-law supports separation of concern and allows to re-use
previous aggregations. On the one hand, an agent can request an aggregation
process without dealing with the actual code to perform the aggregation. On the
other hand, the LSA resulting from an aggregation can be read (via a proper
bond) by any other agent that needs to get the pre-computed result.

4.3 Decay

The decay eco-law enables the vanishing of components from the SAPERE envi-
ronment. It applies to all LSAs that specify a decay property to update the
remaining time to live according to the specific decay function, or actually remov-
ing LSAs that, based on their decay property, are expired.

The Decay eco-law therefore is a kind of garbage collector capable of removing
LSAs that are no longer needed in the ecosystem or no longer maintained by an
agent, for instance because they are the result of a propagation.

4.4 Spread

The above eco-laws act on a local basis, i.e., on a single LSA space. Since the
SAPERE model is based on a network of interaction spaces, it is fundamental to
enable non-local interactions, by providing a mechanism to send information to
remote LSA spaces and making it possible to distribute information and results
across a network of LSA spaces.

To this end, in SAPERE we defined the spread eco-law to diffuse LSAs to
remote spaces. One of the primary usages of the spread eco-law is to enable
searches for components that are not available locally, and vice versa to enable
the remote advertisement of services. For an LSA to be subjected to the spread
eco-law, it has to include a diffusion field, whose value (along with additional
parameters) defines the specific type of propagation.

Two different types of propagation are implemented in the SAPERE frame-
work: (i) a direct propagation used to spread an LSA to a specified neighbor
node, so as to make it possible to realize gossiping schemes and multicasts; (ii)
a general diffusion capable of propagating an LSA to all neighboring SAPERE
nodes, possibly recursively applying such propagation up to a maximum distance
form the source node.

General diffusion of an LSA via the spread eco-law to distances greater than
one is a sort of broadcast that induces a large number of replicas of the same
LSA to reach the same nodes multiple times from different paths. To prevent
this, general diffusion is typically coupled with the aggregate eco-law, so as to
merge together such multiple replicas.
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5 From Eco-Laws to Distributed Self-organization
and Its Application to Pervasive Services

The above presented eco-laws form a necessary and complete set to support
self-organizing environment-mediated interactions, which can be exploited in a
variety of application scenarios.

5.1 Realizing Self-organizing Schemes with Eco-Laws

The eco-laws are necessary to support decentralized adaptive behaviors for per-
vasive service systems. Bonding is necessary to support adaptive local service
interactions, subsuming the phases of discovery and invocation of traditional
service systems. Spreading is necessary to diffuse information in a distributed
environment and to enable distributed interactions. Aggregation and decay are
necessary to support decentralized adaptive access to information without being
forced to dynamically deploy code on the nodes of the system, which may not
be possible in decentralized environments.

Further, and possibly of more software engineering relevance, the eco-law
set is sufficient to express a wide variety of interaction schemes (or “patterns”),
there included self-organizing ones. Bonding and spreading can be used to realize
local and distributed client-server scheme of interactions as well as asynchronous
models of interactions and information propagation. Coupling spreading with
aggregation and decay, however, makes it possible to realize also those distributed
data structures necessary to support all patterns of nature-inspired adaptive and
self-organizing behaviors, i.e., virtual physical fields, digital pheromones, and
virtual chemical gradients [4].

In particular, aggregation applied to the multiple copies of diffused LSAs
can reduce the number of redundant LSAs so as to form a distributed gradient
structures, also known as computational force fields. As detailed in [14], many
different classes of self-organized motion coordination schemes, self-assembly,
and distributed navigation can be expressed in terms of gradients.

In addition, spreading and aggregation can be used together to produce dis-
tributed self-organized aggregations, i.e., dynamically computing some distrib-
uted property of the system and have the results of such computation available
at each and every node of the system. Distributed aggregation is a basic mech-
anism via which to realize forms of distributed consensus and distributed task
allocation and behavior differentiation.

By bringing also the decay eco-law into play, and combining it with spread-
ing and aggregation, one can realize pheromone-based data structures, which
makes possible to realize a variety of bio-inspired schemes for distributed self-
organization [4]. In particular, while general diffusion and progressive decay can
be used to realize diffusible and evaporating pheromone-like data structures,
direct propagation can be used to navigate by following pheromone gradients.
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5.2 Application Areas

Over the course of the SAPERE project, we have shown how the SAPERE
approach can be effectively exploited in a variety of application scenarios. We
overview here three representative examples.

As a first example, we have used SAPERE to realize a distributed tool for
helping people move around in complex and crowdy environment, such as big
museum and exhibitions [16]. There, SAPERE eco-laws have been exploited to
realize a number of distributed computational force fields reflecting the density
of people in the different areas of the environment. Then, a mobile app has been
implemented capable of directing people along the gradient of decreasing fields,
i.e., in less crowded areas.

As a second example, we have implemented a “social feedback” application
[1], where public displays receive LSAs by users expressing their personal food
preferences, and are able guide users to individually optimized food providers
(e.g., restaurants, pub, cafeteria, etc.). This selection is based on (i) the food
preferences of users and on(ii) the estimated waiting time at the various lunch
locations, computed by aggregating (via the aggregate eco-law) the overall num-
ber of users in that location; Users can then be directed towards the most proper
locations by following the gradients of appropriate computational fields.

Finally, we have developed a number of applications for helping people social-
izing and coordinating in unknown environment [7,12]. The general idea is to
exploit public displays to collect information about users and, by using eco-laws
to properly aggregate and diffuse information, be able to put in touch people
with similar interests.

6 Related Works

6.1 Environment-Mediated Coordination Models

The issue we face in this article can be framed as the problem of finding the
proper coordination model for enabling and ruling interactions of pervasive ser-
vices, starting from the key consideration that environment-mediated coordina-
tion is well suited to the scenarios of interest.

On this base, SAPERE takes as ground the archetypal environment-mediated
coordination model, namely Linda, which simply provides for a blackboard
with associative matching for mediating component interactions through inser-
tion/retrieval of tuples.Then, we followed the idea of engineering the coordina-
tion space of a distributed system by some policy “inside” tuple spaces, following
the pioneer works of approaches like Tucson [15] and Mars [6]. However, our
proposal tries to extend these models to include bio-inspired ecological mecha-
nisms, by fine-grained and well structured chemical-like reactions.

In particular, the coordination approach we propose in this paper originates
from the chemical tuple space model in [19], though with some notable dif-
ferences: (i) here we provide a detail notational framework to flexibly express
eco-laws that work on patterns of LSAs and affect their properties; (ii) the
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chemical concentration mechanisms proposed in [19] to exactly mimic chemistry
is not mandatory here—though it can be achieved by a suitable design of rate
expressions; (iii) the way we conceive the overall infrastructure, and relationship
between agents and their LSAs goes beyond the mere definition of the tuple-space
model.

6.2 Situatedness and Context-Awareness in Pervasive Services

Considering the issues of situatedness and context-awareness, which is central
to pervasive services, many of the approaches in the literature have approaches
the problem by extending and modifying service-oriented approaches and archi-
tectures [13].

In PLASTIC [3], service descriptions are coupled with dynamic annotations
related to the current context and state of a service, to be used for enforcing
adaptable forms of service discovery. This is somewhat in line with the idea of
LSAs that we in SAPERE. However, due to its environment-mediated approach,
SAPERE goes further and gets rid of traditional discovery services and enforces
dynamic and adaptive service interaction via simple natural reactions and a
minimal middleware.

In many proposals for pervasive computing environments and middleware
infrastructures, the idea of “situatedness” has been promoted by the adoption of
shared virtual spaces for services and components interactions. The pioneering
system Gaia [18] introduces the concept of active spaces, that is active black-
board spaces acting as the means for service interactions.

Later on, a number of Gaia extensions where proposed to enforce dynamic
semantic pattern-matching for service composition and discovery [10] or access
to contextual information [9]. However, the concept of active space is more that
of a shared memory, rather than that of an active environment in which to reify
the existence of the pervasive service components and via which to enable and
rule their interactions.

6.3 Self-organization

Several recent works exploit the lessons of adaptive self-organizing natural and
social systems to enforce self-awareness, self-adaptivity and self-management
features in pervasive computing systems.

At the level of individual component modeling, these proposals take the form
of either situated reactive agents or proactive and goal-oriented ones [17]. At the
level of interaction models, these proposals typically take the form of specific
nature- and socially-inspired interaction mechanisms [4], enforced either at the
level of component modeling or via specific middleware-level mechanisms.

We believe the SAPERE framework integrates and improves these works in
three main directions: (i) it abstracts from the specific internal characteristics of
components (no matter whether they are simple reactive components or complex
goal-oriented ones) and rather proposes an approach that seamlessly applies to
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both cases; (ii) it tries to identify an environment-centered interaction model
that is able to represent and subsume the diverse nature-inspired mechanisms
under a unifying self-adaptive abstraction (i.e. the semantics chemical reactions);
(iii) the ecological approach we undertake goes beyond most of the current
studies that limit to ensembles of homogeneous components, defining a suitable
framework for supporting the vision of novel pervasive and Internet scenarios as
made up of self-adaptive devices and services, that autonomously cooperate for
the creation of global services.

7 Conclusions and Open Challenges

SAPERE can be somewhat considered the result of several years of experience
and research in the area of environment-mediated coordination. The innovative
nature-inspired approach of SAPERE is effective to enforce, via environment-
mediated interactions, a variety of self-organizing schemes for pervasive comput-
ing services, and properly answer to a number of open challenges identified by
multiagent systems community with regard to the role of the environment in
multiagent systems. These challenges include: the definition of an application-
independent approach to handle environmental abstractions are concerned [23];
the possibility of encapsulating any kind of resources and services within the envi-
ronment yet preserving the observability of the environment of such resources
and of the related coordination events [22]; and the proper framing of the needed
abstractions to engineer environment-mediated (and nature-inspired) multiagent
systems [20].

As the activities within the SAPERE European Project have finished, we
will now challenge the SAPERE findings and tools against innovative services
in the area of urban computing and smart cities [5]. In particular, we are cur-
rently analyzing how to exploit SAPERE to realize the ambitious concept of
“urban superorganism” [24,25], i.e., to have all the ICT devices in our urban
environment, and the citizens within, be enable to act collectively towards the
realization of urban-level objectives aimed at improving quality of life and sus-
tainability. With this regard, and to realize such vision, research on multiagent
systems environment will still have to face some open research challenges. For
instance:

– How can the adopted environmental abstraction account for the socio-
technical nature of future urban computing scenarios, where environment-
mediated interactions will involve not only agents but also humans, and will
also have to account for their social relationships?

– How can one promote human participation in urban activities by means of a
suitable environment-mediated coordination model that is able to effectively
incentivize collaboration?

In general, beside the two above open challenges, we think there is still plenty
of room for 10 more years of interesting research in the area of environments for
multiagent systems.



74 F. Zambonelli

Acknowledgments. Work supported by the EU project SAPERE, No. 256873.

References

1. Anzengruber, B., Castelli, G., Rosi, A., Ferscha, A., Zambonelli, F.: Social feedback
in display ecosystems. In: IEEE International Conference on Systems, Man, and
Cybernetics, Manchester, SMC 2013, United Kingdom, 13–16 October 2013, pp.
2893–2898 (2013)

2. Atzori, L., Iera, A., Morabito, G.: From “smart objects” to “social objects”: the
next evolutionary step of the internet of things. IEEE Commun. Mag. 52(1), 97–
105 (2014)

3. Autili, M., Di Benedetto, P., Inverardi, P.: Context-aware adaptive services: the
PLASTIC approach. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol.
5503, pp. 124–139. Springer, Heidelberg (2009)

4. Babaoglu, O., et al.: Design patterns from biology for distributed computing. ACM
Trans. Auton. Adapt. Syst. 1(1), 26–66 (2006)

5. Bicocchi, N., Cecaj, A., Fontana, D., Mamei, M., Sassi, A., Zambonelli, F.: Collec-
tive awareness for human-ict collaboration in smart cities. In: 21st IEEE Interna-
tional WETICE Symposium, pp. 3–8 (2013)

6. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: a programmable coordination
architecture for mobile agents. IEEE Internet Comput. 4(4), 26–35 (2000)

7. Castelli, G., Mamei, M., Rosi, A., Zambonelli, F.: Developing social applications
in sapere. In: 10th IEEE International Conference on Ubiquitous Intelligence and
Computing, Vietri sul Mare, Sorrento Peninsula, Italy, pp. 314–320 (2013)

8. Castelli, G., Mamei, M., Rosi, A., Zambonelli, F.: Engineering pervasive service
ecosystems: the SAPERE approach. TAAS 10(1), 1:1–1:27 (2015)

9. Costa, P.D., Guizzardi, G., Almeida, J.P.A., Pires, L.F., van Sinderen, M.: Situa-
tions in conceptual modeling of context. In: Tenth IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2006), Workshops, Hong Kong,
China, 16–20 October 2006, p. 6. IEEE Computer Society (2006)

10. Fok, C.-L., Roman, G.-C., Lu, C.: Enhanced coordination in sensor networks
through flexible service provisioning. In: Field, J., Vasconcelos, V.T. (eds.) COOR-
DINATION 2009. LNCS, vol. 5521, pp. 66–85. Springer, Heidelberg (2009)

11. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

12. Hachem, S., Pathak, A., Issarny, V.: Service-oriented middleware for large-scale
mobile participatory sensing. Pervasive Mob. Comput. 10, 66–82 (2014)

13. Huhns, M.N., Singh, M.P.: Service-oriented computing: key concepts and princi-
ples. IEEE Internet Comput. 9(1), 75–81 (2005)

14. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: the tota approach. ACM Trans. Software Eng. Methodol. 18(4), 1–56
(2009)

15. Omicini, A., Zambonelli, F.: Coordination for internet application development.
Auton. Agent. Multi-Agent Syst. 2(3), 251–269 (1999)

16. Pianini, D., Ferscha, A., Viroli, M., Zambonelli, F.: Hpc from a self-organisation
perspective: the case of crowd steering at urban scale. In: Workshops of the 2014
IEEE Conference on High Performance Computing, Bologna, Italy (2014)



Engineering Environment-Mediated Coordination 75

17. Ricci, A., Omicini, A., Viroli, M., Gardelli, L., Oliva, E.: Cognitive stigmergy:
towards a framework based on agents and artifacts. In: Weyns, D., Van Dyke
Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 124–
140. Springer, Heidelberg (2007)

18. Román, M., Hess, C.K., Cerqueira, R., Ranganathan, A., Campbell, R.H.,
Nahrstedt, K.: Gaia: a middleware platform for active spaces. Mob. Comput. Com-
mun. Rev. 6(4), 65–67 (2002)

19. Viroli, M., Casadei, M.: Biochemical tuple spaces for self-organising coordination.
In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521,
pp. 143–162. Springer, Heidelberg (2009)

20. Viroli, M., Holvoet, T., Ricci, A., Schelfthout, K., Zambonelli, F.: Infrastructures
for the environment of multiagent systems. Auton. Agent. Multi-Agent Syst. 14(1),
49–60 (2007)

21. Weyns, D., Helleboogh, A., Holvoet, T., Schumacher, M.: The agent environment
in multi-agent systems: a middleware perspective. Multiagent Grid Syst. 5(1), 93–
108 (2009)

22. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. Auton. Agents Multi-Agent Syst. 14(1), 5–30 (2007)

23. Weyns, D., Van Dyke Parunak, H., Michel, F., Holvoet, T., Ferber, J.: Environ-
ments for multiagent systems state-of-the-art and research challenges. In: Weyns,
D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol.
3374, pp. 1–47. Springer, Heidelberg (2005)

24. Zambonelli, F.: Toward sociotechnical urban superorganisms. IEEE Comput.
45(8), 76–78 (2012)

25. Zambonelli, F.: Engineering self-organizing urban superorganisms. Eng. Appl. of
AI 41, 325–332 (2015)

26. Zambonelli, F., Castelli, G., Mamei, M., Rosi, A.: Integrating pervasive middleware
with social networks in sapere. In: International Conference on Selected Topics in
Mobile and Wireless Networking, pp. 145–150. PRC, Shanghai (2011)

27. Zambonelli, F., et al.: Self-aware pervasive service ecosystems. Procedia CS 7,
197–199 (2011)

28. Zambonelli, F., Omicini, A., Anzengruber, B., Castelli, G., De Angelis, F.L., Di
Marzo Serugendo, G., Dobson, S.A., Fernandez-Marquez, J.L., Ferscha, A., Mamei,
M., Mariani, S., Molesini, A., Montagna, S., Nieminen, J., Pianini, D., Risoldi,
M., Rosi, A., Stevenson, G., Viroli, M., Ye, J.: Developing pervasive multi-agent
systems with nature-inspired coordination. Pervasive Mob. Comput. 17, 236–252
(2015)

29. Zambonelli, F., Viroli, M.: A survey on nature-inspired metaphors for pervasive
service ecosystems. J. Pervasive Comput. Commun. 7, 186–204 (2011)



Introduction and Challenges of Environment
Architectures for Collective Intelligence Systems

Juergen Musil(B), Angelika Musil, and Stefan Biffl

Institute of Software Technology and Interactive Systems, CDL-Flex,
Vienna University of Technology, Vienna, Austria

{jmusil,angelika}@computer.org, stefan.biffl@tuwien.ac.at

Abstract. Collective Intelligence Systems (CIS), such as wikis, social
networks, and content-sharing platforms, are an integral part of today’s
collective knowledge creation and sharing processes. CIS are complex
adaptive systems, which realize environment-mediated coordination, in
particular with stigmergic mechanisms. The behavior of CIS is emergent,
as high-level, system-wide behavior is influenced by low-level rules. These
rules are encapsulated by the CIS infrastructure that comprises in its
center an actor-created artifact network that stores the shared content.
In this chapter, we provide an introduction to the CIS domain, CIS
architectural principles and processes. Further, we reflect on the role of
CIS as multi-agent system (MAS) environments and conclude with an
outlook on research challenges for CIS architectures.
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1 Introduction

Since the early 2000s, a new generation of web-based, social platforms has
reshaped the way of knowledge creation and sharing. Well-known instances of
such systems include social networking services (Facebook1), microblogging ser-
vices (Twitter2), wikis and the online encyclopedia Wikipedia3, content-sharing
platforms (YouTube4), and review and rating platforms (Yelp5). These systems
can be regarded as Collective Intelligence Systems (CIS), since these socio-
technical platforms all have the capability to harness the collective intelligence of
connected groups of people by providing a web-based environment for a commu-
nity of participating users to share, distribute and retrieve topic-specific infor-
mation in an efficient way. By contributing new content individually to these

1 http://www.facebook.com/ (last visited 06/18/2015).
2 http://www.twitter.com/ (last visited 06/18/2015).
3 http://www.wikipedia.org/ (last visited 06/18/2015).
4 http://www.youtube.com/ (last visited 06/18/2015).
5 http://www.yelp.com/ (last visited 06/18/2015).
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systems, their users build collectively a continuously growing repository of valu-
able information, knowledge and data and thus generate collective intelligence
of a user community.

CIS are multi-agent systems (MAS), which operate on micro and macro
levels and provide benefits both for their users and operators. The individual
user benefits from (1) the division of labor, since knowledge emerges from addi-
tive contributions of multiple users, and (2) efficient dissemination of knowledge
among a large user group and leveraged awareness about activities and con-
tributions of other users. For operators, CIS represent an approach to address
complex knowledge-intensive problems on organizational, community and soci-
ety level, which are improved in two ways. Firstly, hard to access knowledge
is continuously aggregated from situated individuals on a global level, whereby
situatedness of an individual means the “physical, cultural, and social context,
that guides, constrains and partially determines intelligent activities” [28]. Sec-
ondly, the consolidated information is disseminated back to the individuals on a
local level. The resulting feedback loop and quality of enabling the continuous
adding, updating and restructuring of information gives CIS self-organizational
capabilities that make them adaptable and resilient.

Therefore, CIS represent an interesting proving ground for the investiga-
tion of MAS-related concepts and theories. One concept that is central in this
chapter is the environment [38]. In this chapter, we provide an integrated view
of previous work by giving an introduction to the CIS domain as well as the
architecting of CIS-specific environments, and conclude with an agenda for CIS
architecture research. We argue, that self-organizational CIS are a particular
family of MAS environments, which posses a characteristic system model [24].
The model consists of three layers which are a proactive actor base, a passive
artifact network and a reactive/adaptive AMD (analysis, management and dis-
semination) system. Between these layers aggregation and dissemination dynam-
ics exist that create a stigmergic feedback loop connecting the computational
environment and the actor base [25]. This system model is the basis to derive
an ISO/IEC/IEEE:42010 compliant software architecture framework [16], which
should assist software architects to model CIS. So far software architects lack
guidance in designing CIS that are tailored for specific application contexts,
domains and for individual organizations. Thus, the framework provides consoli-
dated systematic knowledge of the architectural principles and mechanisms that
underlie each CIS. The CIS architecture framework (CIS-AF) consists of the
three viewpoints CI Context, CI Technical Realization and CI Operation [25].
Each architectural viewpoint comes with its own stakeholders, concerns, model
kinds and analytics. While working on this research, we discovered certain needs
and limitations, which are described in the research agenda at the end of the
chapter. The agenda deals with structure and dynamics of CIS, as well as future
application domains. The work of this chapter builds upon advanced concepts of
MAS, software architecture, and complex systems. For a deeper understanding
of these concepts, we encourage the interested reader to explore the references
[15,23,25,34,39].
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The remainder of this chapter is structured as follows. Section 2 discusses
related work on CIS and Sect. 3 describes CIS characteristics and architectural
principles which are illustrated with a real-world CIS platform. In Sect. 4 we
present an overview of the architecture framework for CIS comprising three
viewpoints with their model kinds. An agenda for future research is discussed
in Sect. 5 outlining research challenges in the field of CIS architectures. Finally,
Sect. 6 concludes.

2 Related Work

This section presents an overview of related work on CIS foundations: coordina-
tion models, environment-mediated interaction and stigmergic coordination as
well as IT-enabled collective intelligence.

2.1 Environment-Mediated Interaction and Stigmergic
Coordination

Coordination is a key aspect of CIS. Central to the realization of coordination are
coordination models, which were described by Gelernter et al. [11] as “the glue
that binds separate activities in an ensemble” and by Omicini [27] as essential to
define “the abstractions and the computational models for ruling the interaction
space in computational systems”. Ciancarini [5] identified coordination entities,
coordination media and coordination laws as the constituents of a coordination
model for computational systems. Coordination entities are the entities that
are being coordinated, like processes, threads, agents or humans. The coordina-
tion media enable communication among the entities, and serve as means for
manipulations among the whole entity base. Examples of coordination media
can be simple constructs like semaphores, monitors or complex constructs like
tuple spaces [10] and blackboards [7]. Finally, coordination laws describe rules,
constraints and mechanisms how entities are coordinated by means of the coor-
dination media. The duality between coordination medium and laws was also
described by Schmidt and Simone [32] in the context of Computer-Supported
Cooperative Work (CSCW) using similar concepts of coordinative artifact and
coordinative protocol.

In the last decade, particular focus has been drawn to the environment,
which is created by the system, and its impact on the design of modern MAS
[38]. Environment-mediated coordination approaches allow the decoupling of
processes in space and time, and enable producers and consumers to stay anony-
mous [29]. A special form of environment-mediated coordination mechanisms is
stigmergy, which was originally introduced by Grassé [12] to describe the spatial
coordination among termite societies. Stigmergy enables not only environment-
mediated coordination and indirect communication between agents, it possesses
also a positive feedback mechanism [2,3], so that an agent activity causes more
activities. The mechanism promotes awareness among agents about the activities
of other agents, which in turn reinforces their own activities [30]. Additionally,
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the process behavior of stigmergy is emergent, so certain system properties exist
on a high-level, but not on a low-level and vice versa [1]. For stigmergy, this means
that high-level, system-wide behavior is influenced by low-level rules, encapsu-
lated by artifacts, the environment, and local activities. There is no explicit coor-
dination control [8] and the agents are independent and choose autonomously
which activities they perform [8,9,28]. In computer science, stigmergy has been
explored extensively in various domains [40].

To better understand stigmergy in MAS, the concepts of the environment
and artifact are of particular relevance [28,30,35]. Weyns et al. [38] defined the
environment as “a first-class abstraction that provides the surrounding condi-
tions for agents to exist and that mediates both the interaction among agents
and the access to resources”. According to the environment reference model [38],
an environment’s responsibility with respect to stigmergy is to act as a commu-
nication structure maintaining aforementioned dynamics. The artifact is used
as a coordination medium and as an environment abstraction through which
the agents communicate. Extensive discussions of coordination artifacts from
a MAS perspective can be found in [8,28] and from a CSCW perspective in
[32]. Omicini et al. [28] provided a particular perspective on agents and artifacts
in their agents & artifacts (A&A) meta-model for MAS. In this approach (1)
agents are pro-active components, which autonomously execute activities inside
an environment, whereby (2) artifacts are “passive components which are coop-
eratively or competitively constructed, manipulated and shared by the agents to
support their activities” [28]. In addition, there are workspaces which represent
local environments in which agents can interact with artifacts [28].

Susi et al. [35] provided a conclusive description of using stigmergy to support
human cognitive processes and the usage of artifacts as mechanism to mediate
emergent human collective behavior. Ricci et al. [30] adapted their work towards
a theory of cognitive stigmergy for MAS, which proposes the dual usage of arti-
facts as means (1) to enable emergent coordination processes and (2) to share
and represent high-level knowledge for cognitive agents, like humans. In their
work they identified the recurring stigmergic mechanisms of diffusion, aggrega-
tion, selection and ordering [30]. Parunak [37] surveyed stigmergic computational
systems, which are used to coordinate human interactions. A comprehensive dis-
cussion of the current state of stigmergy and internet-supported collaboration
was provided by Heylighen [15].

2.2 IT-Enabled Collective Intelligence

The phenomenon of collective intelligence (CI) has been investigated by
researchers in a variety of disciplines like computer science, cognitive science,
organization theory, biology and network science [20] and thus in literature a
variety of CI definitions exists. According to Malone et al. [21], collective intelli-
gence can be defined as “groups of individuals doing things collectively that seem
intelligent”. The focus of this section is the discussion of computer science-related
research of collective intelligence.
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One of the first CI-related system concepts was introduced by Vannevar
Bush in 1945 in his essay As We May Think [4]. In his work, he envisioned
with the Memex a hypothetical system that had some of the features of modern
CIS, in particular the concept of associative trails. Bush’s work influenced other
researchers like J.C.R. Licklider and Douglas C. Engelbart. Licklider argued
in his work [18] for the needs of a tighter coupling of man and computing
system, resulting in a hybrid, mutually-complementing overall system. It was
then Engelbart’s work on intelligence augmentation and in particular his sem-
inal paper Augmenting Human Intellect [6], where he described the concept of
a H-LAM/T system, which had two interesting aspects from a MAS environ-
ment perspective. Firstly, it highlighted the importance of artifacts, human-
artifact interfaces and explicit-artifact processes. Secondly, he introduced the
concept of an executive superstructure, which operates on a global system level
so that “more human time, energy and productive thought could be allocated
to direct-contributive processes, which would be coordinated in a more sophisti-
cated, flexible and efficient manner” [6]. This executive superstructure can be
regarded as an environment architecture and its occurrence, even in this early
stage of research, supports the hypothesis that the environment concept is essen-
tial for the design of CIS. Interestingly, Engelbart already explicitly recognized
the importance of computational automation in the system on a micro level
(direct-contributive processes) and macro-level (executive processes).

Research efforts in IT-enabled collective intelligence have continued to gain
momentum since the beginning of the Web 2.0 area and the rapid adoption of the
first generation of CIS (wikis, social networking services, social media sharing)
in a variety of domains and cultures. Besides Surowiecki’s book The Wisdom of
Crowds [34], there have been the works of Lévy [17] and Tapscott and Williams
[36], which contributed to the wider adoption of the term collective intelligence. A
repeatedly reported characteristic of CIS is the complementary interdependence
between human and computing systems on a system level. In literature various
terms refer to this attribute, which orbit around the same concept like socio-
technical systems [27] or social machines [33]. Studies on the systematization of
CI-related systems were conducted by Malone et al. [22], Lykourentzou et al. [19]
and Smart et al. [33]. Grasso and Convertino [13] investigated tools and studies
on CI in organizations, and Salminen [31] conducted a literature review on CI
in humans. Gruber [14] examined how CI of the Social Web can be leveraged
using knowledge representation and reasoning techniques from Semantic Web.
A discussion of urban-level CIS and their challenges is provided by Zambonelli
[39]. Two current collections on scientific CI literature are the book edited by
Miorandi et al. [23] and the forthcoming book edited by Malone and Bernstein
[20].

3 CIS Environments

This section describes major CIS characteristics and provides an overview of
architectural principles as well as the underlying stigmergic process model.
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Finally, we illustrate the described architectural principles by applying them
on the well-known example case of a Wiki.

3.1 CIS Characteristics

In the context of our research work a collective intelligence system is a socio-
technical multi-agent system which mediates human interaction and provides
support for distributed cognitive processes. As a socio-technical system, a CIS
is driven by its users who contribute content (knowledge or information) to
a globally-shared virtual information space located in a computational system,
which in return feeds the consolidated information back to its users. This enables
each user to benefit from novel and available information of high quality in her
local space. Additionally, each user is stimulated to continue the contribution of
further content into the globally-shared space. The feedback loop between the
user base and the computational system is an essential feature of CIS, since it
bridges the local and global space. Figure 1 shows a CIS process model consisting
of 4 steps: (1) Actors (users) contribute/modify content of the shared computa-
tional platform. (2) The system analyses and processes content data and extracts
consolidated information. (3) The system disseminates the information extracts
among its actors. (4) Information stimulates either the actors’ local activity or
triggers a subsequent content contribution (revisit step 1).

Fig. 1. CIS process with content aggregation and feedback of information

The created bottom-up feedback loop provides CIS with emergent, self-
organizational capabilities and differentiates these systems from directed, top-
down platforms used for crowdsourcing and human computation, where users
are typically provided with task requests that await processing [20].

Another aspect of CIS is the conceptual restriction of the content in the
information space to a certain topic-of-interest. It can be differentiated between
two types of information stored in the space. Topic-specific information is data
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that is closely related to the information space’s topic-of-interest, whereby meta
information provides additional data about the topic-specific information as well
as its creation and usage. There are three forms of how topic-specific information
can be aggregated by a CIS:

– Explicit content aggregation (ECA) depends on the users to actively contribute
content to the system. Example instances of such systems are Wikipedia,
Facebook and YouTube.

– Implicit content aggregation (ICA) captures topic-relevant information as a
side-product, while actors are performing a certain activity. A typical example
of such a system is a web search engine.

– Hybrid content aggregation (HCA) accumulates some of the topic-specific
information implicitly, but depends on users to actively contribute a remain-
ing proportion of the data. An example of such a system is the navigation app
Waze.

Further, we differentiate CIS by categorizing them according to their organi-
zational structure within which they are typically used. We distinguish between
the four levels of group, organization, community and society.

1. Group level CIS facilitate the collaboration within groups and teams. System
examples comprise wiki systems (MediaWiki) and issue trackers (Redmine).
Often systems, which are used on group level, are also applicable on organi-
zation level.

2. Organization level systems encompass an entire organization and can have an
organization-internal or external focus. CIS, which are located on this level,
are often associated with the terms Enterprise 2.0 and social collaboration.
Representative system types include enterprise-level social networks (Yam-
mer) and wiki farms (Confluence), employee suggestion systems, customer-
feedback platforms (UserVoice) as well as a variety of custom-build CIS, which
are tailored for a particular application context within the organization.

3. Community level CIS are dedicated to a particular aspect of a certain commu-
nity which may be regional or a community of interest. CIS for regional com-
munities include local review services (Yelp), but also platforms for emerging
application domains like smart cities and collective governance. Illustrative
examples of systems for communities of interest are TripAdvisor (travel),
ResearchGate (social network for scientists), GitHub (code repositories), and
MyExperiment (scientific workflows).

4. Society level CIS are systems that encompass one or more cultural regions and
have developed a sphere of influence in or between these regions. Well-known
examples are Wikipedia (encyclopedia), Facebook and VK (social network),
Twitter and Sina Weibo (microblogging), as well as YouTube (video sharing).

The concepts that we introduced in the current and previous section pro-
vide the theoretical foundation for a systematic architecting approach for self-
organizational CIS, which will be presented in the following sections.
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Fig. 2. Multi-layer CIS model with three main components and the stigmergic process

3.2 CIS Architectural Principles

Our CIS approach builds on a multi-layer model (Fig. 2) consisting of three main
components: (1) human actors as proactive components, (2) a single, homoge-
neous CI artifact network as a passive component, and (3) a computational
analysis, management and dissemination (AMD) system as a reactive/adaptive
component, which fosters information propagation among its actor base. In this
configuration, the CIS architecture realizes a composite coordination mechanism
facilitating stigmergic, environment-mediated coordination, whereby the coordi-
nation environment is formed by the artifact network and the AMD system
[24]. The architecture enables the bottom-up building of an artifact network by
allowing its actors to create/modify user-generated content stored in artifacts
and thereby effectively accumulate and share information among each other
[26]. This continuous flow of actor contributions within the system environment
enables the emergence of collective intelligence that allows the individual to ben-
efit for own purposes, and concurrently provides groups and organizations with
self-organizational knowledge transfer and coordination capabilities. Further, a
perpetual feedback loop is created between actor base (layer 1) and coordination
infrastructure (layer 2 and 3), by instrumenting the actors’ contributions to stim-
ulate a subsequent reaction by other actors, causing a stigmergic process with
aggregation (yellow arrow) and dissemination phase (blue arrow). The following
paragraphs provide an overview of the CIS model layers.

1. Actor Base. The actor base layer consists of human actors, who indepen-
dently and actively perform activities on the CI artifacts.
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2. Artifact Network. The CI artifact network layer consists of passive CI arti-
facts, which store the topic-specific content that is generated by the actors. The
conceptual content structure of the CI artifact is constrained by the system’s
topic-of-interest. CI artifacts are manipulated by actor activities, which resem-
ble different types of create, read, update and delete operations. An important
activity is the linking of artifacts using artifact links. Artifact links are links
that actors can define between artifacts, leading to the emergent creation of an
artifact network which is shared among the total actor base. Each performed
activity is tracked in an actor record, whereby each actor has her own actor
record. The actor record has two main purposes: Firstly, it logs the complete
actor activities of each individual actor which allows the system to build knowl-
edge about its actors and to provide advanced services like recommendations and
shared interests. Secondly, the actor record acts as a proxy for the ownership
relationship between the actor and the CI artifacts. The ownership relationship
defines who is the owner of an artifact and thus who has extensive control to
decide (1) to which extent other actors are able to contribute to the CI artifact,
and (2) if contributions comply to predefined quality requirements.

3. AMD System. The analysis, management and dissemination (AMD) sys-
tem is a reactive/adaptive computational system that encompasses subsystems
for data mining, data analysis and machine learning that are responsible for
executing defined rule sets. In this process the subsystems use the aggregated
artifact and actor record data and determined dissemination mechanisms to
create various triggers. In detail, triggers are created to propagate changes of
CI artifacts and to promote awareness about recent actor activities within the
CIS among the total actor base. In addition, these triggers should also act as a
stimulus to motivate each individual to react to these activities with a new con-
tribution on an artifact, which in turn should attract other actors to contribute
as well. For creating such triggers two different dissemination mechanisms can be
applied. Pull-based, or passive, dissemination mechanisms rely on the actor to
actively retrieve the updates and changes from the system, e.g. manual looking at
the activity feed or dashboard. Push-based, or active, dissemination mechanisms
rely on the AMD system and its subsystems to forward updates and changes to
the actors in order to make them revisit the platform. A common example is
the sending of emails with personalized notifications and reports about artifact
updates to actors.

3.3 Example: Wiki System

To illustrate the described architectural design principles of a CIS we map them
to the well-known example case of a Wiki. In a Wiki-type CIS groups of people,
known as editors, are interested in contributing and sharing knowledge about
a certain topic. The actor base is formed by all users who have an active user
account. Each actor primarily contributes new content to a Wiki either by cre-
ating a new article page or modifying an existing one, which represents the CI
artifact. To improve the quality of a particular article, additional contribution
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activities are supported including adding of comments, starting discussions about
an article’s content using talk pages, and reviewing changed articles. Activities
of each actor are tracked and stored in the actor record (AR)-like log, as is any
modification of any article. Each contributed article modification creates a new
revision of the article which improves the traceability of modifications by other
actors and enables them to undo changes. Typically, all editors have equal own-
ership rights to all article pages in a Wiki which allows an editor the extensive
manipulation of articles created by other editors. Articles can be linked together
by actors using Wiki-links (internal links) and categories, creating a network of
related articles which improves content discoverability. To improve awareness of
artifact changes during an actor’s absence the system uses internal and external
(e.g. email) notification messages to deliver personalized information.

4 CIS Architecture Framework

To support software architects in the design of new CIS architectures, we devel-
oped an architecture framework for realizing CIS solutions (CIS-AF) following
the ISO/IEC/IEEE 42010 standard [16]. In this section we present an overview
of this CIS-AF which is discussed in detail in [25]. According to the standard, an
architecture framework describes “conventions, principles and practices for the
description of architectures established within a specific domain of application
and/or community of stakeholders” [16]. An architecture framework typically
addresses a set of concerns that stakeholders have with respect to the system-
of-interest. These stakeholder concerns are framed by at least one architecture
viewpoint. A viewpoint introduces conventions for constructing, interpreting and
analyzing an architecture view which expresses the architecture of a system-of-
interest from a specific perspective and addresses particular stakeholder con-
cerns. Therefore, a viewpoint describes model kinds which specify modeling con-
ventions used by architecture models that compose an architecture view.

In the context of the CIS-AF, the architecture framework aims to provide
guidance for software architects to systematically describe key CIS elements and
model a CIS that is well-suited for the context and goals of an organization.
Therefore, the CIS-AF defines foundational principles of CIS, introduces key
stakeholders and their concerns that need to be addressed in models and analysis,
as well as provides architectural practices how to systematically design such CIS.
Thereby, the focus of the framework is on CIS-specific concerns of the system
realization from inception to operation and it consolidates architectural knowl-
edge independent of a domain or technology. Hence, software architects may use
additional architectural approaches to deal with other traditional stakeholder
concerns, such as performance, availability or scalability.

The CIS-AF is based on our proposed meta-model for CIS [24] that defines
key CIS elements which we described previously. The CIS-AF comprises three
complementary architecture viewpoints together with their model kinds which
define conventions for the construction and use of architecture views and models
to deal with the identified essential CIS stakeholder concerns. An overview of
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the CIS-AF is illustrated in Fig. 3. The framework defines the following architec-
ture viewpoints for realizing new CIS solutions: (1) CI context viewpoint, (2) CI
technical realization viewpoint, and (3) CI operation viewpoint. Main stakeholder
groups whose concerns are considered in the CIS-AF are architect(s) who design
and describe the system architecture, owner(s) who define the CIS’s purpose
and business goals, manager(s) who are responsible for the management and
operation of the provided services, builder(s) who develop the CIS, analyst(s)
who are responsible for monitoring and assessment of the CIS performance and
behavior, and actors who access and contribute to the CIS.

CI Context Viewpoint. The context viewpoint deals with the design of CI-
specific system capabilities especially with regards to the usefulness and per-
petuality concerns of architects, owners and actors and describes the conven-
tions to derive an architecture view which addresses these main stakeholder
concerns. The viewpoint supports capturing relevant architectural design deci-
sions to achieve the essential bottom-up information aggregation, management
and distribution capabilities for hard-to-access dispersed knowledge and infor-
mation. It defines three model kinds. The As-Is Workflow model kind governs
models that show the current workflow of interest in the organization or context
with the activities performed by users and an existing system environment that
may be improved/extended by a CIS. A model created based on the Stigmer-
gic Coordination model kind describes the domain items based on a particular
topic-of-interest in the organization or context, the rules to interact with the

Fig. 3. Overview of architecture framework for Collective Intelligence Systems
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domain items and for the dissemination mechanisms that use the network of
domain items to generate stimuli in order to motivate the actor base. Finally,
models based on the To-Be Workflow model kind express the future workflow
of interest in the organization or context with the activities performed by users
and the CIS environment, along with feedback from the CIS to the users.

CI Technical Realization Viewpoint. The technical realization viewpoint
provides a more detailed perspective on the realization of the CIS and its spe-
cific capabilities and supports the concrete implementation of a new system with
respective models. The viewpoint describes the conventions to derive an archi-
tecture view that frames the data aggregation, knowledge dissemination, and
interactivity concerns of architects, owners, builders, and actors. It defines three
model kinds. The Artifact Definition model kind governs models that describe
the structure of the CI artifacts, how they can be linked, and which operations
can be applied upon an artifact’s content. A model created based on the Aggre-
gation model kind shows details about how new data is aggregated from the
actors, what activities can be performed by the actors to interact with the CI
artifacts, what kind of data is aggregated, and to what extent these actor activ-
ities are captured. Models governed by the Dissemination model kind provides
relevant information about the rules which realize the essential stigmergy-based
dissemination of knowledge, the kind of content and ways how to effectively
distribute this content in order to stimulate subsequent actor activities.

CI Operation Viewpoint. The operation viewpoint deals with the kickstart
and monitoring concerns of system managers and analysts of CIS related to the
successful startup of the perpetual feedback loop of a new CIS and its operation.
Thus the viewpoint defines two model kinds to derive an architecture view that
provides relevant information about initial data acquisition strategy and actor
group as well as relevant indicators to measure CIS aggregation and dissemina-
tion performance. The Initial Content Acquisition model kind governs models
that show potential sources from which initial content for the CI artifacts can be
migrated and potential groups of initial actors to build up an actor community.
A model created based on the CI Analytics model kind describes relevant metrics
to measure the CIS performance and analysis results according to measurement
profiles with probes to capture the data necessary for calculating the metrics.

First results of case studies, that we conducted to evaluate the framework’s
applicability and understandability among software architects, demonstrated
that the framework effectively supports stakeholders with providing consolidated
architectural knowledge in a documented and established form, a shared vocab-
ulary of CIS concepts, and practical guidance to systematically apply the stig-
mergic principles of CIS. For a detailed description of the CIS-AF and the case
studies results we refer the interested reader to [25].
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5 Agenda for Future Research

Since the research of CIS architectures is at the beginning, we present in this
section potential directions for future research. We discuss an agenda consisting
of 11 research challenges across the areas of software architecture, technologies
and system dynamics.

Nevertheless, CIS are complex systems and are dependent on areas that
go beyond this research agenda. Figure 4 presents an extended overview of CI
relevant areas with the four main areas of System, Influences, Agents and Stake-
holders. A CIS is a hybrid system of agents and a computational system which
consists of structure and dynamics. Its structure decomposes into the architec-
ture and its conceptual design as well as its actual implementation using tech-
nologies. Its dynamics arise from the feedback mechanisms and the interplay of
the agents and the system structure. Dynamics and the structure are dependent
on each other. Additionally, a set of influences has an impact on the system’s
behavior and performance by enforcing various sets of constraints and rules.
Influences are defined and negotiated between the stakeholders and, to varying
extent, by the agent base. Main influences are ethics, culture, governance, and
business, whereby each can be refined into more granular subject areas.

Fig. 4. CIS overview with system, agent base, influences and stakeholders

The following paragraphs focus on selected challenges from the areas archi-
tecture, technology and dynamics, that we expect to have high impact on future
CIS design, development and research.
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5.1 Architecture and Design

Architecture and Design challenges are concerned with conceptual and software
architectural aspects of CIS and how they change over time and across applica-
tion domains.

1. CIS MAS Architecture Models: This chapter has illustrated that a coordi-
nation model like stigmergy can have a significant impact on the architec-
tural structure of a CIS. Therefore, it would be interesting to explore if there
are other nature-inspired coordination models [40] (i.e. chemical, biochemi-
cal, physical) that facilitate collective intelligence. How can these models be
integrated into generalized architectural models, and what are strengths and
limitations of these architectures? Also, how are these models translated into
advanced software architectural models like architecture frameworks and ref-
erence architectures so that they are more applicable by practitioners?

2. Platform Evolution Support: CIS as service platforms tend to constantly
advance over time to better address the needs of their actor base. This
makes architectural evolution, erosion and architectural technical debt rele-
vant issues that gain importance the longer the system is in service. Therefore,
it is necessary to deepen the understanding of a CIS life-cycle, its different
phases and their impact on the system architecture, as well as evolutionary
transitions between life-cycle phases that support future growth paths. This
is of particular relevance the larger a CIS’s artifact network and actor base
become, because then platform operators are more inclined to evolve the CIS
into a more comprehensive form like a multi-sided platform or a software
ecosystem. Besides the life-cycle, is there also a differentiation in maturity
levels, which depend on the grade of a CIS’s set of capabilities?

3. Exploration of Architecture Variations: A challenge is the current lack of
architecture-relevant knowledge about commonalities and significant variabil-
ities among key elements of CIS. Therefore, it is important to systematically
investigate variations of existing CIS and how these variations are affected by
underlying architectural elements and design decisions.

4. Correlating Architectural Models and Dynamics Models: A particular chal-
lenge represents the correlation of software architectural models with CIS
dynamic models. A success in this area would allow new inter-disciplinary per-
spectives on the modeling of complex dynamic software systems. A promising
future application scenario represents the simulation of CIS and their archi-
tectures which would enable to predict the effectiveness of system features
before they are actually implemented.

5. Beyond Human-to-Human Interactions: CIS are typically understood as
socio-technical systems, which mediate interaction between humans. A
promising direction for future research would be to investigate the benefits of
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CIS environments with different types of actors, in particular human-machine
and machine-machine configurations. This opens up new future application
domains like cloud robotics, where robots can rely on humans as knowledge
sources, or where robots can share task execution experiences among each
other.

5.2 Technology

Technology challenges focus on how to support the implementation of CIS.

1. CIS Middleware Frameworks: The availability of advanced architectural mod-
els and frameworks enables the development of a new generation of CIS mid-
dleware frameworks that support the implementation of CI-intensive systems
for particular application domains. The development of such frameworks will
support the diversity of functionality and a wider range of technology stacks.

2. Measurement and Analysis Components: In order to support data-driven
development practices in software development teams, it is important to
explore the development of easy to use analysis and measurement compo-
nents that provide architects and developers with CI-specific measures on
system component and feature level. By this, developers are provided with a
more accurate basis for making design and implementation decisions.

3. Model-Driven CIS Engineering: An efficient way to create new CIS implemen-
tations would be to apply methods from model-driven software engineering.
In particular, how to adapt CIS architecture meta-models so that they can
be the basis for model and code generation approaches? In combination with
architecting tool support this would improve the utility and applicability of
systematic CIS architecting and engineering among practitioners in industry.

5.3 System Dynamics

System Dynamics challenges are concerned with micro and macro level dynamics,
the networks of CIS and effects on the system architecture.

1. Network Models: Since the artifact network is the central structure of a CIS,
it is critical to also understand its characteristics also from a network science
perspective. Findings from such investigations may inform CI-specific mod-
els on the dynamics of the network itself (changes of nodes and ties) as well
as dynamics on the network (spreading processes like information cascades).
Of particular interest is here the impact of the network on aggregation, dis-
semination as well as bottom-up and top-down feedback dynamics between
the computational system and actor base.
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2. Growth and Perpetuality as First Class Concerns: CIS are dependent on
user-generated content and sustained high user activity levels. Therefore, it
is important to understand factors that influence content growth and actor
engagement like trust, content curation, and incentive mechanisms, and to
document them in a way so they can support architectural decision making
with regards to growth and perpetuality.

3. Controllability: The emergent, bottom-up nature of CIS is inherently non-
deterministic and therefore only allows probabilistic estimates of the system’s
actual behavior [40]. Subsequently in order to improve CIS controllability,
the underlying control principles, control points and their measures as well as
observability and robustness aspects of CIS need to be better understood and
validated. Advances in this area would not only provide the basis for novel
mechanisms for the dynamic adaptation of CIS workflows and rules to achieve
a certain system behavior, it would also extend the future applicability of
CIS towards more critical domains.

We expect that research efforts in collective intelligence systems will continue
to grow in the foreseeable future, making it a promising field of investigation.
Therefore, finding solutions for the challenges described in this section will not
only contribute to a better understanding of CIS and complex systems in general,
it will also provide a benefit for the involved disciplines of software architecture,
software engineering, multi-agent systems and network science alike.

6 Conclusion

This chapter provided an introduction to collective intelligence systems and how
environment-oriented coordination mechanisms and abstractions can be used to
describe them. The subsequent adaptation and integration of these concepts
in an architecture framework enables software architects to adequately apply
them for architecture descriptions of CIS. Additionally, the chapter presented
research challenges that need to be addressed in future work for moving the field
of CIS environment architectures forward. Advancing the presented models and
approaches will not only increase our understanding on how CI-intensive systems
work, it will also facilitate the exploration and invention of novel applications
and usage scenarios.
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Abstract. Carma is a new language recently defined to support quan-
tified specification and analysis of collective adaptive systems. It is a
stochastic process algebra equipped with linguistic constructs specifi-
cally developed for modelling and programming systems that can oper-
ate in open-ended and unpredictable environments. This class of sys-
tems is typically composed of a huge number of interacting agents that
dynamically adjust and combine their behaviour to achieve specific goals.
A Carma model, termed a “collective”, consists of a set of components,
each of which exhibits a set of attributes. To model dynamic aggre-
gations, which are sometimes referred to as “ensembles”, Carma pro-
vides communication primitives based on predicates over the exhibited
attributes. These predicates are used to select the participants in a com-
munication. Two communication mechanisms are provided in the Carma
language: multicast-based and unicast-based. A key feature of Carma is
the explicit representation of the environment in which processes inter-
act, allowing rapid testing of a system under different open world sce-
narios. The environment in Carma models can evolve at runtime, due to
the feedback from the system, and it further modulates the interaction
between components, by shaping rates and interaction probabilities.

1 Introduction

Collective adaptive systems (CAS), comprised on multiple agents working in
collaboration, competition or a combination of both, are predicted to form
the underlying infrastructure for the next generation of software systems and
services. Their transparent and pervasive nature makes it imperative that the
behaviour of such systems should be thoroughly explored and evaluated at design
time and prior to deployment. In this paper we present a novel modelling lan-
guage which has been developed to capture the behaviour of such systems and
support their analysis through a variety of techniques.
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Carma (Collective Adaptive Resource-sharing Markovian Agents) is a sto-
chastic process algebra-based language which means that it represents systems
as interacting agents which undertake actions; actions are assumed to have a
duration which is represented as a random variable, governed by an exponen-
tial distribution. The quantitative information represented by action durations,
extends the reasoning power of the language beyond functional analysis to assess
the correct behaviour of the system, to non-functional properties such as per-
formance, availability and dependability. Such analysis supports quantitative
prediction and checking of system behaviour, including ensuring that resources
will be efficiently and equitably shared — an important and strongly desir-
able feature of infrastructures. Moreover, the underlying interleaving Markovian
semantics of Carmasupports a form of local synchrony as discussed in [33].
Independent actions proceed at their own pace, and this autonomy is lost only
when agents are constrained to act together through an explicit interaction.

The compositional nature of the language allows components capturing the
behaviour of agent types to be defined and then combined to build up the behav-
iour of the system. The interaction between agents is represented by explicit
communication, both multicast-based and unicast-based, and through implicit
communication. Moreover a distinguishing feature of Carma is the inclusion of
an environment, represented as a distinct element of the model, which captures
the operating principles of the world in which the agents exist. This environ-
mental influence includes controlling the rate and effectiveness of communication
between agents. Moreover, the environment itself can evolve during the lifetime
of the system, reflecting the adaptive operating conditions of the system. The
environment also has a state, which can be used to represent implicit asyn-
chronous communication between agents, analogous to pheromone trails in ant
systems. This is broadly in-keeping with the architecture proposed by Weyns
et al. proposed in [34].

In this paper we present an overview of the language constructs of Carma,
including the representation and role of the environment. The style of presen-
tation is intended to be intuitive and the interested reader can find the formal
semantics of Carma in [25]. Specifically, we illustrate the features of the lan-
guage in a running example, a Smart Taxi System. In this system we consider a
set of taxis operating in a city, providing service to users; both taxis and users
are agents, or components within our system. In order to manage the system
and allocate user requests among the operating taxis, our city is subdivided into
a number of patches arranged in a grid over the geography of the city. The users
arrive randomly in different patches, at a rate that depends on the specific time
of day. After arrival, a user makes a call for a taxi and then waits in that patch
until they successfully engage a taxi and move to another randomly chosen patch.
Unengaged taxis move about the city, influenced by the calls made by users.

The rest of the paper is organised as follows. In the next section we give a
brief overview of related modelling techniques for CAS. Section 3 gives a detailed
account of the Carma language and demonstrates its use to model the Smart
Taxi System. Section 4 presents the result of quantitative analysis of the Smart
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Taxi System, illustrating the types of measures that can be derived from Carma
models. Previous work on modelling the stochastic dynamic behaviour of a sys-
tem under the influence of an environment is discussed in Sect. 5, and we conclude
in Sect. 6.

2 Related Work

Stochastic process algebras, such as PEPA [23], MTIPP [22], EMPA [5], Sto-
chastic π-Calculus [29], Bio-PEPA [12], MODEST [6] and others [9,21], have
been available to support quantitative analysis of systems for approximately
two decades. Whilst some offer support for large populations of agents, they
have not been designed with CAS in mind, and typically only support synchro-
nous unicast communication. In recent years there have been languages targeted
towards systems consisting of populations, collectives or ensembles of agents
[15,16,28], which feature attribute-based communication and explicit represen-
tation of locations and the development of Carma has been informed by these.

SCEL [15] (Software Component Ensemble Language), has been designed to
support the programming of autonomic computing systems. The language dis-
tinguishes between autonomic components representing the collective members,
and autonomic-component ensembles representing collectives. Each component is
equipped with an interface, consisting of a collection of attributes, describing dif-
ferent features of components. There is an underlying knowledge base associated
with each component and rich forms of reasoning on attributes are supported.
Attributes from the knowledge base are used by components to dynamically form
ensembles and to select partners for interaction. The stochastic variant of SCEL,
called StocS [24], has been used to investigate a number of different stochastic
and probabilistic semantics. Moreover, SCEL has inspired the development of
the core calculus AbC [3] that focuses on a minimal set of primitives that defines
attribute-based communication without the rich underlying knowledge base, and
investigates their impact. Communication among components takes place in a
broadcast fashion, with the characteristic that only components satisfying pred-
icates over specific attributes receive the sent messages, provided that they are
willing to do so.

PALOMA [16] is a process algebra that takes as starting point a model based
on located Markovian agents each of which is parameterised by a location, which
can be regarded as an attribute of the agent. The ability of agents to commu-
nicate depends on their location, through a perception function, which can be
used to define the range of a communication. Examples include local – agents
must be co-located, all – communication is global, or use of predicates. This can
be regarded as an example of a more general class of attribute-based commu-
nication mechanisms. Both multicast and unicast communication are supported
[17], but in both cases only agents who enable the appropriate reception action
have the ability to receive the message. The scope of communication is thus
adjusted according to the perception function. PALOMA is supported by an
individual-based Markovian semantics, a population-based Markovian seman-
tics and a continuous semantics in the style of [32].
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The attributed pi calculus [28] is an extension of the pi calculus [27] that
supports attribute-based communication, and was designed primarily with bio-
logical applications in mind. As in the languages discussed above, processes may
have attributes and these are used to select partners for interaction, but note
that communication is strictly synchronisation-based and binary. The language
is equipped with both a deterministic and a Markovian semantics, and in the
Markovian case the rates may depend on the attribute values of the processes
involved. The possible attribute values are defined by a language L, and the
definition of the attributed pi calculus is parameterised by L. The language L
also defines the possible rates and constraints that can be applied to attributes,
giving the possibility to capture diverse behaviours within the framework when
rates and probabilities of interaction are all dependent only on local behaviour
and knowledge.

Carma supports both unicast and broadcast communication, providing
locally synchronous, but globally asynchronous communication. This richness is
important to enable the spatially distributed nature of CAS, where agents may
have only local awareness of the system, yet the design objectives and adaptation
goals are often expressed in terms of global behaviour. Representing these rich
patterns of communication in classical process algebras or traditional stochastic
process algebras would be difficult, and would require the introduction of addi-
tional model components to represent buffers, queues and other communication
structures. Moreover the inclusion of a distinct environment, allows many possi-
bilities including rates of behaviour based on the global state, or observed data
from a system.

Modelling frameworks and languages have also been developed within the
multi-agent community, but generally with a focus on specification, qualitative
or functional analysis, rather than quantitative assessment of the modelled sys-
tem e.g. [7,11,20,26]. For example, Helleboogh et al. consider the requirements
for modelling multi-agent systems, with a particular emphasis on the modelling
of physical applications via simulation [20]. As with Carma, the authors make a
distinction between the simulated environment and the simulating environment,
which is transparent to the modeller. However, in the work presented in [20],
the distinction between the simulated environments and the agents within it is
not strong (cf. the framework of Weyns et al. [34]). In Carma we prefer to have
a clear separation of concern which allows the same collective of agents to be
easily considered in the context of different environments. Moreover, whereas
in Carma agents explicitly interact, in Helleboogh et al.’s approach the behav-
iour of agents is specified in a declarative way with the environment playing a
coordinating role in the evolution of agents.

3 CARMA in a Nutshell

In this section we present the Carma language and its specific features. To
simplify the presentation, and to help the reader to appreciate Carma features,
we will consider a simple running scenario. The latter is a Smart Taxi System
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used to coordinate the activities of a group of taxis in a city. In our scenario
we assume that the city is subdivided in patches forming a grid. Two kinds of
agents populate the system: taxis and users. Each taxi stay can either stay in
a patch, waiting for user requests, or move to another patch. Users randomly
arrive at different patches with a rate that depends on the specific time of day.
After arrival, a user waits for a taxi and then moves to another patch.

The smart taxi scenario represents well the typical scenarios modelled with
Carma. Indeed, a Carma system consists of a collective (N) operating in an
environment (E). The collective consists of a set of components. It models the
behavioural part of a system and is used to describe a set of interacting agents
that cooperate to achieve a given set of tasks. The environment models all those
aspects which are intrinsic to the context where the agents under consideration
are operating. The environment also mediates agent interactions.

Example 1. In our running example the collective N will be used to model the
behaviour of taxis and users, while the environment will be used to model the
city context where these agents operate.

In Carma collectives are defined in a style that is borrowed from process
algebras. We let Col be the set of collectives N which are generated by the
following grammar:

N ::= C
∣
∣ N ‖ N C ::= 0

∣
∣ (P, γ)

where C denotes a component while N ‖ N represents the parallel composition
of two collectives.

A component C can be either the inactive component, which is denoted by
0, or a term of the form (P, γ), where P is a process and γ is a store. A term
(P, γ) models an agent operating in the system under consideration: the process
P represents the agent’s behaviour whereas the store γ models its knowledge.
The latter is a function which maps attribute names to basic values. In the rest
of this paper we let:

– Attr be the set of attribute names a, a′, a1,. . . , b, b′, b1,. . . ;
– Val be the set of basic values v, v′, v1,. . . ;
– Γ be the set of stores γ, γ1, γ

′, . . ., i.e. functions from Attr to Val, of the
following form:

{a0 = v0, . . . , an = vn}
Example 2. To model our smart taxi system in Carma we need two kinds of
components. One for each of the two groups of agents involved in the system,
i.e. taxis and users. Both the kind of components use the local store to publish
the relevant data that will be used to represent the state of the agent.

The local store of components associated to taxis contains the following
attributes:

– loc: identifies current taxi location;
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– occupancy: ranging in {0, 1} describes if a taxi is free (occupied = 0) or
engaged (occupied = 1);

– destination: if occupied, this attribute indicates the destination of taxi jour-
ney.

Similarly, the local store of components associated with users contains the fol-
lowing attributes:

– loc: identifies user location;
– destination: indicates user destination.

The behaviour of a component is specified via a process P . We let Proc be
the set of processes P , Q,. . . defined by the following grammar:

P,Q ::= nil
∣
∣ A[X]

∣
∣ P | Q

where nil denotes the inactive process, A[X] denotes process automaton A in
state X, while P | Q denotes the behaviour obtained from the concurrent execu-
tion of P and Q. Each process automaton, and its states, are defined as follow:

process A =
X0 : [π0

i ]act00.R
0
0 + · · · + [πk0

i ]actk0
0 .Rk0

0
...

...
...

Xn : [πn
i ]actnn.Rn

n + · · · + [πkn
n ]actkn

n .Rkn
n

endprocess

Above, πj
i is a guard, actji are Carma actions, while Rj

i can be a state in
{X0, . . . , Xn}, the inactive process nil or the term kill. A process A[Xi], that
is active in a component with store γ, can execute any of the actions actki

i such
that πj

i is satisfied by γ. When one enabled action actji is executed, process A[Xi]
terminates, when Rj

i = nil, evolves to A[Xl], when Rj
i = Xl and destroys the

enclosing component when Rj
i = kill.

In Carma processes can perform four types of actions: broadcast out-
put (α�[π]〈−→e 〉σ), broadcast input (α�[π](−→x )σ), output (α[π]〈−→e 〉σ), and input
(α[π](−→x )σ), where:

– α is an action type in the set of action types ActType;
– π is an predicate;
– x is a variable in the set of variables Var;
– −→· indicates a sequence of elements;
– σ is an update of the form:

{a0 ← re0, · · · , ak ← rek}
where all the attributes ai are distinct and re is a random expression defined
by the following syntax:

re ::= now | v | x | this.a | δVal | re bop re | uop re | f(re0, . . . , ren)
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where now is used to refer to current system time, δVal is a probability distrib-
ution over Val1, bop and uop are binary and unary operators, while f denotes
an n-ary function over expressions.
In the rest of this paper we will say that an expression er is ground if it does
not contain any variable, while it is deterministic if no probability expression
δVal occurs in re. Moreover, we will use e to denote a deterministic expression.

The admissible communication partners in each of these actions are identified
by the predicate π. This is a predicate on attribute names. Note that, in a
component (P, γ) the store γ regulates the behaviour of P . Primarily, γ is used
to evaluate the predicate associated with an action in order to filter the possible
synchronisations involving process P . In addition, γ is also used as one of the
parameters for computing the actual rate of actions performed by P . The process
P can change γ immediately after the execution of an action. This change is
brought about by the update σ. The update is a function that when given a
store γ returns a probability distribution over Γ which expresses the possible
evolutions of the store after the action execution.

The broadcast output α�[π]〈−→e 〉σ models the execution of an action α that
spreads the values resulting from the evaluation of expressions −→e in the local
store γ. This message can be potentially received by any process located at com-
ponents whose store satisfies predicate π. This predicate may contain references
to attribute names that have to be evaluated under the local store. These refer-
ences are prefixed by the special name this. For instance, if loc is the attribute
used to store the position of a component, action

α�[distance(this.loc, loc) ≤ L]〈−→v 〉σ

potentially involves all the components located at a distance that is less than or
equal to a given threshold L. The broadcast output is non-blocking. The action
is executed even if no process is able to receive the values which are sent. Imme-
diately after the execution of an action, the update σ is used to compute the
(possible) effects of the performed action on the store of the hosting component
where the output is performed.

To receive a broadcast message, a process executes a broadcast input of the
form α�[π](−→x )σ. This action is used to receive a tuple of values −→v sent with
an action α from a component whose store satisfies the predicate π[−→v /−→x ]. The
transmitted values can be part of the predicate π. For instance, α�[x > 5](x)σ
can be used to receive a value that is greater than 5.

The other two kinds of action, namely output and input, are similar. However,
differently from broadcasts described above, these actions realise a point-to-point
interaction. The output operation is blocking; in contrast to the non-blocking
broadcast output.

1 For any denumerable set X, we let Dist(X) denote the set of probability distributions
over X while δX is a generic element in Dist(X).
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Example 3. We are now ready to describe the behaviour of taxis and users.
Behaviour of a user is modelled via process User defined below:

process User =
W : call�[�]〈this.loc〉.W

+
take[loc == this.loc]〈this.dest〉.kill

endprocess

Process User has only one state, W , that can either call or take a taxi. To call
a taxi, a User [W ] executes a broadcast output over call to all taxis. A unicast
output over take is executed to take a taxi. This action is used to send user
destination (this.dest) to a taxi that shares the same location as the user. To
identify the target of this action, prediate (loc == this.loc) is used. The latter is
satisfied only by those components that have attribute loc equal to this.loc. Here
prefix this is used to refer to actual values of local attributes. After this action,
user disappears (he/she enters the taxi).

The behaviour of a taxi is described via process automaton Taxi :

process Taxi =
F : take[�](d){dest ← d, occupied ← 1}.G

+
call�[this.loc 	= loc](d){dest ← d}.G

G : move�[⊥]〈◦〉{loc ← dest, dest ← ⊥, occupied ← 0}.F
endprocess

Process Taxi has two state: F and G. When in state F the taxi is available
and can either take a user in the current location or receive a call from another
patch. In the first case an input via take is performed and the user destination
is received. In the second case, the location where a user is waiting for a taxi is
received. In both the cases, the received location is used, after action execution,
to update taxi destination (dest ← d). However, after take input, the taxi also
records that it is occupied (occupied ← 1).

When in state G, process Taxi just executes a spontaneous broadcast over
action move. Indeed, no process can receive this message since predicate ⊥ is
used. This models taxi movements. After the movement the taxi position is
updated and the taxi is ready to take users in the new location.

To model the arrival of new users, the following process automaton is used:

process Arrivals =
A : arrival�[⊥]〈◦〉.A

endprocess

Process Arrivals has a single state A where spontaneous action arrival is executed.
This process is executed in a separated component where attribute loc indicates
the location where users arrive. The precise role of this process will be clear in
a few paragraphs when the environment will be described.
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Carma collectives operate in an environment E . This environment is used to
model the intrinsic rules that govern, for instance, the physical context where our
system is situated. An environment consists of two elements: a global store γg,
that models the overall state of the system, and an evolution rule ρ. The latter
consists of three functions that are used to express the probability to receive a
message by a component, compute the execution rate of an action, determine the
updates to the environment on both the global store and the collective. Syntax
of an environment E is the following:

environment γ [
μp

μr

μu

]

Element μp is used to compute the probability to receive a message. Syntax
of μp is the following:

prob{
π0, α0 → e0
...
πkp

, αkp
→ ekp

default e
}

In the above, each πi is a boolean expression over the stores of the two
interacting components, i.e. the sender and the receiver, and while αi denotes
the action used to interact. In πi attributes of sender and receiver attributes
are referred to using sender.a and receiver.a, while the values published in the
global store are referenced by using global.a. A receiver with store γ1 receives a
message sent by a component with store γ2 under global store γ with probability
p if there exists an index i such that:

γ1, γ2, γ |=πi and �ei�γ1,γ2,γ = p

or, if none of the πis are satisfied, p = �e�γ1,γ2,γ . This probability value may
depend on the number of components in a given state. For this reason in the
environment the syntax of expressions is extended by considering terms of the
form:

re::= · · · | #(Π,π)

where #(Π,π) denotes the number of components in the system satisfying pred-
icate π where a process of the form Π is executed. In turn, Π is a pattern of the
following form:

Π::= 	 | A[	] | A[X] | Π|Π
Example 4. One can use #(Taxi [F ], loc == 
) to count the number of available
taxis at patch 
. This expression can be used as follows:
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prob{
�, take → 1

#(Taxi[F ],loc==sender.loc)

�, call� → plost

default 1
}

Above, we say that each taxi receives a user request with a probability that
depends on the number of taxis in the patch. Moreover, call� can be missed with
a probability plost. All the other interactions occur with probability 1.

Function μr is similar and it is used to compute the rate of an uni-
cast/broadcast output. This represents a function taking as parameter the local
store of the component performing the action and the action type used. Note
that the environment can disable the execution of a given action. This happens
when the function μr (resp. μp) returns the value 0. Syntax of μr is the following:

rate{
π0, α0 → e0
...
πkr

, αkr
→ ekr

default e
}

Differently from μp, in μr guards πi are evaluated by considering only the
attributes defined in the store of the component performing the action, referenced
as sender.a, or in the global store, whose elements are accessed via global.a.

Example 5. In our example rate can be defined as follow:

rate{
�, take → λt

�, call� → λc

�,move� → mtime(now, sender.loc, sender.dest)
�, arrival� → atime(now, sender.loc)
default 0

}
We say that actions take and call� are executed at a constant rate; the rate

of a taxi movement is a function of actual time (now) and of starting location
and final destination. Rate of user arrivals depends on current time now and on
location loc.

Finally, the function μu is used to update the global store and to install a
new collective in the system. Syntax of μu is:

update{
π0, α0 → σ0, N0

...
πku

, αku
→ σku

, Nku

}
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Like for μr, guards in function μu are evaluated on the store of the component
performing the action and on global store. However, the result is a pair (σi, Ni).
Within this pair, σi identifies the update on the global store whereas Ni is a
new collective installed in the system. If none of the guards are satisfied, or
the performed action is not listed, the global store is not changed and no new
collective is instantiated. In both cases, the collective generating the transition
remains in operation. This function is particularly useful for modelling the arrival
of new agents into a system.

Example 6. In our scenario function update is used to model the arrival of new
users and it is defined as follows:

update{
�, arrival� → { }, (User[W ], {loc = sender.loc, dest = destLoc(now, sender.loc))

}

When action arrival� is performed a component associated with a new user is
created in the same location as the sender (see Example 3). The destination of
the new user will be determined by function destLoc that takes current system
time and starting location and returns a probability distribution on locations.

To extract data from a system, a Carma specifications also contains a set
of measures. Each measure is defined as:

measure m = e;

Example 7. In our scenario, we could be interested in measuring the number of
waiting users at a given location. These measures can be declared as:

measure waitingAt� = #(User[	], loc == 
)

When the system is simulated a time-ordered sequence of values is generated for
each measure specified.

4 The Smart Taxi System: Simulation and Analysis

In this section we present the Smart Taxi System in its entirety and demonstrate
the quantitative analysis which can be undertaken on a Carma model.

In the previous section we have shown how in Carma a system specifica-
tion in fact consists of two parts: a collective and an environment. One of the
main advantages of this approach is that one can evaluate the same behaviour
(collective) under different models for the enclosing environment.

In this section we consider a scenario with a grid of 3×3 patches, a set of loca-
tions (i, j) where 0 ≤ i, j ≤ 2, and we instantiate the environment of the smart
taxi system with respect to two different specifications for the environment:
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Fig. 1. The Carma model of the Smart Taxi System
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Scenario 1: Users arrive in all the patches at the same rate;
Scenario 2: At the beginning users arrive with a higher probability to the

patches at the border of the grid; subsequently, users arrive with higher
probability in the centre of the grid.

In both the scenarios users in the border will use the taxi to go to the centre,
while users collected in the centre will use the taxi to go to any other location
(the destination is probabilistically selected). In both the scenarios we assume
that the movement rate is constant and is proportional to the number of patches
to be traversed to reach the destination. In both the considered scenarios the
collective has the structure reported below:

(Taxi[F ], loc = (0, 0) , dest = ⊥ , occupied = 0) ‖
· · · ‖ (Taxi[F ], loc = (i, j) , dest = ⊥ , occupied = 0) ‖
· · · ‖ (Taxi[F ], loc = (2, 2) , dest = ⊥ , occupied = 0) ‖
(Arrivals[A], loc = (0, 0)) ‖ · · · ‖ (Arrivals[A], loc = (2, 2))

Above we consider k = 5 taxis in each location.
To instantiate the environment for Scenario 1 considered above, we have

just to instantiate functions mtime and atime of Example 5 and function destLoc
of Example 6:

function mtime(t , l1, l2) = λstep · max{|π1(l1) − π1(l2)| + |π2(l1) − π2(l2)|, 1};
function atime(t , l) = λa · 1

|L| ;
function destLoc(t , l) = if (l == (1, 1)) then rand(L − l) else (1, 1);

Above λstep is the rate needed to move from one location to an adjacent one,
π1 (resp. π2) is a function that returns the first (resp. the second) element of a
pair, λa is the arrival rate of a user in the system, L is the set of the considered
localities while rand is used to select randomly an element in the set received
as parameter. The complete Carma specification of our system is presented in
Fig. 1. The results of the simulation of the resulting Carma model is reported
in Fig. 2. In the left side of the figure we can observe the average number of
users that are waiting for a taxi in the location (1, 1) and in one location in the
border of the grid, namely (0, 0)2. In the right hand side of the same figure we
can present the proportion of free taxis that are waiting for a user at location
(1, 1) and (0, 0), respectively, and the fraction of taxis that are moving from one
patch to another without a user (these are the taxis that are relocating after a
call has been received). The remaining taxis (not shown) are engaged by users.

We can notice that, on average and after an initial startup period, around
2.5 users are waiting for a taxi in the location in the periphery of the grid while
only 1.5 users are waiting for a taxi in location (1, 1). This is due to the fact that
in Scenario 1 a larger fraction of users are delivered to location (1, 1), that is
the central patch. For this reason, a larger fraction of taxis will soon be available

2 Due to the symmetry of the considered model, any other location in the border
presents similar results.
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Fig. 2. Smart Taxi System: Scenario 1

to collect users at the centre whereas to collect a user from the border, a taxi
has to change its location. This aspect is also witnessed by the fact that, in this
scenario, a large fraction of taxis (around 50%) are continually moving between
the different patches.

The simulation of Scenario 2 is reported in Fig. 3. The environment for this
scenario is exactly the same as considered for the previous one except for function
atime. Now this function takes into account the current time (parameter now)
to model the fact that the arrival of new users depends on current time, just as
we might expect traffic patterns within a city to vary according to the time of
day. We assume that from time 0 to time 200, 3/4 of users arrive on the border
while only 1/4 request a taxi in the city centre. After time 200 these values are
switched. New definition of function atime is the following:

function atime(t , l) = if l == (1, 1) then
if t < 200 then 1

4 · λa else 3
4 · λa

else
if t < 200 then 3

4 · λa else 1
4 · λa;

We can notice that the results obtained from time 0 to time 200 are similar
to the ones already presented for the first scenario. However, after time 200, as
expected, the number of users waiting for a taxi in the border decreases below
1 whilst the average waiting for a taxi in the centre increases to just over 1.
Since after time 200 a large proportion of users request a taxi in the centre, the
fraction of taxis that change their location without a user decreases from 40%
to 20%.

In both the scenarios one can observe that even if only a small number of
users are waiting for a taxi, a significant fraction of taxis are continually moving
from one patch to another without users (i.e. in a free state). This is mainly
due to the fact that the action used to call a taxi is a broadcast output. As
a consequence we have that even if only a single user needs a taxi at a given
location, all the free taxis can change their position to satisfy this request. To
study this aspect in more detail, we consider now a variant of processes Taxi and
User where action call is no longer a broadcast output, but is instead a unicast
output. The Carma representation of the variants of these two processes is
reported below:
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Fig. 3. Smart Taxi System: Scenario 2
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Fig. 4. Smart Taxi System: Scenario 1 (modified specification)

process User =
W : call[�]〈this.loc〉.W

+ take[loc == this.loc]〈this.dest〉.kill
endprocess
process Taxi =

F : take[�](d){dest ← d, occupied ← 1}.G
+ call�[this.loc 	= loc](d){dest ← d}.G

G : move�[⊥]〈◦〉{loc ← dest, dest ← ⊥, occupied ← 0}.F
endprocess

The results of simulating the two scenarios with the modified specifications
are reported in Figs. 4 and 5. In both cases we can observe that the number of
users waiting for a taxi in patches located in the border of the grid doubles,
whilst almost all taxis will wait for users’ calls in the centre location (around
80%). This means that after an initial startup period all the taxis will be always
staying in the central location and the patch arrangement of the city is, in fact,
no longer used in the model.

5 Modelling the Environment

A key feature of Carma is its distinct treatment of an environment. It should
be stressed that although this is an entity within our model, it is intended to



110 J. Hillston and M. Loreti

0 100 200 300 400

Time

0

1

2

3

U
se

rs

Users waiting at (1,1)
Users waiting at (0,0)

0 100 200 300 400

Time

0

0.2

0.4

0.6

0.8

P
ro

po
rt

io
n 

of
 T

ax
is

Free at (1,1)
Free at (0,0)
Relocating

Fig. 5. Smart Taxi System: Scenario 2 (modified specification)

represent something more pervasive and diffuse in the real system, which is
abstracted within the modelling to be an entity which exercises influence and
imposes constraints on the more physical entities in the system, be they software,
human or other forms of agents. For example, in the Smart Taxi System modelled
in Carma the environment determines the rate at which taxis may move through
the city, an abstraction of the presence of other vehicles causing congestion which
may impede the progress of the taxi to a greater to lesser extent at different times
of the day. Thus it should not be considered that the presence of an environment
in the model implies the existence of centralised control in the system.

This view of the environment coincides with the view taken by many within
the situated multi-agent community e.g. [33]. Specifically, in [34] Weyns et al.
argue the importance of having a distinct environment within every multi-agent
system. Whilst they are viewing such systems from the perspective of software
engineers, many of their arguments are as valid when it comes to modelling a
multi-agent or collective adaptive system as they are when it comes to building
one. Thus our work can be viewed as broadly fitting within the same framework,
albeit with a higher level of abstraction. Just as in the construction of a system,
in the construction of a model distinguishing clearly between the responsibilities
of the agents and of the environment provides separation of concerns and assists
in the management of inevitably complex systems. In [34] the authors provide
the following definition:

“The environment is a first-class abstraction that proves the surrounding
conditions for agents to exist and that mediates both the interaction
among agents and the access to resources.”

This is the role that the environment plays within Carma models through
the evolution rules. However, in contrast to the framework of Weyns et al. the
environment in a Carma model is not an active entity in the same sense as the
agents are active entities; in our case the environment is constrained to work
through the agents, by influencing their dynamic behaviour or by changes to
the number and types of agents making up the system. Despite this difference
we consider the Carma conceptual model to be in line with the Weyns et al.
framework, the difference primarily arising due to the more abstract approach
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needed for modelling rather than implementing a CAS. Moreover, note that in
Carma the environment is formally specified and integrated into the operational
semantics of the language.

In [31], Saunier et al. advocate the use of an active environment to medi-
ate the interactions between agents, an active environment that is aware of the
current context for each agent. The environment in Carma also supports this
view, as the evolution rules in the environment take into account the state of
all the potentially participating components to determine both the rate and the
probability of communications being successful, thus achieving a multicast not
based on the address of the receiving agents as suggested by Saunier et al. This
is what we term attribute-based communication in Carma. Moreover, when
the application calls for a centralised information portal, the global store in
Carma can represent it. The higher level of abstraction used in Carma means
that many implementation issues are elided but the Carma environment could
be viewed as capturing the EASI (Environment for Active Support of Interac-
tion) environment of Saunier et al. [31], although in Carma the filter is more
closely associated with the actions. However, just as in EASI, filters (predicates)
may specified separately by the sender, the receiver and the environment. How-
ever, our predicates are more strict and “overhearing” type interactions must be
anticipated by the modeller, since the effect is taken to be the conjunction of the
sender, receiver and environment predicates, thus removing the need for policies
to arbitrate between conflicting filters.

The role of the environment is related to the spatially distributed nature of
CAS — we expect that where an agent is will have an effect on what an agent
can do. Thus we do find similar features in modelling languages targeted at other
domains where location is considered to have influence on the possible behaviours
of agents. For example several formalisms developed in the context of biological
processes, especially intracellular processes, capture the spatial arrangement of
elements in the system because this can have a profound effect on the behaviours
that can be observed. In this context, the most important aspect of the spatial
arrangement is often hierarchical and logical, rather than the actual physical
placement of elements, this is sometimes termed multi-level modelling. Moreover
the concept of level may also refer to organisational levels, as well as physical
levels so that the relationship between levels might be characterised as consists
of or contains [8]. Here we are particularly concerned with modelling techniques
that seek to faithfully represent the stochastic dynamic behaviour of systems,
allowing properties such as performance, availability and dependability to be
assessed.

One example of such a language is the ML-RULES formalism developed by
Maus et al. [13]. Here the focus is on hierarchical nesting of biological entities
and the underlying semantics is given in terms of a population CTMC, intended
for analysis by simulation. Entities can be created “on demand” but this must
be programmed within the underlying simulation engine by the modeller, and
is not supported at the level of the modelling language itself. Rules are used to
define the possible reactions in the system and the state updates which result
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from them; rules are applied by pattern-matching. As in Carma agents are
equipped with attributes and these may be used to filter the rules which may be
applied, although there is no explicit naming of attributes making it difficult for
other agents to access current values. Moreover it is the modeller’s responsibility
to ensure that attributes are used consistently across different rules. Explicit
function calls are made within agents to determine execution parameters such
as Markovian rates or probabilities, thus assuming agents have direct access to
a global knowledge. In contrast, in Carma it is assumed that access to global
knowledge is restricted to the environment. Allowing agents to directly access
global knowledge makes it more difficult to consider the same set of agents in a
different context, because there is less clear separation between the agents and
their environment. The multi-level aspect of ML-RULES is used to capture a
form of vertical causation, where the application of a rule at one level triggers
an update within another level of the model.

The upward and downward causation are also key features of the ML-DEVS
formalism, presented in [4], although in a slightly more restricted form since here
agents can only trigger changes in the levels immediately above or below them,
whereas in ML-Rules an impact can be across arbitrary levels in the hierarchy.
ML-DEVS is a modular, hierarchical formalism which is intended to represent a
reactive system which interacts asynchronously with its “environment”. However
the formalism does not support the notion of a distinguished environment, as in
Carma, but rather considers the environment of an agent to be the agents are
the same level, with which it may form horizontal couplings, and those in the
adjacent levels, with which it may form vertical couplings.

BioSpace [1] is a novel process calculus designed for modelling the physical
arrangement of biological molecules in applications such as the formation of
polymers and the interactions between microbes and biomaterials [2]. Individual
agents in the calculus represent the biological entities, but operate in a type
environment against which the legitimacy of their actions can be checked: each
action and the entities it involves have types and type consistency is checked
before the model evolves. BioSpaceL extends BioSpace by allowing the explicit
placement of entities, and giving the modeller the power to program location
updates. This reflects the key role that location plays in the considered biological
applications, but the physical environment is represented rather implicitly.

In the formalism presented in [8], the formalism supports a multi-level app-
roach which is based on organisational rather than spatial structures. Each level
consists of a number of agents whose behaviour may depend on agents at a
lower level. In this system of systems, agents are represented by automata and
automata are organised in tree-structures representing how agents are one level
are constituted from their child automata. For example, in a biological setting,
the top level might be tissue which may alternate between healthy and diseased
states; this may be made up by cells and the state of the cells within the tis-
sue will influence its health or otherwise; the behaviour and state of cells will
depend on the biochemical networks within them, themselves made up of pro-
teins in various states of abundance. Again there are notions of horizontal and
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vertical couplings, and agents which are above provide the environment to those
that are below, in a hierarchical manner.

Similarly the ambient calculus [10], and its biological dialect, bio-ambients
[30], capture the behaviour of elements within a system, with respect to a hier-
archical arrangement of physical or logical space. As elements move into or out
of domains, their behaviour may change because they change their context of
operation and communication is limited to be local.

In contrast to these multi-level models, in Carma we restrict to two levels.
The behaviour of the entities within the system are captured by the collective,
and this is placed in the context of an environment, which is distinct from any
entity and which has the power to constrain the behaviour of the entities through
the evolution rule. This reflects our treatment of location in terms of physical
space, rather than the hierarchical arrangement of space commonly used in bio-
logical modelling where the emphasis is on the containment relationship. It is
noteworthy that BioSpaceL, which has similar focus of the physical rather than
logical representation on space, also takes a two level approach with the entities
and the environment. Within the collective there is no hierarchy, although a
single component may have behaviour comprised of multiple process automata.
This is intended to represent different aspects of the behaviour of a single entity,
such as the taxi having two processes F and G capturing the orthogonal aspects
of its behaviour, relating to passengers and movement in search of a passenger
respectively.

A two level approach is also found in quantitative formalisms such as PEPA
nets [19], Spatial PEPA [18] and STOKLAIM [14]. These languages were moti-
vated by mobile computing and therefore share the aim from modelling CAS
to capture systems with behaviour distributed over physical space, in which the
current location or position of an entity, and in particular the entities that are
co-located, may alter the actions that can be undertaken. In PEPA nets and
Spatial PEPA a graphical representation of the physical locations is used either
as a Petri net, or as a hyper-graph, and the physical structure is taken to be
static. In STOKLAIM, in contrast, the processes within the system may explic-
itly control the physical structure of the global network. Despite some success in
modelling the mobile computing scenarios of the time, these languages are not
equipped to represent large populations of entities with similar behaviour, thus
they are not well-suited to capture the collective nature of CAS. This large scale
nature of CAS systems makes it essential to support scalable analysis techniques,
thus Carma has been designed anticipating both a discrete and a continuous
semantics in the style of [32].

6 Conclusions

As we begin to see the deployment of collective adaptive systems in modern
infrastructures, it is essential that we have tools and techniques to analyse the
behaviour of systems comprised of multiple populations of agents both in terms
of their functional and non-functional requirements. In this paper we have intro-
duced Carma, a novel modelling language which aims to represent collectives
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of agents working in a specified environment and support the analysis of quanti-
tative aspects of their behaviour such as performance, availability and depend-
ability. Carma is a stochastic process algebra-based language combining several
innovative features such as a separation of behaviour and knowledge, locally
synchronous and globally asynchronous communication, attribute-defined inter-
action and a distinct environment which can be changed independently of the
agents. We have demonstrated the use of Carma on a smart taxi system exam-
ple, showing the ease with which the same system can be studied under different
contexts or environments.

The quantified nature of Carma, based on Markovian agents whose actions
have probability and duration governed by an exponentially distributed random
variable, means that Carma models are amenable to analysis by a variety of
techniques. In this paper, based on the semantics presented in [25], we have
studied the behaviour of the smart taxi system via stochastic simulation. Future
work involves extending the tool support for Carma and further developing the
semantics to also encompass scalable analysis via mean field approximation in
the style of [32]. Future work will also include more investigation of the use of
the environment to study the adaptivity of systems.
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Abstract. In spite of the growing influence of agent-based models and
technologies, the event-based architectural style is still prevalent in the
design of large-scale distributed applications. In this paper we discuss
the role of environment in both EBS and MAS, and show how it could
be used as a starting point for reconciling agent-based and event-based
abstractions and techniques within a conceptually-coherent framework
that could work as the foundation of a principled discipline for the engi-
neering of complex software systems.
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Situatedness · Coordination models · TuCSoN

1 Introduction

In the last years, the event-based architectural style has become prevalent for
large-scale distributed applications [16], in order to address some of the most
common sources of accidental complexity—such as distributed interaction and
large-scale concurrency [7]. Meanwhile, multi-agent systems (MAS) are expected
to provide the most viable abstractions to deal with the modelling and engineer-
ing of complex software systems [19,20]. Thus, MAS and event-based systems
(EBS) stand nowadays as the two most likely candidate paradigms for modelling
and engineering complex systems.

On the one side, events in EBS are the abstractions causing system dynam-
ics; on the other side, environment change [45] is what requires MAS to work
as situated systems [44]. Altogether, this suggests that a seamless integration
between EBS and MAS – which could preserve conceptual integrity of systems –
could be achieved by properly relating the notions of event and change, while
suitably re-interpreting event- and agent-based abstractions.

From a MAS perspective, this is also witnessed by the many diverse occur-
rences of the notion of event at different levels of MAS models and technologies.
For instance, most of agent architectures adopt some effective notion of event,
providing for agent reactiveness—e.g., BDI architectures [37], as implemented,
e.g., by AgentSpeak and Jason [6]. Also, most of agent middleware provide some
c© Springer International Publishing Switzerland 2015
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event-based abstractions and mechanisms dealing with asynchronous message
passing and environment change—as in the case of Jade [4] and TuCSoN [33].
On the other hand, the literature on EBS clearly exhibits a lack of suitably-
expressive abstractions making it possible to harness the complexity of event-
based systems.

Environment plays a key-role in both EBS and MAS as a source of unpre-
dictable events and activity, respectively. Therefore, starting from the essential
of both paradigms, in this paper we point out the role of the environment in
a unifying conceptual framework for MAS and EBS, which could work as the
foundation of a coherent discipline for the modelling and engineering of complex
software systems.

Accordingly, the remainder of the paper is organised as follows. In Sects. 2
and 3 we recapitulate the role of environment in MAS and EBS, respectively.
After Sect. 4 bridges between MAS and EBS, focussing on the environment-
related issues, Sect. 5 discusses a case study where the TuCSoN coordination
model and architecture [33] is used to illustrate the role of environment abstrac-
tions in blending MAS and EBS.

2 The Role of the Environment in MAS

2.1 Environment as a First-Class Abstraction

A common way to look at MAS is to interpret them according to the main
first-class abstractions: agents, societies, and environment [44].

Agents are computational entities whose defining feature is autonomy [32].
Agents model activities for the MAS, expressed through their actions along with
their motivations—namely, the goals and intentions that determine and explain
the agent’s course of actions. Societies represent the ensembles where the col-
lective behaviours of the MAS are coordinated towards the achievement of the
overall system goals. Coordination models and languages are then the most suit-
able tools to tackle complexity in MAS [12], as they are explicitly meant to
supply the abstractions that “glue” agents together [11,17] by governing agent
interaction [42].

Besides agents and societies, environment is an essential abstraction for MAS
modelling and engineering [44], to be suitably represented, and related to agents.
On the one side, the notion of environment captures the unpredictability of the
MAS context, by modelling the external resources and features that are relevant
for the MAS, along with their evolution over time. On the other side, it makes
it possible to model the resources, tools, services that agents and MAS need
to carry on their own activities. Along with the notion of situated action –
as the realisation that coordinated, social, intelligent action arises from strict
interaction with the environment, rather than from rational practical reasoning
[40] – this leads to the requirement of situatedness for agents and MAS, often
translated into the need of being sensitive to environment change [15].

Along this way, one could state that (i) things happen in a MAS because of
either agent activity or environment change, and (ii) complexity arises from both
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social and situated interaction. Also, this suggests that environment-mediated
coordination (as a form of objective coordination [30]) – in charge of managing
dependencies [22], by using, e.g., coordination artefacts [31] – could be used to
deal in a uniform way with both social and situated interaction [24].

2.2 Environment as an Architectural Component

Situated agency originates from reactive robotics, emerged in the mid-1980s as
an approach to build autonomous robots capable of acting efficiently in dynamic
environments. The initial reactive agent systems focussed on the importance of
environmental dynamics. There, environment is considered as external to the
system, that is, not as an explicit part of the models or of the architectures [44].

Since early 1990s, researchers have been investigating systems in which mul-
tiple agents work together to realise the system functionality. In these systems,
the agents exploit the environment to share information and coordinate their
behaviour [44]. In its basic form, agents are driven by what they perceive in the
environment. Here, the environment may also be an active entity that maintains
processes independent of the activity of the agents [34]. A classic example is
stigmergic coordination [18], inspired by social insects, and brought to agents in
several forms—as in the case of digital pheromones [5,8,35], used by software
agents to coordinate their behaviour.

Since the mid-1990s, situated multi-agent systems has been the subject of
active research [44]. Situated MAS emphasise the importance of architecture for
agents and the environment, see e.g., [3,15,43]. The environment architecture
in situated MAS includes: functionality for perception management, message
delivering, action handling, and maintenance processes that manage state in the
environment independently of agents. In situated MAS, the environment is an
explicit, active architectural abstraction with specific responsibilities that differ
from agent responsibilities [44].

Stemming from such historical evolution, at least two essential duties can be
devised in modern complex MAS for the environment abstraction [44]:

Maintaining Dynamics — Besides the activity of the agents, the environment
can have processes of its own, independent of agents. A typical example of
dynamics in the environment is the evaporation, aggregation, and diffusion
of digital pheromones.

Enforcing Rules — The environment can define and enforce rules to be
observed in the whole MAS. Rules may impose domain-driven constraints
(e.g., mobility in a network), or reify laws defined by the designer (e.g.,
limitation of access to neighbouring nodes in a network for reasons of per-
formance). Rules may restrict the access of specific resources or services to
particular types of agents, or determine the outcome of agent interactions.
By enforcing rules on an agent’s activity, the environment acts as an arbi-
trator constantly striving to preserve the agent system in a consistent state
according to the goals and requirements of the application domain.
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For instance, such duties are accounted for in the A&A meta-model [32], where
working environment for agents is conceived as a dynamic set of artefacts, organ-
ised in terms of workspaces [38]. The notion of artefact is the core abstraction
of A&A: artefacts can be used to (computationally) represent any kind of envi-
ronmental resource within a MAS, in particular situated ones [24], in a uni-
form way—from sensors to actuators, from databases to legacy OO applications,
from real-world objects to virtual blackboards. Thus, artefacts are the tools for
MAS designers to properly model and implement the portion of the environment
agents can control/should deal with, working then as the basic building blocks
to compose complex working environments [32,38].

As a side note, the abstraction that encapsulate environment change in
CArtAgO – an implementation of the A&A meta-model for environment pro-
gramming in situated MAS [39] – is precisely that of event : seemingly, this fur-
ther strengthens the intuition that environment abstractions could play a central
role in EBS-MAS integration.

3 The Role of the Environment in EBS

According to [16], an EBS is “a system in which the integrated components
communicate by generating and receiving event notifications”, where an event
is an occurrence of a happening relevant for the system – e.g., a state change in
the computational environment –, and a notification is the reification of an event
within the system, providing for the event description and data. Components in
EBS basically act as either producers or consumers of notifications: producers
publish notifications, and provide an output interface for subscription; consumers
subscribe to notifications as specified by producers. According to the event-based
architectural style, producers and consumers do not interact directly, since their
interaction is mediated by the event bus, which abstracts away all the complexity
of the event notification service.

Articulated application scenarios like Business Activity Monitoring, Sensor
Networks, and Market data [14] raise event management issues that lead to
the so-called Complex Event Processing (CEP) [21]. Issues such as event aggre-
gation and transformation have to be addressed by making individual event
notifications meaningful at the level of interpretation required for making con-
sumer activities effective. Relationships (such as causality, timing, or member-
ship) between events should be detected, and event hierarchies could be required
to provide for different level of abstractions.

Essentially, EBS implicitly exploit environment-mediated coordination like-
wise situated MAS, where coordination is event-based [25]. Process activities
are mostly driven by event notifications generated by producers; transformed,
aggregated, filtered, distributed by the event bus; and finally interpreted and
used by consumers. Producer/consumer coordination is then mediated by the
event bus, the environmental resource working as the system coordinator, which
encapsulates and possibly automates most of the coordination activities in an
EBS. According to the interpretation above, environment in EBS is not much
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more than an infrastructural service, provided by the event-based middleware to
application components for communication purpose, and shielding the applica-
tion layer from low-level details about event generation, consumption and rout-
ing. As such, environment is simply part of the deployment context in which the
event-driven application runs, rather than an architectural component that EBS
designers can exploit to design the application environment at the most suitable
level of abstraction.

3.1 MAS Perspective on EBS Environment

By adopting a MAS perspective, we can recognise that environment in EBS is
basically assigned the same duties as environment in MAS:

– producers activities are the source of dynamics, generating events according
to an event publication API in response to their course of actions

– consumers subscriptions are the rules governing communication and coordina-
tion among components, enforced by the event bus through event notification
services.

Also, we can interpret the event bus as the environmental artefact – according to
A&A – in charge of such duties: on the one hand, it supports EBS dynamics by
capturing events from producers, bringing them to consumers, and by carrying
out its own event aggregation, transformation, correlation processes; on the other
hand, it mediates – enables and constraints – producer-consumer interactions
according to the subscription rules.

Accordingly, our statement (Sect. 3) about implicit environment-mediated
coordination in EBS can be rephrased as follows: agents (components) activities
are mostly driven by events generated either by other agents or by the environ-
ment; transformed, aggregated, filtered, distributed by the event bus artefact;
and finally interpreted and used by agents and the environment itself—e.g. by
other artefacts. Agent-agent as well as agent-environment coordination (social
and situated interaction) is then mediated by the event bus, working as the sys-
tem coordination artefact, which encapsulates and possibly automates most of
the coordination activities in an EBS.

In the following section, we further elaborate on such an interpretation to
provide a unifying conceptual framework for Event-Based Multi-Agent Systems
(EBMAS).

4 The Role of the Environment in EBMAS

According to [24], three core concepts motivate MAS abstractions:

– activities are the goal-directed/oriented proceedings resulting into actions
making things happen within a MAS—motivating agents; through actions,
activities in a MAS are social [10] and situated [40];
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– environment change represents the (possibly unpredictable) variations in the
properties or structure of the world surrounding a MAS that affect it in any way;

– dependencies arise since activities depend on other activities (social depen-
dencies), and on environment change (situated dependencies); they motivate
and cause interaction – both social and situated interaction – thus societies.

Then, [24] advocates the role of events as the means through which dependency
resolution (that is, coordination) may uniformly happen in MAS: despite their
intrinsic diversity, in fact, actions and environment change constitute altogether
the only sources of dynamics in a MAS. Thus, in order to provide a uniform
modelling of social and situated dependencies, both actions and environment
changes can be represented as events.

Building on the connection between the notions of change (in MAS) and event
(in EBS), in the following we devise out a mapping between EBS and MAS
abstractions—that is, both an interpretation of EBS as MAS and vice versa.

4.1 Event Sources

First of all, (i) being activities and change the only source of dynamics in MAS,
(ii) being both dynamics represented as events, and (iii) being activities and
change the outcome of agent and environment processes, we can state that:

– interpreting MAS as EBS, agents as well as the environment are the prosumers
of events (simultaneously producers and consumers): the former, account for
internal events, that is, the designed events happening according to some
application criterion; the latter, account for external events, that is, those
(unpredictable) happenings capturing the uncontrollable dynamics of MAS
environment (resources)

Dually, since (i) producers are EBS components generating events and (ii) con-
sumers are EBS components subscribing to event notifications, we can say that:

– interpreting EBS as MAS, components may be agents or (environmental)
artefacts depending on (i) which kind of event they deal with: if they are
producers/consumers of events originated from application-driven activities
(internal events), they are likely to be agents; if they are producers/consumers
of events originated from environment change (external events), they are likely
to be artefacts

Summing up, the following mapping EBS-MAS can be devised:

EBS ⇐⇒ MAS

Producer component ⇐⇒ Agent/artefact

Consumer component ⇐⇒ Agent/artefact

Internal event (notification) ⇐⇒ Agent activity

External event (notification) ⇐⇒ Environment change
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This involves a higher-level of expressiveness in EBS: since agents encapsulate
control along with the criteria for its management – expressed in terms of high-
level, mentalistic abstractions –, articulated events histories can be modelled
along with their motivations. In addition, since MAS environment is modelled
as a first-class event-based abstraction, all causes of change and disruption
in a MAS are modelled in a uniform way as event prosumers (producers and
consumers)—thus improving conceptual integrity.

4.2 Boundary Artefacts

Once EBS and MAS share a common understanding about what generates sys-
tem dynamics, we can focus on how such dynamics should be supported and coor-
dinated. Being agents activity and environment change heterogeneous sources of
dynamics, first of all there is need for a uniform event model, then for archi-
tectural abstractions suitably supporting event handling by mediating between
event producers and the whole system.

In [24], boundary artefacts are introduced in MAS as the architectural com-
ponents working as an interface between the agent (or, the environmental
resource) and the MAS interaction space, mapping agent activities and envi-
ronment changes into events. This is, for instance, how Agent Communication
Contexts [13] and Agent Coordination Contexts (ACC) [26] work for agents,
how the environment class works for environment resources in Jason, and how
transducers work for ReSpecT probes [23]. In the field of event middleware, event
mediators (or, correlators) play the role of boundary artefacts in the Cambridge
Event Architecture [2], as implemented for instance by the Hermes distributed
event-based middleware architecture [36], or by the OASIS open architecture for
open, secure, widely distributed services [1].

Thus, boundary artefacts could be conceived as:

– interpreting EBS as MAS, all those coordination-related services mediat-
ing between agents activities and environment change, and the rest of the
system—such as coordination operation mapping into coordination events,
dependency resolution, etc.

– interpreting MAS as EBS, all those event-related services dealing with the
event data model – such as event building, translation between different event
models, mapping consumed events into consumer actions and producer actions
into generated events, etc. – and with event notification—such as handling
subscriptions, event routing, etc.

Accordingly, the following mapping EBS-MAS can be devised:

EBS ⇐⇒ MAS

Event mediators ⇐⇒ ACC/transducers (Artefacts)

Subscription/publication API ⇐⇒ ACC/transducers API

It should be noted that, under such a MAS-oriented interpretation of EBS, the
event notification service becomes a sort of environmental resource (an artefact),
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able to generate and consume events as any other prosumer—according to the
mapping in Subsect. 4.1. Thus, event-related services become first-class abstrac-
tions in EBS engineering, not merely low-level, infrastructural details; also, EBS
engineers may benefit from the A&A literature regarding environment engineer-
ing for, e.g., equipping the event bus with malleability, inspectability, and all
the other relevant features of A&A artefacts. In fact, once that the event bus is
recognised as an artefact, the publication/subscription interaction pattern may
be re-interpreted as a much more general event-based coordination model, as
detailed in next section.

4.3 Event-Based Situated Coordination

The last step in our quest toward EBMAS aims at completing previous section
on system dynamics coordination—in particular, showing how event-based,
environment-mediated (that is, situated) coordination can be adopted as a uni-
form conceptual framework.

First of all, if agents and environment (MAS) work as event prosumers (EBS),
coordination abstractions can effectively deal with their interactions of any sort –
agent-agent, agent-environment, environment-environment interaction – taking
care of their mutual dependencies, by coordinating the many resulting flows of
events [22]. Coordination models, in fact, work by constraining the space of inter-
action [42]. In particular, the coordination primitives provided by a coordination
model constrain the possible agent actions, whereas the coordination media con-
strain the possible targets of agent actions. Similarly, event notification services
(e.g., the event bus) rule the way in which events are produced, consumed, and
routed between EBS components, actually constraining the space of interaction
too by disciplining event publication and subscription. Accordingly, the publica-
tion and subscription API can be interpreted as playing the role of coordination
primitives, whereas the event-bus may be regarded as EBS coordination media.

This means that coordination media (artefacts) could work as the core of
an event-based architecture for environment-mediated (situated) coordination,
and that EBS could be grounded in principle upon a suitably-expressive coor-
dination middleware, designing the event bus around the coordination services
[41]. Then, environmental artefacts provide a specific computational model for
dealing with event observation, manipulation, and coordination—which should
make life easier for programmers and engineers. In the context of EBS, the spe-
cific coordination artefact represented by the coordination medium provides a
suitable way to automatise event handling, and to encapsulate the logic for the
coordination of multiple related flows of events—e.g., counterfeiting the negative
effects of inversion of control on the large scale for EBS.
Summing up, the following EBS-MAS mapping can be devised:

EBS ⇐⇒ MAS

Publish/subscribe API ⇐⇒ Coordination primitives

Event bus ⇐⇒ Coordination media (artefacts)
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It should be noticed that the last step of our MAS-oriented acceptation of EBS
coherently completes the interpretation of the event notification service as an
environmental resource and a coordination artefact. In fact, the event bus and
the publish/subscribe services altogether constitute the artefacts through which
EBS engineers can model and program the environment where EBS components
live. In this way, components interaction is mediated by the environment, thus
coordination, too, happens through proper event handling carried out by the
environment—as in situated MAS. Being events generated by agents activities
or environment change, the event notification services actually carries out (event-
based) coordination among system components.

5 Case Study: Event-Based Situated Coordination
in TuCSoN

The TuCSoN coordination model and infrastructure [33] can be used to illus-
trate in short the role of environment abstractions in EBMAS, in particular by
pointing out the notions of boundary and coordination artefacts.

In detail, the basic TuCSoN architecture can be represented as in Fig. 1, and
explained in terms of the following EBMAS components:

ACC — Agent coordination contexts [26] represent TuCSoN boundary artefacts
devoted to agents. ACC both enable and constraint agents interactions, map-
ping every agent operation into events asynchronously dispatched to tuple
centres. ACC thus decouple agents from MAS in control, reference, space,
and time.

Fig. 1. TuCSoN event-based situated architecture
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Probes — TuCSoN environmental resources. They are handled as sources of
perceptions (sensors) or makers of actions (actuators) in a uniform way.
Probes do not directly interact with the MAS, but through mediation of
their transducer.

Transducers — The boundary artefacts devoted to probes [9]. Each probe
is assigned to a transducer, specialised to handle events from that sort of
probe, and to act on probes through situation operations. Transducers thus
decouple probes from tuple centres in terms of control, reference, space and
time.

Events — TuCSoN adopts and generalises the ReSpecT event model [28]—
depicted in Tables 1 and 2. ReSpecT is the logic-based language used to
program the behaviour of TuCSoN tuple centres [28]. ACC and transducers
translate external events (activities and change) into internal events that
tuple centres can handle to implement the policies required for MAS coor-
dination. Thus, internal events essentially correspond to event notifications
in standard EBS.

Tuple centres — Tuple centres [28] constitute TuCSoN architectural compo-
nent implementing coordination artefacts, thus in charge of managing depen-
dencies. As such, they are meant to govern both social and situated inter-
actions [24]. By adopting ReSpecT tuple centres, TuCSoN relies on (i) the
ReSpecT language to program coordination laws, and (ii) the ReSpecT sit-
uated event model to implement events [9].

By looking at a TuCSoN-coordinated MAS with a EBS perspective,

– ACC and transducers are the boundary artefacts representing components and
environment, respectively, in the MAS, by translating activities and changes
in a common event (notification) model;

– tuple centres are the coordination artefacts dealing with both social and situ-
ated dependencies by making it possible to program the coordination of events
of any sorts in a clean and uniform way.

Under such a perspective, TuCSoN already provides in some way both a model
and a technology to engineer coordinated MAS as EBS. Essentially, this means
that when using TuCSoN for the coordination of a distributed system, either per-
spectives – event-based and agent-based – can be adopted by engineers according
to their specific design needs, and blended together in a coherent way around
the coordination abstractions provided by the TuCSoN model and middleware.1

Table 1. ReSpecT situated event model.

〈Event〉 ::= 〈StartCause〉 , 〈Cause〉 , 〈Evaluation〉
〈StartCause〉 , 〈Cause〉 ::= 〈Activity〉 | 〈Change〉 , 〈Source〉 , 〈Target〉 , 〈Time〉 , 〈Space:Place〉

〈Source〉 , 〈Target〉 ::= 〈AgentId〉 | 〈CoordArtefactId〉 | 〈EnvResId〉 | ⊥
〈Evaluation〉 ::=⊥ | {〈Result〉}

1 http://tucson.unibo.it.

http://tucson.unibo.it
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Table 2. ReSpecT triggering events.

〈Activity〉 ::= 〈Operation〉 | 〈Situation〉
〈Operation〉 ::= out( 〈Tuple〉 ) | (in | rd | no | inp | rdp | nop) ( 〈Template〉 [, 〈Term〉] )
〈Situation〉 ::= getEnv( 〈Key〉 , 〈Value〉 ) | setEnv( 〈Key〉 , 〈Value〉 )

〈Change〉 ::= env( 〈Key〉 , 〈Value〉 ) | time( 〈Time〉 ) |
from( 〈Space〉 , 〈Place〉 ) | to( 〈Space〉 , 〈Place〉 )

6 Conclusion

Many large-scale distributed systems are nowadays designed and developed
around event-based methods and technologies. At the same time, agent-based
abstractions (and, in spite of their limited maturity, agent technologies, too) are
more and more adopted to face the intricacies of complex systems engineering, in
particular when requirements such pervasiveness, intelligence, mobility, and the
like, have to be addressed. Altogether, this suggests that a conceptual framework
blending together abstractions and technologies from both EBS and MAS could
represent a fundamental goal for the research on complex system engineering.

Our research on the subject started by devising the first formulation of the
conceptual framework for EBMAS in [27], then developed by elaborating on the
key role of coordination models and technologies [29]. In this position paper we
focus instead on the environment, and suggest that a fundamental role in such a
conceptual framework could be played by environment-mediated coordination,
with the focus on coordination artefacts working as both event-based and agent-
based abstractions.
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Abstract. Since more than a decade, the environment is seen as a key
element when analyzing, developing or deploying Multi-Agent Systems
(MAS) applications. Especially, for the development of multi-agent plat-
forms it has become a key concept, similarly to many application in
the area of location-based, distributed systems. An emerging, prominent
application area for MAS is related to Virtual Environments. The under-
lying technology has evolved in a way, that these applications have grown
out of science fiction novels till research papers and even real applica-
tions. Even more, current technologies enable MAS to be key components
of such virtual environments.

In this paper, we widen the concept of the environment of a MAS to
encompass new and mixed physical, virtual, simulated, etc. forms of envi-
ronments. We analyze currently most interesting application domains
based on three dimensions: the way different “realities” are mixed via
the environment, the underlying natures of agents, the possible forms
and sophistication of interactions. In addition to this characterization, we
discuss how this widened concept of possible environments influences the
support it can give for developing applications in the respective domains.

1 Introduction

The last decade has seen the increase of the different kinds of environment that
Multiagent Systems (MAS) have been applied to/in, due to the increase in num-
bers and complexity of the application domains as well as their diversification.
One category of these environments with a huge development is related to Vir-
tual Environments (VE), proposing more and more sophisticated and credible
c© Springer International Publishing Switzerland 2015
D. Weyns and F. Michel (Eds.): E4MAS 2014 – 10 years later, LNAI 9068, pp. 133–146, 2015.
DOI: 10.1007/978-3-319-23850-0 9
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simulations of some “reality” for one or more user to be immersed into. Agent
technologies have been also proposed for supporting interaction for humans in
such environments [13]. VEs are not restricted to traditional virtual reality appli-
cation domains such as art, entertainment or education, but there is a variety
of other sophisticated opportunities for mixing physical, virtual, simulated, etc.
With the tremendous development of related technologies, intelligent agents may
interact with other agents or with humans in environments in a way far beyond
the MAS-environments discussed in the E4MAS community before.

In fact, it is easy to see that current developments are very close to what
was only science fiction few years ago. So, nowadays, we are as close as possi-
ble to be able to reach what Gelernter defined as “Mirror Worlds” [9]. These
are software models of some chunk of reality that can mimic every change in
real-time and host a massive number of users each with a different view of the
mirror world. In 1991, this definition was as close to science fiction as was the
definition of “Metaverse” by Neal Stephenson in 1992 [18], as a computer gener-
ated virtual space where people, represented by their avatars may interact in a
distributed fashion. Or as was the definition of “Cyberspace” by William Gibson
in 1984 [10](though he had introduced the term in 1982 ) “A consensual hallu-
cination experienced daily by billions of legitimate operators, in every nation,
by children being taught mathematical concepts... A graphic representation of
data abstracted from banks of every computer in the human system. Unthink-
able complexity. Lines of light ranged in the nonspace of the mind, clusters and
constellations of data. Like city lights, receding into the distance”.

Mirror World, Metaverse, Cyberspace are not unrelated. Their analysis shows
three main common dimensions related to (i) the way they are syncing between
physical and virtual worlds, (ii) the agents (artificial or human) populating the
worlds and cooperating/competing with each other to fulfill their goals, and (iii)
the social relations and interactions taking place among the huge number of
agents playing different roles in those interactions.

Ten years ago, Weyns et al. formulated in [22] three categories of research
challenges as a consequence of following the idea of thinking the environment
of a Multiagent System as a first-class citizen: the first category relates to a
proper formalization of “environment” making fully clear what is an agent and
which element of an overall system is part of the environment. Based on this for-
mal understanding, [22] expected the development of a classification of different
kinds of environments also in relation to a corresponding taxonomy of applica-
tion domains. The second category of challenges drives this further and deals
with challenges in exploring the relation between agents and their environment.
This can be done with respect to three dimensions: the (software) architectures
of agents in relation to the environment, the protocols and laws that govern inter-
action between agents and their environment as well as between agents mediated
by their shared environment and last but not least the constraints that the envi-
ronmental topology imposes on the agents. The third category of challenges
deals with advancing the findings of research addressing the first two categories
of challenges into engineering environments – both design and implementation



From Physical to Virtual: Widening the Perspective 135

of environments. Over the years, many works have addressed those challenges,
from a specialized formalization of the environment as active support of inter-
action [17] to agent platforms that combine support for complex environmental
structures, complex agent reasoning and organization concepts [4] among other
frameworks, platforms, and advanced applications as for example in the agree-
ment technologies area [2]. In this collection, one can find many more examples
about how research and application related to environments for MAS has been
advanced during the last decade.

Ten years ago, despite of its initially wide approach from multiple perspec-
tives, the focus was on a very restricted type of environments, mostly on the
required components and infrastructures for MAS. Such environments were iden-
tified mostly as the “real” world or a set of non-agent applications. In this
contribution, we widen the perspective on the environment for systematically con-
sidering also mixed forms. We identify, analyze, and characterize the interest-
ing application domains for MAS paying special attention to the different kind
of environments they are situated in and related to. Consequently, we take into
account the three different (usual) dimensions allowing to characterize these kind
of domains: the environment, the agent and the interaction perspective. The envi-
ronment cannot be seen as either physical or software-based, but also mixtures of
“worlds” must be considered. As a consequence, the characterization of agents
must be more fundamental based on its nature (artificial or human). Interaction
as the third dimension, may happen on different levels of complexity – richness
and intensity – ranging from interaction from simply being situated in the same
environment to addressing the question how the mixed environment impacts on
agent behavior that is based/resulting in sophisticated sociability. In this contri-
bution, we will not formally define those dimensions, but by discussing different
application domains in terms of those three dimensions and analyzing how the
environment can support them, we address the first category of challenges adapt-
ing the treatment of the environment to modern (and future) developments.

The rest of the paper is structured as follows: in next section, the three
different dimensions that we have introduced to classify the application domains,
are detailed, Sect. 3 presents the different domains commented in the paper,
positioning them in the three commented dimensions. After that, the following
section, deals with the different levels of support that the environment, as a
first class entity, gives to the different parts of the space given by the three
presented dimensions. Lastly, some conclusions and some glimpse at the future
are commented.

2 Analysis Dimensions

To drive these considerations beyond visionary literature, we analyze exist-
ing proposals taking a multi-agent system perspective. We then consider three
dimensions that are worth to compare and position each virtual environment
domain with respect to the other: types of environment, types of agents inter-
acting in these environments and types of interaction, taking place in the sys-
tem. One can easily imagine that the possible types in each dimension are more
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than the ones presented in these not-so-far-away futuristic scenarios. Hereby the
interaction among the entities is actually the decisive factor in what concerns
the intensity, mode and richness of the resulting worlds: how the environment
mediates the interaction, who may interact with whom along which relation or
role. In the following, we characterize the types in each of these three dimensions.
We then analyze existing approaches and domains along them in Sect. 3.

2.1 Environment Dimension

The dimension related to the environment is directly accessed by systems . It dis-
tinguishes physical from virtual environments. The physical environment refers
to the environment which is part of our actual reality, in which we, as humans,
interact. There is no clear definition of virtual environment in the literature. As
we can see in the existing approaches, “virtual environment” may refer to “a
high-end user-computer interface that involves real-time simulation and interac-
tion through multiple sensorial channels” [5].

In this paper, virtual environment subsumes two definitions according to
the reference that the virtual environment may have to another environment.
While the simulated environment has a reference environment, the synthetic
environment may not refer to any other environment [12].

– The simulated environment makes only sense as a mapping from a physical
environment that it sufficiently precisely represents. Interaction in such envi-
ronment between simulated agents refers to the way agents of the physical
environment interact with the reference environment [11].

– On the contrary, the usefulness of a synthetic environment is not determined
by how well it matches another reference environment. It is judged by how
much fun it is to interact with such an environment or how well it supports
interaction between humans, agents and other entities.

Thus, virtual environments not necessarily refer to a physical environment exam-
ple, but focus on user interaction, immersion and imagination (the so called
Virtual Reality Triangle or i3).

Considering social networks, the need for characterizing “social” environ-
ments emerges. They form an abstraction from environments with explicit
spatial dimensions by focussing on relations between agents. Space and spatial
distance - real or virtual - plays no role. We do not explicitly handle this type
of environment, but subsume it under synthetic environments as it may not just
reproduce relationships between humans, but enable the establishment of new
ones. Additionally it needs a matter for manifestation such as an environment
created by facebook or similar.

From the analysis conducted in this section, as we can see in Table 1, the
range of types for the environment dimension could be: physical, synthetic or
simulated. Let’s note that virtual subsumes both synthetic and simulated types.
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2.2 Agent Dimension

The second dimension to characterize the considered approaches is the nature
of the agents interacting in the system. Traditionally, one may find descriptive
values along “passive - active”, “reactive, deliberative, cognitive”, etc. According
to the existing approaches, the types that we will use in this dimension fits to
the range of the environment dimension. Hereby, we characterize only agents
and let aside objects, resources that are part of the environment. Thus, possible
types for an agent along this second dimension are: human, robot or digital.
As humans, robots possess a (physical) body that allows physical interaction,
i.e. interaction in the physical environment. Robots exist and interact primarily
physically. There is a tendency for equipping them with displays for interaction
with humans - e.g. the Giraff robot, which is basically “skype on wheel” (http://
www.giraff.org). As in the environment dimension, digital subsumes simulated
agent and synthetic agent.

Both types of agents point to an entity that exists in the digital world. Both
may refer or not to an entity in the physical world (human or robot). Simulated
agents can be Virtual Characters which are often humanoid. Believability of their
behavior is an important measure for their quality. Synthetic agents are created
for a particular aim - for example a fully digital playing partner for children such
as a Tamagotchi. In an extreme form, a synthetic agent may not be explicitly
embodied, but may e.g. deliberately display information at a particular location
in the virtual world. The overall system may contain different forms of agents
at the same time.

Thus, we may identify the range of types for the agent dimension: human,
robot or digital. Let’s note that here also digital subsumes both synthetic and
simulated types.

2.3 Interaction Dimension

As for agents, characterizing “interaction” is also not done for the first time.
See for instance a quite comprehensive example in [8] of kinds of interaction
in terms of relations, protocols or organizations that are proposed in the MAS
domain. Knowing that background, we are aware of the simplification when we
just consider how intensive and on what level of abstraction agents interact
with each other and with their shared environment. We identify in the existing
approaches a type that we denote as indirect (or stigmergy) in which each agent
just interacts with its environment. For reasons of limited space, we use this term
“indirect” to refer to any kind of interaction based on the use of the environment.
The next value is what we call direct or message passing interaction that concern
the exchange of messages between agents. In principle, we call social the other
extreme type in this dimension: one agent knows and intensively interacts with a
large set of other agents, if not all others, being aware (and maybe participating)
to the social dimension (e.g. organisation) sustaining the agents participating to
its environment.

http://www.giraff.org
http://www.giraff.org
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The set of types for the interaction dimension comprises thus: indirect, direct,
social. As can be noticed, this dimension is of a different nature than the two
other dimensions. This dimension doesn’t take value in terms of reality or vir-
tuality. It characterizes the existence or non existence of interaction between
the entities to interact in the shared environment. However, we still can iden-
tify references to the real world in the sense that the kind of interaction that
could be installed among the agents can refer or not to some kind of interac-
tion that may exist among the humans or robots that they are simulating. In
environments in which humans are immersed, at least the humans may not be
able to interact ignoring the social context in which they are embedded. There is
clear relation between complexity of an agent and complexity of the interaction
that this agent may come up. The first two – interaction based on environment
manipulation (indirect) and based on message exchange (direct) – form lower
level characterizations based on the mean of interaction. The category of social
may be technically reduced to those two forms, nevertheless we assume that this
categorization is admissible focusing on the intensity and richness of interaction.

3 Domain Classification

In this section, we structure our analysis of the domains according to the envi-
ronment dimension presented in the previous section. This organisation is just
here to stress the fact that domains follow a smooth path from physical to virtual
types. The following table (cf. Table 1) shows a representation of the three dimen-
sions presented above, locating in the 3D corresponding space several application
domains where multi-agent systems can be/are used. In this section, we use the
coordinate system (a,e,i) to locate each of the corresponding domains. When a
coordinate is equal to ’all’, we mean that all the values of the coordinate can be
considered. After a tabular overview, we shortly justify our characterizations.

3.1 Domains Situated in Physical Environment

Pure Physical Reality domains (e=physical - a=human - i=all) refers to the
“ordinary” real world in which humans are living, that means a domain where
humans intensively interact with each other (i.e. interaction type of sociability
embraces all values of this dimension) and the physical environment.

Robotic domains (e=physical - a=robot - i=all) refers to domains where only
robots populate the relevant sectors of the physical environment. Interactions
may take all three forms. This might be surprising on the first sight, as with
applications consisting of multiple robots often swarm robots are associated.
These swarm multi-robot systems form examples based on intensive, yet simple
stigmergic interaction. An impressing example is the Swarmanoid project [14],
in which a robot swarm’s task is to locate and fetch a particular book from a
high shelf. Each robot can just perform simple tasks, but based on intensive,
carefully designed stigmergic interaction the overall swarm could achieve the
task. One may also find complex, social interactions in robotic domains: for
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Table 1. Domains classifications according to environment, agent and interaction
dimensions. Let’s note that even if the right column appears to be redundant as it
has the same value for all rows, we intentionally kept it here as it is not intuitively
clear that all domains contain all forms of interactions.

Domain Environment Agent Interaction

Pure physical reality Physical Human All

Robotic Physical Robot All

Humans-robots system Physical Human, robot All

Ambient intelligence Physical, synthetic Human, robot All

Data-driven simulations Physical, simulated Human, robot,
digital agent

All

Situated Multi-agent systems Physical, virtual Digital agent, robot All

Augmented reality Physical, virtual Human All

Mirror world Physical, virtual Human, digital
agent, robot

All

Multi-agent based simulations Simulated Digital agent All

Interactive simulations Virtual Human, digital
agent

All

Virtual reality Virtual Human, digital
agent

All

Social networks Synthetic Human All

example in RoboCup applications multiple robots form complex organizations
with corresponding interactions for achieving a shared goal. This can be clearly
characterized as social interaction.

Humans-Robots System are domains (e=physical - a=human, robot - i=all)
where humans may participate in shared activities or otherwise interact with
robots. This raises challenges for overall system design as the autonomous robots
may need to be aware of what humans are doing (for a general overview of human
activity recognition see [1]). Interaction with one human for shared activity works
quite well, interacting with multiple humans is still a challenge.

3.2 Domains Situated in Physical-Virtual Environment

Ambient Intelligence is a domain (e=physical, synthetic - a=human, robot -
i=all) where the environment is real and the agents are human and robots.
An important form of robots for this kind of domain are sensors. No matter
whether they are mobile or stationary, sensors are physical hardware placed in
the physical world. Thus, we subsume them under robotic agents. Sensors may
be embedded into a control loop for regulating environmental features, or may
be organized in sensor networks for producing complex information necessary
to support human activity or well-being. In this domain, the task of the robots
is to support the human by adapting the environment and providing access
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to different functionalities in it, by eventually interacting through a synthetic
environment. Examples are agents in charge of adjusting temperature and light
intensity for individual humans. Depending on the task and the number of agents,
there might be intensive interaction between the agents, but the main focus is
on supporting the human.

Data-Driven Simulations refers to domains (e=physical, simulated -
a=human, robot, digital agent - i=all) that connect simulation to reality based
on sensor data integrated during simulation runtime. Thus, environment is basi-
cally real, but simulations are done for extrapolating the current environmental
state, for example for supporting decision making about the current state. An
example could be found in the OLSIM1 system: the highway network of North-
Rhine Westfalia – a densely populated area in Germany – is connected to a
simulation of relevant highway segment via sensors that count vehicles enter-
ing those highways. Every time a vehicle enters a ramp an agent is generated
in a simulation and vice-versa for agents leaving the segment. A traveler can
access the simulated (predicted) congestion via Internet for making decisions
about routing. As for all kinds of simulations, the reproduced interaction may
eventually range from simple to complex.

Situated Multi-Agent Systems as a domain that is established (e=physical,
virtual - a=digital agent - i=all) and concerns all those multi-agent systems
operating in some physical environment, where a virtual environment is intro-
duced in order to provide some functionality concerning either the agent access
to the physical layer, or agent coordination. A main example is the decentralized
control of AGV case proposed by D. Weyns et al. [21].

Augmented Reality (e=physical, virtual - a=human - i=all) is characterized
by an environment, but populated with human agents and artificial ones [15].
Introduced the term “Mixed Reality” to describe a continuum of environments
from fully physical via augmented reality and augmented virtuality to fully vir-
tual environments. In Augmented Reality the main part of the environment is
real. This mix of virtual and physical environment enables new forms of interac-
tion in the overall system mixing for example haptic experiences or smells with
virtual information displays. This is interesting not only for entertainment (see
for example the INVIZIMALS2 game), but also information services depending
on physical location.

Mirror Worlds (e=physical, virtual - a=human, digital, robot - i=all) – as
defined in [7] – can be conceived as an agent-based extension of augmented and
mixed reality. Both human and artificial agents inhabit an environment which is
both physical and augmented of a digital virtual layer (the mirror), coupled to
the physical one. Mirroring is given by the fact that physical things, which can
be perceived and acted upon by humans in the physical world, have a digital
counterpart (or augmentation, extension) in the mirror, so that they can be
observed and acted upon by agents. Vice versa, an entity (artifact) in the Mirror
World that can be perceived and acted upon by software agents may have a

1 http://www.autobahn.nrw.de/index e.html.
2 http://invizimals.eu.playstation.com/.

http://www.autobahn.nrw.de/index_e.html
http://invizimals.eu.playstation.com/
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physical appearance (or extension) in the physical world – e.g. augmenting it,
in terms of Augmented Reality – so that it can be observed and acted upon by
humans (by means of e.g. smart-glasses). This implies a form of coupling, such
that an action on an object in the physical world causes some kind of changes in
entities in the mirror, perceivable then by software agents. Vice versa an action
by agents on an artifact in the Mirror World can have an effect on things in the
physical world, perceivable by people.

3.3 Domains Situated into Virtual Environment

Multi-Agent Based Simulations is a well established domain (e=simulated -
a=digital agent - i=all) in the research community. It clearly forms an extreme
domain since environment is virtual (i.e. simulated), agents are artificial (i.e.
simulated), interactions are defined following observable or hypothesed interac-
tions in the given reference system possibly embracing all three values of this
dimension.

Interactive Simulations refers to a domain (e=virtual - a=human, digital
agent - i=all) that generalizes from the pure multi-agent simulation approaches
and raises multiple sub-domains: the environment is virtual, one or more agents
may be human, others may be artificial. The environment may refer to the real
world or may be completely synthetic. Interaction between humans and simu-
lated entities may happen on different levels of immersion. A human may per-
form a simulated biological experiment or may be immersed in a flight simulator.
Usually some (more or less realistic) physics are simulated, capturing how the
environment (including other agents) reacts to user actions. In multiagent sim-
ulation, participatory approaches (such as [3]) play a more and more important
role mainly in cases in which reliable empirical data is missing for model devel-
opment. Another motivation for immersing humans into multi-agent simulations
can be found if stakeholders should be supported in learning about possible sys-
tem responses. Hereby, human stakeholders are involved or even immersed in
role-playing game-like simulations, yet those approaches mainly .

Virtual Reality defines a domain (e=virtual - a=human, digital agent - i=all)
that is nearby interactive simulations and multi-agent based simulations: the
environment is virtual, it may include humans and artificial agents - more
humans than in multiagent-based simulations and interactive simulations. The
environment may refer more to a real environment than in interactive simula-
tions, yet without the need of reproducing a particular original system. Again,
we include also here entertainment simulations (e.g. games, “Second Life” where
humans interact with other humans and artificial agents in a shared immer-
sive virtual environment). This domain includes not only the Metaverse of Neal
Stephenson, but also the Cyberspace of William Gibson. The original idea was
to differentiate between Virtual Reality and Cyberspace, by having the former
as an individual experience, and the last as a social one. We selected “virtual”
as the value for the environment capturing both synthetic and simulated - so
the environment in the Virtual Reality domain may have a reference to a real
environment or not, however the stringency of connecting the environment to
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an original one may not be as strong as in the simulation applications. Here,
whether the environment is interesting or believable is more important than its
validity.

Social Networks form a domain ( e=virtual - a=human - i=all) where social
relations are manifested. It is the facebook / twitter environment in which vir-
tual space is abstracted into a (dynamic) network of relationships. Social reality
might be combined with synthetic environments or analyzed with simulated envi-
ronments. Yet it is something clearly different from virtual environments as it
maps explicit real relations (“follows”, “friend-of”) into a artificial structure and
provides meeting opportunities that are potentially decoupled from concurrent
behavior/interaction. It could be seen as a manifestation of social interactions.

4 Levels of Support by the Environment

In the global picture built in the previous section showing the importance of
the environment in each of the analyzed domain, the level of support of this
environment as a first-class entity can be different depending on the specific
point or subspace that we consider. In general, three main support levels can be
identified [20]:

– deployment support level, which is the simplest level in which the environment
just introduces a notion of action, perception, observability, without any kind
of modularisation;

– abstraction support level, where the environment introduces first class logical
abstraction to modularize actions/perceptions and to encapsulate functional-
ities;

– interaction mediation support level, where the environment has a role in
enabling and ruling/governing/mediating the interaction and communication
among the agents.

4.1 Levels of Support for Digital Agents or Robots

In literature, these levels have been identified and used to analyse mostly systems
considering only artificial agents on the agent type dimension. In our picture,
relevant examples for that case are:

– pure virtual environment, digital agents only — This is the case of agent-based
and MAS-based simulation. Here the virtual environment has the fundamental
role of modelling the space of interaction among agents, at the proper level of
abstraction.

– physical + virtual environment, digital agents + robots — This is the case
of situated MAS, which is one of the reference cases on which the levels in
[20] have been defined. As widely discussed in literature, the integration of
physical and virtual environment can be effectively exploited to support in
particular agent coordination.
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4.2 Levels of Support for Human Agents

The role of the environment support for systems considering only human agents
on the agent type dimension has been discussed in the context of cognitive sci-
ences and human socio-psychological fields. Relevant examples in our picture are:

– physical environment, human agents — This is the pure physical reality case.
In this case, Activity Theory and Distributed Cognition focus the importance
of physical objects and tools in supporting human activities and problem
solving. Even if it is not about the agent environment, the three levels can
be adopted as well. The deployment levels refer to those cases in which the
physical environment is not specifically designed in order to support human
activities; it is just used as the neutral place where some activity takes place.
The abstraction support level occurs when the physical environment is specif-
ically conceived and designed to mediate and support human activities; an
example is given by any kind of tool (e.g. a hammer) used to do some kind
of job. The interaction mediation support level happens when the design is
explicitly conceived to help the cooperation and communication of humans.
Examples include blackboards, cell phones, post-its, etc.

– virtual environment, human agents — This is the case of Social Networks,
for instance. In this case, the tools depicted in the previous point are greatly
enhanced by the availability of the information technology, that makes it pos-
sible to create more powerful social media that allow to augment human com-
munication and interaction besides time-space barriers. As a distinguishing
feature, these tools implement mechanisms to make communication indirect
and persistent, so as to create emergent/self-organizing/stigmergic form of
coordination and cooperation.

– physical + virtual environment, human agents — This is the case of Aug-
mented Reality. The integration of the physical environment has the effect to
strongly couple and ground the first-class environment abstraction layer with
physical artifacts of the reality, augmenting their functionalities. Or, to sit-
uate the virtual entities defined in the virtual environment in some physical
location. This can be exploited to define a whole new space of spatially-based
functionalities and services, as those that are typically provided by mobile
augmented reality applications [16].

4.3 Levels of Support for Human, Digital or Robot Agents

Finally, a less explored subspace – in particular in the environments for MAS
literature – concerns those cases in which human and artificial agents (robot or
digital ones) are both characterising the agent type dimension. Two main cases
are the following:

– virtual environment, human + digital agents — This includes Virtual Reality
as well as Intelligent Virtual Environments [5], where virtual environments are
inhabited by both humans – represented by some kind of avatars – and artificial
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agents, both perceiving and acting on the same shared environment. The vir-
tual environment in this case provides functionalities in terms of abstraction,
by allowing human users to physically represent and perceive virtual entities,
which may be designed to encapsulate different kinds of functionalities, ser-
vices. Besides, these entities can be exploited also to ease the communica-
tion/coordination among avatars, in particular with other human users that
may be physically located in a different place, as well as with purely digital
agents part the same world.

– physical + virtual environment, human + digital agents — This is the case
of Mirror Worlds and the environment support can be conceived by integrat-
ing synergically what discussed for Augmented Reality and situated MAS.
In this case, the abstraction support level provided by the environment is
twofold: from the artificial agents point of view, it provides a way to repre-
sent, perceive and interact with physical things, represented and abstracted
by artifacts; from the human agents point of view, the virtual environment
provides a way to augment the physical world with further functionalities, as
well as to empower humans with further cognitive/sensing/acting capabili-
ties. The interaction mediation support level in this case allows for design-
ing environment-meditated coordination and cooperative strategies – pos-
sibly self-organising, emerging – that exploit both the physical and digital
layer, towards new forms of Behavioural-Implicit Communication and stig-
mergy [6,19].

5 Conclusions or What is Waiting Ahead of Us

In the last years, there has been a growing importance of the environment as a
first class entity in the developing of MAS. The increasing maturity of more and
more feasible and advanced technology in the area of Virtual Reality has lead
to a growing interest in Virtual Environments in both, society and research. As
a reflection of this, one can also observe an increasing number of applications
of MAS using this technology creating and enabling new environments for the
different forms of MAS.

In this chapter, we have extended the idea of the environment as a first class
entity for explicitly integrating Virtual Environments and as a consequence mix-
ing the context that they may provide with other types of environments, physical,
simulated or synthetic. Before discussing what the explicit treatment can offer
for those application areas, we had to locate them clearly in an overall concep-
tual framework widening the perspective beyond the original environment for
multiagent systems idea. From that point of view we analysed environments in
different forms together with the overall system application context. We char-
acterized the latter in terms of types of agents and richness and intensity of
interaction. We classified various examples of application domains along those
dimensions indicating how the environment impacts the overall setup. The con-
tribution of this chapter can be seen in the clear characterization of systems with
a wider perspective beyond environments for agents. In the same way software
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agents, robots and humans can interact in one environment also environments
for those diverse and heterogeneous multiagent systems can be of different (also
mixed) types. Having a look at science fiction literature and the environment
concepts authors have foreseen, may serve as a source of inspiration for setups
that once were visionary, but now become more and more reality.

Starting from our discussion in Sect. 4 on what level of support can be
expected from the environment in the relevant coordinates/cases, future work in
this research area will focus on developing not only frameworks for implement-
ing these kind of applications. Formalized, unifying meta-models, methodologies,
and eventually developing toolkits to support the designer to create and manage
these applications will clearly help to enable future useful applications beyond
what we are able to realize now.
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Abstract. Multiagent-based simulations enable us to validate different
use-case scenarios in a lot of application domains. The idea is to develop
a realistic virtual environment to test particular domain-specific proce-
dures. This paper presents a holonic model — hierarchy of agents — of
a simulated physical environment for the simulation of crowds in virtual
3D buildings. The major contributions of this paper are the agentiza-
tion of the environment model to support multilevel simulation, and
the definition of energy-based indicators to control the execution of the
model. Finally, the application of the model inside an airport terminal
is presented. It permits to validate the principles of the models and the
corresponding computational gains.

Keywords: Multi-agent simulation · Holonic multiagent systems · Mul-
tilevel simulation · Simulated environment · Physic environment · Vir-
tual environment · sarl language

1 Introduction

The models for urban simulation may be classified in four main families: macro-
scopic, mesoscopic, microscopic and multilevel simulation models. Macroscopic
simulation models are based on the deterministic relationships of the flow, speed,
and density of population (peoples or traffic stream) [23]. The simulation in
a macroscopic model takes place on a region-by-region basis rather than by
tracking individuals. Macroscopic simulation models were originally developed
to model traffic into distinct transportation networks, such as freeways, corridors
(including freeways and parallel arterials), surface-street grid networks, and rural
highways. This approach enables the simulation of very large population with a
small relative computational cost. However, due to its high-level of representa-
tion, the results are not very accurate and strongly related to masses of popula-
tion. Microscopic simulation models are concerned with the movement of people
on the basis of dynamic individual behaviors. Behaviors may be based on a large
scope of models such as the intelligent driver and the lane changing models to
c© Springer International Publishing Switzerland 2015
D. Weyns and F. Michel (Eds.): E4MAS 2014 – 10 years later, LNAI 9068, pp. 147–169, 2015.
DOI: 10.1007/978-3-319-23850-0 10
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represent the drivers, or a force-based model for the pedestrians [10,17,35,36,46].
These models are effective in assessing the conditions of congestion and satu-
ration, the study of the topological configuration, and evaluating the impact
of individual behavior on the system. However, these models are difficult to
implement and costly in term of computation time, and they can be difficult
to calibrate. Mesoscopic models combine the properties of the microscopic and
macroscopic models. For example, they may focus on the entities in the system
by using models that do not distinguish the individuals from each other, such
as particle models [44], by grouping the individuals within higher-level entities
such as groups of pedestrians [19], or by using a discrete model of the simulated
environment, such as the cellular automata [25]. Multilevel models support dif-
ferent levels of simulation (macro, meso, micro). Different points-of-view exist
on the means to integrate these different levels into a single multilevel model.
Two models, one micro and one macro for instance, may be run in sequence,
and the output of one is the input of the other [5]. The multilevel model may
also be able to select the best simulation level dynamically, according to specific
indicators: the more the computer has available resources, the more the selected
level tends to be the micro one [20]. This paper is related to this last type of
multilevel simulation.

In this paper, authors focus on multiagent-based simulation, and more specif-
ically on the modeling of the simulated environment. As stated by [51], the envi-
ronment is an important part of a multiagent system that should be studied in
details. In the rest of this paper, we focus on the simulated physical environ-
ment for the microscopic and multilevel multiagent-based simulation of crowds,
as illustrated by Fig. 1. The pedestrians’ behaviors are not detailed in this paper.
Two main common problems may occur during the execution of the simulated
environment model: (i) the computational cost may be too huge, and thus incom-
patible with efficient response constraints; and (ii) many times the executed
algorithm is too complex and too expensive according to the topology of the
crowd and obstacles; simpler and faster algorithms could be used in place with
an equivalent accuracy. Several models and platforms were proposed to address
these issues: GAMA [22], Breve [26], FLAME, etc. According to our knowledge,
none of them is providing a holistic multilevel model of the simulated environ-
ment including the hierarchical spatial decomposition, the management of the
transitions between levels, the interrelationships among the environmental com-
ponents and their associated dynamics.

This paper introduces an agent-oriented multilevel model of the environ-
ment for a multiagent-based simulation. Note that in the rest of this paper, the
term “agent” refers to the agents, which are supporting the environment model;
in opposition to the “application agents,” which represent the pedestrians (in
our airport simulation, or the vehicles in traffic simulation). Why is an agent-
oriented model used for the simulated environment? It permits to adapt the
overall simulated environment’s behavior dynamically, during its execution. The
use of agents enables to evaluate and to predict the computational costs of the
algorithms locally, and to select the one, which is fitting the constraints in time
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Fig. 1. Screenshots of the Airport simulation, provided by the Simulate� commercial
tool.

and in quality. A specific type of agent is considered: the holon1 [8,41]. Why are
the holons used for the simulated environment model? They enable to support
the intrinsic hierarchical nature of the simulated physical environment and its
dynamics. This agent-oriented model is qualified of holonic, and defined accord-
ing to the CRIO metamodel and the associated holonic framework2 [8]. CRIO
is an organizational metamodel enabling the hierarchical modeling of a system
in terms of organizations and roles.

This paper is structured as follows: Sect. 2 presents the organizational model
of the simulated environment. Section 3 describes the agents/holons that are
supporting the environment model. Section 4 presents the energy-based indica-
tors that are involved in the multilevel simulation. Section 5 introduces a basic
implementation of the holonic environment model using the sarl programming
language. Section 6 describes the application of our environment model on the
simulation of an airport. Section 7 relates the content of this paper to existing
works. Section 8 links our works to the identified challenges related to the envi-
ronment. And finally, Sect. 9 concludes this paper, and provides perspectives of
this work and new challenges.

2 Organizational Model of the Simulated Environment

Urban systems are typical examples of complex systems. Urban simulations
quickly require important computational resources if the user want to main-
tain a high level of accuracy. As shown in [7], the simulated environment is often
distributed into a collections of places to easily distribute computational costs.
A place is a semi-closed spatial area bounded by static objects (usually walls).
Each place may have connections called portals, with its neighbor places. They
are used to ease the interaction between two adjacent spaces. They also per-
mit to use structural simulated environment models such as Potentially Visible
1 Holon: an agent composed of agents, which can be seen as an atomic entity from its

outside, and an entity composed by sub-holons from its inside, at the same time.
2 The CRIO metamodel and the holonic framework are outside the scope of this paper.

See http://www.aspecs.org or [8] for details.

http://www.aspecs.org
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Set [7] for improving the computation of the visual perceptions of the application
agents. Places are basically defined a priori by the designer of the simulation.
They generally correspond to the structural decomposition of the simulated envi-
ronment with connected graphs [12,48]. Entities are objects inside the simulated
environment, and are located in a single place through a dedicated data-structure
(usually a spatial tree or a spatial grid, see Fig. 2).

Fig. 2. Decomposition of a place in areas with a spatial tree

To simulate large and complex worlds, it is important to support unbalanced
places in terms of entities they are containing. Indeed, the difference of popula-
tion coverage by the places may cause lower global performances to the simula-
tor. To overcome this problem, places are decomposed in turn into a collection
of dynamically built zones. In contrast to the statically defined decomposition,
these zones are built during the simulation process according to the population
density in each zone.

Fig. 3. Organizations and roles of the simulated environment, using the formalism
defined in [8], and on http://www.aspecs.org.

http://www.aspecs.org
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Figure 3 shows the various organizations that compose the proposed envi-
ronment model. In a global point of view, the Multilevel Simulation organi-
zation defines the overall simulation system according to two main roles. The
Pedestrian role is played by the agents, which are participating in the sim-
ulation, i.e. the pedestrians, and describes their corresponding behaviors. The
Environment role is played by any agent or group of agents that is responsible for
the overall behavior of the simulated physical environment. Interactions between
them are based on the influence-reaction model [29]; and on the computation
of the pedestrian’s perceptions [17]. Each player of the Environment role must
have the capacity [8] to compute the perceptions for each pedestrian usually, by
exploring a spatial data-structure (see Fig. 2). The Environment’s players must
also have the capacity to gather influences — wishes of actions — from each
pedestrian.

The Topological decomposition organization focuses on the structure of
the simulated physical environment itself. This organization provides the capac-
ities that are required by the Environment role in the previous organization.
The Topological decomposition organization can contribute to the behavior
of this higher-level role. The Topological decomposition organization is com-
posed of interconnected places. Each of them is responsible for the environment’s
missions [51] in the considered geographical space. It also manages the objects
inside the zone. To realize its behavior, a Place role must interact with the role
Urban Database to obtain and to update the information related to the objects
inside the simulated environment.

The role Enclosing zone supports the multilevel modeling of the simulated
environment. The organization Topological decomposition represents a level
within the hierarchy of composition of the simulated environment. It is neces-
sary that each level in this hierarchy has access to information dedicated to the
multilevel dynamics. As a boundary role, the role Enclosing zone is responsible
for providing to a place the state of the considered zone, as well as transferring
the indicators and the constraints given by the upper level to the various places,
which compose it, if any. All these information will be detailed later in this
paper.

The organization Environment Mission, inspired by [51], defines the roles
that are required to satisfy all the missions of the simulated environment for a
specific place. An instance of this organization is supported as a group in the
agents, which are playing the role Place. This link between the two organizations
is represented by the relationship “contribute to” in Fig. 3.

The next step is the identification of the agents, and their behaviors, in
order to obtain the agents’ society, which exhibits the expecting behaviors of
the organizations, that are described above.

3 Agents of the Simulated Environment

Figure 4 illustrates an instance of a society of agents, which may execute the
simulated environment behavior. The key point is to determine, for each role,
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Fig. 4. Example of an agent society, which manages the simulated environment.

if a standalone agent or a group of agents3 is playing it. When a single agent
is managing an entire place, it is playing the role Place in the Environment
Model. When a place needs to be split and managed by a group of agents, one
of them must play the role Place in the Topological decomposition, and
Mission scheduler in the Environment Mission organizations. The decision
to decompose or not a place is the responsibility of the agent playing the role
Place. It depends on: (i) the individual indicators, which are specific to an agent
playing the role Place; and (ii) the indicators shared in the context of a group of
agents, which is an instance of the organization Topological decomposition.
Each agent playing the role Place can access to these indicators by interacting
with the role Enclosing zone. These indicators are detailed in Sect. 4.

Figure 5 illustrates the state machine of the agents of the simulated envi-
ronment. This state machine describes the composition (resp. decomposition)
behavior of the agents. Events isCollapsable and isDecomposable correspond
to the detection of a change from the agent situation according to the indica-
tors described in the next section. They correspond respectively to the events of
composition and decomposition.

When an agent H decides to decompose the place z associated to it, it applies
the algorithm for creating sub-holons that are managing the different sub-zones
of z (see Algorithm 1). A group topological decomposition is created and
populated by agents playing the role Place, one for each sub-zone. The function

3 Note that a holon may represent either an atomic agent or a composed agent [41].
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Fig. 5. State machine for the hierarchical behavior of each agent of the simulated
environment

updateGlobalIndicatorsForSubAgents updates the indicators that are used
by the sub-agents for their own decomposition decisions.

1 g := getGroup (H,” Environment mi s s i ons ”)
2 i f g �= n i l then
3 r e l e a s eRo l e (H, ”Miss ion s chedu l e r ” , g )
4 r e l e a s eRo l e (H, ” Percept ion generator ” , g )
5 r e l e a s eRo l e (H, ”Endogenous Dynamics ” , g )
6 r e l e a s eRo l e (H, ” I n f l u en c e So lve r ” , g )
7 r e l e a s eRo l e (H, ”Urban Database ” , g )
8 end i f
9

10 S := computeSubZonesOf ( z )
11 g := createGroup (” Topo log i ca l decomposit ion ”)
12 reques tRo le (H, ”Urban Database ” , g )
13 requestRo le (H, ” Enc los ing Zone ” , g )
14 updateGlobalIndicatorsForSubAgents (H, S)
15 f o r each zone in S do
16 agent := createAgentIn (H)
17 reques tRo le ( agent , ”Place ” , g , zone )
18 done
19 Ez := ∅

Algorithm 1. Algorithm for the decomposition of an agent associated to a
zone of the simulated environment.

When an agent H decides that the place z should not be split, it destroys
its sub-holons (see Algorithm 2). The group Topological decomposition is
destroyed. A group associated to the organization Environment Missions is
then created to enable the super-agent to reach its main two goals: determining
the perceptions of the agents, and managing the influences from them.

Both algorithms can build, level by level and during the run-time, the hier-
archical model of the simulated environment. The evaluation of the indicators
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1 g := getGroup (H, ” Topo log i ca l decomposit ion ”)
2 i f g �= n i l then
3 f o r each agent in ge tP laye r s ( g , ” Place ”) do
4 k i l l ( agent )
5 done
6 r e l e a s eRo l e (H, ” Enc los ing Zone ” , g )
7 r e l e a s eRo l e (H, ”Urban Database ” , g )
8 Ez := createSuperBodies ( )
9 end i f

10

11 g := createGroup (” Environment Miss ions ”)
12 reques tRo le (H, ”Miss ion Scheduler ” , g )
13 reques tRo le (H, ” Percept ion Generator ” , g )
14 reques tRo le (H, ”Endogenous Dynamics ” , g )
15 reques tRo le (H, ” I n f l u en c e So lve r ” , g )
16 reques tRo le (H, ”Urban Database ” , g )

Algorithm 2. Algorithm for the composition of an agent associated to a zone
of the simulated environment.

is performed continuously during the simulation process. The holarchy4 of the
simulated environment may change dynamically, while being influenced by the
movements of the pedestrians, and by the resources (machine memory, process-
ing resource, etc.) that are available for the simulation.

The proposed algorithms assume that the super-agent group, which is partic-
ipating in the organization Environment Missions, has all the necessary capac-
ities required by this organization. Each of these capabilities is the realization
of one of the missions of the simulated environment. In other words, the super-
agent offers a service (a capacity according to the crio metamodel) to simulate
these missions. An alternative is the definition of sub-agents dedicated to the
support of each mission of the simulated environment. The super-agent always
plays the role Mission scheduler. However, it delegates the other missions to
its sub-agents. Thus, each mission could be implemented natively by a service
in each agent, or by a whole group of interacting agents. This last possibility is
not detailed in this paper.

4 Indicators for the Multilevel Simulation

In this paper, authors propose three main classes of indicators for triggering the
events isCollapsable and isDecomposable:

– The mass of a zone indicates the relative importance of a place of the
simulated environment for the whole simulation. This value obviously depends

4 Holarchy: a hierarchy of holons that may intersect other holarchies by sharing holons
together.
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on the considered scenario. For example, it may be proportional to the density
of pedestrians in the place, or depends upon the presence of an immersed
human user in this place.

– The structural depth describes the minimum or the maximum depth of the
decomposition of a zone. Thus, it is possible for a role Place to restrict the
depth of its topological decomposition.

– The resource constraint describes the limits of the available resources for
a place to achieve its simulation. This constraint allows considering low-level
information, close to the operating system, such as the computation time. It
is possible to impose a time constraint for approaching a real-time execution.
A resource constraint can also describe the limits for any type of low-level
resource (memory, network bandwidth, etc.).

The mass of the object e describes the importance of e at a given instant of
the simulation. More massive an object is, the more it influences the simulation
results, and it consumes resources. This mass, denoted Me is defined by Eq. 1,
where we is the constant mass of e.

Me =

⎧

⎨

⎩

we if e is an atomic object
∑

a∈e

wa if e is a composed object (1)

The mass of a zone z describes the importance of z during the simulation.
It is defined by Eq. 2. More massive a place is, the more it is involved, and it
influences the results for the simulation. The mass of z is proportional to the
mass of the sub-places and the objects therein.

Mz = αz.wz +
∑

a∈Dz

αa.Ma +
∑

e∈Ez

αe.we (2)

Dz is the set of sub-places of z. Ez contains the objects located on z. wz is the
constant mass of z, given by the designer of the simulation model. It represents
the importance of the place in the scenario. we is the constant mass of the object
e. αi is the weight of i (z, a and e) when it contributes to Mz. The set of weights
is constrained by

∑

i∈{z}∪Dz∪Ez

αi = 1.

The resource constraint Rα is imposed by the super-agent to its sub-agents. It
represents the amount of available resources for the sub-agents. Its computation
is based upon the use of a weight-based function, and is depending upon the
mass of the sub-places. The resource constraint for a sub-agent a of the agent z
is defined by:

Ra = (Rz − kz) × Ma
∑

b∈Dz

Mb

∀a ∈ Dz (3)

kz is a constant, which estimates the consumption of resources by the super-agent
to run its decision-making algorithms.



156 S. Galland and N. Gaud

4.1 Dynamics of the Simulated Environment Agents

At every instant of the simulation, the simulated environment agents evaluate
the indicators described above. This evaluation determines if they should change
of state: either being a manager of a decomposed place, or the manager of an
atomic place.

As shown in the state machine presented in Fig. 5, each agent is facing with
one of the following decisions:

Case 1: If the agent manages an atomic place, must it decompose this place
and create sub-agents?

Case 2: If the agent manages a decomposed place, must it combine the sub-
places, and destroy the sub-agents managing these sub-places?

In case 1, the agent can be decomposed if there are enough resources for
the execution of its sub-agents. Equation 4 describes the condition that triggers
the change of state of the agent (isDecomposable becomes true). A super-agent
must decompose when it has sufficient resources at its disposal, or the evaluation
of the consistency between simulations at the levels n and n + 1 indicates that
the super-agent does not approximate correctly the behaviors of its sub-agents,
any more.

[(

∃a ∈ Dz,
∣
∣Egz − Ega

∣
∣ > ε

)

∨
(

∀R,Rz ≥
∑

p∈Dz

gR(p) + kz

)]

∧
(

maxz < i ∨ minz > iz
)∧

(

Ez �= ∅)

(4)

The first member of the equation evaluates the consistency of the simulation.
The energies of the sub-agents are computed and compared with the energy
of the super-agent. If the difference between the energies of two levels exceeds
the threshold ε, then the super-agent’s behavior does not approximate accu-
rately its sub-agents’ behaviors. The energy terms Egz and Ega are application-
dependent, and are illustrated later in this paper. The second member of Eq. 4
is based on the use of the function gR : Dz → R, for estimating the amount of
resources that are needed for executing the simulated environment missions by
the sub-agent p. This function gR depends upon the target application. Each
super-agent consumes resources for computing the various multilevel indicators,
and applying the decomposition policy. This amount of consumed resources is
given by the constant kz. The constants minz and maxz represent the mini-
mum and maximum depths in the hierarchical decomposition of the simulated
environment.

In case 2, the agent is decomposed into a set of sub-agents managing the sub-
places of z, the place associated with the super-agent. This determines whether
to retain its sub-agents or destroy them. This last case corresponds to a change
of the state of the super-agent. A super-agent can destroy its members when it
does not have enough resources at its disposal for carrying out the simulation,
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Fig. 6. Major concepts in the sarl metamodel.

and the evaluation of the consistency between the simulation results at the levels
n and n + 1.

(

∀a ∈ Dz,
∣
∣Egz − Ega

∣
∣ ≤ ε

)

∧
(

∀R,Rz <
∑

p∈Dz

gR(p) + kz

)

∧ min z < i (5)

If the simulation has all the required resources, it is done at the most accu-
rate level. In other words, the agents of the level n (the deepest level in the
holarchy) are always executed. However, if resources become insufficient, the
simulator can identify the places that require a priority allocation of the avail-
able resources. The indicators in each super-agent are used for identifying the
sub-agent’s behaviors that are too approximated.

5 Implementation with sarl

In this section, the implementation with the sarl programming language of the
proposed holonic environment model is discussed.

sarl5 is a general-purpose agent-oriented programming language [40]. This
language aims at providing the fundamental abstracts for dealing with con-
currency, distribution, interaction, decentralization, reactivity, autonomy and
dynamic reconfiguration. These high-level features are now considered as the
major requirements for an easy and practical implementation of modern com-
plex software applications. The main perspective that guided the creation of
sarl is the establishment of an open and easily extensible language. Such lan-
guage should thus provide a reduced set of key concepts that focuses solely on
the principles considered as essential to implement a multi-agent system. In this
paper, two elements of the metamodel of sarl are extensively used: Agent and
Space. These two concepts are illustrated on Fig. 6.

In order to take into account heterogeneous interaction models, sarl pro-
poses the Space concept, which is an interaction space. Space is the abstract
to define an interaction space between agents or between agents and their envi-
ronment. This concept is used for defining the interaction between an agent
5 http://www.sarl.io.

http://www.sarl.io
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and the physical simulated environment. In the sarl toolkit, a concrete default
space, which propagates events, called EventSpace (and its implementation
EventSpaceImpl), is proposed.

An agent is an autonomous entity having a set of skills to realize the capacities
it exhibits. An agent has a set of built-in capacities considered essential to respect
the commonly accepted competences of agents, such autonomy, reactivity, proac-
tivity and social capacities. Among these capacities, the agent can incorporate a
collection of behaviors that will determine its global conduct. An agent has also
a default behavior directly described within its definition. A Behavior maps a
collection of perceptions represented by Events to a sequence of Actions. In the
default configuration of sarl, the various behaviors of an agent communicate
using an event-driven approach. An Event is the specification of some occur-
rence in a Space that may potentially trigger effects by a listener (e.g. agent,
behavior, etc.).

Fig. 7. A holon or a recursive agent in sarl.

In sarl, agents can be composed of other agents. Therefore, sarl agents are
in fact holons that can compose each other to define hierarchical or recursive
MAS, called holarchies. In order to achieve this, sarl agents are self-similar
structures that compose each other via their Contexts. Each agent defines its own
Context, called Inner Context and it is part of one or more External Contexts.
For instance in Fig. 7, agent A is taking part of two External Contexts (i.e.
Default Context and External Context 1) and has its own Inner Context where
agents B, C, D, and E evolve.

6 Experiments

This section describes several experiments with the proposed simulated envi-
ronment model in the simulation of an airport halls (illustrated by Fig. 1).



Organizational and Holonic Modelling of a Simulated 159

The airport terminal is composed of two halls, which are separated by gates.
Each of these gates is a check point between the public area and the boarding
area.

The behavior of the agents is decomposed on three majors activities: (i) going
to check-in desk, 2/3 of the passengers need to check-in their baggages, and
1/3 have only hand-baggages; (ii) passing the check points; and (iii) boarding.
Figure 8 illustrates the evolution of the number of passengers at the check points,
and the average waiting time of these passengers. The first peaks correspond to
the passengers that are not going at the check-in desks. The second/highers peaks
corresponds to the passengers that were at the check-in desks. Figure 9 shows the
evaluation of the energy according to different levels of available computational
resources. When this resource critera is at 100 %, it means that the computer has
enough resources to run the simulation at the finest level. When the resource is
down at 60 %, it means that only 60 % of the micro-simulation may be run at the
finest level. As explained in the previous section, the energy evaluation depends
on the application. Equation 6 details a simple evaluation of this energy for the
airport application. Intuitively, this energy assesses the quality of the generated
perceptions by the simulated environment: more objects are not included in the
perception, compared with the more precised possible perception, less is the
quality of the perception. p� is the set of the perceived objects that are found
when it is computed at the lowest level. p� (resp. p⊕) represents the objects
that are lost (resp. added) at a higher level in the holarchy. αpo and βpo are
calibration variables. Our experiments shows that αpo = 1 et βpo = 1

|E| , where
|E| is the total number of entities in the airport, may be used by default.

Egα =

⎧

⎨

⎩

αpo|p�| + βpo|p⊕|
|p�| if p� �= ∅

αpo|p�| + βpo|p⊕| else
(6)

The tests are performed with a set of 2,000 entities in the entry hall and 1,000
entities in the boarding area. Four check points are assumed to be available. The
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average computation time for one simulation step of the object-oriented model of
JaSim (the original one [17]) is 25.9 s, the equivalent agent-oriented model (pro-
posed in this paper) takes 41.5 s with a single place for the entire area, and 8.1 s
with two places. Figure 10 illustrates a comparison of the running time of the
agent-oriented model and the original object-oriented model. The two curves have
a similar shape, due to the use of the same low-level algorithms (perception and
action computations) on the same types of data-structures (quadtree). The agent-
oriented approach provides a curve nearest to the linear curve than the original
approach. This is mainly due to a better balancing of the nodes of the two trees,
one for each place, than the balancing of the single tree of the original model.

Fig. 10. Running time of the object-oriented and the agent-oriented models.

Figure 11 illustrates the running time of the agent-oriented model when the
computational resources are limited. When this resource critera is at 100 %, it
means that the computer has enough resources to run the simulation at a the
finer level. When the resource is down at 60 %, it means that only 60 % of the
micro-simulation may be run at the finer level.

7 Related Works

Our inspirations for the simulated physical environment are the models for the
simulation of crowds and traffic into virtual environments [2,11,18,31,45]. The
Artifact [37], CArtAgO [38] and smart object [46] models are also an inspira-
tion. They propose similar interaction models between agents and objects in the
environment, and the definition of the latter.

A taxonomy of virtual environments is provided by [6]. A virtual environment
is synthetic and simulated. It may be classified according to three dimensions.
The first dimension is the type of environment: access directly to real environ-
ments, or virtual environment. The second dimension characterizes the nature
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of the agents interacting in the system environment: Human, physical agents
(robots), or virtual agents (animats, virtual characters). The third dimension
describes the models of interactions that are used by the agents. A wide range
of models may be considered from stigmergy [32] to social and organizational
interactions. Your model is designed for representing a simulated physic environ-
ment. It provides the mechanisms for computing the perception and managing
the actions of the agents according to physic laws (gravity, collision avoidance,
etc.). Our model is related to the domains “multiagent-based simulation” that is
defined by [6]. In our application (including our holonic environment model), the
environment and the agents are simulated. The interaction is based on the stig-
mergy principles. Additionally, our environment model is related to the “interac-
tive simulation” domain [6]. Indeed, the body concept that is used in our model
enables to replace any virtual agent associated with a body by a Human, who
is controlling this body with the same interaction principles: the body that is
controlled by the Human must emit influences [29] as the ones controlled by the
virtual agents.

The problems related to the interaction between an agent, and the physical
environment have been treated with different perspectives. One of the mod-
els used in our approach is the Influence-Reaction model [29]. It supports the
simultaneity of the actions in an environment by considering the interactions ini-
tiated by agents as uncertain, and detecting and resolving the conflicts between
the interactions. This approach can be compared to the artifact concept [37],
which proposes to model the objects in the environment. They provide a set
of actions that can be applied on each of them. A similar model named smart
object is proposed for virtual environments [46]. In your approach, the influences
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related to spatial traveling, and those dedicated to trigger actions are distinct for
enabling a detailed specification of the parameters for each of them. The IODA
model [27] and its extension PADAWAN [28] allow modeling the interactions
between the agents and the environment by assuming that every entity in the
environment is an agent. Our model is partially incompatible with this vision
in the context of the physical environment modeling. Indeed, the bodies of the
agents are not agents.

Several organizational approaches consider the environment [14,21,33]. In
the context of this paper, the key element is the modeling of the environment
with a holarchy. The space concept that is provided by the sarl programming
language serves as an abstract for organizational groups and spatial areas.

8 Links to Research Challenges Related to the Agent
Environment

Since 10 years, research challenges are identified for the environment in mul-
tiagent systems. This section provides several links and possible answers to a
couple of these challenges.

The first research challenge concerns the difference between the agent
environment and the agents that inhabit it [51]. Based on the princi-
ple that agents are autonomous entities, and the environment does not contain
autonomous entities, the question of defining what is an agent and what is not
arisen. The model presented in this paper is based on the principle of separa-
tion between the mind and the body. This distinction in the context of artificial
intelligence was mainly proposed in robotics [3]. Its application to multiagent
systems, where there is not necessarily a physical body, has not been examined
in detail in the literature [42]. However, this concept has been used occasionally
to model and constrain the interactions between the agents and the environment
[1,2,9,29,39,43,47]. In these works, the body is an object of the environment,
with a dynamic that cannot be controlled directly by the agent. The agent envi-
ronment controls the dynamics’ properties of the body (position, orientation,
etc.), and ensures that these properties follow the rules and laws of the Universe
[30,34]. Nevertheless, every agent is able influencing its body using a mecha-
nism such as the Influence-Reaction model [29]. Consequently, in our model,
every entity that physically exists is an object of the environment, including the
bodies of the agents. Agents become the autonomous entities that control the bod-
ies. They are able to perceive and acts in the agent environment through their
bodies. The major mode of interaction that is considered in our model is the
stigmergy.

The second research challenge is related to the taxonomy of the agent
environments [51]. In previous works, we have considered different dimensions
of the agent environment: the physic dimension, communication dimension, and
social/organizational dimension [15,16]. The first dimension concerns the envi-
ronments that are represented the physical world. The second dimension contains
the communication tools and infrastructures. The third dimension defines the
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Fig. 12. Concepts for the definition of an agent environment, and the relationship
between the agents and this environment [2,9,17]

social and organizational relationship between the agents. This paper treats only
of the agent environments that are related to the first category. Moreover, since
the agent environment is a model of the real world, it is simulated and synthetic.

The third challenge concerns the definition of the abstracts and con-
cepts that may be used for defining an agent environment [24,49]. The
model presented in this paper is based on a meta-model that provides abstracts
for defining the topology of the agent environment, and the objects that are
located in this environment [2,9,17]. Figure 12 provides an overview of the con-
cepts that are at the heart of the holonic model presented in this paper. The phys-
ical agent environment is intrinsically hierarchical [13]. The zone concept is pro-
posed for supporting the decomposition of this environment into interconnected
sub-zones, that could be decomposed in turn. The objects (WorldEntity) are
located in a zone of the environment. All these objects could be perceived by the
agents (Perceivable). And, several of them could have their state changed by
agent actions (Influencable), according to the Influence-Reaction model [29].
The agent body is an object that could be controlled by an agent (Situated-
Agent), contains a field-of-view (Frustum) that could be used for computing
the perception, and provides the functions for emitting influences in the agent
environment. In the context of this paper, the dynamics of the agent environ-
ment are managed by specific agents (EnvironmentAgent), including the inter-
nal processes related to the physical agent environment (EndogenousEngine).
These agents are responsible for supporting the missions of the environments
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defined in [50,51]. They are members of a holarchy (see Sect. 2) for supporting
the hierarchical nature of the physical environment.

The handling of the interferences between the agents’ actions is a
research challenge [24]. In the context of a simulated agent environment, the
Influence-Reaction model [29] provides the framework for detecting and solving
the conflicts among the influences – uncertain actions – given by the agents.
Unfortunately, the Influence-Reaction model does not give a detailed model for
detecting and solving these conflicts. In our agent environment model, the laws
of the Universe are known, and correspond to the Newtow laws. Consequently,
the influences are forces when they describe a motion, and action triggers for
executing specific actions on the objects, e.g. pushing a button. A physic engine is
used for computing the reactions of the agent environment related to the motion
of the objects [4]. This approach enables our agent environment to preserve its
integrity, which is one of its responsibilities [51].

The second responsibility of the environment is ensuring the locally of
the perception and the actions [51]. The perception mechanism is based on
a field-of-view (named Frustum in Fig. 12). The shape of the field-of-view is
defined by geometrical elements that have a position relative to the position of
the agent’s body in the physical environment. This definition ensures a local
perception for the agents. In our model, the actions are local since they are
always related to an object of the physical agent environment: move the object,
do an action on the object.

The environment includes a broad diversity of logical functionalities. The 3-
layer model was proposed for structuring them [51]. The first layer is dedicated

Fig. 13. The 3-layer model with the holonic environment model, and the Janus frame-
work
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to the MAS application. It is composed by the agents, the agent environment,
and the MAS framework. The second layer contains the middleware and the oper-
ating system. The third layer is related to the infrastructure definition (hosts,
network infrastructure, etc.). The works presented in this paper focus of the first
layer, as it is illustrated by Fig. 13. Indeed, a model of the agent environment is
proposed. This model is implemented in the sarl language6. And, the resulting
MAS runs on the Janus framework7. This framework supports the distribu-
tion of the MAS application over a computer network by using the Hazelcast
and 0MQ libraries. According to the specifications of the sarl language, the
agents are naturally distributed, and are designed accordingly. The agents are
not aware of the means that are used for implementing the distribution by the
MAS framework.

The last challenge is related to the need of a specific language for
describing the agent environment [24]. In the context of this paper, no
answer is given to this challenge. However, our experiences in the modeling of
the dimensions of the environments with the sarl language give a partial answer
[15,16]. It is possible to describe the dynamics of the physic and communica-
tion dimensions of the agent environment. Unfortunately, it is still difficult to
describe the topology of this environment. We consider that a specific language
is still needed for describing the agent environment. This language may be based
on the works done for Artifact [37] and CArtAgO [38], for instance.

9 Conclusion

Multiagent-based simulations enable us to validate different use-case scenarios in
a lot of application domains. The idea is to develop a realistic virtual/simulated
environment to test particular domain-specific procedures. This paper presents
an agent-oriented and multilevel model of a situated simulated environment for
the simulation of a crowd in a virtual 3D building. The major contributions in
this paper are, in one hand, an agent-oriented model of the simulated physi-
cal environment, based on the holarchy, and on the other hand, a collection of
energy-based indicators for evaluating the accuracy of the multilevel simulation.
The model is successfully applied to the simulation of two airport halls. These
experiments permit to evaluate the impact of the multilevel simulation on the
simulation results, and the gain in terms of computational cost.

The energy formula presented within this paper may be generalized to
become application-independent. One possible direction is to provide formula for
classes of simulated environments, which may be used to build applications. We
consider that the energy indicators may be interesting to distribute the agents
other a computer network also. In this paper, we propose to use energy-based
indicators. Other types of indicators may be used in place to obtain accurate
evaluations: Z function. . . Finally, the proposed model may be applied on large-
scale systems to evaluate the approximation introduced by our multilevel model.
6 http://www.sarl.io.
7 http://www.janusproject.io.

http://www.sarl.io
http://www.janusproject.io
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Our model must also be compared to existing multiagent simulation frameworks
(GAMA, MatSIM, FLAME, etc.).

Our holonic model of the physic agent environment provides answers to spe-
cific research challenges that are identified during the past 10 years (see Sect. 8).
Concepts that are used for describing the objects, and the topology of the phys-
ical agent environment are proposed: zone, environmental object, body, etc. The
use of the crio organizational approach enables to define the behaviors related
to the environment modules for supporting the agent environment responsibil-
ities. The dynamics of this environment are supported by holons, which also
mimic the intrinsic hierarchical nature of the environment. In our opinion, two
major challenges are still under research activities: How to handle large-scale
systems with a physical environment in multiagent-based simulations? What is
the language for defining the elements, the topology, and the dynamics of the
agent environment that could be a simulated environment or the Reality?
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platform Janus (http://www.janusproject.io), by the commercial tool Simulate of the
Voxelia SAS (http://www.voxelia.com) company, France. The views and conclusions
contained in this document are those of the authors, and should not be interpreted as
representing the official policies, either expressed or implied, of the Voxelia SAS.
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Abstract. Increasing interest in Collaborative Virtual Environments (CVEs) in
different applications has imposed new requirements on the design of the CVEs
and the resident Intelligent Virtual Agents (IVAs). In addition to cognitive
abilities, IVAs in CVEs require social and communication behaviours. The use
of a Multi-Agent System (MAS) has been a successful approach to address the
variety of evolving abilities needed by an IVA. In this paper, a model of a
‘smart’ CVE is presented. This CVE model publicizes the properties and the
possible events of each entity located in the sensory range of the nearby IVAs.
Additionally, this CVE model offers a level of abstraction for the IVAs to
interact with the entities in the CVE. This level of the abstraction is distributed
within the design of the resident IVAs. Moreover, this paper presents a
MAS-based IVA design. This IVA is able to collaborate with humans in CVEs.
The proposed model simulates humans by including input, output and pro-
cessing modules. In addition, the model coordinates the IVA’s verbal and
non-verbal communication to convey its internal state while achieving a col-
laborative task.

Keywords: Collaborative virtual environment � Intelligent virtual agent �
Human-Agent collaboration � Multimodal communication

1 Introduction

Agents exist in a space that provides the sensors of the agent with inputs and which
receives that output or the actions of the agent. This space is the environment, and it
contains all the information external to the agent used in the agent’s decision-making.
In other words, the environment is where the agent receives inputs and affects its
environment through its outputs [1]. Moreover, the environment provides a space in
which agents interact with the environment and other agents. A number of attempts
aimed to define the notion of environment. In many of these definitions, the term
environment is either an implicit part of a multi-agent system (MAS) (see [2]) or an
explicit element of a MAS [1]; nevertheless, these definitions tend to focus on the
environment from the agent’s perspective, i.e. the external space, or the design per-
spective, i.e. means of communication. Additionally, the nature of the agent determined
how the environment was defined. For instance, some have considered the environment
in the context of spatial distance for continuous space [3], adjacency for grid cells [4],

© Springer International Publishing Switzerland 2015
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or connectivity in social networks [5]. Weyns et al. [6] reviewed the literature and listed
a wide range of definitions of the environment in a MAS. They extended the concept of
the environment to be considered as a level of abstraction “The environment is a first-
class abstraction that provides the surrounding conditions for agents to exist and that
mediates both the interaction among agents and the access to resources” (p. 15).
Different roles of the environment in MAS were identified [6] from different per-
spectives. From an agent’s perspective, anything external to the individual agent is
considered the environment including other agents, while from a design perspective;
the environment is a means of communication that takes place between the agents and a
container to resources.

A Collaborative Virtual Environment (CVE) has been defined as “a computer-
based, distributed, virtual space or set of places. In such places, people can meet and
interact with others, with agents or with virtual objects.” p. 5 [7]. CVEs have been used
as a mediation tool to facilitate human-human collaboration across disparate spaces.
Moreover, the concept of a CVE includes the collaboration between human participants
and virtual entities such as Intelligent Virtual Agents (IVAs). IVAs refer to humanoid
virtual entities that simulate humans in their abilities and characteristics. CVEs have
been used in multiple fields depending on their purpose of use, such as, business [8],
entertainment, learning [9, 10], training [11], medicine [12] and dancing [13]. Despite
active research to increase the capabilities and application of IVAs, there tends to be
little focus or even information provided about the environment the IVA inhabits.

The versatility of CVE usage in various and complex domains requires, on one
hand, IVAs to play various roles such as instructing, monitoring, counselling and team
working. On the other hand, versatility demands that IVAs have multiple capabilities
including reasoning, communication, planning, argumentation and/or negotiation.
Owing to the fact that IVAs need to take complex decisions and perform sophisticated
actions, there is a need for real-time processing to present satisfactory performance and
believable behaviour. While, the use of the Belief-Desire-Intention (BDI) single agent
approach [14] has been attractive to researchers because of its simplicity and the ability
to trigger the agent’s behaviour, the BDI-based single agent approach on its own falls
short in handling sophisticated applications that require IVAs to do more than achieve
its intentions to reach the determined goal.

Weyns et al. [2] define three levels of support that can be provided by the envi-
ronment. These levels could be extended to include CVEs. The first level is the basic
level. The basic level enables agents to access the resources in the environment (what is
called the deployment context). These resources could be hardware, software and
external resources. The abstract level bridges the gap between the agents and the
low-level details of the environment. In this level, the agent should not access directly
the resources of the environment. Instead, an abstract level includes the low-level
details of the resources. The third level is the interaction-mediation level that regulates
the agent’s access to the resources of the environment and mediates the interaction
between agents that exist in the environment.

In the previous classification presented in [2], it is the role of the environment to
provide an abstraction level for the agent to access the context of the environment
(level two) or to provide interaction and mediation control (level three). The agent’s
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role is confined to do the cognitive processing while the environment manages all the
interactions external to the agents. This role of the agent may be feasible in situations
where the agent needs to perform a well-defined cognitive task. However, in other tasks
such as working in a team, which requires not only cognitive but also social and
communicative abilities, the role of the agent should go beyond cognitive decisions.

Dynamic environments represent a challenge in designing the environment itself
and in designing the agents that will use, exist and interact with this environment [15].
CVEs represent one of these complex dynamic environments, where each partners in
the act of collaboration does not know the next action of its partners. Teamwork that
combines both humans and IVAs has been a challenging research area. When these
heterogeneous team members are involved in a collaborative task, IVAs have to be
more aware of the changes in their surrounding virtual environment (VE), take the
decision in real-time and be believable in the way they communicate. IVAs may exhibit
many types of behaviour including internal and external. Internal behaviour includes
reasoning and perception, while external behaviour includes verbal and non-verbal
communication. To address the challenge of developing believable IVAs in complex
CVEs, the increasing functionality of a BDI-based single agent has been distributed to
a group of agents that coordinate their behaviour towards achieving the overall desire
(goal state) to form a Multi-Agent System. Over the past decade, MAS has been the
subject of AI research as it provides a high level of abstraction in reasoning and
modelling [16]. MAS has been used to design Robots [17] and IVAs [18]. MAS have
been employed to improve the capabilities of the agents. These capabilities included
cognitive skills such as decision-making and planning, or behavioral skills such as
animations.

A number of reasons made the MAS approach to designing IVAs for CVE more
favorable than a single BDI-agent approach [19]. Among these reasons is simplicity, as
the agent can handle part of the processing and not overload the environment with the task
of handling all control. Another reason, the distribution of control among multiple agents
simplifies the design of each agent. A third reason is parallelism; having multiple agents
tends to speed up system overall performance because each agent its own role and part of
the abstraction of the environment as well. Another reason is robustness; distributing the
responsibilities among interacting agents is more likely to improve fail tolerance of the
system. Last but not least, compared to a single agent approach, MAS efficiently control
the various components of CVE with different goals and resources.

This paper presents a design of a CVE that distributes the abstraction level across
the agents reside in the environment. In this design, the design of the environment will
be proposed according to the levels presented in [2]. Novelly, this design will distribute
part of the control in the interaction and mediation level to the agents that live in the
CVE. As a complement to the design of the CVE, the agent should be adapted to
handle the new role as a participant in environment role in interaction control. The IVA
will be designed as a MAS. The contributions of the proposed MAS are: first, it couples
the human’s verbal and non-verbal responses to form input to the agent planner.
Human responses represent a dynamic input to the IVA. Second, the MAS manages the
cognitive abilities of the collaborative IVA to make a decision about the next
step. Finally, the MAS manages the verbal and the non-verbal communication of the
IVA to express its internal state and decisions.
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The paper is organized as follows. Trends in designing IVA for CVE will appear in
Sect. 2. Section 3 introduces the requirements needed in CVE that necessitate a special
design for IVAs. Section 4 presents the proposed model of the smart CVE and a
MAS-based IVA. Section 5 demonstrates the interaction between MAS-based agent
and the proposed CVE. Finally, conclusion of the study and future work come in
Sect. 6.

2 Trends in Designing CVEs and the Resident IVAs

Over the last decade, a number of studies have aimed at coupling MAS and IVAs.
Within these studies, we can identify three trends of utilizing MASs in IVAs using
MAS to manage the physical behaviour of IVAs, MAS to manage the cognitive
capabilities of IVAs and Hybrid approaches that combine the cognitive capabilities and
the physical behaviour. These trends in utilizing MAS to design IVAs reflects the
directions in viewing the role of the environments that host these IVAs [20]. The
relationship of the environment to the agent could be categorized as either external or
internal to the MAS design, or a mixture of both.

– External environment… In one stream of research, the environment was con-
sidered as external to the design of the agent system i.e., the environment was not an
explicit part of the models or architectures. The environment is viewed as a medium
in which the agents live in; nevertheless, this medium is not meant to be considered
while engineering the agents. Steels [21], however, states that “autonomous agents
without an internal model of the environment will always be severely limited.”

– Mixed environment… For the agents to form a multiagent system they should be
situated in a common virtual or physical environment. In this environment the agent
interactions with each other and with resources is enabled [22]. In this view, the
environment was considered as the medium where the agents live and interact.

– Internal environment as a first-class abstraction… In contrast to the external
view of the environment, the internal view promotes the role of the environment as
a first-class abstraction in the design of multi-agent systems, impacting nearly all
stages of multiagent system development: design, implementation, and run-time [2].

These perspectives of an environment can be used to produce alternative IVA designs
using a MAS to manage the behaviour of the IVAs. The first (external) perspective
considers the CVE as an external surrounding that embraces the physical behaviour of
IVAs. The second (mixed) perspective of the environment stresses the role of the
environment as a medium that facilitates the interaction between the agents to achieve
the shared task. This perspective influences the trends in designing the agent where a
MAS is used to build the cognitive capabilities of the IVA. The third (internal) per-
spective of the environment is as an explicit element in the MAS. The environment
should embrace agent interactions and provide a level of abstraction to the agent
behaviour with the resources of the environment. MAS that manage the physical,
cognitive and combined elements of an IVA are presented in the following subsections.
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2.1 MAS to Manage the Physical Behaviour of IVAs

Studies that fall under the first trend include studies that use MAS for IVA animation
and social interaction (e.g., [18]). Grimaldo et al. [23] presented a multi-agent
framework to animate a group of IVAs to balance between task-oriented and social
behaviour. The presented framework permitted agents to include social tasks to pro-
duce realistic behavioural animations. To verify the framework functionally, the
authors used a 3D dynamic environment simulating a virtual university bar, where a
group of IVAs representing waiters and customers interacted and showed social
behaviour. Another study that used a MAS in animating an IVA, Barella et al. [24]
separated IVA visualization from intelligence and presented a social-oriented MAS
framework to simulate a group of IVAs in a social situation. The agent’s beliefs, plans
and decision-making were defined in a specification file.

2.2 MAS to Manage the Cognitive Capabilities of IVAs

Following the second trend, in the study of Amo et al. [25] an MAS was integrated into
IVAs to create autonomous intelligent agents guided by their own motivations, which
live in a virtual world inhabited by other similar agents. The use of MAS concentrated
on the cognitive and social role of each individual agent. Another example was the
study of Mahdjoub et al. [26] who presented a collaborative design for usability
approach, linked with VR tools, and based on a Multi-Agent System for knowledge
management in mechanical design projects.

2.3 Hybrid Approaches that Combine the Cognitive Capabilities
and the Physical Behaviour

The previous two trends resulted in a gap in the research because the separation of the
physical and cognitive aspects of an IVA did not allow coordination between the
internal and external behaviours of the IVA. To address this gap in research, Oijen and
Dignum [27] proposed a communication model for IVAs. This model tries to balance
between being cognitively efficient in managing MAS communication on the one hand
and physically believable realizations of human-like interactions on the other hand. The
authors found that it was beneficial to middleware to join the reasoning layer of MAS
with the physical interaction of the IVA. The result shows a successful agent-agent
communication in a dynamic VE; however, the study [27] does not address
IVA-Human communication.

As another example of the hybrid approach of using MAS in IVA, Buche et al. [28]
proposed a model called MASCARET to organize the interaction between IVAs and an
avatar that represents a human. MASCARET aimed to provide the IVA with physical,
cognitive and social abilities to collaborate with a human avatar in a virtual training
situation. However, the proposed model did not demonstrate the nature of the
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communication that may exist between the collaborative agents and an avatar. In
addition, the agent was not designed using an MAS. In other research that used MAS to
manage IVA behaviour, Cai et al. [29] presented a multi-agent framework to design an
IVA in an underground coalmine VE. The framework improved the ability of the IVA
to interact with the dynamic surroundings of the virtual coalmine. Similar to the study
of Buche et al., this study did not include a communication model between the IVA and
the other virtual entities or human users.

3 Requirements for a Collaboration in CVEs

The modern sophisticated CVE imposes requirements on designing both the agents and
the environment that hosts the agents. These requirements necessitate to design the
environment with mediation-interaction mechanisms [30]. In line with these mecha-
nisms embedded in the environment, the agent should be engineered to suit the
requirements of the environment. The requirements include multimodal communica-
tion exchanged between teammates. Multimodal communication is considered as a
catalyst in successful teamwork [31]. Another requirement is the coordination of efforts
toward achieving the shared task. This coordination imposes special constraints on the
design of the environment and the agent as well.

1. Perceiving autonomously the teammate’s action… CVE requires IVAs to receive
teammates’ actions/behaviour autonomously as well as perceive the meaning of the
received actions in a specific situation. For instance, moving away from the target
spot after taking a decision may mean giving way to the teammate to take his turn,
whereas before taking a decision moving away may mean unwillingness to take
action at all.

2. Perceiving autonomously the teammate’s requests/prompts… In addition to
perceiving the meaning of teammates’ action, IVAs should be able to convert
teammates’ verbal messages into a meaningful notation that builds on the IVAs’
understanding of the teammates’ intentions.

3. Working toward the task… IVAs’ focus need to be directed to achieve the shared
task. IVAs should have a main strategy to reach the common task. Despite the
dynamic nature of CVE, IVAs have to stay focused on the target task and the best
way to achieve it.

4. Adaptability to changing teammate’s decision… Although IVAs should have a
prior plan to achieve the shared task. IVAs have to adapt their plans in real-time to
match the changes in teammates’ decisions.

5. Observable non-verbal behaviour… IVAs need to express the inner state phys-
ically through the selection of the appropriate animation to the current situation. The
selected animation should be complementary with the verbal communication to
convey the IVA’s intention.

6. Believable/Appropriate verbal response… is another communication channel that
IVA should master. The verbal responses should be used either to prompt the
human teammate to take certain action or defend IVA’s point of view in achieving
the task.
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4 The Proposed Model of a CVE

To accomplish the collaboration requirements specified in Sect. 3, designs for the CVE
and agent are proposed. The proposed design of the CVE is built upon the levels of
support in the environment proposed in [2]. The proposed CVE model is created with a
distributed abstraction where the agents will not interact directly with the entities in the
CVE. The proposed design of the IVA agents uses an MAS architecture that provides
this level of abstraction.

In the following section, an introduction to the model of the CVE is presented. The
design of an IVA with MAS is presented in Sect. 4.2. In the IVA design, the
MAS-approach is used to create the agent with a distributed level of abstraction
allowing it to interact with entities in the CVE and with other agents.

4.1 Toward a ‘Smart’ CVE

A virtual environment is known to be dynamic when the events are not pre-determined,
but form a process of interaction [32]. Because the virtual environment is not static, the
agent should dynamically reorganize itself to the changes in the environment [33].
Some research work proposed an MAS architecture that can deal with the environment
as a black box. For instance, Canedo-Rodriguez [34] presented a multi-agent intelligent
system that controls a robot. This MAS can interact with its spatial environment
without the need for a map of the environment. However, a lot of computation was
required from the MAS and the environment needed to stay simple. One of the pro-
posed solutions to overcome the variability of the environment was to design a mid-
dleware [35].

As can be seen in Fig. 1, the environment is a source of inputs to the MAS. These
inputs include the objects to identify their properties. Additionally, these inputs include
events and actions that require either perception or a response from the agents. The
environment could be a medium of communication between two or more agents. In
MAS-based agent, it needs to identify whether the input is an object and so a sensor
agent will be required to recognize this object. Whereas, if the MAS is experiencing an
action, then the receiver agent will need to identify this action. It is very hard for the
MAS to recognise both the object and the actions autonomously unless the environ-
ment helps the MAS to identify the environmental inputs. In real life, we identify an
object because the object sends a ray to our eye to identify this object. In a virtual
environment, the agent is left blind to ‘see’ the surrounding objects or monitor the
events. Researchers used to overcome this problem through coding the information
related to the environment inside the agent or externally in a shared repository. Besides
the surrounding objects the agent needs to interact with, the virtual environment
includes events and actions committed by other virtual agents, conducted automatically
or carried out by human participants. These events and actions require the agent to
perceive, filter, code and take a decision, if needed.
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As virtual environments get more complex, it becomes more tedious to code all the
surrounding objects and events in the agent. Simulating how humans perceive the
objects, events and communication in real life, we propose modelling the ‘smart’
virtual environment. This proposed virtual environment is meant to imitate the physical
world that emits stimuli into the physical world and the senses of the human will detect
these stimuli as long as it is within the range of the human’s senses. Figure 1 shows the

CVE

Input to an agent Output from an agent

− Name & ID
− Physical features (Dimension, 

colour…)
− State (broken, upside-down, 

visible…)
− Intervention allowed (carry, move, 

push...)

Object

− Name
− Event reason 
− Object involved (name & ID)
− Who is involved?
− Intervention required (partici-

pate, stop…)

Events

− Name & ID
− Create/change shape
− Change state (break, fix, turn...)
− Conduct an intervention (carry, 

move…)

Object

− Name
− Reason of event
− Object involved (name & ID)
− Who is involved/directed to
− Need intervention from agents

Events

− Message content
− Message details (sender, receiver, 

time, reply required? message to 
follow?..)

− Gesture expressed
− Gesture details (sender, receiver, 

time, reply required?...)

Communication (verbal/non-verbal) Communication (verbal/non-verbal)

− Message content
− Message details (receiver, time, 

reply required? message to fol-
low?..)

− Gesture expressed
− Gesture details (receiver, time,

reply required?...)

Fig. 1. The proposed smart collaborative virtual environment
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model of the proposed virtual environment. The model consists of input and output
dimensions. Each dimension has three facets for the objects, the events and the com-
munication that occurred in the environment.

• Object: Any object in the virtual environment should have a profile that it reveals to
inhabitant agents. This profile may include:
– The name and an ID of the object.
– The physical features such as dimension, shape and colour.
– The state of this object such as if it is in the normal position, upside-down,

visible or invisible.
– Intervention/interaction allowed with each particular object; for example, tree

object can be climbed but not carried, while a small box can be carried but not
climbed.

• Event: means any incidence that takes place in the environment in the range of an
agent’s sensors. Events may or may not require an intervention from the agent.
When an event occurs in the environment a profile should be created in the location
of this incidence. Any populated agent should be aware of this incidence the
moment this incidence becomes in the range of an agent’s range of sensing. Event
profile may include:
– Name of this event such as dancing, fighting and playing.
– Event reason: it is not a must that the virtual environment should reveal the

reason of events. In the physical world, the reasons of some events are clearly
announced, while others we have to discover the reason ourselves. For example
if an agent passes by two other fighting agents, they do not have to announce
that they are in disagreement.

– Intervention required: some incidents may require intervention from populated
agents. For example, if an agent falls on a road, the event should be “fallen
agent” with a required intervention “help”. Whether the agent will conduct the
required intervention or not will depend on features in the agent architecture
such as personality, priorities and past experience.

• Communication: the third dimension in the proposed virtual environment is the
communication. Communication includes any verbal or non-verbal signal in an
agent’s sensing range. Communication could be incorporated with an event, for
example meeting another agent is an event accompanied with communication
which is exchanging salutation messages. Communication dimension includes:
– The verbal or non-verbal messages, either uttered messages from another agent

or non-verbal signals from any object in the environment.
– Message details: such as the ID of the sender, whether the message is directed to

a specific receiver or it is undirected and broadcasted to any agent in the sur-
rounding area.

To demonstrate the interaction between an agent and the proposed CVE, an example is
proposed. Figure 2 shows an example where an agent (A1) can detect two objects in his
sensing range, i.e. a tree (T1) and another agent (A2). Each object has a list of features
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that can be detected by the agent (A1). Additionally, Agent (A1) can sense an event
which is when Agent (A2) is saluting and sending verbal message “how are you?” The
event does not require an intervention from the agent (A1); however, the verbal
communication detected requires an intervention which is a reply to the salutation.
Although the example in Fig. 2 is a simple one, the same strategy will apply to more
complex scenarios.

4.2 Designing an Agent with Distributed Abstraction

All of the above requirements need to be embodied and contained within a single IVA;
in addition, the IVA should be able to handle parallel processing as the inputs from a

Perception range of A1

Object
Name: box
ID: B1
Colour: gray
Dimension: 
 
Intervention: carry…

Object

Name: Tree
ID: T1
Colour: brown, green
Dimension: 

Intervention: climb; sit under…

A1 Board

Event:
Meeting A2
A2 saluting
Intervention: salute back

Communication:
Message from A2 “How are 
you”
Intervention “I am fine, 
thanks”

Object
Name: agent
ID: A2
Colour: white
Dimension, 1mX0.5mX0.5m 
Intervention: talk; fight… 

Perception range of A2

Objects:
T1, A2

0.5mX0.5mX0.5m
1.5mX0.75mX0.75m 

Fig. 2. An example of the interaction between an IVA and the content of the CVE
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CVE have the characteristics of being variant and dynamic. Creating an IVA that is
able to manage its verbal and non-verbal behaviour is a challenging task [36]. To
address these challenges, a MAS approach was utilized to design the IVA. MAS
consists of a group of autonomous agents that work independently on their own part of
the problem towards solving a bigger problem. Therefore, this feature could be used to
break down the complex work into smaller tasks that a single agent can achieve. The
proposed model used this feature to break down the process of receiving human
actions, planning for the next step and coordinating the verbal and non-verbal
responses. The proposed MAS model simulates the human brain in receiving stimuli,
processing the input data, managing the physical behaviour in VEs. The model consists
of three modules: reception, processing and communication modules, as shown in
Fig. 3. Each module includes a manager agent to coordinate the flow of information
from this module to another one. The main components of the proposed model are
briefly described as follows:
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Fig. 3. The proposed MAS approach to design IVA
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• The reception module is responsible for receiving both the actions of the human
user as well as the verbal messages of the human teammate. It consists of the
following agents:
– Sensor Agent: receives the stimuli from the surrounding CVE, filters these stimuli

to determine which ones are related to the current task, perceives the meaning of
these stimuli based on a rule-based technique and finally passes the filtered action
committed by the human to the Reception Manager Agent. The Sensor agent was
proposed to achieve the first requirement of perceiving autonomously the
teammate’s action.

– Receiver Agent: was presented to fulfil the second requirement of perceiving
autonomously the teammate’s verbal communication. The Receiver Agent was
designed to receive the verbal messages from human teammates, encode the
possible intention behind that message using a rule-based technique and finally
passes the digested message to Reception Manager Agent. These messages may
include requests from humans to IVA to perform specific actions or replies to the
IVA’s requests. Reception Manager Agent: its role is to couple both verbal and
non-verbal responses of the human teammate in order to give the Planner Agent
in the processing module a picture about the humans’ behaviour. A case-based
technique is used to couple verbal and non-verbal responses and to deduce a
proper conclusion. The case-based technique consists of a group of cases that
include both verbal and non-verbal responses of the teammate along with
conclusion/label for this case. For instance, if the teammate moves away from
the working area and says “be right back”, that would be perceived by Motor
Agent (see below) that the teammate is not interested in completing the shared
task; however, coupling the action with verbal responses and matching existing
cases, Reception Manager Agent would conclude that the teammate is going to
be back, hence the processing module should suspend planning for the next step,
until the teammate gets back.

– Receiver Agent: was presented to fulfil the second requirement of perceiving
autonomously the teammate’s verbal communication. The Receiver Agent was
designed to receive the verbal messages from human teammates, encode the
possible intention behind that message using a rule-based technique and finally
passes the digested message to Reception Manager Agent. These messages may
include requests from humans to IVA to perform specific actions or replies to the
IVA’s requests. Reception Manager Agent: its role is to couple both verbal and
non-verbal responses of the human teammate in order to give the Planner Agent
in the processing module a picture about the humans’ behaviour. A case-based
technique is used to couple verbal and non-verbal responses and to deduce a
proper conclusion. The case-based technique consists of a group of cases that
include both verbal and non-verbal responses of the teammate along with
conclusion/label for this case. For instance, if the teammate moves away from
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the working area and says “be right back”, that would be perceived by Motor
Agent (see below) that the teammate is not interested in completing the shared
task; however, coupling the action with verbal responses and matching existing
cases, Reception Manager Agent would conclude that the teammate is going to
be back, hence the processing module should suspend planning for the next step,
until the teammate gets back.

• The roles of the processing module are to contrast the human’s verbal reply along
with his/her action in order to figure out the human’s commitment to collaborate,
plan for the next step the agent should take and pass the result to the communication
module.
– Manager Agent: To achieve the requirement of working toward the task, the

Manager Agent behaves like the brain in humans. It receives responses from the
Reception Manager Agent, forwards the decision made by the Planner Agent to
the Communication Manager Agent and determines turn-taking in the collab-
orative activity. Manager Agent may manage turn-taking based on succession or
through negotiation between collaborators.

– Planner Agent: calculates the next step that the IVA should take. Next step
calculation is based on a group of rules and beliefs that are located in the Rules
and Knowledge Base. These rules may base on the best time to execute the task,
the shortest path, and so on. The rules are continuously updated according to the
behaviour of the teammate and the changes in the dynamic CVE. The continuous
update to these rules was proposed to achieve the requirement of adaptability to
changed teammate’s decision.

• The aim of the Communication module is to translate an IVA’s internal state and
intentions into a physical behaviour. The behaviour includes coordinated verbal and
non-verbal communication to give more believability to the IVA’s behaviour.
– Communication Manager Agent: works like the hub in the communication

module. It receives the message from the Manager Agent and decides which
agent is more suitable to express the IVA’s reaction to the human teammate’s
behaviour. In addition, the Communication Manager Agent will pass the values
given in the IVA’s responses such as location coordinates, numbers, name
agreement/disagreement and so on. The Communication Manager Agent works
in a similar way to the Reception Manager Agent in organizing both the verbal
and non-verbal response.

– Replying Agent: when the Communication Manager Agent calls it, the Replying
Agent selects the most appropriate message template fromMessage Norm DB and
fills in the template with the values passed by Communication Manager Agent.

– Motor Agent: is responsible for the physical behaviour of the IVA. The physical
behaviour includes animations, gestures and physical movements. The Motor
Agent will select a suitable animation from the animation DB, and use the data
fed by the Communication Manager Agent to generate appropriate responses
that are related to the context situation.
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5 Interactions of MAS-Based IVA with the Proposed CVE

Figure 4 demonstrates the interactions between the proposed CVE model and the
designed MAS-based agent. These interactions could be summarized as follows:

– Agent-agent interaction… in this level of interaction, MAS-based agent can receive
other agents’ verbal messages through the receiver agent, while the non-verbal
communication will be received through the motor agent.

– Agent-entity interaction… the MAS-based agent interact with the objects in the
CVE. This interaction includes recognizing the surrounding objects within the range
of sensing though the receiver agent and sensing the events/communications in
the environment that may be caused by another agent.
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Fig. 4. The interaction between an IVA and the content of the environment and another IVA

Towards a ‘Smart’ Collaborative Virtual Environment 183



6 Conclusion and Future Work

According to Aylett and Cavazza [37] the virtual environment is called intelligent when
an IVA is placed in it. This perspective of an intelligent virtual environment limits the
intelligence to what the agent will do in the environment. A few attempts have been
made to add some intelligence to the virtual environment itself; however, these
attempts were confined to adding some scripts to make the environment seems smarter
(e.g. [38]). In the last decade, the expectations of IVAs are greater. Moreover, virtual
environments are getting more complex due to its dynamic nature. Hence, IVAs’
interactions with their environment are getting more complex for the environment to
handle efficiently. In this paper, we presented a model of a smart CVE. The virtual
environment could be described as smart not because it contains IVAs, but because it
presented the contained objects and populated agents in a ‘smart’ manner. One of the
benefits of the proposed CVE is that it will guarantee the autonomy of the inhabitant
agents without the need to script these agents.

Additionally, in this paper, we have presented a MAS approach to design IVAs that
meet a number of requirements specific for CVEs. This design simulates humans in
separating input, output and processing modules. On one hand, the input module
coordinates verbal and non-verbal responses from the human teammate. One the other
hand, the output module coordinates the response of the IVA to express its decisions
and requests to the teammate. In addition, the processing module takes into account the
teammate’s actions and requests before planning for the next step. Furthermore, the
proposed MAS-based IVA addresses the issue of coordinating the internal side of IVAs
as represented in the intellectual behaviour and the external side of IVAs as represented
in the social and animation behaviour. This coordination was the focus of the proposed
MAS to develop believable IVA behaviour in a real-time collaborative situation where
decisions and communication should be dependent on the teammate’s own decisions
and communication. Another feature our MAS model focused on was the coordination
between the verbal and non-verbal communication in a human-like manner. Because
humans use both ways to express their internal state, a MAS-architecture mimicked this
property for more believable behaviour.

This paper presented a model to design a smart CVE. Additionally, the paper
presented a design of a MAS-based agent that should reside in the proposed CVE. The
proposed CVE design exhibited a number of features that included offering an abstract
level of interaction between the agents and the CVE object and the interaction among
the agents. However, this abstraction level is distributed in the MAS-based agents so
that the environment will not become overloaded with agents requesting access. The
proposed MAS-based agent exhibited a number of features, including parallel and
distributed processing, a manager agent for both verbal and non-verbal communication
and balancing between the reasoning capabilities of IVAs and its animated behaviour.
Despite the fact that numerous issues still need to be addressed for the system to be
used in a more complex situation, the initial implementation shows that the design is
practical and the IVA’s behaviour is plausible. Besides providing a tool to manage the
behaviour of IVAs, MAS could be extended to include further IVA capabilities by
adding additional modules each designed as agents. Future work will include
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re-implementing the proposed MAS using different technologies such as MAS pro-
gramming languages (e.g. Jason, Jade) with supporting game engine platform (e.g.
Unreal Tournament or Unity3D game engines).
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Abstract. We present here an autonomous agent-based system tightly
coupled with Geographic Information Systems (GIS). Our objective is
to model a city’s dynamic in order to foresee both its urban evolution
and the influence that the appearance of new settlements has on the
overall electricity demand. This environment is deployed on a GIS-based
Multi-Agent System platform where the geographical and communica-
tion components have been abstracted from the agent system onto the
environment. The configuration model uses geographical information in
order to improve the agents’ connection and perception of their surround-
ings. Based on the agent’s choices, we forecast urban evolution and derive
the expected increment in electric consumption. We have validated our
approach with real data and discuss here our conclusions.

Keywords: Agent-based simulation · Environment modelling · Geo-
graphic Information System · Spatial Load Forecasting

1 Introduction

One of the biggest challenges that electrical distribution companies face is the
growth in demand for electrical power. Under the current economic conditions,
this problematic boosts exponentially: distribution companies aim at getting
the most out of the existing infrastructures, especially when their renovation
can be really expensive. Thus, long term load forecasts are extremely useful for
energy suppliers, Distribution System Operators (DSOs), financial institutions,
and other participants in the electric energy generation, distribution, and retail
sectors.

The concept of Long-Term Load Forecasting (LTLF) involves social, eco-
nomic, policy and technical issues to which we must add the problems of having
limited amounts of information and the difficulty to operate with the scarce data
available [1]. In this sense, LTLF is closely linked to urban evolution since its
main models derive from the fields of geography and sociology. Nowadays, these
models are being combined with others stemming from Artificial Intelligence
(AI). This integration brings together the best qualities of both areas: AI pro-
vides the learning ability and the capacity to interpret the available data, while
social and spatial models define the natural behaviour and characteristics of the
c© Springer International Publishing Switzerland 2015
D. Weyns and F. Michel (Eds.): E4MAS 2014 – 10 years later, LNAI 9068, pp. 188–206, 2015.
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problem at hand. The technical literature shows a wide range of methodologies
and models for LTLF which can generally be classified into two broad cate-
gories: statistical methods and artificial-intelligence-based methods. Statistical
load forecasting methods comprise approaches mainly based on time series and
regression models [2]. In turn, artificial intelligence methods comprise method-
ologies like networks [3], genetic algorithms [4], support vector machines [5], and
fuzzy logic [6].

The growth in demand for electric power can be decomposed into two axes.
On the one hand, there is the so-called vertical growth, which represents a boost
in power demand due to an increment in the electrification of the existing house-
holds. On the other hand, the horizontal growth involves the appearance of new
settlements on an specific area, motivated by the natural evolution of the popu-
lation. The analysis of these phenomena is crucial since an improper estimation
may lead to the saturation of the electrical infrastructure and the loss of power
supply, along with the consequent economic losses and social distress.

In this venue, there is a special type of LTLF that deserves a closer look due
to its economic importance: Spatial Load Forecasting (SLF). SLF uses a model
built over a Geographic Information System (GIS) to get together data related
to electric distribution, land use, and development indicators. In this way, urban
infrastructure engineers will be able to predict, years in advance, any new load
and how it affects the electric system, helping them to determine whether the
current infrastructure should be upgraded or not. Failing to do so leads to the
inability to cope with load peaks, appearance of brownouts, blackouts and, in
general, low-quality supply. Furthermore, there is a lengthy amount of previ-
ous research on agent-based simulations using GIS, whether it is a geographic
phenomena or a phenomena with an important geographic component, covering
several aspects of Urban Modelling [7,8] and Housing [9].

Agent-Based Modelling (ABM) is experimenting a notable boost in new fields
lately due to its versatility and ability to model and simulate human behaviour
in very diverse disciplines, as seen in [10–12]. Paradoxically, though ABM is a
well-known and intensively used tool in related areas SLF remains terra incognita
for this paradigm. SLF is a crucial task for the majority of the stakeholders in
the electric sector due to its capacity to calculate the future evolution of energy
demand on a certain zone. So far, the only attempt to bring together ABM and
SLF is, to our notice, [13]. Still, ABM and GIS should be coupled tighter in
order to improve the quality of forecasts.

We advance the state of the art by describing our experience in integrating
an ABM and a GIS along with Volunteer Geographic Information in order to
obtain an improved SLF system. The remainder of the paper is divided as fol-
lows. Section 2 describes the most relevant research done in the field of agent
environments. Sections 3 and 4 give an overview of the Environment definition
and its application to SLF. Section 5 describes both the architecture and logic
schema of the application. Section 6 discusses the main results obtained. Section 7
introduces new research challenges in the field of SLF. And, finally, Sect. 8 draws
the conclusions of the paper and points out our future work.
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2 Related Work

Within MAS technologies, the Environment concept has been recognised as an
independent and living element which is essential to model dynamic real world
problems. Ten years ago, [14] already defined the scope and differences between
the agent environment and agents that inhabit it.

Real Environments are inherently dynamic, they change beyond the agents’
control, therefore this dynamism must be modelled explicitly as part of the sim-
ulated Environment by implementing processes that can change its own state.
In this sense, [15] defines the structural parts of the Environment that endow
the system with a logical definition and abstraction: entities, properties, activ-
ities, states and scenarios. They also propose a domain-specific formalism that
provides models and constructs to control dynamism in the simulated Environ-
ment and delineates how agents can manipulate such dynamism. The way in
which agents interact is conceptualised by interference laws which provides a
model with explicit means to define what kind of interactions between entities
are relevant for the simulation.

[16] defines a suitable software architecture that highlights the core function-
alities that should be present in every agent environment such as a deployment
context that comprises sensors and actuators with which the MAS interacts,
an abstraction level that bridges the conceptual gap between agent abstraction
and low-level details, as well as an interaction-mediation level that regulates
the access to shared resources and mediates the interaction between agents. [17]
establishes a design and implementation of an environment as a first-class entity
for a geographically based sgimulation system.

[18] establishes that MAS applications can be heavily influenced by the struc-
ture of the environment in which their agents operate. An appropriate environ-
ment definition can help and bring together real world scenarios and applications
by addressing key issues as time management, sensor processing, augmented real-
ity and virtual actuators. In this sense, Electronic Institutions can be exploited
as they provide the means to enforce and monitor the language, behaviour and
protocol within agents society, enabling the interaction between the environment
and the real world.

Agent environments are an exploitable design element in MAS. [19] defines
several mechanisms of the environment that address activities related to the
different levels of support that should be available in every agent system, such
as, an interaction mediation that enables agent to interact and communicate
in a flexible and uncoupled way, a centralised synchronisation that supports
the simultaneity of actions for system consistency, an overlay network that rep-
resents the relationships between agents, a resource and context manager for
representing context information and resources in an efficient way and notifica-
tion of contextual events for the production and delivery of event notifications
to create dynamic agent contexts.
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3 Environment Modelling

Following the bibliography, our Environment consists of three main pieces. On
the one hand, a Physical Environment and a Social Environment, which come
together to form the universe where both passive entities and agents are situated.
On the other hand, a Simulation Engine which is in charge of modelling the skills
these entities are able to execute (including their communication and perception
capabilities).

In fact, the skill sets defined by the Environment are the central point of
our vision. Skills are the degree of competence that differentiates and empowers
people to perform tasks and do so with agents and passive entities. The skills
serve both to characterize Entities in the MAS and are the way to perceive or
propagate actions into the Environment and other entities. However, every skill
needs to be contained within a context and behave under some restrictions. We
believe that the Environment needs to hold the responsibility of ensuring that
these constraints are met and limit the capabilities of each entity type. So, in
our vision, Entities use the skills provided by the Environment.

The Entities are the actors that interfere in the simulation. All of them are
derived from a parent skeleton that contains the basic attributes and procedures,
even if they do not make use of them. These entities can be categorised in two
different groups whether they have their own behaviour or they just react to
stimuli.

Autonomous Agents constitute the traditional agents in a MAS. They are
scheduled to follow a certain behaviour and can use the already mentioned skills
to interact with other Entities or with the Environment. Each agent type is
characterised by its set of skills and will have a state given by several private
parameters.

On the other hand, Passive Entities are those entities who, although having
some logic inside, just react to the actions of other Entities. Namely, they provide
or receive information from agents and other passive entities. Please note that
passive entities can make use of skills as well while honouring their restrictions.
Figure 1 shows a more comprehensive diagram of the proposed architecture.

To clarify the previous concepts we will present a toy example. Suppose that
we want to make a simulation of a road junction. In this case the Environment
would consists on the graph that represents the junction and a routing skill. The
simulation would be formed by several autonomous Agents including different
vehicles and pedestrians. The environment would provide them with the same
routing skill route(Point A, Point B; Agent Type) but depending on the
agent type it would compute different routes (pedestrian cannot use roads and
vehicles cannot use side walks). A traffic light on the road junction which only
changes its state from time to time would be a Passive Entity but an intelligent
traffic signal, that reacts to the amount of pedestrian and vehicles in the junction,
would be an Autonomous Agent.
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Fig. 1. Architecture of the environment and agents.

4 Environment Modelling for Spatial Load Forecasting

The MAS system presented hereby is able to simulate the variation in the load
of the transformers and electrical substations located on a certain city. To this
end, we have modelled the behaviour, evaluations and decisions a human takes
when choosing a new place to live. Figure 2 describes a simplified class diagram
of the code implementation. Our configuration is based on the environmental
approach proposed by Russel and Norvig [14,20] being:

Accessible: The agents have access to the whole environment.
Non-deterministic: A change in the state of the environment depends on the

management of threads by the Operating System on which the simulation is
running.

Dynamic: The environment can change while the agent deliberated.
Discrete: The number of percepts is limited and centralised.

Our Environment is populated by both Passive Entities, used for representing
the city infrastructure like substations, transformers and existing buildings, and
Autonomous Agents in the form of greenfields and buyers.

In line with this model, the pseudo code can be described as follows:



Environment Modelling for Spatial Load Forecasting 193

Procedure. RUN-ENVIRONMENT(state, UPDATE-FN, agents, termi-
nation)
Data: Initial state of the environment
while !termination(state) do

for greenfield in greenfields do
PERCEPT1[greenfield ] = Get-Around-Facilities(greenfield, state)
PERCEPT2[greenfield ] =
Get-Around-Constructed-Buildings(greenfield, state)
ACTION1[greenfield ] =
Determine-Dwelling-Characteristics[PERCEPT1,PERCEPT2(agent)]
ACTION2[greenfield ] = Set-Dwelling-Price[ACTION1(agent)]

end
for agent in agents do

PERCEPT[agent ] = Get-List-Greenfields(agent, state)
ACTION1[agent ] = Evaluate-Greenfields[PERCEPT(agent)]
while !assigned &&greenfields-available do

ACTION2[agent ] = Get-Greenfield[ACTION1(agent)]
end
ACTION3[CT ] = Add-Load[ACTION2(agent)]

end
state = UPDATE-FN(actions, agent, state)

end

4.1 Substations and Transformers

Substations and transformers are modelled as Passive Entities as their only func-
tion is to receive the power demands of the new households (see Sect. 4.4 below
for more details).

Each transformer t and substation s has a nominal power, a demanded power
(Et and Es) and a simultaneity factor (St and Ss). Since the electric grid and
its elements need to size their nominal power in order to manage demand peaks,
the simultaneity factor is critical. It is calculated comparing the maximum power
demand with the contracted power of the clients. In that way, it adjusts the the-
oretical total consumption of the clients to real conditions. Unfortunately, the
dataset we have does not include power measurements for the transformers (for
more details see Sect. 5.1). In fact, the lowest level where we had real measures
was at substation outputs. Therefore, we had to calculate the simultaneity fac-
tor St at this level, inheriting the simultaneity factor to all the transformers
connected to it. The formula used is:

St :=
rs

∑

t∈Ts

∑

c∈Ct

pc
,

where rs denotes the maximum measure registered at the substations output s,
Ts denotes the set of transformers connected to that substation output, Ct



194 A. Pijoan et al.

denotes the set of clients connected to transformer t and finally pc denotes the
contracted power of client c.

4.2 Buildings

Buildings are those residential dwellings situated in the environment. Every
building has its physical representation, concerning location, area, building lev-
els, and the electrical information regarding the amount of clients, the trans-
former they are connected to and how much power they demand. Buildings are
modelled as Passive Entities, so that greenfields (Autonomous Agents) can ask
them in order to forecast which type of construction they will harbour.

4.3 Greenfields

Greenfields are modelled as agents that emulate the land plots where new build-
ings can be constructed. Local authorities define a location as accessible to citi-
zens if it is within 5 min walking. That is, considering that the speed of a pedes-
trian is 4 km/h, this distance corresponds to 300 m. Therefore, every greenfield
has the skill to perceive its surroundings up to 300 m. As a first approximation,
these agents will search and calculate the straight-line distance di to several
public facilities (e.g. green zones, public transports, parking spaces, and the
like). Table 1 shows a comprehensive list of these public facilities. One of the
problems faced when working with developable land use, is that, though not
yet urbanised, some of these areas have already been split into smaller parcels
while others comprise a whole rural area. Although clipped greenfields give some
clues about the type of buildings they may contain, without such information,
it is still hard to determine the type of construction and how many citizens will
host each greenfield. So, as next step, in order to overcome this problem the
greenfield estimates, using a spatial moving window smoothing [21], the type
of building, number of dwellings and building levels expected according to all
adjacent buildings within 300 m.

Finally, based on the loaded information, each plot establishes its price per
square meter and searches for its nearest transformer substation, which the new
settlements will connect to. The process is as follows: first a Voronoi diagram is
calculated from the set of transformers that serve more than one client (single-
client transformers are owned individually, which means that they are not acces-
sible by the DSO). Then, the plot makes the connection with the transformer
whose area of influence presents the largest intersection with its own surface.

4.4 Buyers

The buyers are agents that emulate the people looking for a new house. Since
every person has different preferences about the presence of (or distance to) a
particular public facility, we have encoded them in a vector ai that describes
how important each infrastructure is to a particular agent i. Moreover, agents
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Table 1. Factors considered.

Factor Infrastructures considered

HEALTH Hospitals, clinics

EDUCATION Schools, colleges, kindergardens, universities

SPORTS Public swimming pools, pitch, stadiums

CULTURAL Art centres, theatres, community centres, conference centres,
museums, libraries, cinemas

FOOD SHOPS Food and convenience shops, department stores, supermarkets

have an individual budget limit and a degree of greediness depending on which,
they will query a different number of greenfield. Further, we have identified three
primary target groups sharing a common preference pattern: Elderlies, Families
and Singles. The accurate values of the preference vector have been issued using
a uniform random variable with the mean described in Table 2 and a 10 % of
standard deviation.

Table 2. Agents types and their preferences. Average values.

Type HEALTH EDUCATION SPORTS CULTURAL FOOD AFFORD

ELDERLIES 1 0.2 0 0.7 0.8 e1800

FAMILIES 0.9 1 0.7 0.3 0.5 e1750

SINGLES 0.2 0.2 1 1 0.8 e1700

When the agents have been loaded into the Environment, they select a num-
ber of greenfields that will be asked for information. The agent will then select
the plot that maximises the following function f :

f(a, d) :=

⎧

⎨

⎩

−1 if plot price > agent budget
∑

j∈J

aij
dj

in other case,

where ai is the preference vector of the agent i, dj is the distance from each
building to the infrastructure j (see Table 2) and J are the categories in Table 1.
Next, the agent will try to buy this plot. In case some other agent has already
bought it, the current agent will try to acquire its next preferred option until the
plots reach the minimum desired quality set. Please note that it may be possible
for an agent not to get a greenfield. Finally, the electrical load generated by
each agent is added to the corresponding electrical infrastructure following the
function l:

l(a, d) := Et + Ia · St ·A · Pc,

where Et is the previous load in that particular electrical infrastructure, Ia is
the electrical intensity of agent a (i.e. how much power will the new settlement
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need), St is the simultaneity factor (see Sect. 4.1) of the loads in that particular
infrastructure, A is the area covered by this plot, and Pc is the power intensity
of the area, measured as:

Pc :=

|B300|
∑

c∈C300

pc

|C300|
∑

b∈B300

sb
,

where B300 is the set of buildings within 300 m radius, C300 is the set of clients
within a 300 m radius, |·| denotes the set cardinality, pc is the contracted power by
client c, and sb is the total surface of the building (measured as the constructed
area times the floor count).

By combining these data, when an agent is assigned to an available greenfield,
the system analyses the consumption of the neighbouring parcels and size of the
buildings in order to predict how much power this new settlement will need. This
amount is then added to the total load of the transformer from which the plot
feeds.

Fig. 2. Simplified class diagram of the environment.
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5 Experimental Set-Up

5.1 Data

The experiments have been carried out with real data from Ciudad Real, a
Spanish middle-sized city with about 32 thousand power consuming clients and
a surface of 400 km2, including the surrounding municipalities of Miguelturra,
Carrión de Calatrava and Poblete. A map of the zone can be seen in Fig. 3.
Electric infrastructure and clients’ measurements were provided by the corre-
sponding utility (Gas Natural Fenosa, a Spanish DSO) while buildings and lan-
duse data was obtained by conflating the Spanish cadastre records with the VGI
source OpenStreetMap [22,23]. Both datasets are stored in a PostgreSQL rela-
tional database bolstered with the PostGIS geographical extension for manipu-
lating spatial data. Although the Spanish cadastre registers the price for each
plot, said information is private and is not provided in their open-data initiative.
The most detailed prices found were extracted from recent appraisals performed
by the appraiser Tasamadrid [24], which provides average prices per square meter
grouped by postcode.

Despite the spatial data being only a snapshot of the city in 2013, all electric
power clients are geolocated and have a registration date. So that, we can assume
that the date of the building’s creation is the same as the first client assigned
to that particular building. The information covers the years from 2005 to 2010.
Therefore, we get a complete historical map of the evolution of the city and
can determine which areas were inhabited between those years. Nevertheless, we
cannot ensure the moment in which the rural areas were zoned into greenfields
as the status of the plots change by local laws and is not recorded in public
databases.

5.2 Implementation

In a first approach, we developed the simulation based on the SPADE plat-
form. Written in Python, SPADE is a free software multi-agent system platform
based on the instant messaging XMPP technology [25]. The most noticeable
features include support for virtual organisations, presence notifications, com-
pliance with the FIPA standard, P2P communication between agents, remote
invocation of services using the standard XML-RPC, inclusion of multiple
knowledge-based engines, such as XSB-Prolog, SWI-Prolog, Flora-2, ECLiPse-
Prolog and SPARQL.

Although the implementation of agents in SPADE is quite straightforward, we
found some difficulties and drawbacks on the real experimentation. While SPADE
provides many utilities for the construction of the infrastructure, given that our
project does not need distributed agents, the heavy communication protocol that
SPADE deploys has become more of a limitation than a facility. As the amount
of agents starts to increase, operations like registration and intercommunication
between agents become slower. This makes big simulations very heavy or directly
unmanageable. Executions in a big server showed that the maximum amount of
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Fig. 3. Overview map of the test zone.

agents SPADE could create, while being fully functional, was around 600, includ-
ing both agents and passive entities which was not an acceptable amount.

In search for a highly abstracted and scalable solution to be used for future
simulations as well, we developed a second approach from scratch using C++
programming language. For this purpose, we have gone through Qt [26] which is a
widely used cross-platform framework for developing native applications. Qt uses
standard C++ with extensions including signals and slots for event handling,
metaobject compiler and the ability to detach pieces of code and moving them
to another thread.

Using Qt has allowed us to create a complete independent and robust simula-
tion engine based on our understanding of the Environment described in Sect. 3.
Regarding implementation, the main Environment class inherits from two parent
classes that correspond to the Physical World, containing location, geometries and
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geospatial indexes for all entities, and a Social Environment, which is in charge of
managing groups, knowledge and messages between entities. Spatial indexing and
operations are resolved using a PostGIS spatially extended PostgreSQL database
where all entities are situated for 3D measurements, spatial routing, nearest neigh-
bours searches and other. Messaging is built on the Paradigm of Qt signals and
slots, one of its central features and probably the part that differs most from the
features provided by other frameworks. As alternative to callback techniques, sig-
nals are events that any object can connect from 0 to N slots in a loosely coupled
way. A class which emits a signal neither knows nor cares which slots receive the
signal and it can take any number of arguments of any type.

In addition to the Environment, the wide range of skills is the main bulk
of the simulation platform. All skills are implemented by extending an abstract
base skill forming a big hierarchy tree grouped by physical and mental abilities.
Being the skills embedded in the environment makes it possible for both to
ensure all constraints and laws are satisfied.

For parallelisation and queueing management we have used the Threadweaver
system library included in KDE Frameworks [27]. By splitting the workload
into individual jobs, Threadweaver permits to define relationships, priorities and
dependencies between jobs working out the most efficient way to execute them.
Complementing parallelisation, Qt’s QMutex class provides access serialisation
between threads to critical resources and attributes. Both Agents and Passive
Entities extend an abstract base Entity class. The main difference between these
two is that Agents will extend a Threadweaver job and consequently will have
a Run() method for starting their behaviour in an independent thread.

Finally, the described architecture defines the backend of the system for the
simulation. But regarding visualisation and interaction, the system implements
a real-time light web frontend. Optionally, the backend can deploy an HTTP
Server with a RESTFULL API to access and modify from simulation parameters
to the entities themselves. Execution is displayed over an interactive map built
with LeafletJS [28] light maps library and real time events are pushed from the
backend to the frontend through Qt’s websockets.

6 Experimental Results

For each independent year which electrical growth we want to forecast, the vali-
dation process creates a historical map that describes the status of the buildings
of the city. In addition, it creates several distributions of agents in order to
contrast the process outcome with the real settlements:

Environment: The validation process identifies the buildings that were regis-
tered as such from a given year onwards and marks them as available green-
fields, considering the date in which the building was created is the same as
the oldest settlement registered.

Agent System: All the scenarios will create the same amount of agents as new
possible settlements that may appeared on that year. The main difference
will be the amount of agents of each type created at each case.
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Greediness: We have validated the system considering agents with and without
greediness. Obviously, the experiments that do not consider agent’s greedi-
ness obtain better results as the agents are aware of the whole environment.
We only provide results experiments where the greediness is considered as it
is a more realistic scenario.

Plots’ price: The unitary price of the plots is estimated using recent appraisals
performed by the appraiser Tasamadrid.

We have defined different metrics in order to test the results obtained with
this model. The error can be split into two categories: spatial errors and effective
errors.

Spatial Errors: Errors related to the spatial component of the forecast. Namely,
we measure how many agents correctly select the year y in which a greenfield
has been built (hitsy), how many agents incorrectly select the year y in which
a greenfield has been built (semiy) and how many agents have completely
failed by selecting a greenfield that even today has not been built (failsy).
Thus, we have measured:

hitsy :=
ay
by

, semiy :=
fy

∑2010
j=y+1 bj

, failsy := 1 − hits,

where ay denotes the number of agents that correctly select a plot that is
built in the year y, fy denotes the number of agents that incorrectly set on a
plot in the year y which in reality was built in the following years, by denotes
the number of plots that have indeed been built in the year y. The variables
hits, semi and fails are just mean values over of hitsy, semiy and faily
respectively.

Effective Errors: In this category we measure the load forecasting error. Tra-
ditionally, this error is calculated using the MAPE error [29]:

mape :=
1

6|S|
∑

s∈S

2010∑

y=2005

|rsy − psy|
rsy

,

where S denotes the set of transformers, | · | denotes the set cardinality
operator, psy denotes the model’s forecast for the maximum load of substation
s at year y and rsy denotes the real one.

Please note that, in this model, MAPE is not a reliable source of error as there
is a large variability among the experiments. This situation is due to technical
or electrical infrastructure exploitation issues that force a building to not be
always connected to its nearest transformer. In order to mitigate this problem,
a possibility solution is to measure the error one level higher in the electrical
infrastructure, that is, at substation level. However, this measurement would
blur the results and hinder the possibility to identify zones where the model is
not working correctly. Moreover, in terms of performance, the calculation of this
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value is quite complex due to the number of database queries that would need
to be performed which, in turn, increases the execution time of each simulation.

We have tested the forecasting ability of the model in two situations: for
one year ahead and five years ahead forecasts. Moreover, as a contrast method
we used random assignation of agents to greenfields. In order to calculate an
approximated p-value we have used a Monte Carlo approach. Namely, we have
repeated 100 times the random assignation for every year to approximate the
density function of the random variable hits + semi under the null hypothesis
that our method and the random Monte Carlo approach would derive the same
results. From the approximate density function we calculate the associated p−
value (see pval in Table 3).

In the first case, each year is evaluated independently, and the outcome is not
considered for the following evaluation. Figure 4a shows the empirical probability
density function constructed with 100 repetitions of the contrast method. Table 3
shows the numerical results for 1 year ahead forecast (mean value of the 5 years).
The first three columns represent the percentage of agent of every type that
we have created in that particular experiment. Please note that the 0/0/0 row
represent the Monte Carlo approach.

On the other hand, for the 5 year forecasting, we use a rolling forecast app-
roach [30]. Namely, we will use the foretasted results of the previous years to
predict the following year. As for the 1 year ahead case, Fig. 4b shows the empir-
ical probability density function constructed with 100 repetition of the contrast
method and Table 3 shows the numerical results of the five years ahead forecast.

Figure 4 shows, as expected, a large difference between the errors of the exper-
iment in the 1 year ahead forecasting and the 5 years ahead forecasting. Not only
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Fig. 4. Probability density function of the random variable hits + semi.
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do the results of the random assignation are better in the 1 year ahead forecast-
ing, but they also have considerably less variance. Table 3 confirms this expec-
tation. In the case of the 1 year ahead forecasting the mean value of hits+ semi
is around 70 %, while in the case of 5 years forecasting it is around 66 %. Please
note that this value is quite high considering that the random assignation has
achieved 58 and 43 % (respectively) in those experiments. The results of using
the proposed MAS model are in all cases significantly better than those corre-
sponding to the random Monte Carlo approach. Take into account that the first
row corresponds to the Monte Carlo approach, so in this particular case, we are
comparing the same results.

The distribution of hits and semi in both experiments is also interesting.
While in the 1 year ahead forecasting experiment semi is quite high (around
50 %) in the 5 years ahead forecasting experiment is near 30 %. The explanation
of these results is straightforward: in the 1 year ahead forecasting experiment,
the number of greenfields that (if occupied) score a semi decrease with every
year, while in the case of 5 years ahead forecasting they are constant. Please
note that it is impossible to score a semi in the last year of the 1 year ahead
forecasting experiment since we do not have information of the next year and
all the houses of previous years have already been occupied.

The results show how different agent type distributions affect the accuracy
of the prediction delivered by our model. As the typical house buyers in Spain
are families, it is expected that models with a high percentage of families agents
will perform better. The results from the 5 years ahead forecasting confirm that

Table 3. Experimental results for the different agent type composition. All measures
are in %.

Elderly Families Young 1 year forecast 5 years forecast

hits semi fails pval hits semi fails pval

0 0 0 0.14 0.44 0.42 0.41 0.18 0.25 0.57 0.45

100 0 0 0.17 0.49 0.34 0.00 0.34 0.31 0.35 0.00

0 100 0 0.22 0.50 0.28 0.00 0.34 0.35 0.32 0.00

0 0 100 0.19 0.55 0.26 0.00 0.29 0.37 0.34 0.00

50 25 25 0.17 0.51 0.31 0.00 0.30 0.35 0.35 0.00

25 50 25 0.21 0.49 0.30 0.00 0.33 0.34 0.34 0.00

25 25 50 0.17 0.55 0.28 0.00 0.27 0.37 0.36 0.00

80 10 10 0.18 0.49 0.33 0.00 0.34 0.31 0.35 0.00

10 80 10 0.22 0.49 0.29 0.00 0.34 0.35 0.32 0.00

10 10 80 0.19 0.55 0.26 0.00 0.29 0.36 0.34 0.00

60 20 20 0.17 0.50 0.33 0.00 0.34 0.32 0.35 0.00

20 60 20 0.21 0.49 0.30 0.00 0.33 0.34 0.33 0.00

20 20 60 0.18 0.54 0.28 0.00 0.28 0.37 0.35 0.00
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hypothesis. The best agent mix consists of considering only agents of Family type
while in the mixed cases, those with high percentage of Family agents perform
at least as well as the other. On the contrary, it seems that in the short term (1
year ahead forecasting), the Young are the main variable. This can be explained
as Young frequently change their homes, so in the short term, buildings near
their favourite places are occupied in a short time.

Qualitatively, we can see that the solutions follow the logic imposed by the
vector of preferences in the settlement of the agents. Figure 5 shows the distri-
bution of Elderly, Families and Young agents through three different heatmaps.
The first one shows how the final distribution of the Elderly and the localisation
of Clinics and Hospitals. In the second one, we present the final distribution of
Families and the localisation of Schools. Finally, in the third one, we present the
final distribution of Young agents and the localisation of Sport Centres. In the
three cases the final distribution loosely approximate to the localisation of the
corresponding infrastructures.

7 Open Challenges in SmartGrid Integration

To conclude this paper, we describe research challenges that, in our opinion,
are important for the further exploration of spatial load forecasting within MAS
environments.

New smart power grids demand a huge effort in redesigning and enhancing
current power networks, as well as integrating distributed generation, renew-
able energies and the electric vehicle. Contrary to the previous centralised and
unidirectional model (i.e., from centralised generation via the transmission and
distribution grids to the customers), smart grids will change to a bidirectional
power flow model that will include distributed generation (mainly from renew-
able sources) and the electric vehicle.

The power network operation needs to be safe, reliable and, as long as pos-
sible, cost effective. The new scenario enabled by the massive adoption of dis-
tributed generation and storage and the intensive application of information
technologies render the old centralised and static architecture infeasible. The
main reason is that gathering the complete information to achieve optimal man-
agement, if possible at all, would entail a prohibitive cost in infrastructure and
time. Therefore, a trade-off must be found between distributing the intelligence
and the costs associated to this decision.

The grid computing paradigm presents inspiring characteristics for modelling
agent environments that will help the smart grid vision come true. Indeed, grid
computing applications are based on a group of distributed nodes carrying out a
task coordinated by a central entity: power networks do have many nodes (e.g.,
meters and substations) and tasks that require participation and coordination
(e.g., invoicing: demands retrieving the consumption data from all clients, apply-
ing the corresponding prices, and notifying the clients) among all of the nodes.
MAS and agent environments can tackle this challenge by distributing the intel-
ligence all over the grid by means of individual intelligent agents controlling a
number of assets.
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(a) Elderly + Hospitals (b) Families + Schools

(c) Young + Sport Centres

Fig. 5. Distribution (heatmap) of the new settlement by type.

The management and configuration of power grids is closely linked with urban
evolution. Social dynamics dictate the appearance of new settlements as well as
the amount of energy demanded depending on the economic availability, the
age and preferences of new costumers and the own evolution of the city. The
edification of new infrastructures such as hospitals, schools, parks, malls; even the
construction of new roads heavily influence the citizens’ decisions and mobility.

Proper modelling of the dynamics of human behaviour will help in achieving
more accurate simulations. Though simulation of the exact process of human
thought is a complex task, the introduction of AI techniques in our system,
such as Fuzzy Logic, will allow to mimic human decision making by building a
wide range of behavioural rules in response to the stimulus and events of the
environment, instead of the fixed decision approach used in our experiments. This
modelling would then provide a parametrised sandbox to analyse and classify
what kind of infrastructural and social changes in the city influence the most
the variation of the electricity demand.
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8 Conclusions

This paper presents a novel Spatial Lad Forecasting model for Long Term Load
Forecasting based in a proper modelling of the Environment plus the coupling of
a MAS system with a GIS software. The use of open data from public adminis-
trations, such as Spanish cadastre and Volunteer Geographic Information allows
us to validate the model using real world examples. The success rate when issu-
ing 1 year ahead forecast is above 70 % and 66 % when issuing a 5 years ahead
forecasting. Although the model is achieving very good results, we are looking
forward to adding an evolutionary algorithm in order to train the model with the
optimal parameters. This will allow us to issue improved forecast that indirectly
will give us a better representation of the process.
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Abstract. Although Organization-Centered MAS (OC-MAS) are suitable for
developing open systems for distributed and heterogeneous environments, they
are still dependent on their underlying Organizational Models and associate
Organizational Middleware (or infrastructure) to execute properly. This makes
interoperability an issue worthy of consideration since agents must be able to
run on different organizational infrastructures in order to interact with several
OC-MAS. Such issue is closely related to the distribution of responsibilities over
environment technologies and subsystems, which is still under investigation
among the researchers on environments for MAS. In this paper we presented a
step towards providing an environment where the knowledge of different
organizational infrastructures could be available by the definition of organiza-
tional artifacts. Such artifacts are distributed throughout the environment in
order to provide interoperability among agents that have different underlying
organizational models, following the multiagent programming approach from
the JaCaMo platform.

1 Introduction

During the last decade, the research related to environments for MAS has evolved
considerably, but a variety of issues still remain open [14, 24, 28, 29, 33, 34]. This
collection of papers represents the first initiative on achieving some consensus in the
area and establishing some challenges for interested researchers. These challenges
include (i) the definition of mechanisms for addressing the responsibility of hiding the
complexity of coordination issues, to regulate agent activities, and perhaps to support
trust management [24]; and (ii) the identification of a general model for environment
abstractions [29]. Organizational models [7–9, 11, 18] are tailored for dealing with
coordination and regulation issues while modeling groups of agents in MAS; and
artifacts are already used to deal with coordination [26] and to describe an organiza-
tional model via its associate dimensions along artifact-based environments [16]. This
paper is related to the use of artifacts to abstract the knowledge from diverse organi-
zational models in order to provide interoperability between MAS that are designed
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according to different organizational models. In such sense, this could be seen as a step
towards addressing the aforementioned challenges for artifact-based environments.

Weyns and colleagues [33] stated that environments are first class abstractions
while engineering multiagent systems. They presented a definition for environments in
MAS, established levels of support they could provide for the MAS as well as a
reference model for guiding their design. They classify these levels of support in
(i) basic level, where the environment just enables agents with access to the deploy-
ment context; (ii) abstraction level, where the environment abstracts from agents the
low-level details to access the deployment context as well as some of the system
resources; and (iii) interaction-mediation level, where the environment supports access
regulation to shared resources and mediation of interaction between agents.

This paper is an integration of results presented at E4MAS 2014 [22] and WES-
AAC 2014 [30] with additional extensions related to the description of the models and
implementation of the artifacts. It is organized as follows: Sect. 2 presents an overview
of our proposal, Sect. 3 presents the background knowledge for understanding the
paper idea. Section 4 presents two existent organization models and their respective
translations into NPL. Section 5 details the implementation of AGR following an
environment-oriented approach. Section 6 discusses about what was done and com-
pares it with some related work followed, in Sect. 7, by the conclusion and further work
suggestions on the issue.

2 Overview

Our interest relies in environments that support mediated interaction, which is the case
of infrastructures for electronic institutions [9]. Similar to such infrastructures are the
ones that allow the execution of Organization-Centered MAS (OC-MAS). In OC-MAS,
there is a definition of a set of constraints that a group of agents adopts to achieve their
social purposes easily [21]. This set of constraints is usually described by organiza-
tional models, such as MOISE [18], AGR [11], and OperA [7] and their associate
infrastructures. For instance, S-MOISE [19] or JaCaMo [3] are infrastructures for
MOISE and MADKit [13] is for AGR. The same occurs with electronic institutions,
being ISLANDER [9] the underlying organizational model for AMELI [10].

The adoption of an underlying organizational model may provide the system
adaptability at runtime, whenever exposed to changes on the organizational structure
[20, 31, 32] or on the environment the system is situated in [31, 32]. This characteristic
makes such approach suitable for developing open systems.

However, the implementation of OC-MAS is usually dependent on organizational
infrastructures (OI) tailored to the OC-MAS underlying model, preventing the reali-
zation of open systems in their strict sense. In this scenario, to interoperate with several
OC-MAS, agents must be able to run on different OI, which is still an open problem.
This is an issue closely related to the distribution of responsibilities over environment
technologies and subsystems [28], still under investigation among the community that
research on environments for MAS. One solution that deals with this is ORA4MAS
[16], an approach that transfers to the environment the responsibility of the OI,
implementing it through the use of artifacts [23]. In such approach, the environment is
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considered a software entity composed of artifacts, and agents must be able to interact
with organizational artifacts, reducing the problem of joining an organization to simply
interacting with the environment. An implementation of that was given considering
MOISE and CArtAgO [27], which is an environment-oriented framework to support
the development of MAS based on artifacts. Moreover, CArtAgO was integrated with
several agent-programming platforms [25], including Jason [4].

Considering that MOISE and CArtAgO had already been integrated with Jason
[17, 25], respectively, Boissier et al. recently proposed JaCaMo [3], a platform that inte-
grates Jason, CArtAgO and MOISE by combining agent-oriented, environment-oriented
and organization-oriented programming paradigms. Also, JaCaMo adopts a normative
programming language (NPL) [15] to describe the organization constraints related to
coordination and control originally present inMOISE (the organizationalmodel in charge),
through the inclusion of a normative engine within the organizational artifacts. In this
approach, the implementation of the organizational artifacts relies on the NPL interpreter.

Therefore, we investigate if the NPL adopted by JaCaMo could be used to describe
other organizational models as a first step to address interoperability among agents
running on distinct organizations using an environment-oriented approach. This is so
because the organizational artifacts responsible for coordinating and controlling the
organization constraints only require a translation of the organization specification to
the NPL to run. Moreover, responsibility for coordination and control would be
abstracted within artifacts in artifact-based environments, described using the NPL, as a
step towards defining a mechanism as mentioned in the aforementioned challenge (i).
In addition, an environment with organizational artifacts that describe existing orga-
nizational models should be general enough considering the interaction-mediation
support the environment should provide, as a step towards addressing the aforemen-
tioned challenge (ii).

3 Background Concepts and Technologies

In this section we briefly describe background concepts and technologies that are used
along the proposed step towards achieving interoperability among agents that run on
different organizations in open systems.

3.1 Artifacts

An artifact is the main component of a working environment. It can be defined as a
passive entity, which can be managed by agents in order to perform a function [23].
Basically, it consists of an interface that agents use either to send commands or to receive
information. An agent requests the artifact’s functionality by triggering an operation
defined in it, which is similar to a method in an object. The artifact, in turn, commu-
nicates with the agents by updating its observable properties (analogous to attributes in
an object) or by sending signals. The CArtAgO framework implements artifact-based
working environments through an environment-oriented approach using Java.
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One of the main advantages in this approach, especially when dealing with
multi-agent systems, is that agents can now rely on the environment to get resources
and tools to promote their activities. For instance, because artifacts are easily accessible
by any agent in a workspace, they can be of great importance when coordinated
teamwork is necessary [27].

3.2 Organizational Models

Ferber [12] argues that organization is one of the basic concepts of any MAS, being
such organization a predefined unit or emerging from interactions occurring during
system execution. Lemaitre and Excelente [21] proposed a categorization for MAS as
organization-centered (predefined unit) or agent-centered (emergent from interactions)
according to the type of organization they present. Several authors [9, 21] had argued
that the adoption of an organization-centered approach is tailored for developing
Open MAS and, in order to realize such approach several organizational models were
defined [7, 11, 18, 31].

In this paper we advocate that, although organizational models were tailored for
developing Open MAS, their realization is dependent of dedicated OIs, while the
responsibility about the OI knowledge is left to the agent. Usually, organizational
models provide means for designing the way MAS should coordinate and control the
behavior of its agents, specifying constraints in a number of dimensions. Structural
constraints, for instance, define the roles and groups that will form the MAS, and
functional ones specify the way agents that play such roles within some group should
behave in order to achieve goals. Furthermore, some models provide rules and norms
for rewarding and/or punishing agents, depending on their behavior in an organization.
A study categorizing organizational modeling dimensions is presented in [6] and the
associated dimensions are: functional, structural, normative, dialogical and ontological.

Therefore, leaving the agents responsible for the organizational knowledge may
hamper the strict realization of open systems. In this context, organizational knowledge
refers to the knowledge of the organizational model and the OI. A proposal for moving
the responsibility of such knowledge to the environment was given by ORA4MAS,
considering MOISE as the underlying organizational model. Our proposal is using a
similar approach to move the knowledge of the AGR and OperA OIs to an
artifact-based environment, as a step towards providing interoperability among
Open MAS. To do so, a normative programming language must be introduced as
common language to describe organizational models.

3.3 Normative Programming Language

A Normative Programming Language (NPL) is, as the name implies, a programming
language based on norms. In general, a norm is a statement that describes an expected
pattern of behavior and the consequences of disregarding it. In addition, the language
also utilizes facts, which are statements of information, and inference rules.
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Usually these norms can be one of three types: obligation, permission or prohibition
and are enforced by either sanctions or regimentations [15]. An obligation constitutes a
behavior that must be complied; permission refers to an allowed behavior and, of
course, a prohibition is a disallowed behavior.

In the case a violation to a norm occurs, the appropriate enforcement strategy
should activate. Regimentations are strategies to prevent a norm infringement in the
first place; therefore, no actions that would result in regiment infraction are possible.
Meanwhile sanctions are punitive strategies that become effective after an infraction, so
actions that fall under a sanctioned norm are indeed possible. Regimented norms are
primarily designed as means to preserve the system from otherwise harmful actions.
Sanctioned norms, on the other hand, should encourage desired behavior without
effectively compromising autonomy of the concerning party.

A program described in the NPL consists of (i) a set of facts and inference rules and
(ii) a set of norms. Norms have unique identifiers, activation condition and conse-
quence. Consequence could be of types fail or obligation. Figure 1 shows the syntax of
the NPL, where np is a program in NPL.

A successful implementation of MOISE by means of translating it to a simplified
NPL containing only two constructs, obligation and regimentation, is described in [15].
This approach used the aforementioned ORA4MAS platform and had the NPL engine
embedded in the organizational artifacts, as shown in Fig. 2. It was further integrated
with Jason, originating JaCaMo.

In conclusion, the NPL serves to regulate behavior and, specifically in the case of
MAS, it may be used to regulate agent behavior as prescribed by organizational
models. Nevertheless, to make this possible, it is necessary [15]: (i) an interpreter
capable of running the NPL; and (ii) the translation of the organizational specification
into a normative specification.

The possibility of running distinct organizational models using the same interpreter,
just by making adequate translations, led us to investigate the adoption of NPL as a step
to address the interoperability problem. The NPL, in this context, would be a common
language to describe organizations.

Fig. 1. NPL syntax (source [15]) - non-terminals atom, id, var and number corresponds,
respectively, to predicates, identifiers, variables, and numbers, as used in Prolog.
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Two organizational models are described in Sect. 4, with their respective transla-
tions into NPL. They were chosen from a list of models analyzed by Coutinho et al. [6]
which was used to identify common organizational dimensions.

4 Translating Organizational Models to the NPL

4.1 AGR

Description. The AGR (Agent/Group/Role) model [11] was developed aiming at
providing a simple and concise way to describe multiagent organizations. As its
acronym suggests, it is based on three primitives: agents, groups and roles. Agents are
proactive, autonomous and communicative entities that populate these organizations by
assuming certain roles within groups. Groups can be defined as sets of agents that have
some similarities. Lastly, roles are abstract representations of agent functionalities in a
group.

In this model, a group is described by a group structure. Such structure contains all
the characteristics that define a group, for example its name and the roles agents are
allowed to play in it. Thus, it is possible to conceive groups as instances of group
structures.

In AGR, two types of constraints between roles are defined, namely correspon-
dence and dependence. If there is a correspondence constraint between two roles A and
B, it means that an agent who plays A will automatically play B. In its turn, a
dependence constraint between A and B means that playing A is a prerequisite to play
B. This model also specifies that, in order to adopt a role, an agent should be member of
the group where it is defined.

Finally, the description of this model states that it is possible to define interaction
relationships between roles, in order to constrain the communication performed by

Fig. 2. General view of the organizational Scheme Artifact in MOISE (source [15])
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agents. Moreover, communication is allowed only if the involved agents are in the
same group. However, no detailed explanation about the nature of these interactions is
provided, leaving it as an open aspect for implementation.

There are two organizational dimensions in AGR according to the study presented
in [6]. First, the notions of groups and roles compound the structural dimension.
Furthermore, the definition of interactions between agents forms the dialogical
dimension. The translation will organize facts, rules and norms according to their
corresponding dimension, in a similar way as done in MOISE (see Sect. 5.2).

Translation to NPL. In order to describe the AGR model in terms of normative
language, it is necessary first to obtain facts and rules that are inherent to the model,
and then define the correspondent norms in terms of them.

Facts. The following facts describe the structural dimension of AGR. Some of the
notations used here are suggested in [11].

– member(x,g): represents that agent x is member of group g;
– plays(x,r,g): agent x plays role r in group g;
– GStruct(g,gs): group g is described by group structure gs;
– roleIn(r,gs): r is a role defined in group structure gs;
– correspondence(role1, gs1, role2, gs2): there is a correspondence

constraint between role1 defined in gs1, and role2 defined in gs2, meaning
that an agent who plays role1 will be obligated to play role2;

– dependence(role1, gs1, role2, gs2): there is a dependence constraint
between role1 in gs1 and role2 in gs2, meaning that playing role2 is a
prerequisite for assuming role1.

The next facts relate to the dialogical dimension of AGR.

– interact(role1,role2): role1 has an interaction relationship with
role2, meaning that an agent playing role1 can send messages to another agent
playing role2. Thus, an interaction is a directed relation;

– msg(x,y,content): agent x has sent to agent y a message content. It is
assumed content is of the form achieved(g), meaning that x told y to achieve g;

– achieved(a, g): indicates that goal g was achieved by agent a.

Next, inference rules that help describe the state of the organization will be pre-
sented. Both rules shown here relate to the structural dimension of AGR.

Rules. The first rule tells whether a certain role is defined in a group instantiated in the
organization. Remember that roles are described directly in a group structure.

rdefined(G,R) :- Gstruct(G,GS) & roleIn(R,GS).

The second one informs if two agents are members of the same group, i.e. whether
there is a group g in which both agents participate.

samegroup(X,Y) :- member(X,G) & member(Y,G).

Finally, it is possible to define the set of norms that characterize this model.
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Norms. At first, we start with the norms related to the structural dimension.

– Norm role_member: if an agent X plays a role R in a group G, he must be a member
of this group.

role_member: plays(X,R,G)& not member(X,G)-> fail
(role_member).

– Norm role_def: a role must be defined in a group structure for an agent to adopt it.

role_def: plays(X,R,G) & not rdefined(G,R) -> fail
(role_def).

– Norm role_corresp: implements the correspondence constraint between roles.

role_corresp: plays(X,Role1,G1)& GStruct(G1,GS1)& GStruct
(G2,GS2)&
correspondence(Role1,GS1,Role2,GS2)->
obligation(X,role_corresp,plays(X,Role2,G2),now + t).

– Norm role_dep: implements the dependence constraint between roles

role_dep: plays(X,Role1,G1)& not plays(X,Role2,G2)&
GStruct(G1,GS1)& GStruct(G2,GS2)&
dependence(Role1,GS1,Role2,GS2)->
fail(role_dep).
The next norms are related to the dialogical dimension of AGR.

– Norm group_comm: two agents can communicate with each other only if they are
members of at least one group in common.

group_comm: msg(X,Y,C)& not samegroup(X,Y)-> fail
(group_comm).

– Norm inter_comm: two agents may communicate only if there is an interaction
defined between them.

inter_comm: msg(X,Y,_) & play(X,R1,_) & play(Y,R2,_) & not
interact(R1,R2)-> fail(inter_comm).

– Norm msg_obl: this norm interprets messages as a means of delegating obligations.
In this view, if an agent X can send messages to Y, then X has authority over Y.

norm msg_obl: msg(_,Y,C) -> obligation(Y, msg_obl, C,
now + t).

4.2 OPERA

Description. OperA is a model devised to describe open MAS using formal logical
semantics and aims to ensure interaction and collaboration among its members while
maintaining autonomy between society design and agent design [7]. The structure of
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the model is split into three separate sub models: the Organizational Model, the
Interaction Model and the Social Model.

The Organizational Model is a description of the system itself, that is to say, it
describes how the system is organized. This description is further segmented into four
components: social, communication, interaction and normative structures. The Social
Structure specifies the existing roles, as well as the goals and relations associated with
them. The Communication Structure defines the ontology and communication language
used in the system. The Interaction Structure contains the possible system states (inter-
action scenes) and describes the allowed transitions between them. Finally, the Norma-
tive Structure describes norms imposed upon the roles and interaction scenes’ norms.

The two remaining sub models regulate behavior within the MAS. The Social
Model manages agents’ enactment of roles whereas the Interaction Model serves to
adjust role-enacting agents’ actions during interaction scenes.

The analysis done in [6] identified five different modeling dimensions in OperAmodel.
They are the structural dimension, encompassed by the social structure and social model;
the functional dimension, represented by the interaction structure and the interaction
model; the dialogical and ontological dimensions, both housed within the communication
structure; and the normative dimension, associated with the normative structure.

Translation to NPL. In the following, we describe OperA model using the normative
programming language, beginning with the facts and rules related to its structural
dimension.

Facts.

– plays(x,r): indicates that agent x plays (enacts) role r;
– objective(obj,r): indicates that objective obj is an objective of role r;
– sub-objective(sobj,obj): indicates that objective sobj is a sub-objective

of objective obj;
– contains_sub-objectives(obj): indicates that objective obj has

sub-objectives;
– right(rt,r): indicates that rt is a right of role r;
– completed(obj): indicates that requirements of objective obj have been

fulfilled.

Rules. This rule indicates whether an objective has been achieved. An objective is
achieved if all of its sub-objectives are achieved or if, in the case it has no
sub-objectives, it has been completed.

achieved(Obj):-contains_sub-objectives(Obj) &
.findall(Sobj,sub-objective(Sobj, Obj),L) &
allAchieved(Sobj) |  
completed(Obj) & not contains_sub-objectives(Obj). 

allAchieved([H|T]) :- achieved(H) & allAchieved(T). 
allAchieved([]).

The .findall procedure is defined in Jason. In the code presented above, the
method populates L with instances of Sobj that makes sub-objective(Sobj,
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Obj) be a logical consequence of the set of system facts. The allAchieved rule takes
a list as argument, and splits it in the first element H and the remaining items T. It checks if
every element of the list is achieved in a recursive fashion. The allAchieved([]) is
the base case of the recursion, specifying it to stop with the empty list.

In sequence, the facts, rules and norms related to the OperA functional dimension
are presented.

Facts.

– in_progress(s): indicates that scene s is in progress;
– finished(s): indicates that scene s has finished;
– start(s,x): indicates that agent x has initiated scene s;
– end(s,x): indicates that agent x has terminated scene s;
– scene_manager(x): indicates that agent x may initiate and terminate scenes;
– from(t,s): indicates that scene s transits from transition t;
– to(s,t): indicates that scene s transits to transition t;
– and(t): indicates that scene transition t is an AND operator;
– or(t): indicates that scene transition t is an OR operator;
– xor(t): indicates that scene transition t is a XOR operator;
– part(l,s): landmark l is part of scene s;
– order(l1,l2): landmark l1 is ordered before landmark l2;
– state_requirement(obj,l): landmark l requires that objective obj is

achieved.
– state_negative_requirement(obj,l): landmark l requires that

objective obj is not achieved.
– scene_requirement(l,s): scene s requires that landmark l has been

reached for before starting.

Rules. Scene transitions are valid when the transition requirement is satisfied. The
requirement depends on the transition type: AND transitions require that all scenes
leading to the transition be finished, OR transitions require that at least one scene
leading to the transition be finished and XOR transitions require that one, and only one,
scene leading to the transition be finished.

Valid(T) :- and(T) & .findall(S,to(S,T),L) &  
allFinished(S) |  
or(T) & (to(S,T) & finished(S) |  
xor(T)&.findall(S,to(S,T),L) & oneFinished(S).

allFinished([H|T]) :- finished(H) & allFinished(T). 
allFinished([]).

oneOrMoreFinished([H|T]):- finished(H)|
oneOrMoreFinished(T)

oneFinished([H|T]):-finished(H) & not 
oneOrMoreFinished(T) |
not finished(H) & oneFinished(T).
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A landmark is considered reached if all state requirements and state negative
requirements are met, and all previous landmarks have also been reached.

reached(L) :- 
.findall(Obj,state_requirement(Obj,L),ListObj) & 
allAchieved(ListObj) &
(.findall(Obj,state_negative_requirement(Obj,L),ListObj)&
noneAchieved(ListObj)
& .findall(PL,Order(Pl,L),ListPL) & allReached(ListPL).

noneAchieved([H|T]) :- not achieved(H) & noneAchieved(T).
noneAchieved([]).

allReached([H|T]) :- reached(H) & allReached(T).
allReached([]).

Norms.
ended_without_permission: end(S,X) & not scene_manager(X)
-> fail(ended_without_permission)

started_without_permission: start(S,X) & not sce-
ne_manager(X) -> fail(started_without_permission)

started_at_inappropriate_time: start(S,X) & from(S,T) &
not valid(T) -> fail(started_at_inappropriate_time)

and_transition: valid(T) & from(S,T) & and(T) & 
scene_manager(X) ->
obligation(X,and_transition,start(S,X), now+Ts)

xor_transition: xor(T) & ( in_progress(S1) | finished(S1) 
& from(T,S1)) & ( in_progress(S2) | finished(S2) & 
from(T,S2)) -> fail(xor_transition)

started_without_requirements: start(S,X) &
scene_requirement(L,S) & not reached(L) ->
fail(started_without_requirements)

Finally, the model’s explicit norms are described. Each of these explicit norms has
a unique id and can either be active or inactive depending if the activation and ter-
mination conditions are met or not. They also have a maintenance condition that refers
to the behavior regulated.
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Norms.
obligation_norm_id: (activation condition) & 
not(termination condition) & (maintenance condition(R)) 
-> obligation(X, obligation_norm_id, action, deadline)

permission_norm_id: (activation condition) & 
not (termination condition) & (maintenance condition(R))
& not right(RT,R) -> fail(permission_norm_id) 

prohibition_norm_id: (activation condition) & 
not (termination condition) & (maintenance condition(R))
-> fail(prohibition_norm_id) 

The following assumptions were made in the OperA’s translation to the normative
language:

– Group notion was not included in this description.
– Links existing between roles have also not been included here as they can be

expressed through explicit norms.
– An action constitutes of any behavior that causes an observable change in the

system (such as choosing to enact a role, achieving an objective or initiating/
terminating a scene).

– The requirements for a scene to be initiated are represented by a list of landmarks.

Having described the models using the NPL, we are able to analyze if existing
organizational artifacts could be reused by simply feeding them with NPL descriptions,
or if extra modifications are required. The development for AGR is presented in the
next section.

5 Work on AGR Implementation

5.1 Overview

One of the main reasons that makes the adoption of NPL interesting on the translation
is the possibility of reusing the normative engine of ORA4MAS, used to implement an
OI for MOISE, on the implementation of an infrastructure to run AGR. This process
involves making minor modifications on the interface of the organizational artifacts, in
order to reflect the particularities of the model.

The scheme presented in Fig. 3 illustrates the required adaptations on ORA4MAS to
allow it to run the presented AGR translation. First, it is necessary to define a set of
dynamic facts, which are used to describe the state of the organization (e.g., which agents
are playing a role). Then, a set of operations must be specified on the artifacts to allow
agents to interact with the organizational infrastructure, generating dynamic facts that may
trigger the activation of norms. If this scheme is compared to the one depicted in Fig. 2, it
is possible to notice that the AGR artifact receives the NPL file directly as input, whereas
the MOISE version gets a specific OML file, and internally translate it to NPL. This
modification was essential to remove the dependency of the artifacts with MOISE.
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It is important to point out that these adaptations do not change the requirements over
the agents. Since the NPL language remains unmodified, an agent that understands
obligations, running in aMOISEorganization, should runwith this AGR implementation.

Since the artifacts for AGR will be heavily based on existing ones used in MOISE,
it is convenient to explain briefly how they are originally implemented.

5.2 MOISE’s Organizational Artifacts Implementation

As explained previously, ORA4MAS is an artifact-based solution, implemented on top
of the CArtAgO framework. Thus, it basically consists in an object-oriented imple-
mentation of a set of organizational artifacts. The class diagram shown in Fig. 4 pre-
sents relevant classes of ORA4MAS, as found in JaCaMo.

The main class in this diagram is OrgArt, which contains the normative interpreter
NPLInterpreter and is responsible to parse the OML file and initialize the orga-
nizational artifacts with static facts, rules and norms. The CollectiveOE class is
responsible to keep track of the state of the organization, defining dynamic facts and
providing them to the normative engine through the DynamicFactsProvider
interface (this is detailed in the next section). The GroupBoard and SchemeBoard
classes implement the actual artifacts, each of them with an associated CollectiveOE
instance (Group and Scheme, respectively). It is interesting to notice that each of these
artifacts deal with a specific dimension of MOISE [6] (structural and functional,
respectively). When instantiating a GroupBoard, for instance, the artifact loads facts,
rules and norms related to the structural dimension, labeled as “group” in the NPL file.

Analyzing the code of the artifacts, it is possible to infer what actions are taken to
update the state of the organization when an operation is triggered by an agent. Figure 5
shows a sequence diagram with the methods called by GroupBoard when an agent
triggers its adoptRole operation. First, the addPlayer method on Collecti-
veOE is called to add the dynamic fact plays(a,r,g), meaning that agent a

Fig. 3. Adaptations performed on ORA4MAS to allow compatibility with AGR’s NPL
translation

Towards Organizational Interoperability Through the Environment 221



adopted role r in group g. These facts are stored in lists either in the CollectiveOE
class or in one of its children. Then, verifyNorms is called to check if the addition
of the fact violated a norm or triggered an obligation. If no violation occurs,
GroupBoard notifies any linked artifacts about the change with notifyObserv-
ers and the dynamic fact is made visible by agents by defining it as an observable
property. However, if a violation is detected, the state of the organization is reverted,
and a failure signal is emitted.

Fig. 4. Class diagram of MOISE artifacts in JaCaMo, showing relevant classes only [30]

Fig. 5. Sequence diagram illustrating the main operations taken by the GroupBoard when the
adoptRole operation is triggered
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This analysis makes it possible to use MOISE artifacts as a starting point for
implementing the ones for AGR, as explained in the next section.

5.3 Implementation of AGR Artifacts

The first step in designing artifacts for AGR is to define how many of them are
necessary to represent an AGR organization. For instance, MOISE adopted Group-
Board and SchemeBoard to represent its structural and functional dimensions [6],
respectively. Likewise, it seems natural to adopt a GroupBoard for AGR, since it
models essentially the structure of the organization. The dialogical dimension of this
model is implemented into the GroupBoard artifact as well, since communication
constraints are strongly dependent on the definition of roles. Then, in order to remove
dependency with MOISE, the initialization procedure of OrgArt must be modified,
removing the parser and making it accept an NPL file directly. This is quite straight-
forward if we compare Figs. 2 and 3. The only necessary modification is to feed the
NPL engine directly, bypassing the OML to NPL parser.

The following operations were defined in the GroupBoard artifact.

• enterGroup: this operation is responsible to generate the fact member(x,g),
which is related to an agent’s membership to a group;

• adoptRole: reflects the adoption of a role, generating the fact play(x,r,g);
• sendMessage: implements the dialogical part of the organization. Generates a

fact msg(x,y,c), where c should be in the form achieved(g);
• achieved: this operation is triggered by an agent when it achieves the obligation

expressed in a message. Generates the fact achieved(g).

Each of these operations behave in a similar way as shown in Fig. 5, dealing with the
corresponding dynamic facts and checking the normative constraints when triggered.

Now, it is necessary to deal with the definition and storage of the dynamic facts,
allowing them to be supplied to the normative engine when necessary. This is done
exactly as in MOISE: the GroupBoard has a Group class associated, where the
dynamic facts play, member, gstruct, msg and achieved are defined and the
corresponding lists are created for their storage.

Lastly, it is necessary to provide a way for the normative engine to know where each
dynamic fact is generated and stored. This is trivial for this implementation of AGR,
which has only one organizational artifact, but is essential for more complex models. To
solve this issue, the authors of ORA4MAS defined the DynamicFactsProvider
interface, which specifies two methods: isRelevant and consult. The first one
informs whether an artifact is responsible to hold a given fact, while the second one
returns the list corresponding to the fact. Thus, for AGR, it was enough to enumerate the
dynamic facts generated in GroupBoard and map each fact to its list.

5.4 Example: Write Paper Organization

In order to test this implementation, a simple organization was instantiated, consisting of
only one group with two roles. The role “Editor” has authority over “Writer”, meaning
that an editor can send messages delegating tasks to a writer. This example was inspired
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by the writing paper example using MOISE, presented at [16]. The organization
structure is represented in Fig. 6, using the same notation as suggested in [11].

The input NPL file corresponding to this organization is presented below.

scope group(writePaperGr) {

//Facts for the write paper group
roleIn(editor, writePaperGr).
roleIn(writer, writePaperGr).
interact(editor, writer).

//Rules
//Those are the same for any AGR group
rdefined(G,R) :- gstruct(G,GS) & roleIn(R,GS).
samegroup(X,Y) :- member(X,G) & member(Y,G).

//Norms
//These are the same for any AGR group
norm role_member: 
play(X,R,G) & not member(X,G) -> fail(role_member).

norm role_def:
play(_,R,G) & not rdefined(G,R) ->  fail(role_def).

norm role_correspondence:
correspondence(Role1, Gs1, Role2, Gs2) & 
play(X, Role1, G1) & gstruct(G1, Gs1) & 
gstruct(G2, Gs2) ->
obligation(X, R ole_correspondence, play(X, Role2, 
G2),`now`+`30 minutes`). 

norm role_dependence:
dependence(Role1, Gs1, Role2, Gs2) & 
play(X, Role1, G1) & not play(X, Role2, G2) & 
gstruct(G1, Gs1) & gstruct(G2, Gs2) ->
fail(role_dependence).

norm inter_comm:
msg(X,Y,_) & play(X,R1,_) & play(Y,R2,_) &
not interact (R1, R2) -> fail(inter_comm).

norm group_comm:
msg(X,Y,_) & not samegroup(X,Y) -> fail(group_comm).

norm msg_obl:
msg(_,Y,C) & play(X,R1,_) & play(Y,R2,_) & interact 

(R1, R2) ->
obligation(Y, msg_obl, C, `now`+`30 minutes`).

}
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The next step is to design two Jason agents to interact in this group, called Alice and
Bob. Alice will create a CArtAgO workspace and instantiate one AGR GroupBoard
artifact, specifying the above NPL file. Then, she will join the group she has just
created and adopt the role editor (if she did not join the group, norm role_member
would fail). After that, she waits for Bob to adopt role writer, and sends him a message
to achieve the goal of writing a section. The code for Alice is shown below.

/* Initial goals */
!create_org.

/* Plans */
//Create a CArtAgO workspace and the write paper group 
+!create_org
 <- createWorkspace("ora4mas");
joinWorkspace("ora4mas", _);

//instantiate the GroupBoard, and point to the NPL
//file
makeArtifact("wpaper", "agr.ora4mas.nopl.GroupBoard",
["src/AGR.npl", "writePaperGr", false, false],
GrArtId);

focus(GrArtId);

//wait for Bob and send him the message to write
.wait(+play(bob, writer, "wpaper"));
sendMessage("bob",
"achieved(write_section)")[artifact_id(GrArtID)].

Bob tries to enter the workspace and group created by Alice, and when he succeeds
to do so, he adopts role writer. Then, he waits for Alice to send her order. Bob’s Jason
code is shown below.

Fig. 6. Organizational structure used for testing AGR’s infrastructure
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!enter_org.

/* Plans */
+!join
 <- joinWorkspace("ora4mas",_).

+!enter_org
 <- lookupArtifact("wpaper", ArtID);
//enter the group created by Alice, and adopt role 
//writer

  enterGroup[artifact_id(ArtID)];
  focus(ArtID);
adoptRole("writer")[artifact_id(ArtID)].

  
+!write_section
 <- //do some work…
//tell the organization that the goal is achieved

  achieved(write_section)[artifact_id(ArtID)].

/* Initial goals */
!join.

The code below is necessary for any agent intending to participate in the organi-
zation. They define plans that handle the correspondence constraint, which is the
obligation to play a certain role, and the obligation resulting from a message. Therefore,
they are included in both agents.

//plans to deal with role correspondence
+obligation(Ag,Norm,play(_, Role, Group),Deadline)

: .my_name(Ag)
<- !adopt_role (Role, Group).

+!adopt_role (Role, Group)
<- lookupArtifact(Group, GroupID);
adoptRole(Role)[artifact_id(GroupID)].

//plan to deal with obligation from messages
+obligation(Ag,Norm,achieved(Goal),Deadline)

: .my_name(Ag)
<- !Goal.

Notice that this code is the only knowledge of AGR that agents are required to have
(apart from knowing what type of artifact to instantiate), and even so, they are merely
checking the content of obligations for AGR-specific constructs. This is very similar to
what is found in the code of agents used to run the MOISE write paper example1. The
difference is that they check for contents specific to MOISE in the obligations.

1 Available at http://moise.sourceforge.net/.
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Figure 7 shows Bob’s beliefs after running the agents for a few reasoning cycles. It
is clear that his beliefs reflect the state of the organization, which both agents get from
focusing on the organizational artifact. Also, notice that Alice’s message triggered the
norm msg_obl, generating the obligation directed to Bob, who in turn responded
accordingly.

6 Discussion

The results of the work done in [15] suggest that the adoption of the proposed nor-
mative programming language and its artifact-based interpreter is a viable solution for
transferring the responsibility of one OI to the environment. We advocate that this
could be generalized for existing OIs as a step towards the interoperability problem for
organizational models. The key idea is to investigate the possibility of translating
different organizational models other than MOISE to the NPL, that was left open in
[15], and analyze whether the implemented infrastructure for the interpreter fits with the
translation. Our initial work consisted in understanding the main aspects of two
organizational models, namely AGR and OperA, and describing them in terms of facts,
rules and norms. The results presented in Sect. 4 shows that this translation is feasible,
at least for these two models.

The next step was checking whether the artifact-based interpreter for MOISE, as
implemented in JaCaMo, could be used with our translation in order to effectively run
the organization. Preliminary results presented in Sect. 5 for AGR suggests that it is
possible to manipulate the existing artifacts to accept a general NPL file and, with a
number of adaptations, it is also possible to allow the execution of the organization.

For OperA, analyzed in Sect. 4.2, which incorporates both the functional and
structural dimensions, but also dialogical, normative and ontological ones, an addi-
tional artifact may be required to deal with the dialogical dimension. In addition, the
existing structural and functional artifacts may suffer modifications to incorporate
elements not present in other organizational models. Moreover, since the ontology is
directly translated into NPL facts, there is no need of an artifact dedicated to the
ontological dimension. Finally, we presume that there is no need for a normative

Fig. 7. Bob’s beliefs after running the agents
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artifact, since the normative engine embedded in the artifacts already represents this
dimension.

Arcos et al. [1] presented EIDE, an integrated environment which includes a set of
technologies to develop electronic institutions where all the institution regulation
mechanisms are implemented in the environment. They argue that their approach is
tailored for developing a-open systems, which require an agent to adscript to the
institution conventions in order to enter in the system. As AMELI and ISLANDER are
among the technologies it encompasses, adscripting to the institution conventions
implies to be modeled according to ISLANDER or, at least, have the knowledge of
how to interact with institutional governors [2]. In our proposal, we advocate that
including organizational artifacts with embedded NPL interpreters in the environment
could be used by agents modeled according different organizational models to
understand the organization/institution conventions (through the artifacts observable
properties) in order to commit to them.

Esparcia et al. [8] defined a set of artifacts to model organizational mechanisms
within MAS environments, adding to the Virtual Organization Metamodel (VOM) an
environmental dimension. Their approach only suggests transferring the responsibility
of regulating organizations to the environment, since it is devoted to modeling and no
implementation was provided until now. Nevertheless, they do not address the problem
of using such artifacts to deal with agents modeled according to organizational models
diverse from VOM.

At the best of our knowledge, Coutinho et al. [5] is the only work that explicitly
addresses the organizational interoperability problem. They defined a model-driven
approach to build an integrated organizational model that can be mapped to existing
ones and used as a common model as a means to provide interoperability among
different organizational models.

7 Conclusion and Future Work

Environments play an important role for developing MAS. Whenever we think about
electronic institutions or other systems that relies on organizational models, an issue to
be considered is the distribution of responsibilities related to the coordination and
control of their agents. Currently, such systems run in dedicated environments, also
known as organizational infrastructures (OI).

In this paper, we presented a step towards providing an environment where the
knowledge of different OIs could be available through the definition of organizational
artifacts, and distributed throughout the environment in order to provide interopera-
bility among agents that have different underlying organizational models.

To accomplish this, we analyzed the use of a NPL to describe organization spec-
ifications from two organizational models: AGR and OperA. The analysis showed that
the NPL proposed by Hübner et al. could, in fact, be used as is to describe organization
specifications from the aforementioned models. Also, the results from the infrastructure
implementation for AGR were encouraging, since it reinforces the possibility of
adopting ORA4MAS as a model to build generic organization infrastructures within
artifact-based environments.
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As mentioned, the description of different organizations in a common language and
running on a homogeneous framework is a first step to achieve interoperability. This
solution allows interaction with distinct organizations, but does not provide a means to
enable agents to reason about the organizational characteristics. This matter should be
further explored to provide better support for open systems. Moreover, the translation
of OperA into NPL should be tested in order to ensure correctness, which is left as
future work. Finally, performance issues related to CArtAgO regarding the instantiation
of multiple organizational artifacts must be considered and is a subject that requires
further investigation.
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Abstract. Electronic institutions provide a computational analogue of
human institutions to engineer open environments in which agents can
interact in an autonomous way while complying with the norms of an
institution. The purpose of this paper is twofold. On the one hand, we
lightly survey our research on coordination infrastructures for electronic
institutions in the last ten years. On the other hand, we highlight the
research challenges in environment engineering that we have tackled dur-
ing this journey as well as promising research paths for future research
on the engineering of open environments for multi-agent systems.

1 Introduction

As the complexity of actual-world applications increases, particularly with the
advent of the Internet, there is a need to incorporate organisational abstractions
into computing systems that ease their design, development, and maintenance.
Electronic Institutions (EIs) are at the heart of this approach [3]. Just like any
human institution, an EI is a place where participants come together and inter-
act according to some pre-defined norms. An EI warrants that the norms of
the institution are enforced upon its participants, and thus prevents them from
misbehaving. Therefore, an EI provides the environment in which agents can
interact in an autonomous way within the norms of the institution.

From a computational point of view, an EI realises an environment for agents
in the sense proposed in [22], namely it provides “the surrounding conditions for
agents to exist and that mediates both the interaction among agents and the
access to resources”. Considering the levels of support, as defined in [22], which
an environment may provide, EIs focus on two particular levels of support: (i) an
abstraction level that shields agents from the low-level details of deployment, and
(ii) mediated interaction between agents. With this aim, EIs provide a computa-
tional infrastructure for agent environment design, as discussed in [21], and the
mechanisms to enforce and monitor the norms and laws that apply to a multi-
agent system in a given environment. More precisely, an EI is implemented itself
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-23850-0 14



Infrastructures to Engineer Open Agent Environments 233

as a multi-agent system composed of two types of (internal) agents, the so-called
staff agents and governor agents. While governor agents mediate the interactions
of (external) agents within the environment, staff agents manage the norms in
the institution. The dynamics of the environment is restricted to those external
agents that satisfy the social laws represented by the norms and enacted by the
coordinated actions of governors and staff agents. With this aim, governors and
staff agents employ synchronisation mechanisms for interaction mediation, along
the lines of [17].

EIs have been under development for almost 20 years, which has resulted in a
large framework consisting of tools for implementing, testing, running and visu-
alizing them [3]. Therefore, research on EIs has strongly focused on contributing
with infrastructures and tools that support systematic engineering support of
environments for multi-agent systems, which has been identified as one of the
challenges in environment engineering [20].

Since their inception, EIs have focused on computationally realising environ-
ments for multi-agent systems. The purpose of this paper is to show the evolution
of the infrastructures that we have employed over these years to engineer open
agent environments by means of electronic institutions. We aim at illustrating
the way the surveyed infrastructures deal with different degrees of openness.

With this aim, we survey the four generations of coordination infrastructures
for EIs developed so far. For each generation, we dissect: (i) the features of the
coordination infrastructure running an EI; (ii) the facilities provided to support
human participation; and (iii) a case study illustrating some application built
with the aid of EIs. Furthermore, after introducing each generation of the cor-
responding EI infrastructure, we provide a critical analysis that motivates the
need to move from one generation to the next one.

First, we lightly touch upon first generation (1G) EIs, whose tremendous
development complexity and effort motivated the subsequent introduction of
AMELI [13], a general-purpose coordination infrastructure for second generation
(2G) EIs. 2G EIs represented a very significant advance with respect to 1G EIs
because they provided MAS engineers with well-founded tools that significantly
eased development. Thus, the development of 2G EIs consists of two main stages:
the specification of institutional rules by means of ISLANDER [12], a graphical
specification tool; and their subsequent execution by AMELI, a general-purpose
coordination infrastructure. Hence, instead of programming an EI, as it was the
case with 1G EIs, 2G EIs allow a MAS engineer to focus on specifying the rules
of an EI.

Nonetheless, some drawbacks hinder the applicability of 2G EIs. On the one
hand, 2G EIs cannot be designed and enacted on-line. Consider, for instance, a
business scenario where manufacturers are allowed to meet on-line and arrange
collaborations on the fly to produce the goods requested by customers. These
companies do not know beforehand neither what customers will request, nor
the partners to collaborate with, nor the rules of their collaborations. In this
setting, if a group of manufacturers aim at employing an EI to structure their
collaboration, this must be designed and enacted on-line upon request. On the
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other hand, human participation in 2G EIs is highly complex, since it forces
users to learn about the inner formal languages employed by EIs.

Third-generation (3G) EIs were conceived to support the on-line enactment
of EIs. This facility is provided in the realm of the Agreement Technologies
Environment (ATE) [1], an OSGi-compliant [2], open environment that provides
the seamless interplay of agents and services. An EI is offered as an organisation
service within the ATE. Thus, during the run-time operation of the ATE, agents
participating in the environment are allowed to start and run an EI at any given
time. In other words, EIs can be started on-line, during the run-time operation
of the ATE, depending on agents’ needs. And yet, notice that 3G EIs do not
offer any facilities for the on-line design of EIs, though this is an important
requirement for applications requiring the on-line enactment of collaborations
(e.g. crowdsourcing, supply chain formation).

Indeed, some open environments may require that communities of partic-
ipants design electronic institutions on-line. The fourth generation of tools for
EIs is completely web-based, the tools allow users to specify EIs using a graphical
editor that is much simpler than ISLANDER, and less expressive as well. There
are no free lunches. Specifications can include web services and agents. Users
can search specifications and launch them, participate in them through a web
browser and enjoy an automatically generated web interface. The programming
effort has been reduced enormously in this generation of tools. Finally 4G EIs
are implemented as a P2P network of nodes that allows to exploit the benefits
inherent to P2P systems (e.g. self-organisation, resilience to faults and attacks,
low barrier to deployment, privacy management, etc.).

The paper is organised as follows. Sections 2, 3, 4, and 5 review the fea-
tures of the first, second, third, and fourth generations of EIs. Section 6 further
analyses the relationship between EIs and environments, and Sect. 7 draws some
conclusions and sets paths to future research.

2 First Generation: Electronic Institutions Enacted by
Ad-Hoc Coordination Infrastructures

First-generation (1G) EIs are represented by the early developments reported in
[10,18]. Each of those EIs implemented an electronic auction house inspired on
the fish market described in [16] with different focuses. First, [10] is a proof-of-
concept, PVM-based implementation of the fish market. The use of PVM [15]
was intended to support and ease the distributed execution of agents and com-
munication protocols. As reported in [18] (see Sect. 5), further prototype devel-
opment of the fish market followed using PVM and MPI for inter-networking
and C and EU-Lisp. All of these implementations focused on low-level com-
munication aspects and shared the commonality of being rather costly. Finally,
the implementation in [18], thanks to the use of the Java language, allowed us
to focus on modularity and search for the core objects required to implement
structured interactions in an EI.
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All in all, the EIs implemented from [10] to [18] focused on developing each
their own, ad-hoc coordination infrastructure. Furthermore, in all cases, support
for human interaction was provided by means of tailored graphical user inter-
faces. However, notice that all of them realised open, distributed environments
that supported the remote participation of trading agents.

3 Second Generation: Electronic Institutions Enacted by
a General-Purpose Coordination Infrastructure

The experience during the implementation of the above-described first-
generation electronic institutions taught us that the design and development
of open MAS is a highly complex task. This motivated research on tools that
ease MAS engineers’ development effort. Thus, in [4], we introduced EIDE, an
integrated development environment for electronic institutions that supports all
the stages of the design and development of an open MAS as an electronic insti-
tution. EIDE clearly differentiates two main stages: the specification of institu-
tional rules; and their subsequent execution by a coordination infrastructure. In
this way, instead of programming an electronic institution, as it was the case for
first-generation electronic institutions, a MAS engineer can focus on specifying
the rules of an electronic institution.

In this section we describe the key features of AMELI, the coordination
infrastructure provided by EIDE to run electronic institutions. Moreover, we
also comment on the tools provided by EIDE to support human interaction.
Finally, we analyse the drawbacks of second-generation electronic institutions.

3.1 AMELI: A Core Infrastructure for Electronic Institutions

The infrastructure (i.e. set of institutional agents) that enables the execution of
EIs is called AMELI [13]. AMELI enables agents to act in an electronic institu-
tion and controls their behaviour. Its main functionalities are:

– to provide a way for different agents with different architectures to communi-
cate with one another without any assumption about their respective internal
architectures; and

– to enforce a protocol of behaviour as specified in an institution specification
upon the agents. This means that AMELI makes sure that the agents can
only do those actions that the protocol allows them to do.

AMELI was conceived as a general-purpose platform in the sense that the
very same infrastructure can be used to deploy different institutions. With this
purpose, agents composing AMELI load institution specifications as XML doc-
uments generated by ISLANDER, a graphical editor for EI specifications. Thus,
the implementation impact of introducing institutional changes amounts to the
loading of a new (XML encoded) specification. Therefore, it must be regarded
as domain-independent, and it can be used in the deployment of any specified
institution without any extra coding. During an EI execution, the institutional
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agents composing AMELI keep the execution state and they use it, along with
the institutional rules encoded in the specification, to validate agents’ actions
and to enforce their consequences.

AMELI is composed of three layers: a communication layer, which enables
agents to exchange messages, a layer composed of the external agents that par-
ticipate in an EI, and in between a social layer, which controls the behaviour of
the participating agents. The social layer is implemented as a multi-agent system
whose institutional agents are responsible for guaranteeing the correct execution
of an EI according to the specification of its rules.

The participation of each agent in an EI through AMELI is handled by a
special type of institutional mediator, the so-called governor. An agent must be
able to communicate with its governor, but this only requires that the agent
is capable of opening a communication channel. Since no further architectural
constraints are imposed on external agents, we can regard AMELI as agent-
architecture neutral.

The current implementation of AMELI can either use JADE (Bellifemine
et al., 2001) or a publish-subscribe event model as communication layer. When
employing JADE, the execution of AMELI can be readily distributed among
different machines, permitting the scalability of the infrastructure. From the
point of view of the participating agents in an EI, AMELI is communication
neutral, since they are not affected by changes in the communication layer.

3.2 Human Participation

Instead of providing a domain-dependent graphical user interface for human
interaction as first-generation electronic institutions did, EIDE provides a
general-purpose interface, the so-called dummy agent. Figure 1 depicts a screen-
shot of the dummy agent as displayed to a user. On the left-hand side, the
interface shows a tree-like structure that displays the run-time structure of an
electronic institution together with the agents participating in the institution.
Such run-time structure is composed of the on-going activities (scenes) in an elec-
tronic institution. On the right hand side, the figure shows the events, including
the speech acts exchanged between agents, occurring within a particular scene
selected by the user. Notice that the dummy agent offers a user the possibility
of building speech acts to interact with the rest of agents within an institution.
In other words, humans interact using the same language employed by software
agents. Therefore, in order to participate in an electronic institution by means
of a dummy agent, a user must know: (i) how an electronic institution is for-
mally represented; and (ii) the formal language employed by EIDE to represent
speech acts.

3.3 Case Study

EIDE was employed in the development of an actual-world application: the
Multi-Agent System for FIsh Trading (MASFIT) [9]. MASFIT allows buyers
to remotely participate in several wholesale fish auctions simultaneously with
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Fig. 1. Dummy agent user interface.

the help of software agents, while maintaining the operation of traditional auc-
tions. The participation of buyer agents in actual-world auctions is mediated
by an electronic institution run by AMELI. MASFIT’s institution controls buy-
ers’ access to the auctions, provides them with information, and collects their
bids during the auctions. To permit this, the actual auction systems running at
different auction houses were connected to the developed institution. MASFIT
interconnects multiple auction houses, and thus provides structure to a feder-
ation of auction houses. MASFIT guarantees equal conditions for both human
buyers physically participating at the auction and software buying agents par-
ticipating through the Internet.

3.4 Analysis

2G EIs represent a significant advance with respect to 1G EIs. Very importantly,
notice that the tools developed to design and run 2G EIs are general-purpose.
That means that the very same tools can be employed to design and run different
EIs. In this new context, MAS engineers do not have to cope any longer with low-
level implementations of communication and coordination protocols, as it was
the case for 1G EIs. Instead, they can only concentrate on specifying the rules for
EIs. Therefore, 2G EIs allow to shift the development effort from programming
to specifying.

Nonetheless, several drawbacks may hinder the applicability of 2G EIs. First,
notice that the design of the rules of the institution is carried out off-line by a
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single user, the institution designer. That means that 2G EIs cannot be employed
in application domains that require the on-line enactment of an EI. Second,
AMELI enacts open environments whose rules are static, and hence cannot
change over time. Third, human interaction is highly intricate, since it forces
human users to learn the inner formal languages of EIs. This is too heavy a
burden for human users, and clearly motivates the need for more user-friendly
EI interfaces.

4 Third Generation: Electronic Institutions

Third generation (3G) EIs were conceived to allow agents the on-line enactment
of EIs. To support such functionality, we developed the so-called Agreement
Technologies Environment (ATE) [1], a service-oriented, open environment that
provides the seamless interplay of agents and services. Then, an EI is offered as
an organisation service within the ATE. Thus, during the run-time operation of
the ATE, agents participating in the environment are allowed to start and run
an EI at any given time. In other words, EIs can be started during the run-time
operation of ATE depending on agents’ needs.

Next, in Sect. 4.1 we describe the implementation of Agreement Technologies
Environment. As part of this description, we detail how EIs are offered within
the environment as organisation services. Thereafter, in Sect. 4.2 we describe a
case study that shows how EIs are designed and enacted on-line, namely during
the operation of the ATE. Finally, Sect. 4.3 explains how 3G EIs simplify human
participation with respect to 2G EIs, while Sect. 4.4 provides a critical analysis.

4.1 Agreement Technologies Environment

The Agreement Technologies Environment (ATE) [1], formerly introduced in [1],
is an environment that provides the seamless interplay of agents and services.
We chose to implement the ATE as a service-oriented environment based on the
OSGi [2] technological framework.

The OSGi technology is a de facto industry standard that defines a dynamic
component system for Java. OSGi reduces complexity by providing a modular
architecture for today’s large-scale distributed systems as well as for small, embed-
ded applications. Therefore, the OSGi programming model is called to fulfill the
promise of component-based systems and beyond, since OSGi is intended to allow
an application to emerge from dynamically assembling a set of components.

Modularity is at the core of the OSGi specifications and embodied in the
bundle concept. Bundles are the OSGi components built by developers. AN
OSGi bundle is like a Java JAR file, but it hides everything unless explicitly
exported. The OSGi architecture offers a service model whose aim is to have
bundles collaborate. The services layer connects bundles in a dynamic way. This
is feasible because a bundle can register a service, it can get a service (from
another bundle), and it can listen for a service (from another bundle) to appear or
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disappear. Furthermore, services are dynamic: bundles can register and withdraw
their services at any time.

To summarise, OSGi provides a very powerful architecture to support the
dynamic collaboration of services offered by bundles. We developed the ATE
to be OSGi-compliant. However, in order to turn it into an environment were
also agents were able to participate, it was endowed with bundles providing
three types of agent support services: (i) agent-to-service interactions; and (ii)
agent-to-agent interactions; (iii) multi-agent collaborations. Figure 2 shows the
architecture of the ATE developed on top of OSGi. The agent support services
mentioned above correspond to the following groups of services (bundles):

Service Tools. They allow agents, as well as services, to discover and call remote
services in a distributed environment.

Agreement Services. They are intended to help agents to reach agreements (by
means of argumentations), and monitor and manage agreements (by means
of the use of trust and reputation ratings provided by the trust/reputation
service, which in turn may require the use of the ontology service).

Organisation Services. They provide services to enact collaborations between
agents. For instance, an EI is offered as a service. In fact, notice that all the
services provided by EIDE, the development environment for 2G EIs, are
provided as organisation services.

Figure 2 also shows environment and user interface services. On the one hand,
environment services ensure that dependencies between modules are met and
facilitate collaborations in a distributed environment. On the other hand, user
interface services provide interfaces to the ATE and define an interface to help
ATE services to implement interactions with human users.

As mentioned above, EIs are offered as organisation services. In the example
that follows, we illustrate the on-line design and enactment of EIs by groups of
agents taking part in the ATE.

4.2 Case Study

In [1] we describe the Assembling Business Collaborations for Multi-agent Sys-
tem (ABC4MAS) platform, a collaboration environment to support the rapid

Fig. 2. ATE services and tools.
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assembly of agent-oriented business collaborations. ABC4MAS allows: (i) to set
up a collaboration environment as a virtual organization; (ii) to reach agreements
within the collaboration environment to form short-term business collaborations
to manufacture customer-requested goods; (iii) to enact business collaborations
to produce goods; and (iv) to track the performance of agents within business
collaborations to build their trust and reputation. ABC4MAS was built as an
application running on the Agreement Technologies Environment described in
Sect. 4.1 above.

Figure 3 shows the architecture of the ABC4MAS platform. First, the plat-
form counts on a collaboration environment enacted as a virtual organisation
thanks to the THOMAS Platform [5]. When a customer within this collabo-
ration environment issues an order, a new virtual organisation is spawned to
service the request. This virtual organisation contains all business parties that
may take part in the production of the requested good together with an auction-
eer. The auctioneer is in charge of assessing an optimal supply chain by means of
a mixed auction [8], an auction protocol aimed at solving supply chain formation
problems. Hence, after clearing the auction, the auctioneer obtains the specifi-
cation of a supply chain that it translates into an EI specification. Thereafter,
the auctioneer launches an EI by means of the AMELI service, which is fed with
the EI specification generated by the auctioneer. AMELI then tracks each and
every action as defined in the supply chain, allowing the auctioneer to monitor:
(1) which entity is performing each task, (2) that all the agreements are being
fulfilled, and (3) that no task is overdue. When AMELI detects that the pro-
duction process has finished, both the EI and the virtual organization started
to serve the customer request are terminated. At production time, during the
execution of an EI, there is a service, the Supplier Relationships Management
(SRM) service [14] is in charge of collecting information about the agents taking
place in the supply chain to keep up to date the trust and reputation values of
the agents participating in the collaboration environment.

4.3 Human Participation

In Sect. 3.2 we argued that the interaction of a user with a dummy agent is
intricate. 3G EIs try to overcome this problem. Thus, they offer a methodology,
the so-called human interaction within hybrid environments regulated through
electronic institutions (HIHEREI) [6], to help an institution designer produce
a more user-friendly interface to electronic institutions. Unlike a dummy agent,
which was conceived as a general purpose interface to any electronic institution,
an interface produced by means of HIHEREI is tailored to the domain for which
the electronic institution is designed. Therefore, HIHEREI interfaces are domain-
specific.

4.4 Analysis

Although 3G EIs allow to dynamically start EIs as services, they do not offer
any facilities to support the on-line design of EIs, neither by a single designer
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Fig. 3. ABC4MAS platform architecture.

nor by a group of designers. And yet, this feature is particularly interesting in
some application domains. For instance, consider a social network that lets its
users form their own communities and choose and enact their own rules. Fur-
thermore, although 3G EIs ease human participation by means of the HIHEREI
methodology, this new approach still suffers from some drawbacks. First, it is
now the designer, and not the end user, the one who must know about the formal
languages used by EIs. Furthermore, HIHEREI does offer a methodology, but
the designer is responsible for programming users’ interfaces. In other words,
HIHEREI shifts the burden from the end user, as it is the case in 2G EIs, to
the EI designer. Second, the interface produced by HIHEREI is as static as the
dummy agent offered by 2G EIs. More precisely, such an interface starts out
with a single EI specification that cannot change at run time. Consider again
a social network like the one mentioned above. In that setting, the interface of
a user may need to change depending on the different communities where the
user participates. In the next section we show how fourth generation EIs have
successfully tackled these issues.

5 Fourth-Generation: Peer-to-Peer Electronic Institutions

In a recent document by IBM, “Device Democracy: Saving the future of the
Internet of Things”1 a case is made about the uncertain future of centralised
approaches in the context of networks composed of billions of interconnected
devices. Centralised approaches would become prohibitively expensive, would
not protect privacy and would not make business models endure.

It is our ambition that electronic institutions become a pervasive mechanism
to co-ordinate very large networks of humans and devices and thus a centralised
1 ibm.biz/devicedemocracy.

http://ibm.biz/devicedemocracy
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approach seems a bad solution for the future. We thus wanted to recover the
spirit of the implementations of the first generation using libraries like PVM or
MDI but with modern technologies.

Peer-to-peer (P2P) networks appear as the natural option to implement dis-
tributed electronic institutions nowadays as they provide a number of desirable
properties. They are very robust in that there is no single point of failure. If a
node fails, the other nodes may continue the computation, in many cases with-
out any loss or with minimal loss of information. P2P networks scale very well
as a new node increases the overall amount of computation requests but it also
brings in resources in the form of e.g. memory or CPU cycles. Nodes are equally
privileged and the quality of service they receive does not depend on whether
they can afford expensive cloud servers.

In the last decade many applications and technologies have been built using
this approach: file sharing (e.g. Gnutella or BitTorrent), distributed storage (e.g.
Symform, Freenet, Yvi), or web search engines (e.g. Yaci, Faroo). P2P platforms
(i.e. set of interconnected nodes over TCP/IP protocols) provide different fea-
tures: trust, authentication, data persistency, state guarantee, anonymity, etc.

In this section we will describe an implementation of a P2P software node,
named PeerFlow, that extends AMELI (of the second generation) with a number
of P2P features. Thus, the fourth generation grows out of the second generation
incorporating an improved human interface over HIHEREI from the third gener-
ation and leaving out the Agreement Technologies toolbox structuring the third
generation. We may however incorporate some of these tools in the near future.

5.1 PeerFlow Basic Infrastructure

We have built PeerFlow on top of the Freepastry2 library. A free and open-
source Java library that implements Peer-to-Peer network [7,11,19]. Freepastry
provides a number of useful features such as the routing of messages, or the
possibility to create broadcast messages.

5.2 P2P Electronic Institution Internal Agents

A running institution is managed by a number of agents called scene managers
and governors. On a Peer-to-peer system one needs to decide on which node
in the network each of these agents will be running. For this reason we have
added another type of agent to the framework called the device manager. Each
node in the network runs exactly one device manager. Whenever a new agent
needs to be launched, the device managers determine where that agent is going
to be launched. In the current implementation this is decided randomly, but
in future implementations the device managers will apply negotiation to make
such decisions, taking into account the capacity of each node (e.g. bandwidth
and CPU power).

2 http://www.freepastry.org/FreePastry/.

http://www.freepastry.org/FreePastry/
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Fig. 4. Diagram of the Peer-to-Peer Electronic Institutions topology

Note that the agents participating in the EI are not directly inside the P2P
network. Instead, they are connected to a governor through a direct socket con-
nection, which is inside the P2P network. We have chosen this model for secu-
rity reasons, because messages in a P2P network do not always go straight from
sender to receiver, but may make several ‘hops’ between nodes of the network
before arriving at the receiver. This means that agents participating in the insti-
tution would be able to intercept those messages and manipulate them.

5.3 Peerflow Distributed Database

Peerflow also provides a distributed database where users can publish their EI-
specifications, search for existing specifications, and search for running instances
of electronic institutions. This is implemented using the indexer/search library
Apache Lucene.3 Each node in the network has its own repository which is
maintained by the device manager. When a query to the database is made, this
query is sent to all the device managers in the network, and each of them sends
back a reply, if possible.

5.4 Building Software Agents. What’s Different?

Programming an agent that interacts in a P2P EI can be done in two ways.
One way consists of extending an existing Java agent that abstracts away all
the underlying communication protocols. The other way is to make use of a rest
governor. The intended actions of the agent are then sent as http requests to the
3 http://lucene.apache.org/.

http://lucene.apache.org/
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rest governor. The advantage of the second method is that one can use any kind
of programming language or technology that allows making web requests, but
has the disadvantage that one has to deal with the http protocol on a lower level.

5.5 Human Participation

Earlier versions of EIDE, in the second and third generations, where intended
as a framework for software agents and did not provide significant support for
humans to participate in Electronic Institutions. For many purposes, however, it
is desirable to have both humans and agents participating. One can for example
imagine an auction house in which bids are made by humans, but in which the
tasks of the auction house, such as registration of participants and leading the
auction are taken care of by automated agents. Therefore, we have extended the
existing EI framework with a Graphic User Interface (GUI) that allows humans
to enter into an EI and interact with other users or software agents. This new
extension is called GENUINE, which stands for GENerated User INterface for
Electronic institutions.

We think that this extension could be especially useful for the development
of a new type of social network, where users can set up sub-communities, each
with its own rules and protocols. We think that the fact that many social net-
works are nowadays existing next to each other is inefficient and is due to the
fact that users are not able to adapt norms and protocols to their own needs.
Electronic Institutions would provide a solution to this problem. Another advan-
tage of allowing human users to interact in an EI is that it enables developers
of institutions to test an institution during its development, without having to
program any agents. While the EI is under development human users can take
the place of the software agents that would later participate in it, for testing
purposes. This can highly increase the speed of development.

Our tool automatically generates a default user interface based on the EI
specification, without the need for extra programming. But, on the other hand,
if one does require a more case-specific user interface, it still provides an API
that enables any web designer to easily design a custom GUI without the need
for much knowledge of Electronic Institutions or Java programming. Our app-
roach is completely web-based, meaning that the GUI is in fact a website, imple-
mented using standard web-technologies such as HTML5, Javascript and AJAX.
In short, we have developed our framework with the following goals:

– To allow people to interact in an EI through a web browser.
– To have a generic GUI that is generated automatically.
– To allow any web designer to easily design a new GUI, if desired.
– To allow testing of an EI under development, before having implemented its

agents.

Our Framework. A human user would interact in an EI by clicking buttons
in a browser window. To allow these actions to have effect in the EI, we have
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Fig. 5. Left: a ‘classic’ EI with only software agents. Right: an EI with one software
agent and two users. In these images the agents are located on a server, but they may
just as well run on a P2P node.

implemented a software agent that represents the user inside the EI and that
executes the actions requested by the user. This agent is called the GuiAgent. Its
current implementation does not do anything autonomously, but, if necessary, it
can be extended with more sophisticated capabilities, such as giving intelligent
strategic advice to the user.

When developing the framework we took into account that, on one hand, one
may want to have a good-looking GUI that is specifically designed for a given
institution. But, on the other hand, one may not want to develop an entirely new
GUI for every new institution, or one may want to have a generic GUI available
to test a new EI during its development, so that one can postpone the design of
its final GUI until the EI is finished. Therefore, our framework allows for both.
It generates a GUI automatically from the EI-specification, but at the same time
provides an API that enables web designers to easily create a custom GUI for
every new EI. The framework is used on top of the existing EI-framework and
consists of the following components:

– A Java agent called GuiAgent that represents the user in the EI.
– A Java component that encodes all relevant information the agent has about

the current state of the institution into an xml file.
– A Javascript library called GenuineConnection that translates the xml file

into a Javascript object called EiStateInfo.
– A Javascript library called GenuineDefaultGUI that generates a default

Graphic User Interface (as html) based on the EiStateInfo object.

How It Works. In order for a user to participate in an institution, there must
be an instance of that EI running on a server or in the P2P network. To join
the institution, the user then needs to open a web browser and navigate to the
institution’s URL. The process then continues as follows:
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1. A web page including the two Javascript libraries is loaded into the browser.
2. When the page is loaded, GenuineConnection library sends a login request

to the server or to the P2P network.
3. Upon receiving this request the server or network starts a GuiAgent for the

user and, depending on the specific institution, other agents necessary to run
the institution.

4. When the GuiAgent is instantiated it analyzes the EI-specification to retrieve
all static information about the institution.

5. The GenuineConnection library starts a polling service that periodically
(typically several times per second) requests a status update from the GuiA-
gent.

6. When the GuiAgent receives a status update request it asks its Governor for
the dynamic information about the current status of the institution.

7. The GuiAgent converts both the static and the dynamic information into
xml which is sent back to the browser.

8. The GenuineDefaultGUI Javascript library then uses this information to
update the user interface (more information about this below).

9. The user can now execute actions in the institution or move between its
scenes by clicking buttons on the web page.

10. For each action the user makes, the GenuineConnection library sends a
HTTP-request to the GuiAgent.

11. The GuiAgent uses the information from the http-request to create an EI-
message which is sent like any other message in a standard EI.

As explained, the GuiAgent uses two sources of information: static information
from the EI-specification stored on the hard disk of the server and dynamic
information from the Governor. The static information consists of:

– The names and protocols of the scenes defined in the institution.
– The roles defined in the institution.
– The ontology of the institution.

While the dynamic information consists of:

– The current scene and its current state.
– The actions the user can take in the current state of the scene.
– For each of these actions: the parameters to be filled out by the user.
– Which agents are present in the current scene
– Whether it is allowed to leave the scene and, if yes, to which other scenes the

user can move.

Generating the GUI. Every time the browser receives information from the
GuiAgent, it updates the GUI. This takes place in two steps, respectively handled
by the two Javascript libraries. In the first step the GenuineConnection library
converts the received XML into a Javascript object called EiStateInfo, which is
composed of smaller objects that represent the static and dynamic information
as explained above.
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Fig. 6. The components necessary to generate the GUI. Solid arrows indicate exchange
of information. The dashed arrow indicates that the GUI is created by the GenuineDe-
faultGUI library

In the second step the EiStateInfo-object is used by the GenuineDefaultGUI
library to draw the GUI. This GUI is completely generic, so it looks the same
for every institution. If one requires a more fancy user interface tailored to one
specific EI, one can write a new library that replaces the GenuineDefaultGUI.

The fact that these two steps are handled by two different libraries enables
designers to reuse the GenuineConnection when designing a new GUI, without
having to worry about how to communicate with the EI and retrieve the neces-
sary information from the EI to draw the GUI. All information will be readily
available in the EiStateInfo-object, so one only needs to determine how to display
it on the screen.

Customizing the GUI. A customized GUI-generator can retrieve all necessary
information from the EiStateInfo-object. For example: if the user chooses to make
a bid in an auction, the GUI-generator would read from the EiStateInfo-object
that an Integer parameter must be set to represent the price the user wants to
bid. The programmer of the GUI-generator should make sure that whenever a
parameter of type Integer is required, the GUI displays an input-control that
allows the user to introduce an integer value.

The fact that one can also define user-defined types in an EI adds a lot of
flexibility. Suppose for example that one would like a user to record an audio
file and send this in a message to another agent. Electronic Institutions do not
support audio files by default. However, the institution designer may define a
new type with the name ‘Audio’. Once the user chooses to send a message that
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includes audio, the EiStateInfo-object will indicate that a parameter of type
Audio is needed. A customized GUI-generator could then be implemented such
that a microphone is activated whenever this type of parameter is required.

5.6 Case Study: PRAISE

We have used the P2P infrastructure in an application to music learning. As
one-to-one teaching is very expensive we have built electronic institutions that
support the interactions of communities of learners. We call each institution a
‘lesson plan’ where each scene in the institution represents a musical activity of
students and teachers (upload songs, analyse progress, give feedback, etc.), see
Fig. 7. In this use case, human interaction is facilitated by GENUINE, you can
see an example of interface from the point of view of student Carles in Fig. 8
and the result of an automatic audio analysis in Fig. 9. For further details go to
www.iiia.csic.es/praise.

Fig. 7. An example of a lesson plan. Boxes represent scenes, arrows flow of participants
and APPs represent web services.

5.7 Case Study: WeCurate

WeCurate is an image browser for collaboratively curating a virtual exhibition
from a cultural image archive—group curation. WeCurate allows users to syn-
chronously view media and enables negotiation about which images should be
added to the group’s image collection. Further, it accelerates the navigation of
extensive museum databases and provides a platform for sociocultural experi-
ences, combining the actions of autonomic agents and users to facilitate decision-
making. WeCurate is tasked with establishing the users’ presence in the shared

www.iiia.csic.es/praise
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Fig. 8. A group of students within an activity to check their progress using automatic
analysis tools.

experience by enabling communication around the deconstruction and appropri-
ateness of the media, representing social proxies, and making agent and group
members’ actions manifest to everyone. In Figs. 10, 11 and 12 you can see the ad-
hoc interface developed over P2P for WeCurate. For further details visit http://
www.iiia.csic.es/ace/project.

6 On the Relationships Between Electronic Institutions
and Environments

It is time to analyse the relationship between EIs and environments by consider-
ing how research on EIs has contributed to the challenges posed by research on
environments for multi-agent systems. As mentioned in 1, since their inception,
EIs have focused on computationally realising environments for multi-agent sys-
tems. With this aim, research on EIs has contributed with infrastructures for
agent environment design [21], such as illustrated by the different infrastruc-
tures surveyed in this paper. EIs propose a particular software architecture for
an agent environment [22] that distinguishes between the agents participating in
the environment and the institutional agents (staff agents and governor agents)
in charge of guaranteeing that the norms of the institution are satisfied. Thus,
institutional agents in EIs are in charge of the responsibilities of an agent environ-
ment as detailed in [22] and they share the required synchronisation mechanisms
to support social interactions according to norms.

Notice though, that research on EIs has not only focused on infrastructures
for agent environment design. In a more general sense, research on EIs has
strongly focused on tools that support the systematic engineering of agent envi-
ronments, identified as one of the main challenges in environment engineering
in [20].

http://www.iiia.csic.es/ace/project
http://www.iiia.csic.es/ace/project
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Fig. 9. An example of automatic feedback.

Fig. 10. The selection scene, which aims to gauge the interest level of users in the
proposed image.

The infrastructures surveyed in this paper have tried to illustrate how EIs
can help enact environments. Thus, 1G and 2G EIs help enact environments
that are open to agent participation but whose rules are static. Next, 3G EIs
allow to enact agent environments at run time. Moreover, EIs are enacted in
the realm of the Agreement Technologies Environment (ATE). That means that
an environment, ATE, can host agent environments that run as EIs. Finally,
4G EIs go even one step further, since they allow agents to design and enact



Infrastructures to Engineer Open Agent Environments 251

Fig. 11. The forum scene, which allows users to engage in a discussion about the image,
once it has been deemed interesting in the selection scene.

Fig. 12. The vote scene, where users can vote on whether they wish to store the image
to their collection.



252 D. de Jonge et al.

their own environments at run-time. Notice therefore that 3G EIs and 4G EIs
share a commonality: there is an environment that allow agents to start their
own environments. This makes us revisit the three levels of environment support
discussed in [22]. We argue that it is worth considering a fourth level of support:
interaction design level. This is the level of support offered to agents so that they
can design themselves their own interactions, namely their own environments
within the environment they are immersed in.

7 Conclusions

In this paper we have shown the evolution of the coordination infrastructures
that we have employed for almost 20 years to engineer open environments
as EIs. First, we have discussed that the first evolution of our coordination
infrastructures was motivated by the need for supporting the development of EIs.
Thereafter, our focus on new application domains (e.g. social networks, social
computing, collaborative on-line learning) posed new challenging requirements
that pushed the development of the next generation of coordination infrastruc-
tures for EIs. In short, there have been two main drivers guiding the evolution
of EIs, namely:

– The need for designing and running social environments. We have pursued
to increase openness to computationally realise environments where users can
dynamically create and enact their own interaction environments. On the one
hand, users are allowed to collaboratively design on-line the rules of their own
interaction environments. On the other hand, the coordination infrastructure
is ready to enact the decentralised design and execution of such interaction
environments.

– The need to facilitate human interaction. The next decade will witness an
increased amount of mixed societies where humans, devices, sensors and actu-
ators will constitute an Internet of Things as the substrate of new applications
like smart homes, service robotics or ambient intelligence. The simplification
of the human interaction with co-ordination infrastructures like EIs is key for
those applications.

These two needs have by no means been fully satisfied. Thus, future gen-
erations of coordination infrastructures for EIs will definitely focus on making
progress along these two directions.
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