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Abstract This chapter presents the application of fractal dimension in describing
surface roughness in wire electrical discharge machining (WEDM). Conventional
surface roughness parameters (center line average roughness, root mean square
roughness, etc.) strongly depend on the resolution of the measuring instrument. But
fractal dimension is scale invariant. As a case study, experiments are conducted on
EN31 steel specimens in WEDM varying four process parameters, viz., current,
voltage, pulse on time, and pulse off time. The effects of process parameters on
fractal dimension are evaluated and a second order relationship between process
parameters and fractal dimension is developed using response surface methodology
(RSM). Also, the parameters having significant influences on fractal dimension are
identified.

1 Introduction

Surface roughness is an important parameter to describe the quality of any surface.
Generally, to describe surface roughness, some statistical parameters, grouped into
amplitude parameters (center line average, Ra, root mean square roughness, Rq, etc.)
spacing parameters (mean line peak spacing, Rsm), and hybrid parameters (root
mean square slope of the profile, root mean square wavelength, peak area, valley
area, etc.) are used. But the main problem associated with these parameters is that
theses parameters are scale dependent. When the resolution of the measuring
instrument is increased or decreased, surface roughness values also change. If the
sampling length for the measurement is varied, the same values for the surface
roughness parameters may not be expected. To overcome this problem, it is
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required to describe surface roughness with a parameter which is scale independent
and would not depend on the measuring instrument. This essentially leads to the use
of fractal dimension as roughness parameter.

In this chapter, fractal dimension is used to describe surface roughness.
Experiments are conducted in wire electrical discharge machining (WEDM) of
EN31 steel workpieces. The experimental results for fractal dimension are analyzed
to develop a second order response model using response surface methodology
(RSM). The variations of fractal dimension with the selected process parameters are
also studied here.

2 Fractal Dimension as Surface Roughness Parameter

Fractal dimension is derived from fractal geometry. Fractal geometry was coined by
Mandelbrot [36]. As we know from Euclidean geometry that point has 0 dimension,
line has 1, surface has 2 and cube has 3 dimensions and these dimensions are
integers. But Mandelbrot presented an example of a coastline where he showed that
the length of the natural coastline does not converge for decreasing unit of mea-
surement. He plotted the length (L) with the unit of measurement (2) using loga-
rithmic scale and developed a relationship between L and 2. The relation is in the
form of L * 21−D. Here, D is a real number representing the dimension of the
coastline. Moreover, dimension of an object may be of noninteger values.

There are two terms, self-similarity and self-affinity, connected to a dimension. An
object will be called self-similar when a part of the object requires equal magnifi-
cation in all directions for the developed part to represent the replica of the original
object. For many objects, exact self-similarity is not possible and then statistical
self-similarity is defined. For statistical self-similarity, if a small part of the object is
magnified the probability distribution of the part will be same as the original object.
For self-similarity objects, the fractal dimension may be calculated as

D ¼ logN= logm; ð1Þ

where N is the number of equal segments and m is the size of each segment.
But the fact is that all fractals do not have self-similarity property. That brings in

the concept of self-affinity for the fractal. For self-affinity, magnification is done
with unequal scaling in different directions. For self-affine fractals, dimension
cannot be derived from the above equation but can be obtained from power spectra
of the object. Rough surface profiles fall into this category of fractals. For a profile,
fractal dimension varies between 1 and 2 and for a surface, fractal dimension varies
between 2 and 3.

The concept of fractal geometry has been popularly applied in many applications
like engineering fields, medical sciences, and astronomy. To describe rough
machined surfaces, the concept of fractal has successfully been used in electric
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discharge machining [19, 45], milling [3, 11, 46, 54], cutting or grinding [2, 5, 6,
18, 20, 24, 26, 27, 44, 55], and worn surfaces [14].

It has already been established that machining surfaces have self-affinity prop-
erties. If a rough surface is magnified properly, similar appearance may be seen as
shown in Fig. 1. As the resolution of the measuring instrument varies, the variances
of slope and curvature change. This makes the conventional roughness parameters
(Ra, Rq, Rsm, skewness, kurtosis, etc.) scale dependent. On the other hand, if the
surface profiles are magnified appropriately, more details are revealed. Thus, it may
be assumed that the profile is continuous at any length scale but cannot be differ-
entiated at all points. The Weierstrass–Mandelbrot (W–M) fractal function [4] is
used to characterize rough profiles since this function satisfies both the conditions;
continuity and non-differentiability at all locations. The W−M function has a fractal
dimension D, between 1 and 2, and is given by

zðxÞ ¼ GðD�1Þ X
a

n¼n1

cos 2pcnx
cð2�DÞn 1\D\2; c[ 1; ð2Þ

where G is a scaling constant. The parameter n1 corresponds to the low cut-off
frequency of the profile. Since surfaces are nonstationary random process, the
lowest cut-off frequency depends on the length L of the sample and is given by
γn1 = 1/L.

The power spectrum of W–M function can be expressed by a continuous
function as

SðxÞ ¼ G2ðD�1Þ

2 ln c
1

x5�2D ð3Þ

Dimension D relates to the slope of the power spectrum of a surface against
frequency ω in a logarithmic scale. G, the roughness parameter of a surface, does
not vary with respect to frequencies of roughness and locates the spectrum on the
power axis. Here, both G and D are independent of the roughness scales of the
surface and thus considered as intrinsic properties. G, D, and n1 form a complete set
of scale-independent parameters to describe a rough profile. D signifies the extent of
space occupied by the rough surface. In other words, surface with larger D values
will have denser profile leading to a smoother topography [47, 53].

X

Z

Fig. 1 Qualitative description of statistical self-affinity for a surface profile

Response Surface Modeling of Fractal Dimension in WEDM 137



In practice, there are many ways to calculate fractal dimension (D), viz., yard-
stick method, box counting method, variation method, power spectrum method,
structure function method, etc. The detailed procedure to calculate fractal dimen-
sion may be found in the book “Fractal analysis in machining” [43].

3 Roughness Study in WEDM

WEDM is a popular nonconventional machining process particularly used in die
making industry. The quality of the machined surface plays an important role for its
appropriate function. So, researchers have always paid attention to study the effects
of process parameters or controllable factors on the surface quality. Many
researchers have attempted to study surface roughness in WEDM considering
different machining parameters. In addition to surface roughness, some researchers
have also included other machining responses like material removal rate (MRR),
kerf, cutting rate, dimensional deviations, etc. An extensive literature survey shows
that for surface roughness modeling, mainly conventional roughness parameters are
considered. To set a scene for the present study, a brief review of literatures is
presented here. For modeling and optimization of surface roughness and other
response parameters, different statistical and optimization tools have been used.
These include RSM [16, 21, 51], Taguchi analysis [23, 31, 35], gray Taguchi
analysis for multi-response optimization [7, 9, 22, 25], artificial neural network
(ANN) [12, 41, 42, 48, 51, 52], genetic algorithm (GA) [34, 35, 40], weighted
principal component analysis (WPCA) [13], artificial bee colony (ABC) technique
[8, 40]. Researchers also have considered different types of materials for conducting
the experiments, e.g., different types of steels [8, 12, 17, 23, 28, 50–52], ceramics
[32], titanium alloy [1, 16, 29, 30], magnesium alloy [31], Al/SiC composite [37],
tungsten [49], Inconel material [21, 40, 41], etc. There are a few available literatures
which deal with fractal dimension characterization in WEDM [10, 15, 33]. It is
clear that limited attention have been paid toward fractal dimension characterization
in WEDM.

4 Design of Experiments

Design of experiments (DOE) provides a systematic approach to carry out the
experiments and to obtain a relationship between input process parameters with
output responses. Using DOE, number of experiments for a particular problem may
be minimized but the influences or the dependencies of the input parameters on the
output can be established satisfactorily. DOE considers statistical approach to carry
out the experiments and provides a design matrix showing at which combinations
of process or input parameters experiments should be carried out. To avoid any
bias, generally, experiments are conducted on a random basis. For validation and to
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check the repeatability of the data, experiments are repeated. Sometimes, blocking
is done to arrange the experimental data into groups or blocks to make homoge-
neous data. There are several methodologies for DOE, viz., factorial design (full
factorial design, Plackett-Burman design, etc.), central composite design (CCD),
Box-Behnken design, orthogonal array (OA), etc. In the current study, CCD is
selected to carry out the experiments.

A full factorial design considers all combinations of input parameters to make
the design matrix, but a Box-Wilson Central Composite Design or CCD considers
only factorial points, central points, and axial points. Generally, number of
experiments required for CCD is lower than the same using full factorial design.
Factorial points are vertices of the n-dimensional cube which are coming from the
full or fractional factorial design. Central point is the point at the center of the
design space. Axial points are located on the axes of the coordinate system sym-
metrically with respect to the central point at a distance α from the design center.
CCD is used to establish relationship between input process parameter and output
response parameter using RSM.

There exist two main varieties of CCD: Rotatable central composite and face
centered CCD. In rotatable CCD, the variance of the predicted response at any point
depends only on the distance of the point from the center point of the design. For
rotatable CCD, there are factorial points, axial points, and center points. Center
points may vary from three to seven. Choosing suitable numbers of center points, a
design may be made orthogonal design or design of uniform precision. Considering
uniform precision, for four process parameters, the rotatable CCD requires 24

(16) factorial points, 2 × 4 = 8 axial points, and seven center points. The positions
of axial points will depend on the value of α. For four factor design, α is (16)1/4, i.e.,
2. Thus for four factor design, it requires 31 numbers of experiments. In a face
centered cubic design (FCC), for four factors experiment, 16 (24) factorial or cube
points, eight axial points (2 × 4) and seven central points, a total of 31 experimental
runs need to be considered. During the analysis, the process parameters are always
coded between +1 and −1. In the present study, Eq. (4) is used to code the factors.

xi ¼ ½2x� ðxmax þ xminÞ�
ðxmax � xminÞ ; ð4Þ

where xi is the coded value of a variable x while xmax and xmin refer to maximum
and minimum values of the factor, respectively.

5 Response Surface Methodology

RSM is used to establish a relationship between design/input/process parameters
with output responses. For this, it uses both mathematical and statistical techniques
[39]. The influences of the process parameters on the response parameter can be
also studied using this method. Also, the developed model may be used to optimize
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the process parameter for optimum response value. Since the relationship between
the process parameter and output parameter is unknown, it is required to predict or
estimate the relationship whether it is linear, quadratic or any other higher order
polynomial. Generally, for these types of problems, a second order model is tried
[39] in the form

y ¼ b0 þ
Xn

i¼1

bixi þ
Xn

i¼1

biix
2
i þ

XX

i\j

bijxixj þ e; ð5Þ

where e represents the noise or error observed in the response y such that the
expected response is (y� e) and b’s are the regression coefficients to be estimated.

The least square technique is used to fit a model equation that contains the input
variables and minimizes the residual error measured by the sum of square devia-
tions between the actual and estimated responses. There are statistical tools to check
the adequacy of the model and its coefficients to predict the output response.

By performing analysis of variance (ANOVA), the adequacy of the model and
significant factors that affect the response may be evaluated. There are two ways to
check the significance of the model: F-ratio calculation and P-value. F-ratio is the
ratio of variance due to the effect of a factor (the model) and variance due to the
error term. F-ratio is also called the variance ratio. For a particular study, if the
calculated F-ratio is greater than the tabulated value, then the selected parameter is
significant at that confidence level. For a model, if the calculated F-ratio is greater
than the tabulated one, then the model will be considered as an adequate model. P-
value defines the probability of significance for each independent variable in the
model. For a particular study, if the confidence level is set at 95 %, then the selected
a-level is 0.05 (i.e., 1.0 – 0.95). A parameter is judged significantly if the calculated
P-value is less or equal to the selected a-level. The present study is carried out at
95 % confidence level with the help of the commercial software Minitab (Minitab
user manual) [38].

6 Experimental Details

6.1 Machine Used

For experiments, a five axis CNC WEDM (ELEKTRA, MAXICUT 434) of
Electronica Machine Tools Ltd is used. Specifications of the WEDM machine are
presented in Table 1. The workpiece and zinc coated brass wire electrode (diameter:
0.25 mm) are separated by dielectric medium (deionized water). The traveling of
the wire in a closely controlled manner, through the workpiece, generates spark
discharges and then erodes the workpiece to produce the desired shape.
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6.2 Selection of Process Parameters

Four controllable factors, viz., discharge current (X1), voltage (X2), pulse on time (x3),
and pulse off time (X4) are used as process parameters in this study. Process
parameters with their levels are given in Table 2. Few other factors, which can be
expected to have an effect on the measures of performance, are also given in Table 3.
In order to minimize their effects, these factors are held constant as far as practicable.

6.3 Workpiece Material

EN 31 tool steel is selected as workpiece material in the form of a rectangular block
(20 mm × 20 mm × 15 mm). It is a high carbon−steel with high degree of hardness
with high compressive strength and abrasion resistance.

Table 1 Specifications of die sinking EDM machine

Maximum working dimension 400 mm × 500 mm × 150 mm

Maximum workpiece weight 235 kg

Main table traverse (X, Y) 300, 400 mm

Auxiliary table traverse (U, V) 15, 15 mm

Max. taper cutting angle ±5°/100 mm

Max. wire spool capacity 6 kg

Wire electrode diameter 0.25 mm (std.), 0.15, 0.2, 0.3 mm (option)

Wire feed rate 10 m/min (max)

Table displacement per step 0.001 mm

Outside dimension of machine 1250 mm × 945 mm × 1730 mm

Net weight of machine 1300 kg. (approx)

Dielectric fluid Deionized water

Filtration Mineral bed

Cooling system 1700 K Cal

Input power supply 3 phase, AC 415 V, 50 Hz

Connected load 10 KVA

Average power consumption 6–7 KVA

Table 2 Machining parameters with their levels for process

Design factors Unit Notation Levels

−2 −1 0 1 2

Discharge current Amp X1 2 4 6 8 10

Voltage Volt X2 40 45 50 55 60

Pulse on time µs X3 1 2 3 4 5

Pulse off time µs X4 1 2 3 4 5
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6.4 Selection of Design of Experiments

In this study, a rotatable CCD is selected. For four process parameters with three
levels, total 31 experiments are conducted based on the matrix shown in Table 4.
Out of 31 experiments, there are sixteen (24) factorial or cube points, eight axial
points (2 × 4), and seven center points.

6.5 Fractal Dimension Measurement

A stylus-type profilometer, Talysurf (Taylor Hobson, UK) is used for measuring the
roughness profile. A cut-off length of 0.8 mm with Gaussian filter and traverse
speed 1 mm/s along with 4 mm traverse length is used. Measurements are taken in
the transverse direction on the workpieces for four times and average of four
measurements is considered. The measured profile is then processed using the
software Talyprofile. Finally, fractal dimension is evaluated following the structure
function method.

7 Results and Discussion

In this section, the experimental results for fractal dimension (D) are analyzed using
RSM. Using rotatable CCD, total 31 numbers of experiments are carried out
varying four process parameters and the results are presented in Table 4.

With the help of Minitab statistical software, a second order response surface
model for D is developed in terms of four independent process parameters in their
coded forms. The developed model is presented in Eq. (6).

Table 3 Fixed parameters of the setting

Wire Zinc coated copper wire, stratified, copper, diameter
0.25 mm

Shape Rectangular

Location of workpiece on working
table

At the center of the table

Angle of cut Vertical

Dimension of workpiece Thickness 6 mm
Width 7 mm

Stability Servo control

Wire speed 8 m/min

Wire tension 1000 g

Dielectric flow pressure 1.30 bar
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D ¼ 1:42800� 0:02842� X1 þ 0:02158� X2 � 0:02092� X3 � 0:01958

� X4 � 0:04912� X2
1 � 0:03062 � X2

2 � 0:11162� X2
3 � 0:06512

� X2
4 þ 0:09975� X1 � X2 þ 0:09125� X1 � X3 � 0:15125� X1

� X4 � 0:09725� X2 � X3 þ 0:13525� X2 � X4 þ 0:12375� X3 � X4

ð6Þ

To check the adequacy of the developed model, ANOVA is carried out for the
model and results for ANOVA test are presented in Table 5. It is seen from the table

Table 4 Experimental design matrix and results

Sl. No. Current (A) Voltage (V) Pulse on time (µs) Pulse off time (µs) D

1 6 50 3 3 1.428

2 6 50 3 3 1.428

3 6 50 3 3 1.428

4 6 40 3 3 1.415

5 4 45 2 4 1.408

6 8 55 2 4 1.360

7 8 55 4 4 1.403

8 4 45 4 2 1.363

9 6 50 3 3 1.428

10 6 50 3 3 1.428

11 6 50 3 3 1.428

12 8 55 2 2 1.390

13 6 50 5 3 1.270

14 8 45 4 2 1.383

15 4 55 4 4 1.373

16 6 60 3 3 1.440

17 6 50 3 1 1.403

18 4 55 4 2 1.263

19 4 55 2 4 1.398

20 6 50 3 5 1.383

21 6 50 3 3 1.428

22 8 55 4 2 1.325

23 8 45 2 2 1.428

24 4 45 2 2 1.353

25 8 45 2 4 1.043

26 6 50 1 3 1.423

27 10 50 3 3 1.393

28 8 45 4 4 1.320

29 4 55 2 2 1.383

30 4 45 4 4 1.388

31 2 50 3 3 1.425
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that the regression model has a P-value of 0.024, which means the model is sig-
nificant at 95 % confidence level. It is also seen from the table that the calculated
value of the F-ratio (Fcalculated = 2.84) is more than the tabulated value of F-ratio

Table 5 Full ANOVA results of model coefficients for D

Source DF Seq SS Adj SS Adj MS F P

Regression 14 0.126277 0.126277 0.009020 2.84 0.024

Linear 4 0.012566 0.012566 0.003142 0.99 0.441

Current (A) 1 0.004845 0.004845 0.004845 1.53 0.234

Voltage (V) 1 0.002795 0.002795 0.002795 0.88 0.362

Pulse on time (µs) 1 0.002625 0.002625 0.002625 0.83 0.376

Pulse off time (µs) 1 0.002301 0.002301 0.002301 0.73 0.407

Square 4 0.029493 0.029493 0.007373 2.32 0.101

Current × Current 1 0.001760 0.004313 0.004313 1.36 0.261

Voltage × Voltage 1 0.000339 0.001676 0.001676 0.53 0.478

Pulse on × Pulse on 1 0.019815 0.022269 0.022269 7.02 0.017

Pulse off × Pulse off 1 0.007580 0.007580 0.007580 2.39 0.142

Interaction 6 0.084217 0.084217 0.014036 4.43 0.008

Current × Voltage 1 0.009950 0.009950 0.009950 3.14 0.096

Current × Pulse on 1 0.008327 0.008327 0.008327 2.63 0.125

Current × Pulse off 1 0.022877 0.022877 0.022877 7.21 0.016

Voltage × Pulse on 1 0.009458 0.009458 0.009458 2.98 0.103

Voltage × Pulse off 1 0.018293 0.018293 0.018293 5.77 0.029

Pulse on × Pulse off 1 0.015314 0.015314 0.015314 4.83 0.043

Residual error 16 0.050746 0.050746 0.003172

Lack-of-fit 10 0.050746 0.050746 0.005075

Pure error 6 0.000000 0.000000 0.000000

Total 30 0.177023

Fig. 2 Normal probability plot of the residuals for D
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(F0.05,14,30 = 2.04). That implies that the model is adequate at 95 % confidence
level. Normal distribution of residuals is plotted and presented in Fig. 2. It is seen
that residuals follow a straight line and it follows a normal distribution. So, it can be
said that the regression analysis is valid.

ANOVA results for individual parameters are also presented in Table 5. It is
seen that no linear parameter is significant at 95 % confidence level in controlling
fractal dimension, but some of the square and interaction terms are significant.

Three dimensional surface and contour plots are generated using the regression
equation developed in the study to see the variations of fractal dimension with the
process parameters. To generate the plots, two process parameters are varied while

Fig. 3 Surface and contour plots for D a current with voltage, b current with pulse on time,
c current with pulse off time, d voltage with pulse on time and e voltage with pulse off time

Response Surface Modeling of Fractal Dimension in WEDM 145



other two parameters are held constant at their mid-levels. Figure 3a shows the
variation of fractal dimension with voltage and current. In this plot, pulse on time
and pulse off time are held constant at 3 µs. It is seen from the graph that surface
will be smoother (i.e., higher value of D) with a combination of higher current and
higher voltage. Figure 3b depicts the variation of D with pulse on time and current
and it is seen that higher current and pulse on time combination will provide
smoother surface. Figure 3c plots the variation of D with pulse off time and current.
From Fig. 3d it is seen that at higher values of pulse off time and voltage D value
decreases that means the surface is getting rough. If the discharging energy is very
high then there is a chance of getting violent sparks which may cause a rougher
surface. Figure 3e shows that at higher pulse off time the surface is getting
smoother.

8 Conclusion

In this chapter, to describe surface roughness, fractal dimension is used. To generate
machined surfaces, experiments are conducted in WEDM on EN31 steel work-
pieces using rotatable CCD. Machined surfaces are measured for fractal dimension.
A second order equation is developed for predicting fractal dimension in terms of
four process parameters using RSM. It is seen that the developed model is adequate
enough to predict fractal dimension with 95 % confidence level. From ANOVA
results, it is seen that no individual parameter is significant in predicting fractal
dimension but some of their interaction terms are significant at 95 % confidence
level. Finally, the variations of fractal dimension with process parameters are
demonstrated.
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